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Abstract Two communication processes in a small network are studied. The network consists

of three nodes, all having access to a common channel. Each of the network parties faces a half-

duplex constraint. First a one-way scenario is reviewed where one of the nodes wants to convey

a message to another node. The third node facilitates the transmission. The channel is known as

the half-duplex relay channel. Afterwards a restricted two-way scenario is investigated where two

nodes want to establish a dialog through the channel while the third node assists the bi-directional

transmission. The dialog encoders are not allowed to cooperate. The channel is known as the re-

stricted half-duplex two-way relay channel. For both problems upper (outer) and lower (inner)

bounds on the achievable rates for discrete-memoryless channels are derived with the information

theoretical approach of cut-sets, random codes and suboptimal decoders. In the first part the per-

formance bound and possible transmission strategies that have been obtained for the full-duplex

relay channel are adapted to the half-duplex constraint. The second part examines outer and inner

bounds for restricted half-duplex two-way communication in the network. Different schemes (two

of them new) with specific relaying strategies are analyzed and compared visually with simulations

for channels with continuous Gaussian random variables. One of the core contributions is a first

outer rate bound on the problem independent from a specific scheme. The outer bound established

for the problem alludes to a more general transmission scheme. It contains all schemes consid-

ered before as special cases. For this scheme the achievable rates for decode-and-forward (DF)

and partial-decode-and-forward (PDF) relaying are derived. Restricting to one of those strategies

and fixed input distributions makes it possible to determine optimal transmission schemes with

respect to the maximization of rate objectives or the minimization of cost objectives by solving a

small-scale linear program.
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1. Introduction

Due to the rapid evolution of a "digital society" in the last two decades the demand of data

communication at high quality and rates has dramatically increased. Especially the emerging

markets of selling mobile access to voice and data transmission provide challenging tasks for the

engineers and researchers pushing wireless technology today. A limited amount of resources like

bandwidth, power and hardware form irrevocable constraints to the design of systems satisfying

the present and future request for robust data delivery at appropriate speed. Therefore, high efforts

are made to increase the performance and efficiency of wireless devices and systems. The desire

to theoretically understand technical communication channels and to investigate how to use them

in an efficient way dates back to the first half of the twentieth century. The efforts made have led

to the work [30] presenting a consistent theory of communication. This forms the foundation for

many major contributions that followed. As a result today some fundamental channel models are

considered to be basically understood from a theoretical perspective. The point-to-point channel is

the most prominent one among those and forms the prevailing model for present wireless systems.

In the last years it has been recognized that operating wireless systems in a competitive

point-to-point fashion is not optimal. Here other users act as interferers in the transmission

process and are treated like noise. It has been shown that cooperative protocols can outperform

such an approach. These methods have also been identified to be one of the keys to the optimal

organization of more general wireless networks, e.g., ad hoc networks where many nodes form

a self-configured decentralized network in order to exchange information in a certain area. One

such cooperative concept is known as relaying. Source and destination connect over one or many

intermediate nodes if isolated from each other or when facing bad channel conditions for direct

communication. This can increase connectivity between users in the network. Moreover, lower

energy consumption at the source can be achieved. Even in the presence of a direct path a careful

design of transmission protocols has been shown to improve the communication rate [6]. The

potential to further extend the efficient use of bandwidth with the innovative idea of exchanging

data between two nodes in a bi-directional way over a relay [26] has attracted researchers in the

last years.

Motivation Although from a theoretical viewpoint the one-way communication problem with a

relay is in general an open problem, i.e., the capacity achieving coding procedure is unknown, the

basic methods are considered to be understood due to the milestone [6]. In contrast the analysis

of the two-way channel with a relay is far from being complete. Many works have focused on

a separated channel model where the direct path between the two users is not present, e.g., [26]

[24] [14] [33] [13]. Such a restriction is justified if the connectivity between network parties is a

crucial problem. In a general scenario of a fully-connected wireless network, where all nodes have

access to a common channel, such a model ignores the possibility of using the direct path. It can

be doubted to be optimal in general to operate like in a separated model. Especially with multi-

antenna nodes the direct path might play an interesting role as the eigenmodes of the channels bear

the possibility to transmit data from one node to another separately over the direct path and the

9



10 1. Introduction

relay [21]. However, multi-antenna aspects are out of the scope of the following pages. This work

attempts to study aspects of the half-duplex coding problem in a fully-connected network with

relay. Simulations for Gaussian channels are limited to nodes with a single antenna.

Assumptions In order to keep the analysis tractable the following assumptions are made:

• all nodes operate in half-duplex mode,

• the transmission protocol is fixed and known by all nodes a priori,

• the input distributions are fixed for each network state configuration,

• nodes have access to all codebooks used in the network,

• all nodes are synchronized by a network clock,

• channels are time-invariant and memoryless,

• the conditional distributions of all channels are available at each node,

• the communication is not limited by delay,

• the communication is not limited by the complexity of encoders or decoders.

Throughout the thesis it is assumed that nodes in the network do not have the capability to send

and receive simultaneously on the same resource, i.e., a node can not send and receive at the

same time on the same frequency (half-duplex constraint). Either a node listens to the channel

through its channel output or it talks to the channel by emitting a signal to its channel input. The

particular action of an individual node will be termed state. A network state denotes a particular

state configuration of all nodes. The protocol which defines the network state for each individual

use of the channel is denoted relaying scheme or simply scheme and is assumed to be fixed and

known by all nodes a priori. This excludes the possibility of mode coding, where higher rates can

be achieved [17] by letting the nodes communicate additional information to one another through

a coding scheme on their state, but it allows to gain rate by assigning the optimal number of

channel uses to each of the network states (time allocation). Moreover, the input distributions for

each network state are fixed. This prohibits time-sharing techniques. The restriction to half-duplex

networks can be motivated by practical considerations as it reflects the ability of today’s wireless

technology. However, note that here the transmission process is assumed to be not limited by delay

or complexity. The analysis takes for granted that each node knows the conditional distributions

characterizing all channels in the network as well as all codebooks used. All this might conflict

with practical arguments and therefore makes the analysis inaccurate for a real technical system.

Additionally the basic results of the following pages are not limited to wireless channels.

1.1 Notation

X denotes a random variable taking values in the discrete and finite alphabet X . PX(·) is the

probability distribution of X where the label X is neglected if the associated random variable

becomes clear from the context. PX|Y (·|·) denotes the probability distribution of X conditioned on

Y . I(X ; Y ) symbolizes the mutual information between X and Y . A finite sequence of n elements

is denoted xn. f denotes a scalar-valued function where f denotes a vector-valued function.



2. Half-Duplex One-Way Relay Channel

In this part of the thesis the half-duplex relay channel is studied. The relay channel consists of a

small network with three nodes. One node is considered the source, one the destination and one

the relay. The source node wants to communicate a message to the destination node. The relay

node, having no own message for the two other nodes, assists in the communication process with

a mapping from its past channel output to its current channel input (relaying strategy). In order

to protect the communication process against noise, error-correcting codes are used (encoding).

The destination node estimates the message using its channel output (decoding). The solution to

the coding problem has two aspects. One is to upper bound the achievable rates from above. The

second one is to find a code which is optimal with respect to the message set size (rate). The

achievable rates of the ultimate code would coincide with a tight upper rate bound.

Overview After a short review of related work, a formal definition of the full-duplex and the

half-duplex relay channel is given. An upper and several lower single-letter bounds on the achiev-

able rates for discrete-memoryless versions of the channel are derived. This is done via cut-set

arguments and by studying different relaying strategies proposed in [6] with suboptimal decoding

of random codes. These results can be generalized from discrete channels to the special case of

channels with continuous Gaussian random variables. Such communication models have become

popular as an approximation to the wireless scenario. Simulations for single-antenna nodes illus-

trate the benefits of different relaying strategies and time allocation. This chapter is intended to

serve as an introduction to the basic aspects of the second part. In order to make reading easier

coding proofs are outlined in the appendix.

Related Work The relay channel was introduced in [32]. The seminal work [6] presents an upper

bound on the capacity of the full-duplex relay channel by introducing cut-set arguments. Moreover,

different relaying strategies are presented, among them the decode-and-forward strategy which is

shown to be capacity achieving for the degraded relay channel [6, Theorem 1]. A special case of the

partial-decode-compress-and-forward strategy [6, Theorem 7], the so called partial-decode-and-

forward strategy [18], achieves capacity for the semi-deterministic relay channel where the channel

output at the relay is a deterministic function of the channel input at the source node [9]. The same

holds for the relay channel with orthogonal channels from source to relay and source to destination

[8]. The aspect of diversity in cooperative wireless networks is studied in [20]. In [19] multiple

access channels (MAC) and broadcast channels (BC) with relays are investigated. [11] shows that

the rates for the Gaussian relay channel with joint source-channel coding asymptotically achieve

a cut-set bound if the number of relays grows to infinity. In contrast to the full-duplex works, [15]

focuses on the wireless half-duplex relay channel and its ergodic and outage capacity.

11
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2.1 Discrete Memoryless Half-Duplex Relay Channel

2.1.1 Channel Model

Full-Duplex Channel Model In order to introduce the channel formally the full-duplex model

is shortly reviewed. Throughout this work the nodes of the network are labeled by numbers 1, 2

and 3. Node 2 always plays the roll of the relay and has no own message. In the one-way problem

node 1 is considered to be the source and node 3 the destination of the communication process. W
denotes the message to be transmitted from node 1 to 3. X1 denotes the channel input at node 1,

Node 1

Node 2

Node 3P (y2, y3|x1, x2)W
X1

Y2 X2

Ŵ
Y3

Figure 2.1: Full-Duplex Relay Channel

X2/Y2 the channel input/output at node 2 and Y3 the channel output at node 3. All in- and outputs

are part of a common channel. The channel is assumed to be discrete and without memory, i.e.,

P (yn2 , y
n
3 |x

n
1 , x

n
2 ) =

n∏

k=1

P (y2,k, y3,k|x1,k, x2,k). (2.1)

The conditional output distributions are assumed to be time-invariant for n channel uses

P (y2,k, y3,k|x1,k, x2,k) = P (y2, y3|x1, x2) k = 1, . . . , n. (2.2)

Therefore, the channel is fully characterized by its finite input and output alphabets and a condi-

tional distribution defining the statistical dependencies between inputs and outputs

(X 1×X 2, P (y2, y3|x1, x2),Y2×Y3) . (2.3)

Code A code of length n and rate R consists of a message set of size 2nR

W = {1, 2, . . . , 2nR}, (2.4)

an encoding function at node 1, mapping a message to a sequence of n output signals (codeword)

f 1 : W → X n
1 , (2.5)

a set of relaying functions at node 2, mapping from past outputs Y2 to the current input X2

{f2,k}
n
k=1 s.t. x2,k = f2,k(Y2,1, Y2,2, . . . , Y2,k−1) (2.6)

and a decoding function at node 3 for message recovery from an output sequence yn3

g3 : Y
n
3 → Ŵ . (2.7)
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Half-Duplex Channel Model For the half-duplex channel a state variable S taking values in

S : {1, 2}, determining the state of node 2 (1=listen, 2=talk), is added to the channel

(
X 1×X 2, P

(s)(y2, y3|x1, x2, s),Y2×Y3,S
)
. (2.8)

The channel output at node 2 is inactive if s = 2, i.e.,

P (2)(y2 = ∅, y3|x1, x2, s = 2). (2.9)

The channel input at node 2 is inactive if s = 1, i.e., the input distribution P
X

(s)
2

faces a limitation

if the relay listens to the channel

P
X

(1)
2
(∅) = 1. (2.10)

The nodes have agreed on the individual n realizations of the state variable S a priori. Node 1

always talks and node 3 always listens. The channel can be assumed to be used by two phases

which are orthogonal. In the first n1 of n channel uses node 1 talks through its channel input X
(1)
1

while nodes 2 and 3 listen with their channel outputs Y
(1)
2 , Y

(1)
3 . In the following n2 of n channel

uses node 1 and 2 talk through their inputs X
(2)
1 , X

(2)
2 whereas node 3 listens with Y

(2)
3 . Time

allocation parameters are defined as τl =
nl

n
= PS(l). Equivalently the channel can be defined by

(

X (1)
1 , P (y

(1)
2 , y

(1)
3 |x(1)

1 ),Y (1)
2 ×Y(1)

3

)

⊥
(

X (2)
1 ×X (2)

2 , P (y
(2)
3 |x(2)

1 , x
(2)
2 ),Y(2)

3

)

(2.11)

where the duration of usage for each channel part l is provided by the time allocation parameter τl.

1

2

3

P (y
(1)
2 , y

(1)
3 |x

(1)
1 )

Y
(1)
2

Y
(1)
3X

(1)
1

W

(a) First Phase (n1 transmission slots)

1

2

3

Y
(2)
3X

(2)
1

X
(2)
2

P (y
(2)
3 |x

(2)
1 , x

(2)
2 )

W

Ŵ

(b) Second Phase (n2 transmission slots)

Figure 2.2: Half-Duplex Relay Channel

Code A code of length n, rate R and time allocation τ =
[
τ1 τ2

]T
consists of a message set

W = {1, 2, . . . , 2nR}, (2.12)
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two encoding functions and one decoding function

f
(1)
1 : W → X n1

1

f
(2)
1 : W → X n2

1

g
(2)
3 : Yn1

3 ×Yn2
3 → Ŵ, (2.13)

and a set of relaying functions

{f (2)
2,k}

n
k=n1+1 s.t. x2,k = f2,k(Y2,1, Y2,2, . . . , Y2,n1). (2.14)

2.1.2 Upper Bound

To begin the analysis an upper bound on the achievable rates of the half-duplex relay channel is

derived. Cut-set arguments were first developed in [6, Section 3] for the full-duplex relay channel.

A generalized form for networks of any size and an arbitrary number of source-destination pairs,

referred to as the Cut-set Theorem, can be found in [7, Theorem 15.10.1].

Theorem 2.1.1 The rates of the half-duplex relay channel that are achievable for some joint prob-

ability distributions

P (x
(1)
1 , y

(1)
2 , y

(1)
3 ) = P (x

(1)
1 )P (y

(1)
2 , y

(1)
3 |x(1)

1 )

P (x
(2)
1 , x

(2)
2 , y

(2)
3 ) = P (x

(2)
1 , x

(2)
2 )P (y

(2)
3 |x(2)

1 , x
(2)
2 ).

must satisfy

R ≤ min

{

τ1I(X
(1)
1 ; Y

(1)
2 Y

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 ),

τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )

}

where 0 ≤ τ1, τ2 and τ1 + τ2 ≤ 1.

Proof Consider a full-duplex network with its two cut-set partitions separating node 1 and 3.

Assuming zero-error codes with the Cut-set Theorem it holds that the achievable rates of a com-

munication from node 1 to 3 must satisfy

R ≤ I(X1; Y2Y3|X2)

R ≤ I(X1X2; Y3) (2.15)

for some joint input distribution P (x1, x2). Introducing a random state variable S known by all

nodes in the network yields

R ≤ I(X1; Y2Y3|X2S)

R ≤ I(X1X2; Y3|S). (2.16)

Letting S take values in S : {1, 2} with a distribution

PS(l) =
nl

n
= τl (2.17)
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and rewriting the mutual informations gives

R ≤
L∑

l=1

PS(l)I(X
(l)
1 ; Y

(l)
2 Y

(l)
3 |X(l)

2 , S = l)

= PS(1)I(X
(1)
1 ; Y

(1)
2 Y

(1)
3 |X(1)

2 = ∅, S = 1) + PS(2)I(X
(2)
1 ; Y

(2)
2 = ∅, Y (2)

3 |X(2)
2 , S = 2)

= τ1I(X
(1)
1 ; Y

(1)
2 Y

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )

R ≤
L∑

l=1

PS(l)I(X
(l)
1 X

(l)
2 ; Y

(l)
3 |S = l)

= PS(1)I(X
(1)
1 X

(1)
2 = ∅; Y (1)

3 |S = 1) + PS(2)I(X
(2)
1 X

(2)
2 ; Y

(2)
3 |S = 2)

= τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 ) (2.18)

for input distributions P (x
(1)
1 ), P (x

(2)
1 , x

(2)
2 ). This establishes the theorem. �

Interpretation The Cut-set Theorem states that dividing a network into two disjoint subsets Ω,

Ωc and letting the nodes in each subset cooperate without constraints, results in a point-to-point

channel from Ω to Ωc with multiple-inputs XΩ and multiple-outputs YΩc limited by capacity

CP2P (Ω) = max
PXΩXΩc

I(XΩ; YΩc|XΩc). (2.19)

As any code imposes constraints on the cooperation between nodes, the capacity CP2P (Ω) must

be an upper bound for the achievable information flow from the subnetwork Ω to Ωc. Assuming

one source-destination pair and restricting the partitioning to the source node being in Ω and the

destination node in Ωc the resulting capacity CP2P (Ω) provides an upper bound for achievable rates

from source to destination [11]. Taking the minimum CP2P (Ω) over all possible partitions Ω yields

a stronger bound with a max-flow min-cut interpretation [10]. Due to the nature of the bound,

results for point-to-point channels apply, e.g., available feedback will not increase the capacity

CP2P (Ω) [7, Section 7.12]. Note that although the cut-set bound is tight in all cases where the

capacity for the relay channel could be established, e.g., [6], [9] and [11], it is believed to be lax

in general [35]. Figure 2.3 shows a graphical interpretation of the Cut-set Theorem applied to the

relay network with three nodes and a half-duplex constraint. In order to upper bound the size of

the message set the network is divided into two disjoint subsets each containing either source or

destination of the communication process. The two possible partitions are

Cut 1 : Ω1 = {node 1} Ωc
1 = {node 2, node 3}

Cut 2 : Ω2 = {node 1, node 2} Ωc
2 = {node 3}. (2.20)

For the first cut node 2 and 3 and for the second cut node 1 and 2 are allowed to cooperate arbitrar-

ily. So the first part of Theorem 2.1.1 can be interpreted as the information emitted by node 1 to

node 3 while node 3 has perfect knowledge about the active channel inputs and outputs at node 2

(receiver cooperation). The second part denotes the information received by node 3 in both phases

with perfect cooperation between node 1 and 2 (transmitter cooperation).
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(b) Second Phase (n2 transmission slots)

Figure 2.3: Graphical interpretation: Cut-Set Theorem

2.1.3 Achievable Rates

Decode-and-Forward (Proposition 2.1.2) The first relaying strategy discussed is called decode-

and-forward (DF). Node 2 decodes the full message that was sent by node 1 in the first phase. The

input of node 2 in the second phase is chosen to be a deterministic function of the first phase

message. This results in full knowledge at node 1 about the channel input of node 2. So node 1 can

tradeoff the transmission of a new message to node 3 and the support of the input signal of node 2

in the second phase. An important aspect is that node 2 does not need to forward the full message

from the first phase as node 3 already has side information available after listening to the channel

in the first phase. The idea and a proof for the achievable rates of the full-duplex relay channel is

due to [6, Theorem 1]. Note that in contrast to the full-duplex version [6] the proof here does not

Proposition 2.1.2 All rates of the half-duplex relay channel that satisfy

R ≤ min

{

τ1I(X
(1)
1 ; Y

(1)
2 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 ),

τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )

}

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1 for some joint probability distributions

P (x
(1)
1 , y

(1)
2 , y

(1)
3 ) = P (x

(1)
1 )P (y

(1)
2 , y

(1)
3 |x(1)

1 )

P (x
(2)
1 , x

(2)
2 , y

(2)
3 ) = P (x

(2)
2 )P (x

(2)
1 |x(2)

2 )P (y
(2)
3 |x(2)

1 , x
(2)
2 )

are achievable with a decode-and-forward strategy.

Proof see A2.1.

require block-Markov coding. The strategy realizes transmitter cooperation resulting in the same

expression as the related part of the upper bound.
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Compress-and-Forward (Proposition 2.1.3) Contrary to the method above, the compress-and-

forward strategy (CF) attempts to establish receiver cooperation. Node 2 tries to convey its channel

output to node 3 by quantizing its first phase receive signal. In the second phase node 2 sends the

quantization index to node 3 taking into account the side information that node 3 has after listening

to the channel in the first phase. In the second phase node 1 just sends new information to node

3 as it has no deterministic knowledge about the input of node 2. Node 3 decodes from its own

output and the quantized output of node 2. The idea and a proof for the achievable rates of the full-

duplex relay channel is due to [6, Theorem 6]. Note the similarity to the upper bound for receiver

Proposition 2.1.3 All rates of the half-duplex relay channel that satisfy

R ≤ τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )

subject to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 ) ≤ τ2I(X
(2)
2 ; Y

(2)
3 )

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1 for some joint probability distributions

P (x
(1)
1 , y

(1)
2 , ŷ

(1)
2 , y

(1)
3 ) = P (x

(1)
1 )P (y

(1)
2 , y

(1)
3 |x(1)

1 )P (ŷ
(1)
2 |y(1)2 )

P (x
(2)
1 , x

(2)
2 , y

(2)
3 ) = P (x

(2)
1 )P (x

(2)
2 )P (y

(2)
3 |x(2)

1 , x
(2)
2 )

are achievable with a compress-and-forward strategy.

Proof see A2.2.

cooperation. The degradation of the output Ŷ
(1)
2 available at node 3 is determined by the capacity

of the channel between node 2 and 3 and the side information available at node 3. The problem of

rate-distortion with side information is known as the Wyner-Ziv problem [34].

Partial-Decode-and-Forward (Proposition 2.1.4) Letting node 2 decode the full first phase

message forms a hard restriction on the achievable rates of Proposition 2.1.2. The partial-decode-

and-forward strategy (PDF) relaxes this obstacle. Node 2 decodes just a part of the message sent

by node 1 in phase 1. This part is represented by the auxiliary random variable U
(1)
1 . Then node 2

sends as much information as node 3 needs to decode this part together with its side information

about U
(1)
1 . With full knowledge about the input of node 2 in the second phase node 1 can assist

this transmission or send a new message to node 3. Node 3, after having decoded the first part of

the message, can subsequently decode the second part of the message of phase 1. As it is a special

case of the partial-decode-compress-and-forward strategy (PDCF) the idea is due to [6, Theorem

7]. A proof for the achievable full-duplex rates can be found in [18, Section 9.4.1].

Partial-Decode-Compress-and-Forward (Proposition 2.1.5) The partial-decode-compress-

and-forward strategy combines the already presented methods. Therefore, it contains all previous

methods as special cases. The output at node 2 in Proposition 2.1.4 is additionally quantized and

sent to node 3 in the second phase by use of superposition coding. This allows node 2 to transmit

the decoded message and the quantization index in parallel while taking into consideration the
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Proposition 2.1.4 All rates of the half-duplex relay channel that satisfy

R ≤ min

{

τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 ),

τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )

}

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1 for some joint probability distributions

P (u
(1)
1 , x

(1)
1 , y

(1)
2 , y

(1)
3 ) = P (u

(1)
1 )P (x

(1)
1 |u(1)

1 )P (y
(1)
2 , y

(1)
3 |x(1)

1 )

P (x
(2)
1 , x

(2)
2 , y

(2)
3 ) = P (x

(2)
2 )P (x

(2)
1 |x(2)

2 )P (y
(2)
3 |x(2)

1 , x
(2)
2 )

are achievable with a partial-decode-and-forward strategy.

Proof see A2.3.

available side information about the two parts at node 3. In the second phase node 1 can assist

the transmission of node 2 belonging to the decoded part of the message or send new information

to node 3. The idea and a proof for achievable rates of the full-duplex relay channel is due to [6,

Theorem 7].

Proposition 2.1.5 All rates of the half-duplex relay channel that satisfy

R ≤ min

{

τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
1 ; Y

(2)
3 |V (2)

2 X
(2)
2 ),

τ1I(U
(1)
1 ; Y

(1)
3 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 )+

τ2I(V
(2)
2 ; Y

(2)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |V (2)

2 X
(2)
2 )

}

subject to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |U (1)

1 Y
(1)
3 ) ≤ τ2I(X

(2)
2 ; Y

(2)
3 |V (2)

2 ).

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1 for some joint probability distributions

P (u
(1)
1 , x

(1)
1 , y

(1)
2 , ŷ

(1)
2 , y

(1)
3 ) = P (u

(1)
1 )P (x

(1)
1 |u(1)

1 )P (y
(1)
2 , y

(1)
3 |x(1)

1 )P (ŷ
(1)
2 |y(1)2 , u

(1)
1 )

P (v
(2)
2 , x

(2)
1 , x

(2)
2 , y

(2)
3 ) = P (v

(2)
2 )P (x

(2)
1 |v(2)2 )P (x

(2)
2 |v(2)2 )P (y

(2)
3 |x(2)

1 , x
(2)
2 )

are achievable with a partial-decode-compress-and-forward strategy.

Proof see A2.4.
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2.1.4 Wireline Communication

The derived strategies with decoding at the relay can be used to formulate the achievable rates on

a wireline channel model. In phase l each directed link of the network from node i to j features the

reliable communication of b
(l)
ij bits by being used for unit time.

Proposition 2.1.6 All rates of the half-duplex wireline relay channel that satisfy

R ≤ min

{

τ1b
(1)
12 + τ2b

(2)
13 , τ1b

(1)
13 + τ2(b

(2)
13 + b

(2)
23 )

}

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1, for some directed links of capacity b
(l)
ij are achievable with a

decode-and-forward strategy.

Proposition 2.1.7 All rates of the half-duplex wireline relay channel that satisfy

R ≤ min

{

τ1(b
(1)
12 + b

(1)
13 ) + τ2b

(2)
13 , τ1b

(1)
13 + τ2(b

(2)
13 + b

(2)
23 )

}

with 0 < τ1, τ2 and τ1 + τ2 ≤ 1, for some directed links of capacity b
(l)
ij are achievable with a

partial-decode-and-forward strategy.

Note that PDF coincides with the upper bound of this channel model due to orthogonal channels

in the first phase as mentioned in [8].
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2.2 Linear Problems

For linear rate and transmission cost objectives the rate expressions derived for different schemes

have the property that optimal time allocation for fixed input distributions can be determined by

solving linear programs of small size. It is shortly outlined how to formulate some relevant prob-

lems. It is assumed that a scheme and relaying strategy has been chosen, the channels have been

specified by conditional distributions Pc (or densities pc) and the input distributions are fixed to Pin

(pin). Mutual informations are denoted abstractly and can be looked up from the according propo-

sition or the upper bound. The matrix A for the problems is determined by different constraints

a

A =







a1
T

a2
T

aq
T

aT
τ






. (2.21)

Note that the constraint aq is just needed for propositions with quantization at the relay.

Rate Maximization The first relevant problem is the rate maximization problem (RP). This

problem has relevance if the communication rate through the network should be maximized. The

constraints have the form

a1
T =

[

1 −I
(1)
1 (Pc, Pin) −I

(2)
1 (Pc, Pin)

]

a2
T =

[

1 −I
(1)
2 (Pc, Pin) −I

(2)
2 (Pc, Pin)

]

aq
T =

[

0 ±I
(1)
q (Pc, Pin) ±I

(2)
q (Pc, Pin)

]

aT
τ =

[
0 1 1

]

bT =
[
0 0 0 1

]
. (2.22)

The cost vector is

cT =
[
1 0 0

]
. (2.23)

In order to optimize the communication for the highest possible rate solve the problem

max cTx

s.t. Ax ≤ b, 0 ≤ x, const(x) (2.24)

where const(x) denotes that additional constraints (optional) on x =
[
R τ1 τ2

]T
are fulfilled.

Minimizing Transmission Cost Another problem with linear structure is the Transmission Cost

minimization problem (TCP). Each phase l is associated with a cost linear in activation time. The

cost for each phase l and unit activation time is denoted cl. The objective is to minimize the cost

for a certain fixed rate requirement R on the one-way communication through the network. The
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constraints have the form

a1
T =

[

−I
(1)
1 (Pc, Pin) −I

(2)
1 (Pc, Pin)

]

a2
T =

[

−I
(1)
2 (Pc, Pin) −I

(2)
2 (Pc, Pin)

]

aq
T =

[

±I
(1)
q (Pc, Pin) ±I

(2)
q (Pc, Pin)

]

aT
τ =

[
1 1

]

bT =
[
−R −R 0 1

]
(2.25)

and the cost vector is

cT =
[
c1 c2

]
. (2.26)

With x =
[
τ1 τ2

]T
the optimization problem has the form

min cTx

s.t. Ax ≤ b, 0 ≤ x, const(x). (2.27)

If the problem has no solution the rate request R is infeasible. For the wireline model the mutual

informations have to be replaced by link capacities b
(l)
ij .
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2.3 Gaussian Half-Duplex Relay Channel

In order to illustrate and compare the results from the previous section the expressions for the

special case of continuous random variables will be derived here and optimized with respect to

maximum rate. In the previous section an upper bound and different achievable rates have been

established for the half-duplex relay channel. All of them were derived under the assumption of a

memoryless channel with discrete random variables and unconstrained active input distributions.

Fortunately, it can be assumed that all achievable rate expressions in Section 2.1.3 can be

generalized to continuous variables with Gaussian distributions [19, Remark 28, 30]. The upper

bound is valid for any discrete or continuous version of the channel [7, Section 9.2]. Nevertheless,

note that it is not discussed here if Gaussian distributions maximize mutual informations under a

power constraint for the studied channel and strategies.

In order to use this section also for the two-way problem the model is denoted in a more

general form. The message Wij is to be sent from node i to j, ∀i, j = 1, 2, 3. It is assumed

that n channel uses are divided into L non-overlapping transmission phases each occupying nl

of the n channel uses. In each phase only one network state is used. The input sequence in the

l-th transmission phase at the i-th network party is denoted by X
(l)
i ∈ C

nl×1 with entries being

complex Gaussian with a per symbol power constraint

E

[∣
∣
∣X

(l)
i,k

∣
∣
∣

2
]

≤ P
(l)
i k = 1, . . . , nl. (2.28)

Each channel input sequence X
(l)
i is composed of a linear combination of M encoding functions

f
(l)
im(Wij) : W ij → Fnl

im with independent entries normalized to unit variance f
(l)
im,k ∼ NC(0, 1).

Each encoding function is weighted by an amplification term

√

P
(l)
im . The power allocation coef-

ficients P
(l)
im have to be chosen such that the power constraint on the according output is met. The

notation of encoding functions depending on messages Wij is used in order to illustrate the task of

each encoding function. For example

X
(2)
2 =

√

βP
(2)
2 f

(2)
21 (W13) +

√

(1− β)P
(2)
2 f

(2)
22 (Q23) β ∈ [0, 1] (2.29)

denotes the input sequence X
(2)
2 in phase 2 at node 2 formed by a superposition of two encoding

functions with the parameter β controlling the power allocation. One of the functions is associated

with the propagation of message W13 and the other with the transmission of the quantization index

Q23. All channels follow an additive model with static channel coefficients. Consequently, the

channel output sequence in phase l at the j-th party of the network is

Y
(l)
j =

∑

I

hijX
(l)
i +Z

(l)
j Y

(l)
j ,X

(l)
i ,Z

(l)
j ∈ C

nl×1 (2.30)

where hij ∈ C denotes the constant coefficient of the directed channel from node i to j. Additive

noise is independent, zero mean and normalized to unit variance Z
(l)
j,k ∼ NC(0, 1). As the nodes

are assumed to have full knowledge about all channel coefficients hij (amplitude and phase) in

the network, they are able to adapt their code rates, signaling, power and time allocation perfectly

with respect to the objective agreed on.
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The channel output sequences for the one-way strategies are

Y
(1)
2 = h12X

(1)
1 +Z

(1)
2

Y
(1)
3 = h13X

(1)
1 +Z

(1)
3

Y
(2)
3 = h13X

(2)
1 + h23X

(2)
2 +Z

(2)
3 . (2.31)

The messages W13 and Q23 are abbreviated W,Q. After the appropriate choice of input param-

eterization fulfilling the input distribution restrictions of the propositions and the chosen power

constraint, the achievable rate expressions follow by straightforward calculations after replacing

mutual informations in the expressions of Sections 2.1.2 and 2.1.3 by the differential entropies of

scalar complex Gaussian variables.

2.3.1 Upper Bound and Achievable Rates

Upper Bound For the upper bound expression the channel input sequences are given by

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W )

X
(2)
1 =

√

βP
(2)
1 f

(2)
21 (W )

︸ ︷︷ ︸
√

βP
(2)
1 /P

(2)
2 X

(2)

2

+

√

(1− β)P
(2)
1 f

(2)
11 (W ) β ∈ [0, 1]

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (W ). (2.32)

The same encoding function f
(2)
21 (W ) is used at node 1 and 2 in order to realize the statistical

dependence p(x
(2)
1 , x

(2)
2 ). Varying β changes the dependence between the random input sequences

X
(2)
1 and X

(2)
2 . The according equation for the upper bound is

R ≤ min

{

τ1 log
(

1 + (|h12|
2 + |h13|

2)P
(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

.

Decode-and-Forward The same input parameterization yields an achievable rate

RDF ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

for the decode-and-forward strategy. The parameter β ∈ [0, 1] controls the amount of power in-

vested by node 1 in order to assist the input signal of node 2. Equivalently one can say that node 1

and 2 agree to cooperate by a tradeoff maximizing node 3 receive signal power (beamforming) and

new information node 1 can send to node 3 over the direct path. Note that both bounds have to be

optimized over β and τ while maximal powers P
(1)
1 , P

(2)
1 , P

(2)
2 are used. For fixed β the problem

of finding optimal time allocation τ ⋆ is a simple linear program [2].
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Compress-and-Forward For the compress-and-forward strategy a different input parameteri-

zation is needed as node 1 can not assist node 2 in transmission to node 3, i.e., p(x
(2)
1 , x

(2)
2 ) =

p(x
(2)
1 )p(x

(2)
2 ). The input sequences are modeled as

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W )

X
(2)
1 =

√

P
(2)
1 f

(2)
11 (W )

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (Q) (2.33)

where the variable Q denotes the resulting quantization codebook index at node 2. According to

the quantization channel p(ŷ
(1)
2 |y(1)2 ) the quantized version of the channel output sequence Y

(1)
2 is

assumed to have the form

Ŷ
(1)

2 = Y
(1)
2 + Ẑ

(1)

2 (2.34)

with independent quantization noise Ẑ
(1)
2,k ∼ NC(0, σ̂

2). The rates can not exceed

RCF ≤ τ1 log

(

1 + |h13|
2 P

(1)
1 +

|h12|
2 P

(1)
1

1 + σ̂2

)

+ τ2 log
(

1 + |h13|
2 P

(2)
1

)

subject to

τ1 log

(

1 +
1

σ̂2

(

1 +
|h12|

2 P
(1)
1

1 + |h13|
2 P

(1)
1

))

≤ τ2 log

(

1 +
|h23|

2 P
(2)
2

1 + |h13|
2 P

(2)
1

)

. (2.35)

Partial-Decode-and-Forward The partial-decode-and-forward strategy allows node 2 to decode

only a part of the channel input of node 1. This part was represented by an auxiliary random

variable U
(1)
1 in Proposition 2.1.4 forming the cloud centers of superposition coding for the chan-

nel input X
(1)
1 . Therefore, the Gaussian input sequence at node 1 in the first phase is divided

into two encoding functions f
(1)
11 (W ) associated with the auxiliary and independent f

(1)
12 (W ), i.e.,

p(u
(1)
1 , x

(1)
1 ) = p(u

(1)
1 )p(x

(1)
1 |u(1)

1 ). The power allocation parameter β controls the power allocation

to the message decoded at node 2. In the second phase γ assigns the powers between the signal

coherent with node 2 and the signal related to new information. The input sequences are

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W )

︸ ︷︷ ︸

U
(1)

1

+

√

(1− β)P
(1)
1 f

(1)
12 (W ) β ∈ [0, 1]

X
(2)
1 =

√

γP
(2)
1 f

(2)
21 (W )

︸ ︷︷ ︸
√

γP
(2)
1 /P

(2)
2 X

(2)

2

+

√

(1− γ)P
(2)
1 f

(2)
11 (W ) γ ∈ [0, 1]

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (W ) (2.36)
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and yield the lower achievable rate bound

RPDF ≤ min

{

τ1 log





(

1 + |h12|
2 P

(1)
1

)(

1 + |h13|
2 (1− β)P

(1)
1

)

1 + |h12|
2 (1− β)P

(1)
1



+τ2 log
(

1 + |h13|
2 (1− γ)P

(2)
1

)

,

τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

γP
(2)
1 P

(2)
2

)}

.

Assuming this strategy to be able to outperform the decode-and-forward strategy

(

1 + |h12|
2 P

(1)
1

)(

1 + |h13|
2 (1− β)P

(1)
1

)

1 + |h12|
2 (1− β)P

(1)
1

> 1 + |h12|
2 P

(1)
1

1 + |h13|
2 (1− β)P

(1)
1 > 1 + |h12|

2 (1− β)P
(1)
1

|h13|
2 > |h12|

2
(2.37)

shows that this requires the channel between node 1 and 3 to be stronger than the channel between

node 1 and 2. Under these conditions the parameter β that maximizes the rate expression is ob-

served to be β = 0, resulting in turning off the relay. Therefore, the partial-decode-and-forward can

be considered to be a "clever" decode-and-forward strategy for the scalar channel studied here. If

decoding at the relay restricts the size of the message set, the relay is turned off. However, simula-

tions will show that the simpler decode-and-forward strategy with optimal time allocation features

the same advantage for the considered channel by just using one phase, i.e., choosing τ1 → 0.

Partial-Decode-Compress-and-Forward In contrast to the method before, the partial-decode-

compress-and-forward strategy exploits the possibility to additionally quantize the channel output

at node 2. Therefore, the channel input sequence X
(1)
1 is split into two encoding functions. Encod-

ing function f
(1)
11 (W ) represents the part that will be decoded by the relay and f

(1)
12 (W ) represents

a superimposed independent signal that will only be decoded by the destination. The power alloca-

tion parameter β controls the tradeoff between the two parts. The output sequence X
(2)
2 is divided

into the encoding function f
(2)
21 related to the propagation of the decoded message part and f

(2)
22

related to the transmission of the quantization index. Node 1 assists the transmission of node 2

related to the decoded message part and sends new information directly to node 3 where γ denotes

the tradeoff between both tasks

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W )

︸ ︷︷ ︸

U
(1)

1

+

√

(1− β)P
(1)
1 f

(1)
12 (W ) β ∈ [0, 1]

X
(2)
1 =

√

γP
(2)
1 f

(2)
21 (W )

︸ ︷︷ ︸
√

γP
(2)
1 /δP

(2)
2 V

(2)

2

+

√

(1− γ)P
(2)
1 f

(2)
11 (W ) γ ∈ [0, 1]

X
(2)
2 =

√

δP
(2)
2 f

(2)
21 (W )

︸ ︷︷ ︸

V
(2)

2

+

√

(1− δ)P
(2)
2 f

(2)
22 (Q) δ ∈ [0, 1]. (2.38)
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The output sequence of the quantizer of node 2 has the same form like in the compress-and-forward

strategy,

Ŷ
(1)

2 = Y
(1)
2 + Ẑ

(1)

2 (2.39)

with Ẑ
(1)
2,k ∼ NC(0, σ̂

2) being the quantization noise. The rate bound is given by

RPDCF ≤ min

{

τ1 log

(
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(1)
1
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(1)
1

)

, τ1 log
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1
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2 (1− β)P
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1
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+ τ2 log
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(2.40)
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2.3.2 Simulations

Line/Plane Network For example scenarios the line and plane network are introduced. These

network models arrange nodes on the (x, y)-plane. Node 1 is fixed at the origin
[
0 0

]T
and node 3

at
[
1 0

]T
. For the line network node 2 can be moved to all positions

[
x 0

]T
with x ∈ (−∞;∞).

For the plane network node 2 is allowed to take any position
[
x y

]T
with x, y ∈ (−∞;∞). The

channel coefficients are considered to be determined by the distances between nodes

hij = 1/d
α
2
ij , (2.41)

and the path loss exponent α. Note that this model is not accurate if node 2 is near node 1 or 3

due to the far-field assumption on the path-loss. Power parameters P
(l)
i need to be interpreted as

the signal-to-noise-ratio (SNRij) at a node j resulting from node i if located at unit distance to

each other and communicating in a simple point-to-point fashion. The simulations done here as

example use P
(l)
i = 10 and α = 3. So reducing the distance between two nodes i and j by a factor

of 2 increases the receive SNRij at node j caused by node i by a factor of 8 (∼ 9 dB).

1 2 3

d13 = 1

d12 = |x| d23 = |1− x|

Figure 2.4: Line Network

Equal Time Allocation Figure 2.5 shows the achievable rates in the line network with the basic

relaying strategies DF and CF. Time is allocated equaly to both transmission phases τ =
[
1
2

1
2

]T
.

Decode-and-forward (DF) achieves capacity if node 2 is near the source node. In the extreme

case where x = 0 the system performs half the time as single-input-single-output (SISO) system

between node 1 and node 3 with the rate

RSISO ≤
1

2
log
(

1 + P
(1)
1

)

. (2.42)

The channel between node 1 and 2 features unlimited capacity allowing the two nodes to agree on

arbitrary transmitter cooperation for the second phase. The rest of the time the network becomes a

multiple-input-single-output (MISO) system

RMISO ≤
1

2
log

(

1 + P
(2)
1 + P

(2)
2 + 2

√

P
(2)
1 P

(2)
2

)

(2.43)

where node 1 and 2 send together in full coherence (β = 1) to node 3. The additional term

2

√

P
(2)
1 P

(2)
2 (2.44)
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Figure 2.5: Line Network with τ T =
[
1
2 ,

1
2

]
, P

(l)
i = 10, α = 3

results from both nodes sending signals adding constructively at node 3 (beamforming gain).

Due to the ability to convey a good quality estimate of Y
(2)
2 to node 3, compress-and-forward (CF)

performs good if node 2 is in the vicinity of the destination node. With node 2 being located at the

extreme point x = 1 the system turns into a single-input-multiple-output system (SIMO) in the

first phase with rate

RSIMO ≤
1

2
log
(

1 + 2P
(1)
1

)

(2.45)

followed by a second phase where CF performs like the above-mentioned SISO channel. So

for the extreme cases one of the methods realizes perfect cooperation for half the transmission time.

For DF it can be observed that the rates fall below the transmission without relay if the

channel gain |h12|
2

between node 1 and 2 is lower than the gain of the direct channel |h13|
2
.

Figure 2.6 shows the achievable rates in the line network for the advanced relaying methods.

The partial-decode-and-forward strategy (PDF) shows the predicted behavior by turning off

the relay if the connection between node 1 and 3 is stronger than the channel between node 1

and 2. Consequently, PDF is in any situation at least as good as the direct transmission. The

partial-decode-compress-and-forward strategy (PDCF) performs a hard decision for the best

transmission strategy among DF, CF and PDF. Unfortunately, an additional PDCF rate gain due to

the possible combination of PDF and CF is not observed in the example.

Time Allocation Figure 2.7 compares the rates of the line network with and without optimized

time allocation. A rate gain can be observed for CF if node 2 is located around the source or the

destination node. For DF the rate is higher around the source node and in the area between half
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Figure 2.6: Line Network with τ T =
[
1
2 ,

1
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]
, P

(l)
i = 10, α = 3
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Figure 2.7: Time Allocation, Line Network with P
(l)
i = 10, α = 3
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Figure 2.8: HD vs. FD, Line Network with P
(l)
i = 10, α = 3

the way and node 3. Also for the case where the rate between node 1 and 2 is smaller than the rate

of the direct link DF benefits from time allocation with using just one phase τ1 → 0. Therefore,

the relay is disconnected from the transmission process. The peaks at the extreme points of the

network result from time-allocation which offers the possibility to enforce a full-duplex system.

The comparison between half-duplex and full-duplex rates is depicted in Figure 2.8.

Plane Network Some results for a plane network with the same parameterization are presented

in Figures 2.9-2.12. Figure 2.9 shows that the achievable rate gain compared to direct transmission

without relay is up to 45 percent for the example. Figures 2.10 and 2.11 show the rate gain for

DF and CF with optimal time allocation in contrast to equal time slots. Note that although the

gain of up to 10 percent in some areas seems to be low it comes without cost as all nodes are

assumed to have full knowledge about the channel coefficients. Figure 2.12 shows the relation of

the achievable rates to the upper bound.
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The second part of the thesis focuses on the restricted half-duplex two-way relay channel. Nodes

1 and 3 want to exchange independent messages through the network, while node 2 is able to help

in the communication process. The two-way channel is restricted in the sense that nodes 1 and

3 choose their channel inputs just in dependence of the individual messages they want to send.

They can not use their past receive signals in order to pick the optimal current channel inputs.

Therefore, the two dialog encoders are not allowed to establish a cooperation over their past receive

signals. As in the one-way problem all nodes operate in half-duplex mode. In contrast to the one-

way scenario now a combinatorial aspect joins the coding problem as many different schemes are

possible. Literature has focused on a two-phase relaying scheme (2P-MA-BC) [26] where in the

first phase nodes 1 and 3 send simultaneously to node 2 in a multiple-access (MA) fashion. In

the second phase node 2 broadcasts (BC) to nodes 1 and 3. The restriction to such a scheme is

frequently justified by the assumption of a separated two-way relay channel [13] where nodes 1

and 3 have no direct connection. Recently, a second scheme with three phases (3P-BC) [25] [28]

[16] has been proposed where nodes 1 and 3 send to node 2 one after another. In a last step node

2 sends to both dialog parties. This scheme can benefit from the orthogonal transmission to the

relay and the use of the direct path. Further, a four phase scheme (without outer bound) has been

proposed by adding a multiple access phase to the 3P-BC scheme [28]. Surprisingly, to the best

of the author’s knowledge, other schemes have not been considered nor an attempt has been made

in order to define the problem and reveal all its possibilities. Moreover, none of the works found

verifies and compares results in the presence of a problem outer bound. The two outer bounds

presented in literature are associated with one of the schemes mentioned above and can therefore

not serve as outer approximations of the achievable rate region of a fully-connected model as this

region is a limiting property of the channel itself and not of a specific way the channel is used.

Wireline Example The benefit of a two-way relay channel can be seen by the following example.

Assume a wireline network of two nodes, both facing a half-duplex constraint. For simplicity all

links support one reliable bit per channel use. Nodes 1 and 3 want to exchange messages (bits).

The obvious way to communicate is to let the nodes send sequentially to each other (see Figure

3.1). The two-way channel allows to transmit two bits within two steps. Therefore, the two-way

1 3
b1

1 3
b2

Figure 3.1: Two-way channel (TWC, 1.0 bps / 1.0 lpb / 1.0 npb)

transmission is carried out at a rate of 1.0 bits per step (RTW = R13+R31 = 1.0 bps). Assume now

that a direct connection is not possible. Extend the network to a third node (relay) connected to both

dialog nodes through separate links. This makes it possible to exchange messages over the relay.

A straightforward half-duplex protocol is given by four steps depicted in Figure 3.2. Each node

sends sequentially to the relay and the relay sends to both nodes one after another. It is possible to

35
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exchange two bits in four steps (RTW = 0.5 bps). Figure 3.3 shows that combining the two steps

towards the relay to a multiple-acess phase and the two steps from the relay to a broadcast phase

[26] makes it possible to exchange two bits in two steps (RTW = 1.0 bps). Note that this scheme

allows to recover the rate of the direct two-way communication under a connectivity problem.

1 2 3
b1

1 2 3
b2

b1
1 2 3 1 2 3

b2

Figure 3.2: Two-way relaying in four steps (4P with DF, 0.5 bps / 2.0 lpb / 2.0 npb)

1 2 3
b1 b2

1 2 3
b2 b1

Figure 3.3: Two-way relaying in two steps (2P-MA-BC with DF, 1.0 bps / 2.0 lpb / 1.5 npb)

Fully-Connected Wireline Example The example is now extended to a fully-connected net-

work. Each node can connect to all other nodes in the network through separated links. The half-

duplex constraint on the nodes remains. TWC and the 2P-MA-BC scheme achieve the same rates

as before. Consider the three-step scheme sketched in Figure 3.4. A multiple-acess phase is fol-

lowed by two transmissions from the relay to one of the dialog nodes. The dialog nodes use the

possibility to transmit a new bit while node 2 sends to their dialog counterpart. This scheme, here

referred to as 3P-MA, makes it possible to exchange four bits within three steps (RTW = 1.33
bps). Another possibility of a three-phase scheme is the 3P-BC scheme. Here nodes 1 and 3 send

1

2

3

b1 b2

1

2

3

b1

b3

1

2

3

b2

b4

Figure 3.4: Two-way relaying in three steps (3P-MA with DF, 1.33 bps / 1.5 lpb / 1.5 npb)

to node 2 one after another. Node 2 broadcasts the received bits. If DF relaying is used (see Figure

3.5) the communication is limited by the source-relay links in the first two phases. By definition the

relay must decode the full messages send by the two dialog nodes. Only two bits can be exchanged

in three steps (RTW = 0.67 bps). Instead if a PDF strategy is used (see Figure 3.6) the relay is

allowed to decode only parts of the messages sent. It is now possible for nodes 1 and 3 to emit an

additional bit to their dialog partner. This allows to exchange four bits in three steps (RTW = 1.33
bps). Using four steps (see Figure 3.7) even allows to exchange six bits in four steps (RTW = 1.5
bps). This obviously outperforms the direct two-way communication.
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Figure 3.5: Two-way relaying in three steps (3P-BC with DF, 0.67 bps / 2.0 lpb / 1.5 npb)
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Figure 3.6: Two-way relaying in three steps (3P-BC with PDF, 1.33 bps / 1.5 lpb / 0.75 npb)
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Figure 3.7: Two-way relaying in four steps (4P-OWRC with PDF, 1.5 bps / 1.33 lpb / 1.0 npb)

Communication Cost Another important aspect of the example is the cost related to the com-

munication process. Unit cost can be associated with the number of used links per bit (lpb). It is

observed that the 2P-MA-BC scheme consumes 2.0 lpb. The 3P-MA DF and 3P-BC PDF schemes

only require 1.5 lpb. The four step scheme reduces the cost to 1.33 lpb. None of the schemes can

outperform the two-way channel operating at 1.0 lpb. Alternatively, unit cost can be related to the

activation of a node. For such a cost model the benchmark lies at one node-activation per bit (1.0
npb) for the direct two-way channel. The 3P-BC scheme with PDF for example operates at a lower

cost of 0.75 npb. Even the 4P-OWRC scheme achieves the benchmark of 1.0 npb while providing

higher rates.

Wireless Channels The above wireline example neglects the properties of wireless channels,

i.e., channels supporting asymmetric rates, statistical dependence of links resulting in broadcast-

ing, superposition or interference. For single-antenna networks the previous one-way analysis has

shown that the PDF strategy can not outperform the DF strategy for the interesting cases. In order

to maximize the rate in the half-duplex relay channel the source needs to maximize the sum-rate of

data emitted in the first phase. As scalar channels can be statistically ordered the source invests all

its power on the signal decoded by the node connected with a "stronger" channel. The PDF strategy

turns to a DF strategy or disconnects the relay from the transmission process. This will be different

in multiple-input-multiple-output (MIMO) systems due to the structure of the channel. The case of

orthogonal channels will be unlikely but with precoding a situation similar to the example can be

enforced by exploiting the structure of the channel matrices.
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Coding Another subtle aspect that is hidden by the abstraction and symmetry of the example is

the interaction between the encoders and decoders of the separated links. Here each link represents

an independent chain of an encoder, a channel and a decoder together supporting the transmission

of one reliable bit. It should have become clear with the one-way scenario that this might not be

optimal. A decoder can wait with decoding until having received side information over a different

link.

Overview However, the given example shows that two-way relaying schemes might offer possi-

bilities to enhance the performance of the communication in a fully-connected half-duplex network

with three nodes. Therefore, they deserve a precise survey. As no analysis of two-way protocols

with PDF could be found and the analysis of strategies like DF, CF and PDCF seems to be in-

complete for the underlying channel model a rigorous information theoretical approach through

general channels must be carried out before focusing on special channels like the wireless ones.

After a short summary of related work, the next pages will give a possible definition of the re-

stricted half-duplex two-way relaying problem followed by an outer bound on the achievable rates.

In order to understand some of the possibilities and mechanisms of half-duplex two-way commu-

nication with a relay the two schemes, 2P-MA-BC and 3P-BC, found in literature are revisited.

Subsequently, a new three-phase scheme (3P-MA) is proposed where nodes 1 and 3 send together

to node 2. Two orthogonal transmission phases from the relay, each intended for one of the nodes,

follow. This scheme makes it possible to assist the relay in the two last phases by one of the dialog

nodes or to send new additional information. A second new scheme with four phases (4P-OWRC)

is proposed. It separates the two-way channel into two subsequent one-way relay channels. Finally,

a general scheme with six phases and relaying strategies limited to DF and PDF relaying is estab-

lished. For fixed input distributions the time allocation solution for the DF protocol is argued to

provide the optimal decode-and-forward transmission scheme with respect to the maximization of

any reasonable rate objective. Like in the first part, simulations for channels with scalar Gaussian

random variables are used to visually compare the performance of the schemes. All schemes are

analyzed by the problem outer bound, their individual performance outer bound and inner bounds

derived with different relaying strategies. The main contribution is the derivation of a problem

outer bound providing an ultimate performance benchmark and the proposal of a new transmission

scheme taking into account all possible network state configurations of the channel.

Related Work The two-way communication problem was introduced in [31]. The work [26] es-

tablished the idea of exchanging messages with two phases in a bi-directional way over a relay

using amplify-and-forward (AF) and DF strategies. [25] proposes the 3P-BC scheme and derives

the achievable rates with network coding. In [23] the broadcast phase of the 2P-MA-BC scheme is

examined in detail and the capacity achieving coding scheme is derived if the relay has available

both dialog messages. Using a CF strategy for the two-phase two-way relay channel is investigated

by [29]. The recent work [16] investigates the 3P-BC scheme in detail. This scheme is also investi-

gated in [28] where additionally a four phase scheme is proposed. Full-duplex works are rare. [27]

studies the restricted full-duplex two-way relay channel while [13] focuses on a separated full-

duplex model. [1] proposes a deterministic approach to approximate the capacity of the two-way

relay channel.
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3.1 Discrete Memoryless Half-Duplex Two-Way Relay Channel

3.1.1 Channel Models

Full-Duplex Model Like for the one-way problem a full-duplex model is reviewed. The studied

network consists of three nodes labeled by i = 1, 2, 3 each equipped with an input Xi and an output

Yi to a common channel. The channel is time-invariant, discrete and memoryless. Therefore the

two-way relay channel can be defined by

(X 1×X 2×X 3, P (y1, y2, y3|x1, x2, x3),Y1×Y2×Y3) (3.1)

where X i and Y i are finite and discrete input and output alphabets. W13 denotes the message to be

transmitted from node 1 to node 3. W31 is to be transmitted from node 3 to node 1.

Node 1

Node 2

Node 3P (y1, y2, y3|x1, x2, x3)

W13

Ŵ31

X1

Y1

X2 Y2

W31

Ŵ13

X3

Y3

Figure 3.8: Full-Duplex Two-Way Relay Channel

Restricted Codes A restricted code of length n and rate RT =
[
R13 R31

]
consists of two

message sets

W13 = {1, 2, ..., 2nR13}

W31 = {1, 2, ..., 2nR31}, (3.2)

two encoding functions for node 1 and 3

f1 : W13 → X n
1

f3 : W31 → X n
3 , (3.3)

a set of relaying functions

{f2,k}
n
k=1 s.t. x2,k = f2,k(Y2,1, Y2,2, . . . , Y2,k−1) (3.4)

and two decoding functions

g1 : Y
n
1 ×W13 → W31

g3 : Y
n
3 ×W31 → W13 . (3.5)

The code is restricted to the encoding functions being independent of past receive signals.
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Half-Duplex Model For the half-duplex problem it can be observed that 23 = 8 network states

are in general possible. Each of the three nodes can take two states, listen or talk. It can be

assumed that the two network states where all nodes talk or listen will not contribute to a positive

information flow. The relevant number of network states reduces to 23 − 2 = 6. Within three of

the states one of the nodes sends to two other nodes while for the other states two nodes send

simultaneously to one node. Figure 3.9 depicts the six relevant elementary network states. The

1

2

3 1

2

3 1

2

3

1

2

3 1

2

3 1

2

3

Figure 3.9: Elemetary Network States

question arises which of the states in conjunction with which code should be used in order to

maximize a certain objective as for example sum-rate. It is also apparently not clear if the order of

the states has an effect on the problem.

Here the channel is defined with finite input and output alphabets Y i,X i as

(
X 1×X 2×X 3, P

(s)(y1, y2, y3|x1, x2, x3, s),Y1×Y2×Y3,S
)

(3.6)

with a network state variable S :=
[
S1 S2 S3

]T
, si ∈ {0, 1} imposing following restrictions on

the output values and input distributions

yi = 0 if si = 1

P
X

(s)
i

(0) = 1 if si = 0 ∀i = 1, 2, 3. (3.7)

On the following pages different realizations of S will be labeled by numbers l = 1, . . . , L instead

of a three element binary vector. For each scheme the labeling will be defined individually.

Restricted Codes Consider a scheme Sn and a choice of L network states. Sk takes values in

S : {1, . . . , L} and determines the individual network state l for the k-th of n channel uses. nl

denotes the number of occurrences of the l-th network state in n channel uses. Time allocation is

defined as the ratio of nl to n

τl =
nl

n
, ∀l (3.8)
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with

0 < τl
L∑

l=1

τl ≤ 1. (3.9)

A code of length n and rate RT =
[
R13 R31

]
consists of a fixed scheme, two message sets

W13 = {1, 2, ..., 2nR13}

W31 = {1, 2, ..., 2nR31}, (3.10)

2× L encoding functions

f
(l)
1 : W13 → X nl

1

f
(l)
3 : W31 → X nl

3 , (3.11)

a set of relaying functions

{f2,k}
n
k=1 s.t. x2,k = f2,k(Sk, Y2,1, Y2,2, . . . , Y2,k−1) (3.12)

and two decoding functions

g1 : Y
n
1 ×W13 → W31

g3 : Y
n
3 ×W31 → W13 . (3.13)

The code is restricted as the encoding functions are independent of past receive signals.

3.1.2 Problem Outer Bound

The Cut-set Theorem is applied to outer bound the achievable rates of the restricted two-way

relaying problem with half-duplex constraint. For any fixed scheme which uses less than the six

relevant network states an individual performance outer bound can be derived without further proof

by setting the occurrence of the unused network states to zero.

Theorem 3.1.1 All rate pairs of the half-duplex two-way relay channel that are achievable for

some joint probability distributions
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must satisfy

R13 ≤ min

{

τ1I(X
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R31 ≤ min

{
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}

where 0 ≤ τl and
∑6

l=1 τl ≤ 1.

Proof Consider a full-duplex three-node network and the two possible cut-set partitions Ω1, Ω2

separating nodes 1 and 3. Under the assumption of zero-error codes it holds with the cut-set theo-

rem [7, Theorem 15.10.1] that the rates are outer bounded by

Ω1 :R13 ≤ I(X1; Y2Y3|X2X3)

R31 ≤ I(X2X3; Y1|X1)

Ω2 :R13 ≤ I(X1X2; Y3|X3)

R31 ≤ I(X3; Y1Y2|X1X2) (3.14)

for some joint input distribution P (x1, x2, x3). As here the encoders are not allowed to cooperate

the marginal P (x1, x3) is restricted to distributions that factorize P (x1)P (x3). Introducing a state

variable S, taking values in S : {1, . . . , L} and distributed according to

PS(l) =
nl

n
= τl l = 1, . . . , L (3.15)

yields

R13 ≤ I(X1; Y2Y3|X2X3S)

R13 ≤ I(X1X2; Y3|X3S)

R31 ≤ I(X3; Y1Y2|X1X2S)

R31 ≤ I(X2X3; Y1|X1S). (3.16)

Equivalently,

R13 ≤
L∑
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2 X
(l)
3 S = l)
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L∑
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1 X
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3 |X(l)
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R31 ≤
L∑
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1 Y
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2 |X(l)

1 X
(l)
2 S = l)

R31 ≤
L∑

l=1

PS(l)I(X
(l)
2 X

(l)
3 ; Y

(l)
1 |X(l)

1 S = l). (3.17)
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Agreeing to use L = 6 elementary network states defined by

l = 1 : s1 = 1, s2 = 0, s3 = 0

l = 2 : s1 = 0, s2 = 0, s3 = 1

l = 3 : s1 = 1, s2 = 0, s3 = 1

l = 4 : s1 = 0, s2 = 1, s3 = 0

l = 5 : s1 = 0, s2 = 1, s3 = 1

l = 6 : s1 = 1, s2 = 1, s3 = 0 (3.18)

and reformulating the mutual informations like in the proof of Theorem 2.1.1 establishes the theo-

rem above. �
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3.2 Schemes, Outer Bounds and Achievable Rates

This section is intended to study the performance of different two-way schemes in conjunction with

a variety of relaying strategies. The idea is to understand the possibilities of the problem in order

to derive inner bounds in the most general form possible. Therefore, different individual schemes,

some proposed by literature, some new, are analyzed. The insides to the coding problem gained

from the one-way problem are used and adapted. Guided by the problem outer bound a scheme

using all six elementary network states is suggested at the end of this section. For this scheme

inner bounds on the achievable rates are derived for strategies with decoding at the relay. Short

comments are given to all expressions in order to point out the main aspects of the underlying

coding proof. The individual proofs have been moved to the appendix.

3.2.1 2P-MA-BC Scheme

First a well-studied scheme is considered where only two elementary network states are used in

the communication process. In the first phase nodes 1 and 3 send in parallel to node 2. In a second

phase node 2 broadcasts to both dialog nodes. The scheme is frequently motivated by a scenario

where no positive rate can be established in the dialog of nodes 1 and 3 without the help of node

2. In the presence of a direct connection the scheme ignores the extended amount of possibilities.

The two network states for this scheme are defined as

l = 1 : s1 = 1, s2 = 0, s3 = 1

l = 2 : s1 = 0, s2 = 1, s3 = 0. (3.19)

Figure 3.10 shows the basic parts of the scheme.
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(b) Second Phase (n2 transmission slots)

Figure 3.10: HD-TW Relay Channel: 2P-MA-BC Scheme

Outer Bound An outer bound for the achievable rates with this scheme can be derived as a corol-

lary of the problem outer bound. It can be observed that meeting the first part of the outer bound

would require to decode each message from the output at node 2 while having full knowledge of

the other dialog message. This is the result of the outer bound expressions being derived from two

network partitions, each allowing one of the dialog nodes and node 2 to cooperate without restric-

tions. The second part requires to establish in parallel two point-to-point channels from node 2 to

1 and 3 with one codebook.
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Corollary 3.2.1 All rate pairs of the half-duplex two-way relay channel that are achievable with

a 2P-MA-BC scheme and some joint probability distributions
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must satisfy

R13 ≤ min

{

τ1I(X
(1)
1 ; Y

(1)
2 |X(1)

3 ), τ2I(X
(2)
2 ; Y

(2)
3 )

}

R31 ≤ min

{

τ1I(X
(1)
3 ; Y

(1)
2 |X(1)

1 ), τ2I(X
(2)
2 ; Y

(2)
1 )

}

where 0 ≤ τl and τ1 + τ2 ≤ 1.

Decode-and-Forward With decode-and-forward both messages are decoded at node 2 after the

first phase. This turns the phase into a multiple-acess channel (MAC). Instead of using the subopti-

mal approach of superposition coding in order to send the two messages to each dialog node [26],

node 2 uses one codebook for both receivers [23]. The codewords are labeled by a two dimensional

array resulting in each word having a label with x and y coordinate. The two messages decoded

at node 2 determine the two label-coordinates of the codeword sent in the second phase. Node 1

knows its own message and therefore one of the label-coordinates of the codeword sent by node

2. In order to decode node 1 needs only to check all codewords in the unknown dimension with

respect to typicality. Node 3 proceeds in the same way.

Proposition 3.2.2 All rate pairs of the half-duplex two-way relay channel that satisfy
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with 0 < τl and τ1 + τ2 ≤ 1, for some joint probability distributions
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are achievable with a 2P-MA-BC scheme and a decode-and-forward strategy.

Proof see A3.1.

As a result, the same rate expressions as for the outer bound are obtained by the proof of

achievability with an additional sum-rate constraint resulting from the MAC in the first phase.
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Note that there is no partial-decode-and-forward strategy for this scheme since all informa-

tion has to be exchanged over the relay.

Compress-and-Forward (2LQ) As decoding both messages at node 2 is limited by the interfer-

ence caused by one of the two transmitters and therefore is in general suboptimal, the compress-

and-forward strategy applies quantization to the output of node 2 and tries to convey this estimation

to the dialog nodes. As multicasting one quantized version to both receivers would be limited by

the channel to the "weaker" node here the two layer approach found in [13] and [28] is used. The

output at node 2 is first quantized by a "coarse" quantizer. The coarse quantization index determines

the choice of a subsequent quantizer used for refinement. The coarse quantization is multicasted to

both receivers while the refinement is delivered to the "stronger" receiver via superposition coding.

As a result, for channels supporting asymmetric rates, one of the dialog nodes has an estimate of

the channel output at node 2 with higher quality than his dialog partner. Both receivers can use

their input signal jointly with the quantized outputs at node 2 to decode the message of their dialog

partner. Therefore, the strategy is limited by the quantization noise at node 2.

Proposition 3.2.3 All rate pairs of the half-duplex two-way relay channel that satisfy

R13 ≤ τ1I(X
(1)
1 ; Ŷ
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with 0 < τl and τ1 + τ2 ≤ 1, for some joint probability distributions
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are achievable with a 2P-MA-BC scheme and a two-layer compress-and-forward strategy.

Proof see A3.2.

A second proposition can be established by interchanging the roles of node 1 and 3.
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Partial-Decode-Compress-and-Forward (2LQ) Partial-decode-compress-and-forward com-

bines both strategies mentioned before. Only parts of the messages sent by nodes 1 and 3 are

decoded by node 2. Additionally the channel output at node 2 is quantized with the two-layer

quantization approach. Decoded messages and quantization indices are delivered to both receivers

where the "stronger" receiver additionally receives a quantization refinement via superposition

coding.

Proposition 3.2.4 All rate pairs of the half-duplex two-way relay channel that satisfy
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(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 X

(1)
1 ) ≤ τ2I(V

(2)
2 ; Y

(2)
1 |U (2)

2 )

τ1I(Ŷ
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with 0 < τl and τ1 + τ2 ≤ 1, for some joint probability distributions
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are achievable with a 2P-MAC-BC scheme and a two-layer partial-decode-compress-and-forward

strategy.

Proof see A3.3

A second proposition can be established by interchanging the roles of node 1 and 3.
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3.2.2 3P-BC Scheme

As observed with the 2P-MA-BC scheme the parallel communication of nodes 1 and 3 to node 2

can be suboptimal due to mutual interference. Also the direct path (in general present) is ignored

by the two-phase scheme. Therefore, the idea of a 3P-BC scheme [25] is to orthogonalize the

transmission from the dialog nodes to node 2. Nodes 1 and 3 send sequentially to node 2 which

broadcasts to both dialog nodes in a third phase. The scheme also makes it possible for nodes 1

and 3 to obtain side information by listening to their dialog partner through the direct channel in

the first or second phase. The required three network states are defined by

l = 1 : s1 = 1, s2 = 0, s3 = 0

l = 2 : s1 = 0, s2 = 0, s3 = 1

l = 3 : s1 = 0, s2 = 1, s3 = 0. (3.20)

Figure 3.11 visualizes the scheme and its basic parts.
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Figure 3.11: HD-TW Relay Channel: 3P-BC Scheme

Outer Bound An outer bound is derived as a corollary of the problem outer bound without

further proof by setting the appropriate 3 elementary network states to a duration of zero.
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Corollary 3.2.5 All rate pairs of the half-duplex two-way relay channel that are achievable with

a 3P-BC scheme for some joint probability distributions
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must satisfy
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where 0 ≤ τl and τ1 + τ2 + τ3 ≤ 1.

It will be seen that meeting this bound is basically a problem of the terms on the left, the broadcast

bounds. They require the decoding of the messages at nodes 1 and 3 from their channel outputs

jointly with full knowledge of the output at node 2.

Decode-and-Forward/Partial-Decode-and-Forward With these strategies the messages of

nodes 1 and 3 are fully or partially decoded by node 2 after the first and second transmission

phases. In the third phase node 2 sends like in the 2P-MA-BC scheme with a codebook indexed

in two dimensions. The difference to 2P-MA-BC lies in the fact that both nodes have already side

information available. This allows node 2 to send just the amount of information that is needed at

both nodes in order to resolve the messages with side information.

Proposition 3.2.6 All rate pairs of the half-duplex two-way relay channel that satisfy
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are achievable with a 3P-BC scheme and a decode-and-forward strategy.

Proof A4.1
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Proposition 3.2.7 All rate pairs of the half-duplex two-way relay channel that satisfy
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are achievable with a 3P-BC scheme and a partial-decode-and-forward strategy.

Proof A4.2

Compress-and-Forward Decoding the messages at node 2 can restrict the rates of the transmis-

sion scheme. Compress-and-forward quantizes the channel outputs at node 2 after each of the first

two transmission phases. The two quantization indices are sent to nodes 1 and 3 like in a broadcast

channel. As each index is intended only for one of the receive nodes the transmission is protected

by a Gel’fand-Pinsker encoder [12].

Proposition 3.2.8 All rate pairs of the half-duplex two-way relay channel that satisfy
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are achievable with a 3P-BC scheme and a compress-and-forward strategy.

Proof A4.3

Note that this strategy does not use all the dependencies in the system. In the broadcast phase each

of the dialog nodes has some side-information available about the message that is intended for the
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other receiver through their emitted signal of the first phase and second phase. This is not exploited

with the proposed strategy. An attempt to overcome this can be found in [16].

Partial-Decode-Compress-and-Forward This strategy combines the PDF and the CF strate-

gies. Parts of the messages of nodes 1 and 3 are decoded. Additionally the channel outputs at node

2 are quantized. In the third step Marton’s broadcast scheme [22] is used to convey the decoded

parts as a common message and the quantization indices as private messages to both receivers.

Proposition 3.2.9 All rate pairs of the half-duplex two-way relay channel that satisfy

R13 ≤ min

{

τ1I(U
(1)
1 ; Y

(1)
3 ) + τ3I(U

(3)
2 ; Y

(3)
3 ), τ1I(U

(1)
1 ; Y

(1)
2 )

}

+ τ1I(X
(1)
1 ; Ŷ
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with 0 ≤ κ ≤ 1 and with 0 < τl and τ1 + τ2 + τ3 ≤ 1, for some joint probability distributions

P (u
(1)
1 , x

(1)
1 , y

(1)
2 , y

(1)
3 ) = P (u

(1)
1 )P (x

(1)
1 |u(1)

1 )P (y
(1)
2 , y

(1)
3 |x(1)

1 )P (ŷ
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are achievable with a 3P-BC scheme and a partial-decode-compress-and-forward strategy.

Proof A4.4
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3.2.3 3P-MA Scheme

The 3P-MA scheme uses the first phase as multiple-acess phase from nodes 1 and 3 to node 2. The

transmission from node 2 to the nodes 1 and 3 is orthogonal. Figure 3.12 shows that this makes

it possible for one of the nodes to assist the transmission of node 2 in the last two phases or to

send new information to the dialog partner over the direct path. This scheme has, to the best of the

author’s knowledge, not been studied yet in literature. The L = 3 used network states are defined

by

l = 1 : s1 = 1, s2 = 0, s3 = 1

l = 3 : s1 = 1, s2 = 1, s3 = 0

l = 2 : s1 = 0, s2 = 1, s3 = 1 (3.21)

and depicted in Figure 3.12.
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Figure 3.12: HD-TW Relay Channel: 3P-MA Scheme

Outer Bound An outer bound is derived as a corollary of the problem outer bound, without

further proof by leaving the appropriate elementaries unused.
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Corollary 3.2.10 All rate pairs of the half-duplex two-way relay channel that are achievable with

a 3P-MA scheme for some joint probability distributions
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where 0 ≤ τl and τ1 + τ2 + τ3 ≤ 1.

Decode-and-Forward Decoding the two messages of nodes 1 and 3 at node 2 turns the first

phase into a multiple-acess channel (MAC). Therefore, the achievable rates face a sum-rate con-

straint. In the second and third phase one of the nodes can choose to help node 2 as the output is

determined by the according first phase message or can send new data to its dialog partner.

Proposition 3.2.11 All rate pairs of the half-duplex two-way relay channel that satisfy
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with 0 < τl and τ1 + τ2 + τ3 ≤ 1, for some joint probability distributions
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are achievable with a 3P-MA scheme and a decode-and-forward strategy.

Proof see A5.1.

Compress-and-Forward Like in the 2P-MA-BC scheme decoding at node 2 results in a sum-

rate constraint. Quantization can be used to avoid decoding at node 2. The strategy uses two inde-

pendent quantizations of the first phase channel output at node 2 in order to adapt to the channels

from node 2 to both receivers. As the quantization indices can not be determined at both dialog

nodes the second and third phase is used to send new data over the direct path. The first phase
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messages are decoded at the dialog nodes jointly from one of the estimates and their first phase

input sequence.

Proposition 3.2.12 All rate pairs of the half-duplex two-way relay channel that satisfy
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(1)
21 , ŷ
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are achievable with a 3P-MA scheme and a compress-and-forward strategy.

Proof see A5.2.

Note that a partial-decode-and-forward strategy is not considered as all information of the first

phase has to be exchanged via the relay.

Partial-Decode-Compress-and-Forward The strategy combines the two methods before-

mentioned. Parts of the messages received at node 2 in the multiple-acess phase are decoded and

the channel output is quantized. Two independent quantization-books are used at node 2 in order

to adapt to the individual channels to both dialog nodes. These can partially assist the transmission

signals of node 2 in the last two phases and send new data over the direct path.
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are achievable with a 3P-MA scheme and a partial-decode-compress-and-forward strategy.

Proof see A5.3.
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3.2.4 4P-OWRC Scheme

For this scheme the transmission is divided into four phases. The according elementaries are used

such that the channel separates into two subsequent one-way relay channels. To the best of the au-

thor’s knowledge, such a two-way scheme has not been studied yet in literature. The used network

states are defined as

l = 1 : s1 = 1, s2 = 0, s3 = 0

l = 2 : s1 = 1, s2 = 1, s3 = 0

l = 3 : s1 = 0, s2 = 0, s3 = 1

l = 4 : s1 = 0, s2 = 1, s3 = 1. (3.22)

The outer bound follows as a corollary from the problem outer bound. The achievable rates follow

directly from the first part of the work and are therefore stated without further comments.
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Figure 3.13: Half-Duplex Two-Way Relay Channel: 4P-OWRC Scheme
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Outer Bound

Corollary 3.2.14 All rate pairs of the half-duplex two-way relay channel that are achievable with

a 4P-OWRC scheme for some joint probability distributions
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where 0 ≤ τl and τ1 + τ2 + τ3 + τ4 ≤ 1.

Decode-and-Forward

Proposition 3.2.15 All rate pairs of the half-duplex two-way relay channel that satisfy
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with 0 < τl and τ1 + τ2 + τ3 + τ4 ≤ 1, for some joint probability distributions
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are achievable with a 4P-OWRC scheme and a decode-and-forward strategy.



3.2 Schemes, Outer Bounds and Achievable Rates 59

Partial-Decode-and-Forward

Proposition 3.2.16 All rate pairs of the half-duplex two-way relay channel that satisfy
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are achievable with a 4P-OWRC scheme and a partial-decode-and-forward strategy.

Compress-and-Forward

Proposition 3.2.17 All rate pairs of the half-duplex two-way relay channel that satisfy
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(1)
2 Y

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )

R31 ≤ τ3I(X
(3)
3 ; Ŷ
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with 0 < τl and τ1 + τ2 + τ3 + τ4 ≤ 1, for some joint probability distributions
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are achievable with a 4P-OWRC scheme and a compress-and-forward strategy.
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Partial-Decode-Compress-and-Forward

Proposition 3.2.18 All rate pairs of the half-duplex two-way relay channel that satisfy

R13 ≤ min

{

τ1I(U
(1)
1 ; Y

(1)
2 ), τ1I(U

(1)
1 ; Y

(1)
3 ) + τ2I(V

(2)
2 ; Y

(2)
3 )

}

+

τ1I(X
(1)
1 ; Ŷ
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with 0 < τl and τ1 + τ2 + τ3 + τ4 ≤ 1, for some joint probability distributions
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are achievable with a 4P-OWRC scheme and a partial-decode-compress-and-forward strategy.
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3.2.5 6P Scheme

Until now 4 possible schemes have been studied. In order to make the analysis complete one could

now try to verify all possible schemes and analyze each of them. If one restricts the scheme to n
channel uses grouped by network state, containing at least one network state with active output and

one network state with active input at node 2, while the ordering of individual phases is ignored,

the number of possible schemes are

2P :

(
3

1

)

×

(
3

1

)

= 9

3P : 2×

(
3

1

)

×

(
3

2

)

= 18

4P : 2×

(
3

1

)

×

(
3

3

)

+

(
3

2

)

×

(
3

2

)

= 15

5P : 2×

(
3

2

)

×

(
3

3

)

= 6

6P :

(
3

3

)

×

(
3

3

)

= 1. (3.23)

In order to short-cut the effort of determining the schemes that make sense the most general ap-

proach is suggested here by a new scheme which uses all relevant network states. The scheme will

be called 6P as it contains six basic transmission phases. Its network states are defined according

to

l = 1 : s1 = 1, s2 = 0, s3 = 0

l = 2 : s1 = 0, s2 = 0, s3 = 1

l = 3 : s1 = 1, s2 = 0, s3 = 1

l = 4 : s1 = 0, s2 = 1, s3 = 0

l = 5 : s1 = 0, s2 = 1, s3 = 1

l = 6 : s1 = 1, s2 = 1, s3 = 0. (3.24)

The outer bound on this scheme coincides with the problem outer bound. Achievable rates will be

derived for DF and PDF relaying. The 6P scheme is depicted in Figure 3.14.
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Ŵ13

(f) Sixth Phase (n6 transmission slots)

Figure 3.14: HD-TW Relay Channel: 6P Scheme
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Decode-and-Forward For DF strategies it can be observed that the same basic code construc-

tions show up in the different schemes studied until here. If one of the dialog nodes sends while

node 2 and the other dialog node listen, node 2 fully decodes the message sent and the quiet dialog

partner uses its output as side information for later decoding. If both dialog partners send to node

2 the channel is used as MAC. If node 2 sends to one of the dialog nodes the other node assists

it or sends new information over the direct path, resulting in a MAC with correlated sources [5].

If node 2 sends to both dialog partners the channel is used as a bi-directional broadcast channel

[3] [23] with a two-dimensional indexed codebook which has been shown to be optimal in such

a situation. For the proof of the achievable rate pairs here first all three elementaries with active

channel output at node 2 are used in order to "load" the relay with information. Subsequently, the

three elementaries with active channel input at node 2 "unload" the relay. In order to contain all

schemes studied before as special cases each of the first three phases is combined with each of the

three last phases by distributing the codebook indices of each "load" phase at node 2 to all "unload"

phases.

Proposition 3.2.19 All rate pairs of the half-duplex two-way relay channel that satisfy
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are achievable with a 6P scheme and a decode-and-forward strategy.

Proof see A6.1.

Generality At this point it would be desirable to know if the 6P-DF protocol can be used to

determine the optimal DF scheme for fixed input distributions with respect to a rate objective.
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Note that each of the individual six phases can asymptotically be turned off. Therefore, the 6P

scheme contains as special cases all schemes which can be represented with the same ordering of

phases and some phases having zero duration τl → 0. But can rate increase by a different ordering

of the six phases? Also all achievability proofs assume a conservative ordering of networks states.

Each state l that is used occurs in nl subsequent channel uses. None of the protocols uses the

possibility of an arbitrary permutation of network states on n channel uses. Although it might

seem intuitively clear that such methods can not increase the rate of a DF scheme if the scheme

itself is fixed a priori here some arguments are outlined in order to provide stronger evidence. First

a decode-and-forward strategy is defined for the channel studied.

Definition 3.2.20 Assume B transmission blocks each with n channel uses and a scheme using

l = 1, . . . , L ≥ 2 network states. Lu ≤ L − 1 of the network states allow an active output and

Ld ≤ L−1 allow an active input at node 2. Each network state occurs nl < n times in each block b.

A decode-and-forward strategy is used iff node 2 determines the full individual messages of

nodes 1 and 3 from the output sequence ynl

2 each time after having observed nl channel uses of

the network state l with active output Y
(l)
2 and forwards the decoded messages in the subsequent

∑

Ld
nl channel uses which allow an active channel input X

(l)
2 .

Conjecture 3.2.21 The codebook construction used for each individual phase in the proof of

Proposition 3.2.19 is optimal with respect to the rate of a decode-and-forward strategy for the

restricted half-duplex two-way relay channel.

Arguments Follows from the comments on the 6P-DF protocol.

Conjecture 3.2.22 For fixed input distributions the time allocation solution to Proposition 3.2.19,

with respect to the maximization of any reasonable rate objective, provides the optimal decode-

and-forward scheme for the restricted half-duplex two-way channel.

Arguments Fix the input distributions and solve the time allocation problem of Proposition 3.2.19

with respect to a reasonable rate objective f(R13, R31). Here a reasonable objective is considered

a function f(R13, R31) increasing in R13 and R31. The optimal time allocation solution yields

the achievable rates R⋆
13 and R⋆

31 and the objective value f(R⋆
13, R

⋆
31). The maximum amount of

reliable information in bits Dij transmitted between the nodes 1 and 3 after B blocks for a DF

strategy with L = 6 network states is

D13 < R⋆
13 × B ×

L∑

l=1

nl and D31 < R⋆
31 × B ×

L∑

l=1

nl. (3.25)

It is needed to show that changing the code in A6.1 or the scheme while using a DF strategy as de-

fined above will not result in a higher objective, i.e., in higher rates. Consider different approaches

in order to attack the conjecture:

• Change the duration of the used phases. With having already solved Proposition 3.2.19 for

optimal time allocation with respect to the maximal f(R13, R31) this will not increase the ob-

jective.



3.2 Schemes, Outer Bounds and Achievable Rates 65

• The scheme is left as in A6.1 but the codebook construction is improved. With Conjecture

3.2.21 being true this will not result in a higher rate for any of the two dialog messages.

• The scheme is changed while the codebook construction is the one of A6.1: The first three

phases and the last three phases are interchanged arbitrarily among each other while all n
channel uses stay grouped by network state. The proof on the achievable rates of such a scheme

will result in rate expressions differing from Proposition 3.2.19 only in phase labels. Obviously,

this does not improve any reasonable objective on the size of the message sets.

• The scheme is changed while the codebook construction is the one of A6.1: The first
∑

Lu
nl

channel uses are assigned to an arbitrary permutation of the network states Lu which allow

active output at node 2. The last
∑

Ld
nl channel uses are assigned to an arbitrary permutation

of the network states Ld which allow active input at node 2. As the network states are known to

all nodes they can order their input sequence by network state, decode from each subsequence

and choose codewords (subsequences) for the following channel uses with active input. The

output sequences are formed by the appropriate permutation of the subsequence entries. This

equivalence to A6.1 does not allow a higher rate for any of the two dialog messages.

• The scheme is changed while codebook construction is as in A6.1: The six phases are inter-

changed such that the last three phases form the first three phases and the last three phases

form the first three ones. The ordering inside the two groups of phases is arbitrary while all

n channel uses stay grouped by network state. As a consequence the n4 inputs of the first BC

phase, the first n5+n6 inputs at node 2 and the n3 inputs of nodes 1 and 3 in the last MA phase

are determined a priori with the scheme. The amount of information transmitted between the

two nodes in B blocks can not exceed

D13 < R⋆
13 ×

(

B ×
L∑

l=1

nl − (n3 + n4)

)

D31 < R⋆
31 ×

(

B ×
L∑

l=1

nl − (n3 + n4)

)

. (3.26)

• The scheme is arbitrary while the codebook construction is the one of A6.1: Node 2 decodes

the first time after ndec channel uses. Until the ndec-th channel use the BC state has occurred

nBC times. As a consequence all the inputs at node 2 up to the ndec channel use are determined

a priori with the scheme. The amount of information transmitted between the two nodes in B
blocks can not exceed

D13 < R⋆
13 ×

(

B ×
L∑

l=1

nl − nBC

)

D31 < R⋆
31 ×

(

B ×
L∑

l=1

nl − nBC

)

. (3.27)

These arguments support the Conjecture 3.2.22.
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Partial-Decode-and-Forward As mentioned in the introduction to this chapter partial-decode-

and-forward strategies might be interesting especially for multi-antenna systems. Therefore, here

additionally the PDF rates achievable with the six phase scheme are given.

Proposition 3.2.23 All rate pairs of the half-duplex two-way relay channel that satisfy
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(5)
2 )P (x

(5)
3 |x(5)

2 )P (y
(5)
1 |x(5)

2 , x
(5)
3 )

P (x
(6)
1 , x

(6)
2 , y

(6)
3 ) = P (x

(6)
2 )P (x

(6)
1 |x(6)

2 )P (y
(6)
3 |x(6)

1 , x
(6)
2 )

are achievable with a 6P scheme and a partial-decode-and-forward strategy.

Proof extend A6.1 to superposition coding like from A4.1 to A4.2.

3.2.6 Wireline Communication

As in the one-way section the achievable rates for a wireline model are outlined.

Proposition 3.2.24 All rate pairs of the half-duplex wireline two-way relay channel that satisfy

R13 ≤ min

{

τ1b
(1)
12 + τ3b

(3)
12 + τ6b

(6)
13 , τ1b

(1)
13 + τ4b

(4)
23 + τ6(b

(6)
13 + b

(6)
23 )

}

R31 ≤ min

{

τ2b
(2)
32 + τ3b

(3)
32 + τ5b

(5)
31 , τ2b

(2)
31 + τ4b

(4)
21 + τ5(b

(5)
21 + b

(5)
31 )

}

with 0 < τl and
∑6

l=1 τl ≤ 1, for some directed links of capacity b
(l)
ij are achievable with a 6P

scheme and a decode-and-forward strategy.
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Proposition 3.2.25 All rate pairs of the half-duplex wireline two-way relay channel that satisfy

R13 ≤ min

{

τ1(b
(1)
12 + b

(1)
13 ) + τ3b

(3)
12 + τ6b

(6)
13 , τ1b

(1)
13 + τ4b

(4)
23 + τ6(b

(6)
13 + b

(6)
23 )

}

R31 ≤ min

{

τ2(b
(2)
32 + b

(2)
31 ) + τ3b

(3)
32 + τ5b

(5)
31 , τ2b

(2)
31 + τ4b

(4)
21 + τ5(b

(5)
21 + b

(5)
31 )

}

with 0 < τl and
∑6

l=1 τl ≤ 1, for some directed links of capacity b
(l)
ij are achievable with a 6P

scheme and a partial-decode-and-forward strategy.

Note that the sum-rate constraint is not active due to orthogonal channels in the MAC phase. The

PDF coding method achieves the outer bound on this model. This implicates that PDF achieves the

outer bound for the restricted half-duplex two-way relay channel with orthogonal channels. The

requirement of all channels being orthogonal can be relaxed. Only the channels in the first three

phases of the 6P scheme have to be orthogonal in order to achieve the outer bound.
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3.3 Linear Problems

For linear rate and transmission cost objectives the rate expressions derived for different schemes

have the property that optimal time allocation for fixed input distributions can be determined by

solving linear programs of small size. It is shortly outlined how to formulate and solve some

relevant problems. It is assumed that the channels have been specified by an conditional distribution

Pc (or density pc) and the input distributions are fixed to Pin (pin).

Rate Maximization The first problem considered is the Weighted Sum-Rate maximization prob-

lem (WSRP). This problem has relevance if the communication rate through the channel should be

maximized while the objective weights each user differently. Therefore, each user is assigned to a

certain "priority" in the rate maximization. The objective is defined by

RWSR(λ) = λR13 + (1− λ)R31 λ ∈ [0, 1]. (3.28)

This objective can be used to determine a rate region by maximizing for λ from zero to one.

A very similar problem with the same structure is the Sum-Rate maximization problem (SRP).

The maximization of such an objective yields the maximum through-put via the communication

channel. The objective is

RSR = R13 +R31.

The matrix A for both problems is determined by the used scheme and the expressions considered.

A =

















a13,1
T

a13,2
T

a31,1
T

a31,2
T

as
T

aq,1
T

aq,2
T

aq,3
T

aT
τ

















(3.29)

where the constraints have the form

a13
T =

[

1 0 −I
(1)
13 (Pc, Pin) . . . −I

(L)
13 (Pc, Pin)

]

a31
T =

[

0 1 −I
(1)
31 (Pc, Pin) . . . −I

(L)
31 (Pc, Pin)

]

as
T =

[

1 1 −I
(1)
s (Pc, Pin) . . . −I

(L)
s (Pc, Pin)

]

aq
T =

[

0 0 ±I
(1)
q (Pc, Pin) . . . ±I

(L)
q (Pc, Pin)

]

aT
τ =

[
0 0 1 . . . 1

]

bT =
[
0 . . . 0 1

]
. (3.30)

In order to optimize the communication for the highest possible symmetric rates the MaxMin-Rate

maximization problem (MMP) has to be considered. The rate objective is defined by

RMaxMin = min{R13, R31}
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and the constraints have a slightly different form

aT
13 =

[

1 −I
(1)
13 (Pc, Pin) . . . −I

(L)
13 (Pc, Pin)

]

aT
31 =

[

1 −I
(1)
31 (Pc, Pin) . . . −I

(L)
31 (Pc, Pin)

]

aT
s =

[

2 −I
(1)
s (Pc, Pin) . . . −I

(L)
s (Pc, Pin)

]

aT
q =

[

0 ±I
(1)
q (Pc, Pin) . . . ±I

(L)
q (Pc, Pin)

]

aT
τ =

[
0 1 . . . 1

]

bT =
[
0 . . . 0 1

]
. (3.31)

Note that depending on the expressions used some constraints might not be present and different

mutual informations are zero. The sum-rate constraint is only present if a multiple-acess phase is

used and the relay has to decode. The compression constraints aq are only present for strategies

with quantization at the relay. The vectors c for the different problems are

c(λ)TWSRP =
[
λ (1− λ) 0 . . . 0

]

cTSRP =
[
1 1 0 . . . 0

]

cTMMP =
[
1 0 . . . 0

]
. (3.32)

With

xT
WSRP/SRP =

[
R13 R31 τ1 . . . τL

]

xT
MMP =

[
RMMP τ1 . . . τL

]
(3.33)

the optimization problems have the form

max cTx

s.t. Ax ≤ b, 0 ≤ x, const(x) (3.34)

where const(x) denotes that additional constraints (optional) on x are fulfilled, e.g., discrete time

slot lengths.

Minimizing Transmission Cost A second problem with linear structure is the Transmission Cost

minimization problem (TCP). Each phase l is associated with a cost linear in activation time. The

cost for each phase l and unit activation time is denoted cl > 0. The objective is to minimize the

cost for a certain rate requirement R =
[
R13 R31

]T
on the communication through the network.

The constraints have the form

aT
13 =

[

−I
(1)
13 (Pc, Pin) . . . −I

(L)
13 (Pc, Pin)

]

aT
31 =

[

−I
(1)
31 (Pc, Pin) . . . −I

(L)
31 (Pc, Pin)

]

aT
s =

[

−I
(1)
s (Pc, Pin) . . . −I

(L)
s (Pc, Pin)

]

aT
q =

[

±I
(1)
q (Pc, Pin) . . . ±I

(L)
q (Pc, Pin)

]

aT
τ =

[
1 . . . 1

]

bT =
[
−R13 −R31 −(R13 +R31) 0 . . . 0 1

]
(3.35)



3.3 Linear Problems 71

and the cost vector is

cT =
[
c1 . . . cL

]
. (3.36)

With x =
[
τ1 . . . τL

]T
the optimization problem has the form

min cTx

s.t. Ax ≤ b, 0 ≤ x, const(x). (3.37)

For the wireline model the mutual informations have to be replaced by link capacities b
(l)
ij .

Complexity The problems above are identified as linear programs of small size. These can be

solved at very low complexity. For example on the scalar Gaussian channels with 6P-OB or 6P-

DF, as considered in the simulations, the parameters β, γ need to be determined before solving

time allocation. If coherent signaling of two nodes is not possible (β, γ = 0), problems above

are solved by one LP. For the wireline network with fixed link capacities also only one LP is

needed. The challenge, especially for channels with multiple inputs and outputs or CF strategies,

is to determine the right input distributions before solving for time allocation or to reformulate the

problems in order to optimize the input distributions and time allocation jointly.
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3.4 Gaussian Half-Duplex Two-Way Relay Channel

In this section the upper and lower bound expressions for channels with continuous Gaussian

variables are derived. The same model assumptions like for the one-way channel are used. For

the visualization of rate regions three scenarios in a line network will be considered where node 2

takes different positions

"symmetric" : x2 =
[
0.5 0

]T

"near" : x2 =
[
0.25 0

]T

"close" : x2 =
[
0.01 0

]T
. (3.38)

In the first scenario the channels of the dialog nodes to node 2 support symmetric rates. The other

two configurations model modest and extremly asymmetric channels from the dialog nodes to the

relay. Note that for the line/plane network model used here scalar channels have no direction, i.e.,

hij = hji. At some points throughout this section two asymptotic cases will be considered. The

first one assumes infinite power available at one of the dialog nodes P
(l)
1/3 → ∞, the second infinite

power available at node 2, P
(l)
2 → ∞. For these two asymptotic cases some strategies achieve the

outer bounds of particular schemes.

3.4.1 2P-MA-BC Scheme

According to the channel model used the output sequences for all 2P-MA-BC strategies are

Y
(1)
2 = h12X

(1)
1 + h32X

(1)
3 +Z

(1)
2

Y
(2)
1 = h21X

(2)
2 +Z

(2)
1

Y
(2)
3 = h23X

(2)
2 +Z

(2)
3 . (3.39)

Outer Bound For the outer bound of this scheme the input sequences are independent and given

by

X
(1)
1 =

√

P1f
(1)
11 (W13)

X
(1)
3 =

√

P3f
(1)
31 (W13)

X
(2)
2 =

√

P2f
(2)
21 (W13,W31), (3.40)

resulting in the rate expressions

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

, τ2 log
(

1 + |h23|
2 P

(2)
2

)}

R31 ≤ min

{

τ1 log
(

1 + |h32|
2 P

(1)
3

)

, τ2 log
(

1 + |h21|
2 P

(2)
2

)}

. (3.41)

Note that for P
(1)
1 → ∞ the bound tends to

R13 → τ2 log
(

1 + |h23|
2 P

(2)
2

)

R31 = min

{

τ1 log
(

1 + |h32|
2 P

(1)
3

)

, τ2 log
(

1 + |h21|
2 P

(2)
2

)}

(3.42)
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and for P
(2)
2 → ∞

R13 → log
(

1 + |h12|
2 P

(1)
1

)

R31 → log
(

1 + |h32|
2 P

(1)
3

)

. (3.43)

Decode-and-Forward The same input parametrization as for the outer bound yields the achiev-

able rates for the DF strategy

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

, τ2 log
(

1 + |h23|
2 P

(2)
2

)}

R31 ≤ min

{

τ1 log
(

1 + |h32|
2 P

(1)
3

)

, τ2 log
(

1 + |h21|
2 P

(2)
2

)}

R13 +R31 ≤ τ1 log
(

1 + |h12|
2 P

(1)
1 + |h32|

2 P
(1)
3

)

. (3.44)

The difference to the outer bound is the sum-rate constraint due to the MAC in the first transmission

phase. For the case P
(1)
1 or P

(1)
3 → ∞ the sum-rate constraint is not active and the achievable rates

and the scheme outer bound asymptotically coincide.

Compress-and-Forward (2LQ) For the CF strategy the input sequences are chosen to be

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(1)
3 =

√

P
(1)
3 f

(1)
31 (W31)

X
(2)
2 =

√

βP
(2)
2 f

(2)
21 (Q21)

︸ ︷︷ ︸

U
(2)

2

+

√

(1− β)P
(2)
2 f

(2)
22 (Q22) β ∈ [0, 1] (3.45)

where the parameter β assigns the power of node 2 to the propagation of the "coarse" (Q21) and

the "refinement" (Q22) quantization index. The quantized outputs are assumed to have the form

Ŷ
(1)

21 = Y
(1)
2 + Ẑ

(1)

21 + Ẑ
(1)

22

(Ŷ
(1)

21 , Ŷ
(1)

22 ) = Y
(1)
2 + Ẑ

(1)

22 (3.46)

with independent Ẑ
(1)
21,k ∼ NC(0, σ̂

2
1) and Ẑ

(1)
22,k ∼ NC(0, σ̂

2
2). This yields the achievable rate ex-

pressions

R13 ≤ τ1 log

(

1 +
|h12|

2 P
(1)
1

1 + σ̂2
1 + σ̂2

2

)

R31 ≤ τ1 log

(

1 +
|h32|

2 P
(1)
3

1 + σ̂2
2

)

(3.47)
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Figure 3.15: 2P-MA-BC with DF, Line Network with P
(l)
i = 10, α = 3
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subject to

τ1 log

(

1 +
1 + |h12|

2 P
(1)
1

σ̂2
1 + σ̂2

2

)

≤ τ2 log

(

1 +
|h23|

2 βP
(2)
2

1 + |h23|
2 (1− β)P

(2)
2

)

τ1 log

(

1 +
1 + |h32|

2 P
(1)
3

σ̂2
1 + σ̂2

2

)

≤ τ2 log

(

1 +
|h21|

2 βP
(2)
2

1 + |h21|
2 (1− β)P

(2)
2

)

τ1 log

(

1 +
1 + |h32|

2 P
(1)
3

σ̂2
2

)

− τ1 log

(

1 +
1 + |h32|

2 P
(1)
3

σ̂2
1 + σ̂2

2

)

≤ τ2 log
(

1 + |h21|
2 (1− β)P

(2)
2

)

.

(3.48)

For the case P
(2)
2 → ∞ the achievable rates with CF and the scheme outer bound coincide.

Partial-Decode-Compress-and-Forward (2LQ) The input sequences for the PDCF strategy

can be assumed to have the form

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W13)

︸ ︷︷ ︸

U
(1)

1

+

√

(1− β)P
(1)
1 f

(1)
12 (W13) β ∈ [0, 1]

X
(1)
3 =

√

γP
(1)
3 f

(1)
31 (W31)

︸ ︷︷ ︸

U
(1)

3

+

√

(1− γ)P
(1)
3 f

(1)
32 (W31) γ ∈ [0, 1]

X
(2)
2 =

√

δP
(2)
2 f

(2)
21 (W13,W31)

︸ ︷︷ ︸

U
(2)

2

+

√

ζP
(2)
2 f

(2)
22 (Q21)

︸ ︷︷ ︸

V
(2)

2

+

√

(1− δ − ζ)P
(2)
2 f

2)
23(Q22) δ, ζ ∈ [0, 1]

(3.49)

where δ + ζ ≤ 1. Here β and γ assign the powers of node 1 and 3 to the parts of their signals

decoded at node 2. The parameters δ and ζ distribute the power at node 2 to the propagation of the

decoded messages and the two quantization indices. The quantized outputs are assumed to have

the form

Ŷ
(1)

21 = Y
(1)
2 + Ẑ

(1)

21 + Ẑ
(1)

22

(Ŷ
(1)

21 , Ŷ
(1)

22 ) = Y
(1)
2 + Ẑ

(1)

22 (3.50)

with independent Ẑ
(1)
21,k ∼ NC(0, σ̂

2
1) and Ẑ

(1)
22,k ∼ NC(0, σ̂

2
2). This yields the achievable rate ex-

pressions

R13 ≤ min

{

τ1 log

(

1 +
|h12|

2 βP
(1)
1

1 + |h12|
2 (1− β)P

(1)
1 + |h32|

2 (1− γ)P
(1)
3

)

,

τ2 log

(

1 +
|h23|

2 δP
(2)
2

1 + |h23|
2 (1− δ)P

(2)
2

)}

+ τ1 log

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + σ̂2
1 + σ̂2

2

)



3.4 Gaussian Half-Duplex Two-Way Relay Channel 77

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R13 in bpcu

R
31

 in
 b

pc
u

 

 
Relay off
OB
SOB
CF

(a) Symmetric

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R13 in bpcu

R
31

 in
 b

pc
u

 

 
Relay off
OB
SOB
CF

(b) Near

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R13 in bpcu

R
31

 in
 b

pc
u

 

 
Relay off
OB
SOB
CF

(c) Close

Figure 3.16: 2P-MA-BC with CF, Line Network with P
(l)
i = 10, α = 3
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R31 ≤ min

{

τ1 log

(

1 +
|h32|

2 γP
(1)
3

1 + |h12|
2 (1− β)P

(1)
1 + |h32|

2 (1− γ)P
(1)
3

)

,

τ2 log

(

1 +
|h21|

2 δP
(2)
2

1 + |h21|
2 (1− δ)P

(2)
2

)}

+ τ1 log

(

1 +
|h32|

2 (1− γ)P
(1)
3

1 + σ̂2
2

)

R13 +R31 ≤τ1 log

(

1 +
|h12|

2 βP
(1)
1 + |h32|

2 γP
(1)
3

1 + |h12|
2 (1− β)P

(1)
1 + |h32|

2 (1− γ)P
(1)
3

)

+

τ1 log

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + σ̂2
1 + σ̂2

2

)

+ τ1 log

(

1 +
|h32|

2 (1− γ)P
(1)
3

1 + σ̂2
2

)

subject to

τ1 log

(

1 +
1 + |h32|

2 (1− γ)P
(1)
3

σ̂2
1 + σ̂2

2

)

≤ τ2 log

(

1 +
|h21|

2 ζP
(2)
2

1 + |h21|
2 (1− δ − ζ)P

(2)
2

)

τ1 log

(

1 +
1 + |h12|

2 (1− β)P
(1)
1

σ̂2
1 + σ̂2

2

)

≤ τ2 log

(

1 +
|h23|

2 ζP
(2)
2

1 + |h23|
2 (1− δ − ζ)P

(2)
2

)

τ1 log

(

1 +
1 + |h32|

2 (1− γ)P
(1)
3

σ̂2
2

)

− τ1 log

(

1 +
1 + |h32|

2 (1− γ)P
(1)
3

σ̂2
1 + σ̂2

2

)

≤ τ2 log
(

1 + |h21|
2 (1− δ − ζ)P

(2)
2

)

. (3.51)

The configuration β = γ = δ = 1 would result in a DF strategy whereas β = γ = δ = 0
determines a CF strategy. Note that with β = 1, γ = 0 it is also possible to operate with different

strategies in both directions.

Simulations Figures 3.15-3.17 show the rate regions for the individual strategies. Figure 3.18

superimposes all plots. It show that for the chosen model and parameters the scheme outer bound

meets the problem bound only at the sum-rate point for symmetric channels to node 2. However,

in all situations the scheme outer bound (SOB) varies significantly from the problem outer bound

(OB) and comes closer to the rate region without relay for asymmetric channels. The DF region

approaches the scheme outer bound for the asymmetric case. The CF region shows the same shape

as the SOB for the symmetric case. PDCF gives the convex hull of the points achievable with DF

and CF.
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Figure 3.17: 2P-MA-BC with PDCF, Line Network with P
(l)
i = 10, α = 3
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Figure 3.18: 2P-MA-BC, Line Network with P
(l)
i = 10, α = 3
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3.4.2 3P-BC Scheme

For all 3P-BC strategies the output sequences are given by

Y
(1)
2 = h12X

(1)
1 +Z

(1)
2

Y
(1)
3 = h13X

(1)
1 +Z

(1)
3

Y
(2)
1 = h31X

(2)
3 +Z

(2)
1

Y
(2)
2 = h32X

(2)
3 +Z

(2)
2

Y
(3)
1 = h21X

(3)
2 +Z

(3)
1

Y
(3)
3 = h23X

(3)
2 +Z

(3)
3 . (3.52)

Outer Bound For the outer bound of this three phase scheme the input sequences are indepen-

dent and given by

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(2)
3 =

√

P
(2)
3 f

(2)
31 (W31)

X
(3)
2 =

√

P
(3)
2 f

(3)
21 (W13,W31), (3.53)

resulting in the expressions

R13 ≤ min

{

τ1 log
(

1 + (|h12|
2 + |h13|

2)P
(1)
1

)

, τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ3 log
(

1 + |h23|
2 P

(3)
2

)}

R31 ≤ min

{

τ2 log
(

1 + (|h31|
2 + |h32|

2)P
(2)
3

)

, τ2 log
(

1 + |h32|
2 P

(2)
3

)

+ τ3 log
(

1 + |h21|
2 P

(3)
2

)}

.

(3.54)

For the case P
(3)
2 → ∞ the bound tends to

R13 → τ1 log
(

1 + (|h12|
2 + |h13|

2)P
(1)
1

)

R31 → τ2 log
(

1 + (|h31|
2 + |h32|

2)P
(2)
3

)

. (3.55)

Decode-and-Forward The same input parameterization as for the outer bound yields the achiev-

able rates with DF

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

, τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ3 log
(

1 + |h23|
2 P

(3)
2

)}

R31 ≤ min

{

τ2 log
(

1 + |h32|
2 P

(2)
3

)

, τ2 log
(

1 + |h31|
2 P

(2)
3

)

+ τ3 log
(

1 + |h21|
2 P

(3)
2

)}

.

(3.56)

Note that the expressions for PDF are not considered here as the strategy results in a DF strategy

for scalar channels.
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Figure 3.19: 3P-BC with DF, Line Network with P
(l)
i = 10, α = 3
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Compress-and-Forward For the presented CF strategy the input sequence can be assumed to

have the form

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(2)
3 =

√

P
(2)
3 f

(2)
31 (W31)

X
(3)
2 =

√

βP
(3)
2 f

(3)
21 (Q23) +

√

(1− β)P
(3)
2 f

(3)
22 (Q21) β ∈ [0, 1]. (3.57)

For simpler notation here superposition coding instead of dirty-paper coding (DPC [4], giving the

same rate expressions for scalar Gaussian broadcast channels [7]) is assumed. The parameter β
controls the superposition power assignment at node 2. The quantized outputs at node 2 have the

form

Ŷ
(1)

2 = Y
(1)
2 + Ẑ

(1)

2

Ŷ
(2)

2 = Y
(2)
2 + Ẑ

(2)

2 (3.58)

with independent Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(2)
2,k ∼ NC(0, σ̂

2
2). The achievable rates are

R13 ≤ τ1 log

(

1 + |h13|
2 P

(1)
1 +

|h12|
2 P

(1)
1

1 + σ̂2
1

)

R31 ≤ τ2 log

(

1 + |h31|
2 P

(2)
3 +

|h32|
2 P

(2)
3

1 + σ̂2
2

)

subject to

τ1 log

(

1 +
1

σ̂2
1

(

1 +
|h12|

2 P
(1)
1

1 + |h13|
2 P

(1)
1

))

≤ τ3 log

(

1 +
|h23|

2 βP
(3)
2

1 + |h23|
2 (1− β)P

(3)
2

)

τ2 log

(

1 +
1

σ̂2
2

(

1 +
|h32|

2 P
(2)
3

1 + |h31|
2 P

(2)
3

))

≤ τ3 log
(

1 + |h21|
2 (1− β)P

(3)
2

)

. (3.59)

A second expression follows after interchanging the roles of nodes 1 and 3. For the asymptotic

case P
(3)
2 → ∞ the rates with CF coincide with the scheme outer bound as σ̂2

1, σ̂
2
2 → 0.

Partial-Decode-Compress-and-Forward For this strategy the input sequences have the form

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W13) +

√

(1− β)P
(1)
1 f

(1)
12 (W13) β ∈ [0, 1]

X
(2)
3 =

√

γP
(2)
3 f

(2)
31 (W31) +

√

(1− γ)P
(2)
3 f

(2)
32 (W31) γ ∈ [0, 1]

X
(3)
2 =

√

δP
(3)
2 f

(3)
21 (W13,W31) +

√

ζP
(3)
2 f

(3)
22 (Q23) +

√

(1− δ − ζ)P
(3)
2 f

(3)
23 (Q21) δ, ζ ∈ [0, 1].

(3.60)

where δ + ζ ≤ 1. Like for CF superposition coding instead of DPC is assumed. The parameters

β and γ distribute powers at nodes 1 and 3 to the PDF and CF strategies. δ, ζ control the power
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Figure 3.20: 3P-BC with CF, Line Network with P
(l)
i = 10, α = 3
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assignment at node 2 to the propagation of the decoded messages and the quantization indices. The

quantized outputs at node 2 are

Ŷ
(1)

2 = Y
(1)
2 + Ẑ

(1)

2

Ŷ
(2)

2 = Y
(2)
2 + Ẑ

(2)

2 (3.61)

with independent Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(2)
2,k ∼ NC(0, σ̂

2
2). This results in the rates

R13 ≤ min

{

τ1 log

(

1 +
|h13|

2 βP
(1)
1

1 + |h13|
2 (1− β)P

(1)
1

)

+ τ3 log

(

1 +
|h23|

2 δP
(3)
2

1 + |h23|
2 (1− δ)P

(3)
2

)

,

τ1 log

(

1 +
|h12|

2 βP
(1)
1

1 + |h12|
2 (1− β)P

(1)
1

)}

+ τ1 log

(

1 +

(

|h13|
2 +

|h12|
2

1 + σ̂2
1

)

(1− β)P
(1)
1

)

R31 ≤ min

{

τ2 log

(

1 +
|h31|

2 γP
(2)
3

1 + |h31|
2 (1− γ)P

(2)
3

)

+ τ3 log

(

1 +
|h21|

2 δP
(3)
2

1 + |h21|
2 (1− δ)P

(2)
2

)

,

τ2 log

(

1 +
|h32|

2 γP
(2)
3

1 + |h32|
2 (1− γ)P

(2)
3

)}

+ τ2 log

(

1 +

(

|h31|
2 +

|h32|
2

1 + σ̂2
2

)

(1− γ)P
(2)
3

)

subject to

τ1 log

(

1 +
1

σ̂2
1

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + |h13|
2 (1− β)P

(1)
1

))

≤ τ3 log

(

1 +
|h23|

2 ζP
(3)
2

1 + |h23|
2 (1− ζ)P

(3)
2

)

τ2 log

(

1 +
1

σ̂2
2

(

1 +
|h32|

2 (1− γ)P
(2)
3

1 + |h31|
2 (1− γ)P

(2)
3

))

≤ τ3 log
(

1 + |h21|
2 (1− δ − ζ)P

(3)
2

)

. (3.62)

The configuration β = γ = δ = 1 would result in a DF strategy whereas β = γ = δ = 0 performs

a CF strategy. Note that with β = 1, γ = 0 it is also possible to operate with different strategies in

both directions. Further, there is the possibility to choose a superposition (with arbitrary weights)

of CF and PDF strategies for both directions.

Simulations Figures 3.19-3.21 show the rate regions for the individual strategies. Figure 3.22

combines all plots. It shows that for the chosen model and parameters the scheme outer bound

meets the general problem bound only at one point for very asymmetric channels. For symmet-

ric channels the DF region is close to the scheme outer bound while for the asymmetric case it

approaches the rate region without relay. CF outperforms DF for the "close" scenario. PDCF coin-

cides with the region of the best strategy in each setting.
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Figure 3.21: 3P-BC with PDCF, Line Network with P
(l)
i = 10, α = 3
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Figure 3.22: 3P-BC, Line Network with P
(l)
i = 10, α = 3
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3.4.3 3P-MA Scheme

For all 3P-MA strategies the output sequences are given by

Y
(1)
2 = h12X

(1)
1 + h32X

(1)
3 +Z

(1)
2

Y
(2)
3 = h13X

(2)
1 + h23X

(2)
2 +Z

(2)
3

Y
(3)
1 = h31X

(3)
3 + h21X

(3)
2 +Z

(3)
1 . (3.63)

Outer Bound For the outer bound of this three-phase scheme the input sequences are given by

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(1)
3 =

√

P
(1)
3 f

(1)
31 (W31)

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (W13)

X
(2)
1 =

√

βP
(2)
1 f

(2)
21 (W13)

︸ ︷︷ ︸
√

βP
(2)
1 /P

(2)
2 X

(2)

2

+

√

(1− β)P
(2)
1 f

(2)
11 (W13) β ∈ [0, 1]

X
(3)
2 =

√

P
(3)
2 f

(3)
22 (W31)

X
(3)
3 =

√

γP
(3)
3 f

(3)
22 (W31)

︸ ︷︷ ︸
√

γP
(3)
3 /P

(3)
2 X

(3)

2

+

√

(1− γ)P
(3)
3 f

(3)
31 (W31) γ ∈ [0, 1] (3.64)

with the parameters β, γ determining the dependence between the inputs at nodes 1 or 3 and node

2. This gives the outer rate bound expressions

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

R31 ≤ min

{

τ1 log
(

1 + |h32|
2 P

(1)
3

)

+ τ3 log
(

1 + |h31|
2 (1− γ)P

(3)
3

)

,

τ3 log

(

1 + |h21|
2 P

(3)
2 + |h31|

2 P
(3)
3 + 2 |h21h31|

√

γP
(3)
2 P

(3)
3

)}

. (3.65)

For the case P
(2)
2 , P

(3)
2 → ∞ the bound tends to

R13 → τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ2 log
(

1 + |h13|
2 P

(2)
1

)

R31 → τ1 log
(

1 + |h32|
2 P

(1)
3

)

+ τ3 log
(

1 + |h31|
2 P

(3)
3

)

. (3.66)
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Decode-and-Forward With the same input parameterization as for the outer bound the achiev-

able rates with a DF strategy are

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

R31 ≤ min

{

τ1 log
(

1 + |h32|
2 P

(1)
3

)

+ τ3 log
(

1 + |h31|
2 (1− γ)P

(3)
3

)

,

τ3 log

(

1 + |h21|
2 P

(3)
2 + |h31|

2 P
(3)
3 + 2 |h21h31|

√

γP
(3)
2 P

(3)
3

)}

R13 +R31 ≤τ1 log
(

1 + |h12|
2 P

(1)
1 + |h32|

2 P
(1)
3

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

+

τ3 log
(

1 + |h31|
2 (1− γ)P

(3)
3

)

. (3.67)

The parameters β, γ ∈ [0; 1] assign the powers at nodes 1 or 3 to the support of the input at node

2.

Compress-and-Forward For the CF strategy the input sequence can be assumed to have the

form

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(1)
3 =

√

P
(1)
3 f

(1)
31 (W31)

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (Q23)

X
(2)
1 =

√

P
(2)
1 f

(2)
12 (W13)

X
(3)
2 =

√

P
(3)
2 f

(3)
22 (Q21)

X
(3)
3 =

√

P
(3)
3 f

(3)
32 (W31). (3.68)

The quantized outputs at node 2 have the form

Ŷ
(1)

21 = Y
(1)
2 + Ẑ

(1)

1

Ŷ
(1)

22 = Y
(1)
2 + Ẑ

(1)

2 (3.69)

with Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(2)
2,k ∼ NC(0, σ̂

2
2). This yields the achievable rate expressions

R13 ≤ τ1 log

(

1 +
|h12|

2 P
(1)
1

1 + σ̂2
1

)

+ τ2 log
(

1 + |h13|
2 P

(2)
1

)

R31 ≤ τ1 log

(

1 +
|h32|

2 P
(1)
3

1 + σ̂2
2

)

+ τ3 log
(

1 + |h31|
2 P

(3)
3

)
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Figure 3.23: 3P-MA with DF, Line Network with P
(l)
i = 10, α = 3



92 3. Half-Duplex Two-Way Relay Channel

subject to

τ1 log

(

1 +
1 + |h12|

2 P
(1)
1

σ̂2
1

)

≤ τ2 log

(

1 +
|h23|

2 P
(2)
2

1 + |h13|
2 P

(2)
1

)

τ1 log

(

1 +
1 + |h32|

2 P
(1)
3

σ̂2
2

)

≤ τ3 log

(

1 +
|h21|

2 P
(3)
2

1 + |h31|
2 P

(3)
3

)

(3.70)

which coincide asymptotically for the case P
(2)
2 , P

(3)
2 → ∞ with the outer bound of the 3P-MA

scheme as σ̂2
1, σ̂

2
2 → 0.
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Figure 3.24: 3P-MA with CF, Line Network with P
(l)
i = 10, α = 3
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Partial-Decode-Compress-and-Forward For this strategy the input sequences have the form

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W13)

︸ ︷︷ ︸

U
(1)

1

+

√

(1− β)P
(1)
1 f

(1)
12 (W13) β ∈ [0, 1]

X
(1)
3 =

√

γP
(1)
3 f

(1)
31 (W31)

︸ ︷︷ ︸

U
(1)

3

+

√

(1− γ)P
(1)
3 f

(1)
32 (W31) γ ∈ [0, 1]

X
(2)
2 =

√

δP
(2)
2 f

(2)
21 (W13)

︸ ︷︷ ︸

U
(2)

2

+

√

(1− δ)P
(2)
2 f

(2)
22 (Q23) δ ∈ [0, 1]

X
(2)
1 =

√

ζP
(2)
1 f

(2)
21 (W13)

︸ ︷︷ ︸
√

ζP
(2)
1 /δP

(2)
2 U

(2)

2

+

√

(1− ζ)P
(2)
1 f

(2)
11 (W13) ζ ∈ [0, 1]

X
(3)
2 =

√

θP
(3)
2 f

(3)
21 (W31)

︸ ︷︷ ︸

U
(3)

2

+

√

(1− θ)P
(3)
2 f

(3)
22 (Q21) θ ∈ [0, 1]

X
(3)
3 =

√

κP
(3)
3 f

(3)
21 (W31)

︸ ︷︷ ︸
√

κP
(3)
3 /θP

(3)
2 U

(3)

2

+

√

(1− κ)P
(3)
3 f

(3)
31 (W31) κ ∈ [0, 1]. (3.71)

The parameters β and γ divide the powers at nodes 1 and 3 to the DF and CF strategy, δ, θ determine

the powers invested into the propagation of the decoded messages and quantization indices at node

2 and ζ, κ control the support of node 2 through nodes 1 and 3. The quantized outputs at node 2

have the form

Ŷ
(1)

21 = Y
(1)
2 + Ẑ

(1)

1

Ŷ
(1)

22 = Y
(1)
2 + Ẑ

(1)

2 (3.72)

with independent Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(2)
2,k ∼ NC(0, σ̂

2
2). This yields the achievable rates

R13 ≤ min

{

τ1 log

(

1 +
|h12|

2 βP
(1)
1

1 + |h12|
2 (1− β)P

(1)
1 + |h32|

2 (1− γ)P
(1)
3

)

,

τ2 log



1 +
|h13|

2 ζP
(2)
1 + |h23|

2 δP
(2)
2 + 2 |h13h23|

√

δζP
(2)
1 P

(2)
2

1 + |h13|
2 (1− ζ)P

(2)
1 + |h23|

2 (1− δ)P
(2)
2





}

+

τ1 log

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + σ̂2
1

)

+ τ2 log
(

1 + (1− ζ) |h13|
2 P

(2)
1

)
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R31 ≤ min

{

τ1 log

(

1 +
|h32|

2 γP
(1)
3

1 + |h32|
2 (1− γ)P

(1)
3 + |h12|

2 (1− β)P
(1)
1

)

,

τ3 log



1 +
|h21|

2 θP
(3)
2 + |h31|

2 κP
(3)
3 + 2 |h21h31|

√

θκP
(3)
2 P

(3)
3

1 + |h21|
2 (1− θ)P

(3)
2 + |h31|

2 (1− κ)P
(3)
3





}

+

τ1 log

(

1 +
|h32|

2 (1− γ)P
(1)
3

1 + σ̂2
2

)

+ τ3 log
(

1 + (1− κ) |h31|
2 P

(3)
3

)

R13 +R31 ≤τ1 log

(

1 +
|h12|

2 βP
(1)
1 + |h32|

2 γP
(1)
3

1 + |h12|
2 (1− β)P

(1)
1 + |h32|

2 (1− γ)P
(1)
3

)

+

τ1 log

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + σ̂2
1

)

+ τ1 log

(

1 +
|h32|

2 (1− γ)P
(1)
3

1 + σ̂2
2

)

+

τ2 log
(

1 + |h13|
2 (1− ζ)P

(2)
1

)

+ τ3 log
(

1 + (1− κ) |h31|
2 P

(3)
3

)

subject to

τ1 log

(

1 +
1 + |h12|

2 (1− β)P
(1)
1

σ̂2
1

)

≤ τ2 log

(

1 +
|h23|

2 (1− δ)P
(2)
2

1 + |h13|
2 (1− ζ)P

(2)
1

)

τ1 log

(

1 +
1 + |h32|

2 (1− γ)P
(1)
3

σ̂2
2

)

≤ τ3 log

(

1 +
|h21|

2 (1− θ)P
(3)
2

1 + |h31|
2 (1− κ)P

(3)
3

)

. (3.73)

Like with the other PDCF schemes note the possibility to mix strategies individually for both

directions.

Simulations Figures 3.23-3.25 show the rate regions for the individual strategies. Figure 3.26

combines all plots. For the chosen model and parameters simulations it reveals that the scheme

outer bound meets the problem outer bound only at one point for very asymmetric channels. For

symmetric channels the DF region is bounded away from the scheme outer bound by the MAC

sum-rate constraint while it approaches this bound for asymmetric channels. The CF region shows

the same shape as the scheme outer bound in the "symmetric" scenario. PDCF yields the convex

hull of the rate points achievable with CF or DF.
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Figure 3.25: 3P-MA with PDCF, Line Network with P
(l)
i = 10, α = 3
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Figure 3.26: 3P-MA, Line Network with P
(l)
i = 10, α = 3
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3.4.4 4P-OWRC Scheme

The output sequences of the four phase scheme are

Y
(1)
2 = h12X

(1)
1 +Z

(1)
2

Y
(1)
3 = h13X

(1)
1 +Z

(1)
3

Y
(2)
3 = h13X

(2)
1 + h23X

(2)
2 +Z

(2)
3

Y
(3)
2 = h32X

(3)
3 +Z

(3)
2

Y
(3)
1 = h31X

(3)
3 +Z

(3)
1

Y
(4)
1 = h31X

(4)
3 + h21X

(4)
2 +Z

(4)
1 . (3.74)

Outer Bound For the outer bound expression the input sequences are of the form

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(2)
1 =

√

βP
(2)
1 f

(2)
21 (W13)

︸ ︷︷ ︸
√

βP
(2)
1 /P

(2)
2 X

(2)

2

+

√

(1− β)P
(2)
1 f

(2)
11 (W13) β ∈ [0; 1]

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (W13)

X
(3)
3 =

√

P
(3)
3 f

(3)
31 (W31)

X
(4)
3 =

√

γP
(4)
3 f

(4)
21 (W31)

︸ ︷︷ ︸
√

γP
(4)
3 /P

(4)
2 X

(4)

2

+

√

(1− γ)P
(4)
3 f

(4)
31 (W31) γ ∈ [0; 1]

X
(4)
2 =

√

P
(4)
2 f

(4)
21 (W31) (3.75)

with the parameters β, γ determining the dependence between the inputs at node 1 or 3 and node

2. The outer bound on the achievable rates is

R13 ≤ min

{

τ1 log
(

1 + (|h12|
2 + |h13|

2)P
(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

R31 ≤ min

{

τ3 log
(

1 + (|h32|
2 + |h31|

2)P
(3)
3

)

+ τ4 log
(

1 + |h31|
2 (1− γ)P

(4)
3

)

,

τ3 log
(

1 + |h31|
2 P

(3)
3

)

+ τ4 log

(

1 + |h31|
2 P

(4)
3 + |h21|

2 P
(4)
2 + 2 |h31h21|

√

γP
(4)
2 P

(4)
3

)}

.

(3.76)
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Decode-and-Forward The input parameterization for the outer bound gives the achievable rates

of the DF strategy

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− β)P

(2)
1

)

,

τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ2 log

(

1 + |h13|
2 P

(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

βP
(2)
1 P

(2)
2

)}

R31 ≤ min

{

τ3 log
(

1 + |h32|
2 P

(3)
3

)

+ τ4 log
(

1 + |h31|
2 (1− γ)P

(4)
3

)

,

τ3 log
(

1 + |h31|
2 P

(3)
3

)

+ τ4 log

(

1 + |h31|
2 P

(4)
3 + |h21|

2 P
(4)
2 + 2 |h31h21|

√

γP
(4)
2 P

(4)
3

)}

.

(3.77)

Compress-and-Forward For the CF strategy the inputs are

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(2)
1 =

√

P
(2)
1 f

(2)
11 (W13)

X
(2)
2 =

√

P
(2)
2 f

(2)
21 (Q23)

X
(3)
3 =

√

P
(3)
3 f

(3)
31 (W31)

X
(4)
3 =

√

P
(4)
3 f

(4)
31 (W31)

X
(4)
2 =

√

P
(4)
2 f

(4)
21 (Q21) (3.78)

with the quantized outputs at node 2

Ŷ
(1)
2 = Y

(1)
2 + Ẑ

(1)
2

Ŷ
(3)
2 = Y

(3)
2 + Ẑ

(3)
2 . (3.79)

with independent Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(3)
2,k ∼ NC(0, σ̂

2
2). The achievable rates are

R13 ≤ τ1 log

(

1 + |h13|
2 P

(1)
1 +

|h12|
2 P

(1)
1

1 + σ̂2
1

)

+ τ2 log
(

1 + |h13|
2 P

(2)
1

)

R31 ≤ τ3 log

(

1 + |h31|
2 P

(3)
3 +

|h32|
2 P

(3)
3

1 + σ̂2
2

)

+ τ4 log
(

1 + |h31|
2 P

(4)
3

)

(3.80)

subject to

τ1 log

(

1 +
1

σ̂1
2

(

1 +
|h12|

2 P
(1)
1

1 + |h13|
2 P

(1)
1

))

≤ τ2 log

(

1 +
|h23|

2 P
(2)
2

1 + |h13|
2 P

(2)
1

)

τ3 log

(

1 +
1

σ̂2
2

(

1 +
|h32|

2 P
(3)
3

1 + |h31|
2 P

(3)
3

))

≤ τ4 log

(

1 +
|h21|

2 P
(4)
2

1 + |h31|
2 P

(4)
3

)

. (3.81)
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Figure 3.27: 4P-OWRC with DF, Line Network with P
(l)
i = 10, α = 3
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Figure 3.28: 4P-OWRC with CF, Line Network with P
(l)
i = 10, α = 3
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Partial-Decode-Compress-and-Forward For the PDCF strategy the input sequences are

X
(1)
1 =

√

βP
(1)
1 f

(1)
11 (W13)

︸ ︷︷ ︸

U
(1)

1

+

√

(1− β)P
(1)
1 f

(1)
12 (W13) β ∈ [0; 1]

X
(2)
1 =

√

γP
(2)
1 f

(2)
21 (W13)

︸ ︷︷ ︸
√

γP
(2)
1 /δP

(2)
2 V

(2)

2

+

√

(1− γ)P
(2)
1 f

(2)
13 (W13) γ ∈ [0; 1]

X
(2)
2 =

√

δP
(2)
2 f

(2)
21 (W13)

︸ ︷︷ ︸

V
(2)

2

+

√

(1− δ)P
(2)
2 f

(2)
22 (Q23) δ ∈ [0; 1]

X
(3)
3 =

√

ζP
(3)
3 f

(3)
31 (W31)

︸ ︷︷ ︸

U
(3)

3

+

√

(1− ζ)P
(3)
3 f

(3)
32 (W31) ζ ∈ [0; 1]

X
(4)
3 =

√

ηP
(4)
3 f

(4)
23 (W31)

︸ ︷︷ ︸
√

ηP
(4)
3 /θP

(4)
2 V

(4)

2

+

√

(1− η)P
(4)
3 f

(4)
33 (W31) η ∈ [0; 1]

X
(4)
2 =

√

θP
(4)
2 f

(4)
23 (W31)

︸ ︷︷ ︸

V
(4)

2

+

√

(1− θ)P
(4)
2 f

(4)
24 (Q21) θ ∈ [0; 1]. (3.82)

The quantized outputs at node 2 are

Ŷ
(1)

2 = Y
(1)
2 + Ẑ

(1)

2

Ŷ
(3)

2 = Y
(3)
2 + Ẑ

(3)

2 (3.83)

with independent Ẑ
(1)
2,k ∼ NC(0, σ̂

2
1) and Ẑ

(3)
2,k ∼ NC(0, σ̂

2
2). The achievable rates are

R13 ≤ min

{

τ1 log

(

1 + |h12|
2 P

(1)
1

1 + |h12|
2 (1− β)P

(1)
1

)

, τ1 log

(

1 + |h13|
2 P

(1)
1

1 + |h13|
2 (1− β)P

(1)
1

)

+

τ2 log




1 + |h13|

2 P
(2)
1 + |h23|

2 P
(2)
2 + 2 |h13h23|

√

γδP
(2)
1 P

(2)
2

1 + |h13|
2 (1− γ)P

(2)
1 + |h23|

2 (1− δ)P
(2)
2





}

+

τ1 log

(

1 +

(

|h13|
2 +

|h12|
2

1 + σ̂1
2

)

(1− β)P
(1)
1

)

+ τ2 log
(

1 + |h13|
2 (1− γ)P

(2)
1

)
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R31 ≤ min

{

τ3 log

(

1 + |h32|
2 P

(3)
3

1 + |h32|
2 (1− ζ)P

(3)
3

)

, τ3 log

(

1 + |h31|
2 P

(3)
3

1 + |h31|
2 (1− ζ)P

(3)
3

)

+

τ4 log




1 + |h31|

2 P
(4)
3 + |h21|

2 P
(4)
2 + 2 |h31h21|

√

ηθP
(4)
2 P

(4)
3

1 + |h31|
2 (1− η)P

(4)
3 + |h21|

2 (1− θ)P
(4)
2





}

+

τ3 log

(

1 +

(

|h31|
2 +

|h32|
2

1 + σ̂2
2

)

(1− ζ)P
(3)
3

)

+ τ4 log
(

1 + |h31|
2 (1− η)P

(4)
3

)

subject to

τ1 log

(

1 +
1

σ̂2
1

(

1 +
|h12|

2 (1− β)P
(1)
1

1 + |h13|
2 (1− β)P

(1)
1

))

≤ τ2 log

(

1 +
|h23|

2 (1− δ)P
(2)
2

1 + |h13|
2 (1− γ)P

(2)
1

)

τ3 log

(

1 +
1

σ̂2
2

(

1 +
|h32|

2 (1− ζ)P
(3)
3

1 + |h31|
2 (1− ζ)P

(3)
3

))

≤ τ4 log

(

1 +
|h21|

2 (1− θ)P
(4)
2

1 + |h31|
2 (1− η)P

(4)
3

)

. (3.84)

Simulations Figures 3.27-3.29 show the rate regions for the individual strategies. Figure 3.30

combines all plots. For the chosen model and parameters simulations in Figure 3.30 show that the

scheme outer bound approaches the problem outer bound for asymmetric channels. For symmetric

channels DF is close to the scheme outer bound. For asymmetric channels DF becomes optimal

for the node closer to the relay. CF shows to be insensible to asymmetric channels from the dialog

nodes to the relay as the rate regions change just slightly for the different scenarios. PDCF yields

the convex hull of the rate points achievable with CF or DF.
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Figure 3.29: 4P-OWRC with PDCF, Line Network with P
(l)
i = 10, α = 3
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Figure 3.30: 4P-OWRC, Line Network with P
(l)
i = 10, α = 3
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3.4.5 6P Scheme

The output sequences of the six phase scheme are

Y
(1)
2 = h12X

(1)
1 +Z

(1)
2

Y
(1)
3 = h13X

(1)
1 +Z

(1)
3

Y
(2)
1 = h31X

(2)
3 +Z

(2)
1

Y
(2)
2 = h32X

(2)
3 +Z

(2)
2

Y
(3)
2 = h12X

(3)
1 + h32X

(3)
3 +Z

(3)
2

Y
(4)
1 = h21X

(4)
2 +Z

(4)
1

Y
(4)
3 = h23X

(4)
2 +Z

(4)
3

Y
(5)
1 = h21X

(5)
2 + h31X

(5)
3 +Z

(5)
1

Y
(6)
3 = h13X

(6)
1 + h23X

(6)
2 +Z

(6)
3 . (3.85)

Outer Bound For the outer bound the input sequences are of the form

X
(1)
1 =

√

P
(1)
1 f

(1)
11 (W13)

X
(2)
3 =

√

P
(2)
3 f

(2)
31 (W31)

X
(3)
1 =

√

P
(3)
1 f

(3)
11 (W13)

X
(3)
3 =

√

P
(3)
3 f

(3)
31 (W31)

X
(4)
2 =

√

P
(4)
2 f

(4)
21 (W13,W31)

X
(5)
2 =

√

P
(5)
2 f

(5)
21 (W31)

X
(5)
3 =

√

βP
(5)
3 f

(5)
21 (W31)

︸ ︷︷ ︸
√

βP
(5)
3 /P

(5)
2 X

(5)

2

+

√

(1− β)P
(5)
3 f

(5)
31 (W31) β ∈ [0; 1]

X
(6)
2 =

√

P
(6)
2 f

(6)
21 (W13)

X
(6)
1 =

√

γP
(6)
1 f

(6)
21 (W13)

︸ ︷︷ ︸
√

γP
(6)
1 /P

(6)
2 X

(6)

2

+

√

(1− γ)P
(6)
1 f

(6)
11 (W13) γ ∈ [0; 1] (3.86)

with the parameters β, γ controlling the dependence between the inputs at nodes 1 or 3 and node

2. The outer bound on achievable rates is

R13 ≤ min

{

τ1 log
(

1 + (|h12|
2 + |h13|

2)P
(1)
1

)

+ τ3 log
(

1 + |h12|
2 P

(3)
1

)

+

τ6 log
(

1 + |h13|
2 (1− γ)P

(6)
1

)

, τ1 log
(

1 + |h13|
2 P

(1)
1

)

+ τ4 log
(

1 + |h23|
2 P

(4)
2

)

+

τ6 log

(

1 + |h13|
2 P

(6)
1 + |h23|

2 P
(6)
2 + 2 |h13h23|

√

γP
(6)
1 P

(6)
2

)}
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R31 ≤ min

{

τ2 log
(

1 + (|h32|
2 + |h31|

2)P
(2)
3

)

+ τ3 log
(

1 + |h32|
2 P

(3)
3

)

+

τ5 log
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3
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, τ2 log
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2 P
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+
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3 + |h21|

2 P
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. (3.87)

Decode-and-Forward With the same input paramterization as the outer bound the DF achiev-

able rates are

R13 ≤ min

{

τ1 log
(

1 + |h12|
2 P

(1)
1

)

+ τ3 log
(

1 + |h12|
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(
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{
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(
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. (3.88)

Figure 3.31 shows the achievable rate regions for the three configurations considered.
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Figure 3.31: 6P with DF , Line Network with P
(l)
i = 10, α = 3
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3.5 Towards Optimal Schemes

For fixed input distributions the problem outer bound and the 6P expressions can be used to iden-

tify potentially optimal schemes for any relaying strategy or strategies with decoding at the relay

through time allocation. Here some simulation results are presented. For the problem bound and

6P DF expressions two linear rate objectives have been maximized in order to find the optimal

time allocation to the six phases. On the plots the different schemes are depicted for the plane

network. On the scheme plots the used schemes are numbered by the decimal version of the binary

vector denoting the active phases. For example the schemes studied in detail in this work have the

numbers

OWRC (1-3) : 33 =
[
1 0 0 0 0 1

]

OWRC (3-1) : 18 =
[
0 1 0 0 1 0

]

2P-MA-BC : 12 =
[
0 0 1 1 0 0

]

3P-BC : 11 =
[
1 1 0 1 0 0

]

3P-MA : 52 =
[
0 0 1 0 1 1

]

4P-OWRC : 51 =
[
1 1 0 0 1 1

]

6P : 63 =
[
1 1 1 1 1 1

]
. (3.89)

A full legend of the schemes showing up in the following plots is found at the end of this section.

Note that the binary vector only indicates which phase is active and not its individual time length.

For all simulations the parameters are P
(l)
i = 10 and α = 3.

Sum-Rate Maximization Figure 3.32 shows the resulting schemes for the problem outer bound

and the 6P DF scheme after sampling over the input distributions (β, γ) and solving time allocation

with respect to maximal sum-rate. It can be seen on the plot for the outer bound that the 2P-MA-BC

(12) scheme shows up only in the position where the channels to node 2 support totally symmetric

rates. A significant area is covered by one-way channels (18/33). The 3P-MA (52) scheme shows

up in small areas. Between the two nodes the outer bound would suggest to use a scheme for sum-

rate maximization which adds to the 2P-MA-BC a phase where relay and one dialog node send

together (28/44). On the plot of the DF strategy in the outer area the relay is disconnected from the

transmission process (32, here equivalent with 16). Again the two one-way schemes show up in a

wide area around the nodes. In the middle the 3P-BC (11) scheme is used. The two asymmetric

schemes (28/44) are used in small areas between the nodes. The schemes 13 and 14 add a phase to

the 2P-MA-BC scheme where one of the dialog nodes sends alone. In Figure 3.33 the achievable

sum-rate with 6P DF is compared to the outer bound and the rates of 2P-MA-BC DF. "Behind" each

node the sum-rate bound is achieved with one-way channels. Between the nodes still improvements

are possible, e.g. use 2P-MA-BC with CF. The comparison against the two phase scheme shows a

gain up to 50 percent in the area between the nodes. On Figure 3.34 a comparison to the two-way

channel without relay is depicted. Here a gain of up to 40 percent is observed
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Figure 3.32: Schemes, SR Maximization, Plane Network with P
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Figure 3.34: Comparison with TWC, SR Maximization, Plane Network with P
(l)
i = 10, α = 3

Max-Min Maximization Figure 3.35 shows the resulting schemes after solving time allocation

with respect to maximal maxmin-rate. The outer bound suggests to use the 4P-OWRC scheme

in a very large area. In the middle the two phase scheme shows up again. The schemes 53 and 54

denote a scheme consisting of the 3P-MA scheme with an additional phase where one of the dialog

nodes sends. 46 and 29 are a bit tricky with a 2P-MA-BC and two additional phases that can be

interpreted as a OWRC with one phase in the reverse direction. In the DF plot many schemes show

up. New are the schemes 49 and 50 (see scheme legend) "behind" each node. 48 denotes a two-way

communication without relay. 27 and 43 are the 3P-BC scheme with an additional phase with relay

and one dialog node active. The rate comparison (see Figure 3.36) shows that the 6P DF scheme

operates at around 90 percent of the max-min upper bound in a large area. For the area between

both nodes a significant distance can be observed. Comparing against the two-phase scheme shows

a max-min gain of up to 50 percent for the area between and around the dialog nodes. Figure 3.37

shows that a significant max-min rate gain is possible in comparison to a simple two-way channel

if the relay is located between both dialog nodes.

Insides The basic inside of such simulations is that there seems to be no ultimate scheme. By

optimizing the time allocation to the different phases the 6P scheme degenerates into schemes

with less than six phases as different channel configurations require different schemes. Each of the

phases is active at some point and therefore useful for some particular situation. Only a 6P scheme

has the potential to adapt all network configurations appropriately to the channels. It becomes also

clear that the possible rate gain might be strongly dependent of the position of the relay. Note that
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the plots represent just an exemplary channel model. Especially with a different path-loss exponent

the results might change.

Scheme Legend

11 :
[
1 1 0 1 0 0

]
12 :

[
0 0 1 1 0 0

]

13 :
[
1 0 1 1 0 0

]
14 :

[
0 1 1 1 0 0

]

18 :
[
0 1 0 0 1 0

]
27 :

[
1 1 0 1 1 0

]

28 :
[
0 0 1 1 1 0

]
29 :

[
1 0 1 1 1 0

]

32 :
[
0 0 0 0 0 1

]
33 :

[
1 0 0 0 0 1

]

43 :
[
1 1 0 1 0 1

]
44 :

[
0 0 1 1 0 1

]

46 :
[
0 1 1 1 0 1

]
48 :

[
0 0 0 0 1 1

]

49 :
[
1 0 0 0 1 1

]
50 :

[
0 1 0 0 1 1

]

51 :
[
1 1 0 0 1 1

]
52 :

[
0 0 1 0 1 1

]

53 :
[
1 0 1 0 1 1

]
54 :

[
0 1 1 0 1 1

]
. (3.90)





4. Conclusion

The wireline example outlined in the introduction of the second part of the thesis has raised the

author’s interest on the implications of the direct path in a wireless two-way relay channel. As

a precise survey could not be found, an information theoretical approach has been carried out in

order to understand the offered possibilities and obtain results that can be applied to SISO and

MIMO wireless channels.

One-Way Relay Channel The first part of the work represents the attempt to understand the

channel coding aspects on a half-duplex one-way model by applying the relaying methods of [6]

(PDF, [18]). Therefore, self-contained proofs have been developed with extensive use of the meth-

ods and theorems presented in [18] and [7]. The reinterpretation of methods like binning, block-

Markov coding and message-splitting has led to the strongly familiar technique of reindex coding.

This disciplines the achievability proofs by making the exploitation of statistical dependencies in

the network more transparent and straightforward. Surprisingly, the general results derived for the

half-duplex model through coding proofs can not be found in literature. The expressions derived in

[15] only hold for Gaussian channels. Simulations visualize the performance of different methods

on the half-duplex model with scalar Gaussian channels and the benefits of time allocation.

Two-Way Relay Channel The insides and techniques of the first part have been used and

adapted for the analysis of a restricted two-way relay channel with direct connection. A defini-

tion has been outlined and the Cut-set Theorem has been applied to deduce an outer bound on the

achievable rates with fixed input distributions. Two schemes already proposed in literature have

been revisited and slightly extended (2P-MA-BC with PDCF, 3P-BC with PDF/PDCF). A new

three-phase scheme (3P-MA) has been suggested and studied in detail. Moreover, a four-phase

scheme has been proposed. By separating the channel into two subsequent one-way channels the

analysis of this scheme benefits directly from the half-duplex one-way results of the first part. The

idea of using the problem outer bound to find a general scheme has led to a new scheme with six

phases, here referred to as 6P. The achievable rates with full and partial decoding at the relay have

been derived for this scheme. 6P DF is argued to contain all other possible fixed DF schemes as

special cases. Simulations for scalar Gaussian channels visualize the performance of the differ-

ent schemes and the relation of their individual performance bound to the more general problem

bound. They show clearly that the prominent two-phase scheme can not attain the performance

offered by a fully-connected network model. Especially for channels with asymmetric rates to the

relay a two-phase approach will result in a significant performance loss. Simulations on a plane

network model show the potential of 6P to outperform the two-way channel and the two-phase

two-way relay channel with respect to communication rate. The results also indicate that an ul-

timate scheme might not exist and therefore justify the general approach which allows to use all

possible network state configurations.

Extensions The thesis has focused on channel coding aspects. As time-sharing variables are a

technical tool to extend derived expressions they have been omitted here. For the simulations car-
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ried out with scalar channel inputs and a per symbol power constraint this has no effect. They will

be needed to exploit the potential of average power constraints and for vector-valued channel in-

puts. Care needs to be taken when determining their alphabet size as the rate regions might behave

different than full-duplex regions. Cost problems might have deserved a more precise analysis and

simulations. As frequently indicated a MIMO analysis will be highly interesting and reveal the full

potential of methods with partial decoding at the relay.

Practical Implications As mentioned in the introduction the analysis makes severe assumptions

that can not apply to real systems. However, for example the derived expressions for DF relaying

might be used to approximate the time lengths of different phases or the bandwidth for the different

channel parts for linear rate or cost objectives on SISO systems at low complexity, especially when

coherent signaling is not possible. The random coding proofs do not shed light on how to build

a good code with low complexity. But the underlying reindex method can serve as guideline for

the codebook indexing structure, the index passing process through the network and the decoding

order of practical code constructions.

Theoretical Implications The thesis has tried to study precisely the coding aspects on two small

half-duplex network models. It is just natural that, at the end of such a survey, the question of the

relation between full and half-duplex networks arises. For the one-way scenario the full-duplex

coding methods are fairly understood for a long time. The application of these methods on a half-

duplex model seem therefore more like a "reverse engineering" practice. The method how the cut-

set bound is applied gives the impression that the achievable rates could also have been acquired

formally from the full-duplex expressions of [6] or [18] without a coding proof. It should not

be neglected that this would have been possible for example for CF. Note that for DF such a

method yields lower rates. Here such an approach would have made it impossible to understand

the underlying coding problem. Only this has allowed to study the two-way scenario in detail and

to extend lower bounds to a scheme with six phases. A formal way from half-duplex expressions to

full-duplex ones appears at the moment not obvious. This might indicate that half-duplex networks

are a special case of full-duplex ones. It is interesting to observe that on the half-duplex model

the problems in relation to the cut-set bound stay the same as in the full-duplex model but occur

separated on orthogonal channel parts just connected through coding.



Appendix

In order to make the thesis easier to read, all achievability proofs have been moved to the appendix.

A code is said to be reliable if Pr [E ] can be made arbitrary small with choosing n sufficiently

large. E denotes the occurrence of an error at destination decoders. All rates that allow this or

can be approached arbitrarily close with this property are considered to be achievable. Proofs of

achievability follow the concept of defining encoders and decoders and to analyze the probability

of error in dependence of the rate R and block length n. Here the proofs use properties of long

random sequences and the performance of suboptimal decoders. The probability of error with

a "good code" is not analyzed directly. Instead the symmetry of a random code construction is

exploited in order to characterize the average probability of error over all codebooks in dependence

of R and n. This allows to prove the existence of a reliable code under certain rate constraints.

A1. Letter-Typical Sequences

To make the work self-contained the definitions and theorems used are stated here without proofs.

These and a comprehensive introduction can be found in [18] which is recommended as an

overview on problems of information theory and the analysis of those using typicality. Letter-

typicality is used in order to apply the Markov Lemma which is needed for the proofs with CF and

PDCF. Definitions and applications of a weaker form called entropy-typicality can be found in [7].

Definition A1.1 (Letter-Typical Sequence)

Let N(a|xn) be the number of positions in the n-sequence xn having the letter a. For ǫ ≥ 0 a

sequence xn is ǫ-letter typical with respect to PX(·) if

∣
∣
∣
∣

1

n
N(a|xn)− PX(a)

∣
∣
∣
∣
≤ ǫPX(a) ∀a ∈ X .

Definition A1.2 (Letter-Typical Set)

The ǫ-letter typical set T n
ǫ (PX) with respect to PX(·) is defined as

T n
ǫ (PX) =

{

xn :

∣
∣
∣
∣

1

n
N(a|xn)− PX(a)

∣
∣
∣
∣
≤ ǫPX(a), ∀a ∈ X

}

.
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Definition A1.3 (Jointly Letter-Typical Sequences)

Let N(a, b|xn, yn) be the number of occurences of (a, b) in the sequence

(x1, y1), (x2, y2) . . . (xn, yn). For ǫ ≥ 0 the ǫ-letter typical set T n
ǫ (PXY ) with respect to

PXY (·) is defined as

T n
ǫ (PXY ) =

{

(xn, yn) :

∣
∣
∣
∣

1

n
N(a, b|xn, yn)− PXY (a, b)

∣
∣
∣
∣
≤ ǫPXY (a, b), ∀(a, b) ∈ X ×Y

}

.

Theorem A1.4 (Properties Letter-Typical Sequence)

Suppose 0 ≤ ǫ ≤ µX = mina∈supp(PX) PX(a), x
n ∈ T n

ǫ (PX) and Xn is emitted by a discrete-

memoryless source PX(·)

2−n(1+ǫ)H(X) ≤ P n
X(x

n) ≤ 2−n(1−ǫ)H(X)

(1− δǫ(n))2
n(1−ǫ)H(X) ≤ |T n

ǫ (PX)| ≤ 2n(1+ǫ)H(X)

1− δǫ(n) ≤ Pr [Xn ∈ T n
ǫ (PX)] ≤ 1.

where

δǫ(n) = 2 |X | e−nǫ2µX .

Proof see [18, p. 272]

Theorem A1.5 (Properties Jointly Letter-Typical Sequences)

Suppose 0 ≤ ǫ1 < ǫ2 ≤ µXY = min(a,b)∈supp(PXY ) PXY (a, b), (x
n, yn) ∈ T n

ǫ1
(PXY ) and (Xn, Y n)

emitted by a discrete-memoryless source PXY (·)

2−n(1+ǫ1)H(Y |X) ≤ P n
Y |X(y

n|xn) ≤ 2−n(1−ǫ1)H(Y |X)

(1− δǫ1,ǫ2(n))2
n(1−ǫ2)H(Y |X) ≤

∣
∣T n

ǫ2
(PXY |x

n)
∣
∣ ≤ 2n(1+ǫ2)H(Y |X)

1− δǫ1,ǫ2(n) ≤ Pr
[
Y n ∈ T n

ǫ2
(PXY |x

n)|Xn = xn
]
≤ 1

where

T n
ǫ (PXY |x

n) = {yn : (xn, yn) ∈ T n
ǫ (PXY )}

δǫ1,ǫ2(n) = 2 |X | |Y| exp

(

−n
(ǫ2 − ǫ1)

2

1 + ǫ1
µXY

)

.

Proof see [18, p. 280]
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Theorem A1.6 (Properties Independent Letter-Typical Sequences)

Consider a joint distribution PXY (·) and suppose 0 ≤ ǫ1 < ǫ2 ≤ µXY , xn ∈ T n
ǫ1(PX) and Y n is

emitted by a discrete-memoryless source PY (·)

(1− δǫ1,ǫ2(n))2
−n[I(X;Y )+2ǫ2H(Y )] ≤ Pr

[
Y n ∈ T n

ǫ2
(PXY |x

n)
]
≤ 2−n[I(X;Y )−2ǫ2H(Y )].

where

δǫ1,ǫ2(n) = 2 |X | |Y| exp

(

−n
(ǫ2 − ǫ1)

2

1 + ǫ1
µXY

)

.

Proof see [18, p. 277]

Theorem A1.7

Suppose 0 ≤ ǫ1 < ǫ2 ≤ µUXY = min(a,b,c)∈supp(PUXY ) PUXY (a, b, c), (u
n, yn) ∈ T n

ǫ1
(PUY ) and Xi

is emitted by a discrete-memoryless source PX|U(·|ui) for i = 1 . . . n

(1− δǫ1,ǫ2(n))2
−n[I(X;Y |U)+2ǫ2H(X|U)] ≤ Pr

[
Xn ∈ T n

ǫ2
(PUXY |u

n, yn)|Un = un
]

≤ 2−n[I(X;Y |U)−2ǫ2H(X|U)]

where

δǫ1,ǫ2(n) = 2 |U| |X | |Y| exp

(

−n
(ǫ2 − ǫ1)

2

1 + ǫ1
µUXY

)

.

Proof see [18, p. 338]

Definition A1.8 (Markov Chain)

For the discrete random variables X, Y and Z

X − Y − Z

form a Markov chain if

P (x, y, z) =

{

P (x, y)P (z|y) if P (y) > 0,

0 else.



Theorem A1.9 (Markov Lemma)

Suppose

X − Y − Z

form a Markov chain, 0 ≤ ǫ1 < ǫ2 ≤ µXY Z = min(a,b,c)∈supp(PXY Z) PXY Z(a, b, c), (x
n, yn) ∈

T n
ǫ1(PXY ) and (Xn, Y n, Zn) emitted by a discrete-memoryless source PXY Z(·)

1− δǫ1,ǫ2(n) ≤ Pr
[
Zn ∈ T n

ǫ2(PXY Z|x
n, yn)|Y n = yn

]

where

δǫ1,ǫ2(n) = 2 |X | |Y| |Z| exp

(

−n
(ǫ2 − ǫ1)

2

1 + ǫ1
µXY Z

)

.

Proof see [18, p. 319]
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A2. Proofs: Achievable Rates Half-Duplex Relay Channel

Comments and Assumptions Random encoding, jointly typical decoding and compression will

be used to show which rates are achievable for the half-duplex one-way relay channel. For the

following proofs it will be assumed that the transmission is performed with n ≥ 2 channel uses

and two phases l = 1, 2. Phase 1 features n1 ≥ 1 transmission slots, phase 2 supports n2 ≥ 1
transmission slots, with n1 + n2 = n. If n grows n1 and n2 are assumed to grow at the same

rate, meaning that doubling n doubles nl. For large n, nl

n
→ τl with 0 < τl ≤ 1. The message

w ∈ [1; 2nR] will be sent from node 1 to node 3. For all proofs 2nR ∈ Z+.

A2.1 Decode-and-Forward

Codebook c1 Generate 2n(R1+R2) n1-sequences xn1
1 (r, s), r ∈ [1; 2nR1], s ∈ [1; 2nR2] by choos-

ing each element x
(1)
1,k(r, s) independently according to P

X
(1)
1
(·).

Codebook c2 Generate 2nR1 n2-sequences xn2
2 (r) by choosing each element x

(2)
2,k(r) indepen-

dently according to P
X

(2)
2
(·).

Codebook c3 For each xn2
2 (r) generate 2nR3 n2-sequences xn2

1 (r, t), t ∈ [1; 2nR3], by choosing

each element x
(2)
1,k(r, t) independently according to P

X
(2)
1 |X

(2)
2
(·|x(2)

2,k(r)).

Node 1 The message w is reindexed by (r, s, t). In the first phase node 1 transmits xn1
1 (r, s)

within n1 transmissions. In the second phase node 1 transmits xn2
1 (r, t) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (r̃, s̃)

such that

(xn1
1 (r̃, s̃), yn1

2 ) ∈ T n1
ǫ (P

X
(1)
1 Y

(1)
2

). (A1)

If there is none or more than one such pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the found

index pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. In the second phase node 2 sends xn2
2 (r̂(2))

by the use of n2 transmissions.

Node 3 In the first phase yn1
3 is observed. In the second phase yn2

3 is observed. After the second

phase node 3 tries to find an index r̃ such that

(xn2
2 (r̃), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
2 Y

(2)
3

). (A2)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. Then node 3 tries to find an index t̃ such that

(
xn2
1 (r̂(3), t̃), xn2

2 (r̂(3)), yn2
3

)
∈ T n2

ǫ (P
X

(2)
1 X

(2)
2 Y

(2)
3

). (A3)

If there is none or more than one such index t̃, set t̂(3) = 1. Otherwise, the found index t̃ is the

estimate t̂(3) of node 3. Finally, node 3 tries to find an index s̃ such that

(xn1
1 (r̂(3), s̃), yn1

3 ) ∈ T n1
ǫ (P

X
(1)
1 Y

(1)
3

). (A4)
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If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the es-

timate ŝ(3) of node 3. The output message ŵ(3) of node 3 is found by reindexing (r̂(3), ŝ(3), t̂(3)).

Error Analysis The event

E =
{
Ŵ (3) 6= W

}
=
{
R̂(3) 6= R

}
∪
{
Ŝ(3) 6= S

}
∪
{
T̂ (3) 6= T

}
(A5)

denotes the occurence of an error in the decode-and-forward communication scheme. The proba-

bility of this event is

Pr
[{

R̂(3) 6= R
}
∪
{
Ŝ(3) 6= S

}
∪
{
T̂ (3) 6= T

}]

≤ Pr
[

R̂(3) 6= R
]

+ Pr
[

T̂ (3) 6= T |R̂(3) = R
]

+ Pr
[

Ŝ(3) 6= S|R̂(3) = R
]

≤ Pr
[{

R̂(2) 6= R
}
∪
{
R̂(3) 6= R̂(2)

}]

+ Pr
[

T̂ (3) 6= T |R̂(3) = R
]

+ Pr
[

Ŝ(3) 6= S|R̂(3) = R
]

≤ Pr
[

R̂(2) 6= R
]

+ Pr
[

R̂(3) 6= R̂(2)|R̂(2) = R
]

+ Pr
[

T̂ (3) 6= T |R̂(3) = R
]

+ Pr
[

Ŝ(3) 6= S|R̂(3) = R
]

≤ Pr
[

(R̂(2), Ŝ(2)) 6= (R, S)
]

+ Pr
[

R̂(3) 6= R̂(2)|R̂(2) = R
]

+ Pr
[

T̂ (3) 6= T |R̂(3) = R
]

+ Pr
[

Ŝ(3) 6= S|R̂(3) = R
]

. (A6)

The probability of error can be upper bounded by the sum over the individual error probabilities of

each decoder under the assumption that if the decoder needs side information this side information

is error-free. Define the conditional probabilities of error

λ2,(r,s)(c1) = Pr
[

(R̂(2), Ŝ(2)) 6= (r, s)|Xn1
1 = xn1

1 (r, s)
]

=
∑

Y
n1
2

P (yn1
2 |xn1

1 (r, s)) I (g2(y
n1
2 ) 6= (r, s))

λ31,r(c2) = Pr
[

R̂(3) 6= r|Xn2
2 = xn2

2 (r)
]

=
∑

Y
n2
3

P (yn2
3 |xn2

2 (r̂(2))) I (g31(y
n2
3 ) 6= r)

λ32,(r,t)(c3) = Pr
[

T̂ (3) 6= t|Xn2
1 = xn2

1 (r, t)
]

=
∑

Y
n2
3

P (yn2
3 |xn2

1 (r, t)) I (g32(y
n2
3 , r) 6= t)

λ33,(r,s)(c1) = Pr
[

Ŝ(3) 6= s|Xn1
1 = xn1

1 (r, s)
]

=
∑

Y
n1
3

P (yn1
3 |xn1

1 (r, s)) I (g33(y
n1
3 , r) 6= s) (A7)

where I (·) is the indicator function and the functions

g2(y
n1
2 ) : Yn1

2 → R×S

g31(y
n2
3 ) : Yn2

3 → R

g32(y
n2
3 , r̂(3)) : Yn2

3 ×R → T

g33(y
n1
3 , r̂(3)) : Yn1

3 ×R → S (A8)
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1

2

3

y
n1
2

y
n1
3

xn1
1 (r, s) ∼ P

X
(1)
1

w : (r, s, t)

(r̂(2), ŝ(2))

(a) First Phase (n1 transmission slots)

1

2

3

yn2
3

xn2
1 (r, t) ∼ P

X
(2)
1 |X

(2)
2

xn2
2 (r̂(2)) ∼ P

X
(2)
2

w : (r, s, t)

(r̂(2), ŝ(2))

ŵ(3) : (r̂(3), ŝ(3), t̂(3))
(b) Second Phase (n2 transmission slots)

Figure A1: Sketch Achievable Rate Proof, Decode-and-Forward
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are realized by jointly typical decoding as described in the transmission scheme. The average

probability of error Pe over all codewords and codebooks is

Pe =
∑

W

P (w)
∑

C1

∑

C2

∑

C3

P (c1)P (c2)P (c3|c2) Pr
[

Ŵ (3) 6= W |W = w
]

≤
∑

R

∑

S

P (r)P (s)
∑

C1

P (c1) (λ2,(r,s)(c1) + λ33,(r,s)(c1)) +
∑

R

P (r)
∑

C2

P (c2)λ31,r(c2)

+
∑

R

∑

T

P (r)P (t)
∑

C2

P (c2)
∑

C3

P (c3|c2) λ32,(r,t)(c3). (A9)

Under the assumption that W and therefore R, S and T are uniformly distributed

Pe ≤
1

2nR1

1

2nR2

∑

R

∑

S

∑

C1

P (c1) (λ2,(r,s)(c1) + λ33,(r,s)(c1)) +
1

2nR1

∑

R

∑

C2

P (c2)λ31,r(c2)

+
1

2nR1

1

2nR3

∑

R

∑

T

∑

C3

P (c3) λ32,(r,t)(c3). (A10)

Due to the symmetry of the code construction the conditional probabilities of error do not depend

on the particular realizations of R, S and T . Therefore, it can be assumed that an index triple

(r, s, t) has been sent by node 1 and r̂(2) by node 2. The upper bound on the average probability

of the error event E reduces to

Pe ≤
∑

C1

P (c1) (λ2,(r,s)(c1) + λ33,(r,s)(c1)) +
∑

C2

P (c2) λ31,r̂(2)(c2) +
∑

C3

P (c3) λ32,(r,t)(c3)

= Pr [E2 |(R, S) = (r, s)] + Pr
[

E31 |R̂(2) = r̂(2)
]

+ Pr
[

E32 |(R̂(3), T ) = (r, t)
]

+ Pr
[

E33 |(R̂(3), S) = (r, s)
]

(A11)

where the events

E2 =
{
g2(Y

n1
2 ) 6= (R, S)

}

E31 =
{
g31(Y

n2
3 ) 6= R̂(2)

}

E32 =
{
g32(Y

n2
3 , R̂(3)) 6= T

}

E33 =
{
g33(Y

n1
3 , R̂(3)) 6= S

}
(A12)

denote the occurrence of an error in the first, second, third and fourth decoding step. In the follow-

ing it will be analyzed under which circumstances the upper bound on Pe can be made arbitrarily

small. Note that if Pe can be made arbitrarily small one can argue [7, Section 7.7] that there must

exist codes ĉ1, ĉ2 and ĉ3 that can be modified to produce optimal codes c⋆1, c⋆2 and c⋆3 which allow

reliable communication over the half-duplex relay channel.
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First Step Choose 0 < ǫ1 < ǫ ≤ µ
X

(1)
1 Y

(1)
2

. The probability of the event E2 conditioned on the

index pair (R, S) = (r, s) being sent can be upper bounded by

Pr [E2 |(R, S) = (r, s)] ≤ Pr
[

(Xn1
1 (r, s), Y n1

2 ) /∈ T n1
ǫ1
(P

X
(1)
1 Y

(1)
2

)
]

+

2nR1 ,2nR2
∑

r̃=1,s̃=1
(r̃,s̃) 6=(r,s)

∑

T
n1
ǫ1

(P
Y
(1)
2

)

P (yn1
2 ) Pr

[

Xn1
1 (r̃, s̃) ∈ T n1

ǫ (P
X

(1)
1 Y

(1)
2

|yn1
2 )
]

≤ δǫ1(n1) +

2nR1 ,2nR2
∑

r̃=1,s̃=1
(r̃,s̃) 6=(r,s)

∑

T
n1
ǫ1

(P
Y
(1)
2

)

P (yn1
2 ) 2−n1(I(X

(1)
1 ;Y

(1)
2 )−2ǫH(X

(1)
1 ))

≤ δǫ1(n1) +

2nR1 ,2nR2
∑

r̃=1,s̃=1
(r̃,s̃) 6=(r,s)

2−n1(I(X
(1)
1 ;Y

(1)
2 )−2ǫH(X

(1)
1 ))

≤ δǫ1(n1) + 2n(R1+R2)2−n1(I(X
(1)
1 ;Y

(1)
2 )−2ǫH(X

(1)
1 ))

= δǫ1(n1) + 2−n(
n1
n
I(X

(1)
1 ;Y

(1)
2 )−2ǫ

n1
n
H(X

(1)
1 )−R1−R2). (A13)

where Theorems A1.4 and A1.6 have been used. This shows that one can drive

Pr [E2 |(R, S) = (r, s)] to zero by choosing n large and satisfying

R1 +R2 < τ1I(X
(1)
1 ; Y

(1)
2 )− 2ǫτ1H(X

(1)
1 ). (A14)

Second Step Choosing 0 < ǫ1 < ǫ ≤ µ
X

(2)
2 Y

(2)
3

one can upper bound

Pr
[

E31 |R̂(2) = r̂(2)
]

≤ Pr
[

(Xn2
2 (r̂(2)), Y n2

3 ) /∈ T n2
ǫ1 (PX

(2)
2 Y

(2)
3

)
]

+

2nR1
∑

r̃=1
r̃ 6=r̂(2)

∑

T
n2
ǫ1

(P
Y

(2)
3

)

P (yn2
3 ) Pr

[

Xn2
2 (r̃) ∈ T n2

ǫ (P
X

(2)
2 Y

(2)
3

|yn2
3 )
]

≤ δǫ1(n2) + 2−n(
n2
n
I(X

(2)
2 ;Y

(2)
3 )−2ǫ

n2
n
H(X

(2)
2 )−R1) (A15)

by using Theorems A1.4 and A1.6. This shows that one can make Pr
[

E31 |R̂(2) = r̂(2)
]

arbitrarily

small by choosing n large and satisfying

R1 < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 ). (A16)

Third Step Choosing 0 < ǫ1 < ǫ ≤ µ
X

(2)
1 X

(2)
2 Y

(2)
3

one can upper bound

Pr
[

E32 |(R̂(3), T ) = (r, t)
]

≤ Pr
[

(Xn2
1 (r, t), Xn2

2 (r), Y n2
3 ) /∈ T n2

ǫ1
(P

X
(2)
1 X

(2)
2 Y

(2)
3

)
]

+

2nR3
∑

t̃=1
t̃ 6=t

∑

T
n2
ǫ1

(P
X

(2)
2 Y

(2)
3

)

P (xn2
2 (r), yn2

3 ) Pr
[

Xn2
1 (r, t̃) ∈ T n2

ǫ (P
X

(2)
1 X

(2)
2 Y

(2)
3

|xn2
2 (r), yn2

3 )|Xn2
2 (r) = xn2

2 (r)
]

≤ δǫ1(n2) + 2−n(
n2
n
I(X

(2)
1 ;Y

(2)
3 |X

(2)
2 )−2ǫ

n2
n
H(X

(2)
1 |X

(2)
2 )−R3). (A17)
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by using Theorem A1.4 and A1.7. This shows that one can make Pr
[

E32 |(R̂(3), T ) = (r, t)
]

arbitrarily small by choosing n large and satisfying

R3 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫτ2H(X
(2)
1 |X(2)

2 ). (A18)

Fourth Step Choosing 0 < ǫ1 < ǫ ≤ µ
X

(1)
1 Y

(1)
3

one can upper bound

Pr
[

E33,(r,s) |(R̂(3), S) = (r, s)
]

≤ Pr
[

(Xn1
1 (r, s), Y n1

3 ) /∈ T n1
ǫ1
(P

X
(1)
1 Y

(1)
3

)
]

+
2nR2
∑

s̃=1
s̃6=s

∑

T
n1
ǫ1

(P
Y
(1)
3

)

P (yn1
3 ) Pr

[

Xn1
1 (r, s̃) ∈ T n1

ǫ (P
X

(1)
1 Y

(1)
3

|yn1
3 )
]

≤ δǫ1(n1) + 2−n(
n1
n
I(X

(1)
1 ;Y

(1)
3 )−2ǫ

n1
n
H(X

(1)
1 )−R2). (A19)

by using Theorem A1.4 and A1.6. This shows that one can make Pr
[

E33 |(R̂(3), S) = (r, s)
]

arbitrarily small by choosing n large and satisfying

R2 < τ1I(X
(1)
1 ; Y

(1)
3 )− 2ǫτ1H(X

(1)
1 ). (A20)

Rates The error analysis reveals that for large n reliable communication requires

R1 +R2 < τ1I(X
(1)
1 ; Y

(1)
2 )− 2ǫτ1H(X

(1)
1 ) (A21)

at node 2 and

R1 < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )

R3 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫτ2H(X
(2)
1 |X(2)

2 )

R2 < τ1I(X
(1)
1 ; Y

(1)
3 )− 2ǫτ1H(X

(1)
1 ) (A22)

at node 3. This gives

R = R1 +R2 +R3 < τ1I(X
(1)
1 ; Y

(1)
2 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫ
(

τ1H(X
(1)
1 ) + τ2H(X

(2)
1 |X(2)

2 )
)

R = R1 +R2 +R3 < τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )

− 2ǫ
(

τ1H(X
(1)
1 ) + τ2H(X

(2)
2 ) + τ2H(X

(2)
1 |X(2)

2 )
)

= τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )− 2ǫ

(

τ1H(X
(1)
1 ) + τ2H(X

(2)
1 X

(2)
2 )
)

.

(A23)

Choosing ǫ > 0 but arbitrarily small establishes the proposition. �
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A2.2 Compress-and-Forward

Code Generate 2nR1 n1-sequences xn1
1 (r), r ∈ [1; 2nR1], by choosing each element x

(1)
1,k(r)

independently according to P
X

(1)
1
(·). Choose a "quantization channel" P

Ŷ
(1)
2 |Y

(1)
2

(·|·) and calcu-

late P
Ŷ

(1)
2

(·) as the marginal distribution of P
Ŷ

(1)
2 Y

(1)
2

(·). Generate 2n(R3+R4) sequences ŷn1
2 (t, o),

t ∈ [1; 2nR3], o ∈ [1; 2nR4] by choosing the elements of ŷn1
2 (t, o) independently according to

P
Ŷ

(1)
2

(·). Generate 2nR2 n2-sequences xn2
1 (s), s ∈ [1; 2nR2], by choosing each element x

(2)
1,k(s) in-

dependently according to P
X

(2)
1
(·). Generate 2nR3 n2-sequences xn2

2 (t), by choosing each element

x
(2)
2,k(t) independently according to P

X
(2)
2
(·).

Node 1 The message w is reindexed by (r, s). In the first phase node 1 transmits xn1
1 (r) within

n1 transmission slots. In the second phase node 1 transmits xn2
1 (s) within n2 transmission slots.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (t̃, õ)

such that

(
ŷn1
2 (t̃, õ), yn1

2

)
∈ T n1

ǫ (P
Ŷ

(1)
2 Y

(1)
2

). (A24)

If there is none such pair (t̃, õ) an error is declared. Otherwise, the found index pair (t̃, õ) is the

estimate (t̂(2), ô(2)) of node 2 where the pair with the smallest linear index 2nR3(t − 1) + o is

selected if more than one pair was found. In the second phase node 2 transmits xn2
2 (t̂(2)) by using

n2 transmissions.

Node 3 In the first phase yn1
3 is observed. In the second phase yn2

3 is observed. After the second

phase node 3 tries to find an index t̃ such that

(
xn2
2 (t̃), yn2

3

)
∈ T n2

ǫ (P
X

(2)
2 Y

(2)
3

). (A25)

If there is none or more than one such index t̃, set t̂(3) = 1. Otherwise, the found index t̃ is the

estimate t̂(3) of node 3. Then node 3 tries to find an index s̃ such that

(
xn2
1 (s̃), xn2

2 (t̂(3)), yn2
3

)
∈ T n2

ǫ (P
X

(2)
1 X

(2)
2 Y

(2)
3

). (A26)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3. Next, node 3 tries to find an index õ, such that

(
ŷn1
2 (t̂(3), õ), yn1

3

)
∈ T n1

ǫ (P
Ŷ

(1)
2 Y

(1)
3

). (A27)

If there is none or more than one such index õ, set ô(3) = 1. Otherwise, the found index õ is the

estimate ô(3) of node 3. Finally node 3 tries to find an index r̃ such that

(
xn1
1 (r̃), ŷn1

2 (t̂(3), ô(3)), yn1
3

)
∈ T n1

ǫ (P
X

(1)
1 Ŷ

(1)
2 Y

(1)
3

). (A28)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. The output message ŵ(3) of node 3 is found by reindexing (r̂(3), ŝ(3)).
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xn2
1 (s) ∼ P

X
(2)
1

x
n2
2 (t̂(2)) ∼ P

X
(2)
2

w : (r, s)

(t̂(2), ô(2))
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Figure A2: Sketch Achievable Rate Proof, Compress-and-Forward
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Error Analysis Using similar arguments as in the proof A2.1 the average probability of error for

the compress-and-forward relaying scheme can be upper bounded by

Pe ≤ Pr [Eq] + Pr
[

E31 |T̂ (2) = t̂(2)
]

+ Pr
[

E32 |(S, T̂ (3)) = (s, t̂(2))
]

+ Pr
[

E33 |(T̂ (3), Ô(2)) = (t̂(2), ô(2))
]

+ Pr
[

E34 |(R, T̂ (3), Ô(3)) = (r, t̂(2), ô(2))
]

(A29)

where the events

E31 =
{
g31(Y

n2
3 ) 6= T̂ (2)

}

E32 =
{
g32(Y

n2
3 , T̂ (3)) 6= S

}

E33 =
{
g33(Y

n1
3 , T̂ (3)) 6= Ô(2)

}

E34 =
{
g34(Y

n1
3 , T̂ (3), Ô(3)) 6= R

}
(A30)

denote the occurrence of an error in the four decoding steps of node 3. The event Eq occures if

node 2 declares an error. The functions

g31(y
n2
3 ) : Yn2

3 → T

g32(y
n2
3 , t̂(3)) : Yn2

3 ×T → S

g33(y
n1
3 , t̂(3)) : Yn1

3 ×T → O

g33(y
n1
3 , t̂(3), ô(3)) : Yn1

3 ×T ×O → R (A31)

are realized by jointly typical decoding as described in the transmission scheme.

Quantization Choose 0 < ǫ1 < ǫ ≤ µ
Y

(1)
2 Ŷ

(1)
2

. The probability of the event Eq is

Pr [Eq] ≤ Pr
[

Y n1
2 /∈ T n1

ǫ1
(P

Y
(1)
2

)
]

+
∑

T
n1
ǫ1

(P
Y

(1)
2

)

P (yn1
2 ) Pr





2nR3 ,2nR4
⋂

t̃=1,õ=1

{
Ŷ n1
2 (t̃, õ) /∈ T n1

ǫ (P
Y

(1)
2 Ŷ

(1)
2

|yn1
2 )
}





≤ δǫ1(n1) +
∑

T
n1
ǫ1

(P
Y

(1)
2

)

P (yn1
2 )
(

1− Pr
[

Ŷ n1
2 ∈ T n1

ǫ (P
Y

(1)
2 Ŷ

(1)
2

|yn1
2 )
])2n(R3+R4)

≤ δǫ1(n1) +

(

1− (1− δǫ1,ǫ(n1))2
−n1

(

I(Ŷ
(1)
2 ;Y

(1)
2 )+2ǫH(Ŷ

(1)
2 )

)

)2n(R3+R4)

≤ δǫ1(n1) + exp

(

−(1 − δǫ1,ǫ(n1))2
n
(

R3+R4−
n1
n
I(Ŷ

(1)
2 ;Y

(1)
2 )−2ǫ

n1
n
H(Ŷ

(1)
2 )

)

)

(A32)

where Theorem A1.4, A1.6 and the relation (1 − x)m ≤ exp (−mx) were used. This shows that

one can make Pr [E q] arbitrarily small by choosing n large and satisfying

R3 +R4 > τ1I(Y
(1)
2 ; Ŷ

(1)
2 ) + 2ǫτ1H(Ŷ

(1)
2 ). (A33)
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First Step Choose 0 < ǫ1 < ǫ ≤ µ
X

(2)
2 Y

(2)
3

. Using Theorem A1.4 and A1.6 the probability of the

event E31 conditioned on the index T̂ (2) = t̂(2) being sent by node 2 can be upper bounded by

Pr
[

E31 |T̂ (2) = t̂(2)
]

≤ Pr
[{

(Xn2
2 (t̂(2)), Y n2

3 ) /∈ T n2
ǫ1
(P

X
(2)
2 Y

(2)
3

)
}]

+
2nR3
∑

t̃=1
t̃ 6=t̂(2)

∑

T
n2
ǫ1

(P
Y
(2)
3

)

P (yn2
3 ) Pr

[{
Xn2

2 (t̃) ∈ T n2
ǫ (P

X
(2)
2 ,Y

(2)
3

|yn2
3 )
}]

≤ δǫ1(n2) +

2nR3
∑

t̃=1
t̃ 6=t̂(2)

∑

T
n2
ǫ1

(P
Y
(2)
3

)

P (yn2
3 ) Pr

[{
Xn2

2 (t̃) ∈ T n2
ǫ (P

X
(2)
2 ,Y

(2)
3

|yn2
3 )
}]

≤ δǫ1(n2) + 2−n(
n2
n
I(X

(2)
2 ;Y

(2)
3 )−2ǫ

n2
n
H(X

(2)
2 )−R3). (A34)

This shows that Pr
[

E31 |T̂ (2) = t̂(2)
]

gets arbitrarily small when choosing n large and satisfying

R3 < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 ). (A35)

Second Step Choosing 0 < ǫ1 < ǫ ≤ µ
X

(2)
1 X

(2)
2 Y

(2)
3

one can upper bound

Pr
[

E32 |(S, T̂ (3)) = (s, t̂(2))
]

≤ Pr
[

(Xn2
1 , Xn2

2 , Y n2
3 ) /∈ T n2

ǫ1
(P

X
(2)
1 X

(2)
2 Y

(2)
3

)
]

+
2nR2
∑

s̃=1
s̃6=s

∑

T
n2
ǫ1

(P
X

(2)
2

Y
(2)
3

)

P (xn2
2 , yn2

3 ) Pr
[

Xn2
1 ∈ T n2

ǫ (P
X

(2)
1 X

(2)
2 Y

(2)
3

|xn2
2 , yn2

3 )
]

≤ δǫ1(n2) + 2−n(
n2
n
I(X

(2)
1 ;X

(2)
2 Y

(2)
3 )−2ǫ

n2
n
H(X

(2)
1 )−R2). (A36)

by using Theorem A1.4 and A1.6. This shows that Pr
[

E32 |(S, T̂ (3)) = (s, t̂(2))
]

gets arbitrarily

small when n is chosen large and, since X
(2)
1 , X

(2)
2 are independent,

R2 < τ2I(X
(2)
1 ;X

(2)
2 Y

(2)
3 )− 2ǫτ2H(X

(2)
1 )

= τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫτ2H(X
(2)
1 ) (A37)

is satisfied.

Markov Lemma Note that

(X
(1)
1 , Y

(1)
3 )− Y

(1)
2 − Ŷ

(1)
2 (A38)

form a Markov chain. For the analysis of the last two steps it is now shown that

Pr
[(

Xn1
1 (r), Y n1

3 , Y n1
2 , Ŷ n1

2 (t̂(2), ô(2))
)

/∈ T n1
ǫ2
(P

X
(1)
1 Y

(1)
3 Y

(1)
2 Ŷ

(1)
2

)
]

(A39)
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can be made arbitrarily small by choosing n large. Markov Lemma A1.9, Theorem A1.4 and

choosing 0 < ǫ1 < ǫ2 < ǫ ≤ µ
X

(1)
1 Y

(1)
3 Y

(1)
2 Ŷ

(1)
2

give

Pr
[(

Xn1
1 (r), Y n1

3 , Y n1
2 , Ŷ n1

2 (t̂(2), ô(2))
)

/∈ T n1
ǫ2
(P

X
(1)
1 Y

(1)
3 Y

(1)
2 Ŷ

(1)
2

)
]

≤ Pr
[

(Xn1
1 (r), Y n1

3 , Y n1
2 ) /∈ T n1

ǫ1 (PX
(1)
1 Y

(1)
3 Y

(1)
2

)
]

+
∑

T
n1
ǫ1

(P
X

(1)
1

Y
(1)
3

Y
(1)
2

)

P (xn1
1 , yn1

3 , yn1
2 ) Pr

[

Ŷ n1
2 /∈ T n1

ǫ2
(P

X
(1)
1 Y

(1)
3 Y

(1)
2 Ŷ

(1)
2

|xn1
1 , yn1

3 , yn1
2 )|Y n1

2 = yn1
2

]

≤ δǫ1(n1) + δǫ1,ǫ2(n1). (A40)

Third Step With the result above

Pr
[

E33 |(T̂ (3), Ô(2)) = (t̂(2), ô(2))
]

≤ δǫ1(n1) + δǫ1,ǫ2(n1)

+
2nR4
∑

õ=1
õ 6=ô(2)

∑

T
n1
ǫ2

(P
Y
(1)
3

)

P (yn1
3 ) Pr

[

Ŷ n1
2 ∈ T n1

ǫ (P
Y

(1)
3 Ŷ

(1)
2

|yn1
3 )
]

≤ δǫ1(n1) + δǫ1,ǫ2(n1) + 2−n(
n1
n
I(Ŷ

(1)
2 ;Y

(1)
3 )−2ǫ

n1
n
H(Ŷ

(1)
2 )−R4).

(A41)

This shows that Pr
[

E33 |(T̂ (3), Ô(2)) = (t̂(2), ô(2))
]

becomes arbitrarily small when n is large

and

R4 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 )− 2ǫτ1H(Ŷ

(1)
2 ) (A42)

is satisfied.

Fourth Step Again with the result of the Markov Lemma one upper bounds

Pr
[

E34 |(R, T̂ (3), Ô(3)) = (r, t̂(2), ô(2))
]

≤ δǫ1(n1) + δǫ1,ǫ2(n1) +

2nR1
∑

r̃=1
r̃ 6=r

∑

T
n1
ǫ2

(P
Ŷ
(1)
2 Y

(1)
3

)

P (ŷn1
2 , yn1

3 ) Pr
[

Xn1
1 ∈ T n1

ǫ (P
X

(1)
1 Ŷ

(1)
2 Y

(1)
3

|ŷn1
2 , yn1

3 )
]

≤ δǫ1(n1) + δǫ1,ǫ2(n1) + 2−n(
n1
n
I(X

(1)
1 ;Ŷ

(1)
2 Y

(1)
3 )−2ǫ

n1
n
H(X

(1)
1 )−R1). (A43)

This shows that Pr
[

E34 |(R, T̂ (3), Ô(3)) = (r, t̂(2), ô(2))
]

can be made arbitrarily small when n

is large and

R1 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 )− 2ǫτ1H(X

(1)
1 ) (A44)

is satisfied.
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Rates The error analysis reveals that for large n reliable communication requires

R3 +R4 > τ1I(Ŷ
(1)
2 ; Y

(1)
2 ) + 2ǫτ1H(Ŷ

(1)
2 ) (A45)

at node 2 and

R3 < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )

R2 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫτ2H(X
(2)
1 )

R4 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 )− 2ǫτ1H(Ŷ

(1)
2 )

R1 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 )− 2ǫτ1H(X

(1)
1 ). (A46)

at node 3. Consequently

R = R1 +R2 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫ
(

τ1H(X
(1)
1 ) + τ2H(X

(2)
1 )
)

(A47)

subject to

τ1I(Y
(1)
2 ; Ŷ

(1)
2 ) < τ1I(Ŷ

(1)
2 ; Y

(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )− 4ǫτ1H(Ŷ

(1)
2 ). (A48)

By the use of the Markov chain

Y
(1)
3 − Y

(1)
2 − Ŷ

(1)
2 (A49)

implying

I(Ŷ
(1)
2 ; Y

(1)
3 |Y (1)

2 ) = 0 (A50)

the compression constraint can be reformulated

τ1I(Ŷ
(1)
2 ; Y

(1)
2 ) < τ1I(Ŷ

(1)
2 ; Y

(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )− 4ǫτ1H(Ŷ

(1)
2 )

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 ) < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )− 4ǫτ1H(Ŷ

(1)
2 ). (A51)

Choosing ǫ > 0 but arbitrarily small establishes the proposition. �
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A2.3 Partial-Decode-and-Forward

Code Generate 2n(R1+R2) n1-sequences un1
1 (r, s), r ∈ [1; 2nR1], s ∈ [1; 2nR2], by choosing

each element u
(1)
1,k(r, s) independently according to P

U
(1)
1
(·). For every un1

1 (r, s) generate 2nR3 n1-

sequences xn1
1 (r, s, t), t ∈ [1; 2nR3], by choosing each element x

(1)
1,k(r, s, t) independently according

to P
X

(1)
1 |U

(1)
1
(·|u(1)

1,k(r, s)). Generate 2nR1 n2-sequences xn2
2 (r) by choosing each element x

(2)
2,k(r)

independently according to P
X

(2)
2
(·). For every xn2

2 (r) generate 2nR4 n2-sequences xn2
1 (r, o),

o ∈ [1; 2nR4], by choosing each element x
(2)
1,k(r, o) independently according to P

X
(2)
1 |X

(2)
2
(·|x(2)

2,k(r)).

Node 1 The message w is reindexed by (r, s, t, o). In the first phase node 1 transmits xn1
1 (r, s, t)

within n1 transmissions. In the second phase node 1 transmits xn2
1 (r, o) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find an index pair

(r̃, s̃) such that

(un1
1 (r̃, s̃), yn1

2 ) ∈ T n1
ǫ (P

U
(1)
1 Y

(1)
2

). (A52)

If there is none or more than one such index pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the

found pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. In the second phase node 2 sends xn2
2 (r̂(2))

by using n2 transmissions.

Node 3 In the first phase yn1
3 is observed. In the second phase yn2

3 is observed. After the second

phase node 3 tries to find an index r̃ such that

(xn2
2 (r̃), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
2 Y

(2)
3

). (A53)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. Then node 3 tries to find an index õ such that

(xn2
1 (r̂(3), õ), xn2

2 (r̂(3)), yn2
3 ) ∈ T n2

ǫ (P
X

(2)
1 X

(2)
2 Y

(2)
3

). (A54)

If there is none or more than one such index õ, set ô(3) = 1. Otherwise, the found index õ is the

estimate ô(3) of node 3. Then node 3 tries to find an index s̃ such that

(un1
1 (r̂(3), s̃), yn1

3 ) ∈ T n1
ǫ (P

U
(1)
1 Y

(1)
3

). (A55)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3. Then node 3 tries to find an index t̃ such that

(
xn1
1 (r̂(3), ŝ(3), t̃), un1

1 (r̂(3), ŝ(3)), yn1
3

)
∈ T n1

ǫ (P
U

(1)
1 X

(1)
1 Y

(1)
3

). (A56)

If there is none or more than one such index t̃, set t̂(3) = 1. Otherwise, the found index t̃
is the estimate t̂(3) of node 3. The output message ŵ(3) of node 3 is found by reindexing

(r̂(3), ŝ(3), t̂(3), ô(3)).
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Figure A3: Sketch Achievable Rate Proof, Partial-Decode-and-Forward
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Rates An error analysis similar to the one in the proof A2.1 reveals that for large n reliable

communication requires

R1 +R2 < τ1I(U
(1)
1 ; Y

(1)
2 )− 2ǫτ1H(U

(1)
1 ) (A57)

at node 2 and

R1 < τ2I(X
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(X

(2)
2 )

R4 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )− 2ǫτ2H(X
(2)
1 |X(2)

2 )

R2 < τ1I(U
(1)
1 ; Y

(1)
3 )− 2ǫτ1H(U

(1)
1 )

R3 < τ1I(X
(1)
1 ; Y

(1)
3 |U (1)

1 )− 2ǫτ1H(X
(1)
1 |U (1)

1 ) (A58)

at node 3. Consequently, with R = R1 +R2 +R3 +R4

R < τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )

− 2ǫ
(

τ1H(U
(1)
1 ) + τ1H(X

(1)
1 |U (1)

1 ) + τ2H(X
(2)
1 |X(2)

2 )
)

R < τ1I(U
(1)
1 ; Y

(1)
3 ) + τ1I(X

(1)
1 ; Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
2 ; Y

(2)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 )

− 2ǫ
(

τ1H(U
(1)
1 ) + τ1H(X

(1)
1 |U (1)

1 ) + τ2H(X
(2)
2 ) + τ2H(X

(2)
1 |X(2)

2 )
)

= τ1I(U
(1)
1 X

(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )− 2ǫ

(

τ1H(U
(1)
1 X

(1)
1 ) + τ2H(X

(2)
1 X

(2)
2 )
)

= τ1I(X
(1)
1 ; Y

(1)
3 ) + τ2I(X

(2)
1 X

(2)
2 ; Y

(2)
3 )− 2ǫ

(

τ1H(U
(1)
1 X

(1)
1 ) + τ2H(X

(2)
1 X

(2)
2 )
)

. (A59)

where the last step follows by using the fact that

U
(1)
1 −X

(1)
1 − Y

(1)
3 (A60)

form a Markov chain and therefore

I(U
(1)
1 X

(1)
1 ; Y

(1)
3 ) = I(X

(1)
1 ; Y

(1)
3 ) + I(U

(1)
1 ; Y

(1)
3 |X(1)

1 )
︸ ︷︷ ︸

=0

.

(A61)

Choosing ǫ > 0 but arbitrarily small establishes the proposition. �
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A2.4 Partial-Decode-Compress-and-Forward

Code Generate 2n(R1+R2) n1-sequences un1
1 (r, s), r ∈ [1; 2nR1], s ∈ [1; 2nR2], by choosing

each element u
(i)
1,k(r, s) independently according to P

U
(1)
1
(·). For every un1

1 (r, s) generate 2nR3

n1-sequences xn1
1 (r, s, t), t ∈ [1; 2nR3], by choosing each element x

(1)
1,k(r, s, t) independently

according to P
X

(1)
1 |U

(1)
1
(·|u(1)

1,k(r, s)). Choose a "quantization channel" P (ŷ
(1)
2 |y(1)2 , u

(1)
1 ) and cal-

culate P (ŷ
(1)
2 |u(1)

1 ) as the marginal distribution of P (ŷ
(1)
2 , y

(1)
2 |u(1)

1 ). For every un1
1 (r, s) gener-

ate 2n(R4+R5) n1-sequences ŷn1
2 (r, s, e, z), e ∈ [1; 2nR4], z ∈ [1; 2nR5], by choosing each ele-

ment ŷ
(1)
2,k(r, s, e, z) independently according to P

Ŷ
(1)
2 |U

(1)
1
(·|u(1)

1,k(r, s)). Generate 2nR1 n2-sequences

vn2
2 (r) by choosing each element v

(2)
2,k(r) independently according to P

V
(2)
2

(·). For every vn2
2 (r)

generate 2nR4 n2-sequences xn2
2 (r, e) by choosing each element x

(2)
2,k(r, e) independently according

to P
X

(2)
2 |V

(2)
2

(·|v(2)2,k(r)). For every vn2
2 (r) generate 2nR6 n2-sequences xn2

1 (r, o), o ∈ [1; 2nR6], by

choosing each element x
(2)
1,k(r, o) independently according to P

X
(2)
1 |V

(2)
2

(·|v(2)2,k(r)).

Node 1 The message w is reindexed by (r, s, t, o). In the first phase node 1 transmits xn1
1 (r, s, t)

within n1 transmissions. In the second phase node 1 transmits xn2
1 (r, o) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (r̃, s̃)

such that

(un1
1 (r̃, s̃), yn1

2 ) ∈ T n1
ǫ (P

U
(1)
1 Y

(1)
2

). (A62)

If there is none or more than one such pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the found

pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. Then node 2 tries to find a pair (ẽ, z̃) such that

(ŷn1
2 (r̂(2), ŝ(2), ẽ, z̃), un1

1 (r̂(2), ŝ(2)), yn1
2 ) ∈ T n1

ǫ (P
Ŷ

(1)
2 Y

(1)
2 U

(1)
1
). (A63)

If there is none such pair (ẽ, z̃) an error is declared. Otherwise, the found pair (ẽ, z̃) is the estimate

(ê(2), ẑ(2)) of node 2 where the pair with the smallest linear index 2nR4(e − 1) + z is selected

if more than one pair was found. In the second phase node 2 sends xn2
2 (r̂(2), ê(2)) by using n2

transmissions.

Node 3 In the first phase yn1
3 is observed. In the second phase yn2

3 is observed. After the second

phase node 3 tries to find an index r̃ such that

(vn2
2 (r̃), yn2

3 ) ∈ T n2
ǫ (P

V
(2)
2 Y

(2)
3

). (A64)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. Then node 3 tries to find an index ẽ such that

(xn2
2 (r̂(3), ẽ), vn2

2 (r̂(3)), yn2
3 ) ∈ T n2

ǫ (P
X

(2)
2 V

(2)
2 Y

(2)
3

). (A65)

If there is none or more than one such index ẽ, set ê(3) = 1. Otherwise, the found index ẽ is the

estimate ê(3) of node 3. Then node 3 tries to find an index õ such that

(xn2
1 (r̂(3), õ), vn2

2 (r̂(3)), xn2
2 (r̂(3), ê(3)), yn2

3 ) ∈ T n1
ǫ (P

X
(2)
1 V

(2)
2 X

(2)
2 Y

(2)
3

). (A66)
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If there is none or more than one such index õ, set ô(3) = 1. Otherwise, the found index õ is the

estimate ô(3) of node 3. Then node 3 tries to find an index s̃ such that

(un1
1 (r̂(3), s̃), yn1

3 ) ∈ T n1
ǫ (P

U
(1)
1 Y

(1)
3

). (A67)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3. Then node 3 tries to find an index z̃, such that

(ŷn1
2 (r̂(3), ŝ(3), ê(3), z̃), un1

1 (r̂(3), ŝ(3)), yn1
3 ) ∈ T n1

ǫ (P
Ŷ

(1)
2 Y

(1)
3 U

(1)
1
). (A68)

If there is none or more than one such index z̃, set ẑ(3) = 1. Otherwise, the found index z̃ is the

estimate ẑ(3) of node 3. Finally node 3 tries to find an index t̃, such that

(
xn1
1 (r̂(3), ŝ(3), t̃), un1

1 (r̂(3), ŝ(3)), ŷn1
2 (r̂(3), ŝ(3), ê(3), ẑ(3)), yn1

3

)
∈ T n1

ǫ (P
X

(1)
1 Ŷ

(1)
2 Y

(1)
3 U

(1)
1
).

(A69)

If there is none or more than one such index t̃, set t̂(3) = 1. Otherwise, the found index t̃
is the estimate t̂(3) of node 3. The output message ŵ(3) of node 3 is found by reindexing

(r̂(3), ŝ(3), t̂(3), ô(3)).

Rates An error analysis similar to the ones in the proofs A2.1 and A2.2 reveals that for large n
reliable communication requires

R1 +R2 < τ1I(U
(1)
1 ; Y

(1)
2 )− 2ǫτ1H(U

(1)
1 )

R4 +R5 > τ1I(Ŷ
(1)
2 ; Y

(1)
2 |U (1)

1 ) + 2ǫτ1H(Ŷ
(1)
2 |U (1)

1 ) (A70)

at node 2 and

R1 < τ2I(V
(2)
2 ; Y

(2)
3 )− 2ǫτ2H(V

(2)
2 )

R4 < τ2I(X
(2)
2 ; Y

(2)
3 |V (2)

2 )− 2ǫτ2H(X
(2)
2 |V (2)

2 )

R6 < τ2I(X
(2)
1 ;X

(2)
2 Y

(2)
3 |V (2)

2 )− 2ǫτ2H(X
(2)
1 |V (2)

2 )

= τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 V
(2)
2 )− 2ǫτ2H(X

(2)
1 |V (2)

2 )

R2 < τ1I(U
(1)
1 ; Y

(1)
3 )− 2ǫτ1H(U

(1)
1 )

R5 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 |U (1)

1 )− 2τ1ǫH(Ŷ
(1)
2 |U (1)

1 )

R3 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 )− 2τ1ǫH(X
(1)
1 |U (1)

1 ) (A71)

at node 3 where it has been used that

X
(2)
1 − V

(2)
2 −X

(2)
2 (A72)

form a Markov chain and therefore

I(X
(2)
1 ;X

(2)
2 |V (2)

2 ) = 0. (A73)
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ŷn1
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2

xn2
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2 |V

(2)
2

ŷ
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ŵ : (r̂(3), ŝ(3), t̂(3), ô(3))
(b) Second Phase (n2 transmission slots)

Figure A4: Sketch ARP, Partial-Decode-Compress-and-Forward
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Consequently,

R < τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
1 ; Y

(2)
3 |V (2)

2 X
(2)
2 )

− 2ǫ
(

τ1H(U
(1)
1 ) + τ1H(X

(1)
1 |U (1)

1 ) + τ2H(X
(2)
1 |V (2)

2 )
)

R < τ1I(U
(1)
1 ; Y

(1)
3 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 ) + τ2I(V
(2)
2 ; Y

(2)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |V (2)

2 X
(2)
2 )

− 2ǫ
(

τ1H(U
(1)
1 ) + τ1H(X

(1)
1 |U (1)

1 ) + τ2H(V
(2)
2 ) + τ2H(X

(2)
1 |V (2)

2 )
)

(A74)

subject to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |U (1)

1 ) < τ1I(Ŷ
(1)
2 ; Y

(1)
3 |U (1)

1 ) + τ2I(X
(2)
2 ; Y

(2)
3 |V (2)

2 )− 2ǫτ2H(X
(2)
2 |V (2)

2 )

− 4ǫτ1H(Ŷ
(1)
2 |U (1)

1 ). (A75)

By the use of the Markov chain

Y
(1)
3 − (Y

(1)
2 , U

(1)
1 )− Ŷ

(1)
2 (A76)

implying

I(Ŷ
(1)
2 ; Y

(1)
3 |U (1)

1 Y
(1)
2 ) = 0 (A77)

the constraint can be reformulated to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |U (1)

1 Y
(1)
3 ) < τ2I(X

(2)
2 ; Y

(2)
3 |V (2)

2 )− 2ǫτ2H(X
(2)
2 |V (2)

2 )− 4ǫτ1H(Ŷ
(1)
2 |U (1)

1 ).
(A78)

Choosing ǫ > 0 but arbitrarily small establishes the proposition. �
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A3. Proofs: Achievable Rates 2P-MA-BC Scheme

Comments and Assumptions Random encoding, jointly typical decoding and compression will

be used to show which rates are achievable for the half-duplex two-way relay channel. For the

following proofs it will be assumed that the transmission is performed with n ≥ 2 channel uses

and two phases l = 1, 2. Phase 1 features n1 ≥ 1 transmission slots, phase 2 supports n2 ≥ 1
transmission slots, with n1 + n2 = n. If n grows n1 and n2 are assumed to grow at the same rate.

For large n, nl

n
→ τl > 0. The message w13 ∈ {1, . . . , 2nR13} will be sent from node 1 to node 3

and the message w31 ∈ {1, . . . , 2nR31} will be sent from node 3 to node 1. For all proofs 2nR ∈ Z+.

A3.1 Decode-and-Forward

Code Generate 2nR1 n1-sequences xn1
1 (s), s = 1, 2, . . . , 2nR1 , by choosing each element x

(1)
1,k(s)

independently according to P
X

(1)
1
(·). Generate 2nR2 n1-sequences xn1

3 (t), t = 1, 2, . . . , 2nR2 ,

by choosing each element x
(1)
3,k(t) independently according to P

X
(1)
3
(·). Generate 2n(R1+R2) n2-

sequences xn2
2 (s, t) by choosing each element x

(2)
2,k(s, t) independently according to P

X
(2)
2
(·).

Node 1 (Input) The message w13 is reindexed by s. In the first phase node 1 transmits xn1
1 (s)

with n1 transmissions.

Node 3 (Input) The message w31 is reindexed by t. In the first phase node 3 transmits xn1
3 (t)

with n1 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (s̃, t̃)

such that

(
xn1
1 (s̃), xn1

3 (t̃), yn1
2

)
∈ T n1

ǫ (P
X

(1)
1 X

(1)
3 Y

(1)
2

). (A79)

If there is none or more than one such pair (s̃, t̃), set (ŝ(2), t̂(2)) = (1, 1). Otherwise, (s̃, t̃) is the

estimate (ŝ(2), t̂(2)) of node 2. In the second phase node 2 sends xn2
2 (ŝ(2), t̂(2)) by the use of n2

transmissions.

Node 1 (Output) In the second phase yn2
1 is observed. After the second phase node 1 tries to find

an index t̃ such that

(
xn2
2 (s, t̃), yn2

3

)
∈ T n2

ǫ (P
X

(2)
2 Y

(2)
3

). (A80)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, t̃ is the estimate t̂(1) of

node 1. The output message ŵ31(1) is found by reindexing t̂(1).

Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index s̃ such that

(xn2
2 (s̃, t), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
2 Y

(2)
3

). (A81)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, s̃ is the estimate ŝ(3) of

node 3. The output message ŵ13(3) is found by reindexing ŝ(3).
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Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but

arbitrarily small, reliable communication requires

R1 < τ1I(X
(1)
1 ;X

(1)
3 Y

(1)
2 )

= τ1I(X
(1)
1 ; Y

(1)
2 |X(1)

3 )

R2 < τ1I(X
(1)
3 ;X

(1)
1 Y

(1)
2 )

= τ1I(X
(1)
3 ; Y

(1)
2 |X(1)

1 )

R1 +R2 < τ1I(X
(1)
1 X

(1)
3 ; Y

(1)
2 ) (A82)

at node 2,

R2 < τ2I(X
(2)
2 ; Y

(2)
1 ) (A83)

at node 1 and

R1 < τ2I(X
(2)
2 ; Y

(2)
3 ) (A84)

at node 3. This establishes the proposition. �
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A3.2 Compress-and-Forward with 2-Layer-Quantization

Code Generate 2nR1 n1-sequences xn1
1 (r), r = 1, 2, . . . , 2nR1 , by choosing each element x

(1)
1,k(r)

independently according to P
X

(1)
1
(·). Generate 2nR2 n1-sequences xn1

3 (s), s = 1, 2, . . . , 2nR2 , by

choosing each element x
(1)
3,k(s) independently according to P

X
(1)
3
(·). Choose a "coarse quantization

channel" P
Ŷ

(1)
21 |Y

(1)
2

(·|·) and calculate P
Ŷ

(1)
21

(·) as the marginal distribution of P
Ŷ

(1)
21 Y

(1)
2

(·). Choose

a "refinement quantization channel" P
Ŷ

(1)
22 |Y

(1)
2 Ŷ

(1)
21

(·|·) and calculate P
Ŷ

(1)
22 |Ŷ

(1)
21

(·|·) as the marginal

distribution of P
Ŷ

(1)
22 Y

(1)
2 |Ŷ

(1)
21

(·). Generate 2n(R3+R4) n1-sequences ŷn1
21 (t, o), t = 1, 2, . . . , 2nR3 , o =

1, 2, . . . , 2nR4 by choosing each element ŷ
(1)
21,k(t, o) independently according to P

Ŷ
(1)
21

(·). For each

ŷn1
21 (t, o) generate 2n(R5+R6) n1-sequences ŷn1

22 (t, o, e, z), e = 1, 2, . . . , 2nR5 , z = 1, 2, . . . , 2nR6 by

choosing each element ŷ
(1)
22,k(t, o, e, z) independently according to P

Ŷ
(1)
22 |Ŷ

(1)
21

(·|ŷ(1)21,k(t, o)). Generate

2nR3 n2-sequences un2
2 (t) by choosing each element u

(2)
2,k(t) independently according to P

U
(2)
2
(·).

For each un2
2 (t) generate 2nR5 n2-sequences xn2

2 (t, e) by choosing each element x
(2)
2,k(t, e) indepen-

dently according to P
X

(2)
2 |U

(2)
2
(·|u(2)

2,k(t)).

Node 1 (Input) The message w13 is reindexed by r. In the first phase node 1 transmits xn1
1 (r)

within n1 transmissions.

Node 3 (Input) The message w31 is reindexed by s. In the first phase node 3 transmits xn1
3 (s)

within n1 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (t̃, õ)

such that

(
ŷn1
21 (t̃, õ), y

n1
2

)
∈ T n1

ǫ (P
Ŷ

(1)
21 Y

(1)
2

). (A85)

If there is none such pair (t̃, õ) node 2 declares an error. Otherwise, the found pair (t̃, õ) is the

estimate (t̂(2), ô(2)) of node 2 where the pair with the smallest linear index 2nR3(o − 1) + t is

selected if more than one pair was found. Then node 2 tries to find a pair (ẽ, z̃) such that

(
ŷn1
22 (t̂(2), ô(2), ẽ, z̃), ŷ

n1
21 (t̂(2), ô(2)), y

n1
2

)
∈ T n1

ǫ (P
Ŷ

(1)
22 Ŷ

(1)
21 Y

(1)
2

). (A86)

If there is none such pair (ẽ, z̃) an error is declared by node 2. Otherwise, the found pair (ẽ, z̃) is

the estimate (ê(2), ẑ(2)) of node 2 where the pair with the smallest linear index 2nR5(z − 1) + e is

selected if more than one pair was found. In the second phase node 2 sends xn2
2 (t̂(2), ê(2)) by the

use of n2 transmissions.

Node 1 (Output) In the second phase yn2
1 is observed. After the second phase node 1 tries to find

an index t̃ such that

(
un2
2 (t̃), yn2

1

)
∈ T n2

ǫ (P
U

(2)
2 Y

(2)
1

). (A87)
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If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1. Then node 1 tries to find an index ẽ such that

(
xn2
2 (t̂(1), ẽ), un2

2 (t̂(1)), yn2
1

)
∈ T n2

ǫ (P
X

(2)
2 U

(2)
2 Y

(2)
1

). (A88)

If there is none or more than one such index ẽ, set ê(1) = 1. Otherwise, the found index ẽ is the

estimate ê(1) of node 1. Then node 1 tries to find an index õ such that

(
ŷn1
21 (t̂(1), õ), x

n1
1 (r)

)
∈ T n1

ǫ (P
Ŷ

(1)
21 X

(1)
1
). (A89)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. Then node 1 tries to find an index z̃ such that

(
ŷn1
22 (t̂(1), ô(1), ê(1), z̃), ŷ

n1
21 (t̂(1), ô(1)), x

n1
1 (r)

)
∈ T n1

ǫ (P
Ŷ

(1)
22 Ŷ

(1)
21 X

(1)
1
). (A90)

If there is none or more than one such index z̃, set ẑ(1) = 1. Otherwise, the found index z̃ is the

estimate ẑ(1) of node 1. Finally node 1 tries to find an index s̃ such that

(
xn1
3 (s̃), xn1

1 (r), ŷn1
21 (t̂(1), ô(1)), ŷ

n1
22 (t̂(1), ô(1), ê(1), ẑ(1))

)
∈ T n2

ǫ (P
X

(1)
3 X

(1)
1 Ŷ

(1)
21 Ŷ

(1)
22

). (A91)

If there is none or more than one such index s̃, set ŝ(1) = 1. Otherwise, s̃ is the estimate ŝ(1) of

node 1. The output message ŵ31(1) of node 1 is found by reindexing ŝ(1).

Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index t̃ such that

(
un2
2 (t̃), yn2

3

)
∈ T n2

ǫ (P
U

(2)
2 Y

(2)
3

). (A92)

If there is none or more than one such index t̃, set t̂(3) = 1 . Otherwise, the found index t̃ is the

estimate t̂(3) of node 3. Then node 3 tries to find an index õ such that

(
ŷn1
21 (t̂(1), õ), x

n1
3 (s)

)
∈ T n1

ǫ (P
Ŷ

(1)
21 X

(1)
3
). (A93)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. Finally node 3 tries to find an index r̃ such that

(
xn1
1 (r̃), xn1

3 (s), ŷn1
21 (t̂(1), ô(1))

)
∈ T n1

ǫ (P
X

(1)
1 X

(1)
3 Ŷ

(1)
21

). (A94)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, r̃ is the estimate r̂(3) of

node 3. The output message ŵ13(3) of node 3 is found by reindexing r̂(3).

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but

arbitrarily small reliable communication requires

R3 +R4 > τ1I(Ŷ
(1)
21 ; Y

(1)
2 )

R5 +R6 > τ1I(Ŷ
(1)
22 ; Y

(1)
2 |Ŷ (1)

21 ) (A95)
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at node 2,

R3 < τ2I(U
(2)
2 ; Y

(2)
1 )

R5 < τ2I(X
(2)
2 ; Y

(2)
1 |U (2)

2 )

R4 < τ1I(X
(1)
1 ; Ŷ

(1)
21 )

R6 < τ1I(X
(1)
1 ; Ŷ

(1)
22 |Ŷ (1)

21 )

R2 < τ1I(X
(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |X(1)

1 ) (A96)

at node 1 and

R3 < τ2I(U
(2)
2 ; Y

(2)
3 )

R4 < τ1I(X
(1)
3 ; Ŷ

(1)
21 )

R1 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |X(1)

3 ) (A97)

at node 3. Consequently,

R13 = R1 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |X(1)

3 )

R31 = R2 < τ1I(X
(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |X(1)

1 ) (A98)

subject to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 ) < τ1I(X

(1)
1 ; Ŷ

(1)
21 ) + τ2I(U

(2)
2 ; Y

(2)
1 )

τ1I(Ŷ
(1)
21 ; Y

(1)
2 ) < τ1I(X

(1)
3 ; Ŷ

(1)
21 ) + τ2I(U

(2)
2 ; Y

(2)
3 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |Ŷ (1)

21 ) < τ1I(X
(1)
1 ; Ŷ

(1)
22 |Ŷ (1)

21 ) + τ2I(X
(2)
2 ; Y

(2)
1 |U (2)

2 ). (A99)

By the use of the Markov chains

X
(1)
1 − Y

(1)
2 − Ŷ

(1)
21

X
(1)
3 − Y

(1)
2 − Ŷ

(1)
21

X
(1)
1 − (Y

(1)
2 , Ŷ

(1)
21 )− Ŷ

(1)
22 (A100)

implying

I(Ŷ
(1)
21 ;X

(1)
1 |Y (1)

2 ) = 0

I(Ŷ
(1)
21 ;X

(1)
3 |Y (1)

2 ) = 0

I(Ŷ
(1)
22 ;X

(1)
1 |Y (1)

2 Ŷ
(1)
21 ) = 0 (A101)

the compression constraints can be reformulated to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |X(1)

1 ) < τ2I(U
(2)
2 ; Y

(2)
1 )

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |X(1)

3 ) < τ2I(U
(2)
2 ; Y

(2)
3 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |X(1)

1 Ŷ
(1)
21 ) < τ2I(X

(2)
2 ; Y

(2)
1 |U (2)

2 ). (A102)

This establishes the proposition. �

A second proposition follows by using the same arguments after having interchanged the

role of nodes 1 and 3.
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A3.3 Partial-Decode-Compress-and-Forward with 2-Layer-Quantization

Code Generate 2nR1 n1-sequences un1
1 (a), a = 1, 2, . . . , 2nR1 , by choosing each element

u
(1)
1,k(a) independently according to P

U
(1)
1
(·). For each un1

1 (a) generate 2nR2 n1-sequences

xn1
1 (a, b), b = 1, 2, . . . , 2nR2 , by choosing each element x

(1)
1,k(a, b) independently according

to P
X

(1)
1 |U

(1)
1
(·|u(1)

1,k(a)). Generate 2nR3 n1-sequences un1
3 (c), c = 1, 2, . . . , 2nR3 , by choosing

each element u
(1)
3,k(c) independently according to P

U
(1)
3
(·). For each un1

3 (c) generate 2nR4 n1-

sequences xn1
3 (c, d), d = 1, 2, . . . , 2nR4 , by choosing each element x

(1)
3,k(c, d) independently

according to P
X

(1)
3 |U

(1)
3
(·|u(1)

3,k(c)). Choose a "coarse quantization channel" P
Ŷ

(1)
21 |Y

(1)
2 U

(1)
1 U

(1)
3
(·|·)

and calculate P
Ŷ

(1)
21 |U

(1)
1 U

(1)
3
(·) as the marginal distribution of P

Ŷ
(1)
21 Y

(1)
2 |U

(1)
1 U

(1)
3
(·). Choose a

"refinement quantization channel" P
Ŷ

(1)
22 |Y

(1)
2 Ŷ

(1)
21 U

(1)
1 U

(1)
3
(·|·) and calculate P

Ŷ
(1)
22 |Ŷ

(1)
21 U

(1)
1 U

(1)
3
(·|·)

as the marginal distribution of P
Ŷ

(1)
22 Y

(1)
2 |Ŷ

(1)
21 U

(1)
1 U

(1)
3
(·). For each un1

1 (a) and un1
3 (c) generate

2n(R5+R6) n1-sequences ŷn1
21 (a, c, r, s), r = 1, 2, . . . , 2nR5 , s = 1, 2, . . . , 2nR6 , by choos-

ing each element ŷ
(1)
21,k(a, c, r, s) independently according to P

Ŷ
(1)
21 |U

(1)
1 U

(1)
3
(·|u(1)

1,k(a), u
(1)
3,k(c)).

For each ŷn1
21 (a, c, r, s) generate 2n(R7+R8) n1-sequences ŷn1

22 (a, c, r, s, t, o), t = 1, 2, . . . , 2nR7 ,

o = 1, 2, . . . , 2nR8 , by choosing each element ŷ
(1)
22,k(a, c, r, s, t, o) independently according to

P
Ŷ

(1)
22 |Ŷ

(1)
21 U

(1)
1 U

(1)
3
(·|ŷ(1)21,k(a, c, r, s), u

(1)
1,k(a), u

(1)
3,k(c)). Generate 2n(R1+R3) n2-sequences un2

2 (a, c), by

choosing each element un2
2,k(a, c) independently according to P

U
(2)
2
(·). For each un2

2 (a, c) generate

2nR5 n2-sequences vn1
2 (a, c, r) by choosing each element v

(1)
2,k(a, c, r) independently according to

P
V

(2)
2 |U

(2)
2
(·|u(2)

2,k(a, c)). For each vn2
2 (a, c, r) generate 2nR7 n2-sequences xn1

2 (a, c, r, t) by choosing

each element x
(1)
2,k(a, c, r, t) independently according to P

X
(2)
2 |V

(2)
2 U

(2)
2
(·|v(2)2,k(a, c, r), u

(2)
2,k(a, c)).

Node 1 (Input) The message w13 is reindexed by (a, b). In the first phase node 1 transmits

xn1
1 (a, b) within n1 transmissions.

Node 3 (Input) The message w31 is reindexed by (c, d). In the first phase node 3 transmits

xn1
3 (c, d) within n1 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (ã, c̃)

such that

(un1
1 (ã), un1

3 (c̃), yn1
2 ) ∈ T n1

ǫ (P
U

(1)
1 U

(1)
3 Y

(1)
2

). (A103)

If there is none or more than one such pair (ã, c̃), set (â(2), ĉ(2)) = (1, 1). Otherwise, (ã, c̃) is the

estimate (â(2), ĉ(2)) of node 2. Then node 2 tries to find a pair (r̃, s̃) such that

(ŷn1
21 (â(2), ĉ(2), r̃, s̃), u

n1
1 (â(2)), un1

3 (ĉ(2)), yn1
2 ) ∈ T n1

ǫ (P
Ŷ

(1)
21 U

(1)
1 U

(1)
3 Y

(1)
2

). (A104)

If there is none such pair (r̃, s̃) an error is declared. Otherwise, the found pair (r̃, s̃) is the estimate

(r̂(2), ŝ(2)) of node 2 where the pair with the smallest linear index 2nR5(s − 1) + r is selected if

more than one pair was found. Then node 2 tries to find a pair (t̃, õ) such that
(
ŷn1
22 (â(2), ĉ(2), r̂(2), ŝ(2), t̃, õ), ŷ

n1
21 (â(2), ĉ(2), r̂(2), ŝ(2)), u

n1
1 (â(2)), un1

3 (ĉ(2)), yn1
2

)

∈ T n1
ǫ (P

Ŷ
(1)
22 Ŷ

(1)
21 U

(1)
1 U

(1)
3 Y

(1)
2

). (A105)
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If there is none such pair (t̃, õ) declare an error. Otherwise, the found pair (t̃, õ) is the estimate

(t̂(2), ô(2)) of node 2 where the pair with the smallest linear index 2nR7(o − 1) + t is selected if

more than one pair was found. In the second phase node 2 sends xn2
2 (â(2), ĉ(2), r̂(2), t̂(2)) by the

use of n2 transmissions.

Node 1 (Output) In the second phase yn2
1 is observed. After the second phase node 1 tries to find

an index c̃ such that

(un2
2 (a, c̃), yn2

1 ) ∈ T n2
ǫ (P

U
(2)
2 Y

(2)
1

). (A106)

If there is none or more than one such index c̃, set ĉ(1) = 1. Otherwise, the found index c̃ is the

estimate ĉ(1) of node 1. Then node 1 tries to find an index r̃ such that

(vn2
2 (a, ĉ(1), r̃), un2

2 (a, ĉ(1)), yn2
1 ) ∈ T n2

ǫ (P
V

(2)
2 U

(2)
2 Y

(2)
1

). (A107)

If there is none or more than one such index r̃, set r̂(1) = 1. Otherwise, the found index r̃ is the

estimate r̂(1) of node 1. Then node 1 tries to find an index t̃ such that

(
xn2
2 (a, ĉ(1), r̂(1), t̃), vn2

2 (a, ĉ(1), r̂(1)), un2
2 (a, ĉ(1)), yn2

1

)
∈ T n2

ǫ (P
X

(2)
2 V

(2)
2 U

(2)
2 Y

(2)
1

). (A108)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1. Then node 1 tries to find an index s̃ such that

(ŷn1
21 (a, ĉ(1), r̂(1), s̃), u

n1
1 (a), un1

3 (ĉ(1)), xn1
1 (a, b)) ∈ T n1

ǫ (P
Ŷ

(1)
21 U

(1)
1 U

(1)
3 X

(1)
1
). (A109)

If there is none or more than one such index s̃, set ŝ(1) = 1. Otherwise, the found index s̃ is the

estimate ŝ(1) of node 1. Then node 1 tries to find an index õ such that

(
ŷn1
22 (a, ĉ(1), r̂(1), ŝ(1), t̂(1), õ), ŷ

n1
21 (a, ĉ(1), r̂(1), ŝ(1)), u

n1
1 (a), un1

3 (ĉ(1)), xn1
1 (a, b)

)

∈ T n1
ǫ (P

Ŷ
(1)
22 Ŷ

(1)
21 U

(1)
1 U

(1)
3 X

(1)
1
). (A110)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. Finally node 1 tries to find an index d̃ such that
(

xn1
3 (ĉ(1), d̃), un1

1 (a), un1
3 (ĉ(1)), xn1

1 (a, b), ŷn1
21 (a, ĉ(1), r̂(1), ŝ(1)) ,

ŷn1
22 (a, ĉ(1), r̂(1), ŝ(1), t̂(1), ô(1))

)
∈ T n1

ǫ (P
X

(1)
3 U

(1)
1 U

(1)
3 X

(1)
1 Ŷ

(1)
21 Ŷ

(1)
22

). (A111)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. The output message ŵ31(1) of node 1 is found by reindexing (ĉ(1), d̂(1)).

Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index ã such that

(un2
2 (ã, c), yn2

3 ) ∈ T n2
ǫ (P

U
(2)
2 Y

(2)
3

). (A112)

If there is none or more than one such index ã, set â(3) = 1. Otherwise, ã is the estimate â(3) of

node 3. Then node 3 tries to find an index r̃ such that

(vn2
2 (â(3), c, r̃), un2

2 (â(3), c), yn2
3 ) ∈ T n2

ǫ (P
V

(2)
2 U

(2)
2 Y

(2)
3

). (A113)
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If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, r̃ is the estimate r̂(3) of

node 3. Then node 3 tries to find an index s̃ such that

(ŷn1
21 (â(3), c, r̂(3), s̃), u

n1
1 (â(3)), un1

3 (c), xn1
3 (c, d)) ∈ T n1

ǫ (P
Ŷ

(1)
21 U

(1)
1 U

(1)
3 X

(1)
3
). (A114)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, s̃ is the estimate ŝ(3) of

node 3. Finally node 3 tries to find an index b̃ such that

(

xn1
1 (â(3), b̃), un1

1 (â(3)), un1
3 (c), xn1

3 (c, d), ŷn1
21 (â(3), c, r̂(3), ŝ(3))

)

(A115)

∈ T n1
ǫ (P

X
(1)
3 U

(1)
1 U

(1)
3 X

(1)
1 Ŷ

(1)
21

). (A116)

If there is none or more than one such index b̃, set b̂(3) = 1. Otherwise, b̃ is the estimate b̂(3) of

node 3. The output message ŵ13(3) of node 3 is found by reindexing (â(3), b̂(3)).

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 < τ1I(U
(1)
1 ; Y

(1)
2 |U (1)

3 )

R3 < τ1I(U
(1)
3 ; Y

(1)
2 |U (1)

1 )

R1 +R3 < τ1I(U
(1)
1 U

(1)
3 ; Y

(1)
2 )

R5 +R6 > τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 )

R7 +R8 > τ1I(Ŷ
(1)
22 ; Y

(1)
2 |Ŷ (1)

21 U
(1)
1 U

(1)
3 ) (A117)

at node 2,

R3 < τ2I(U
(2)
2 ; Y

(2)
1 )

R5 < τ2I(V
(2)
2 ; Y

(2)
1 |U (2)

2 )

R7 < τ2I(X
(2)
2 ; Y

(2)
1 |V (2)

2 U
(2)
2 )

R6 < τ1I(Ŷ
(1)
21 ;X

(1)
1 |U (1)

1 U
(1)
3 )

R8 < τ1I(Ŷ
(1)
22 ;X

(1)
1 |Ŷ (1)

21 U
(1)
1 U

(1)
3 )

R4 < τ1I(X
(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 ) (A118)

at node 1 and

R1 < τ2I(U
(2)
2 ; Y

(2)
3 )

R5 < τ2I(V
(2)
2 ; Y

(2)
3 |U (2)

2 )

R6 < τ1I(Ŷ
(1)
21 ;X

(1)
3 |U (1)

1 U
(1)
3 )

R2 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ) (A119)
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at node 3. Consequently,

R13 = R1 +R2 < τ1I(U
(1)
1 ; Y

(1)
2 |U (1)

3 ) + τ1I(X
(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 )

R13 = R1 +R2 < τ2I(U
(2)
2 ; Y

(2)
3 ) + τ1I(X

(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 )

R31 = R3 +R4 < τ1I(U
(1)
3 ; Y

(1)
2 |U (1)

1 ) + τ1I(X
(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 )

R31 = R3 +R4 < τ2I(U
(2)
2 ; Y

(2)
1 ) + τ1I(X

(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 )

R13 +R31 < τ1I(U
(1)
1 U

(1)
3 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ) + τ1I(X

(1)
3 ; Ŷ

(1)
21 Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 )

(A120)

subject to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 ) < τ1I(Ŷ

(1)
21 ;X

(1)
1 |U (1)

1 U
(1)
3 ) + τ2I(V

(2)
2 ; Y

(2)
1 |U (2)

2 )

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 ) < τ1I(Ŷ

(1)
21 ;X

(1)
3 |U (1)

1 U
(1)
3 ) + τ2I(V

(2)
2 ; Y

(2)
3 |U (2)

2 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |Ŷ (1)

21 U
(1)
1 U

(1)
3 ) < τ1I(Ŷ

(1)
22 ;X

(1)
1 |Ŷ (1)

21 U
(1)
1 U

(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
1 |V (2)

2 U
(2)
2 )
(A121)

By the use of the Markov chains

X
(1)
1 − (Y

(1)
2 , U

(1)
1 , U

(1)
3 )− Ŷ

(1)
21

X
(1)
3 − (Y

(1)
2 , U

(1)
1 , U

(1)
3 )− Ŷ

(1)
21

X
(1)
1 − (Y

(1)
2 , Ŷ

(1)
21 , U

(1)
1 , U

(1)
3 )− Ŷ

(1)
22 (A122)

the constraints on the compression rates can be reformulated to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 X

(1)
1 ) < τ2I(V

(2)
2 ; Y

(2)
1 |U (2)

2 )

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 X

(1)
3 ) < τ2I(V

(2)
2 ; Y

(2)
3 |U (2)

2 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |Ŷ (1)

21 U
(1)
1 U

(1)
3 X

(1)
1 ) < τ2I(X

(2)
2 ; Y

(2)
1 |V (2)

2 U
(2)
2 ). (A123)

This establishes the proposition. �
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A4. Proofs: Achievable Rates 3P-BC Scheme

Comments and Assumptions Random encoding, jointly typical decoding and compression will

be used to show which rates are achievable for the half-duplex two-way relay channel. For the

following proofs it will be assumed that the transmission is performed with n ≥ 3 channel uses

and three phases l = 1, 2, 3. Phase 1 features n1 ≥ 1 transmission slots, phase 2 supports n2 ≥ 1
transmission slots and phase 3 supports n3 ≥ 1 transmission slots with n1 + n2 + n3 = n. If n
grows n1, n2 and n3 are assumed to grow at the same rate. For large n, nl

n
→ τl > 0. The message

w13 ∈ {1, . . . , 2nR13} will be sent from node 1 to node 3 and the message w31 ∈ {1, . . . , 2nR31}
will be sent from node 3 to node 1. For all proofs 2nR denotes a positive integer.

A4.1 Decode-and-Forward

Code Generate 2n(R1+R2) n1-sequences xn1
1 (r, s), r = 1, 2, . . . , 2nR1 , s = 1, 2, . . . , 2nR2 , by

choosing each element x
(1)
1,k(r, s) independently according to P

X
(1)
1
(·). Generate 2n(R3+R4) n2-

sequences xn2
3 (t, o), t = 1, 2, . . . , 2nR3 , o = 1, 2, . . . , 2nR4 , by choosing each element x

(2)
3,k(t, o)

independently according to P
X

(2)
3
(·). Generate 2n(R1+R3) n3-sequences xn3

2 (r, t), by choosing each

element x
(3)
2,k(r, t) independently according to P

X
(3)
2
(·).

Node 1 (Input) The message w13 is reindexed by (r, s). In the first phase node 1 transmits

xn1
1 (r, s) within n1 transmissions.

Node 3 (Input) The message w31 is reindexed by (t, o). In the second phase node 3 transmits

xn2
3 (t, o) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. In the second phase yn2

2 is observed. After the first

phase node 2 tries to find a pair (r̃, s̃) such that

(xn1
1 (r̃, s̃), yn1

2 ) ∈ T n1
ǫ (P

X
(1)
1 Y

(1)
2

). (A124)

If there is none or more than one such pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the found

pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. After the second phase node 2 tries to find a pair

(t̃, õ) such that
(
xn2
3 (t̃, õ), yn2

2

)
∈ T n2

ǫ (P
X

(2)
3 Y

(2)
2

). (A125)

If there is none or more than one such pair (t̃, õ), set (t̂(2), ô(2)) = (1, 1). Otherwise, the found

pair (t̃, õ) is the estimate (t̂(2), ô(2)) of node 2. In the third phase node 2 sends xn3
2 (r̂(2), t̂(2)).

Node 1 (Output) In the second phase yn2
1 is observed. In the third phase yn3

1 is observed. After

the third phase node 1 tries to find an index t̃ such that
(
xn3
2 (r, t̃), yn3

1

)
∈ T n3

ǫ (P
X

(3)
2 Y

(3)
1

). (A126)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, t̃ is the estimate t̂(1) of

node 1. Now node 1 tries to find an index õ such that
(
xn2
3 (t̂(1), õ), yn2

3

)
∈ T n2

ǫ (P
X

(2)
3 Y

(2)
3

). (A127)
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If there is none or more than one such index õ, set ô(1) = 1. Otherwise, õ is the estimate ô(1) of

node 1.

Node 3 (Output) In the first phase yn1
3 is observed. In the third phase yn3

3 is observed. After the

third phase node 3 tries to find an index r̃ such that

(xn3
2 (r̃, t), yn3

3 ) ∈ T n3
ǫ (P

X
(3)
2 Y

(3)
3

). (A128)

If there is none or more than one such index r̃, set r̂(3). Otherwise, r̃ is the output r̂(3) of node 3.

Now node 3 tries to find an index s̃ such that

(xn1
1 (r̂(3), s̃), yn1

3 ) ∈ T n1
ǫ (P

X
(1)
1 Y

(1)
3

). (A129)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, s̃ is the estimate ŝ(3) of

node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 +R2 < τ1I(X
(1)
1 ; Y

(1)
2 )

R3 +R4 < τ2I(X
(2)
3 ; Y

(2)
2 ) (A130)

at node 2,

R1 < τ3I(X
(3)
2 ; Y

(3)
3 )

R2 < τ1I(X
(1)
1 ; Y

(1)
3 )

(A131)

at node 3 and

R3 < τ3I(X
(3)
2 ; Y

(3)
1 )

R4 < τ2I(X
(2)
3 ; Y

(2)
1 ) (A132)

at node 1. This establishes the proposition. �
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A4.2 Partial-Decode-and-Forward

Code Generate 2n(R1+R2) n1-sequences un1
1 (a, b), a = 1, 2, . . . , 2nR1 , b = 1, 2, . . . , 2nR2 , by

choosing each element u
(1)
1,k(a, b) independently according to P

U
(1)
1
(·). For each un1

1 (a, b), gen-

erate 2nR3 n1-sequences xn1
1 (a, b, c), c = 1, 2, . . . , 2nR3 , by choosing each element x

(1)
1,k(a, b, c)

independently according to P
X

(1)
1 |U

(1)
1
(·|u1,i(a, b)). Generate 2n(R4+R5) n2-sequences un2

3 (r, s),

r = 1, 2, . . . , 2nR4 , s = 1, 2, . . . , 2nR5 , by choosing each element u
(2)
3,k(r, s) independently ac-

cording to P
U

(2)
3
(·). For each un2

3 (r, s), generate 2nR6 n2-sequences xn2
3 (r, s, t), t = 1, 2, . . . , 2nR6 ,

by choosing each element x
(2)
3,k(r, s, t) independently according to P

X
(2)
3 |U

(2)
3
(·|u3,i(r, s)). Gener-

ate 2n(R1+R4) n3-sequences xn3
2 (a, r), a = 1, 2, . . . , 2nR1 , r = 1, 2, . . . , 2nR4 , by choosing each

element x
(3)
2,k(a, r) independently according to P

X
(3)
2
(·).

Node 1 (Input) The message w13 is reindexed by (a, b, c). In the first phase node 1 transmits

xn1
1 (a, b, c) within n1 transmissions.

Node 3 (Input) The message w31 is reindexed by (r, s, t). In the second phase node 3 transmits

xn2
3 (r, s, t) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (ã, b̃)

such that
(

un1
1 (ã, b̃), yn1

2

)

∈ T n1
ǫ (P

U
(1)
1 Y

(1)
2

). (A133)

If there is none or more than one such tuple (ã, b̃), set (â(2), b̂(2)) = (1, 1). Otherwise, the found

pair (ã, b̃) is the estimate (â(2), b̂(2)) of node 2. In the second phase yn2
2 is observed. After the

second phase node 2 tries to find a pair (r̃, s̃) such that

(un2
3 (r̃, s̃), yn2

2 ) ∈ T n2
ǫ (P

U
(2)
3 Y

(2)
2

). (A134)

If there is none or more than one such pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the found

pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. In the third phase node 2 sends xn3
2 (â(2), r̂(2)).

Node 1 (Output) In the second phase yn2
1 is observed. In the third phase yn3

1 is observed. After

the third phase node 1 tries to find an index r̃ such that

(xn3
2 (a, r̃), yn3

1 ) ∈ T n3
ǫ (P

X
(3)
2 ,Y

(3)
1

). (A135)

If there is none or more than one such index r̃, set r̂(1) = 1. Otherwise, the found index r̃ is the

estimate r̂(1) of node 1. Then node 1 tries to find an index s̃ such that

(un2
3 (r̂(1), s̃), yn2

1 ) ∈ T n2
ǫ (P

U
(2)
3 Y

(2)
1

). (A136)

If there is none or more than one such index s̃, set ŝ(1) = 1. Otherwise, the found index s̃ is the

estimate ŝ(1) of node 1. Finally node 1 tries to find an index t̃ such that
(
xn2
3 (r̂(1), ŝ(1), t̃), un2

3 (r̂(1), ŝ(1)), yn2
1

)
∈ T n2

ǫ (P
X

(2)
3 U

(2)
3 Y

(2)
1

). (A137)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1.
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Node 3 (Output) In the first phase yn1
3 is observed. In the third phase yn3

3 is observed. After the

third phase node 3 tries to find an index ã such that

(xn3
2 (ã, r), yn3

3 ) ∈ T n3
ǫ (P

X
(3)
2 Y

(3)
3

). (A138)

If there is none or more than one such index ã, set â(1) = 1. Otherwise, the found index ã is the

estimate â(1) of node 3. Then node 3 tries to find an index b̃ such that
(

un1
1 (â(3), b̃), yn1

3

)

∈ T n1
ǫ (P

U
(1)
1 Y

(1)
3

). (A139)

If there is none or more than one such index b̃, set b̂(3) = 1. Otherwise, the found index b̃ is the

estimate b̂(3) of node 3. Finally node 3 tries to find an index c̃ such that
(

xn1
1 (â(3), b̂(3), c̃), un1

1 (â(3), b̂(3)), yn1
3

)

∈ T n1
ǫ (P

X
(1)
1 U

(1)
1 Y

(1)
3

). (A140)

If there is none or more than one such index c̃, set ĉ(3) = 1. Otherwise, the found index c̃ is the

estimate ĉ(3) of node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 +R2 < τ1I(U
(1)
1 ; Y

(1)
2 )

R4 +R5 < τ2I(U
(2)
3 ; Y

(2)
2 ) (A141)

at node 2,

R4 < τ3I(X
(3)
2 ; Y

(3)
1 )

R5 < τ2I(U
(2)
3 ; Y

(2)
1 )

R6 < τ2I(X
(2)
3 ; Y

(2)
1 |U (2)

3 ) (A142)

at node 1 and

R1 < τ3I(X
(3)
2 ; Y

(3)
3 )

R2 < τ1I(U
(1)
1 ; Y

(1)
3 )

R3 < τ1I(X
(1)
1 ; Y

(1)
3 |U (1)

1 ) (A143)

at node 3. Therefore, with

U
(1)
1 −X

(1)
1 − Y

(1)
3

U
(2)
3 −X

(2)
3 − Y

(2)
1 (A144)

forming Markov chains

R13 < τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1(X

(1)
1 ; Y

(1)
3 |U (1)

1 )

R13 < τ1I(X
(1)
1 ; Y

(1)
3 ) + τ3I(X

(3)
2 ; Y

(3)
3 )

R31 < τ2I(U
(2)
3 ; Y

(2)
2 ) + τ2(X

(2)
3 ; Y

(2)
1 |U (2)

3 )

R31 < τ3I(X
(3)
2 ; Y

(3)
1 ) + τ2I(X

(2)
3 ; Y

(2)
1 ). (A145)

This establishes the proposition. �
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A4.3 Compress-and-Forward

Code Generate 2nR13 n1-sequences xn1
1 (w13), w13 = 1, 2, . . . , 2nR13 , by choosing each el-

ement x
(1)
1,k(w13) independently according to P

X
(1)
1
(·). Generate 2nR31 n2-sequences xn2

3 (w31),

w31 = 1, 2, . . . , 2nR31 , by choosing each element x
(2)
3,k(w31) independently according to P

X
(2)
3
(·).

Choose a "quantization channel" P
Ŷ

(1)
2 |Y

(1)
2

(·|·) and calculate P
Ŷ

(1)
2

(·) as the marginal distribution

of P
Ŷ

(1)
2 Y

(1)
2

(·). Generate 2n(R1+R2) n1-sequences ŷn1
2 (r, s), r = 1, 2, . . . , 2nR1 , s = 1, 2, . . . , 2nR2 ,

by choosing each element ŷ
(1)
2,k(r, s) independently according to P

Ŷ
(1)
2

(·). Choose a "quantiza-

tion channel" P
Ŷ

(2)
2 |Y

(2)
2

(·|·) and calculate P
Ŷ

(2)
2

(·) as the marginal distribution of P
Ŷ

(2)
2 Y

(2)
2

(·).

Generate 2n(R3+R4) n2-sequences ŷn2
2 (t, o), t = 1, 2, . . . , 2nR3 , o = 1, 2, . . . , 2nR4 , by choos-

ing each element ŷ
(2)
2,k(t, o) independently according to P

Ŷ
(2)
2

(·). Generate 2n(R3+R5) n3-sequences

un3
21(t, q1), q1 = 1, 2, . . . , 2nR5 , by choosing each element u

(3)
21,k(t, q1) independently according to

P
U

(3)
21
(·). Generate 2n(R1+R6) n3-sequences un3

22(r, q2), q2 = 1, 2, . . . , 2nR6 , by choosing each ele-

ment u
(3)
22,k(r, q2) independently according to P

U
(3)
22
(·).

Node 1 (Input) In the first phase node 1 transmits xn1
1 (w13) within n1 transmissions.

Node 3 (Input) In the second phase node 3 transmits xn2
3 (w31) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (r̃, s̃)

such that

(ŷn1
2 (r̃, s̃), yn1

2 ) ∈ T n1
ǫ (P

Ŷ
(1)
2 Y

(1)
2

). (A146)

If there is none such pair (r̃, s̃) an error is declared. Otherwise, the found pair (r̃, s̃) is the estimate

(r̂(2), ŝ(2)) of node 2, where the pair with the smallest linear index 2nR1(s̃− 1) + r̃ is selected if

more than one pair was found. In the second phase yn2
2 is observed. After the second phase node 2

tries to find a pair (t̃, õ) such that

(
ŷn2
2 (t̃, õ), yn2

2

)
∈ T n2

ǫ (P
Ŷ

(2)
2 Y

(2)
2

). (A147)

If there is none such pair (t̃, õ) an error is declared. Otherwise, the found pair (t̃, õ) is the estimate

(t̂(2), ô(2)) of node 2, where the pair with the smallest linear index 2nR3(õ − 1) + t̃ is selected if

more than one pair was found. Then node 2 tries to find a pair (q̃1, q̃2) such that

(
un3
21(t̂(2), q̃1), u

n3
22(r̂(2), q̃2)

)
∈ T n3

ǫ (P
U

(3)
21 U

(3)
22
). (A148)

If there is none such pair (q̃1, q̃2) an error is declared. Otherwise, the found pair (q̃1, q̃2) is the

estimate (q̂1(2), q̂2(2)) of node 2, where the pair with the smallest linear index 2nR5(q̃2 − 1)+ q̃1 is

selected if more than one pair was found. In the third phase node 2 sends

xn3
2 = fn3(un3

21(t̂(2), q̂1(2)), u
n3
22(r̂(2), q̂2(2))) (A149)

where f(·) is a function that maps symbols from U21×U 22 to X 2.
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Node 1 (Output) In the second phase yn2
1 is observed. In the third phase yn3

1 is observed. After

the third phase node 1 tries to find a pair (t̃, q̃1) such that

(
un3
21 (t̃, q̃1), y

n3
1

)
∈ T n3

ǫ (P
U

(3)
21 Y

(3)
1

). (A150)

If there is none or more than one such pair (t̃, q̃1), set (t̂(1), q̂1(1)) = (1, 1). Otherwise, (t̃, q̃1) is

the estimate (t̂(1), q̂1(1)) of node 1. Then node 1 tries to find an index õ such that

(
ŷn2
2 (t̂(1), õ), yn2

1

)
∈ T n2

ǫ (P
Ŷ

(2)
2 Y

(2)
1

). (A151)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. Finally node 1 tries to find an index w̃31 such that

(
xn2
3 (w̃31), ŷ

n2
2 (t̂(1), ô(1)), yn2

1

)
∈ T n2

ǫ (P
X

(2)
3 Ŷ

(2)
2 Y

(2)
1

). (A152)

If there is none or more than one such index w̃31, set ŵ31(1) = 1. Otherwise, w̃31 is the output

message ŵ31(1) of node 1.

Node 3 (Output) In the first phase yn1
3 is observed. In the third phase yn3

3 is observed. After the

third phase node 3 tries to find a pair (r̃, q̃2) such that

(un3
22(r̃, q̃2), y

n3
3 ) ∈ T n3

ǫ (P
U

(3)
22 Y

(3)
3

). (A153)

If there is none or more than one such (r̃, q̃2), set (r̂(3), q̂2(3)) = (1, 1). Otherwise, the found pair

(r̃, q̃2) is the estimate (r̂(3), q̂2(3)) of node 3. Then node 3 tries to find an index s̃ such that

(ŷn1
2 (r̂(3), s̃), yn1

3 ) ∈ T n1
ǫ (P

Ŷ
(1)
2 Y

(1)
3

) (A154)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3. Finally node 3 tries to find an index w̃13 such that

(xn1
1 (w̃13), ŷ

n1
2 (r̂(3), ŝ(3)), yn1

3 ) ∈ T n1
ǫ (P

X
(1)
1 Ŷ

(1)
2 Y

(1)
3

). (A155)

If there is none or more than one such index w̃13, set ŵ13(3) = 1. Otherwise, the found index w̃13

is the output message ŵ13(3) of node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 +R2 > τ1I(Ŷ
(1)
2 ; Y

(1)
2 )

R3 +R4 > τ2I(Ŷ
(2)
2 ; Y

(2)
2 )

R5 +R6 > τ3I(U
(3)
21 ;U

(3)
22 ) (A156)

at node 2,

R3 +R5 < τ3I(U
(3)
21 ; Y

(3)
1 )

R4 < τ2I(Ŷ
(2)
2 ; Y

(2)
1 )

R31 < τ2I(X
(2)
3 ; Ŷ

(2)
2 Y

(2)
1 ). (A157)
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at node 1 and

R1 +R6 < τ3I(U
(3)
22 ; Y

(3)
3 )

R2 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 )

R13 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 ). (A158)

at node 3. Choosing

R5 = κτ3I(U
(3)
21 ;U

(3)
22 ) κ ∈ [0; 1] (A159)

gives

R1 +R2 > τ1I(Ŷ
(1)
2 ; Y

(1)
2 )

R3 +R4 > τ2I(Ŷ
(2)
2 ; Y

(2)
2 )

R3 < τ3I(U
(3)
21 ; Y

(3)
1 )− κτ3I(U

(3)
21 ;U

(3)
22 )

R4 < τ2I(Ŷ
(2)
2 ; Y

(2)
1 )

R1 < τ3I(U
(3)
22 ; Y

(3)
3 )− (1− κ)τ3I(U

(3)
21 ;U

(3)
22 )

R2 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 ). (A160)

Using the fact that

Y
(1)
3 − Y

(1)
2 − Ŷ

(1)
2

Y
(2)
1 − Y

(2)
2 − Ŷ

(2)
2 (A161)

form Markov chains the constraints can be reformulated to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 ) < τ3I(U
(3)
22 ; Y

(3)
3 )− (1− κ)τ3I(U

(3)
21 ;U

(3)
22 )

τ2I(Ŷ
(2)
2 ; Y

(2)
2 |Y (2)

1 ) < τ3I(U
(3)
21 ; Y

(3)
1 )− κτ3I(U

(3)
21 ;U

(3)
22 ). (A162)

Alternatively,

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 ) < τ3I(U
(3)
22 ; Y

(3)
3 )

τ2I(Ŷ
(2)
2 ; Y

(2)
2 |Y (2)

1 ) < τ3I(U
(3)
21 ; Y

(3)
1 )

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 ) + τ2I(Ŷ
(2)
2 ; Y

(2)
2 |Y (2)

1 ) < τ3I(U
(3)
21 ; Y

(3)
1 ) + τ3I(U

(3)
22 ; Y

(3)
3 )− τ3I(U

(3)
21 ;U

(3)
22 ).

(A163)

This establishes the proposition.�
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A4.4 Partial-Decode-Compress-and-Forward

Code Generate 2n(R1+R2) n1-sequences un1
1 (a, b), a = 1, 2, . . . , 2nR1 , b = 1, 2, . . . , 2nR2 , by

choosing each element u
(1)
1,k(a, b) independently according to P

U
(1)
1
(·). For each un1

1 (a, b), generate

2nR3 n1-sequences xn1
1 (a, b, c), c = 1, 2, . . . , 2nR3 , by choosing each element x

(1)
1,k(a, b, c) inde-

pendently according to P
X

(1)
1 |U

(1)
1
(·|u(1)

1,k(a, b)). Choose a "quantization channel" P
Ŷ

(1)
2 |Y

(1)
2 U

(1)
1
(·|·)

and calculate P
Ŷ

(1)
2 |U

(1)
1
(·) as the marginal distribution of P

Ŷ
(1)
2 Y

(1)
2 |U

(1)
1
(·). For each un1

1 (a, b), gen-

erate 2n(R7+R8) n1-sequences ŷn1
2 (a, b, d, e), d = 1, 2, . . . , 2nR7 , e = 1, 2, . . . , 2nR8 , by choosing

each element ŷ
(1)
2,k(a, b, d, e) independently according to P

Ŷ
(1)
2 |U

(1)
1
(·|u1,i(a, b)). Generate 2n(R4+R5)

n2-sequences un2
3 (r, s), r = 1, 2, . . . , 2nR4 , s = 1, 2, . . . , 2nR5 , by choosing each element

u
(2)
3,k(r, s) independently according to P

U
(2)
3
(·). For each un2

3 (r, s), generate 2nR6 n2-sequences

xn2
3 (r, s, t), t = 1, 2, . . . , 2nR6 , by choosing each element x

(2)
3,k(r, s, t) independently accord-

ing to P
X

(2)
3 |U

(2)
3
(·|u(2)

3,k(r, s)). Choose a "quantization channel" P
Ŷ

(2)
2 |Y

(2)
2 U

(2)
3
(·|·) and calculate

P
Ŷ

(2)
2 |U

(2)
3
(·) as the marginal distribution of P

Ŷ
(2)
2 Y

(2)
2 |U

(2)
3
(·). For each un2

3 (r, s), generate 2n(R9+R10)

n2-sequences ŷn2
2 (r, s, o, z), o = 1, 2, . . . , 2nR9 , z = 1, 2, . . . , 2nR10 , by choosing each element

ŷ
(2)
2,k(r, s, o, z) independently according to P

Ŷ
(2)
2 |U

(2)
3
(·|u(2)

3,k(r, s)). Generate 2n(R1+R4) n3-sequences

un3
2 (a, r), a = 1, 2, . . . , 2nR1 , r = 1, 2, . . . , 2nR4 , by choosing each element u

(3)
2,k(a, r) indepen-

dently according to P
U

(3)
2
(·). For each un3

2 (a, r), generate 2n(R9+R11) n3-sequences vn3
21 (a, r, o, q1),

o = 1, 2, . . . , 2nR9 , q1 = 1, 2, . . . , 2nR11 , by choosing each element v
(3)
21,k(a, r, o, q1) indepen-

dently according to P
V

(3)
21 |U

(3)
2
(·|u(3)

2,k(a, r)). For each un3
2 (a, r), generate 2n(R7+R12) n3-sequences

vn3
22 (a, r, d, q2), d = 1, 2, . . . , 2nR7 , q2 = 1, 2, . . . , 2nR12 , by choosing each element v

(3)
22,k(a, r, d, q2)

independently according to P
V

(3)
22 |U

(3)
2
(·|u(3)

2,k(a, r)).

Node 1 (Input) The message w13 is reindexed by (a, b, c). In the first phase node 1 transmits

xn1
1 (a, b, c) within n1 transmissions.

Node 3 (Input) The message w31 is reindexed by (r, s, t). In the second phase node 3 transmits

xn2
3 (r, s, t) within n2 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (ã, b̃)

such that

(

un1
1 (ã, b̃), yn1

2

)

∈ T n1
ǫ (P

U
(1)
1 Y

(1)
2

). (A164)

If there is none or more than one such pair (ã, b̃), set (â(2), b̂(2)) = (1, 1). Otherwise, the found

pair (ã, b̃) is the estimate (â(2), b̂(2)) of node 2. Then node 2 tries to find a pair (d̃, ẽ) such that

(

ŷn1
2 (â(2), b̂(2), d̃, ẽ), un1

1 (â(2), b̂(2)), yn1
2

)

∈ T n1
ǫ (P

Ŷ
(1)
2 U

(1)
1 Y

(1)
2

). (A165)

If there is none such pair (d̃, ẽ) an error is declared. Otherwise, the found pair (d̃, ẽ) is the estimate

(d̂(2), ê(2)) of node 2 where the pair with the smallest linear index 2nR7(e − 1) + d is selected if
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more than one pair was found. In the second phase yn2
2 is observed. After the second phase node 2

tries to find a pair (r̃, s̃) such that

(un2
3 (r̃, s̃), yn2

2 ) ∈ T n2
ǫ (P

U
(2)
3 Y

(2)
2

). (A166)

If there is none or more than one such pair (r̃, s̃), set (r̂(2), ŝ(2)) = (1, 1). Otherwise, the found

pair (r̃, s̃) is the estimate (r̂(2), ŝ(2)) of node 2. Then node 2 tries to find a pair (õ, z̃) such that

(ŷn2
2 (r̂(2), ŝ(2), õ, z̃), un2

3 (r̂(2), ŝ(2)), yn2
2 ) ∈ T n2

ǫ (P
Ŷ

(2)
2 U

(2)
3 Y

(2)
2

). (A167)

If there is none such pair (õ, z̃) an error is declared. Otherwise, the found pair (õ, z̃) is the estimate

(ô(2), ẑ(2)) of node 2 where the pair with the smallest linear index 2nR9(z − 1) + o is selected if

more than one pair was found. Then node 2 tries to find a pair (q̃1, q̃2) such that
(

vn3
21 (â(2), r̂(2), ô(2), q̃1), v

n3
22 (â(2), r̂(2), d̂(2), q̃2), u

n3
2 (â(2), r̂(2))

)

∈ T n3
ǫ (P

V
(3)
21 V

(3)
22 U

(3)
2
).

(A168)

If there is none such pair (q̃1, q̃2) an error is declared. Otherwise, the found pair (q̃1, q̃2) is the

estimate (q̂1(2), q̂2(2)) of node 2, where the pair with the smallest linear index 2nR11(q̃2 − 1) + q̃1
is selected if more than one pair was found. In the third phase node 2 sends

xn3
2 = fn3(vn3

21 (â(2), r̂(2), ô(2), q̂1(2)), v
n3
22 (â(2), r̂(2), d̂(2), q̂2(2)), u

n3
2 (â(2), r̂(2))) (A169)

where f(·) is a function that maps symbols from V21×V22×U2 to X 2.

Node 1 (Output) In the second phase yn2
1 is observed. In the third phase yn3

1 is observed. After

the third phase node 1 tries to find an index r̃ such that

(un3
2 (a, r̃), yn3

1 ) ∈ T n3
ǫ (P

U
(3)
2 Y

(3)
1

). (A170)

If there is none or more than one such index r̃, set r̂(1) = 1. Otherwise, the found index r̃ is the

estimate r̂(1) of node 1. Then node 1 tries to find a pair (õ, q̃1) such that

(vn3
21 (a, r̂(1), õ, q̃1), u

n3
2 (a, r̂(1)), yn3

1 ) ∈ T n3
ǫ (P

V
(3)
21 U

(3)
2 Y

(3)
1

). (A171)

If there is none or more than one such pair (õ, q̃1), set (ô(1), q̂1(1)) = (1, 1) . Otherwise, the found

pair (õ, q̃1) is the estimate (ô(1), q̂1(1)) of node 1. Then node 1 tries to find an index s̃ such that

(un2
3 (r̂(1), s̃), yn2

1 ) ∈ T n2
ǫ (P

U
(2)
3 Y

(2)
1

). (A172)

If there is none or more than one such index z̃, set ẑ(1) = 1. Otherwise, the found index z̃ is the

estimate ẑ(1) of node 1. Then node 1 tries to find an index z̃ such that

(ŷn2
2 (r̂(1), ŝ(1), ô(1), z̃), un2

3 (r̂(1), ŝ(1)), yn2
1 ) ∈ T n2

ǫ (P
Ŷ

(2)
2 U

(2)
3 Y

(2)
1

). (A173)

If there is none or more than one such index s̃, set ŝ(1) = 1. Otherwise, the index s̃ is the estimate

ŝ(1) of node 1. Finally node 1 tries to find an index t̃ such that
(
xn2
3 (r̂(1), ŝ(1), t̃), un2

3 (r̂(1), ŝ(1)), ŷn2
2 (r̂(1), ŝ(1), ô(1), ẑ(1)), yn2

1

)
∈ T n2

ǫ (P
X

(2)
3 U

(2)
3 Ŷ

(2)
2 Y

(2)
1

).

(A174)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1.
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Node 3 (Output) In the first phase yn1
3 is observed. In the third phase yn3

3 is observed. After the

third phase node 3 tries to find an index ã such that

(un3
2 (ã, r), yn3

3 ) ∈ T n3
ǫ (P

U
(3)
2 Y

(3)
3

). (A175)

If there is none or more than one such index ã, set â(3) = 1. Otherwise, the found index ã is the

estimate â(3) of node 3. Then node 3 tries to find pair (d̃, q̃2) such that
(

vn3
22 (â(3), r, d̃, q̃2), u

n3
2 (â(3), r), yn3

3

)

∈ T n3
ǫ (P

V
(3)
22 U

(3)
2 Y

(3)
3

). (A176)

If there is none or more than one such (d̃, q̃2), set (d̂(3), q̂2(3)) = (1, 1). Otherwise, the found pair

(d̃, q̃2) is the estimate (d̂(3), q̂2(3)) of node 3. Then node 3 tries to find an index b̃ such that
(

un1
1 (â(3), b̃), yn1

3

)

∈ T n1
ǫ (P

U
(1)
1 Y

(1)
3

). (A177)

If there is none or more than one such index b̃, set b̂(3) = 1. Otherwise, the found index b̃ is the

output b̂(3) of node 3. Then node 3 tries to find an index ẽ such that
(

ŷn1
1 (â(3), b̂(3), d̂(3), ẽ), un1

1 (â(3), b̂(3)), yn1
3

)

∈ T n1
ǫ (P

Ŷ
(1)
2 U

(1)
1 Y

(1)
3

). (A178)

If there is none or more than one such index ẽ, set ê(3) = 1. Otherwise, the found index ẽ is the

estimate ê(3) of node 3. Finally node 3 tries to find an index c̃ such that

(

xn1
1 (â(3), b̂(3), c̃), un1

1 (â(3), b̂(3)), ŷn1
2 (â(3), b̂(3), d̂(3), ê(3)), yn1

3

)

∈ T n1
ǫ (P

X
(1)
1 U

(1)
1 Ŷ

(1)
2 Y

(1)
3

).

(A179)

If there is none or more than one such index c̃, set ĉ(3) = 1. Otherwise, the found index c̃ is the

estimate ĉ(3) of node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 +R2 < τ1I(U
(1)
1 ; Y

(1)
2 )

R4 +R5 < τ2I(U
(2)
3 ; Y

(2)
2 )

R7 +R8 > τ1I(Ŷ
(1)
2 ; Y

(1)
2 |U (1)

1 )

R9 +R10 > τ2I(Ŷ
(2)
2 ; Y

(2)
2 |U (2)

3 )

R11 +R12 > τ3I(V
(3)
21 ;V

(3)
22 |U (3)

2 ) (A180)

at node 2,

R4 < τ3I(U
(3)
2 ; Y

(3)
1 )

R9 +R11 < τ3I(V
(3)
21 ; Y

(3)
1 |U (3)

2 )

R5 < τ2I(U
(2)
3 ; Y

(2)
1 )

R10 < τ2I(Ŷ
(2)
2 ; Y

(2)
1 |U (2)

3 )

R6 < τ2I(X
(2)
3 ; Ŷ

(2)
2 Y

(2)
1 |U (2)

3 ) (A181)
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at node 1,

R1 < τ3I(U
(3)
2 ; Y

(3)
3 )

R7 +R12 < τ3I(V
(3)
22 ; Y

(3)
3 |U (3)

2 )

R2 < τ1I(U
(1)
1 ; Y

(1)
3 )

R8 < τ1I(Ŷ
(1)
2 ; Y

(1)
3 |U (1)

1 )

R3 < τ1I(X
(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 ) (A182)

at node 3. Therefore,

R13 < τ1I(U
(1)
1 ; Y

(1)
3 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 ) + τ3I(U
(3)
2 ; Y

(3)
3 )

R13 < τ1I(U
(1)
1 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Ŷ

(1)
2 Y

(1)
3 |U (1)

1 )

R31 < τ2I(U
(2)
3 ; Y

(2)
1 ) + τ2I(X

(2)
3 ; Ŷ

(2)
2 Y

(2)
1 |U (2)

3 ) + τ3I(U
(3)
2 ; Y

(3)
1 )

R31 < τ2I(U
(2)
3 ; Y

(2)
2 ) + τ2I(X

(2)
3 ; Ŷ

(2)
2 Y

(2)
1 |U (2)

3 ) (A183)

subject to

τ1I(Ŷ
(1)
2 ; Y

(1)
2 |Y (1)

3 U
(1)
1 ) < τ3I(V

(3)
22 ; Y

(3)
3 |U (3)

2 )− (1− α)τ3I(V
(3)
21 ;V

(3)
22 |U (3)

2 )

τ2I(Ŷ
(2)
2 ; Y

(2)
2 |Y (2)

1 U
(2)
3 ) < τ3I(V

(3)
21 ; Y

(3)
1 |U (3)

2 )− ατ3I(V
(3)
21 ;V

(3)
22 |U (3)

2 ) (A184)

where

R11 = ατ3I(V
(3)
21 ;V

(3)
22 |U (3)

2 ) (A185)

and the fact

Y
(1)
3 − (Y

(1)
2 , U

(1)
1 )− Ŷ

(1)
2

Y
(2)
1 − (Y

(2)
2 , U

(2)
3 )− Ŷ

(2)
2 (A186)

was used. This establishes the proposition. �
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A5. Proofs: Achievable Rates 3P-MA Scheme

Comments and Assumptions Random encoding, jointly typical decoding and compression will

be used to show which rates are achievable for the half-duplex two-way relay channel. For the

following proofs it will be assumed that the transmission is performed with n ≥ 3 channel uses

and three phases l = 1, 2, 3. Phase 1 features n1 ≥ 1 transmission slots, phase 2 supports n2 ≥ 1
transmission slots and phase 3 supports n3 ≥ 1 transmission slots with n1 + n2 + n3 = n. If n
grows n1, n2 and n3 are assumed to grow at the same rate. For large n, nl

n
→ τl > 0. The message

w13 ∈ {1, . . . , 2nR13} will be sent from node 1 to node 3 and the message w31 ∈ {1, . . . , 2nR31}
will be sent from node 3 to node 1. For all proofs 2nR denotes a positive integer.

A5.1 Decode-and-Forward

Code Generate 2nR1 n1-sequences xn1
1 (r), r = 1, 2, . . . , 2nR1 , choosing each element x

(1)
1,k(r)

independently according to P
X

(1)
1
(·). Generate 2nR1 n2-sequences xn2

2 (r) choosing each element

x
(2)
2,k(r) independently according to P

X
(2)
2
(·). For each xn2

2 (r) generate 2nR2 n2-sequences xn2
1 (r, s),

s = 1, 2, . . . , 2nR2 , choosing each element x
(2)
1,k(r, s) independently according to P

X
(2)
1 |X

(2)
2
(·). Gen-

erate 2nR3 n1-sequences xn1
3 (t), t = 1, 2, . . . , 2nR3 , choosing each element x

(1)
3,k(t) independently

according to P
X

(1)
3
(·). Generate 2nR3 n3-sequences xn3

2 (t) choosing each element x
(3)
2,k(t) inde-

pendently according to P
X

(3)
2
(·). Generate 2n(R3+R4) n3-sequences xn3

3 (t, o), o = 1, 2, . . . , 2nR4

choosing each element x
(3)
3,k(t, o) independently according to P

X
(3)
3 |X

(3)
2
(·).

Node 1 (Input) The message w13 is reindexed by (r, s). In the first phase node 1 transmits xn1
1 (r)

within n1 transmissions. In the second phase node 1 transmits xn2
1 (r, s) within n2 transmissions.

Node 3 (Input) The message w31 is reindexed by (t, o). In the first phase node 3 transmits xn1
3 (t)

within n1 transmissions. In the third phase node 3 transmits xn3
3 (t, o) within n3 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (r̃, t̃)

such that
(
xn1
1 (r̃), xn1

3 (t̃), yn1
2

)
∈ T n1

ǫ (P
X

(1)
1 X

(1)
3 Y

(1)
2

). (A187)

If there is none or more than one such pair (r̃, t̃), set (r̂(2), t̂(2)) = (1, 1). Otherwise, the found

pair (r̃, t̃) is the estimate (r̂(2), t̂(2)) of node 2. In the second phase node 2 sends xn2
2 (r̂(2)). In the

third phase node 2 sends xn3
2 (t̂(2)).

Node 1 (Output) In the third phase yn3
1 is observed. After the third phase node 1 tries to find an

index t̃ such that
(
xn3
2 (t̃), yn3

1

)
∈ T n3

ǫ (P
X

(3)
2 Y

(3)
1

). (A188)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1. Then node 1 tries to find an index õ such that
(
xn3
3 (t̂(1), õ), yn3

1

)
∈ T n3

ǫ (P
X

(3)
3 Y

(3)
1

). (A189)
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If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1.

Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index r̃ such that

(xn2
2 (r̃), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
2 Y

(2)
3

). (A190)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. Then node 3 tries to find an index s̃ such that

(xn2
1 (r̂(3), s̃), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
1 Y

(2)
3

). (A191)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 < τ1I(X
(1)
1 ; Y

(1)
2 |X(1)

3 )

R3 < τ1I(X
(1)
3 ; Y

(1)
2 |X(1)

1 )

R1 +R3 < τ1I(X
(1)
1 X

(1)
3 ; Y

(1)
2 ) (A192)

at node 2,

R3 < τ3I(X
(3)
2 ; Y

(3)
1 )

R4 < τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 ) (A193)

at node 1 and

R1 < τ2I(X
(2)
2 ; Y

(2)
3 )

R2 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 ) (A194)

at node 3. Consequently,

R13 < τ1I(X
(1)
1 ; Y

(1)
2 |X(1)

3 ) + τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )

R13 < τ2I(X
(2)
1 , X

(2)
2 ; Y

(2)
3 )

R31 < τ1I(X
(1)
3 ; Y

(1)
2 |X(1)

1 ) + τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 )

R31 < τ3I(X
(3)
2 X

(3)
3 ; Y

(3)
1 ) (A195)

subject to

R13 +R31 < τ1I(X
(1)
1 , X

(1)
3 ; Y

(1)
2 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 ) + τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 ). (A196)

This establishes the proposition. �
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A5.2 Compress-and-Forward

Code Generate 2nR1 n1-sequences xn1
1 (a), a = 1, 2, . . . , 2nR1 , by choosing each element x

(1)
1,k(a)

independently according to P
X

(1)
1
(·). Generate 2nR2 n2-sequences xn2

1 (b), b = 1, 2, . . . , 2nR2 , by

choosing each element x
(2)
1,k(b) independently according to P

X
(2)
1
(·). Generate 2nR3 n1-sequences

xn1
3 (c), c = 1, 2, . . . , 2nR3 , by choosing each element x

(1)
3,k(c) independently according to P

X
(1)
3
(·).

Generate 2nR4 n3-sequences xn3
3 (o), o = 1, 2, . . . , 2nR4 , by choosing each element x

(3)
3,k(o) in-

dependently according to P
X

(3)
3
(·). Choose a "quantization channel" P

Ŷ
(1)
21 |Y

(1)
2

(·|·) and calculate

P
Ŷ

(1)
21

(·) as the marginal distribution of P
Ŷ

(1)
21 Y

(1)
2

(·). Generate 2n(R5+R6) n1-sequences ŷn1
21 (r, s),

r = 1, 2, . . . , 2nR5 , s = 1, 2, . . . , 2nR6 , by choosing each element ŷ
(1)
21,k(r, s) independently ac-

cording to P
Ŷ

(1)
21

(·). Choose a "quantization channel" P
Ŷ

(1)
22 |Y

(1)
2

(·|·) and calculate P
Ŷ

(1)
22

(·) as the

marginal distribution of P
Ŷ

(1)
22 Y

(1)
2

(·). Generate 2n(R7+R8) n1-sequences ŷn1
22 (t, z), t = 1, 2, . . . , 2nR7 ,

z = 1, 2, . . . , 2nR8 , by choosing each element ŷ
(1)
22,k(t, z) independently according to P

Ŷ
(1)
22

(·).

Generate 2nR5 n2-sequences xn2
2 (r) by choosing each element x

(2)
2,k(r) independently according

to P
X

(2)
2
(·). Generate 2nR7 n3-sequences xn3

2 (t) by choosing each element x
(3)
2,k(t) independently

according to P
X

(3)
2
(·).

Node 1 (Input) The message w13 is reindexed by a and b. In the first phase node 1 transmits

xn1
1 (a) within n1 transmissions. In the second phase node 1 transmits xn2

1 (b) within n2 transmis-

sions.

Node 3 (Input) The message w31 is reindexed by c and o. In the first phase node 3 transmits

xn1
3 (c) within n1 transmissions. In the third phase node 3 transmits xn3

3 (o) within n3 transmissions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (r̃, s̃)

such that

(ŷn1
21 (r̃, s̃), y

n1
2 ) ∈ T n1

ǫ (P
Ŷ

(1)
21 Y

(1)
2

). (A197)

If there is none such pair (r̃, s̃) an error is declared. Otherwise, the found pair (r̃, s̃) is the estimate

(r̂(2), ŝ(2)) of node 2 where the pair with the smallest linear index 2nR5(s − 1) + r is selected if

more than one pair was found. Then node 2 tries to find a a pair (t̃, z̃) such that

(
ŷn1
22 (t̃, z̃), y

n1
2

)
∈ T n1

ǫ (P
Ŷ

(1)
22 Y

(1)
2

). (A198)

If there is none such (t̃, z̃) an error is declared. Otherwise, (t̃, z̃) is the estimate (t̂(2), ẑ(2)) of node

2 where the pair with the smallest linear index 2nR7(z − 1) + t is selected if more than one pair

was found. In the second phase node 2 sends xn2
2 (r̂(2)). In the third phase node 2 sends xn3

2 (t̂(2)).

Node 1 (Output) In the third phase yn3
1 is observed. After the third phase node 1 tries to find an

index t̃ such that

(
xn3
2 (t̃), yn3

1

)
∈ T n3

ǫ (P
X

(3)
2 Y

(3)
1

). (A199)
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If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the

estimate t̂(1) of node 1. Then node 1 tries to find an index õ such that

(
xn3
3 (õ), xn3

2 (t̂(1)), yn3
1

)
∈ T n3

ǫ (P
X

(3)
3 X

(3)
2 Y

(3)
1

). (A200)

If there is none or more than one such index õ, set ô(1) = 1. Otherwise, the found index õ is the

estimate ô(1) of node 1. Then node 1 tries to find an index z̃ such that

(
ŷn1
22 (t̂(1), z̃), x

n1
1 (a)

)
∈ T n1

ǫ (P
Ŷ

(1)
22 X

(1)
1
). (A201)

If there is none or more than one such index z̃, set ẑ(1) = 1. Otherwise, the found index z̃ is the

estimate ẑ(1) of node 1. Finally node 1 tries to find an index c̃ such that

(
xn1
3 (c̃), xn1

1 (a), ŷn1
22 (t̂(1), ẑ(1))

)
∈ T n1

ǫ (P
X

(1)
3 X

(1)
1 Ŷ

(1)
22

). (A202)

If there is none or more than one such index c̃, set ĉ(1) = 1. Otherwise, the found index c̃ is the

estimate ĉ(1) of node 1.

Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index r̃ such that

(xn2
2 (r̃), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
2 Y

(2)
3

). (A203)

If there is none or more than one such index r̃, set r̂(3) = 1. Otherwise, the found index r̃ is the

estimate r̂(3) of node 3. Then node 3 tries to find an index b̃ such that

(

xn2
1 (b̃), xn2

2 (r̂(3)), yn2
3

)

∈ T n2
ǫ (P

X
(2)
1 X

(2)
2 Y

(2)
3

). (A204)

If there is none or more than one such index b̃, set b̂(3) = 1. Otherwise, the found index b̃ is the

output b̂(3) of node 3. Then node 3 tries to find an index s̃ such that

(ŷn1
21 (r̂(3), s̃), x

n1
3 (c)) ∈ T n1

ǫ (P
Ŷ

(1)
21 X

(1)
3
). (A205)

If there is none or more than one such index s̃, set ŝ(3) = 1. Otherwise, the found index s̃ is the

estimate ŝ(3) of node 3. Finally node 3 tries to find an index ã such that

(xn1
1 (ã), xn1

3 (c), ŷn1
21 (r̂(3), ŝ(3))) ∈ T n1

ǫ (P
X

(1)
1 X

(1)
3 Ŷ

(1)
21

). (A206)

If there is none or more than one such index ã, set â(1) = 1. Otherwise, the found index ã is the

output â(1) of node 1.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R5 +R6 > τ1I(Ŷ
(1)
21 ; Y

(1)
2 )

R7 +R8 > τ1I(Ŷ
(1)
22 ; Y

(1)
2 ) (A207)
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at node 2,

R7 < τ3I(X
(3)
2 ; Y

(3)
1 )

R4 < τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 )

R8 < τ1I(Ŷ
(1)
22 ;X

(1)
1 )

R3 < τ1I(X
(1)
3 ; Ŷ

(1)
22 |X(1)

1 ) (A208)

at node 1 and

R5 < τ2I(X
(2)
2 ; Y

(2)
3 )

R2 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )

R6 < τ1I(Ŷ
(1)
21 ;X

(1)
3 )

R1 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |X(1)

3 ) (A209)

at node 3. Consequently,

R13 = R1 +R2 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |X(1)

3 ) + τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 )

R31 = R3 +R4 < τ1I(X
(1)
3 ; Ŷ

(1)
22 |X(1)

1 ) + τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 ) (A210)

subject to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 ) < τ1I(Ŷ

(1)
21 ;X

(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
3 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 ) < τ1I(Ŷ

(1)
22 ;X

(1)
1 ) + τ3I(X

(3)
2 ; Y

(3)
1 ). (A211)

By the use of the Markov chains

X
(1)
3 − Y

(1)
2 − Ŷ

(1)
21

X
(1)
1 − Y

(1)
2 − Ŷ

(1)
22 (A212)

implying

I(Ŷ
(1)
21 ;X

(1)
3 |Y (1)

2 ) = 0

I(Ŷ
(1)
22 ;X

(1)
1 |Y (1)

2 ) = 0 (A213)

the constraints can be reformulated to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |X(1)

3 ) < τ2I(X
(2)
2 ; Y

(2)
3 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |X(1)

1 ) < τ3I(X
(3)
2 ; Y

(3)
1 ). (A214)

This establishes the proposition. �
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A5.3 Partial-Decode-Compress-and-Forward

Code Generate 2nR1 n1-sequences un1
1 (a), a = 1, 2, . . . , 2nR1 , by choosing each element

u
(1)
1,k(a) independently according to P

U
(1)
1
(·). For each un1

1 (a) generate 2nR2 n1-sequences

xn1
1 (a, b), b = 1, 2, . . . , 2nR2 , by choosing each element x

(1)
1,k(a, b) independently according

to P
X

(1)
1 |U

(1)
1
(·|u(1)

1,k(a)). Generate 2nR4 n1-sequences un1
3 (r), r = 1, 2, . . . , 2nR4 , by choosing

each element u
(1)
3,k(r) independently according to P

U
(1)
3
(·). For each un1

3 (r) generate 2nR5 n1-

sequences xn1
3 (r, s), s = 1, 2, . . . , 2nR5 , by choosing each element x

(1)
3,k(r, s) independently ac-

cording to P
X

(1)
3 |U

(1)
3
(·|u(1)

3,k(r)). Choose a "quantization channel" P
Ŷ

(1)
21 |Y

(1)
2 U

(1)
1 U

(1)
3
(·|·) and calcu-

late P
Ŷ

(1)
21 |U

(1)
1 U

(1)
3
(·|·) as the marginal distribution of P

Ŷ
(1)
21 Y

(1)
2 |U

(1)
1 U

(1)
3
(·|·). For each pair un1

1 (a),

un1
3 (r), generate 2n(R7+R8) n1-sequences ŷn1

21 (a, r, o, e), o = 1, 2, . . . , 2nR7 , e = 1, 2, . . . , 2nR8 ,

by choosing each element ŷ
(1)
21,k(a, r, o, e) independently according to P

Ŷ
(1)
21 |U

(1)
1 U

(1)
3
(·). Choose a

"quantization channel" P
Ŷ

(1)
22 |Y

(1)
2 U

(1)
1 U

(1)
3
(·|·) and calculate P

Ŷ
(1)
22 |U

(1)
1 U

(1)
3
(·|·) as the marginal dis-

tribution of P
Ŷ

(1)
22 Y

(1)
2 |U

(1)
1 U

(1)
3
(·|·). For each pair un1

1 (a), un1
3 (r), generate 2n(R9+R10) n1-sequences

ŷn1
22 (a, r, q, z), q = 1, 2, . . . , 2nR9 , z = 1, 2, . . . , 2nR10 , by choosing each element ŷ

(1)
22,k(a, r, q, z)

independently according to P
Ŷ

(1)
22 |U

(1)
1 U

(1)
3
(·). Generate 2nR1 n2-sequences un2

2 (a) by choosing each

element u
(2)
2,k(a) independently according to P

U
(2)
2
(·). For each un2

2 (a) generate 2nR7 n2-sequences

xn2
2 (a, o) by choosing each element x

(2)
2,k(a, o) independently according to P

X
(2)
2 |U

(2)
2
(·|u(2)

2,k(a)). For

each un2
2 (a) generate 2nR3 n2-sequences xn2

1 (a, c) by choosing each element x
(2)
1,k(a, c) indepen-

dently according to P
X

(2)
1 |U

(2)
2
(·|u(2)

2,k(a)). Generate 2nR4 n3-sequences un3
2 (r) by choosing each

element u
(3)
2,k(r) independently according to P

U
(3)
2
(·). For each un3

2 (r) generate 2nR9 n3-sequences

xn3
2 (r, q) by choosing each element x

(3)
2,k(r, q) independently according to P

X
(3)
2 |U

(3)
2
(·|u(3)

2,k(r)). For

each un3
2 (r) generate 2nR6 n3-sequences xn3

3 (r, t) by choosing each element x
(3)
3,k(r, t) indepen-

dently according to P
X

(3)
3 |U

(3)
2
(·|u(3)

2,k(r)).

Node 1 (Input) The message w13 is reindexed by (a, b, c). In the first phase node 1 transmits

xn1
1 (a, b) within n1 transmissions. In the second phase node 1 transmits xn2

2 (a, c) within n2 trans-

missions.

Node 3 (Input) The message w31 is reindexed by (r, s, t). In the first phase node 3 transmits

xn1
3 (r, s) within n1 transmissions. In the third phase node 3 transmits xn3

3 (r, t) within n3 transmis-

sions.

Node 2 In the first phase yn1
2 is observed. After the first phase node 2 tries to find a pair (ã, r̃)

such that

(un1
1 (ã), un1

3 (r̃), yn1
2 ) ∈ T n1

ǫ (P
U

(1)
1 U

(1)
3 Y

(1)
2

). (A215)
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If there is none or more than one such pair (ã, r̃), set (â(2), r̂(2)) = (1, 1). Otherwise, the found

pair (ã, r̃) is the estimate (â(2), r̂(2)) of node 2. Then node 2 tries to find a pair (õ, ẽ) such that

(ŷn1
21 (â(2), r̂(2), õ, ẽ), u

n1
1 (â(2)), un1

3 (r̂(2)), yn1
2 ) ∈ T n1

ǫ (P
Ŷ

(1)
21 U

(1)
1 U

(1)
3 Y

(1)
2

). (A216)

If there is none such pair (õ, ẽ) an error is declared. Otherwise, the found pair (õ, ẽ) is the estimate

(ô(2), ê(2)) of node 2 where the pair with the smallest linear index 2nR7(e − 1) + o is selected if

more than one pair was found. Then node 2 tries to find a a pair (q̃, z̃) such that

(ŷn1
22 (â(2), r̂(2), q̃, z̃), u

n1
1 (â(2)), un1

3 (r̂(2)), yn1
2 ) ∈ T n1

ǫ (P
Ŷ

(1)
22 U

(1)
1 U

(1)
3 Y

(1)
2

). (A217)

If there is none such pair (q̃, z̃) an error is declared. Otherwise, the found pair (q̃, z̃) is the estimate

(q̂(2), ẑ(2)) of node 2 where the pair with the smallest linear index 2nR9(z − 1) + q is selected if

more than one pair was found. In the second phase node 2 sends xn2
2 (â(2), ô(2)). In the third phase

node 2 sends xn3
2 (r̂(2), q̂(2)).

Node 1 (Output) In the third phase yn3
1 is observed. After the third phase node 1 tries to find an

index r̃ such that

(un3
2 (r̃), yn3

1 ) ∈ T n3
ǫ (P

U
(3)
2 Y

(3)
1

). (A218)

If there is none or more than one such index r̃, set r̂(1) = 1. Otherwise, the found index r̃ is the

estimate r̂(1) of node 1. Then node 1 tries to find an index q̃ such that

(xn3
2 (r̂(1), q̃), un3

2 (r̂(1)), yn3
1 ) ∈ T n3

ǫ (P
X

(3)
2 U

(3)
2 Y

(3)
1

). (A219)

If there is none or more than one such index q̃, set q̂(1) = 1. Otherwise, the found index q̃ is the

estimate q̂(1) of node 1. Then node 1 tries to find an index t̃ such that

(
xn3
3 (r̂(1), t̃), xn3

2 (r̂(1), q̂(1)), un3
2 (r̂(1)), yn3

1

)
∈ T n3

ǫ (P
X

(3)
3 X

(3)
2 U

(3)
2 Y

(3)
1

). (A220)

If there is none or more than one such t̃, set t̂(1) = 1. Otherwise, the found index t̃ is the output

t̂(1) of node 1. Then node 1 tries to find an index z̃ such that

(ŷn1
22 (a, r̂(1), q̂(1), z̃), u

n1
1 (a), un1

3 (r̂(1)), xn1
1 (a, b)) ∈ T n1

ǫ (P
Ŷ

(1)
22 U

(1)
1 U

(1)
3 X

(1)
1
). (A221)

If there is none or more than one such index z̃, set ẑ(1). Otherwise, the found index z̃ is the estimate

ẑ(1) of node 1. Finally node 1 tries to find an index s̃ such that

(xn1
3 (r̂(1), s̃), xn1

1 (a, b), un1
1 (a), un1

3 (r̂(1)), ŷn1
22 (a, r̂(1), q̂(1), ẑ(1)))

∈ T n1
ǫ (P

X
(1)
3 X

(1)
1 U

(1)
1 U

(1)
3 Ŷ

(1)
22

). (A222)

If there is none or more than one such index s̃, set ŝ(1) = 1. Otherwise, the found index s̃ is the

estimate ŝ(1) of node 1.
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Node 3 (Output) In the second phase yn2
3 is observed. After the second phase node 3 tries to find

an index ã such that

(un2
2 (ã), yn2

3 ) ∈ T n2
ǫ (P

U
(2)
2 Y

(2)
3

). (A223)

If there is none or more than one such index ã, set â(3) = 1. Otherwise, the found index ã is the

estimate â(3) of node 3. Then node 3 tries to find an index õ such that

(xn2
2 (â(3), õ), un2

2 (â(3)), yn2
3 ) ∈ T n2

ǫ (P
X

(2)
2 U

(2)
2 Y

(2)
3

). (A224)

If there is none or more than one such index õ, set ô(3) = 1. Otherwise, the found index õ is the

estimate ô(3) of node 3. Then node 3 tries to find an index c̃ such that

(xn2
1 (â(3), c̃), xn2

2 (â(3), ô(3)), un2
2 (â(3)), yn2

3 ) ∈ T n2
ǫ (P

X
(2)
1 X

(2)
2 U

(2)
2 Y

(2)
3

). (A225)

If there is none or more than one such index c̃, set ĉ(3) = 1. Otherwise, the found index c̃ is the

estimate ĉ(3) of node 3. Then node 3 tries to find an index ẽ such that

(ŷn1
21 (â(3), r, ô(3), ẽ), x

n1
3 (r, s), un1

1 (â(3)), un1
3 (r)) ∈ T n1

ǫ (P
Ŷ

(1)
22 X

(1)
3 U

(1)
1 U

(1)
3
). (A226)

If there is none or more than one such index ẽ, set ê(3) = 1. Otherwise, the found index ẽ is the

estimate ê(3) of node 3. Finally node 3 tries to find an index b̃ such that

(

xn1
1 (â(3), b̃), xn1

3 (r, s), un1
1 (â(3)), un1

3 (r), ŷn1
21 (â(3), r, ô(3), ê(3))

)

∈ T n1
ǫ (P

X
(1)
1 X

(1)
3 U

(1)
1 U

(1)
3 Ŷ

(1)
21

). (A227)

If there is none or more than one such index b̃, set b̂(3) = 1. Otherwise, the found index b̃ is the

estimate b̂(3) of node 3.

Rates An error analysis along the lines of A2.1 and A2.2 reveals that for large n, ǫ > 0 but small,

reliable communication requires

R1 < τ1I(U
(1)
1 ; Y

(1)
2 |U (1)

3 )

R4 < τ1I(U
(1)
3 ; Y

(1)
2 |U (1)

1 )

R1 +R4 < τ1I(U
(1)
1 , U

(1)
3 ; Y

(1)
2 )

R7 +R8 > τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 )

R9 +R10 > τ1I(Ŷ
(1)
22 ; Y

(1)
2 |U (1)

1 U
(1)
3 ) (A228)

at node 2,

R4 < τ3I(U
(3)
2 ; Y

(3)
1 )

R9 < τ3I(X
(3)
2 ; Y

(3)
1 |U (3)

2 )

R6 < τ3I(X
(3)
3 ; Y

(3)
1 |X(3)

2 U
(3)
2 )

R10 < τ1I(Ŷ
(1)
22 ;X

(1)
1 |U (1)

1 U
(1)
3 )

R5 < τ1I(X
(1)
3 ; Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 ) (A229)
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at node 1 and

R1 < τ2I(U
(2)
2 ; Y

(2)
3 )

R7 < τ2I(X
(2)
2 ; Y

(2)
3 |U (2)

2 )

R3 < τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 U
(2)
2 )

R8 < τ1I(Ŷ
(1)
21 ;X

(1)
3 |U (1)

1 U
(1)
3 )

R2 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ). (A230)

at node 3. Consequently,

R13 < τ1I(U
(1)
1 ; Y

(1)
2 |U (1)

3 ) + τ1I(X
(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 U
(2)
2 )

R13 < τ1I(X
(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ) + τ2I(U

(2)
2 ; Y

(2)
3 ) + τ2I(X

(2)
1 ; Y

(2)
3 |X(2)

2 U
(2)
2 )

R31 < τ1I(U
(1)
3 ; Y

(1)
2 |U (1)

1 ) + τ1I(X
(1)
3 ; Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 ) + τ3I(X

(3)
3 ; Y

(3)
1 |X(3)

2 U
(3)
2 )

R31 < τ1I(X
(1)
3 ; Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 ) + τ3I(U

(3)
2 ; Y

(3)
1 ) + τ3I(X

(3)
3 ; Y

(3)
1 |X(3)

2 U
(3)
2 )

R13 +R31 < τ1I(U
(1)
1 U

(1)
3 ; Y

(1)
2 ) + τ1I(X

(1)
1 ; Ŷ

(1)
21 |U (1)

1 U
(1)
3 X

(1)
3 ) + τ1I(X

(1)
3 ; Ŷ

(1)
22 |U (1)

1 U
(1)
3 X

(1)
1 )+

τ2I(X
(2)
1 ; Y

(2)
3 |X(2)

2 U
(2)
2 ) + τ3I(X

(3)
3 ; Y

(3)
1 |X(3)

2 U
(3)
2 ) (A231)

subject to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 , U
(1)
3 ) < τ1I(Ŷ

(1)
21 ;X

(1)
3 |U (1)

1 U
(1)
3 ) + τ2I(X

(2)
2 ; Y

(2)
3 |U (2)

2 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |U (1)

1 , U
(1)
3 ) < τ1I(Ŷ

(1)
22 ;X

(1)
1 |U (1)

1 U
(1)
3 ) + τ3I(X

(3)
2 ; Y

(3)
1 |U (3)

2 ). (A232)

By the use of the Markov chains

X
(1)
1 − (Y

(1)
2 , U

(1)
1 , U

(1)
3 )− Ŷ

(1)
22

X
(1)
3 − (Y

(1)
2 , U

(1)
1 , U

(1)
3 )− Ŷ

(1)
21 (A233)

implying

I(Ŷ
(1)
21 ;X

(1)
3 |Y (1)

2 U
(1)
1 U

(1)
3 ) = 0

I(Ŷ
(1)
22 ;X

(1)
1 |Y (1)

2 U
(1)
1 U

(1)
3 ) = 0 (A234)

the constraints can be reformulated to

τ1I(Ŷ
(1)
21 ; Y

(1)
2 |U (1)

1 U
(1)
3 X

(1)
3 ) < τ2I(X

(2)
2 ; Y

(2)
3 |U (2)

2 )

τ1I(Ŷ
(1)
22 ; Y

(1)
2 |U (1)

1 U
(1)
3 X

(1)
1 ) < τ3I(X

(3)
2 ; Y

(3)
1 |U (3)

2 ). (A235)

This establishes the proposition. �
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A6. Proofs: Achievable Rates 6P Scheme

Comments and Assumptions Random encoding and jointly typical decoding will be used to

show which rates are achievable for the half-duplex two-way relay channel. For the following

proofs it will be assumed that the transmission is performed with n ≥ 6 channel uses and six

phases l = 1, . . . , L = 6. Phase l features nl ≥ 1 transmission slots with
∑L

l=1 nl = n. If n
grows each nl is assumed to grow at the same rate. For large n, nl

n
→ τl > 0. The message

w13 ∈ {1, . . . , 2nR13} will be sent from node 1 to node 3 and the message w31 ∈ {1, . . . , 2nR31}
will be sent from node 3 to node 1. For all proofs 2nR denotes a positive integer.

A6.1 Decode-and-Forward

Code Generate 2n(R1+R2+R3) n1-sequences xn1
1 (a, b, c), a = 1, 2, . . . , 2nR1 , b = 1, 2, . . . , 2nR2 ,

c = 1, 2, . . . , 2nR3 , by choosing each element x
(1)
1,k(a, b, c) independently according to P

X
(1)
1
(·).

Generate 2n(R7+R8+R9) n2-sequences xn2
3 (r, s, t), r = 1, 2, . . . , 2nR7 , s = 1, 2, . . . , 2nR8 , t =

1, 2, . . . , 2nR9 , by choosing each element x
(2)
3,k(r, s, t) independently according to P

X
(2)
3
(·). Gener-

ate 2n(R4+R5) n3-sequences xn3
1 (d, e), d = 1, 2, . . . , 2nR4 , e = 1, 2, . . . , 2nR5 , by choosing each ele-

ment x
(3)
1,k(d, e) independently according to P

X
(3)
1
(·). Generate 2n(R10+R11) n3-sequences xn3

3 (o, q),

o = 1, 2, . . . , 2nR10 , q = 1, 2, . . . , 2nR11 , by choosing each element x
(3)
3,k(o, q) independently accord-

ing to P
X

(3)
3
(·). Generate 2n(R1+R4+R7+R10) n4-sequences xn4

2 (a, d, r, o), by choosing each element

x
(4)
2,k(a, d, r, o) independently according to P

X
(4)
2
(·). Generate 2n(R8+R11) n5-sequences xn5

2 (s, q), by

choosing each element x
(5)
2,k(s, q) independently according to P

X
(5)
2
(·). For each xn5

2 (s, q) generate

2nR12 n5-sequences xn5
3 (s, q, z), z = 1, 2, . . . , 2nR12 , choosing each element x

(5)
3,k(s, q, z) indepen-

dently according to P
X

(5)
3 |X

(5)
2
(·|x(5)

2,k(s, q)). Generate 2n(R2+R5) n6-sequences xn6
2 (b, e), by choos-

ing each element x
(6)
2,k(b, e) independently according to P

X
(6)
2
(·). For each xn6

2 (b, e) generate 2nR6

n6-sequences xn6
1 (b, e, f), f = 1, 2, . . . , 2nR6 , choosing each element x

(6)
1,k(b, e, f) independently

according to P
X

(6)
1 |X

(6)
2
(·|x(6)

2,k(b, e)).

Node 1 (Input) The message w13 is reindexed by (a, b, c, d, e, f). In the first phase node 1 trans-

mits xn1
1 (a, b, c) within n1 transmissions. In the third phase node 1 transmits xn3

1 (d, e) within n3

transmissions. In the sixth phase node 1 transmits xn6
1 (b, e, f) within n6 transmissions.

Node 3 (Input) The message w31 is reindexed by (r, s, t, o, q, z). In the second phase node 3

transmits xn2
3 (r, s, t) within n2 transmissions. In the third phase node 3 transmits xn3

3 (o, q) within

n3 transmissions. In the fifth phase node 3 transmits xn5
3 (s, q, z) within n5 transmissions.

Node 2 In the first phase yn1
2 is observed. In the second phase yn2

2 is observed. In the third phase

yn3
2 is observed. After the first phase node 2 tries to find a triple (ã, b̃, c̃) such that

(

xn1
1 (ã, b̃, c̃), yn1

2

)

∈ T n1
ǫ (P

X
(1)
1 Y

(1)
2

). (A236)

If there is none or more than one such triple (ã, b̃, c̃), set (â(2), b̂(2), ĉ(2)) = (1, 1, 1). Otherwise,

the found triple (ã, b̃, c̃) is the estimate (â(2), b̂(2), ĉ(2)) of node 2. After the second phase node 2
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tries to find a triple (r̃, s̃, t̃) such that
(
xn2
3 (r̃, s̃, t̃), yn2

2

)
∈ T n2

ǫ (P
X

(2)
3 Y

(2)
2

). (A237)

If there is none or more than one such triple (r̃, s̃, t̃), set (r̂(2), ŝ(2), t̂(2)) = (1, 1, 1). Otherwise,

the found triple (r̃, s̃, t̃) is the estimate (r̂(2), ŝ(2), t̂(2)) of node 2. After the third phase node 2

tries to find a quadruple (d̃, ẽ, õ, q̃) such that
(

xn3
1 (d̃, ẽ), xn3

3 (õ, q̃), yn3
2

)

∈ T n3
ǫ (P

X
(3)
1 X

(3)
3 Y

(3)
2

). (A238)

If there is none or more than one such quadruple (d̃, ẽ, õ, q̃), set (d̂(2), ê(2), ô(2), q̂(2)) =
(1, 1, 1, 1). Otherwise, the found quadruple (d̃, ẽ, õ, q̃) is the estimate (d̂(2), ê(2), ô(2), q̂(2)) of

node 2.

In the fourth phase node 2 sends xn4
2 (â(2), d̂(2), r̂(2), ô(2)). In the fifth phase node 2 sends

xn5
2 (ŝ(2), q̂(2)). In the sixth phase node 2 sends xn6

2 (b̂(2), ê(2)).

Node 1 (Output) In the second phase yn2
1 is observed. In the fourth phase yn4

1 is observed. In the

fifth phase yn5
1 is observed. After the fourth phase node 1 tries to find a pair (r̃, õ) such that

(xn4
2 (a, d, r̃, õ), yn4

1 ) ∈ T n4
ǫ (P

X
(4)
2 Y

(4)
1

). (A239)

If there is none or more than one such pair (r̃, õ), set (r̂(1), ô(1)). Otherwise, (r̃, õ) is the estimate

(r̂(1), ô(1)) of node 1. Now node 1 tries to find a pair (s̃, q̃) such that

(xn5
2 (s̃, q̃), yn5

1 ) ∈ T n5
ǫ (P

X
(5)
2 Y

(5)
1

). (A240)

If there is none or more than one such pair (s̃, q̃), set (ŝ(1), q̂(1)) = (1, 1). Otherwise, (s̃, q̃) is the

estimate (ŝ(1), q̂(1)) of node 1. Then node 1 tries to find an index z̃ such that

(xn5
3 (ŝ(1), q̂(1), z̃), xn5

2 (ŝ(1), q̂(1)), yn5
1 ) ∈ T n5

ǫ (P
X

(5)
3 X

(5)
2 Y

(5)
1

). (A241)

If there is none or more than one such index z̃, set ẑ(1) = 1. Otherwise, z̃ is the estimate ẑ(1) of

node 1. Finally node 1 tries to find an index t̃ such that
(
xn2
3 (r̂(1), ŝ(1), t̃), yn2

1

)
∈ T n2

ǫ (P
X

(2)
3 Y

(2)
1

). (A242)

If there is none or more than one such index t̃, set t̂(1) = 1. Otherwise, t̃ is the estimate t̂(1) of

node 1. The message ŵ31(1) is found by reindexing (r̂(1), ŝ(1), t̂(1), ô(1), q̂(1), ẑ(1)).

Node 3 (Output) In the first phase yn1
3 is observed. In the fourth phase yn4

3 is observed. In the

sixth phase yn5
3 is observed. After the fourth phase node 3 tries to find a pair (ã, d̃) such that

(

xn4
2 (ã, d̃, r, o), yn4

3

)

∈ T n4
ǫ (P

X
(4)
2 Y

(4)
3

). (A243)

If there is none or more than one such pair (ã, d̃), set (â(3), d̂(3)). Otherwise, (ã, d̃) is the estimate

(â(3), d̂(3)) of node 3. Now node 3 tries to find a pair (b̃, ẽ) such that
(

xn6
2 (b̃, ẽ), yn6

3

)

∈ T n6
ǫ (P

X
(6)
2 Y

(6)
3

). (A244)
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If there is none or more than one such pair (b̃, ẽ), set (b̂(3), ê(3)) = (1, 1). Otherwise, (b̃, ẽ) is the

estimate (b̂(3), ê(3)) of node 3. Then node 3 tries to find an index f̃ such that

(

xn6
1 (b̂(3), ê(3), f̃), xn6

2 (b̂(3), ê(3)), yn6
3

)

∈ T n6
ǫ (P

X
(6)
1 X

(6)
2 Y

(6)
3

). (A245)

If there is none or more than one such index f̃ , set f̂(3) = 1. Otherwise, f̃ is the estimate f̂(3) of

node 3. Finally node 3 tries to find an index c̃ such that

(

xn1
1 (â(3), b̂(3), c̃), yn1

3

)

∈ T n1
ǫ (P

X
(1)
1 Y

(1)
3

). (A246)

If there is none or more than one such index c̃, set ĉ(3) = 1. Otherwise, c̃ is the estimate ĉ(3) of

node 3. The message ŵ13(3) is found by reindexing (â(3), b̂(3), ĉ(3), d̂(3), ê(3), f̂(3)).

Rates An error analysis along the lines of A2.1 reveals that for large n, ǫ > 0 but small, reliable

communication requires

R1 +R2 +R3 < τ1I(X
(1)
1 ; Y

(1)
2 )

R7 +R8 +R9 < τ2I(X
(2)
3 ; Y

(2)
2 )

R4 +R5 < τ3I(X
(3)
1 ; Y

(3)
2 |X(3)

3 )

R10 +R11 < τ3I(X
(3)
3 ; Y

(3)
2 |X(3)

1 )

R4 +R5 +R10 +R11 < τ3I(X
(3)
1 X

(3)
3 ; Y

(3)
2 ) (A247)

at node 2,

R7 +R10 < τ4I(X
(4)
2 ; Y

(4)
1 )

R8 +R11 < τ5I(X
(5)
2 ; Y

(5)
1 )

R12 < τ5I(X
(5)
3 ; Y

(5)
1 |X(5)

2 )

R9 < τ2I(X
(2)
3 ; Y

(2)
1 ) (A248)

at node 1 and

R1 +R4 < τ4I(X
(4)
2 ; Y

(4)
3 )

R2 +R5 < τ6I(X
(6)
2 ; Y

(6)
3 )

R6 < τ6I(X
(6)
1 ; Y

(6)
3 |X(6)

2 )

R3 < τ1I(X
(1)
1 ; Y

(1)
3 ) (A249)

at node 3. Consequently,

R13 < τ1I(X
(1)
1 ; Y

(1)
2 ) + τ3I(X

(3)
1 ; Y

(3)
2 |X(3)

3 ) + τ6I(X
(6)
1 ; Y

(6)
3 |X(6)

2 )

R13 < τ1I(X
(1)
1 ; Y

(1)
3 ) + τ4I(X

(4)
2 ; Y

(4)
3 ) + τ6I(X

(6)
2 ; Y

(6)
3 ) + τ6I(X

(6)
1 ; Y

(6)
3 |X(6)

2 )

R31 < τ2I(X
(2)
3 ; Y

(2)
2 ) + τ3I(X

(3)
3 ; Y

(3)
2 |X(3)

1 ) + τ5I(X
(5)
3 ; Y

(5)
1 |X(5)

2 )

R31 < τ2I(X
(2)
3 ; Y

(2)
1 ) + τ4I(X

(4)
2 ; Y

(4)
1 ) + τ5I(X

(5)
2 ; Y

(5)
1 ) + τ5I(X

(5)
3 ; Y

(5)
1 |X(5)

2 ) (A250)
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subject to

R13 +R31 < τ1I(X
(1)
1 ; Y

(1)
2 ) + τ2I(X

(2)
3 ; Y

(2)
2 ) + τ3I(X

(3)
1 X

(3)
3 ; Y

(3)
2 )+

+ τ5I(X
(5)
3 ; Y

(5)
1 |X(5)

2 ) + τ6I(X
(6)
1 ; Y

(6)
3 |X(6)

2 ). (A251)

This establishes the proposition. �
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A7. Algorithms

Algorithm 1 HD-OWRC, Time Allocation for Rate Maximization

Approximate communication scenario by one of the propositions or the upper bound

Specify all channels by conditional distributions Pc (or densities pc)
Specify all relevant fix input distributions Pk (pk) with k = 1, . . . , K

R⋆
o = 0

for all k = 1 to K do

Calculate all mutual informations I(Pc, Pk)
specify A, b, c (see 2.2)

Solve: max cTx s.t. Ax ≤ b, 0 ≤ x, const(x) → xk

Ro,k = cTxk

if Ro,k > R⋆
o then

R⋆
o = Ro

x⋆ = xk

P ⋆ = Pk

end if

end for

R⋆
o → achievable rate

P ⋆ → optimal input distribution

x⋆ → optimal time allocation τ ⋆
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Algorithm 2 HD-OWRC, Time Allocation for Transmission Cost Minimization with Rate Request

Approximate communication scenario by one of the propositions or the upper bound

Specify all channels by conditional distributions Pc (or densities pc)
Specify all relevant fix input distributions Pk (pk) with k = 1, . . . , K
Associate costs cl,k(τ = 1, Pc, Pk) with each phase l of unit time

Rate request: R
TC⋆ = ∞
flag=false

for all k = 1 to K do

Calculate all mutual informations I(Pc, Pk)
specify A, b, c (see 2.2)

Solve: min cTx s.t. Ax ≤ b, 0 ≤ x, const(x) → xk

if LP has solution then

flag=true

TCk = cTxk

if TCk < TC⋆ then

TC⋆ = TC
x⋆ = xk

P ⋆ = Pk

end if

end if

end for

if flag then

TC⋆ → transmission cost

P ⋆ → optimal input distribution

x⋆ → optimal time allocation τ ⋆

else

R is not achievable

end if
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Algorithm 3 HD-TWRC, Time Allocation for Weighted Sum-Rate Maximization

Approximate communication scenario by one of the propositions or scheme upper bounds

Specify all channels by conditional distributions Pc (or densities pc)
Specify all relevant fix input distributions Pk (pk) with k = 1, . . . , K

Choose a weight: α
R⋆

o = 0
for all k = 1 to K do

Calculate all mutual informations I(Pc, Pk)
Specify A, b, c(α) (see 3.3)

Solve: max cTx s.t. Ax ≤ b, 0 ≤ x, const(x) → xk

Ro,k = cTxk

if Ro,k > R⋆
o then

R⋆
o = Ro

x⋆ = xk

P ⋆ = Pk

end if

end for

R⋆
o → achievable weighted sum-rate

P ⋆ → optimal input distributions

x⋆ → R⋆
13, R⋆

31 and optimal time allocation τ ⋆
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Algorithm 4 HD-TWRC, Time Allocation for Sum-Rate/MaxMin-Rate Maximization

Approximate communication scenario by one of the propositions or scheme upper bounds

Specify all channels by conditional distributions Pc (or densities pc)
Specify all relevant input distributions Pk (pk) with k = 1, . . . , K

R⋆
o = 0

for all k = 1 to K do

Calculate all mutual informations I(Pc, Pk)
Specify A, b, c (see 3.3)

Solve: max cTx s.t. Ax ≤ b, 0 ≤ x, const(x) → xk

Ro,k = cTxk

if Ro,k > R⋆
o then

R⋆
o = Ro

x⋆ = xk

P ⋆ = Pk

end if

end for

R⋆
o → achievable sum-rate/maxmin-rate

P ⋆ → optimal input distributions

x⋆ → Rates R13, R31 / RMMP and time allocation solution τ ⋆
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Algorithm 5 HD-TWRC, Time Allocation for Transmission Cost Minimization with Rate Request

Approximate communication scenario by one of the propositions or scheme upper bounds

Specify all channels by conditional distributions Pc (or densities pc)
Specify all relevant fix input distributions Pk (pk) with k = 1, . . . , K
Associate costs cl,k(τ = 1, Pc, Pk) with each phase l of unit time duration

Rate request: R = [R13 R31]
T

TC⋆ = ∞
flag=false

for all k = 1 to K do

Calculate all mutual informations I(Pc, Pk) from proposition or upper bound

Specify A, b, c (see 3.3)

Solve: min cTx s.t. Ax ≤ b, 0 ≤ x, const(x) → xk

if LP has solution then

flag=true

TCk = cTxk

if TCk < TC⋆ then

TC⋆ = TC
x⋆ = xk

P ⋆ = Pk

end if

end if

end for

if flag then

TC⋆ → transmission cost

P ⋆ → optimal input distribution

x⋆ → optimal time allocation τ ⋆

else

R is not achievable

end if
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