
TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Informatik XVIII

Energy efficient capacity
management in virtualized data

centers

Andreas Wolke

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. Claudia Eckert
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Martin Bichler
2. Univ.-Prof. Dr. Georg Carle

Die Dissertation wurde am 22.09.2014 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 16.01.2015
angenommen.

ii

Abstract

With a growing demand for computing power and at the same time rising
energy prices, the cost-efficient operation of virtualized data centers becomes
increasingly important. In the intention to reduce operating costs, data center
operators are trying to minimize the total active server demand. In this work
we evaluated the performance of a variety of VM allocation controllers in two
commonly found scenarios. For enterprise data centers we could show that
static allocations have advantages over dynamic ones. Static allocations work
well for predictable workloads, which are typically found in enterprise envi-
ronments with a daily or weekly workload seasonality. Dynamic approaches
deliver good results for unpredictable workloads but need to trigger VM migra-
tions, which can decrease service quality because they entail resource demands
on their own. On-demand cloud scenarios with an unpredictable stream of
incoming and outgoing VM allocation requests benefit by dynamic strategies,
however. We found that dense packing followed by subsequent migrations in
case of overload to be an effective capacity management strategy. Our analysis
outcomes are based on an extensive set of simulations and experiments that
were conducted in a testbed infrastructure.

I

II

Zusammenfassung

Mit zunehmender Nachfrage an Rechenleistung bei zugleich steigenden Ener-
giepreisen gewinnt der kosteneffiziente Betrieb virtualisierter Rechenzentren
an Bedeutung. Zur Senkung von Investitions- und Energiekosten soll der Ser-
verbedarf mithilfe intelligenter Strategien zur Allokation virtueller Maschinen
(VMs) minimiert werden. Diese Arbeit beleuchtet die Effizienz verschiedener
VM-Allokationsstrategien anhand zweier gängiger Szenarien. Für betriebliche
Rechenzentren konnte gezeigt werden, dass statische Strategien den dynami-
schen vorzuziehen sind. Sie nutzen bekannte Muster aus Lastaufzeichnungen
um eine langfristige Allokation virtueller Maschinen zu berechnen. Dynami-
sche Ansätze migrieren VMs zwischen Servern und erzielen somit besonders
bei unbekannten Lastmustern gute Ergebnisse. Die anfallenden Migrationen
benötigen ihrerseits jedoch zusätzliche Ressourcen mit negativen Auswirkun-
gen auf das Gesamtsystem. Ein anderes Bild ergibt sich für On-Demand-
Szenarien mit einem variablen Strom an eingehenden und abgehenden VM-
Allokationsanfragen. Eintreffende VMs sollten initial möglichst dicht auf die
Server verteilt werden. Komplementär führen dynamische Ansätze einen Last-
ausgleich durch und gleichen Unzulänglichkeiten der initialen Platzierung aus.
Die Erkenntnisse beider Szenarien stützen sich auf Simulationen sowie um-
fangreiche experimentelle Studien die im Rahmen dieser Arbeit durchgeführt
wurden.

III

IV

Published work

Most sections of this thesis have been developed with co-authors and have
already been published in papers. In all cases, my contribution to the work
is significant. The individual sections of this thesis are based on the following
list of publications.

• Chapter 2 – A. Wolke, M. Bichler, and T. Setzer, “Planning vs. dynamic
control: Resource allocation in corporate clouds,” in IEEE Transactions
on Cloud Computing (TCC), Accepted, 2014. [98]

• Chapter 3 – A. Wolke and L. Ziegler, “Evaluating dynamic resource
allocation strategies in virtualized data centers,” in Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, 2014. [97]

• Chapter 4 – T. Setzer and A. Wolke, “Virtual machine re-assignment
considering migration overhead,” in 2012 IEEE Network Operations and
Management Symposium, 2012, pp. 631–634. [78]

• Chapter 5 – A. Wolke and C. Pfeiffer, “Improving enterprise VM con-
solidation with high-dimensional load profiles,” in Cloud Engineering
(IC2E), 2014 IEEE International Conference on, 2014. [95]

• Chapter 6 – M. Seibold, A. Wolke, M. Albutiu, M. Bichler, A. Kemper,
and T. Setzer, “Efficient Deployment of Main-Memory DBMS in Virtu-
alized Data Centers,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 311–318. [74]

V

• Chapter 7 – A. Wolke, T.-A. Boldbaatar, C. Pfeiffer, and M. Bichler,
“More than bin packing: A large-scale experiment on dynamic resource
allocation in IaaS clouds,” (Working Paper). [99]

• Chapter A – The simulation framework and hardware infrastructure
specifications stem from: A. Wolke, M. Bichler, and T. Setzer, “Planning
vs. dynamic control: Resource allocation in corporate clouds,” in IEEE
Transactions on Cloud Computing (TCC), Accepted, 2014. [98]

• Chapter B – A. Wolke and D. Srivastav, “Monitoring and Controlling Re-
search Experiments in Cloud Testbeds,” in Cloud Computing (CLOUD),
2013 IEEE 6th International Conference on, 2013, pp. 962–963. [96]

• Chapter C – The implementation was done in collaboration with D.
Srivastav who worked on his interdisciplinary project report.

• Chapter D – J. Kroß and A. Wolke, “Cloudburst - simulating work-
load for IaaS clouds,” in Cloud Computing (CLOUD), 2014 IEEE 7th
International Conference on, 2014. As a short paper in Workshop on
Information Technologies and Systems (WITS), Milan, Italy, 2013. [50]

• Section E.1 – A similar analysis was done by B. Speitkamp and M.
Bichler [86]. The results reported in this thesis are done on an extended
data set with a different interpretation. All illustrations and results were
recreated.

• Section E.3 – A. Wolke, T.-A. Boldbaatar, C. Pfeiffer, and M. Bichler,
“More than bin packing: A large-scale experiment on dynamic resource
allocation in IaaS clouds,” (Working Paper). [99]

• Chapter F – Controller parametrization was done in collaboration with
B. Tsend-Ayush who worked on his Master’s thesis.

VI

Contents

Abstract . I
Zusammenfassung . III
Published work . V
List of figures . XI
List of tables . XIII
Glossary . XV

1 Introduction 1
1.1 Allocation of persistent services 3
1.2 Allocation of non-persistent services 4
1.3 Consolidation and energy efficiency 6

I Allocation of persistent services 9

2 Static vs. dynamic controllers 11
2.1 Related work . 14

2.1.1 Static allocation controllers 14
2.1.2 Dynamic allocation controllers 15

2.2 Experimental infrastructure 16
2.2.1 VM allocation controllers 16

2.2.1.1 Round robin controller 16
2.2.1.2 Optimization and overbooking controllers . . 17
2.2.1.3 Reactive controller 18
2.2.1.4 Proactive controller 21

2.2.2 Workload . 21
2.3 Experimental design and procedures 24
2.4 Results . 26

2.4.1 Experiments with original workload mix 26
2.4.2 Experiments with modified workload mix 28
2.4.3 Migration overheads 31

VII

2.4.4 Sensitivity analysis . 34
2.4.5 Simulations for larger scenarios 35
2.4.6 Managerial impact . 39

2.5 Conclusions . 40

3 The DSAP dynamic controller 43
3.1 Related work . 44
3.2 Dynamic server allocation program 45
3.3 Experimental setup . 47
3.4 Simulation results . 49
3.5 Experimental results . 54
3.6 Conclusions . 57

4 Extending DSAP with migration overheads 59
4.1 Model formulation . 60
4.2 Simulation setup . 62
4.3 Simulation results . 63
4.4 Conclusions . 65

5 Vector packing as static allocation controller 67
5.1 Problem formulation . 68
5.2 Existing approaches . 69
5.3 Simulation setup . 70
5.4 Simulation results . 71

5.4.1 Effect of profile size . 72
5.4.2 Effect of scale . 73
5.4.3 Interaction of scale and profile size 75
5.4.4 Comparing algorithms 75

5.5 Service quality . 78
5.6 Conclusions . 79

6 Colocating VMs on main-memory database servers 81
6.1 Dynamic resource allocation of main-memory DBMSs 84
6.2 Cooperative consolidation . 88

6.2.1 Local and Host controller 89
6.2.2 Global controller . 94

6.3 Experimental evaluation . 95
6.4 Conclusions . 98

VIII

II Allocation of non-persistent services 101

7 Dynamic VM allocation 103
7.1 Related work . 106

7.1.1 Bin packing . 106
7.1.2 Scenarios with a fixed set of VMs 107
7.1.3 Scenarios with a variable set of VMs 108

7.2 Experimental setup . 109
7.3 Placement controllers . 110
7.4 Dynamic controllers . 111

7.4.1 DSAP+ . 111
7.4.2 KMControl and TControl 112

7.5 Experimental design . 114
7.6 Simulation results . 116
7.7 Experimental results . 121
7.8 Conclusions . 125

III Appendix 129

A IaaS cloud testbed for research experiments 131
A.1 Hardware infrastructure . 131
A.2 Software infrastructure . 133
A.3 Time series storage . 135

B Sonar testbed monitoring 137
B.1 Requirements . 138
B.2 Related work . 139
B.3 Sonar architecture . 141

B.3.1 Sensor and SensorHub components 142
B.3.2 Collector component 143
B.3.3 Structure of analysis scripts 148

C Relay infrastructure control 151
C.1 Architecture . 152
C.2 Behavior trees . 155

D Cloudburst 159
D.1 Related work . 160
D.2 Background . 162

IX

D.3 Architecture . 164
D.3.1 Differences to Rain . 166
D.3.2 SPECjEnterprise2010 load driver 167

D.4 Experimental results . 167
D.4.1 CPU utilization . 169
D.4.2 Memory utilization . 171

D.5 Conclusions . 173

E Workload data 177
E.1 Time series data . 177
E.2 Workload profile calculation 180
E.3 VM arrival and departure schedules 182

F KMControl and TControl parametrization 187
F.1 Results on KMControl . 189
F.2 Results on TControl . 190
F.3 Differences KMControl and TControl 190

Bibliography 193

X

List of Figures

1.1 Average server demand calculation 7

2.1 Workload profile samples for MIX1 and MIX2 23
2.2 Active servers vs. accumulated workload 31
2.3 VM migration duration and CPU overhead 32
2.4 Histograms of CPU overhead entailed by VM migrations . . . 33
2.5 Simulations on server savings for large scenarios 38

3.1 Migration phase between two stable allocations 48
3.2 Profile downsampling for the DSAP parametrization 49
3.3 DSAP server demand vs. number of allocation periods 50
3.4 DSAP service quality vs. number of migrations 50
3.5 VM migrations vs. number of VMs considered by the DSAP . 53

4.1 Server savings vs. VM migration overhead 63
4.2 Server savings vs. server size 64

5.1 Allocation density vs. profile size at a scale of 120 VMs 72
5.2 Required servers vs. profile size at a scale of 120 VMs 72
5.3 Allocation density vs. scenario scale 73
5.4 Server demand vs. scenario scale 73
5.5 Variance in the server demand vs. scenario scale 74

6.1 Cooperative resource allocation control approach 82
6.2 Reduced database memory during query execution 87
6.3 Global-, local-, and host-controller interaction 89
6.4 Execution times of in-memory vs. on-disk queries 91
6.5 Effect of the Stop+Restart strategy on query execution times . 93
6.6 Memory utilization without Stop+Restart query execution . . 93
6.7 Real-world workload trace used to generate database load . . . 96
6.8 Experimental results for the worst-case workload scenario . . . 97
6.9 Experimental results for the real-world workload scenario . . . 97

XI

7.1 Sample of a VM arrival and departure schedule 114
7.2 Heatmap of average server demand in simulations 118
7.3 Heatmap of migrations in simulations 120
7.4 Server CPU and memory utilization for one experiment 124

A.1 Hardware of the IaaS testbed infrastructure 132
A.2 Software of the IaaS testbed infrastructure 134

B.1 Sonar monitoring framework architecture 141
B.2 HBase table schema for storing time series data 145
B.3 Hbase table schema for the uidmap lookup table 146
B.4 HBase table schema for application logs 147

C.1 Behavior tree describing the testbed initialization process . . . 156

D.1 Workload profiles used in the experiments 161
D.2 VM arrival and departure schedule 161
D.3 Cloudburst load generator architecture 165
D.4 CPU utilization vs. number of users 169
D.5 CPU utilization during a benchmark 169
D.6 CPU utilization of Cloudburst vs. Rain 170
D.7 Memory utilization vs. number of users 171
D.8 Memory utilization during a benchmark 171
D.9 Memory utilization of Cloudburst vs. Rain 173

E.1 ACF functions over utilization traces of SET1 178
E.2 ACF functions over utilization traces of SET2 178
E.3 One week sample of a randomly picked time series of SET1 . . 179
E.4 One week sample of a randomly picked time series of SET2 . . 179
E.5 Histogram of the utilization values in all time series in SET1 . 180
E.6 Histogram of the utilization values in all time series in SET2 . 180
E.7 Calculation of a workload profile 181
E.8 Peak server demand in a idealized schedule 185

F.1 Effect of parameter setting on server demand for KMControl . 191
F.2 Effect of parameter setting on migrations for KMControl . . . 192
F.3 Effect of parameter setting on violations for KMControl 192

XII

List of Tables

2.1 Comparing default and modified workload profiles 24
2.2 Experimental results for static & dynamic controllers 27
2.3 Experimental results on unpredictable workload variations . . 30
2.4 Experimental results on reactive controller parametrization . . 35
2.5 Simulation results on static and dynamic VM controllers . . . 37
2.6 Simulation results on server-savings for large-scale scenarios . 39

3.1 DSAP simulation results . 52
3.2 DSAP experimental results . 55

5.1 ANOVA results on significant factors for allocation density . . 76
5.2 TukeyHSD comparing allocation controllers 76
5.3 TukeyHSD comparing SSAPv and vector packing heuristics . . 77

7.1 Factors and levels for arrival and departure schedules 115
7.2 Schedule instance configurations 116
7.3 Simulation results on placement and dynamic controllers . . . 119
7.4 Simulation results clustered by controller type 121
7.5 Experimental results on placement and dynamic controllers . . 123
7.6 Experimental results clustered by controller type 125

D.1 Experimental treatments to compare Rain & Cloudburst . . . 168
D.2 Experimental results comparing Rain & Cloudburst 174

E.1 Descriptive statistics over all utilization time series 181
E.2 Factors for schedule configuration sensitivity analysis 183

F.1 Factors and levels for KM- and TControl parametrization . . . 188

XIII

XIV

Glossary

ACF auto correlation function.

allocation Describes the assignment of all running VMs to servers at a given
time. An allocation might change continuously over time.

allocation controller An algorithm that allocates VMs to servers. Allo-
cation controllers are categorized into static, dynamic, and placement
controllers.

allocation quality A good allocation quality is considered to achieve a high
allocation density while maintain a desired service quality. In our studies
we assume a service quality of at least 99%.

API application programming interface.

AR autoregressive.

CDF cumulative density function.

CMDB configuration management database.

consolidation In this thesis, consolidation describes the process of trans-
forming physical servers to VMs. Multiple VMs are allocated on a single
server in order to decrease server demand and increase server utilization.

controller An algorithm that allocates VMs to servers.

CPU central processing unit.

CSP communicating sequential processes.

DBMS database management system.

XV

DES double exponential smoothing.

DoE design of experiments.

DRS Distributed Resource Scheduler is a VM resource allocation controller
implemented by VMware to allocate resources of a compute cluster to
VMs based on predefined rules and measured resource utilizations.

DSAP dynamic server allocation program.

DSAP+ dynamic server allocation program plus (+) migration overheads.

DVS dynamic voltage scaling.

dynamic allocation An allocation of VMs to servers that is under constant
change. For instance, it gets changed as utilization levels of VMs change.
It also describes a sequence of static allocations, each of a particular
lifetime that were calculated in advance. Each subsequent allocation
gets realized over time by VM migrations.

dynamic controller An algorithm that continuously optimizes the alloca-
tion of VMs to servers based on their utilization levels. It triggers VM
migrations to move them between servers.

ERP enterprise resource planning.

experiment Leverages a physical server infrastructure to evaluate the per-
formance of allocation controller implementations under realistic circum-
stances.

FIFO first in first out.

FSM finite state machine.

HDFS Hadoop distributed file system.

hypervisor A software that is able to operate VMs. Examples are VMware
ESX [60], Xen [5], or Linux KVM.

IaaS Infrastructure-as-a-Service.

KVM kernel-based virtual machine.

XVI

LXC Linux Container.

migration Refers to the live-migration technology that moves VMs from one
server to another without noticeable downtime or service disruption of
the VM under migration. The technology is provided by all major hy-
pervisors.

MRR mean reciprocal rank.

OLAP online analytical processing.

OLTP online transaction processing.

PID process identifier.

placement controller In on-demand scenarios, a placement controller deter-
mines were to create the VM for each incoming VM allocation request.

PSU power supply unit.

RAM random access memory.

simulation Programs that leverage models to resemble a physical environ-
ment such as a server infrastructure. We leverage simulations to evaluate
the performance of allocation controller implementations.

SLA service level agreement.

SLO service level objective.

SPECjEnterprise2010 SPECjEnterprise2010 is a Java Enterprise appli-
cation with a workload driver that is designed to benchmark the per-
formance of Java application containers.

SSAP static server allocation program.

SSAPv static server allocation program with variable utilization.

static allocation An allocation of VMs to servers that does not change over
an extended period of time (weeks, months, or years).

static controller An algorithm that gets a set of VMs and servers as input
and creates a static allocation of VMs to servers.

XVII

SVD singular value decomposition.

testbed An infrastructure of multiple physical servers and network equipment
that enables us to evaluate the performance of VM allocation controller
implementations under real circumstances.

TPC-C A database benchmark for on-line transactional processing (OLTP).

VM A virtual machine that is running on top of a physical server which
resources are shared by a hypervisor layer.

WAD web, application, and database.

workload profile In many enterprise scenarios, server utilization is seasonal
on a daily or weekly basis. A workload profile is calculated on a seasonal
utilization time series of a server covering multiple weeks. It describes
the average utilization over all seasons.

XVIII

Chapter 1

Introduction

Data center managers worldwide ranked virtualization and server consolida-
tion as one of their top priorities in the recent years [40, 59]. In virtualized data
centers, dedicated servers are replaced by VMs that are largely independent to
the underlying server hardware which can handle multiple VMs at the same
time. Virtualization provides a number of benefits. VMs can be allocated
and deallocated automatically within seconds, allowing on-demand data cen-
ters similar to Infrastructure-as-a-Service (IaaS) clouds. Administration and
maintenance costs are reduced and flexibility is increased. Virtualization en-
ables server consolidation where multiple VMs are running on a single server to
increase overall hardware utilization, thereby reducing energy and investment
costs.

Energy consumption of data centers accounts for up to 50% or more of the total
operating costs [28]. It is predicted to reach around 4.5% of the entire energy
consumption in the USA [18]. A survey of the United States Environmental
Protection Agency showed that idle servers have an energy demand between
69% - 97% of a fully utilized one, even if all power management functions
are enabled [67]. Active servers and cooling facilities are the main energy
consumers in data centers.

With the adoption of virtualization technology, server installation base stag-
nated while the demand for VMs grew considerably. At the same time, server

1

2 CHAPTER 1 – Introduction

administration as well as energy costs of data centers increased [42]. Auto-
mated VM to server allocation controllers promise to manage virtualized data
centers in an efficient and reliable manner.

This work focuses on one major question in the area of data center virtual-
ization: how to allocate VMs to servers. Primary objectives are an overall
reduced energy and server demand without decreasing service quality.

Much of the academic literature focuses on computational aspects on how to
allocate VMs to servers. Allocation controller implementations are evaluated
based on simulations without verification by experiments in real-world settings
or testbeds which mirror those. Due to complexity, simulations use simplified
models which ignore latencies, virtualization overheads, and many other inter-
dependencies between VMs, hypervisors, server hardware, or the network.

Due to these aspects, the external validity of most simulations is questionable.
It is important to evaluate allocation controllers in settings as realistic as
possible. As with other areas of operations research, this evaluation is very
important though challenging. The setup of a testbed infrastructure which
reflects a virtualized data center environment is time-consuming and expensive.
This might explain the lack of experimental research results to some degree.

For this work we set up a testbed infrastructure with several servers and an
elaborate management and monitoring framework. Real-world business ap-
plications were substituted by SPECjEnterprise2010, a server-benchmark that
closely resembles the resource footprint of common business applications. User
demand was modeled based on a set of utilization traces gathered from two
European IT service providers. It allows to analyze multiple allocation con-
trollers repeatedly under different workloads. Our goal is to achieve external
validity of the experimental results.

We differentiate between two commonly found scenarios. Enterprise scenarios
are addressed in Part I and describe a setting of a fixed set of VMs and servers
with deterministic workloads. VM allocations and deallocations are subject
to an administration schedule. On the contrary, Part II covers IaaS cloud
scenarios with a setting of unpredictable workloads, arrival and departure of

1.1. Allocation of persistent services 3

VMs. A brief description and motivation for both scenarios is provided in the
following.

1.1 Allocation of persistent services

Due to data security and other concerns, today’s enterprises often do not
outsource their entire IT infrastructure to external providers. Instead, they set
up their own private or corporate clouds to manage and provide computational
resources [85]. VMs are used to host transactional business applications for
accounting, marketing, supply chain management, and many other functions
where once a dedicated server was used.

Due to the long time of VM usage, administrators obtain detailed knowledge
about typical resource demands of applications within them. Various studies
such as [86, 53] have found enterprise workloads to be seasonal and therefore
predictable.

Server CPU utilization in typical enterprise data centers varies between 20%
and 50%[6]. Consolidation can reduce server demand by increasing the al-
location density of VMs and server utilization. A primary question is how
to allocate VMs to servers without affecting service quality. This problem is
referred to as server consolidation [86, 77] or workload concentration [51] in
literature.

Static controllers generate a static allocation of VMs to servers [61, 71, 79, 86].
VMs are allocated to as few servers as possible, leveraging prior knowledge of
workload profiles. Such profiles describe a seasonal VM resource utilization of
an average business day. A static allocation is intended to be stable for an
extended time of weeks or months.

VM migration technology allows to move VMs between servers during run-
time. The technology has matured to a level where it is a viable option not
only for emergency situations [60], but also for routine VM allocation tasks.
Another type of cloud management tools1 leverages dynamic controllers which

1VMware vSphere, OpenNebula, and Ovirt

4 CHAPTER 1 – Introduction

move VMs between servers based on their actual resource demand. For that
purpose, they closely monitor the cloud infrastructure to detect server over-
and underloads. In both cases, VM migrations are triggered to move VMs to
different servers in order to dissolve the situation.

Many IT service managers consider moving to dynamic controllers [62]. In
these cases it is important to understand if, and how much can be saved
in terms of energy costs. This leads to our first research question –Should
managers rely on dynamic VM allocations or rather use static allocations?
Surprisingly, there is little research guiding managers on this question.

We contribute an extensive experimental evaluation of static and dynamic VM
allocation controllers for scenarios similar to the ones found in enterprise data
centers. Experiments complement and validate simulation results to provide
insights on whether dynamic or static VM allocation controllers are viable
options to reduce energy consumption.

Our findings show that static controllers should be preferred over dynamic ones
if workload profiles are known. In all experiments, static controllers achieved
higher server savings at a service quality above their dynamic counterparts.
Dynamic controllers provide excellent results if workload profiles are not known
or VM utilization is unpredictable. We also found dynamic controllers to
deliver good results in scenarios where a huge amount of resources is utilized
on a sporadic basis, e.g. for main-memory database servers. VMs leverage
spare resources and are migrated to different servers as soon as these resources
are actually required by the main-memory database.

1.2 Allocation of non-persistent services

As opposed to enterprise scenarios with a fixed set of VMs, IaaS cloud scenarios
deal with an unpredictable stream of VM allocation and deallocation requests.
No prior knowledge exists about the applications within VMs or their expected
workload. VM lifetimes vary between hours, months, or even years.

1.2. Allocation of non-persistent services 5

Most existing cloud management2 tools allocate incoming VMs to servers via
common bin packing heuristics. VMs remain on a server until they get deal-
located again. Such placement heuristics do not consider information about
the actual VM resource demand, nor do they consider future allocation and
deallocation requests.

Our first research question on cloud scenarios is – What differences exist be-
tween VM placement controllers regarding allocation density? Placement con-
trollers allocate incoming VMs to servers. So far, none of the cloud manage-
ment tools leverages VM migrations to optimize a VM allocation successively.
Therefore, a second research question arises – Do dynamic controllers have an
impact on VM allocation density?

We contribute an extensive evaluation of a variety of VM placement controllers
based on various workloads. In addition, we conducted experiments in our
testbed infrastructure. For simulations and experiments, we combined place-
ment controllers with dynamic controllers from Part I to cover both research
questions. The scope and scale of the experiments is beyond what has been
reported in the literature, and it provides tangible guidelines for IT service
managers.

Our findings are a set of allocation controllers which perform well in a wide va-
riety of workload environments. Dynamic controllers had a substantial positive
impact on the allocation density in a cloud data center. This is not obvious, as
VM migrations cause additional workload on the migration source and target
servers. We achieved the highest allocation density with placement controllers
starting with a dense VM allocation. In case of overload, VMs were migrated
and reallocated over time by a dynamic controller. If the placement decisions
were based on the actual server utilization rather than the server’s capacity
minus VM reservations, then allocation density and server utilization could be
increased.

2OpenStack (http://www.openstack.org/), Eucalyptus (https://www.eucalyptus.com/)

6 CHAPTER 1 – Introduction

1.3 Consolidation and energy efficiency

Our primary objective in both scenarios is to automatize the allocation of VMs
to servers and to reduce overall energy consumption. We assume that mini-
mizing the total server operating hours directly translates into energy savings.
This relationship is not obvious, especially considering efforts to reduce and
adapt CPU energy consumption to the actual system load by techniques like
dynamic voltage scaling (DVS). Modern CPUs are built to scale their energy
demand almost linearly with their actual load level. However, other devices
like mechanical disks, GPUs, or chipsets comprise an almost constant energy
demand.

Assume a list of VM allocation and deallocation queries L = (q1, ..., qn, ..., qν)

with tuples (an, sn) of arrival time an and number of running servers sn. Each
event affects sn as shown in Figure 1.1. Total server operating hours OH is
the area under the curve as shown by Equation 1.1. Average server demand
SD is the server demand weighted by time as shown by Equation 1.2.

OH =
ν−1∑
n=1

sn(an+1 − an) (1.1)

SD =
OH

aν − a1
(1.2)

Reducing operating hours directly translates into energy and cost savings. [26]
showed that the energy consumption of an idling server is sometimes equal to
one running on a 50% utilization level. CPU utilization serves as a robust
indicator for a server’s energy consumption that can be predicted by Equation
1.3 [26], u ∈ [0, 1] being the CPU utilization, and P the energy demand in
watts.

Pidle + (Pbusy − Pidle) · u (1.3)

Tests on one of our own servers (2 Intel Xeon CPUs, 64GB RAM, 6 disks,

1.3. Consolidation and energy efficiency 7

A
ct

iv
e

se
rv

er
 c

ou
nt

1

2

3

4

5

6

7

8

Time
a1 a2 a3 a4 a6 a7

s1

s2

s3

s4

s6 s7

0

Figure 1.1: A data point (an, sn) is recorded each time an the server demand sn
is changed

2 power supply units (PSUs)) confirmed Equation 1.3. Through the server’s
management console we obtained power consumption values for Pidle = 160W
when idling and Pbusy = 270W when solving mixed integer programs at 100%
CPU utilization.

Based on Equation 1.3, energy consumption at u = 0.30 is 193W. Consolidat-
ing two such servers to a single one with an aggregated load of u = 0.60 would
yield energy savings of forty percent (41%) as total energy consumption drops
from 386W to 226W.

[26] found that for CPU intensive workloads, DVS can decrease a server’s
energy demand by more than 20% depending on the application and the ag-
gressiveness of the algorithm. For our scenario, we assume a very aggressive
DVS configuration with a 50% reduction on CPU’s energy demand (see Equa-
tion 1.4 [26]). Both servers with u = 0.3 will now consume 176W each, a
saving of 8% due to DVS. DVS cannot be applied to the consolidated server
as its utilization is above 50%. Still, consolidating those two servers with
active DVS to a single one without DVS reduces energy consumption by 36%.

Pidle +
1

2
· (Pbusy − Pidle) · u (1.4)

8 CHAPTER 1 – Introduction

We conclude that energy savings achieved by reducing server operating hours
are considerable, even if techniques like DVS are taken into account. Pidle is
especially important in this calculation: with lower values for Pidle consolida-
tion becomes less effective as additional energy savings through consolidation
decrease due to a decreasing Pidle. If all devices of a server had a low energy
consumption when idling (i.e. Pidle = 0 + ε) and their energy demand scales
linearly with their utilization, server consolidation would be without effect.
However, this is not the case for server architectures found today. Consolida-
tion is a promising option for data center operators to reduce energy demand
and operating costs.

In all considered scenarios, our primary objective is to allocate VMs efficiently
to servers. We will measure or simulate the average server demand SD. To
compare outcomes of different scenarios, like ones with unequal number of
VMs, we will use the term allocation density. It is calculated by d = n/m

with n denoting the number of VMs and m the number of required servers.

Allocation density often cannot be increased without affecting service level
objectives (SLOs) at some point. Our goal is to increase allocation density
while maintaining a high service quality above 99%. In experiments, service
quality is measured by tracking application request response times. Requests
with a response time between [3 s,∞[are considered as failed. Service quality
is calculated as the percentage of successful application requests.

Allocation quality describes the combination of allocation density and
service quality. Therefore, our primary objective is a high allocation quality
by increasing allocation density and service quality.

Part I

Allocation of persistent services

9

Chapter 2

Static vs. dynamic controllers

In this work we focus on enterprise clouds hosting long-running transactional
applications in VMs. A central managerial goal in IT service operations is to
minimize server operating hours while maintaining a certain service quality,
in particular response times. In the literature, this problem is referred to as
server consolidation [86, 77] or workload concentration [51].

This is a new type of capacity planning problems, which is different from the
queuing theory models that have been used earlier for computers with a ded-
icated assignment of applications [83]. Server consolidation is also different
from workload scheduling where short-term batch jobs of a particular length
are assigned to servers [14]. Workload scheduling is related to classical schedul-
ing problems, and there is a variety of established software tools such as the
IBM Tivoli Workload Scheduler, LoadLeveler or the TORQUE Resource Man-
ager. In contrast, workload consolidation through VM allocation deals with the
assignment of long-running VMs with a seasonal resource demand to servers.
Consequently, the optimization models and VM allocation mechanisms are
quite different. Overall, workload consolidation can be seen as a new branch
in the literature on capacity planning and resource allocation in operations
research.

VM consolidation can be implemented by static controllers that calculate a
static allocation of VMs to servers over time [61, 71, 79, 86]. Based on the

11

12 CHAPTER 2 – Static vs. dynamic controllers

workload profiles of VMs an allocation to servers is computed such that the
total number of servers is minimized. A profile describes the seasonal resource
utilization of a VM over an average business day. Such an environment is differ-
ent from public clouds, where VMs are sometimes reserved for short amounts
of time only, or where some applications exhibit an unpredictable resource de-
mand. Among the vast majority of applications that run in enterprises, such
applications are the exception rather than the rule.

At the core of static controllers are high-dimensional NP -complete bin packing
problems. Computational complexity is a considerable practical problem. Re-
cent algorithmic advances allow to solve very large problem sizes with several
hundred VMs using a combination of singular value decomposition (SVD) and
integer programming techniques [77].

VM migrations can be leveraged to optimize the VM allocation continuously
to decrease server operating hours. Some platforms such as VMware vSphere,
OpenNebula1, or Ovirt2 provide virtual infrastructure management that al-
locates VMs dynamically to servers. They closely monitor the server infras-
tructure to detect resource bottlenecks by thresholds. If such a bottleneck is
detected or expected to occur in the future, they take actions to dissolve it
by migrating VMs to different servers. We will refer to such techniques as
dynamic controllers as opposed to static controllers.

Many managers of corporate clouds consider moving to dynamic controllers
[62] and there are various products available by commercial or open-source
software providers. Also, several academic papers on virtual infrastructure
management using dynamic controllers illustrate high server demand savings
[51, 8, 78, 3, 33, 22]. When hosting long-running business applications in
corporate clouds, dynamic controllers promise autonomic VM allocation with
no manual intervention and high allocation density due to the possibility to
immediately respond to changes in server utilization.

For IT service managers it is important to understand if, and how much,
dynamic controllers can save in terms of average server demand compared to

1opennebula.org
2ovirt.org

13

static controllers. In this work, we want to address the question – Should
managers rely on dynamic allocations or rather use static allocations with
optimization-based algorithms for the VM allocation in private clouds with
long-running transactional business applications? Surprisingly, there is little
research guiding managers on this question (see Section 2.1).

Much of the academic literature is based on simulations, where the latencies,
migration overheads, and the many dependencies of VMs, hypervisors, server
hardware, and network are difficult to model. The external validity of such
simulations can be low. Therefore, experiments are important for the exter-
nal validity of results. The set-up of a testbed infrastructure including the
hardware, workload generators, management, and monitoring software is time
consuming and financially expensive, which might explain the lack of experi-
mental research results to some degree.

The main contribution of this work is an extensive experimental evaluation of
static and dynamic VM allocation controllers. We implemented a testbed in-
frastructure with physical servers and a comprehensive management and mon-
itoring framework. We used widely accepted applications such as SPECjEn-
terprise2010 to emulate real-world business applications. Workload demand
was based on a large set of utilization traces from two European IT service
providers.

Our goal is to achieve external validity of the results, but at the same time
maintain the advantages of a lab environment, where the different allocation
controllers can be evaluated and experiments can be analyzed and repeated
with different workloads. Our experiments analyze different types of static and
dynamic allocation controllers including pure threshold-based ones, which are
typically found in software solutions, but also ones that employ forecasting.

Our main result is that with typical workloads of business applications, static
controllers lead to higher allocation density compared to dynamic ones. This
is partly due to resource utilization overheads and response time peaks caused
by VM migrations. The result is robust with respect to different thresholds,
even in cases where the workloads are significantly different form the expected
ones.

14 CHAPTER 2 – Static vs. dynamic controllers

Even though the overhead caused by VM migrations has been discussed [28],
the impact on different VM allocation controllers has not been shown so far.
Still, it is of high importance to IT service operations. VM migration algo-
rithms have become very efficient and the main result of our research carries
over to other hypervisors. Mainly, because memory always needs to be trans-
ferred from one server to another.

Our simulations use the same allocation controller implementations as used in
the testbed. We took great care to reflect system-level particularities found in
the experiments. Interestingly, the efficiency of static controllers increases for
larger environments with several hundred VMs. They possess more comple-
mentarities in workloads that can be used to allocate VMs more densely. The
result is a clear recommendation to use optimization for VM allocation. VM
migrations should be used in exceptional cases, e.g. for server maintenance
tasks.

Texts in this chapter are based on a previous publication [98].

2.1 Related work

In what follows, we will revisit the literature on static and dynamic allocation
controllers.

2.1.1 Static allocation controllers

Research on static allocation controllers assumes that the number and
workload profiles of servers are known, which turns out to be a reason-
able assumption for the majority of applications in enterprise data centers
[77, 61, 71, 79, 86]. For example, email servers typically face high loads in
the morning and after the lunch break when most employees download their
emails; payroll accounting is often performed at the end of the week; data
warehouse servers experience a daily peak load early in the morning when
managers access their reports.

2.1. Related work 15

The fundamental problem is to assign VMs with seasonal workloads to servers
such that the total number of servers gets minimized without overloading them.
For example, [86] showed that a static allocation considering daily workload
seasonality can lead to 30% - 35% savings in server demand compared to
simple heuristics based on peak workload demands. The fundamental prob-
lem described in the above papers can be reduced to the multidimensional
bin packing problem, a known NP -complete optimization problem. This par-
ticular problem can be solved by mathematical optimization. However, such
optimization approaches often do not scale to real-world problem sizes with
hundreds of VMs and servers.

A recent algorithmic approach combining SVD and integer programming al-
lows to solve large instances of the problem [77]. In this work, we will use
optimization models from [86] and [77]. In contrast to earlier work, we actu-
ally deploy the resulting VM allocations on a testbed infrastructure such that
the approach faces all the challenges of a real-world implementation. This is a
considerable extra effort beyond simulations only, but it provides evidence of
the practical applicability.

2.1.2 Dynamic allocation controllers

The VM migration technology is supported by all major hypervisors. It allows
migrating a VM during runtime from one server to another. The algorithm first
copies the working memory of the VM to the target server. In parallel it tracks
memory write operations and marks all memory pages that got altered after
copying them to the target server. These pages are re-transferred subsequently.
VM migrations require additional CPU and network capacity [1].

Migration technology enables dynamic controllers as an alternative to static
ones. All commercial and open-source approaches that we are aware of rely on
some sort of threshold-based approach. It monitors the server infrastructure
and is activated if certain resource utilization thresholds are exceeded. VMs
are migrated between servers in order to mitigate these violations. VMware’s
Distributed Resource Management [37] and Sandpiper [101] are examples for

16 CHAPTER 2 – Static vs. dynamic controllers

such systems. Both, [37] and [3] motivate the need for workload prediction in
order to avoid unnecessary migrations. In our experiments, we use both, simple
threshold-based or reactive implementations and such that employ forecasting.

2.2 Experimental infrastructure

We will now briefly discuss the allocation controllers we implemented and
studied by experiments and simulations.

2.2.1 VM allocation controllers

We will distinguish between several static and dynamic controllers. Round
robin and optimization are two static controllers. They are executed once
at the beginning of an experiment where they calculate a static allocation of
VMs to servers. Both, reactive and proactive are dynamic controllers. The
reactive one acts on resource utilization thresholds solely while the proactive
one leverages forecasting techniques to detect server overloads and underloads.

2.2.1.1 Round robin controller

The round robin controller is a heuristic to create a static allocation. It should
serve as an example for a heuristic as typically used in practice. First, a
number of required servers is determined by adding the maximum resource
demands of all VMs and then dividing by the server capacities. This is done
for each resource individually. The number of required servers is rounded to
the next integer. Then the VMs are distributed in a round robin manner
to the appropriate number of servers so that the available memory is not
oversubscribed.

2.2. Experimental infrastructure 17

2.2.1.2 Optimization and overbooking controllers

We used the static server allocation program with variable utilization
(SSAPv)[86] to compute an optimal static server allocation. We will briefly
introduce the corresponding mixed integer program formulation, which is also
the foundation for the algorithms used in [77].

min
I∑

i=1

yi

s.t.
I∑

i=1

xij = 1, ∀j ∈ J

J∑
j=1

ujktxij ≤ sikyi, ∀i ∈ I, ∀k ∈ K, ∀t ∈ τ

yi, xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J

(2.1)

The program in Equation 2.1 assigns a set of VMs j ∈ J to a set of servers
i ∈ I, while considering multiple resources k ∈ K like CPU or memory over
a discrete time horizon of t ∈ τ periods. A server’s size is denoted by sik

describing its capacity for each resource k, e.g. 200 for the CPU of a quad-core
server. yi ∈ {0, 1} tells whether a server i is active. A server is active if it is
hosting at least one VM. The allocation matrix xij indicates whether VM j is
assigned to server i. ujkt describes the utilization of VM j for resource k at
time t such as for CPU with values between 0 and 100 for a dual-core VM.
The objective function minimizes the overall server demand.

The first set of constraints ensures that each VM is allocated to exactly one
server. The second set of constraints ensures that the aggregated resource
demand of multiple VMs does not exceed a server’s capacity per server, period,
and resource.

The optimization model was implemented using the Gurobi branch and cut
solver. It requires the resource capacity of all servers and the workload pro-

18 CHAPTER 2 – Static vs. dynamic controllers

files ujkt of all VMs as an input. For the experiments, the parameters were
set in accordance with the hardware specification of the testbed infrastruc-
ture. Workload profiles from two European IT service providers were used to
calculate the allocations (see Section 2.2.2 for more details).

In scenarios with overbooking, server resource capacities sik were increased be-
yond the actual server capacity. For our experiments server CPU capacity was
overestimated by 15% (230), a value that was determined by experimentation.
This accounts for the reduction of variance by adding multiple VM resource
demands (random variables) and leads to higher utilization with little impact
on the service level, if overbooking is at the right level.

For larger problem instances, the optimization model could not be solved any
more as the large number of capacity constraints and dimensions to be con-
sidered renders this task intractable. Here, we refer to a dimension as the
utilization of a resource by a VM in a period, i.e., an unique tuple (k, t) cor-
responding to a particular row in the constraint matrix.

[77] describes an algorithm based on truncated SVD which allows solving larger
problems as well with near-optimal solution quality. Details of the algorithm
are explained in [77]. An evaluation of the SVD-based approach using workload
data from a large data center has shown that this leads to a high solution
quality. At the same time it allows for solving considerably larger problem
instances of hundreds of VMs than what would be possible without SVD. In
our simulations, we apply this approach to derive static allocations for lager
scenarios with up to 360 VMs.

2.2.1.3 Reactive controller

The reactive controller is of dynamic nature and migrates VMs so that the
number of servers gets minimized and server overload situations are avoided.
A migration is triggered if the utilization of a server exceeds or falls below a
certain threshold. It balances the load across all servers similar to the mech-
anisms described by [101]. Algorithm 1 illustrates the actions taken in each
control loop.

2.2. Experimental infrastructure 19

Data: Servers S and VMs V
function CONTROL(S, V):

Ŝ ←FIND-VIOLATED-SERVERS(S)
UPDATE-VOLUME-VSR(S, V)
forall the s ∈ Ŝ do

V̂ ←{v ∈ V |v.s = s}
V̂ ←sort(V̂ , order=DEC, by=vsr)
forall the v ∈ V̂ do

t ←FIND-TARGET(v, {t ∈ S|t.active})
if t = NULL then

t ←FIND-TARGET(v, S)
end
MIGRATE(s, v, t, 30)

end
end

end
Algorithm 1: Working of the reactive controller

The controller uses the Sonar monitoring system as described in Chapter B to
receive the CPU and memory utilization of all servers and VMs in 3 s inter-
vals. Utilization measurements are stored for 10min. Overload and underload
situations are detected by a control loop that runs every 5min.

The function find-violated-servers marks a server as overloaded or under-
loaded if M = 17 out of the K = 20 recent CPU utilization measurements are
above or below a given threshold Toverload or Tunderload. An underload threshold
of 40% and an overload threshold of 90% were chosen based on preliminary
tests as described in Section 2.4.4.

V OL =
1

1− cpu
· 1

1−mem

V SR =
V OL

mem
(2.2)

Overloaded and underloaded servers are marked and handled by offloading

20 CHAPTER 2 – Static vs. dynamic controllers

a VM to another server. A VM on a marked server has to be chosen in
conjunction with a migration target server. Target servers are chosen based
on their V OL. VMs are chosen based on their V SR ranking which prioritizes
VMs with a low memory demand but high V OL. Both, the server V OL

and VM V SR values are calculated by the function update-volume-vsr
following Equations 2.2 as proposed by [101].

function FIND-TARGET(v, S):
if v.s.mark = OVRL then

S ←sort(S, order=ASC, by=vol)
else

S ←sort(S, order=DEC, by=vol)
end
forall the {s ∈ S|¬s.blocked} do

lsrv ← ptile(s.load[−K : 0], 80)
lvm ← ptile(v.load[−K : 0], 80)
if (lsrv + lvm) < Toverload then

return s
end

end
end
Algorithm 2: Find target server procedure in the reactive controller

The algorithm tries to migrate VMs away from the marked server in descending
order of their V SR. For each VM in this list, the algorithm described by
function find-target in Algorithm 2 searches through the server list to find
a migration target server. For overloaded servers, migration target servers with
low V OL are considered first. Target servers with a high V OL are considered
first for underloaded source servers. A server is a viable migration target if the
80th percentile of its K most recent utilization measurements plus the ones of
the VM are below the overload threshold and if the target server is not blocked
from previous migrations.

Only one migration is allowed at a time for each server, either an incoming
or outgoing one. The migration process itself consumes CPU and memory
resources. Resource utilization measurements used to decide about triggering

2.2. Experimental infrastructure 21

migrations must not be influenced by this overhead. Therefore, servers involved
in a migration are blocked for 30 s after the end of a migration. This block
time is passed as a parameter to the migrate function. Subsequently they
are re-evaluated for overload and underload situations. For a similar reasons,
the controller halts its execution during the first 2min of its execution to fill
its resource utilization measurement buffers.

For simulations and experiments, an initial static allocation was calculated by
the optimization controller as described in Section 2.2.1.2.

2.2.1.4 Proactive controller

The proactive controller extends the reactive one by a time series forecast to
avoid unnecessary migrations. A migration will only be triggered if the forecast
suggests that the overload or underload is persistent and not only driven by
an unforeseen demand spike. A forecast is computed if a threshold violation is
detected using double exponential smoothing (DES) with values α = 0.2 and
γ = 0.1.

We evaluated different forecasting methods such as autoregressive (AR) mod-
els, using mean as forecast, or simple exponential smoothing [39], but DES
came out best (see Section 2.4.4). As the differences among several forecasting
techniques on the allocation density were small, we will only report on those
experiments with DES.

The proactive controller extends the reactive one slightly by modifying the
function find-violated-servers as shown in Algorithm 3. For each server a
load forecast is computed using 1min of utilization measurements. If the fore-
cast and M out of K measurements pass a threshold, an overload or underload
situation is detected and the server gets marked.

2.2.2 Workload

We leveraged a set of 451 server utilization time series from two large Euro-
pean IT service providers. The time series contain CPU and memory usage

22 CHAPTER 2 – Static vs. dynamic controllers

function FIND-VIOLATED-SERVERS(S):
s.mark = 0, ∀s ∈ S
forall the s ∈ S do

// For proactive controller only
lfcst ← forecast(s.load)

// # of measurements above or below a threshold
ucrt ← |s.load[−K : 0] < Tunderload|
ocrt ← |s.load[−K : 0] > Toverload|

if ocrt > M and lfcst > Toverload then
s.mark = OVRL

else if ucrt > M and lfcst < Tunderload then
s.mark = UNDL

end
end
return {s ∈ S|s.mark 6= 0}

end
Algorithm 3: Forecast in the proactive controller to detect overloaded and
underloaded servers

in a sampling rate of 5min over a duration of 10 weeks for SET1 and web
service request throughput at a sampling rate of 60min over a duration of 77
days for SET2. All servers were running enterprise applications like enterprise
resource planning (ERP) and web, application, and database (WAD) services.
Autocorrelation functions showed that seasonality on a daily and weekly basis
is present in almost all time series as it has also been found in related works
[34, 86]. Appendix E provides an extensive statistical analysis over all time
series.

We sampled three distinct sets (MIX1, MIX2, MIX3) with 18 time series each
to model different but realistic VM workload profiles. The first set contains
time series with low variance, while the second one has time series with high
variance and many bursts. The third set was generated by randomly sampling
nine time series without replacement from the first two sets. It meant to cover
scenarios with both, predictable and unpredictable workloads.

2.2. Experimental infrastructure 23

MIX1 MIX2

0

100

200

0 2 4 6 0 2 4 6

Time [h]

D
e

m
a

n
d

 [
#

 u
s

e
r]

Figure 2.1: Workload profile samples for MIX1 and MIX2

Based on the selected time series we generated workload profiles by extracting
the average resource utilization for one day. Here, we followed the approach
described in Appendix E which is based on [86] and [32]. Samples of MIX1
and MIX2 are shown in Figure 2.1. The shape of the MIX1 workload profiles
does not show short-term bursts or random jumps. However, there can be an
increased demand in the morning, evening, or during the operational business
hours of a day compared to historical workloads. MIX2 in contrast exhibits
peaks and is not as smooth as MIX1.

According to the extracted workload profiles we generated workload on a target
VM that was running on a dedicated server with the SPECjEnterprise2010
application using the Rain workload generator. During the benchmark we
monitored the VM’s resource utilization which was then used to parametrize
the optimization models of static controllers.

The measured utilization traces describe the VM utilization in a range of
[0, 100] on each logical CPU. Each VM uses 2 virtual and physical CPU cores
while a server has 4 physical CPU cores. Therefore, we parametrized the
CPU capacity of one server as si CPU = 200 capacity units in the default
configuration and si CPU = 230 units for the overbooking configuration.

In addition, we conducted a second set of experiments where we took the
workload mixes MIX1-3 to determine an allocation, but added noise to the
workload profiles which were then used by the Rain workload generators during
experiments. This generates a scenario, where the demand and consequently

24 CHAPTER 2 – Static vs. dynamic controllers

Metric MIX1 MIX2 MIX3

mean(x̄0, .., x̄n) − mean(ȳ0, .., ȳn) 4.29 5.57 5.58

mean(p50
x0

, .., p50
xn

) − mean(yp50
0 , .., yp50

n) 2.60 5.40 5.05

mean(p90
x0

, .., p90
xn

) − mean(yp90
0 , .., yp90

n) 15.61 13.71 11.68

mean(σx0 , .., σxn) − mean(σy0 , .., σyn) 6.46 6.01 4.94

mean(corr(x0, y0), .., corr(xn, yn)) 0.29 0.46 0.33

Table 2.1: Pairwise comparison of the workload profiles for MIX1-3 with the
corresponding ones of MIX1-3m. All workload profiles in the default mix are
depicted by xi and yi is used for the modified workload profiles. The 50th
percentile of a workload profile is indicated by p50xi

.

the workload traces differ considerably from those used to compute the static
allocation, and describe a challenging scenario for static controllers.

Each workload profile was changed by scaling the values linearly using fac-
tors [0.8, 1.3] and shifting it by [−30,+30] minutes. Shifting did not alter its
length. Elements moved beyond the workload profiles end were re-inserted at
its beginning.

Table 2.1 describes difference between the default and modified workload pro-
files for MIX1-3 versus MIX1m-3m. Different statistics like mean or median
were calculated over all traces and the average is taken. Modified workloads
contain more peak demands as shown by the 90th percentile. Spearman cor-
relation coefficient shows slight similarities for MIX1 and MIX3 with their
modified counterparts. There is a higher correlation for MIX2 which is mostly
due to the volatile nature of the workload profiles.

2.3 Experimental design and procedures

We analyzed five different controllers with the six workload mixes (MIX1-3 and
MIX1m-3m) described in the previous section. During an experiment a number
of core-metrics was recorded. The number of VMs was not varied between the
experiments, nor were the threshold levels of the dynamic controllers varied.
Similar to real-world environments, the settings for reactive and proactive
controllers were chosen based on preliminary tests with the expected workload

2.3. Experimental design and procedures 25

which are described in Section 2.4.4.

Apart from the experiments, we also run simulations with a larger number
of servers and VMs to see, if the results carry over to larger scenarios. We
took great care to run the simulations such that the same migration overheads
observed in the lab were taken into account.

The detailed interactions of the SPECjEnterprise2010 application and Java
container or database were not covered by the simulation framework. Instead
the resource demands were added at a particular point in time. For this reason,
we will only report the number of servers used, the number of CPU overloads,
and the number of migrations. CPU overloads are calculated by counting the
number of simulation intervals where the resource demand of VMs is beyond
the capacity of a server. Obviously, simulations do not have the same external
validity than experiments, but they can give an indication of the savings to be
expected in larger environments like data centers.

In an initialization phase 18 VMs were cloned from a template with Glassfish
and MySQL services installed. The initial allocation was computed and the
VMs were deployed on the servers accordingly. All VMs were rebooted to
reset the operating system and to clear application caches. A setup process
as described in Chapter C started the Glassfish and MySQL services, loaded
a database dump, configured the Rain load generator with the selected work-
load profiles and finally triggered Rain to generate load against the VMs. This
setup phase was followed by a 10min ramp-up phase during which the Rain
generators establish their initial connections to Glassfish and generate a mod-
erate workload that is equal to the first minute of the workload profile. Then
the reactive or proactive controllers were started and the workload profile was
replayed by Rain.

Sonar was used to monitor the relevant utilization level on all VMs and servers
in 3 s intervals. Each experiment took 6 h, where all relevant resources such as
CPU, memory, disk, and network were monitored. Additionally all Rain gen-
erators reported 3 s averages of the response time for each service individually.
This allows a complete replication of a benchmark for analytical purposes. The
accumulated net time of all experiments reported exceeds 50 days.

26 CHAPTER 2 – Static vs. dynamic controllers

2.4 Results

In the following we will describe the results of our experiments on the testbed
infrastructure as well as the results of simulations to study our controllers in
larger scenarios.

2.4.1 Experiments with original workload mix

First, we will describe the experimental results with the workloads of MIX1-3.
We will mainly report aggregated metrics such as the average and maximum
response time of the services, operations per second, the number of response
time violations, and the number of migrations of each 6 h experiment for all
VMs and applications. The values in Table 2.2 are averages of three runs
of a 6 h experiment with identical treatments. Due to system latencies there
can be differences between these runs. Values in parentheses describe the
variance and values in squared brackets describe the min and max values over
3 replications. Violations state the absolute number of 3 s intervals, where
the average response time over all request was beyond the threshold of three
seconds. The service quality indicates the percentage of these intervals without
violations.

Across all three workload sets the static controller with overbooking had the
lowest number of servers on average. This comes at the expense of increased
average response times compared to other static controllers. The maximum re-
sponse time was worse for reactive systems throughout. Almost all controllers
achieved a service quality of 99% except for proactive (MIX1) with 98.46%
and overbooking (MIX2) with 97.85%.

The results of the optimization controller were comparable to dynamic con-
trollers in terms of server hours, sometimes better (MIX2), sometimes worse
(MIX0 and MIX1). The average response times of the optimization controllers
were always lower than those of the dynamic ones.

Dynamic controllers come at the expense of migrations, which static controllers
only have in exceptional cases such as manually triggered emergency migra-

2.4. Results 27

Controller Srv CPU RT dRTe O
[sec]

Ilate Ofail Mig SQ

MIX 1

Round Robin 6 (0) 69.29 352 20186 (972) 151 (0) 138 (6) 12 (2) 0 [0/0] 99.89%

Optimization 6 (0) 68.64 330 17621 (3777) 151 (0) 137 (26) 8 (2) 0 [0/0] 99.89%

Underbooking 6 (0) 68.64 330 17621 (3777) 151 (0) 137 (26) 8 (2) 0 [0/0] 99.89%

Overbooking 5 (0) 78.96 466 19103 (2811) 149 (0) 647 (181) 10 (4) 0 [0/0] 99.5%

Proactive 5.95 (0.07) 73.94 566 42012 (5958) 147 (2) 1990 (1609) 15 (5) 10.33 [9/12] 98.46%

Reactive 6 (0) 69.62 392 21501 (9386) 150 (1) 279 (25) 14 (1) 0.33 [0/1] 99.78%

MIX 2

Round Robin 6 (0) 38.09 388 17016 (15823) 81 (0) 289 (11) 5 (1) 0 [0/0] 99.78%

Optimization 4 (0) 55.03 467 16875 (7071) 80 (1) 637 (156) 6 (4) 0 [0/0] 99.51%

Underbooking 4 (0) 56.50 459 18464 (6179) 80 (0) 552 (240) 5 (4) 0 [0/0] 99.57%

Overbooking 3 (0) 70.88 744 34498 (7538) 77 (0) 2783 (106) 5 (3) 0 [0/0] 97.85%

Proactive 3.93 (0.2) 58.43 535 65337 (22243) 79 (0) 777 (184) 22 (17) 23 [16/34] 99.4%

Reactive 4.34 (0.18) 54.25 547 71153 (23498) 79 (1) 842 (359) 28 (23) 26.4 [18/36] 99.35%

MIX 3

Round Robin 6 (0) 49.27 377 12590 (2698) 107 (0) 111 (13) 8 (2) 0 [0/0] 99.91%

Optimization 5 (0) 56.42 347 11222 (1171) 107 (0) 73 (6) 8 (2) 0 [0/0] 99.94%

Underbooking 5 (0) 56.42 347 11222 (1171) 107 (0) 73 (6) 8 (2) 0 [0/0] 99.94%

Overbooking 4 (0) 68.04 483 21387 (1515) 106 (0) 673 (143) 8 (2) 0 [0/0] 99.48%

Overbooking2 3 (0) 86.91 990 29887 (0) 98 (0) 3916 (0) 11 (0) 0 [0/0] 96.98%

Proactive 4.76 (0.16) 62.98 475 54636 (215) 106 (0) 545 (93) 12 (4) 14.33 [10/17] 99.58%

Reactive 4.85 (0.12) 62.74 505 59651 (9129) 105 (1) 635 (158) 19 (11) 17 [17/17] 99.51%

Table 2.2: Experimental results on static vs. dynamic VM allocation controllers.
Srv – average server demand, CPU [%] – average CPU utilization, RT [ms] –
average response time, dRTe [ms] – maximum response time, O

[sec] – average
operations per second, Ilate – 3 s intervals with RT > 3 s, Ofail – failed operations
count, Mig – VM migration count, SQ [%] – service quality based on 3 s intervals

tions. For all experiments the total number of migrations was below 37 per
experiment. On average a migration was triggered every 3 hours per VM.

The proactive controller with time series forecasting led to a slightly lower
number of servers and migrations compared to reactive one in case of MIX2
and MIX3 but triggered much more migrations for MIX1.

The variance of the average response time among the three identical experi-
mental runs increased for the dynamic controller compared to the static ones.
Even minor differences in the utilization can lead to different migration deci-
sions and influence the results. This seems to be counteracted by the proactive
controller which was more robust against random load spikes due to its time
series forecasting mechanism.

28 CHAPTER 2 – Static vs. dynamic controllers

We used a Welch test to compare the differences in the response times of the
different controllers at a significance level of α = 0.05. All pairwise comparisons
for the different controllers and mixes were significant, except for the difference
of proactive and overbooking (MIX3).

Overall, dynamic controllers did not lead to a significantly higher allocation
quality compared to optimization-based static controllers. A number of factors
exist which can explain this result. One is the additional overhead of migra-
tions which can also lead to additional response time violations. This overhead
might compensate advantages one would expect from dynamic controllers.

Some of the migrations of the reactive controller were triggered by short de-
mand peaks and proof unnecessary afterward. One could even imagine situ-
ations, where a controller migrates VMs back and forth between two servers
as their workload bounces around the threshold levels. A proactive controller
with some forecasting capabilities can filter out such demand spikes in order
to avoid unnecessary migrations.

2.4.2 Experiments with modified workload mix

We wanted to see, if the results for the workload sets MIX1-3 carry over to
a more challenging environment, where the actual workload during an experi-
ment differs considerably from those used to compute a static allocation. The
modified demand traces of the sets MIX1m-3m were used by the Rain work-
load generators while the static allocation was still computed with the original
profiles MIX1-3. For this reason, the average number of servers remained the
same as for the first experiments for all static controllers. The results of these
second experiments are described in Table 2.3.

One would expect that static controllers are much worse in such an environ-
ment compared to their dynamic counterparts. Surprisingly, the main result
carries over. The service qualities were high and average response times were
low in all treatments.

Again, we used a Welch test to compare the differences in the response times

2.4. Results 29

of the different controllers at a significance level of α = 0.05. All pairwise
comparisons for the different controllers and mixes were significant, except for
overbooking to proactive in MIX1m (p = 0.01), reactive to proactive in MIX2m
(p = 0.87), and optimization to reactive in MIX3M (p = 0.14). For overbook-
ing in MIX2m and MIX3m an increased average and maximum response time
with a service quality degradation to 91.74% and 96.37% was observed.

Dynamic controllers showed a service quality degradation for MIX1m with
96.81% for the reactive and 97.74% for the proactive controller. This can
be explained by the overall workload demand, which is close to what the six
servers were able to handle. The average server utilization was near 80% over
the complete six hours and all servers. As a result average response times
increased for all controllers compared to the first experiments. In this case
even slightly suboptimal allocations result in a degradation of service quality
during periods of high utilization which especially affects the overbooking and
dynamic controllers. The optimization controller in contrast still achieved a
good service quality above 99% and comparably low average response times.

Comparing the throughput in operations per second with the first experiments
shows an increase for MIX1m-3m. This was an expected result as all modified
workload profiles entail an increased demand as shown in Table 2.1.

For MIX2m-3m the dynamic controllers showed a similar behavior as for
MIX2-3. The average response time remained constant while the maximum
response times were increased compared to static controllers. Both controllers
were able to maintain a service quality above 99% by an increased average
server demand.

Dynamic controllers triggered the same number or more migrations compared
to the first experiments. However, for MIX2m, the volatile workload scenario,
the migration counter of the reactive controller was substantially increased
with 45 migrations on average while the proactive controller required only 22
migrations. The variance in the average response time tends to be higher
for dynamic controllers. Overall, even in scenarios where workload volatility
increases for all VMs, the static optimization-based allocations still perform
well.

30 CHAPTER 2 – Static vs. dynamic controllers

Another working paper of our group describes a set of experiments on the
same hardware, but with an entirely different software infrastructure, different
hypervisor (Citrix XenServer), different reactive controller, different operating
systems, and a different workload generator [88]. While the infrastructure was
less stable and focused on the evaluation of reactive control parameters, also
these initial experiments found that the static allocation and a modest level
of overbooking yielded a high allocation density and response times compared
to reactive ones. These initial experiments used TUnderload thresholds of 20%
and 30% and TOverload thresholds of 75% and 85% for the reactive controller.
However, efficient thresholds depend on the workload and determining good
values is certainly not an easy task for IT service managers. Overall, this
provides some evidence that our main result carries over to different imple-
mentations of the reactive controller, the thresholds used, or different samples
of the workload.

Controller Srv CPU RT dRTe O
[sec]

Ilate Ofail Mig SQ

MIX 1 MOD

Round Robin 6 (0) 73.96 449 25087 (2911) 165 (0) 829 (105) 10 (3) 0 [0/0] 99.36%

Optimization 6 (0) 73.75 440 27080 (6945) 165 (0) 983 (81) 11 (5) 0 [0/0] 99.24%

Overbooking 5 (0) 82.92 618 27247 (4516) 160 (3) 2012 (369) 49708 (86071) 0 [0/0] 98.45%

Proactive 5.96 (0.07) 76.44 600 55370 (28537) 162 (2) 2928 (828) 858 (1692) 7.75 [4/13] 97.74%

Reactive 5.99 (0) 79.33 710 47025 (17355) 160 (0) 4133 (787) 20 (3) 14.33 [12/18] 96.81%

MIX 2 MOD

Round Robin 6 (0) 46.82 375 13717 (5646) 101 (0) 368 (38) 5 (1) 0 [0/0] 99.72%

Optimization 4 (0) 65.04 441 20766 (8736) 101 (0) 366 (32) 6 (1) 0 [0/0] 99.72%

Overbooking 3 (0) 81.04 1401 60584 (11310) 90 (0) 10699 (128) 64 (95) 0 [0/0] 91.74%

Proactive 4.79 (0.03) 61.02 511 82047 (26877) 99 (0) 807 (127) 31 (21) 22 [20/25] 99.38%

Reactive 4.94 (0.05) 61.98 545 78349 (15210) 98 (1) 1095 (264) 338 (586) 45 [40/50] 99.16%

MIX 3 MOD

Round Robin 6 (0) 58.77 382 18623 (4912) 128 (0) 179 (34) 10 (2) 0 [0/0] 99.86%

Optimization 5 (0) 67.80 486 25757 (3737) 127 (0) 1290 (83) 11 (2) 0 [0/0] 99%

Overbooking 4 (0) 77.63 823 31582 (1571) 123 (0) 4706 (200) 11 (2) 0 [0/0] 96.37%

Proactive 5.5 (0.16) 65.83 465 49300 (13668) 127 (1) 802 (415) 19 (5) 18 [12/24] 99.38%

Reactive 5.6 (0.03) 67.51 485 74017 (16339) 126 (1) 774 (317) 27 (18) 23.67 [18/33] 99.4%

Table 2.3: Experimental results for mixes MIX1m-3m. Srv – average server
demand, CPU [%] – average CPU utilization, RT [ms] – average response time,
dRTe [ms] – maximum response time, O

[sec] – average operations per second, Ilate –
3 s intervals with RT > 3 s, Ofail – failed operations count, Mig – VM migration
count, SQ [%] – service quality based on 3 s intervals

2.4. Results 31

200

300

400

500

600

0 2 4 6
Time [h]

T
o

ta
l s

e
rv

e
r

C
P

U
 c

a
p

a
c

it
y

Load

Accumulated CPU

Available CPU

Figure 2.2: Accumulated load of six servers with the number of active servers as
allocated by the proactive controller

Note that the results do not hold for all data centers and workload types. For
example, in regional data centers, where all business applications exhibit a
very low utilization at night time, it can obviously save additional servers to
consolidate the machines after working hours. As shown in Figure 2.2 servers
can efficiently be evacuated during night times (between 1 h to 3 h). Such
nightly workload consolidation can be triggered automatically and in addition
to static controllers.

2.4.3 Migration overheads

During our experiments about 1500 migrations were triggered. Here, we want
to briefly discuss the resource overhead by migrations, in order to better un-
derstand the results of the experiments described in the previous subsections.

The mean migration duration was 28.73 s for 1459 migrations with quartiles
17.98 s, 24.03 s, 31.77 s, and 96.73 s. It follows a log-normal distribution with
µ = 3.31 and σ = 0.27 as shown in Figure 2.3a. Figure 2.3b shows the impact
of a migration on the response time of a VM. Migration start and end times
are marked by vertical lines. With the start of the migration, response times
were slightly increased. A response time spike can be observed towards the

32 CHAPTER 2 – Static vs. dynamic controllers

0.00

0.02

0.04

0.06

0 25 50 75 100
VM migration duation [sec]

D
e

n
s

it
y

(a) Migration time histogram

0

5

10

15

20

200 300 400 500 600
Benchmark time [sec]

R
e

s
p

o
n

s
e

 t
im

e
 [

s
e

c
]

SpecJEnterprise service

CORBA

HTTP

(b) Service degradation

Figure 2.3: VM migration using KVM. 2.3a is a histogram of the migration
duration over a couple of hundred migrations. 2.3b shows the response time of a
VM that gets migrated.

end of the migration. At this time the VM was handed over from one host to
the other. Similar effects were described by [94] and [60].

Migration algorithms work by tracking the write operations on memory pages
of a VM which consumes additional CPU cycles in the hypervisor [1]. Both
dynamic controllers triggered only one migration at a time for each server. For
each migration the mean CPU load for 60 s before the migration and during
the migration was calculated. Both values were subtracted which provides an
estimate for the CPU overhead of a migration.

On the source server an increased CPU load with a mean of 7.88% and median
of 8.06% was observed. Not all deltas were positive as seen in Figure 2.4a which
can be explained by the varying resource demand during the migration on other
VMs running on the same server. Only servers with a CPU utilization below
85% were considered for the histogram. The gray histogram area considers
all migrations. In this case, many migrations did not lead to a CPU overhead
as utilization cannot increase beyond 100%. For the target servers the CPU
utilization increased by 12.44% on average. Again, the CPU utilization also
decreased in some cases (see Figure 2.4b).

Network utilization is one of the main concerns when using migrations. Similar
to today’s data centers, all network traffic was handled by a single network

2.4. Results 33

0

100

200

−40 −20 0 20 40

Increased CPU utilization [%]

C
o

u
n

t

(a) Source server

0

100

200

300

−50 −25 0 25 50

Increased CPU utilization [%]

C
o

u
n

t

(b) Target server

Figure 2.4: Histograms on the CPU overheads of migrations on the source- 2.4a
and target-server 2.4b. Overhead is calculated as the difference of average CPU
during and before a migration. All (gray) and servers with ≤ 85 % load (black).

interface. Similar to CPU, we calculated the delta of the network throughput
before and during migrations. The difference on the source and target server
was close to 70MBps. This indeed illustrates that a separate network for
migrations will be necessary if dynamic control is being used.

Network throughput benchmarks report a maximum throughput of 110MBps
for a gigabit connection. This throughput is not achieved as our measurements
include some seconds before and after the network transfer phase of a migra-
tion. Also, a migration is not a perfect RAM to RAM transfer as the algorithm
has to decide on which memory pages to transfer. The 95th percentile of our
network throughput measurements during a migration was 105MBps which
is close to the throughput reported in benchmarks. Network overloads were
ruled out due to the use of a LACP bond with two gigabit connections where
one was dedicated for migrations.

When a VM is handed over from its source to the target server a short service
disruption is caused. This was analyzed by [60] for game servers running in
VMs. In our experiments the workload generator experienced a short service
disruption during the migration which caused some requests to time out. For
83% of the migrations no errors were observable in the workload generators
after and during a migration. The number of errors was 11 for 50% and 24

34 CHAPTER 2 – Static vs. dynamic controllers

for 95% of all failed migrations. A correlation between source or target server
utilization and the number of errors was not noticeable.

2.4.4 Sensitivity analysis

As in any experiment, there are a number of parameter settings which could
further impact the result. Especially, for reactive and proactive controllers, the
parameters such as the threshold levels were chosen based on preliminary tests.
In the following, we provide a sensitivity analysis in order to understand the
robustness of the results. We conducted experiments varying the parameters:
Tunderload, TOverload, K, and M for both dynamic controllers, as well as the
control loop interval. MIX2 was chosen because it entails a high variability
and is better suited to dynamic controllers. The results are described in Table
2.4.

Changing the threshold settings from Tunderload = 40 and TOverload = 90 to
Tunderload = 20 only results in a less aggressive controller with a better perfor-
mance regarding migrations, violations, and average response time. This comes
at the cost of an increased average server demand. Setting Tunderload = 60made
the controller more aggressive. Average server demand could be minimized at
the price of increased response time, migrations, and violations. The thresh-
old settings certainly depends on the type of workload used. They need to be
tuned for each situation and desired service quality. For the experiments we
chose a middle way, considering migrations and violations.

We decreased the control loop interval from 300 s to 30 s with negligible impact
on the metrics. The average number of servers, violations, and response time
are comparable to the results that we found in previous experiments while the
number of migrations was slightly increased.

TheK andM values describe for how long an overload situations has to prevail
until a controller acts upon it. Setting K = 50,M = 45 had a slightly positive
effect on all metrics. Changing it to K = 10,M = 8 yielded a more aggressive
controller with more migrations. It triggered up to 60 migrations compared to
50 before without a positive effect on average server demand.

2.4. Results 35

Controller Srv CPU RT dRTe O
[sec]

Ilate Ofail Mig SQ

MIX2 + Reactive Controller

K = 10,M = 8 4.42 (0.03) 56.21 564 75110 (14560) 79 (0) 930 (239) 37 (24) 40.67 [24/60] 99.28%

K = 50,M = 45 4.03 (0.11) 56.00 536 71797 (15188) 79 (0) 771 (367) 30 (12) 21.33 [16/29] 99.41%

TUnderload = 20 5.57 (0.73) 42.74 502 49194 (28580) 80 (0) 747 (382) 12 (11) 11.33 [9/15] 99.42%

TUnderload = 60 3.96 (0.1) 60.06 571 81481 (26900) 79 (0) 1001 (143) 46 (17) 43.33 [28/63] 99.23%

control interval = 30 4.22 (0.06) 59.61 584 72763 (14529) 78 (1) 803 (313) 47 (1) 39.33 [31/48] 99.38%

MIX2 + Proactive Controller

AR forecast 4.15 (0.25) 56.34 539 56599 (2138) 79 (0) 755 (155) 22 (7) 23.33 [20/29] 99.42%

AR forecastM = inf 3.78 (0.5) 60.40 641 58231 (22600) 78 (1) 1671 (1182) 12 (8) 19.33 [7/29] 98.71%

DES α = 0.2, γ = 0.3 3.91 (0.65) 59.97 650 57861 (21786) 78 (1) 1516 (1254) 25 (29) 22.33 [7/37] 98.83%

DES α = 0.5, γ = 0.1 3.85 (0.08) 57.66 533 72645 (30836) 78 (3) 674 (136) 37e3 (64e3) 21.33 [19/24] 99.48%

Table 2.4: Experiments to test the sensitivity of reactive and proactive controller
parameters. K,M,T – parameters of the reactive and proactive controllers, Srv –
average server demand, CPU [%] – average CPU utilization, RT [ms] – average
response time, dRTe [ms] – maximum response time, O

[sec] – average operations per
second, Ilate – 3 s intervals with RT > 3 s, Ofail – failed operations count, Mig – VM
migration count, SQ [%] – service quality based on 3 s intervals

In addition we tested different forecast settings for the proactive controller. We
used an AR model instead of a double exponential smoothing. The average
server demand, migration count, average response time, and max. resp. time
roughly were on the same level as for previous experiments. Setting M = ∞
calculates the AR forecast with all available utilization measurements. The
average server demand improved but it created more response time violations,
negatively affecting service quality.

Modifying the α = 0.2 and γ = 0.1 variables of the DES had no significant
effect. Increasing α = 0.5 yielded similar results then the default configuration.
γ = 0.3 resulted in more violations and slightly increased average response
times without an effect on the average server demand.

2.4.5 Simulations for larger scenarios

It is important to understand how the results of our simulations compare
to those of experiments, considering the parameter settings and migration
overheads learned from experiments. In case simulations will yield comparable

36 CHAPTER 2 – Static vs. dynamic controllers

results, we wanted to understand, how the performance metrics develop with
growing environments regarding more servers and VMs.

Our discrete event simulation framework consists of a workload generator,
a controller, and an infrastructure model. Servers and VMs are stored in
the model together with their allocation. Each VM was assigned a workload
profile. The workload generator iterates over all VMs and updates their current
CPU utilization according to their workload profile in 3 s intervals – the same
frequency as utilization measurements were received from Sonar during an
experiment.

The framework does not reproduce the detailed interactions of web, appli-
cation, and database server in a VM. It sums the CPU utilization of all VMs
to estimate the utilization of a server. Therefore, we do not report response
times or operations per second. Instead we count the 3 s intervals with CPU
overload, where the accumulated CPU load of a server exceeds 100%.

The controller was activated every 5min and triggered migrations according to
the server utilization. The same model and controller implementations were
used as in the experiments. Migration duration was simulated using a log-
normal distribution with the parameters we experienced during experiments
(see Section 2.4.3). An additional CPU overhead of 8% on the source and
13% on the target server was simulated during migrations. Simulations used
the same workload profiles as experiments.

Table 2.5 shows the results of simulations with 6 servers and 18 VMs for
workload profiles MIX1-3. For static controllers, simulations and experiments
yielded identical VM allocations and have the same server demand. For dy-
namic controllers, average server demand is not identical but closely matches
the one experienced in experiments. Service quality was similar for simulations
and experiments. However, this metric should be considered with care as it
was calculated differently in simulations.

Simulations triggered more migrations than experiments. Most likely this is
due to the differences in workloads used. CPU utilization traces from Sonar
typically exhibit a high variance. As K out of M measurements have to be

2.4. Results 37

Controller Srv bSrvc dSrve Mig SQ

MIX 1

Optimization 6.00 6.00 6.00 0.00 100.00

Overbooking 5.00 5.00 5.00 0.00 84.71

Proactive 5.62 4.00 6.00 30.00 99.16

Reactive 5.74 5.00 6.00 34.00 98.99

RoundRobin 6.00 6.00 6.00 0.00 96.88

MIX 2

Optimization 4.00 4.00 4.00 0.00 100.00

Overbooking 3.00 3.00 3.00 0.00 90.56

Proactive 3.75 3.00 6.00 40.00 98.23

Reactive 4.22 3.00 5.00 33.00 98.63

RoundRobin 6.00 6.00 6.00 0.00 100.00

MIX 3

Optimization 5.00 5.00 5.00 0.00 100.00

Overbooking 4.00 4.00 4.00 0.00 95.31

Proactive 4.69 3.00 6.00 43.00 99.21

Reactive 5.02 4.00 6.00 35.00 98.64

RoundRobin 6.00 6.00 6.00 0.00 98.77

Table 2.5: Simulation results for MIX1-3. Srv – average server demand, dSDe –
maximum server demand, bSDc – minimum server demand, Mig – VM migration
count, SQ [%] – service quality based on 3 s intervals

above or below a threshold, a high variance decreases the chances to detect an
overload or underload situation and leads to fewer migrations.

The comparison between simulation and experiment show that simulation re-
sults need to be interpreted with care, even if the same software infrastructure
and parameter estimates are used. While there are differences in the number
of servers used, the differences are small. Hence, we use simulations as an
estimator to assess how the average server consumption will develop in larger
environments.

We examined scenarios with up to 360 VMs and approximately 60 servers. As
MIX1-3 only contain 18 workload profiles each, new workload profiles for the
simulation were generated. These traces were prepared as described in Section
2.2.2 and labeled as MIXSIM. The simulation results for scenarios with 18, 90,
180, and 360 VMs are shown in Table 2.6. For each treatment three simulations
were conducted and their mean value is reported. For each simulation, the set
of workload profiles assigned to the VMs was sampled randomly from MIXSIM.

38 CHAPTER 2 – Static vs. dynamic controllers

0

20

40

60

100 200 300
Scenario scale [# VMs]

S
e

rv
e

r
d

e
m

a
n

d
 [

#
 S

e
rv

e
rs

]
Controller

Optimization

Overbooking

Proactive

Reactive

Figure 2.5: Growth of the number of servers required for different numbers of
VMs

For the static server allocation problem, computational complexity increases
with the number of servers and VMs. Optimizations with six servers are still
solvable with workload profiles at a sampling rate of three minutes, while
instances with 30 or more servers are only solvable at a sampling rate of 1 h
without an optimal solution within 60min of calculation time, leading to a
decreased solution quality. The computational complexity and the empirical
hardness of the problem was discussed by [86]. Hence, for larger problem
sizes of 60 VMs or more, we computed allocations based on the algorithms
introduced by [77]. It leverages SVD to compute near-optimal solutions even
for larger problem sizes with several hundred VMs.

Figure 2.5 shows that with an increased number of VMs the number of
servers required increases in all controllers, but with a lower gradient for the
optimization-based static controllers. Consequently, the advantage of static
controllers actually increase with larger numbers of VMs.

2.4. Results 39

Controller Srv bSrvc dSrve Mig SQ

Tiny (18 VMs)

Optimization 3.00 3.00 3.00 0.00 100.00

Overbooking 3.00 3.00 3.00 0.00 92.17

Proactive 3.06 3.00 3.10 1.90 99.93

Reactive 3.12 3.00 3.40 2.80 99.85

Small (90 VMs)

Optimization 13.00 13.00 13.00 0.00 98.84

Overbooking 11.50 11.50 11.50 0.00 86.88

Proactive 15.04 14.50 16.00 33.50 99.52

Reactive 15.13 14.50 16.00 41.50 99.57

Medium (180 VMs)

Optimization 30.00 30.00 30.00 0.00 99.86

Overbooking 27.00 27.00 27.00 0.00 96.99

Proactive 32.48 30.00 36.00 39.00 99.74

Reactive 32.65 29.50 36.50 62.50 99.64

Large (360 VMs)

Optimization 54.00 54.00 54.00 0.00 98.91

Overbooking 49.00 49.00 49.00 0.00 87.19

Proactive 59.58 57.00 62.20 82.20 99.79

Reactive 59.80 57.00 63.00 122.60 99.72

Table 2.6: Simulations for MIXSIM with different number of servers and VMs.
Srv – average server demand, dSDe – maximum server demand, bSDc – minimum
server demand, Mig – VM migration count, SQ [%] – service quality based on 3 s
intervals

2.4.6 Managerial impact

From a managerial point of view, it is interesting to analyze potential energy
savings of different allocation controllers. This requires some assumptions
about energy costs. Based on the average energy consumption of 10 kW per
server rack3, an average energy consumption of 238W for a 1U server is as-
sumed. Electricity prices vary depending on the global location and the tariff.
In the following we assume a price of 16 $/MWh, such that a server costs 334 $
for electricity which is 40 045 $ for 120 servers over one year.

As shown in Table 2.5, an aggressive static allocation can save up to 50%
compared to a round robin allocation. About 70 servers can be saved which
translates into yearly energy cost savings of 23 360 $. In addition, around
70 000 $ could be saved for these servers by considering a 4 years write off

3http://www.datacenterdynamics.com/research/energy-demand-2011-12

40 CHAPTER 2 – Static vs. dynamic controllers

period and a server cost of 4000 $. Aspects like cooling, emergency generators,
rack space and supportive facilities have to be considered as well. A total cost
of ownership calculation is out of the scope of this work, however.

2.5 Conclusions

Dynamic controllers are often seen as the next step of capacity management
in virtualized data centers promising higher allocation efficiency regarding op-
eration and management. Energy is a significant cost driver in data centers
and many IT service managers need to make a decision on static or dynamic
allocation controllers. Unfortunately, there is hardly any empirical evidence
for the benefits of dynamic ones so far. In this work, we provide the results of
an extensive experimental study on a testbed infrastructure. We focus on pri-
vate cloud environments with a stable set of VMs that need to be hosted on a
set of servers. We leverage data from two large European IT service providers
to generate realistic workloads in the testbed.

In experiments we found dynamic controllers not to decrease average server
demand with typical enterprise workloads. Depending on the configuration and
the threshold levels chosen they can lead to a large number of migrations, which
negatively impacts application response times and can even lead to network
congestion in larger scenarios. Simulations showed that optimization-based
static controllers provide better results compared to dynamic ones for large
environments as possibilities to leverage workload complementarities increase.

Any experimental study has limitations and so has this. First, a main assump-
tion of the results is the workload, which is characterized in the Appendix E.
We have analyzed workloads with high volatility and even added additional
noise with robust results. The results do not carry over to applications with
workloads that are difficult to predict. For example, order entry systems can
experience demand peaks based on marketing campaigns, which are hard to
predict from historical workloads. Also, sometimes VMs are set up for testing
purposes and are only needed for a short period of time. In such cases, different

2.5. Conclusions 41

allocation controllers are required and dynamic controllers clearly have their
benefits. Such applications are typically hosted in a separate server cluster,
and we leave the analysis of such workloads for future research.

Second, the experimental infrastructure was small and the results for larger en-
vironments are based on simulations. While simulations have their limitations,
we took great care that the main system characteristics such as migration du-
ration were appropriately modeled. Also, the controller software was exactly
the same as the one used in experiments. Overall, we believe that at least the
number of servers required by allocation controllers provides a good estimate.

Finally, one can think of alternative ways to implement dynamic controllers.
For example, advanced workload prediction techniques [65, 16] could be used.
We conjecture, however, that the basic trade-off between migration costs and
allocation density gains by dynamic controllers will persist with more sophis-
ticated allocation controllers.

VM migrations are always expensive because they require additional network
bandwidth and even can saturate a separate dedicated network. Static con-
trollers with manual or seasonal reallocation only require a fraction of the
migration from dynamic controllers. We have seen that 20% of the migrations
cause application errors. Future migration algorithms might address some of
these issues but will still lead to some level of overhead and risk as the whole
VM memory needs to be transferred over the network physically.

Although the study shows that with a stable set of business applications static
controllers with a modest level overbooking would lead to the highest alloca-
tion density, we suggest that in everyday operations, a combination of both
mechanisms should be put in place where allocations are computed for a longer
period of time and exceptional workload peaks are treated by a dynamic con-
troller. However, migrations should be used in exceptional cases only.

42 CHAPTER 2 – Static vs. dynamic controllers

Chapter 3

The DSAP dynamic controller

Our objective is to optimize the allocation of VMs to servers so that server
demand gets minimized. Static allocations are maintained for a longer period
of time until they get recalculated. Especially enterprise data center workloads
are predictable as they show a strong seasonality (Chapter 2 and Appendix E).
Multiple VMs with complementary workloads are predestined to be allocated
on the same server as they do not interfere with each other.

Static controllers cannot deliver very good results if most VMs exhibit a very
similar, predictable workload behavior. Dynamic controllers are able to cover
with such scenarios. They can reallocate VMs to servers. Migration technology
is used to move a VM during operation from one server to another without
noticeable service disruption [60]. Off-line dynamic controllers are able to
calculate a dynamic allocation that migrates VMs to a small set of servers
during periods of low utilization and expands them to a larger set of servers
during times of high utilization.

Our work is based on the dynamic server allocation program (DSAP) originally
proposed by [9] as an extension of the static server allocation program (SSAP).
We contribute simulations as well as experiments on the performance of DSAP
based on realistic workload scenarios in a testbed infrastructure that closely
resembles the architecture found in private IaaS clouds. Such experiments
are expensive in terms of investment costs, implementation effort as well as

43

44 CHAPTER 3 – The DSAP dynamic controller

execution time. Nevertheless, they are necessary as simulations cannot cover
the many system invariants like VM migration overheads.

Our findings are that DSAP can increase VM allocation density at the price
of system stability and service quality degradation. Frequent reallocations
are required to reduce average server demand, leading to a high number of
VM migrations. Each migration entails a considerable CPU and memory foot-
print, potentially leading to additional resource bottlenecks and service quality
degradation. Longer reallocation cycles reduce migrations and counteract ser-
vice quality degradation with a negative effect on average server demand. In
summary, benefits in operational efficiency cannot outweigh the costs entailed
by many VM migrations.

Scalability of DSAP is very limited as it is based on an NP-hard integer pro-
gram [9]. In contrast to heuristics it is able to calculate optimal allocations.
Our results demonstrate how migrations, server demand, and service quality
would perform under optimal conditions. They indicate that VM allocation
heuristics should focus on reducing migrations. Establishing optimal VM al-
locations still becomes relevant if migrations are at a low level.

Section 3.1 covers related work and Section 3.2 describes the DSAP optimiza-
tion model used to calculate dynamic allocations. Section 3.3 explains the
DSAP model implementation for experiments and simulations. Simulation
results are discussed in Section 3.4 and Section 3.5 covers our experimental
design and results.

Texts in this chapter are based on a previous publication [97].

3.1 Related work

Dynamic controllers actively monitor VM and server utilizations and migrate
VMs on demand. Sandpiper [101] migrates if a server’s utilization surpasses
a certain threshold. Gmach et al. [33] leverage fuzzy logic to implement a
similar reactive control approach. In addition an approach similar to SSAPv

3.2. Dynamic server allocation program 45

is used to further enhance the allocation. VMWare DRS [37] load-balances
VMs in a cluster based on adaptive thresholds.

pMapper [92] calculates a new allocation over all VMs to estimate a target
utilization level for each server. Many migrations would be necessary in order
to establish this allocation. An iterative approach is used to trigger migrations
so that the desired server target utilization is achieved without considering the
calculated VM allocation at all. An additional cost-benefit ratio calculation is
used to further reduce migrations.

DSAP [9] is an extension of the SSAP program that calculates multiple inde-
pendent static allocations instead of just one. Each allocation is valid for a
certain period. In contrast to pMapper allocations get realized. [78] propose
dynamic server allocation program plus (+) migration overheads (DSAP+)
that considers migration overheads. We found migration overheads to be sig-
nificant but were unable to use DSAP+ due to its computational complexity.

In this study we focus on whether off-line dynamic controllers like DSAP are
viable alternatives to on-line dynamic controllers such as Sandpiper, pMapper,
or controllers used in Chapter 2. As DSAP generates optimal allocations
it provides valuable insights on how to optimize such dynamic controllers.
Shrinking and growing the set of active servers in dependence to the actual
workload sounds promising. Still, it is unclear if the overhead entailed by VM
migrations nullifies or exceeds the benefits of a dynamic allocation.

3.2 Dynamic server allocation program

The original DSAP integer program was proposed by [9]. We leverage it to cal-
culate dynamic allocations that are evaluated in simulations and experiments.

For reasons of completeness we provide the formal definition [9] of DSAP in
Equation 3.1. Suppose we are given a set of servers i ∈ I and VMs j ∈ J . A
server’s size is denoted by si describing its resource capacity, e.g. CPU units
or available memory. The total planning horizon is divided into τ discrete

46 CHAPTER 3 – The DSAP dynamic controller

equidistant periods t ∈ τ . yit ∈ {0, 1} indicates whether a server i is active
in period t. ujt describes the utilization of VM j in period t. The allocation
matrix xijt of period t indicates whether VM j is assigned to server i. Overall
server demand gets minimized by the objective function.

min
τ∑

t=1

I∑
i=1

yit

s.t.
I∑

i=1

xijt = 1, ∀j ∈ J,∀t ∈ τ

J∑
j=1

ujtxijt ≤ siyit, ∀i ∈ I, ∀t ∈ τ

yit, xijt ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀t ∈ τ

(3.1)

The program covers only one critical resources, e.g. CPU or memory. Multiple
resources k ∈ K can be considered by altering the second set of constraints as
shown in Equation 3.2.

J∑
j=1

ujktxijt ≤ sikyit, ∀i ∈ I, ∀k ∈ K, ∀t ∈ τ (3.2)

A dedicated allocation xijt is calculated for each period t. VM migrations
transition the infrastructure from its current allocation xijt to the subsequent
one xij(t+1). Each migration puts additional load on the servers involved as
shown by [1]. Our infrastructure is based on KVM instead of XEN. Migrations
on average increase the CPU load on the source and target server by approxi-
mately 8% to 13% as shown in Chapter 2. Data center operators might put
a limit Z on the migration count by adding two additional constraints [9] as
shown in Equation 3.3.

3.3. Experimental setup 47

xijt − xij(t−1) ≤ zijt ∀i ∈ I, ∀j ∈ J,∀t ∈ {2, . . . , τ}
xij(t−1) − xijt ≤ zijt ∀i ∈ I, ∀j ∈ J,∀t ∈ {2, . . . , τ}

I∑
i=1

J∑
j=1

τ∑
t=2

zijt ≤ 2Z

zijt ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀t ∈ T

(3.3)

They increase computational complexity by adding a large number of binary
decision variables zijt. We were not always able to solve the model optimally
for 6 servers, 18 VMs, and 6 periods within one hour using an Intel Core i7 870
CPU and a Gurobi solver. Calculation time was limit to 60min for simulations
and experiments, possibly yielding suboptimal solutions.

Both constraints might have a negative effect on allocation density. Migrations
are caused by differences between subsequent allocations xijt and xij(t+1). It
might be possible that both constraints lead to similar subsequent allocations
without a negative effect on overall allocation density. On the other hand,
they might have a strong negative effect on allocation density if certain highly
efficient allocations are getting ruled out by these constraints.

3.3 Experimental setup

Our software framework provides a number of application programming in-
terfaces (APIs) that allow to control the testbed infrastructure, receive re-
source load measurements on all servers and VMs, and to query workload
profiles ujt. An extended description of the testbed infrastructure is provided
in Appendix A.

The DSAP controller execution starts with an initialization phase as shown
in Figure 3.1. It solves the DSAP model for a given set of workload profiles
ujt. VMs are allocated to the servers according to the first allocation xij1

using migrations. Each period has a fixed duration of simtime/τ where simtime

is the duration of one experiment or simulation in hours. After each period

48 CHAPTER 3 – The DSAP dynamic controller

Allocation Allocation Allocation

Experiment start
Initialization phase includes setting up

Migration phase

End of allocation phase
Calculated allocation start

Figure 3.1: Migration phase between two stable allocations

a new allocation gets activated. VM migrations are triggered to adjust the
infrastructure accordingly.

The controller determines all changes between the current and next allocation
to create a list of necessary migrations. Launching all migrations at the same
time would possibly lead to multiple migrations on a single server in parallel.
To avoid server overloads only one migration is allowed at a time for each
server.

Migrations are scheduled by a migration queue. For all migrations it is checked
whether they can be executed now without intersecting with active migrations
in terms of using the same server or VM. This process is repeated each time a
migration finishes as long as the migration queue contains entries.

Migrations are executed during a migration-phase at the beginning of each
period (see Figure 3.1). Its duration is determined by the speed and number
of migrations. Likelihood for service disruption is increased as DSAP does not
consider migration overheads in terms of resource consumption or duration.

The intermediate allocation state during a migration-phase is not considered
by the DSAP either. This might cause overload situations as servers might be
oversubscribed. Worse, the migration-phase cannot be expected to be short
compared to the duration of a period. For example, if 10 migrations are
executed in sequence with an average migration time of 30 s (see Chapter
2) the migration-phase takes approximately 5min or 8% of a 60min period
length.

For simulations and experiments we used a set of 451 CPU and memory uti-
lization or application request throughput traces from two European IT service
providers. Descriptive statistics on this data set are provided by [86] and in

3.4. Simulation results 49

Cut time series into buckets

Apply the 99th percentile on all values in one bucket

Figure 3.2: Profile downsampling for the DSAP parametrization

Appendix E. We focused on the CPU utilization traces that show strong sea-
sonality for days and weeks. We extracted a workload profile for each trace
that represents the typical daily workload of the corresponding server following
the same approach used in Chapter 2 and Appendix E.

This workload profiles were used to parametrize the DSAP, drive simulations
and to generate workload for the testbed infrastructure. As in Chapter 2,
the first set contains profiles with low volatility, the second one holds volatile
profiles. A third mix MIX3 combines MIX1 and MIX2 by randomly sampling
9 traces from each without replacement.

A workload profile is stored as a time series with a sampling rate of 3min over a
duration of 6 h which is the duration of one simulation and experiment. DSAP
requires a time series of τ data points. The workload profile was downsampled
by splitting it into τ parts and taking the 99th percentile of the data points in
each part (see Figure 3.2). We conducted simulations with other percentiles
as shown in Section 3.4 and found the 99th percentile to be a good choice in
order to maintain a high service quality.

The infrastructure used to conduct simulations and experiments is described
in Appendix A. The DSAP controller implementation is independent to the
operation mode, either simulation or experiment.

3.4 Simulation results

We conducted a number of simulations to asses how DSAP will work for differ-
ent input parameters. Simulations precede experiments as these are costly in

50 CHAPTER 3 – The DSAP dynamic controller

● ●

●

●

●
●●

●

● ●
●

3.5

4.0

4.5

5.0

5.5

6.0

0 20 40 60 80
Number of DSAP periods

A
v
e

ra
g

e
 s

e
rv

e
r

d
e

m
a

n
d

Workload

●

●

●

MIX1

MIX2

MIX3

Figure 3.3: DSAP gets more efficient
if the number of periods is increased

● ●
● ● ● ●

●

●

●

●

●

70%

80%

90%

100%

0 20 40 60 80
Number of DSAP periods

S
e

rv
ic

e
 q

u
a

li
ty

Workload

●

●

●

MIX1

MIX2

MIX3

Figure 3.4: Service quality degrades if
the number of periods is increased

terms of time.

Simulations were conducted for all DSAP configurations and workload mixes
MIX1-3 in an environment of 6 servers and 18 VMs. A server had 15GB
of memory available to the VMs, each consuming 2GB. VM CPU workload
profile values vary in a range of [0, 100]. Maximum CPU capacity of a server
was set to si = {200, 230}. A value of si = 200 resembles the testbed’s
hardware setup where two VMs can fully utilize one server, a setting of si = 230

oversubscribes servers on purpose.

τ was varied between 1 and 60 periods which affects the number of allocations
calculated by the DSAP and in turn the number of migrations. Setting τ = 1

effectively reduces DSAP to an SSAP model [9], a simplified version of SSAPv
that does not consider workload profiles. By varying the number of periods
we wanted to see how the amount of required servers develops. Results are
shown in Figure 3.3. For all workloads server demand improves if the number
of periods is increased to 20, equivalent to a period length of 18min. Shorter
period lengths do not indicate additional efficiency gains and might even have
a negative effect as seen for MIX2 in Figure 3.3.

Figure 3.4 shows that the service quality decreases if more periods are used.
The intention of DSAP is to maintain a high service quality while minimizing
average server demand. For all workloads the service quality falls off at around
17 periods, a 21min period length.

3.4. Simulation results 51

With an increasing number of periods and allocations the number of migrations
also increases. Each migration comprises additional overhead. At the same
time periods get shorter which puts more weight into the migration-phase
(see Figure 3.1). Ultimately, the allocation phase length will be equal to the
period length. An optimal allocation will not be reached. We conclude that
a high number of migrations and an increased allocation phase duration seem
to cancel out the benefits of dynamic controllers at some point.

The simulation results indicate that 10 to 17 periods deliver a high efficiency in
terms of average server demand and service quality for this particular scenario.
For more than 17 periods service quality falls off to an sub-optimal value below
99%.

In a second set of simulations we tested sensitivity regarding the CPU capacity
and the bucket-percentile parameters of the DSAP. Previous experiments with
the SSAPv [86] model conducted in Chapter 2 indicated that overbooking often
results in a slight but acceptable service quality degradation while at the same
time average server demand can be reduced. We wanted to see if this results
carry over to DSAP.

Factor bucket percentile was varied between {90, 99} and factor CPU capacity
si between {200, 230}, giving 22 configurations. Each one was simulated for
workload mixes MIX1-3. Results are shown in Table 3.1. Controllers are
named by an approach similar to the Kendall notation with four variables
separated by a slash. The first element declares the bucket percentile, the
second one is CPU capacity si, number of periods τ is described by the third
one, and a potential migration limit Z is stated in the fourth element.

Most of the performance metrics reported are self explanatory, except service
quality. It is calculated based on a violation counter, which is incremented
each time the driver updates a server utilization that exceeds its capacity. For
example, three overloaded servers would account for three violations for one 3 s
simulation interval. Similarly, a slot counter is incremented for each simulation
interval and for each non-empty server. If five servers are hosting VMs this
would account for five increments in one simulation interval. Both values are

52 CHAPTER 3 – The DSAP dynamic controller

Configuration Srv bSrvc dSrve Mig SQ Srv bSrvc dSrve Mig SQ Srv bSrvc dSrve Mig SQ

MIX1 MIX2 MIX3

[90/200/6/∞] 5.19 5 6 76 97.04 3.37 3 5 72 98.42 4.38 4 6 79 97.07

[90/230/6/∞] 4.84 4 6 70 73.40 3.41 3 5 77 97.55 3.86 3 6 70 92.20

[99/200/6/∞] 5.82 5 6 80 98.93 4.38 4 6 73 99.82 4.67 4 6 79 99.33

[99/200/9/∞] 5.39 5 6 113 98.14 3.92 3 6 113 99.55 4.57 3 6 125 99.11

[99/230/6/∞] 5.02 5 6 76 80.87 3.68 3 6 72 97.98 4.37 4 6 70 96.50

[99/230/9/∞] 4.79 4 6 125 83.21 3.57 3 6 121 99.06 3.82 3 6 116 93.90

[99/200/6/30] 5.82 5 6 29 99.43 4.38 4 5 27 99.97 4.66 4 5 21 99.45

[99/230/6/30] 5.00 5 5 20 87.86 3.67 3 6 30 100.00 4.37 4 5 22 98.16

Proactive 5.62 4 6 30 99.16 3.75 3 6 40 98.23 4.69 3 6 43 99.21

Reactive 5.74 5 6 34 98.99 4.22 3 5 33 98.63 5.02 4 6 35 98.64

Optimization 6.00 6 6 0 100.00 4.00 4 4 0 100.00 5.00 5 5 0 100.00

RoundRobin 6.00 6 6 0 96.88 6.00 6 6 0 100.00 6.00 6 6 0 98.77

Table 3.1: Simulation results comparing the DSAP optimization model with
different configurations. Results on controllers: proactive, reactive, optimization,
and round robin stem from Chapter 2. Controller – [Bucket percentile, CPU
capacity si, bucket count τ , migration limit Z], Srv – average server demand, dSDe
– maximum server demand, bSDc – minimum server demand, Mig – VM migration
count, SQ [%] – service quality based on 3 s intervals

used to calculate the service quality. It indicates how many simulation intervals
were affected by a resource violation.

Independent to the workload mix, varying both factors had only negligible
effects on the migration count. Configuration [90/200/6/∞] showed to be ag-
gressive and decreased average server demand sacrificing service quality. Gen-
erally, service quality goes up as average server demand increases. Overall
[99/200/6/30] without overbooking delivered the best service quality but also
had the highest server demand.

For comparison we report simulation results for alternative controllers in Table
3.1 that includes results from Chapter 2. A round robin controller estimates
the number of required servers based on VM dimensions. It assigns VMs to
servers in a round robin approach during the initialization phase. The opti-
mization controller represents the solution achieved by the SSAPv program
[86]. By default optimization is parametrized with a CPU capacity si = 200

without overbooking. The reactive controller closely monitors the infrastruc-
ture and triggers migrations based on threshold violations similar to [101]. For

3.4. Simulation results 53

● ● ● ● ● ● ●
●

0

1000

2000

3000

4000

5 10 15 20
Number of DSAP periods

N
u

m
b

e
r

o
f

V
M

 m
ig

ra
ti

o
n

s
Scenario scale (#VMs)

●

●

●

●

●

18

45

90

180

250

Figure 3.5: Relationship between the number of VM migrations, number of
DSAP periods, and the number of VMs

proactive, double exponential smoothing (DES) is used to get a point forecast
on the current CPU utilization.

Considering all workload mixes, optimization required slightly more servers
then dynamic controllers while delivering a good service quality without trig-
gering any migrations. Round robin used most servers but still was not able
to deliver a service quality above 99% consistently. Reactive delivered a good
service quality independent to the workload mix and used less servers than op-
timization. DSAP required approximately two times as many migrations with
6 periods and three times as many with 9 periods as the reactive controller. Its
configurations [99/200/6/∞] and [99/230/6/∞] where the only ones achieving
a service quality and server demand on par with the reactive controller.

Migrations always entail the risk of service disruption as they might fail and put
additional stress on the network infrastructure. Static controllers like round
robin and optimization do not trigger migrations at all. Despite the high
number of migrations, DSAP was able to achieve a comparable high service
quality.

In a next step larger scenarios were considered. Simulations were parametrized
with a CPU capacity of 200, a bucket-percentile of 99, a varying number of
periods τ = [3, 20], and different amount of VMs between [18, 250]. Results

54 CHAPTER 3 – The DSAP dynamic controller

in Figure 3.5 suggest a linear relationship between the number of periods τ ,
number of VMs, and migration count.

In order to reduce migrations we conducted simulations with two additional
constraints as explained in Equation 3.3. Results are shown in Table 3.1. Due
to problem complexity we were unable to solve some instances within one hour.
Especially the large number of slack variables zijt increases computational
complexity. Therefore, the best solution found after 60min was chosen. A
migration limit of 30 was set as a similar amount was required by the reactive
controller.

Independent of the workload mix comparing previous DSAP simulations with
migration-constrained ones does not indicate an increase in server demand.
The number of migrations was cut significantly, even below a threshold of 30.
Especially configuration [99/200/6/30] without overbooking delivered good re-
sults. All metrics are mostly competitive to the reactive controller. Server
demand was sometimes increased while service quality was always good. Con-
figuration [99/230/6/30] overbooked servers which decreased average server
demand. However, service quality fell far below the desired level of 99%.

3.5 Experimental results

We wanted to see if simulation results carry over to a real-world environ-
ments. For this we executed the same DSAP controller used for simulations
in a testbed infrastructure. An extensive description of the infrastructure is
provided in Appendix A. Prior to each experiment the infrastructure was
reconfigured to match the experimental prerequisites. This includes migrat-
ing and restarting VMs in accordance to the initial allocation, resetting the
MySQL databases and restarting the Glassfish servers on all VMs.

A single experiment took 6 h. Because of the huge amount of time required
to conduct experiments it was impossible to evaluate a large number of treat-
ments. Instead, simulation results were used to come up with promising DSAP

3.5. Experimental results 55

settings. The number of periods was set to τ = {6, 10} and server CPU ca-
pacity was set to si = {200, 230}. Experimental results are shown in Table
3.2 including alternative static and dynamic controllers that were evaluated in
Chapter 2. Again, controllers are named by an approach similar to the Kendall
notation with three variables separated by a slash. The first element declares
the number of periods τ , CPU capacity si is described by the second element,
and a migration limit Z is stated in the third element.

Controller Srv RT dRTe O
[sec]

Ilate Ofail Mig SQ

MIX 1

[6/200/∞] 5.83 (0) 934.00 86907 (4727.72) 139.45 (0) 5474 (25) 84 (6) 79 [79/79] 95.78%

[6/230/∞] 5.02 (0) 1309.00 100041 (15354.12) 133.09 (0) 10652 (1759) 104 (63) 75 [75/75] 91.78%

[10/200/∞] 5.26 (0) 1262.00 235511.5 (174438.29) 133.39 (0) 9264 (29) 152 (68) 135 [135/135] 92.85%

[6/200/30] 5.82 (0) 873.00 87264 (5484.32) 141.05 (0) 3976 (770) 72 (17) 26.5 [25/28] 96.93%

[6/200/30]* 5.82 (0) 1345.00 107890.5 (10154.76) 149.67 (0) 13363 (3544) 51 (31) 27.5 [25/30] 89.69%

Proactive 5.95 (0.07) 566 42012 (5958) 147 (2) 1990 (1609) 15 (5) 10.33 [9/12] 98.46%

Reactive 6 (0) 392 21501 (9386) 150 (1) 279 (25) 14 (1) 0.33 [0/1] 99.78%

Optimization 6 (0) 330 17621 (3777) 151 (0) 137 (26) 8 (2) 0 [0/0] 99.89%

MIX 2

[6/200/∞] 4.39 (0) 649.00 96395 (18367.81) 77.57 (0) 1109 (11) 65 (7) 72 [72/72] 99.14%

[6/230/∞] 3.73 (0) 909.00 128203.5 (59140.29) 74.76 (0) 3542 (331) 126 (88) 74.5 [72/77] 97.27%

[10/200/∞] 3.74 (0) 1000.00 457192 (472442.08) 73.15 (0) 5082 (161) 242 (18) 139 [139/139] 96.08%

[6/200/30] 4.35 (0) 667.00 97064 (19241.79) 77.95 (0) 1342 (21) 20 (12) 25.5 [21/30] 98.96%

[6/200/30]* 4.36 (0) 977.00 96113 (17916.67) 94.06 (0) 4512 (2655) 40 (16) 24.5 [24/25] 96.52%

Proactive 3.93 (0.2) 535 65337 (22243) 79 (0) 777 (184) 22 (17) 23 [16/34] 99.4%

Reactive 4.34 (0.18) 547 71153 (23498) 79 (1) 842 (359) 28 (23) 26.4 [18/36] 99.35%

Optimization 4 (0) 467 16875 (7071) 80 (1) 637 (156) 6 (4) 0 [0/0] 99.51%

MIX 3

[6/200/∞] 4.7 (0) 735.00 113943.5 (3796.46) 101.26 (0) 1854 (449) 11047 (15443) 70 [70/70] 98.57%

[6/230/∞] 4.39 (0) 1149.00 76163 (12213.15) 96.54 (0) 6424 (303) 70 (13) 76 [76/76] 95.04%

[10/200/∞] 4.49 (0.01) 990.00 112298.5 (4674.68) 91.52 (0) 4865 (751) 150744 (213055) 135.5 [133/138] 96.25%

[6/200/30] 4.68 (0.01) 710.00 83988.5 (614.48) 102.1 (0) 1874 (179) 38 (25) 28.5 [28/29] 98.55%

[6/200/30]* 4.68 (0.01) 1386.00 89875 (8786.51) 113.91 (0) 11378 (4182) 72 (64) 29.5 [29/30] 91.22%

Proactive 4.76 (0.16) 475 54636 (215) 106 (0) 545 (93) 12 (4) 14.33 [10/17] 99.58%

Reactive 4.85 (0.12) 505 59651 (9129) 105 (1) 635 (158) 19 (11) 17 [17/17] 99.51%

Optimization 5 (0) 347 11222 (1171) 107 (0) 73 (6) 8 (2) 0 [0/0] 99.94%

Table 3.2: Experimental results on DSAP. Results on controllers: proactive,
reactive, and optimization stem from Chapter 2. Controller – [Periods τ / CPU
capacity si / Migration limit Z], Srv – average server demand, RT [ms] – average
response time, dRTe [ms] – maximum response time, O

[sec] – average operations per
second, Ilate – 3 s intervals with RT > 3 s, Ofail – failed operations count, Mig – VM
migration count, SQ [%] – service quality based on 3 s intervals

For each treatment two experiment replications were conducted. Values in

56 CHAPTER 3 – The DSAP dynamic controller

parentheses describe the variance and values in squared brackets describe the
max and min values. Most performance metrics are comparable to the ones
reported for simulations except for service quality. For each VM the Rain
workload generator determines the average response time over consecutive 3 s
intervals and reports them. A service level agreement (SLA) failure is detected
if the average response time of such a 3 s interval exceeds an arbitrarily chosen
threshold of 3 s.

Overall DSAP [6/200/∞] delivered the best service quality independent to
the workload mix, equally good as the reactive controller. It is the only DSAP
configuration that consistently achieved a service quality close to or above
99%. While delivering similar server savings as the reactive one, migrations
and average response time were significantly increased.

Looking at more aggressive DSAP configurations with overbooking or in-
creased number of periods reveals a positive effect on server demand with
an average CPU utilization above 70%. However, service quality decreased as
fewer servers were used, confirming simulation results. Operation throughput
also decreased, indicating an overloaded infrastructure.

DSAP [6/230/∞] and [6/200/∞] configurations triggered between 70 and 80
migrations over a period of 6 h and 18 VMs. On average a VM gets migrated
about 4 times during the experiment. DSAP [10/200/∞] with a period du-
ration of 36min even triggered 7.5 migrations per VM over 6 hs. Assuming
a 2GB network transfer for each migration results in approximately 240GB
transfer volume over 6 h and 6 servers. This highlights the need for dedicated
migration network infrastructure and mechanisms that counteract migrations.

In an additional experiment [6/200/30] we limited migrations to a count of
30. Comparing results with the same configuration without that limitation
[6/200/∞] does not indicate any efficiency loss in server demand. Nor did
service quality decrease or average response time increase. In most cases even
less than 30 migration were triggered. Despite limiting migrations, the reactive
controller outperforms DSAP in terms of service quality at a comparable server
demand. It triggered even less migrations as predicted by simulations. In sum-
mary, limiting migrations seems to be effective as it does not degrade overall

3.6. Conclusions 57

allocation density, reduces load on the network infrastructure, and reduces the
risk of failing migrations and service disruptions.

Experimental and simulation results on server demand are comparable as cal-
culations are parametrized and calculated equally for simulations and exper-
iments. Compared to static controllers, dynamic ones achieve an additional
saving at the cost of migrations. However, savings heavily depend on the
workload mix. For MIX1-3 DSAP could not outperform the reactive one and
delivers equally good results at best.

All experiments were conducted in a highly deterministic environment. The
actual workload experienced by VMs during an experiment closely resembled
workload data used by the DSAP optimization program in advance. If the
actual workload deviates from the one used by the calculations, the DSAP
performance even gets worse. This is shown by the DSAP [6/200/30]* ex-
periment. The workload data of MIX1-3 was used by the calculations but
the experiments used strongly modified workload profiles similar to the ones
described in Chapter 2. Additional workload peaks were modeled, noise was
added, and the workload was shifted randomly between 0 and 30 minutes.

Comparing the experimental results with simulations especially shows differ-
ences in the achieved service quality. Simulations still are a viable tool to
predict the amount of required servers and the relative number of migrations.
Predicting the migration overhead is difficult in simulations. Models that pre-
dict the migration duration and impact based on a memory page dirtying rate
are not viable as most simulation frameworks do not model the hardware in
such a great detail. This example shows the importance of experiments to
verify stimulative findings for such controllers.

3.6 Conclusions

In this work we evaluated the DSAP integer program that re-allocates VMs
to servers periodically in order to improve allocation density. Its results were

58 CHAPTER 3 – The DSAP dynamic controller

compared against static and dynamic controllers that migrated VMs between
servers depending on their actual resource utilization.

Simulations on DSAP indicate that frequent VM migrations are necessary
to achieve a high overall allocation density. An infrastructure reallocation
needs to get triggered every 20min to achieve server demand savings at an
acceptable service quality. Further increasing reallocation frequency does not
provide additional savings and even has a negative effect on service quality as
much more migrations get triggered.

Experiments in a testbed infrastructure showed that simulation models are
quiet accurate with respect to the server demand and migration count but
provide only rough estimates on service quality. Over all workload scenarios
considered, the reactive controller delivered equally good or better results than
DSAP considering core metrics: average server demand, service quality, and
migration count.

DSAP triggered between 2 and 3 times more migrations than a reactive con-
troller. Limiting migrations by two additional model constraints leads to a
slightly increased server demand without any other negative effects.

In summary, dynamic controllers like DSAP or the reactive controller can
achieve an average server demand comparable to static controllers at a reason-
able high service quality. However, techniques are required to counteract VM
migrations as a main factor for service quality degradation.

Chapter 4

Extending DSAP with
migration overheads

For static controllers mathematical problem formulations have been proposed
as discussed in Chapter 2 and 3. Static allocations are calculated for an ex-
tended period that often covers multiple durations with different utilization
characteristics such as holidays, weekends, and night time [70, 86, 76]. Lever-
aging this information might provide further efficiency gains while allocating
VMs.

In Chapter 3 VM migrations were leveraged to implement an off-line dynamic
controller that allocates VMs on a short term basis. Short reallocation cycles
can reduce average server demand effectively, but lead to a large number of
migrations and service quality degradation.

The same approach can also be used to switch between different allocations
that are valid for an extended period. For example, one allocation could be
used during nighttime and a second one during working hours. Gmach et al.
[34], amongst others, proposes a cyclic re-computation of VM assignments after
periods of some hours in order to further reduce the required server demand
and align to utilization changes. Longer cycles such as days, weeks and months
have been proposed by Rolia et al. [71] or Bichler et al. [10].

59

60 CHAPTER 4 – Extending DSAP with migration overheads

Each migration entails additional resource overheads on the source server as
well as on the target server, especially regarding CPU and memory capacity as
shown in Chapter 2, 3, and by [38, 1]. Depending on the frequency an appli-
cation writes data into the main memory, the CPU overhead varies between
5% and 30% of the application’s current CPU utilization [1].

The proposed approaches have in common that migration overhead is consid-
ered only in an indirect fashion by either defining threshold values with large
safety buffers or in restricting the amount of migrations to be allowed in a
certain time frame. Assuming deterministic or at least a well predictable VM
utilization behavior, migration overheads as well as migration durations can
be estimated with sufficient accuracy [1].

VM migrations must be scheduled in a controlled fashion in order to avoid
server overloads during a migration. In particular, migrations are only allowed
to be triggered if there are enough resources available on the migration source
and target servers.

In this chapter we introduce an extension to the DSAP model called DSAP+.
It takes migration overheads into account while minimizing average server de-
mand. In contrast to other approaches, it does not rely on predefined thresh-
olds as the reactive controller used in Chapter 2 or migration limits as used in
Chapter 3.

Texts in this chapter are based on a previous publication [78].

4.1 Model formulation

We extended the DSAP integer program [79] formulation that was already
used in Chapter 3 to cover migration overheads. For each VM it assumes
a workload profile with a utilization value for each period. For example, a
workload profile of 24 values describes one day, assuming a period duration of
1 h. A dedicated static allocation is calculated for each period.

Consecutive allocations are established by triggering migrations. Each migra-
tion generates additional CPU load on the migration source and target server.

4.1. Model formulation 61

The proposed model takes migration overheads into account while calculat-
ing consecutive allocations. It is assumed that all migrations are triggered in
parallel at the beginning of a period (see Figure 3.1).

A formal model description is shown in Equation 4.1. Suppose we are given a
set of servers i ∈ I and VMs j ∈ J . A server’s size is denoted by si describing
its resource capacity, e.g. CPU units or available memory. The total planning
horizon is divided into τ discrete equidistant periods t ∈ τ . yit ∈ {0, 1} tells
whether a server i is active in period t. ujt describes the utilization of VM j

in period t. The allocation matrix xijt of period t indicates whether VM j is
assigned to server i.

VM migrations from a source to a target server are indicated by slack variables
z−ijt for outgoing and z+ijt for incoming migrations. Each migration entails a
certain resource overhead m− for outgoing and m+ for incoming ones.

The objective function minimizes the overall server demand. For simplicity, the
model formulation shown in Equation 4.1 assumes a single limiting resource,
e.g. CPU or memory. An extension to cover multiple resources is possible as
shown for the underlying DSAP program in Equation 3.2.

min
τ∑

t=1

I∑
i=1

yit

s.t.
I∑

i=1

xijt = 1, ∀j ∈ J,∀t ∈ τ

J∑
j=1

ujtxijt +m−z−ijt +m+z+ijt ≤ siyit, ∀i ∈ I, ∀t ∈ τ

− xij(t+1) + xijt − z−ijt ≤ 0 ∀i ∈ I, ∀j ∈ J,∀t ∈ τ

xij(t+1) − xijt − z+ijt ≤ 0 ∀i ∈ I, ∀j ∈ J,∀t ∈ τ

yit, xijt, z
−
ijt, z

+
ijt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀t ∈ τ

(4.1)

The first set of constraints ensures that each VM is allocated to one of the
servers at any point in time. The second set of constraints ensures that the

62 CHAPTER 4 – Extending DSAP with migration overheads

aggregated resource demand of multiple VMs does not exceed a server’s capac-
ity during all periods. The term on the left hand side of the sum describes the
resource demand due to the operation of VMs. The term on the right hand
side determines migration-related overheads.

With the third and fourth constraint type the slack variables z−ijt and z+ijt used
in the second set of constraints are set to one if a VM is migrated away or
towards a server. In the next section we will evaluate this model using moni-
toring data on CPU utilization from two large European IT service providers
(see Appendix E).

4.2 Simulation setup

We study the solution quality in terms of average server demand compared to a
solution determined by the SSAPv model proposed by [79]. A static controller
is used as a benchmark as all approaches that allow for VM migrations found
in the literature do not guarantee overload avoidance during migrations even
in case of predictable VM resource utilization. CPU was considered as the
single limiting resource. For each treatment 10 simulations with different sets
of VM workload profiles were calculated.

The impact of migration overheads on the allocation efficiency was evaluated
as a first factor. CPU overheads for (source server, target server) were varied
between three levels: (20%, 10%), (30%, 20%), and (40%, 30%). In practice,
migration overheads depend on the application and it’s workload characteris-
tics.

As a second factor, we analyzed the impact of the servers CPU capacity. Small
servers (S) could host 3 VMs on average, medium servers (M) were able to
host 5 VMs on average, and large servers (L) could host 8 VMs on average.

In summary, we conducted 180 simulations with 3 different CPU migration
overhead settings, 3 different server sizes, 10 workload profiles, and two con-
troller implementations (SSAPv and DSAP+).

4.3. Simulation results 63

0%

20%

40%

60%

(20%, 10%) (30%, 20%) (40%, 30%)
Migration CPU overhead (Source, Target)

S
e

rv
e

r
d

e
m

a
n

d
 o

f
D

S
A

P
+

 v
s

.
S

S
A

P
v

Figure 4.1: Server savings vs. VM migration overhead

4.3 Simulation results

Aggregated results are shown in Figure 4.1. The dark bars show the average
server demand of DSAP+ compared to SSAPv over 10 simulations for 3 differ-
ent migration overheads. For example, the height of 45% of the outer-left bar
indicates a reduction of 55% on the average server demand when applying
DSAP+ model in a scenario with 20% on the migration source and 10% over-
head on the migration target server. The red error bars indicate the standard
deviation of the average server demand savings over all 10 simulations.

Overall, DSAP+ resulted in average server demand reduction of around 55%
compared to SSAPv with a static allocation if migration overheads were low.
49% savings were achieved with medium migration overhead, and 45% with
a high migration overhead. We compared these results pairwise and found all
differences to be significant at a 1% level with a Wilcoxon signed rank test.
That is mainly because the standard deviation of the average server demand
savings was varying between 5% and 7%.

The positive correlation between migration overhead and average server de-
mand savings results from the fact that with decreasing overhead, migrations
become cheaper. An overhead of zero means that VMs can be moved around

64 CHAPTER 4 – Extending DSAP with migration overheads

0%

20%

40%

60%

Small Medium Large
Server size

S
e

rv
e

r
d

e
m

a
n

d
 o

f
D

S
A

P
+

 v
s

.
S

S
A

P
v

Figure 4.2: Server savings vs. server size

without restrictions in order to evacuate servers whenever possible. Contrary,
a very large overhead would not permit migrations at all.

Accordingly, the average number of migrations increased with a decreasing
migration overhead. In small server scenarios with high migration overheads,
only 73 migrations were triggered, while 84 with medium, and over 100 migra-
tions with small migration overheads. Still, even for relatively large overheads
assumed, server demand could be lowered by almost 45% by DSAP.

Results on the impact of server size on average server savings are depicted in
Figure 4.2 for S, M, and L servers.

Average server demand savings vary only slightly between 49% and 51% con-
sidering different server sizes. A Wilcoxon signed rank test did not find signifi-
cant differences. We conclude that the cost savings achieved by the DSAP+
model are around 50% considering different sets of CPU utilization time series
and migration overheads.

4.4. Conclusions 65

4.4 Conclusions

We introduced the DSAP+ model as an extension of the DSAP model that
takes VM migration overheads into account. In literature some work on real-
locating VMs has been discussed, but none considers migration-related over-
heads directly in a mathematical model formulation. Deterministic simula-
tions, leveraging real-world utilization time series of a data center indicate
average server demand savings of around 50% compared to a static allocation
calculated by the SSAPv program.

DSAP+ is meant for data centers that experience seasonal workloads over an
extended period, such as weekends where resource utilization is typically low.
A majority of servers we analyzed in Appendix E exhibit such predictable,
seasonal workload on a weekly basis. In such cases, migration overheads can
be predicted with sufficient accuracy. This data allows a parametrization of
the DSAP+ model in real-world scenarios.

A major downside of the DSAP+ model is its computational complexity. The
problem formulation at its core is NP-complete. In simulations, we could
solve only very small problem instances with 20 to 30 VMs within one hour of
computation using the Gurobi solver.

66 CHAPTER 4 – Extending DSAP with migration overheads

Chapter 5

Vector packing as static
allocation controller

Many VMs exhibit resource utilization with a daily or weekly seasonality.
Workload profiles describe an average season and help to refine the VM’s de-
mand characteristics compared to time-invariant reservation specifications like
static CPU cores and memory. SSAPv [86] strongly increases consolidation
density while maintaining service quality leveraging workload profiles.

In this work we show that heuristics are on par with SSAPv solutions if calcu-
lation time is constrained. Further, there are no significant differences between
heuristics - simpler heuristics perform just as well as more complex ones. Also,
solution quality does not increase with input sizes in excess of 200 VMs, allow-
ing calculations to be clustered on a per rack basis. In scenarios with unlimited
calculation time SSAPv still outperforms all heuristics.

First, we evaluate the effectiveness of well-known vector bin packing heuristics
on daily workload profiles of enterprise data centers. To our knowledge, this
is the first study to combine high-dimensional workload profiles with vector
bin packing heuristics. In related work, vectors are used to represent sin-
gle demand values for multiple resources. Second, we provide comprehensive
guidelines for parametrizing vector bin packing heuristics for the purpose of

67

68 CHAPTER 5 – Vector packing as static allocation controller

VM allocation. Third, we show that vector bin packing heuristics can substi-
tute integer programs if solution time is constrained and workload profiles of
similar dimensionality are used.

Texts in this chapter are based on a previous publication [95].

5.1 Problem formulation

We ask for an VM allocation which assigns workload profiles to servers without
oversubscribing any of these. We consolidate servers based on a single restric-
tive resource, the CPU. To maximize a server’s energy efficiency it is necessary
to fully utilize each CPU as under-utilization leads to lower efficiency as shown
in Section 1.3.

A workload profile describes a VM’s average utilization of a 24 h day for a
single resource in τ periods of equal lengths. A vector ~dj with τ = dim(~dj)

values thus describes the CPU utilization of a VM j over all τ periods, with
one value per period.

A server i is represented by a vector of residual capacities ~ri with dimensionality
τ . It explains the amount of free server resources for each period. Whenever
a VM j is assigned to a server i, its load vector is subtracted from the server’s
residual capacity vector ~ri − ~dj. If one vector component turns out to be
negative, this particular server is oversubscribed. An allocation of VM j to
server i is valid if dtj ≤ rti for 1 ≤ t ≤ τ .

We search a valid allocation for a given set of VMs and their respective work-
load profiles with the objective of minimizing the number of servers, no over-
subscriptions allowed. This problem is known as the multidimensional vector
bin packing problem [29].

5.2. Existing approaches 69

5.2 Existing approaches

Various works on integer programs to solve the multidimensional vector bin
packing problem exist [2, 89]. Speitkamp et al. [86] recommend workload
profiles with less than 24 dimensions, arguing that downsampling workload
profiles hurts solution quality only marginally and reduces major complexity
hurdles.

Setzer et al. propose a novel approach to cut complexity [77]. SVD is leveraged
to extract workload characteristics used by an integer program that originated
from the one proposed by Speitkamp. This approach combines the advantages
of using workload profiles with a reduction in computational complexity.

Panigrahy et al. [90] propose a vector bin packing heuristic for server consol-
idation based on the dot product of two vectors. Li et al. [52] subsequently
showed that the cosine of two vectors yields slightly better results. Both com-
pared their approaches to existing heuristics such as First-Fit or the euclidean
distance metric as proposed by Srikantaiah et al. [87]. In these and other
studies [89], vector components represent singular demand values for server
resources, for example CPU or memory.

The vectors in this study instead represent the workload profile of a single
constrained resource (CPU) over time, where time is partitioned into τ equal-
length periods. Compared to previous studies, vectors used by this approach
are of higher dimensionality. To our knowledge, this is the first study com-
bining vector bin packing heuristics with workload profiles to calculate dense
allocations for a given set of VMs.

The approach closest to ours is by Maruyama [54], who propose a generic algo-
rithm for vector bin packing. They evaluate the impact of different parameters
by conducting simulations founded on synthetic data, where vector elements
are randomly chosen from a bell shaped or skewed distribution. However, his-
tograms drawn from representative workload profiles as shown in Appendix E
suggest different distributions, leaving room to exploit complementarities and
questioning the applicability of [54]’s approach.

70 CHAPTER 5 – Vector packing as static allocation controller

5.3 Simulation setup

Our simulations make use of precalculated workload profiles to evaluate the
effectiveness of vector bin packing heuristics for allocating VMs to servers.
These workload profiles stem from two large European IT service providers
and are not generated in a synthetically manner as done by other studies. An
extensive descriptive statistical analysis is provided in Appendix E.

For each of the 451 utilization traces we calculate a profile closely following the
approach described in Appendix E. We select the CPU as the single limiting
resource, and ignore other resources, since the scalability of CPU power is
inferior to the scalability of all other server resources. The majority of the
time series exhibit a daily load pattern if weekends are excluded.

We created twenty sets of workload profiles. For each set, 180 workload pro-
files were randomly picked from the 451 workload profiles. Each simulation
treatment was replicated twenty times, once for each set.

Simulations were conducted as full factorial experiments with three factors.
The factor scale describes the number of VMs to allocate with levels 30, 90,
120, 150, and 180. The factor profile size τ describes the workload profile
downsampling with levels 288 (no downsampling), 24 (one per hour), 12 (one
per two hours) and 6 (one per three hours). We implemented controllers
with four bin packing heuristics and one integer program as the third factor,
algorithms, with five levels: 1) FF (First-Fit), 2) FFv (First-Fit with variable
workload), 3) DotProduct [90], 4) Cosine [52], and 5) SSAPv [86]. We shortly
summarize the working of each controller.

FF is a one-dimensional bin packing heuristic and therefore needs to extract a
single scalar value from the VM’s workload profile vector, in this case the vector
component with the maximum value. It then places the VM on the first server
that has enough residual capacity to accommodate the VM. First-fit with
variable workload (FFv) on the other hand does a component-wise comparison
of the workload profile and the server’s vector of residual capacities and then
similarly places the VM on the first server that can host the VM.

5.4. Simulation results 71

SSAPv [86] is an integer program to calculate an allocation with the objec-
tive of minimizing the number of servers, which we solved using the Gurobi
solver. We limited its computation time to 25min for small scenarios with up
to 60 VMs and to 45min for larger scenarios with up to 180 VMs. Gurobi
was able to produce valid, yet potentially suboptimal solutions for almost
all treatments. Since our study is about the practical applicability of the
described approaches, we argue that data center operators in operational en-
vironments limit the calculation time of solvers like Gurobi. We therefore
compare Gurobi’s (sub)optimal solutions with vector bin packing heuristics.

Panigrahy et al. [90] propose the dot product of the the server’s residual
capacity and the VM’s resource demand vectors as the metric for determining
the allocation target. For each new VM the dot product of a server’s weight
~wi, residual ~ri, and the VM’s demand ~d is calculated as shown in Equation
5.1. The VM is placed on the server i with the greatest dot product.

τ∑
t=1

wt
ir

t
id

t, ∀i ∈ I (5.1)

Xi [52] et al. instead propose the minimum cosine (see Equation 5.2).

cos(~ri, ~d) =
~ri · ~d
|~ri||~d|

,∀i ∈ I (5.2)

5.4 Simulation results

We conducted simulations in a full factorial experimental design. Each treat-
ment was replicated twenty times, once for each profile set. Simulations were
conducted in fully randomized order.

The effectiveness of our vector bin packing controllers was measured by their
allocation density d = n/m, where n denotes the number of VMs to allocate
and m the server demand. Since solutions obtained with the Gurobi solver
were time-constrained and thus potentially suboptimal, we were unable to use

72 CHAPTER 5 – Vector packing as static allocation controller

●

●

●

●

5.0

5.5

6.0

6.5

10 100

Workload profile size τ [# data points]

A
llo

c
a

ti
o

n
 d

e
n

s
it

y

Algorithm

● SSAPv

FFv

DotProduct

Cosine

FF

Figure 5.1: Allocation density vs.
profile size at a scale of 120 VMs

●

●

●

●18

20

22

24

10 100

Workload profile size τ [# data points]

A
ve

ra
g

e
 s

e
rv

e
r

d
e

m
a

n
d

Algorithm

● SSAPv

FFv

DotProduct

Cosine

FF

Figure 5.2: Required servers vs.
profile size at a scale of 120 VMs

the competitive value (i.e. heuristic vs. optimum solution) as metric. We now
describe the simulation results in more detail.

5.4.1 Effect of profile size

Profile sizes with levels 6, 12, 24, and 288 were used for each heuristic. The
factor scale, i.e. the number of VMs, was fixed at level 120. Figure 5.1 and
5.2 depict algorithm performance with respect to density d and the number of
required servers. FF is represented by a single point owing to its independence
of profile size.

As expected, SSAPv delivers the highest allocation density and lowest server
demand regardless of profile size. FF on the other hand yields the worst
results regardless of profile size. Evidently, vector bin packing heuristics suc-
cessfully exploit profile complementarities without much difference between
them. DotProduct and FFv slightly outperform Cosine, which does not nec-
essarely contradict the results of Xi et al. [52] as our vectors are of higher
dimensionality.

Allocation density improves with increasing profile size: going from 6 to
24 yields the greatest improvement. This is consistent with the results of
Speitkamp et al. [86] with regard to SSAPv. The findings disagree with those

5.4. Simulation results 73

●

●
●

4.5

5.0

5.5

6.0

6.5

50 100 150
Scenario size [# VMs]

A
llo

c
a

ti
o

n
 d

e
n

s
it

y

Algorithm

● Cosine

DotProduct

FF

FFv

SSAPv

Figure 5.3: Allocation density in
relation to scenario scale at a profile

size of 288 values

●

●

●

10

20

30

50 100 150

Scenario size [# VMs]

S
e

rv
e

r
d

e
m

a
n

d

Algorithm

● Cosine

DotProduct

FF

FFv

SSAPv

Figure 5.4: Required servers in
relation to scenario scale at a profile

size of 288 values

of Talwar et al. [90], as increasing profile size and thus vector dimensionality
have a positive effect on density.

SSAPv delivers the best allocation density but takes much longer to calculate
solutions. For treatments with a profile size of 288 and 120 VMs we limited
calculation time to 45min. In contrast, no heuristic took longer than 5 s to
calculate the allocation without optimizations done to the Python code base.

5.4.2 Effect of scale

In this set of simulations we wanted to analyze the effect of scenario scale on
allocation density and server demand. We fixed the profile size to 288 values.
The scale was varied between 30, 90, 120, 150, and 180 VMs. There is missing
data for SSAPv as Gurobi was unable to provide valid solutions within 45min
for treatments in excess of 120 VMs.

Results are depicted in Figure 5.3 and Figure 5.4. SSAPv again outperforms
all heuristics with regard to server demand and allocation density, while the
one-dimensional FF heuristic produces the worst overall results.

The required number of servers increases almost linearly with the number of
VMs for all heuristics and SSAPv. This is different from an increase in profile
size, where server count decreases in a non-linear way. The slope of vector bin

74 CHAPTER 5 – Vector packing as static allocation controller

●

●

●

0.1

0.2

0.3

50 100 150

Scenario size [# VMs]

V
a

ri
a

n
c

e
 o

f
s

e
rv

e
r

d
e

m
a

n
d

Algorithm

● Cosine

DotProduct

FF

FFv

SSAPv

Figure 5.5: Variance of the number of required servers over 20 experimental
replicas in relation to scenario scale at a profile size of 288 values

packing heuristics is about 0.15 and slightly greater than the one of SSAPv
with 0.145. FF has the greatest slope with 0.21 which is especially bad for
very large scenarios.

Increasing scale from 30 to 120 VMs again positively affects allocation density
for all approaches as shown in Figure 5.3. This makes sense as larger scenarios
should provide more complementarities between profiles. Increasing scale be-
yond 120 VMs does not increase allocation density further. We conclude that
there is no benefit in simulations for larger scenarios.

We examined the variance of the number of required servers and scale between
simulation replicas. We found allocation density to be low if only a few VMs are
used. As shown in Figure 5.5 the variance strongly decreases with scale going
from 30 to 120 VMs and remains approximately constant for larger scenarios.
This is likely because small scenarios do not provide enough complementarities
that can be leveraged by vector bin packing algorithms or SSAPv.

This result suggests scenarios with a scale between 90 and 200 VMs. Smaller
scenarios produce less dense allocations with a high variance of the number of
required servers. Depending on the (random) choice of VM types and thus the
ability to exploit complementarities, allocations can benefit or hurt accordingly.

5.4. Simulation results 75

Increasing scale above 200 VMs does not improve allocation density much,
but takes longer to solve, especially for SSAPv. Although SSAPv provides
better results, its practical applicability is questionable as solvers consume
large amounts of time and might not even return valid results within bounded
time.

5.4.3 Interaction of scale and profile size

Our findings show that increases in scale or profile size lead to denser allo-
cations and thus decrease the number of required servers. We now pose the
question of interaction effects between these two factors. Current results sug-
gest that a simultaneous increase in both factors yields the densest allocations.
However, adverse interaction effects might lead to less dense allocations.

We thus conducted an ANOVA analysis based on our simulation results. We
set density as the target variable and included the two factors profile size
(levels: 6, 12, and 24) and scenario scale (levels: 30, 90, and 120), resulting
in a full factorial 32 design. Refer to Table 5.1 for the results of the two-way
ANOVA analysis.

As expected from our chart analysis, both factors are significant at p ≤ 0.001.
Interaction between profile size and scenario scale is not significant with p =

0.773. In other words, increasing both factors yields the best allocation results.

The plots of residuals versus fitted values and residuals versus run order of
treatments did not exhibit any heteroscedasticity, clear pattern, or trend. We
found a single outlier in the residuals. Excluding this outlier had no effect on
the ANOVA results. The normal probability plot reveals a deviation from the
normality assumption, indicating a slightly skewed distribution that should
not have any impact on the results.

5.4.4 Comparing algorithms

As the previous charts show, vector bin packing heuristics produce very similar
results, with FF consistently performing worse and SSAPv better. To further

76 CHAPTER 5 – Vector packing as static allocation controller

SumSq MeanSq Fvalue Pr(>F)

VM Count 15.36 15.361 105.157 <2e-16***

Profile Size τ 27.56 13.780 94.329 <2e-16***

VM Count:Profile Size τ 0.08 0.038 0.257 0.773

Residuals 104.30 0.146

Table 5.1: ANOVA results for factors scenario scale and workload profile size in
relation to allocation density

diff lwr upr padj

DotProduct-Cosine 0.06666667 -0.1472012 0.2805345 0.9082794

FF-Cosine -1.52933552 -1.7432034 -1.3154676 0.0000000

FFv-Cosine 0.04912281 -0.1647451 0.2629907 0.9683139

SSAPv-Cosine 0.45473979 0.2408719 0.6686077 0.0000005

FF-DotProduct -1.59600218 -1.8098701 -1.3821343 0.0000000

FFv-DotProduct -0.01754386 -0.2314117 0.1963240 0.9993892

SSAPv-DotProduct 0.38807312 0.1742053 0.6019410 0.0000211

FFv-FF 1.57845833 1.3645905 1.7923262 0.0000000

SSAPv-FF 1.98407531 1.7702074 2.1979432 0.0000000

SSAPv-FFv 0.40561698 0.1917491 0.6194849 0.0000082

Table 5.2: TukeyHSD comparing allocation controllers on allocation density

verify this finding we conducted a one-way ANOVA analysis on the allocation
density. The factor algorithm had five levels: FF, FFv, DotProduct, Cosine,
and SSAPv. The data for a scenario of scale 120 VMs and a profile size of 288
values was used for analysis. The results of the TukeyHSD test are shown in
Table 5.2.

The residual plots of residuals versus fitted values and residuals versus run
order of treatments did not show any heteroscedasticity, clear pattern, or trend.
Normal probability plot was unobtrusive again.

SSAPv is significant compared to any of the heuristics with p-values < 0.001.
FF is significant compared to any of the algorithms as well. The results are
consistent with our previous findings gained by chart analysis.

There is no significant difference between vector bin packing heuristics. The
more advanced heuristics DotProduct and Cosine have no significant advan-
tage over the straightforward FFv heuristic. Again, this result is in line with
our expectations from chart analysis. For low dimensional vectors [90] and
[52] showed that DotProduct and Cosine outperform FFv. At least for high

5.4. Simulation results 77

diff lwr upr padj

DotProduct-Cosine 0.06666667 -0.1464126 0.2797460 0.9071496

FF-Cosine -1.52933552 -1.7424148 -1.3162562 0.0000000

FFv-Cosine 0.04912281 -0.1639565 0.2622021 0.9678878

SSAPv-Cosine -0.01754386 -0.2306232 0.1955355 0.9993802

FF-DotProduct -1.59600218 -1.8090815 -1.3829229 0.0000000

FFv-DotProduct -0.01754386 -0.2306232 0.1955355 0.9993802

SSAPv-DotProduct -0.08421053 -0.2972898 0.1288688 0.845066298

FFv-FF 1.57845833 1.3653790 1.7915376 0.0000000

SSAPv-FF 1.51179166 1.2987123 1.7248710 0.0000000

SSAPv-FFv -0.06666667 -0.2797460 0.1464126 0.9071496

Table 5.3: TukeyHSD comparing SSAPv (profile size 24) with heuristics (profile
size 288) with regard to allocation density

dimensional vectors, we could not confirm this finding.

Despite significant differences between SSAPv and vector bin packing heuris-
tics, these might be irrelevant in practical applications. The results shown
in Figure 5.4 show that SSAPv and vector bin packing heuristics produce al-
most identical results if values are rounded to the next integer. We should
stress once more that a time limit was imposed on the Gurobi solver. Given
unbounded time, SSAPv solutions may still improve.

To contain solvers with respect to calculation time for large scenarios, the
SSAPv is often parametrized with shorter profile sizes as proposed by [86].
We pose the question of how well heuristics with profile sizes of 288 perform
compared to SSAPv solutions based on a downsampled profile size of 24.

We conducted an ANOVA analysis to compare the allocation density of SSAPv
with heuristic solutions, with profile sizes of 288 for the heuristics and 24 for
the SSAPv. Table 5.3 shows the results of the TukeyHSD test.

In this scenario, SSAPv does not perform significantly better than vector bin
packing heuristics. Similar to our previous ANOVA analysis, FF performs
significantly worse than any other approach including SSAPv.

The finding is practically relevant, since it indicates that heuristics perform
just as well as the time-constrained SSAPv solver, especially if the time limit is
in the order of seconds. While heuristics can be parametrized with high profile
sizes, SSAPv has to be solved for small profile sizes to curb calculation time.

78 CHAPTER 5 – Vector packing as static allocation controller

The trade-off obviously decreases SSAPv solution quality to a point where it
performs just like heuristic solutions.

We found that the 99th percentile of execution time for a scale of 120 VMs
and a profile size of 288 values amounts to 3.6 s for heuristics and 30min for
the SSAPv. Most of the SSAPv solutions were not proven optimal by Gurobi.

5.5 Service quality

Penalties usually take effect if service quality goals are not fulfilled. Therefore,
the quality of service provisioning is an important aspect for data center op-
erators. Often, VMs are oversized to handle unexpected load spikes. Profile
based consolidation as proposed by this work pursues the goal of eliminating
entirely such security buffers.

Still, security buffers can go side by side with profiles. Instead of overprovi-
sioning resources, security buffers can be incorporated into profile calculation.
It can be calculated such that 100% of past loads are coverd. An additional
security buffer can be added to profile values that exhibit a high demand so
that buffer size is varied with expected demand or expected demand variance.
Alternatively, a profile could include only 90% of the past load demands. This
would be a more aggressive profile which would result in more aggressive allo-
cations.

One might expect that slight deviations of the load behavior in an aggressively
calculated profile result in a decreased service quality. However, this is not the
case in realistic environments. In Chapter 2 we analyzed the performance of
consolidations calculated by the SSAPv in a testbed infrastructure. It showed
that even significant differences between the actual load and an aggressively
calculated workload profile only causes a slight decrease in service quality.
Taking into account that vector bin packing heuristics on average tend to
calculate conservative allocations mitigates the concern even more.

5.6. Conclusions 79

5.6 Conclusions

We analyzed one bin packing and three vector bin packing heuristics alongside
an SSAPv integer program to allocate VMs to a minimum number of servers
based on VM workload profiles. Our analysis leads to a number of guidelines
that may benefit data center operators as well as software engineers facing the
problem of implementing static controllers.

First, allocations for small scale infrastructures with less than 50 VMs should
be calculated using SSAPv or other integer programming techniques. They
deliver significantly better results than all heuristics we have tested. Modern
integer program solvers frequently find a viable solution within a couple of
minutes.

Second, vector bin packing outperforms one-dimensional packing but there are
no significant differences between vector bin packing heuristics. We compared
four packing heuristics ranging from the very simple, one-dimensional FF to
ones that leverage vector algebra. FF reduces the workload profile of a VM to a
single scalar value, performing significantly worse than FFv or any other vector
bin packing heuristic leveraging workload profiles with profile sizes between 6
and 288.

Third, including more than one server rack consisting of approximately 40
servers and 200 VMs into a single calculation does not improve allocation den-
sity. While SSAPv and heuristic solutions improved with scale increasing up to
180 VMs, increasing scale even further did not yield significantly better results
(or worse, for that matter). Instead, calculation time increases significantly
for the SSAPv. We therefore recommend per-rack calculations.

Fourth, vector bin packing heuristics should be parametrized with detailed
workload profiles of many values. If the profile size is increased from 6 to
288 values, allocation density increases as well. The biggest improvement is
noticeable between 6 and 24 values. Beyond that, allocation density increases
only slowly.

Fifth, medium and large scale scenarios should be calculated using a heuristic

80 CHAPTER 5 – Vector packing as static allocation controller

if calculation time is constrained. While such scenarios can still be solved
by integer program solvers, the problem complexity and in turn the profile
size have to be reduced to obtain results within minutes. However, going
below profile sizes of 24 negatively affects allocation density. We found that
heuristics running with highly detailed profiles on large scenarios produce the
same allocation quality as SSAPv running on downsampled, low-dimensional
profiles.

Chapter 6

Colocating VMs on
main-memory database servers

Previous chapters aimed at increasing the average server utilization. This was
achieved by allocating VMs to servers so that a minimum number of servers was
required. Servers were provisioned with bare-metal hypervisors that run VMs
exclusively. Database servers are typically the core-components in enterprise
IT systems and today many databases are already deployed in VMs. Running
emerging main-memory database systems within VMs causes huge overhead,
because these systems are highly optimized to run on a bare metal hardware.

Prof. Thomas Neumann demonstrated1 that virtualization may reduce TPC-C
throughput by 33%. However, running these systems on bare metal servers
results in low resource utilization, because database servers are often sized
for peak loads, much higher than the average load. Instead, we propose to
deploy them within light-weight containers. Linux Containers (LXCs) provide
a light-weight form of process encapsulation and allow to limit resource usage
of a process group. On the one hand, resource limits of containers can be
changed quickly. On the other hand, containers do not incorporate significant

1The talk with the title ”Scalability OR Virtualization” took place on November 18th
2011 at ”Herbsttreffen der GI-Fachgruppe Datenbanksysteme” in Potsdam, Germany. The
talk was in German, but the slides are in English. A video recording is available online
http://www.tele-task.de/archive/series/overview/874/.

81

82 CHAPTER 6 – Colocating VMs on main-memory database servers

Global Controller

Server

Linux Container

Local Controller

DBMS Scale

VM

S
us

pe
nd

ed
 s

er
ve

r

VM migrations

Figure 6.1: Cooperative resource allocation control approach

overhead, as all processes are still managed by the Linux Kernel of the host
server. As of now it is impossible to migrate containers in the same way as
VMs. However, main-memory database management system (DBMS) are poor
candidates for migration anyway, due to high memory demand and data access
frequency. We propose to improve resource utilization by temporarily running
other applications on the database server encapsulated by VMs. Servers on
which these VMs would normally run can be suspended to decrease average
server demand.

Figure 6.1 shows a server farm consisting of several servers that run VMs of
various sizes. The size of a VM represents its current resource demand. As
discussed above, we do not run the DBMS in a VM, but in a container. The
assignment of VMs to servers is determined by a central control unit called
GlobalController. It may assign several VMs to the same server and change
the assignment using VM migration.

In many cases, VMs do not fully utilize their resource reservations. Static or
dynamic controllers as discussed in Chapters 2 through 4 can be used to reduce
the server demand by increasing average server utilization. These approaches
work for database systems too, as shown by Graubner et al. [36]. It is unde-
sirable to operate servers at a medium utilization level, as the energy demand

83

depends linearly on the server’s load with a high intercept as discussed in Sec-
tion 1.3. The two most power efficient operating modes are suspend and full
utilization [6].

Accurate estimates on resource demand are required to maintain SLAs while
resource utilization is improved. SLA-based resource allocation [35] is a topic
of active research in the cloud computing community. Furthermore, current
database systems do not handle dynamic changes of their assigned resource
capacity well. We have observed that resource assignments should not be re-
duced without taking precautions and that dynamically added resources are
often not used right away. If resource allocation is changed dynamically with-
out reconfiguring the DBMS accordingly, DBMS performance may deteriorate
disproportionately. Furthermore, long-running queries may not be able to use
the additional resources during runtime as query operators were instantiated
with a fixed number of processing threads and memory at the time when they
were started. To our knowledge there are no commercial DBMSs that sup-
port dynamic reconfiguration of critical resources like memory or CPU cores
within seconds while the database is running. Therefore, we focus on emerging
main-memory DBMSs, that are more flexible with regard to resource alloca-
tion changes and that support the mixed workloads of today’s operational
(real-time) business intelligence applications.

We propose an cooperative approach in which the DBMS communicates its re-
source demand, gets informed about currently assigned resources and adapts
its resource usage accordingly. First, the GlobalController may change the ac-
tual resource allocation of an application at runtime by resizing its container,
as illustrated in Figure 6.1. Second, communication allows applications to re-
size their resource usage according to the actual resource allocation of their
VM. For example, a database system may execute queries on-disk instead of
in-memory in presence of memory shortage. Third, applications may be able
to estimate their resource requirements quite accurately and provide this infor-
mation to the GlobalController in addition to existing workload traces. This
increases the data quality available to the GlobalController as e.g. application
buffers and queues are included in this data. Ultimately, cooperation may help

84 CHAPTER 6 – Colocating VMs on main-memory database servers

to improve consolidation efficiency.

An alternative to virtualization would be to consolidate DBMSs with com-
plementary resource requirements by employing multi-tenancy techniques as
discussed by Bobrowski [13]. Moreover, advanced multi-tenancy techniques
can be employed to further reduce space and performance overhead of con-
solidation as shown by Aulbach et al.[4]. Soror et al. [84] have shown that
databases with complementary resource requirements can be consolidated us-
ing virtualization. However, our proposed approach allows a combination with
arbitrary applications running in VMs, which is a very attractive scenario es-
pecially for IaaS cloud providers.

For evaluating cooperative control, we built an experimental testbed that is
based on latest virtualization technology (Linux kernel-based virtual machine
(KVM) and LXC) and an emerging main-memory DBMS called HyPer [45],
that has been developed at the chair of Prof. Kemper and that achieves out-
standing online transaction processing (OLTP) and online analytical process-
ing (OLAP) performance numbers. We extended HyPer with a LocalController
component, that enables the DBMS to adapt to externally given resource as-
signments and delivers resource demands to the GlobalController. Based on
this setup we conducted experiments to evaluate the effects of cooperative
control, analyzed the performance impact when spare resources of an HyPer
database server are used to host virtual machines and monitored SLAs com-
pliance.

Texts in this chapter are based on a previous publication [74].

6.1 Dynamic resource allocation of main-
memory DBMSs

Main-memory DBMS like HyPer and SAP Hana [27] allow to process business
logic inside the DBMS. Thereby performance may be improved significantly,
as the number of round-trips between application servers and the DBMS can

6.1. Dynamic resource allocation of main-memory DBMSs 85

be reduced. HyPer minimizes synchronization overhead by processing transac-
tions sequentially according to the one-thread-per-core model. As transactions
are processed sequentially, incoming transactions have to wait until preceding
transactions have been processed. For high and bursty arrival rates, execution
times of individual transactions thus have to be very low in order to achieve
low response times. This is achieved by keeping all data in memory and mini-
mizing synchronization overhead by processing transactions sequentially. With
this approach low response times and extremely high throughput rates can be
achieved. But we need to ensure that the memory allocation is never reduced
below a certain lower bound so that the whole dataset fits into memory and
swapping is avoided. This requirement needs to be considered when allocating
VMs on a main-memory database server. The lower bound depends on two fac-
tors: amount of memory needed for the actual data and the memory demand
for processing business transactions. The former is typically large, but can be
reduced by employing compression techniques. According to Hasso Plattner
[66], compression rates of factor 20 can be achieved for typical customer data
using column-store technology. The latter is typically small, as only one trans-
action per core is processed concurrently in the one-thread-per-core model. If
memory allocation would be reduced below this lower bound during runtime,
severe interferences are highly probable. The operating system will start to
swap data from memory to disk and the execution time of a single transaction
would increase dramatically if it touches data that is not available in memory.
Thus, pure OLTP workloads do not leave much room for improvement.

But HyPer supports mixed workloads consisting of interaction-free2 transac-
tions (OLTP) and read-only analytical queries (OLAP) on the same data and
thereby enables business applications with operational (or real-time) business
intelligence features. For OLTP, we need to ensure that memory allocation is
not reduced below a certain lower bound, as discussed above. For mixed work-
loads, this lower bound is a bit higher, because additional memory is required
for snapshots of the data, as HyPer processes read-only analytical queries

2HyPer assumes that there is no user interaction during processing of single transactions,
which is common for high throughput OLTP engines

86 CHAPTER 6 – Colocating VMs on main-memory database servers

in parallel on snapshots of the data. But HyPer uses special techniques for
minimizing the memory and processing overhead of these snapshots3. Apart
from the snapshots, analytical queries require memory for intermediate results,
which may be substantially large, e.g. queries involving large join operations or
other pipeline-breakers that require to materialize large intermediate results.
If arrival rates are high, it may be necessary to keep these intermediate results
in memory in order to achieve required throughput rates. If query arrival rates
are low, intermediate results could also be stored on disk, if expected response
times are large enough to allow for the required disk I/O. For varying OLAP
loads, it depends on the actual load if a lot of memory is required for processing
lots of queries in memory or if there are only few queries that can be processed
on disk. If the GlobalController would know about the current OLAP load
situation and how it will change in the near future, memory allocation could be
changed accordingly. But if the GlobalController changes memory allocation
without this knowledge, analytical queries may miss their SLOs.

We analyzed how much execution time deteriorates due to OS-swapping, when
the memory assignment is reduced while a query is executed. We used HyPer
to analyze the execution time for joining order and order-line tables from the
CH-benCHmark4 with 500 warehouses. HyPer allows to specify how much
memory may be used for a join query and we used a container to enforce
further limits on resource usage.

Initially, we assigned sufficient memory to keep intermediate results completely
in memory. When the memory assignment was reduced by 10% shortly af-
ter query execution started, query execution did not terminate even after we
waited several hours and we decided to abort the query. But even if we took
the normal execution time as a baseline and reduced the memory assignment
by 10% only 1 s before the end of baseline execution time, the execution time

3The size of the snapshots depends on memory access patterns, as discussed in [73], and
can be minimized by clustering the current data, that is still modified [57]

4CH-benCHmark [21, 30] analyzes the suitability of DBMSs for mixed workloads of op-
erational (or real-time) business intelligence applications and combines transactional load
based on TPC-C with decision support load based on a TPC-H-like query suite run in
parallel on the same tables.

6.1. Dynamic resource allocation of main-memory DBMSs 87

●

●

●

●

0x

20x

40x

60x

0% 10% 20% 30% 40% 50%
Reduction in assigned memory 1 sec before baseline finish

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

c
re

a
s

e

Figure 6.2: Reducing memory assignment to the database container during query
execution

still increased by a factor of 7. Figure 6.2 shows that execution time grows
when the memory assignment is further reduced, again 1 s before the end of
the baseline execution time.

At a memory reduction of 50% the execution time increased by factor of 65.
The reductions in execution time also show the effectiveness of containers. The
conclusions we draw from these experiments is that knowledge about how much
memory is available to the DBMS is very important to choose the physical
operators and their parameters right in order to utilize all available memory
and to avoid OS-swapping. Furthermore, it is critical to maintain the lower
bound of main memory, else transactions may have much longer execution
times and probably will miss their response time goals, as transactions are
processed sequentially. If the arrival rate is high, transaction requests may
even be dropped, once the system runs out of resources for processing the
request queue.

Apart from memory, processing resources are also very important for query
processing in main-memory DBMSs. With modern virtualization techniques,
the CPU shares and the number of virtual cores of a virtual machine can be
changed at runtime. Providing an application with more memory can only
result in improved performance if the larger data volumes in memory can

88 CHAPTER 6 – Colocating VMs on main-memory database servers

be processed efficiently with the available CPU cores and CPU shares. Today,
multi-core CPU architectures are common and DBMSs need to process queries
in parallel in order to utilize these architectures efficiently.

Kim et al. [47] and Blanas et al. [11] investigate the parallelization of the
probably most important DBMS operator, the join of two relations. They
investigate different ways of adapting sort-based as well as hash-based join al-
gorithms to modern multi-core environments and show that high performance
gains can be achieved. However, join operators do not only have to exploit all
resources available at the time they were instantiated, but they should be able
to adaptively adjust the numbers of processing threads to changing resource
allocations, including number of virtual CPU cores. Otherwise additional re-
sources would be idle until potentially long-running queries are processed com-
pletely or new queries arrive.

If the number of CPU cores is reduced, but the join operator does not reduce its
number of processing threads, therefore performance decreases, as the number
of context switches strongly increases.

6.2 Cooperative consolidation

Emerging main-memory DBMSs, like HyPer, are designed for multi-core
servers with huge amounts of memory. But resource utilization is typically
low, as such database servers are often provisioned for peak loads and average
load is much lower. Virtualization and server consolidation can be employed
to improve resource utilization and reduce operational costs. However control
mechanisms at the virtualization level and optimization mechanisms at the
database level may interfere with each other, because local adaptive control
within VMs and containers makes it difficult to monitor the load accurately
and current DBMSs do not handle dynamic changes to resource allocation well.

In order to improve resource utilization for emerging main-memory DBMS,
like HyPer, we propose a cooperative approach that enables server consolida-
tion for emerging main-memory database systems. Communication between a

6.2. Cooperative consolidation 89

Global Controller

Host Controller

Local Controller

Change resource
allocation

Get assigned
memory / CPU

Notify on resource
allocation changes

Memory / CPU
demand

Figure 6.3: Communication between GlobalController and LocalController via a
HostController

GlobalController and LocalControllers (see Figure 6.3) allows to avoid inter-
ferences between control mechanisms at the virtualization level and optimiza-
tion mechanisms at the database level. DBMSs need to be aware of dynamic
changes to resource allocation and coordination is needed in order to improve
resource utilization while meeting SLOs.

6.2.1 Local and Host controller

As shown in Figure 6.1, the physical server resources are divided between all
VMs and containers. We propose a cooperative approach where each VM runs
a LocalController that communicates with a GlobalController, as illustrated in
Figure 6.3. The GlobalController implements a dynamic allocation controller
that is responsible for allocating VMs. It adapts to changing resource demands
by migrating VMs under the objective of using as few servers as possible.

GlobalController and LocalController communicate via a HostController, that
provides information on how much physical resources are currently assigned
to a given VM and notifies the LocalController running inside a VM when its
resource allocation changes. The LocalController for the DBMS controls the
number of concurrently executed queries in order not to exceed the current
resource assignment of the DBMS container but still meet the query SLOs.

The simplest possible implementation of such a query scheduling component
is to use a first in first out (FIFO) queue. However, a FIFO queue may be

90 CHAPTER 6 – Colocating VMs on main-memory database servers

suboptimal under the given circumstances, because FIFO executes queries in
arrival order without considering that spare resources may be used by other
VMs or containers running alongside. Thus, a FIFO scheduler could cause
OS-swapping because it does not take the available memory resources into
account, which negatively affects the query execution performance as described
in Section 6.1.

A more advanced implementation FIFO+ communicates resource requirements
to the GlobalController. It takes the memory demand of OLAP queries as
well as the available resources into account. The former, can be estimated
quite accurately for main-memory DBMSs. The latter information is available
from the GlobalController via the HostController. Based on this information,
OS-swapping can be prevented, as queries are only processed in-memory if
there are enough resources available.

Once resource allocation changes, the LocalController gets notified. When re-
source allocation is reduced, we propose to abort longer-running queries and to
restart them with different parameters in order to avoid OS-swapping. There
is related work in the area of workload management on how to manage long-
running queries [49]. In contrast, we focus on how to prevent queries from
taking unexpectedly long due to dynamic changes to resource allocation by
restarting them right away when such changes occur. We focus on join op-
erators, because joins are common database operations that often impact the
runtime of query execution plans significantly and potentially require large
intermediate results.

For join queries, there is a big difference between in-memory and on-disk ex-
ecution times. In order to demonstrate this, we use the same join from CH-
benCHmark as in Section 6.1 and vary the amount of available memory. Figure
6.4 shows that there is a huge spike in execution time if intermediate results
do not fit completely in memory. Just after the 100% mark on the x-axis de-
noting the quotient of required memory and assigned memory, only little extra
memory would be required to keep intermediate results completely in memory,
but still execution time increases by a factor of 17 — from 19 s to 5min 5.

5In order to analyze possible overheads caused by LXC, we repeated the measurements

6.2. Cooperative consolidation 91

●●●

●

●

●

●

0

200

400

600

2x 4x 6x 8x
Required MEM / Assigned MEM

E
xe

c
u

ti
o

n
 t

im
e

 [
s

]

Figure 6.4: Execution times of in-memory vs. on-disk queries

HyPer used the hash join algorithm in this experiment, which is a common
join algorithm for main-memory DBMS. The results suggest that join queries
should be processed either completely in-memory or on-disk with only little
memory, as more memory does not improve execution time much as long as
the join cannot be processed completely in memory. There are other join algo-
rithms, like hybrid hash join [24], that use additional memory more effectively
and could level off the spike a bit.

Due to the large difference in execution times, it may make sense to abort
longer-running queries that involve joins and to restart them with different
parameters in order to reduce response times and improve throughput, once
resource allocation is increased. For example, if a join query, that was started
on-disk using an external join algorithm, could now be processed in-memory,
overall execution time (including aborted partial execution) may be lower than
on-disk execution time. The LocalController has to decide according to a pol-
icy whether to wait until running (join) queries finish or to abort and restart

without LXC. When sufficient memory was assigned to keep intermediate results completely
in memory, response times were basically the same as with LXC. For lower memory as-
signments, response time without LXC was better, but this was expected, as HyPer uses
memory-mapped files to store intermediate results on disk. Without LXC, these files are
buffered in memory and may even be prefetched by the Linux kernel. We have to prevent
this behavior, as we want to use these spare resources for other purposes. Thus, increased
response times for on-disk execution only show the effectiveness of LXC.

92 CHAPTER 6 – Colocating VMs on main-memory database servers

them. A simple LocalController policy is shown in Algorithm 4. If the mem-
ory assignment has been increased significantly or sufficiently such that run-
ning (join) queries can now be executed completely in-memory, the running
(join) queries are aborted and restarted. If the memory assignment has been
decreased such that more memory would be used than is available, running
(join) queries are aborted in order to avoid OS swapping.

if assignedMem > lastMemAssignment then
if ¬inMem then

if assignedMem ≥ requiredForInMem then
StopAndRestart()

else if assignedMem−lastMemAssignment
requiredForInMem > 10% then

StopAndRestart()
else

if assignedMem < usedMem then
StopAndRestart()

end
Algorithm 4: LocalController policy

To demonstrate the potential of this Stop+Restart approach, we extended
HyPer with a LocalController that implements this policy, admits at most
one OLAP query at a time and requests the required resources for process-
ing the query completely in-memory right before processing the query only
with currently available resources. We combined this LocalController with
a GlobalController that checks for resource requests once a second and as-
signs requested resources right away. Again, containers were used to change
resources assignments quickly with low overhead. The example workload con-
sists of seven join queries with varying resource requirements. We use the same
join query as before, but with varying number of warehouses (500, 250, 500,
500, 250, 750, and 750). HyPer used the hash join algorithm in this experi-
ment, which is a common join algorithm for main-memory DBMS and allows
to estimate memory requirements for in-memory execution quite accurately,
as the intermediate result consists mainly of a hash table on the smaller join
input.

6.2. Cooperative consolidation 93

10

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Query

E
xe

c
u

ti
o

n
 t

im
e

 [
m

s
]

Stop & Restart

no

yes

Figure 6.5: Execution times of
different queries with and without

Stop+Restart LocalController policy

0

250

500

750

1000

1250

0 500 1000 1500 2000
Time [s]

M
e

m
o

ry
 [

M
B

]

Memory

Available

Used

Figure 6.6: Memory utilization
without Stop+Restart query execution

Figure 6.5 shows a comparison of execution times (normalized by number of
warehouses) with and without the Stop+Restart approach. The initial resource
allocation is one CPU core and 10MB of memory. For the first join query
overall execution times (including aborted partial execution) differ by a factor
of 44, because without Stop+Restart it is executed on-disk (with very little
memory) instead of completely in-memory. But also for the third and the sixth
join query, there is an order of magnitude difference in execution times, because
the preceding join query had lower memory requirements and therefore the
GlobalController reduced the assignment accordingly. Without Stop+Restart,
join query three and six were executed with only half and one third of the
memory required for in-memory execution.

Figure 6.6 shows the utilization of the assigned memory without Stop+Restart.
There are long delays until assigned resources are actually used. Although,
additional resources are available quickly, as the GlobalController assigns re-
quested resources right after processing the resource request. But these re-
sources are not used right away without Stop+Restart. Coordination can help
to improve utilization of dynamically assigned resources. If spare resources are
actually used for other purposes, there may be delays for fulfilling increased
resource requests, as discussed below and analyzed in the experimental evalu-
ation.

94 CHAPTER 6 – Colocating VMs on main-memory database servers

6.2.2 Global controller

The GlobalController can use spare resources on database servers by mi-
grating VMs towards them. For our experimental setup we implemented a
GlobalController whose details are discussed in the following. The imple-
mented GlobalController offers a network interface which receives stateless
messages. A message consists of two fields: Memory and CPU. The memory-
field describes the amount of requested memory in megabyte and the CPU-field
describes the requested number of CPU cores. The GlobalController continu-
ally checks whether the memory and CPU assignment of the database system
needs to be changed and whether it is possible to reuse spare memory for
the allocation of VMs. It is important to notice that the GlobalController al-
ways assigns all the spare memory to the database system, even if the current
memory requirements of the database are lower6.

On the one hand, the database memory demand may increase. If the database
server still has enough spare memory, the request is immediately fulfilled by the
GlobalController. If there is not enough spare memory, the GlobalController
needs to migrate one or multiple VMs from the database server towards another
server, in order to increase the spare memory until the resource request of the
database can be fulfilled. The database is notified by an update message once
enough spare resources are made available and assigned to the database.

The memory demand of the database may decrease as well. In this case,
the GlobalController increases the amount of spare memory immediately and
checks whether it is possible to reuse spare memory to allocate VMs. If this is
possible, it sequentially migrates VMs from other servers towards the database
server until the spare memory is exhausted.

The GlobalController is responsible for the resource assignment and therefore
has to select VMs to migrate towards and from the database server. There are

6The reason is that we execute migrations in a sequential manner. Therefore, the
GlobalController is blocked during migrations and cannot handle incoming resource re-
quests. By always assigning all spare resources to the database system we ensure that this
is no issue. Even if the GlobalController would handle requests during a migration it could
not assign more resources then it already has assigned.

6.3. Experimental evaluation 95

multiple ways to decide which VM to pick for a migration. We implemented
the First-Fit heuristic which is easy to explain. It always choses the VM that
fits the requirements first. When there is spare memory, the controller picks
the first VM which fits the spare memory as long as there is any. If a VM
needs to be offloaded in order to make more memory available, the controller
choses the first VM which would establish the desired state.

6.3 Experimental evaluation

Experiments were conducted on a server infrastructure that closely resembles
the technological setting of IaaS cloud providers. Two budget servers, equipped
with 16GB of RAM, one Intel Xeon E5520 CPU with disabled hyper-threading
and one 1TB SATAII 7200 RPM disk was used to host VMs. Furthermore,
VM images resided on a NFS volume of a separate storage server connected
via a 1Gbit Ethernet connection. In all experiments, there where 15 VMs
in the system with four virtual CPU cores each and the following memory
reservations: five VMs with 256MB, five VMs with 512MB, three VMs with
1024MB and two VMs with 2048MB. The amount of CPU cycles allocated
to the VMs is weighted based on the size of the VM (1/64 per 256 MB). In our
scenario, VMs can run arbitrary applications and we use the stress7 utility to
generate load on each VM. This utility simulates a hot memory working set
by allocating memory (e.g. 20MB) and changing parts of the memory as fast
as possible. By that, migration times of VMs are significantly increased, as
described by Clark et al. [60].

At the beginning of each experiment, 8GB are reserved on the first server —
the database server — to hold the database in a compressed format and all
VMs are running on the second server — the swap server. First, no cooperative
control is used, so that all VMs remained on the swap server and the database
has all the resources available all the time. Second, cooperative control is
activated and the GlobalController migrates VMs between the two servers in

7http://weather.ou.edu/~apw/projects/stress/

96 CHAPTER 6 – Colocating VMs on main-memory database servers

order to use spare memory on the database server. We analyze how much of
the spare memory could be recycled by VMs and how the SLA violations and
response times of the database queries change due to that.

No workload traces of business applications with operational (or real-time)
business intelligence features are available so far, that capture the characteris-
tics of emerging main-memory DBMS with efficient support for mixed work-
loads (OLTP and OLAP on the same data). However, database servers are
always sized to handle peak loads without SLAs violations. Based on this, two
very different workload scenarios were used.

In the first workload, queries arrive in five bursts (B1, B2, B3, B4, and B5) that
occur in 5min intervals and are executed in an endless loop. There are three
query types (Q1, Q2, and Q3), corresponding to the join query described in
Section 6.1, but with different number of warehouses (250, 500, and 750). The
query mix of the bursts is as follows: B1 = (4 ·Q1+12 ·Q2+44 ·Q3), B2 = (2 ·
Q1+6·Q2+22·Q3), B3 = (1·Q1+3·Q2+10·Q3), B4 = (1·Q3), B5 = (80·Q3).
This workload scenario was picked, because the bursts lead to a peak in the
database memory demand. Such a memory-peak cannot be fulfilled by the
GlobalController instantaneously as it has to migrate VMs away first, which
is the worst case scenario.

0

5

10

15

0 5000 10000 15000 20000
Time [min]

Q
u

e
ri

e
s

 p
e

r
7

5
s

Figure 6.7: Workload trace derived from the service demand of a real-world
enterprise application

6.3. Experimental evaluation 97

Memory used by VMs

Fixed Memory Demand by DBMS

0

4

8

12

16

0 1000 2000 3000
Time [min]

M
e

m
o

ry
 [

G
B

]

Memory

Available

Requested

Used

Figure 6.8: Experimental results for
the worst-case workload scenario

Memory used by VMs

Fixed Memory Demand by DBMS

0

4

8

12

16

0 5000 10000 15000 20000
Time [min]

M
e

m
o

ry
 [

G
B

]

Memory

Available

Requested

Used

Figure 6.9: Experimental results for
the real-world workload scenario

The second workload scenario is derived from log files of a SAP enterprise
application used at a large European IT service provider. The log files de-
scribe the number of arriving application queries over time (see Appendix E).
They were normalized to the maximum number of queries the experimental
setup could handle (17 queries in a 75 s interval) as shown in Figure 6.7. The
workload specifies the number of queries executed for each interval, with the
query type mix (Q1: 70%, Q2: 20%, Q3: 10%). For both workloads, we
assume a response time goal of 5min for all query types and we assume that
the maximal throughput of the workload corresponds to the expected arrival
rate. This represents the SLAs requirements for our experiments.

Figure 6.8 shows the results of the experiments with the first workload over
a runtime of 60min. Without consolidation, no VMs were running on the
database server and all of the queries met their response time goal. The average
response time was 103 s with a standard deviation of 80 s. With activated
consolidation, the SLAs violations increased by 16% to 67 out of 414 executed
queries, the average response time increased by 43% to 182 s with a standard
deviation of 117 s. In total 89% of the spare memory could be recycled by
executing 84 VM migrations.

Figure 6.9 shows the results of the experiments with the second workload over
a runtime of 6 h. Without consolidation, no VMs were running on the database
server and there were no SLA violations. The average response time was 14 s

98 CHAPTER 6 – Colocating VMs on main-memory database servers

with an standard deviation of 6 s. With activated consolidation, there still
were no SLA violations, the average response time increased by 41% to 24 s
and the standard deviation increased slightly to 15 s. In total 83% of the spare
memory could be recycled by executing 399 migrations.

6.4 Conclusions

Business servers running database systems are always sized to handle peak
query loads without failing their SLAs. In case of main-memory DBMS servers,
there is a huge amount of memory which is sized for peak loads. During normal
operation a significant amount of memory remains unused. We addressed the
question, if this spare memory can be recycled by migrating VMs towards
the database server and what the implications are for the DBMS regarding
response times and SLAs violations.

The conducted experiments show, that the spare memory can be recycled
almost completely. But the database metrics are affected while additional VMs
are co-located on the database server. This was an expected behavior as the
database server was occupied with lots of additional work. However, the most
important metric is the number of SLA violations, because it tells whether
the server has enough capacity to run the application within specifications or
not. SLAs violations did not change with a continuous query workload without
spikes and increased significantly for bursty workloads. This is caused by the
time needed to migrate VMs to make room for executing query bursts.

Independent to the workload, the number of executed migrations was aston-
ishingly high. That is a major drawback as migrations cause a huge amount
of network traffic and consume CPU cycles. Worse, each migration duplicates
the memory demand of a VM during migration as its memory is allocated on
the source as well as the destination server. This negatively effects the po-
tential memory savings, especially considering the huge amount of migrations.
Recently, extensive performance models for migration have been developed in
the cloud computing community [46] and Ye et al. propose to apply resource

6.4. Conclusions 99

reservation methods to VM migrations [102].

The number of migrations and SLAs violations could be reduced by using a
more advanced query scheduler. In our experiments only a very simple FIFO
based query scheduler was used. However, if the query scheduling actually
adapted to the available memory, number of migrations as well as SLAs vi-
olations could be decreased significantly. One goal is to achieve a memory
demand which does not entail spikes and has a low variation. Then, VM al-
locations need to be adjusted less often, which results in fewer migrations. In
presence of memory demand spikes, it may be necessary to sacrifice memory
on the database server as buffer capacity to reduce the number of migrations.

The experimental setup showed that it is possible to recycle spare memory
resources on a main-memory database server efficiently. By taking precautions,
the mentioned problems can be avoided, so that large data centers with lots
of servers can substantially reduce the number of active servers and increase
their overall utilization.

100 CHAPTER 6 – Colocating VMs on main-memory database servers

Part II

Allocation of non-persistent
services

101

Chapter 7

Dynamic VM allocation

Modern data centers are increasingly using virtualization technology and pro-
vide VMs for their customers rather than physical servers. Actually, IT service
managers worldwide ranked virtualization and server consolidation as one of
their top priorities in the recent years [40, 59]. In this work we focus on IaaS as
the most basic cloud-service model, in which IT service providers offer servers
or VMs as a service to their (internal) customers. VMs can be allocated, deallo-
cated, and moved within seconds using nowadays virtualization and migration
technology.

With the adoption of virtualization technology the demand for new physical
servers decreased while the demand for VMs has grown considerably. At the
same time, server administration costs increased as many VMs need to be
managed [42]. This leads to new resource allocation problems, which require
decision support and ultimately automation to bring down administration costs
and to achieve high energy efficiency. In Part I we addressed the capacity
planning in stable environments were VMs are not allocated and deallocated
frequently. The literature on dynamic VM allocation in clouds with incoming
and outgoing VMs has not yet received much attention. In particular, there is
hardly any experimental literature comparing different methods with respect
to their energy efficiency. However, experimental tests are important because
the many software and hardware components and the various system latencies

103

104 CHAPTER 7 – Dynamic VM allocation

are difficult to analyze in analytical models or simulations only. Experiments
on VM allocation controllers in IaaS clouds are expensive and time consuming
which might explain the absence of such studies in the literature. They are
important, because the VM allocation controllers can have a substantial impact
on the energy efficiency and total cost of IT service provisioning [86].

Let us briefly discuss the state-of-the-practice. Cloud management tools such
as OpenStack1 and Eucalyptus2 are used in many IaaS cloud environments for
VM provisioning. Incoming VMs are placed on servers via simple bin packing
heuristics and remain there until they are deallocated. Because such placement
controllers do not consider future allocation and deallocation requests, servers
might be underutilized and operated at a low energy efficiency.

VM migrations allow to move VMs between servers during runtime. The tech-
nology has matured to a state where it is a viable option not only for emergency
situations [60], but also for routine VM allocation tasks. At this point, none of
the existing cloud management tools uses migration and reallocation in their
VM allocation controllers. Rather they rely on the original placement decisions
using simple bin packing algorithms.

In this work, we study the energy efficiency of different VM allocation con-
trollers in virtualized data centers. The complexity of nowadays data center
infrastructures with the large number of hard- and software components ren-
ders analytical models of such infrastructures intractable. Most literature in
this area is restricted to simulations only. We present the results of extensive
experiments on a data center infrastructure to achieve high external validity of
our results. As for Part I, the technology used in our experimental infrastruc-
ture closely resembles an IaaS cloud that one would find in small to medium
sized corporate environments. The workloads are based on workload data from
two large European IT service providers and benchmark applications such as
SPECjEnterprise20103. Such experiments are expensive and require an extra
infrastructure to run controlled experiments, which can explain why there is a

1https://www.openstack.org/
2https://www.eucalyptus.com
3http://www.spec.org/jEnterprise2010/

105

lack of such experiments in the literature.

We analyzed different VM allocation controllers, simple placement controllers
based on bin packing, and advanced ones combining placement and dynamic
controllers for server consolidation and high energy efficiency.

There are many possibilities how dynamic controllers can be implemented and
combined with placement controllers, and of course one cannot analyze all
possible combinations and parameters. In our experiments, we systematically
analyzed a large variety of VM allocation controllers in different workload
environments and in simulations in a first step. In particular, we compared
simple placement controllers as they are regularly used to dynamic controllers,
and could show that the latter substantially increase energy efficiency. In
a second step, we compared selected placement and dynamic controllers in
lab experiments, which allowed us to derive results on various efficiency and
quality-of-service metrics with high external validity. Based on our extensive
set of experiments, we could identify VM allocation controllers, which perform
well in a wide variety of workload environments. The scope and scale of the
experiments is beyond what has been reported in the literature, and it provides
tangible guidelines for IT service managers.

In the experiments, we found that dynamic controllers have a substantial pos-
itive impact on the energy efficiency of a data center. This is not obvious,
because VM migrations cause additional workload on the source and target
servers. We achieved the highest energy efficiency with placement controllers
which computed a dense packing on a low number of servers first. In case of
overload, VMs were then migrated and reallocated over time. If the place-
ment decisions were based on the actual demand on a server rather than the
reservations for the VMs on a server, the density of the packing could be in-
creased and therefore also the utilization of the servers. Interestingly, the type
of bin packing heuristic for the placement controller had little impact on the
energy efficiency. Periodic reallocation, however, had substantial impact on
the energy efficiency overall.

In Section 7.1, we discuss related literature. Sections 7.2 through 7.5 introduce
the experimental setup, while Section 7.6 describes our results. Finally, Section

106 CHAPTER 7 – Dynamic VM allocation

7.8 provides a summary and conclusions.

Texts in this chapter are based on a previous publication [99].

7.1 Related work

Our research draws on different literature streams. First, we will introduce
relevant literature on bin packing problems on a static set of VMs, as this
is the fundamental problem for the VM placement. Next we will discuss the
literature on placement and dynamic controllers in environments were VMs
arrive and depart continuously.

7.1.1 Bin packing

The bin packing problem has been subject of extensive theoretical research.
A wide selection of heuristics based on different packing strategies exists [20].
The VM placement problem with a fixed set of VMs can be modeled as a
bin packing problem. It can be solved by well known heuristics like Next-Fit,
First-Fit, Best-Fit, or many others as evaluated in Part I. Vector bin packing
heuristics are an viable option if multiple resources (CPU, RAM) need to be
considered or workload profiles are known in advance as shown in Chapter 5.

Coffman [19] analyzed dynamic bin packing where new items arrive and exist-
ing ones depart. He proves a competitive ratio that compares dynamic on-line
packing heuristics with optimal solutions for the offline problem. The compet-
itive ratio was improved successively, most recently by Wong et al. [100] to a
value of 8/3. Of course, competitive ratios are worst case bounds and average
results are typically better than this.

Finally, Ivkovic et al. [43] introduced fully dynamic bin packing where items
can be reallocated before adding a new item to a bin. Their algorithm is
5/4-competitive. This theoretical analysis indicates that there are gains from
reallocation from the worst-case perspective assumed in the theoretical litera-
ture. It is interesting to understand, if reallocation has a positive impact on

7.1. Related work 107

the average utilization in a data center and what the order of magnitude of
these differences is on average in a controlled lab experiment.

7.1.2 Scenarios with a fixed set of VMs

In Part I we addressed stable scenarios where a set of VMs is allocated to
a minimal set of servers in order to increase resource utilization. Sometimes
VMs can be migrated between servers over time, but the set of VMs is stable
as is often the case in enterprise data centers.

Some solutions to these static allocation problems leverage bin packing heuris-
tics, others use integer programming to find optimal or near-optimal solutions
[86, 78]. Bobroff et al. [12] predict future resource utilization by autoregres-
sive forecasting models which are used by bin-packing heuristics. pMapper [92]
computes a new allocation based on actual resource utilization measurements
and triggers iterative VM migrations to change the allocation considering costs
entailed with VM migrations. Gmach et al. [34] proposed a fuzzy logic based
dynamic controller that load balances servers. Thresholds on memory and
CPU are used to detect overloaded servers.

So far, only a few authors evaluated their VM allocation algorithms in the
lab. Wood et al. [101] proposed Sandpiper as a dynamic controller for load
balancing VMs rather than minimizing total server demand. Migrations are
triggered if server overload thresholds are reached. For our experiments, we
adapted Sandpaper in one of the treatments such that it minimizes total server
demand in addition to load balancing. Sandpiper was evaluated on a hardware
infrastructure, but not compared to alternative approaches regarding energy
efficiency.

vGreen [25] is another dynamic controller that leverages different controllers
depending on the resource considered. VMs on servers with low utilization are
moved to other servers heuristically such that some servers can be turned off.
vGreen was also evaluated in a small testbed with two servers.

108 CHAPTER 7 – Dynamic VM allocation

7.1.3 Scenarios with a variable set of VMs

The work discussed so far did not consider on-demand scenarios where VMs
arrive and depart over time, as it is the focus of this work. To our best
knowledge, only two recent papers have focused on similar problems.

Calcavecchia et al. [15] proposes a two stage VM placement controller called
backward speculative planning. Demand risk is a metric characterizing the
unfulfilled demand of VMs running on a server. Incoming VMs are placed by
a Decreasing-Best-Fit strategy on the server providing the minimal demand
risk after placing the VM, assuming that the new VM was fully utilized in
the past. VM migrations are only triggered if unfulfilled demand exists and
a threshold on the number of migrations over a period is not exceeded. The
work focuses on a variant of the First-Fit VM placement and a novel dynamic
controller.

Mills et al. [55] simulated placement controllers in an IaaS environment with-
out migrating VMs. For each incoming VM, a cluster and a server are se-
lected in this order. Three cluster selection algorithms and 6 server selection
heuristics were evaluated in 32 workload scenarios. Workloads were generated
randomly based on a configuration of 6 parameters. Dynamic controllers were
not considered by this work.

Both papers analyze VM allocation controllers in fully dynamic scenarios.
While these papers are important first steps, we extended these in impor-
tant ways. First, we analyzed different controllers not only in simulations,
but also in lab experiments. This is expensive, but important for the external
validity of such experiments. Our workload data used in the simulations and
experiments is based on monitoring data of actual enterprise data centers, and
VM arrival and departure rates are based on statistics described by Peng et
al. [63] based on multiple data centers operated by IBM.

Second, we significantly increased the scale of the studies and analyzed a large
number of VM placement and dynamic controllers separately and in combi-
nation to take interaction effects into account. This allows us to make rec-
ommendations for IT service managers based on a large number of treatment

7.2. Experimental setup 109

combinations. In particular, we can shed light on the benefits of reallocation
in fully dynamic environments. While the number of possible heuristics to
allocate VMs dynamically is infinite, we argue that we have considered the
most prominent approaches discussed so far as well as a new and promising
dynamic controller.

7.2 Experimental setup

In what follows, we describe the experimental setup and the technical infras-
tructure used for the experiments.

In our infrastructure VMs are created and removed automatically by means
of a network service. New VMs are allocated and existing ones are removed
continuously. VM lifetimes vary between a couple of minutes and hours. We
do not assume prior knowledge about the type or applications running within
VMs. An allocation request includes the VM resource reservation and a ref-
erence to a disk image used to create it. A reservation describes the size of a
VM in terms of allocated CPU cores, memory, network, and disk capacity.

For a new VM allocation request, the cloud management tool has to decide
on which server the new VM should be placed. This decision is taken by a
placement controller. Already running VMs might get migrated to another
server. Migrations are triggered by dynamic controllers that either run in reg-
ular intervals or closely monitor the infrastructure and respond to inefficiencies
of the current allocation.

In this work, we attempt to analyze a wide variety of implementations for
placement and dynamic controllers. The functionality of the controllers under
consideration is outlined in the following.

110 CHAPTER 7 – Dynamic VM allocation

7.3 Placement controllers

Let us first introduce two ways how parameters for placement controllers can be
computed. We describe residual capacity as the amount of unused resources on
a server. It is expressed as a vector. Each component of the vector represents
a resource like CPU or memory. There are two types of residual capacity.
Reservation-based residual capacity subtracts VM resource reservations from a
server’s total capacity. Demand-based residual capacity is the measured amount
of free resources on a server. Both can be used for placement controllers.

Interestingly, all available cloud management tools that we are aware of (in-
cluding OpenStack and Eucalyptus) use a reservation-based allocation, which
guarantees each VM its resource reservation. Many VMs are not utilized
to 100% of the capacity that was reserved leading to underutilized servers.
Demand-based allocation leverages information about the actual VM resource
utilization and increases server utilization by overbooking. However, they can
only be used in conjunction with dynamic controllers as otherwise servers might
get overloaded. Dynamic controllers mitigate overloaded servers using VM mi-
grations.

Any-Fit placement controllers including First-Fit, Best-Fit, Worst-Fit, and
Next-Fit assign an arriving VM* to a server [20]. These are regularly used
in cloud management software and based on established and simple bin pack-
ing algorithms [75]: First-Fit-Decreasing iterates over the decreasingly sorted
server list by their load and picks the first one that fits the VM* reservation.
Best-Fit computes the delta of residual capacity and VM* reservation vector
norms and picks the server with minimal difference that fulfills the reservation.
Worst-Fit works the same way but selects the servers with the maximum vec-
tor norm difference. Next-Fit holds a pointer on a server. Each incoming VM
is placed on this server as long as its residual capacity allows for the VM*’s
reservation. Otherwise, the pointer is moved to the next server in a round-
robin fashion until a feasible server is found. All Any-Fit implementations
activate an empty server if no viable server could be found.

Apart from these standard algorithms, there have been specific proposals for

7.4. Dynamic controllers 111

VM placement in the literature. Dot-Product [90] is a First-Fit-Decreasing
approach where server weight is calculated by the dot product of server residual
capacity, s−1, and the reservation r−1

VM for VM∗ as: s−1 · r−1
VM . Similarly,

cosine is also a First-Fit-Decreasing algorithm [52] that uses the cosine as a
weight function: cos(s−1, r−1

VM). L2 [90] leverages First-Fit-Increasing with the
difference of the vector norms as a weight ‖s−1‖ − ‖r−1

VM‖.

7.4 Dynamic controllers

Dynamic controllers are executed regularly and trigger VM migrations in or-
der to reoptimize the allocation. We found two approaches in the literature to
compute a schedule of reallocations over time. DSAP+ describes an optimiza-
tion model to compute an optimal schedule of reallocations over time and it
was introduced by [86], [78], and in Chapter 4. Alternatively, KMControl (see
Chapter 2) and TControl are two heuristics based on the Sandpiper system
as originally proposed by [101]. In the following, we will briefly describe these
controllers.

7.4.1 DSAP+

The DSAP+ controller gets executed every 60 s. Each time it recomputes the
allocation of VMs to servers according to the optimization model described by
Equation 7.1. The fundamental DSAP+ optimization model was discussed in
Chapter 4. We modified it to cover only one subsequent allocation period that
gets parametrized with the prevailing VM allocation.

Suppose we are given a set of servers i ∈ I and VMs j ∈ J . A server’s size
is denoted by si describing its resource capacity, e.g. CPU units or available
memory. The total planning horizon is divided into two discrete periods t ∈
{1, 2}, the current one xij1 and the upcoming one xij2. Values for xij1 are
passed as a parameter to the model. yi ∈ {0, 1} tells whether a server i is
active in period 2. uj describes the expected utilization of VM j during period

112 CHAPTER 7 – Dynamic VM allocation

2. The allocation matrix xijt of period t indicates whether VM j is assigned to
server i. Migrations of VMs from period 1 to 2 are indicated by slack variables
z−ij for outgoing ones. The objective function minimized the sum of total server
operation costs osrv and migration costs omig

j .

min
I∑

i=1

(
osrvyi2 +

J∑
j

omig
j z−ij

)
s.t.

I∑
i=1

xij2 = 1, ∀j ∈ J

J∑
j=1

ujxij2 ≤ siyi, ∀i ∈ I

− xij1 + xij2 − z−ij ≤ 0 ∀i ∈ I, ∀j ∈ J

yi, xijt, z
−
ij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J,∀t ∈ {1, 2}

(7.1)

After each execution, the new allocation xij2 is implemented by triggering
migrations. A migration scheduler ensures that each server is running only
one migration in parallel, either an outgoing or an incoming one. As many
migrations as possible are executed in parallel without overloading servers or
their network interfaces.

For parametrization, server operation costs and migration costs are estimated
by execution period duration and average migration duration. In our case,
execution period duration was 60 s while migrations took 25 s on average (see
Chapter 2) which provides values for parameters osrv = 60 and omig

i = 25 in
the objective function.

7.4.2 KMControl and TControl

In this study we leverage two variants (KMControl and TControl) of the proac-
tive controller used in Chapter 2 that itself is based on Sandpiper [101]. Each

7.4. Dynamic controllers 113

gets executed periodically every 5min. There are three phases: 1) Detect and
mark overloaded and underloaded servers 2) Compute server and VM load
rankings 3) Mitigate overloaded and underloaded servers by triggering VM
migrations.

KMControl and TControl differ in phase one. KMControl checks if M out of
the last K server CPU utilization measurements are above an threshold To or
below Tu to mark a server as overloaded or underloaded. TControl is based on a
single-sided t-test that compares the mean of theM recent utilization measure-
ments starting at time t against To and Tu: To ≤ 1

M

∑
{ut−(M−1), .., ut} ≤ Tu.

If H0 is rejected at a p-level of 0.001, a significant difference is assumed and a
server is either marked as overloaded or underloaded.

Phase two computes a volume V OL (Equation 7.2) and a volume-size ratio
V SR (Equation 7.3) for each server and VM according to [101] with ur de-
noting the utilization of resource r. Both computations are performed for
physical servers and VMs. Servers are sorted by V OL in decreasing order so
that servers with a high resource utilization are found at the top.

V OL =
1∏

∀r
(1− ur)

(7.2)

V SR =
V OL

cmem
(7.3)

Phase three triggers migrations such that underloaded servers are emptied and
overloaded ones are relieved. VMs running on an overloaded or underloaded
server are sorted by their V SR in an decreasing order. Here, cmem describes
the memory capacity of a server or VM. VM migration overhead depends on
the combination of memory size and server utilization. V SR puts memory
size into perspective of utilization. To reduce migration costs, VMs with a low
memory size compared to their utilization are considered first for migration.
VMs on underloaded servers are preferably migrated to servers at the head
while VMs on overloaded servers are migrated towards the tail of the sorted
server list.

114 CHAPTER 7 – Dynamic VM allocation

0

10

20

30

0 200 400 600

Lifetime of VMs [min]

V
ir

tu
a

l
m

a
c

h
in

e

Figure 7.1: Sample of a VM arrival and departure schedule

7.5 Experimental design

For our experiments we generated schedules of VM arrivals and departures that
we could evaluate with different controllers. This allows a fair comparison of
different combinations of placement and dynamic controllers. A schedule as
shown in Figure 7.1 is generated based on four random variables:

• Lifetime of a VM (width of the bars in Figure 7.1)

• Inter-arrival time of the VMs

• VM launches describes the total number of arriving VMs (total number
of bars in Figure 7.1)

• VM sizes describes the VM reservations

Not all possible schedules could be evaluated, considering multiple levels for
each variable. In order to evaluate only relevant schedule configurations we an-
alyzed which variables have the most impact to the performance of placement
controllers. A 2k fully factorial design was used to address this question. Table
7.1 summarizes factors and levels. For each possible schedule configuration,
25 random schedule instances were generated.

7.5. Experimental design 115

Factor Low High

Lifetime (h) 1 6

Inter-arrival time (min) 5 20

VM launches 400 500

VM sizes 2x x

Table 7.1: Factors and levels for the schedule generation. Lifetime and
inter-arrival time are chosen based on a negative exponential distribution. For each
configuration 25 schedule instances were generated randomly.

Each schedule was evaluated with 9 placement controllers: First-Fit, Best-Fit,
Worst-Fit, Dot-Product with a demand- and reservation-based implementa-
tion. A random controller was used as a control group. In total 16·25·9 = 3600

simulations were conducted.

For each simulation the allocation density of the controller was calculated based
on average and peak server demand during the simulation and a lower bound
estimate. A dedicated ANOVA analysis for each controller found lifetime and
inter-arrival time as well as their interaction effect significant in all cases, with
levels of p < 0.001. In rare cases, the factor launches was significant, with
levels of p < 0.01. Q-Q plots and residual plots showed no abnormalities.
More detail on this analysis can be found in Section E.3.

A single experiment takes approximately 13 h to 15 h. Schedules used in exper-
iments vary factors lifetime and inter-arrival time of VMs as suggested before.
Inter-arrival times are taken from Peng et al. [63], who published cumula-
tive density functions (CDFs) for inter-arrival times of VMs. Data originated
from real-world measurements in enterprise data centers operated by IBM.
Our schedules leverage two CDF functions, one with short (A1) and one with
longer inter-arrival times (A2).

Lifetimes are based on two CDFs from Peng et al. as well. L1 is a CDF of VM
life-times over all data centers, L2 is a mixture of CDFs for unpopular, average,
and popular VMs with probabilities p = (0.2, 0.6, 0.2). Both, VM inter-arrival-
and life-times are scaled by factor 30 to keep the total time of an experiment
below 15 h. Table 7.2 provides an overview of the schedule configurations in
our experiments.

116 CHAPTER 7 – Dynamic VM allocation

Schedule Config. Arrival Time Lifetime

1 A1 L1

2 A1 L2

3 A2 L1

4 A2 L2

Table 7.2: Five schedule instances were generated for each configuration shown in
the table

Five schedule instances were generated for each schedule configuration shown
in Table 7.2. A schedule runs up to 20 VMs in parallel. Three VM sizes were
used: Small VMs (S) were configured with 1 vCPU core and 2GB of memory.
Medium sized VMs (M) had 2 vCPU cores and 4GB of memory. Large ones
(L) were assigned 3 vCPU cores and 6GB of memory. VM sizes were picked
based on probabilities (S,M,L) = (0.6, 0.3, 0.1) for each VM in a schedule.

A detailed description of the experimental testbed can be found in Chapter
A. Rain was configured to simulate a varying amount of users over time. This
user demand was specified by a set of 32 time series that are similar to the ones
used in Part I and describe the workload for a given time in values 0 ≤ l ≤ 1.
Depending on the VM size, the time series were multiplied with 100 (S), 150
(M), and 200 (L) users. The resulting time series describes the number of users
to simulate by Rain over time on a single target VM.

7.6 Simulation results

The experiments compare different combinations of placement and dynamic
controllers. Due to the large number of possible controller combinations one
can analyze, we first conducted simulations and ranked them based on core
metrics: migrations, average, and maximum server demand. Subsequent ex-
periments in the lab were then conducted on the most promising controllers
only.

Simulations were conducted for 20 schedule instances described in Section 7.5
and all combinations of 11 placement and 4 dynamic controllers, including

7.6. Simulation results 117

scenarios without dynamic controllers. A more detailed description of the
simulation framework used can be found in Chapter A.2.

Controllers are named by an approach similar to the Kendall notation with
three variables separated by a slash, e.g. D/FF/KM. The first element declares
if a demand (D) or reservation (R) based placement controller was used. The
placement controller used is described in the second element with FF=First-
Fit, BF=Best-Fit, WF= Worst-Fit, RD = Random, DP = Dot-Product, L2
= L2. The dynamic controller is described in the last element with KM =
KMControl, TC = TControl, DP = DSAP+, and — if no dynamic controller
was used.

Based on the simulations, controllers were ranked using the mean reciprocal
rank (MRR) metric. An MRR rank is computed by Equation 7.4, larger values
indicate better rankings.

MRR(c) = 1

|P | · |Q|
∑
p∈P

∑
q∈Q

1

Rcpq

(7.4)

For each controller c ∈ C and schedule instance q ∈ Q, three ranking values
p ∈ P exist: migrations (MG), average (SD), and maximum server demand
(dSDe).

Rankings Rcpq are calculated for each metric and schedule separately. For
each schedule instance, controllers are sorted in increasing order by a metric
(MG, SD, dSDe). A controller’s list position gives its ranking. In total, each
controller is assigned |P | · |Q| rankings.

Controllers are sorted by the MRR ranking over all metrics in Table 7.3.
Some combined controllers using placement and dynamic controllers seem to
be equally good than controllers without dynamic strategy, still pure static
controllers outperformed all dynamic controllers by the MRR ranking. Ob-
viously, placement-only controllers do not trigger VM migrations. This is an
advantage in the combined ranking as they get the best possible score on the
migrations metric. Despite this advantage, they often performed worse than

118 CHAPTER 7 – Dynamic VM allocation

Reservation
Static

Reservation +
Dynamic

Demand
Static

Mostly Reservation + Dynamic Demand + Dymamic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

R
/L

2
/−

−
R

/B
F

/−
−

R
/D

P
/−

−
R

/F
F

/−
−

R
/W

F
/−

−
R

/R
D

/−
−

R
/D

P
/K

M
R

/W
F

/K
M

R
/B

F
/K

M
R

/F
F

/K
M

R
/L

2
/K

M
D

/D
P

/−
−

D
/F

F
/−

−
D

/L
2

/−
−

D
/B

F
/−

−
D

/W
F

/−
−

R
/R

D
/K

M
R

/B
F

/T
C

R
/F

F
/T

C
R

/W
F

/T
C

R
/L

2
/T

C
R

/D
P

/T
C

D
/W

F
/K

M
D

/D
P

/K
M

R
/D

P
/D

P
D

/L
2

/K
M

R
/W

F
/D

P
D

/F
F

/K
M

R
/B

F
/D

P
R

/L
2

/D
P

R
/R

D
/T

C
R

/F
F

/D
P

D
/B

F
/K

M
R

/R
D

/D
P

D
/D

P
/T

C
D

/W
F

/T
C

D
/W

F
/D

P
D

/B
F

/T
C

D
/D

P
/D

P
D

/B
F

/D
P

D
/F

F
/T

C
D

/L
2

/T
C

D
/F

F
/D

P
D

/L
2

/D
P

Controller combination

S
c

h
e

d
u

le

Figure 7.2: Heatmap of average server demand over all controllers and
schedule instances

combinations of placement and dynamic controllers for the MRR rankings SD
and dSDe.

Figure 7.2 shows a heatmap of the average server demand for each controller
and schedule. Controllers are sorted by their MRR ranking on the average
server demand only, not considering other metrics as for Table 7.3. Darker
areas indicate high values and bright ones low values.

In the heatmap the controllers can be clustered following the type of controller
combination. Controllers without dynamic strategy performed worst and are
found on the left hand side (Reservation Static). Demand-based controllers
outperformed reservation-based ones. Controllers leveraging some kind of dy-
namic strategy usually delivered a higher allocation density. Again, combined
controllers that leverage demand-based placement controllers outperformed
reservation-based ones (Reservation + Dynamic and Mostly Reservation +
Dynamic vs. Demand + Dynamic).

Reservation-based controllers performed worst because they are most conserva-
tive. Reservations do not reflect the actual resource demand of a VM. Adding
a dynamic controller overall improved allocation density. Using a demand-
based instead of a reservation-based controller takes advantage of the actual

7.6. Simulation results 119

MRR Rankings Average Simulation Results

Controller MRR SD dSDe MG SD dSDe MG

D/WF/-- 0.52 0.04 0.52 1.00 3.33 (0.37) 5.30 (0.57) 0.00 (0.00)

D/BF/-- 0.48 0.03 0.45 0.95 3.34 (0.45) 5.42 (0.61) 0.00 (0.00)

D/L2/-- 0.48 0.03 0.44 0.95 3.36 (0.44) 5.47 (0.61) 0.00 (0.00)

D/FF/-- 0.47 0.03 0.42 0.95 3.37 (0.44) 5.53 (0.51) 0.00 (0.00)

D/DP/-- 0.47 0.03 0.41 0.95 3.39 (0.46) 5.58 (0.51) 0.00 (0.00)

R/RD/-- 0.46 0.03 0.36 1.00 4.10 (0.43) 6.00 (0.00) 0.00 (0.00)

R/WF/-- 0.46 0.03 0.36 1.00 4.52 (0.35) 6.00 (0.00) 0.00 (0.00)

R/FF/-- 0.46 0.03 0.36 1.00 4.53 (0.45) 6.00 (0.00) 0.00 (0.00)

R/DP/-- 0.46 0.03 0.36 1.00 4.52 (0.39) 6.00 (0.00) 0.00 (0.00)

R/BF/-- 0.46 0.03 0.36 1.00 4.54 (0.38) 6.00 (0.00) 0.00 (0.00)

R/L2/-- 0.46 0.03 0.36 1.00 4.57 (0.36) 6.00 (0.00) 0.00 (0.00)

D/L2/DP 0.44 0.46 0.73 0.12 2.31 (0.20) 4.65 (0.49) 13.05 (3.35)

D/BF/TC 0.42 0.26 0.85 0.14 2.44 (0.36) 4.35 (0.81) 10.75 (2.43)

D/L2/TC 0.42 0.31 0.80 0.14 2.43 (0.37) 4.45 (0.69) 10.80 (2.84)

D/BF/KM 0.40 0.09 0.79 0.33 2.60 (0.30) 4.50 (0.69) 5.30 (2.11)

D/FF/TC 0.40 0.29 0.78 0.15 2.44 (0.35) 4.50 (0.69) 10.40 (2.39)

D/WF/TC 0.39 0.20 0.82 0.14 2.43 (0.32) 4.40 (0.68) 10.60 (2.44)

D/L2/KM 0.39 0.07 0.71 0.39 2.70 (0.34) 4.70 (0.66) 4.60 (1.70)

D/FF/KM 0.38 0.08 0.69 0.36 2.64 (0.31) 4.70 (0.57) 4.75 (1.68)

D/FF/DP 0.38 0.31 0.68 0.13 2.37 (0.35) 4.75 (0.44) 12.45 (3.52)

D/DP/KM 0.36 0.06 0.66 0.38 2.76 (0.37) 4.80 (0.70) 4.75 (1.71)

D/BF/DP 0.35 0.28 0.66 0.13 2.34 (0.22) 4.80 (0.52) 13.00 (3.43)

D/DP/TC 0.35 0.12 0.80 0.14 2.49 (0.35) 4.45 (0.69) 10.70 (2.27)

D/WF/DP 0.35 0.26 0.67 0.14 2.42 (0.33) 4.85 (0.75) 12.75 (4.34)

D/DP/DP 0.35 0.27 0.65 0.14 2.45 (0.37) 4.85 (0.75) 12.45 (3.83)

D/WF/KM 0.35 0.05 0.66 0.34 2.75 (0.36) 4.80 (0.52) 5.05 (1.70)

R/RD/TC 0.24 0.08 0.56 0.08 2.67 (0.36) 5.20 (0.52) 17.85 (3.31)

R/RD/DP 0.21 0.10 0.44 0.10 2.63 (0.42) 5.70 (0.47) 15.70 (3.87)

R/L2/DP 0.21 0.08 0.46 0.10 2.75 (0.61) 5.70 (0.47) 18.95 (5.84)

R/WF/DP 0.21 0.07 0.46 0.09 2.72 (0.62) 5.70 (0.47) 19.80 (5.05)

R/FF/DP 0.21 0.08 0.46 0.08 2.74 (0.48) 5.70 (0.47) 19.60 (5.07)

R/RD/KM 0.21 0.04 0.43 0.15 3.22 (0.40) 5.75 (0.44) 10.60 (2.58)

R/BF/DP 0.20 0.08 0.46 0.07 2.64 (0.40) 5.70 (0.47) 20.85 (3.87)

R/DP/DP 0.20 0.07 0.46 0.08 2.82 (0.54) 5.70 (0.47) 19.05 (4.87)

R/WF/TC 0.19 0.04 0.47 0.06 2.91 (0.38) 5.70 (0.47) 23.95 (2.95)

R/WF/KM 0.18 0.03 0.37 0.13 3.74 (0.48) 5.95 (0.22) 11.40 (3.12)

R/FF/TC 0.18 0.04 0.42 0.06 2.90 (0.36) 5.70 (0.47) 23.75 (4.54)

R/DP/KM 0.18 0.03 0.36 0.14 3.78 (0.42) 6.00 (0.00) 11.55 (2.91)

R/L2/KM 0.18 0.03 0.36 0.14 3.65 (0.44) 6.00 (0.00) 11.90 (2.88)

R/L2/TC 0.17 0.04 0.42 0.06 2.91 (0.35) 5.75 (0.44) 23.10 (3.86)

R/FF/KM 0.17 0.03 0.36 0.13 3.71 (0.46) 6.00 (0.00) 11.40 (2.68)

R/BF/TC 0.17 0.04 0.42 0.06 2.94 (0.39) 5.75 (0.44) 24.25 (3.48)

R/DP/TC 0.17 0.04 0.41 0.06 2.87 (0.33) 5.80 (0.41) 24.55 (4.12)

R/BF/KM 0.17 0.03 0.36 0.12 3.73 (0.37) 6.00 (0.00) 12.25 (2.17)

Table 7.3: MRR – average MRR ranking of all metric MRR rankings
(migrations, average, and maximum server demand), SD – average server demand,
dSDe – maximum server demand, MG – average number of VM migrations

120 CHAPTER 7 – Dynamic VM allocation

Reservation + Dynamic Mostly Demand + Dynamic
Reservation and Demand

Static

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

R
/D

P
/T

C
R

/W
F

/T
C

R
/B

F
/T

C
R

/F
F

/T
C

R
/L

2
/T

C
R

/B
F

/D
P

R
/R

D
/T

C
R

/D
P

/D
P

R
/F

F
/D

P
R

/W
F

/D
P

R
/R

D
/D

P
R

/L
2

/D
P

R
/B

F
/K

M
D

/L
2

/D
P

D
/B

F
/D

P
R

/F
F

/K
M

D
/F

F
/D

P
R

/W
F

/K
M

R
/L

2
/K

M
D

/W
F

/D
P

R
/D

P
/K

M
D

/D
P

/D
P

D
/D

P
/T

C
D

/B
F

/T
C

D
/W

F
/T

C
D

/L
2

/T
C

D
/F

F
/T

C
R

/R
D

/K
M

D
/B

F
/K

M
D

/W
F

/K
M

D
/F

F
/K

M
D

/D
P

/K
M

D
/L

2
/K

M
D

/B
F

/−
−

D
/D

P
/−

−
D

/F
F

/−
−

D
/L

2
/−

−
D

/W
F

/−
−

R
/B

F
/−

−
R

/D
P

/−
−

R
/F

F
/−

−
R

/L
2

/−
−

R
/R

D
/−

−
R

/W
F

/−
−

Controller combination

S
c

h
e

d
u

le

Figure 7.3: Heatmap of migrations over all controllers and schedule instances

resource demand and achieves a denser allocation in the first place. Again,
adding a dynamic controller improved allocation density. This combination
performed even slightly better as a combination of reservation-based and dy-
namic controllers. Reasons are, demand-based controllers achieve a denser
allocation right after placement and they achieve a denser allocation faster
than reservation-based ones due to less VM migrations.

With respect to VM migrations, controllers without dynamic strategy did not
trigger any migrations and performed best (to be found on the right in Figure
7.3). Demand-based controllers consistently triggered less migrations than
reservation-based ones. Demand-based controller combinations outperformed
reservation-based ones for the same reason as before. Leveraging VM demands
leads to a denser allocation in the first place. Fewer or even zero migrations
are required to establish a dense allocation after allocating a new VM.

Table 7.4 summarizes the average server demand and number of VM migra-
tions clustered by the controller type. This provides additional evidence that
demand-based placement controllers lead to a superior VM allocation in con-
trast to reservation-based ones, and that combining them with dynamic con-
trollers reduces the number of migrations substantially in contrast to reserva-
tion based placement controller combinations.

7.7. Experimental results 121

Cluster SD σSD ∆SD MG σMG ∆MG

Reservation Static 4.46 0.42 2.03 0.00 0.00 0.00

Demand Static 3.36 0.42 1.70 0.00 0.00 0.00

Reservation + Dynamic 3.07 0.60 2.80 17.81 6.27 28.00

Demand + Dynamic 2.51 0.35 1.81 9.43 4.30 18.00

Table 7.4: Statistics for results clustered by the controller type. SD and MG –
average server demand and migrations, σSD and σMig – standard deviation for
average server demand and VM migrations, ∆SD and ∆Mig – difference between
min and max values of average server demand and migrations

Overall, simulations suggest that combinations of demand-based placement
with dynamic controllers are most efficient.

7.7 Experimental results

We performed complementary lab experiments in order to understand if the
main results of the simulations carry over to a real environment. In addition,
the lab experiments provide information about response times and SLA vio-
lations of each controller, which cannot be obtained properly by simulations.
Experiments were conducted with the following controller combinations:

• Good performing controllers according to simulations considering all
MRR rankings separately

– First-Fit-Demand with KMControl (D/FF/KM)

– L2-Demand with KMControl (D/L2/KM)

– Worst-Fit-Demand without dynamic controller (D/WF/–)

• Poor performing controllers according to simulations considering all
MRR rankings separately

– Worst-Fit with TControl (R/WF/TC)

– Worst-Fit with KMControl (R/WF/KM)

122 CHAPTER 7 – Dynamic VM allocation

Controller combinations for experiments were chosen to cover a set of good
and poor performing controllers based on the MRR ranking shown in Table
7.3. We selected D/FF/KM and D/L2/KM as they performed well for average,
maximum server demand, and migrations. R/WF/TC and R/WF/KM repre-
sent poor performing controllers. In each case two controllers were picked to
see whether they perform similarly well in experiments as suggested by simu-
lations. Considering all metrics and data center requirements there is no clear
winner. In addition D/WF/– was tested because it performed best according
to the global MRR ranking if migrations are a limiting factor and average
server demand is less of a concern.

Experimental results can be found in Table 7.5. For each controller and sched-
ule configuration, there is one result line. It describes the average experimental
results over 5 schedule instances of one schedule configuration. Differences be-
tween min and max results are reported in square brackets while variances are
reported in parenthesis.

For migrations, we found that combinations of reservation-based placement
and dynamic controllers triggered more migrations than ones using demand-
based placement controllers. This confirms simulation results and can be
explained by the higher resource demands of reservation-based controllers.
Demand-based controller combinations consistently triggered more migrations
than pure static controllers and less than reservation-based combinations.

Service quality could be maintained by almost all controller combinations ex-
cept D/L2/KM which fell below a desired level of 99% service quality for all
schedule configurations. For some schedule configurations controller combina-
tions R/WF/TC and D/WF/– also fell below a service quality of 99%.

Average server demand showed that D/FF/KM delivered the best performance
and consistently required the least number of servers while maintaining the
desired service level. Overall R/WF/KM had the highest average server de-
mand and the highest peak server demand. These results are in line with
simulation results. All other controllers can be found between D/FF/KM and
R/WF/KM.

7.7. Experimental results 123

Control Sched SD dSDe CPU MEM RT dRTe O MG SQ

+ D/FF/KM 20000 2.53 (0.17) 3.67 (0.58) 42 47 654.50 (49.86) 44847 2460676 07 [05/08] 99.12 (0.273)

+ D/L2/KM 20000 2.74 (0.27) 4.25 (0.96) 42 43 900.19 (187.90) 50262 2399470 06 [05/08] 95.52 (1.360)

+ D/WF/-- 20000 3.15 (0.25) 4.75 (0.96) 33 39 617.55 (26.44) 23045 2576691 00 [00/00] 99.60 (0.100)

- R/WF/KM 20000 3.69 (0.17) 6.00 (0.00) 32 34 637.24 (32.40) 36326 2634552 20 [16/22] 99.61 (0.049)

- R/WF/TC 20000 2.97 (0.27) 5.50 (0.53) 40 41 679.35 (87.81) 61091 2555583 26 [25/27] 97.70 (0.814)

+ D/FF/KM 20100 2.41 (0.39) 4.00 (0.82) 41 48 627.23 (52.04) 32832 2528618 08 [06/09] 99.48 (0.095)

+ D/L2/KM 20100 2.88 (0.51) 4.50 (0.58) 41 41 1427.40 (518.85) 61127 2210333 06 [04/07] 91.66 (2.033)

+ D/WF/-- 20100 3.38 (0.41) 5.25 (0.50) 28 35 616.68 (26.65) 21060 2535460 00 [00/00] 99.49 (0.139)

- R/WF/KM 20100 3.60 (0.66) 6.00 (0.00) 30 33 615.77 (50.38) 34873 2535183 19 [16/21] 99.50 (0.121)

- R/WF/TC 20100 2.77 (0.48) 5.75 (0.46) 39 42 641.82 (39.44) 46271 2522725 27 [24/29] 99.18 (0.200)

+ D/FF/KM 20200 2.29 (0.22) 4.50 (0.58) 38 43 662.26 (61.48) 44190 1923776 07 [04/09] 98.77 (0.316)

+ D/L2/KM 20200 2.34 (0.29) 4.25 (0.50) 42 43 1578.25 (611.89) 204359 1672268 06 [04/09] 94.58 (1.515)

+ D/WF/-- 20200 2.97 (0.45) 4.75 (0.50) 28 35 635.31 (59.12) 28491 1932057 00 [00/00] 99.21 (0.204)

- R/WF/KM 20200 3.21 (0.26) 6.00 (0.00) 30 31 639.47 (31.31) 40645 1931438 20 [17/24] 99.16 (0.217)

- R/WF/TC 20200 2.63 (0.16) 5.43 (0.53) 37 37 674.82 (50.44) 58384 1849433 27 [23/33] 98.68 (0.274)

+ D/FF/KM 20300 2.38 (0.14) 4.00 (0.00) 41 48 670.62 (33.76) 59608 2365682 09 [08/10] 99.23 (0.136)

+ D/L2/KM 20300 2.68 (0.07) 4.33 (0.58) 41 45 1091.45 (152.11) 82731 2270676 07 [07/08] 97.30 (0.284)

+ D/WF/-- 20300 3.29 (0.16) 5.00 (0.00) 28 36 644.83 (40.58) 31294 2383054 00 [00/00] 91.90 (3.625)

- R/WF/KM 20300 3.62 (0.15) 6.00 (0.00) 30 32 648.37 (25.09) 48188 2370031 19 [15/20] 99.38 (0.041)

- R/WF/TC 20300 2.78 (0.15) 5.25 (0.46) 39 42 686.48 (34.21) 46496 2360173 26 [24/29] 96.80 (0.928)

Table 7.5: Experimental results on placement and dynamic controllers.

(+/-) – based on simulation results, either a poor or good performing controller.
Control – controller combination with notation [(D)emand- or
(R)eservation-based]/[placement controller]/[dynamic controller], Sched – VM
allocation/deallocation schedule configuration, SD – average server demand, dSDe
– maximum server demand, CPU [%] – average CPU load, MEM [%] – average
memory load, RT [ms] – average response time, dRTe [ms] – maximum response
time, O – total number of operations, MG – average VM migrations, SQ [%] –
service quality (number of requests with a response time greater 3 s plus failed
requests vs. all requests)

Server CPU utilization varied between 20% and 45% depending on the con-
troller configuration and remained well below 70%. Average memory as a
second constraining resource remained below a 50% utilization level for all
controller combinations. A reason for this low average CPU utilization was
that most VMs were only utilized below 30% on average. In order to increase
overall server CPU utilization many VMs would have to be allocated to a sin-
gle server. However, this was not possible due to a fixed memory limit for all
VMs on a server, which was set to 85% of its total capacity to keep enough
space for the hypervisor as shown in Figure 7.4. Server utilization increased

124 CHAPTER 7 – Dynamic VM allocation

0

25

50

75

100

09:00 12:00 15:00 18:00
Time [h]

U
ti

liz
a

ti
o

n

Sensor

CPU

Memory

Figure 7.4: Server CPU and memory utilization for one experiment

to 90% and above during times with higher workload on the VMs.

CPU utilization will also be low if there are too few VMs to fully utilize a
single or all active servers. For example an average CPU utilization of 50%
is caused if two servers are active, one running at 80% and the second one
at 20% utilization. Average utilization cannot be increased because resource
limitations prevent a migration of the VM on the second server to the first
one, and there are not enough VMs available.

Average response time of operations was slightly sensitive to denser allocations.
For the two controllers D/FF/KM, R/WF/TC, and D/L2/KM that produced
the lowest average server demand, average response time was slightly increased
compared to other controllers. However, the difference is not significant due to
the high variance in the response times. Interestingly, D/L2/KM yielded the
highest response times and worst service quality while delivering low server
demands and maximum server demands without triggering too much migra-
tions.

Table 7.6 summarizes experimental results over all schedules for each con-
troller. While the numbers are slightly different, the ranking of controllers is
in line with the simulation results. Average server demand was generally a bit
lower as predicted by simulations while more VM migrations were triggered.
Demand-based controllers always triggered less migrations than reservation-

7.8. Conclusions 125

Cluster SD σSD ∆SD MG σMG ∆MG

D/FF/KM 2.40 0.24 0.95 7.60 1.68 6

D/L2/KM 2.66 0.37 1.32 6.07 1.53 5

R/WF/TC 2.79 0.31 1.32 26.42 2.25 10

D/WF/-- 3.20 0.34 1.37 0.00 0.00 0

R/WF/KM 3.54 0.38 1.53 19.59 2.43 9

Table 7.6: Statistics over all experiments sorted by MRR ranking in experiments.
SD – average server demand, σSD – standard deviation of server demand, ∆SD –
difference between the min and max server demand. The same statistics apply for
VM migrations MG.

based controllers as for simulations.

We found that average results for R/WF/KM and D/WF/– may not always be
in line with simulation results. Due to simulations, R/WF/KM sometimes pro-
duced a lower average server demand then D/WF/–. We found, that D/WF/–
achieves a very dense allocation if inter-arrival times were high. The setup
procedure used to initialize a new VM produces a very low CPU utilization on
the servers. In this case, the demand based controller is only limited by the
VM memory reservations, resulting a in a very dense allocation. This behavior
increases the risk of service quality degradation as seen for schedule configu-
ration 20300 where the demand-based controller required less servers but only
achieved a service quality of 92%.

In simulations we found that the variance on the CPU measurements has a
strong effect on the KMControl controller’s performance. This is not the case
for the TControl controller as it’s t-test takes the noise variance into account.
If parameters (K, M) of KMControl are not properly tuned, the controller
reacts faster and more aggressive, leading to a lower average server demand
and service quality with an increased number of migrations.

7.8 Conclusions

Much research on VM allocation in virtualized data centers has focused on effi-
cient heuristics for the placement controllers. Typically, bin packing heuristics

126 CHAPTER 7 – Dynamic VM allocation

are used in wide-spread cloud management tools like OpenStack or Eucalyptus.
We could not find substantial differences in the energy efficiency of different
bin packing heuristics in our placement controllers.

However, there were substantial differences in the energy efficiency if additional
dynamic controllers were used. There was no substantial difference among the
types of dynamic controllers used, but whether it was used or not had a con-
siderable impact on the average server demand. Surprisingly, reallocation has
not been a concern in the related literature so far, nor is it used in cloud man-
agement tools used in industry practice. The result is in line with theoretical
work on fully dynamic bin packing, which leads to lower competitive ratios
than dynamic bin packing.

In addition, the parameters used for the placement controllers have an impact
on the average server demand. Both, simulation and experimental results indi-
cate that a controller should aim for a dense allocation from the start for high
energy efficiency. This is mainly a result of the parameters used for bin pack-
ing. Demand-based placement controllers take the actual demand on a server
into account and not the reserved capacity. This allows for a much denser
packing and higher utilization. However, demand-based placement controllers
need to be used in conjunction with dynamic controllers to avoid overloads.

Nowadays, reservation-based placement controllers are state-of-the-practice,
which is probably due to risk considerations of IT service managers. Our study
shows that combinations of demand-based placement controllers with dynamic
controllers actually lead to fewer migrations than reservation-based placement
controllers and a lower server demand at the same time, while maintaining
service quality.

Overall, demand-based placement controllers in combination with a dynamic
controller appear to be the most energy-efficient solution. Simulations indicate
significant savings in average server demand of about 20% to 30% compared
to placement-only allocation controllers.

The cost of migrations is always an issue. Not only do they lead to higher
response times, but they can lead to congestion in the network. In our analysis,

7.8. Conclusions 127

we assumed that the network connections within a server cluster are such that
they do not become a bottleneck. This can be an issue in large-scale data
centers with many migrations and additional network traffic, however. We
leave migration scheduling for such scenarios as a topic for future research.

128 CHAPTER 7 – Dynamic VM allocation

Part III

Appendix

129

Appendix A

IaaS cloud testbed for research
experiments

Texts in this chapter are based on a previous publication [98].

A.1 Hardware infrastructure

All experiments except the ones of Chapter 6 were conducted using an ex-
perimental testbed infrastructure that closely resembles the architecture one
would find in a private IaaS cloud environment. The overall architecture is
shown in Figure A.1.

The testbed consists of six identical servers and many VMs of different sizes.
The concrete number of VMs with their resource reservation depends on the
experiment and is described in the corresponding chapters. Fedora Linux 16
is used as operating system with Linux KVM as hypervisor. Each server is
equipped with a single Intel Quad CPU Q9550 2.66GHz, 16GB memory, a
single 10 k disk and four 1Gbit network interfaces.

The VM disk files are located on two separate NFS storage servers as qcow2
files. The first one is equipped with an Intel Xeon E5405 CPU, 16GB memory

131

132 CHAPTER A – IaaS cloud testbed for research experiments

VM Server 0

VM Server 1

VM Server 2

VM Server 3

VM Server 4

VM Server 5

Storage 0

Storage 1

Monitor 0

Monitor 1

Monitor 2

Monitor 3

Load Generator 0

Load Generator 1

Control Server

Figure A.1: IaaS testbed infrastructure

and three 1Gbit network interfaces in a 802.3ad LACP bond. The second stor-
age server has an Intel Xeon E5620 CPU, 16GB memory and 3Gbit network
interfaces in an LACP bond. Disks are set up in a RAID 10 configuration.
Preliminary experiments were conducted to find the optimal RAID controller
configuration. Both, the network and storage infrastructure had sufficient ca-
pacity such that they did not result in bottlenecks.

A Java Glassfish1 enterprise application container with the SPECjEnter-
prise2010 application and a MySQL database server2 are installed on each
VM. SPECjEnterprise2010 was chosen because it is widely used in industry to
benchmark enterprise application servers. It is designed to generate a utiliza-
tion on the underlying hardware and software that is very similar to the one
experienced in real-world business applications.

Two additional servers are used as workload generators. Each one is equipped
with an Intel Core 2 Quad Q9400 CPU with 12GB main memory and two
1Gbit network interfaces in an LACP bond. A modified version of the Rain3

workload generator is used to simulate workload on the SPECjEnterprise2010
applications within the VMs.

1http://glassfish.java.net/
2http://www.mysql.com
3https://github.com/yungsters/rain-workload-toolkit

A.2. Software infrastructure 133

Four servers with heterogeneous hardware are running the Sonar monitoring
system, Hadoop, and HBase. All are equipped with one 1Gbit network in-
terface, between 4GB and 16GB of RAM, an Intel Core Quad CPU Q9550
2.66GHz, Intel Core 2 CPU 6700 2.66GHz, or an AMD Phenom x4 905e CPU,
one system disk and dedicated storage disks. The Hadoop cluster reports a
total storage capacity of 7TB.

A.2 Software infrastructure

The Rain workload generator puts the VMs in the testbed under load. The
version used is an enhanced version of the Rain workload generator proposed
by [7]. It was extended to cover IaaS scenarios where VMs get allocated and
deallocated according to a predefined schedule as shown in Figure D.2. Chapter
D provides a detailed description of the Cloudburst workload generator we
developed to replace Rain in future experiments. At this point we do not
explain Rain in detail as Cloudburst features identical functionality and a
very similar software architecture.

The Sonar monitoring system measures resource utilizations of servers and
VMs in 3 s intervals. Also, all Rain workload generators report 3 s averages of
application request response times to Sonar. Chapter B describes the architec-
ture and requirements that lead to the development of Sonar in more detail.
An analysis step following each experiment reads all relevant data from Sonar.
It allows a complete reproduction of an experiment and calculates a set of core
metrics.

A software framework was used to implement and test different allocation
controllers as described in Parts I and II. In a first step, simulations are
conducted for a controller. Then, promising configurations are transferred to
the testbed infrastructure and evaluated by experiments.

Through the use of an abstract interface layer, controller implementations are
identical for experiments and simulations. Interfaces are either implemented
to control a physical or simulated infrastructure as shown in Figure A.2. In

134 CHAPTER A – IaaS cloud testbed for research experiments

Rain allocation generator

Virtual machine manager

Server 0

VM 0

M
on

it
or

in
g Sonar monitoring

Sonar simulator

Allocation simulator

VM ...

Server 1R
a

in
 lo

ad
 g

en
er

at
or

Controller

Simulated virtual machine manager

+

VM & Server
utilization

VM allocation &
deallocation queries

V
M

M
 A

P
I

Figure A.2: IaaS framework that supports simulations and experiments

both cases, the same software framework is used. This allows an evaluation of
controllers by simulation and experiments without changes.

In experimentation mode the controller receives monitoring data on all VM
and server resource utilizations through Sonar. Dynamic controllers can lever-
age this data to trigger VM migrations on the testbed. In addition, a controller
receives VM allocation and deallocation requests from the Rain allocation gen-
erator. Requests are translated into appropriate VM start and stop requests
on the testbed infrastructure. For example, placement controllers as described
in Part II determine where to start a new VM.

For simulation mode, all testbed services like Sonar and Rain as well as the
testbed infrastructure itself are substituted by simulated components. A simu-
lated workload generator component replaces Sonar. A time series is attached
to each VM and describes its utilization over a certain time, e.g. 12 h.

Application requests (e.g. HTTP or CORBA queries) are not simulated by
the framework. Simulations are based on resource utilizations of servers and
VMs according to predefined time series data. Time is simulated in discrete
3 s time steps. For each step the VM utilization is determined using the time
series data. Server utilizations are calculated by summing up VM utilizations.
A server is over-subscribed if its CPU utilization exceeds 100%.

A.3. Time series storage 135

Simulations leverage an VM allocation driver substituting Rain. It directly
issues method calls to the IaaS service layer by using the same VM allocation
schedules as used by Rain.

VM migrations are simulated by waiting a negative-exponentially distributed
time with µ = 3.29, σ = 0.27. In addition an increased CPU utilization of
8% and 13% is simulated on the migration source and target servers during a
migration. Parameters are based on findings of Part I.

Simulated service quality (SQ) is calculated by dividing the number of simu-
lated time intervals where a server was over-subscribed and dividing it by the
total number of simulated time intervals. Contrary, experimental service qual-
ity (SQ) is calculated dividing the number of failed or late HTTP/CORBA
requests by the total number of triggered HTTP/CORBA requests.

A.3 Time series storage

Times is a network service that is dedicated for storing time series data. For
each time series it stores a list of measurements, a frequency, and a UNIX
timestamp for the first measurement. A Thrift service provides functionality
to search, create, and download time series data. In addition, Thrift is used
to serialize a time series into a highly efficiency binary format that is stored
on disk. If a time series gets downloaded, its binary file is load and written
onto the network stream without deserializing it first. This implementation
guarantees a high storage and network transfer efficiency.

Many components and analysis scripts directly access Times. For example,
the Rain workload generators download workload profiles from Times that
describe the number of users to simulate over time. All optimization-based
controllers in Chapter 2 leverage Times to download workload profiles that
are used to calculate an allocation of VMs to servers. As another example,
analysis scripts written in R download the time series that are described in
Chapter E to calculate descriptive statistics.

136 CHAPTER A – IaaS cloud testbed for research experiments

Appendix B

Sonar testbed monitoring

To compare the efficiency of resource allocation controllers in our testbed in-
frastructure we needed a tool that closely monitors it. Different metrics like
CPU and memory utilization of VMs and servers, HTTP request throughput
of the Rain load generator, or HTTP request response times needed to be cap-
tured. The monitoring solution had to support dynamic environments, were
servers and VMs are allocated and deallocated frequently.

In contrast to data center monitoring tools, our goal was to monitor the infras-
tructure in a high frequency. For example, recording CPU, network, disk, and
memory utilization of all systems in 3 s intervals. The system had to store this
data over an extended period of approximately 3 years. All monitoring data
needed to be available centrally for analytical scripts that work on application
logs and time series data.

Due to the lack of appropriate monitoring solutions we designed our own sys-
tem called Sonar. Its architecture is founded on the design and ideas of existing
solutions in the field of data center monitoring. It differs from state monitor-
ing systems as it is not designed to trigger alarms or to drive infrastructure
health dashboards. Instead, Sonar stores RAW log traces and time series
data. It is designed for simplicity of use, horizontal scalability to handle high
data throughput, and high monitoring frequency below 1min intervals without
downsampling older data.

137

138 CHAPTER B – Sonar testbed monitoring

Texts in this chapter are based on a previous publication [96].

B.1 Requirements

During preliminary experiments we gathered a number of requirements regard-
ing a monitoring solution:

Efficient — Monitoring has to be efficient to support a high monitoring fre-
quency. System parameters have to be sampled in a frequency between 3 s and
1min. Up to 20 metrics are monitored per server. A high throughput of mon-
itoring data is expected, e.g. 90 measurements per second for 18 servers. In
addition, application logs have to be captured at a reasonable log level. Mon-
itoring runs continuously over a long time period and is never paused. Hence,
Sonar has to be built for efficiency from ground up in regards to storage formats
as well as telemetry.

Small resource footprint — The monitoring itself must not distort utilization
measurements by putting the server under a high CPU or memory load. The
average load of an idling server with monitoring enabled must not surpass a
mean CPU utilization of 2%. Sonar has to be reconfigurable during operation.
This means enabling, disabling, installing, or reinstalling sensors automatically
during operation.

Log messages and time series data — Storing of log messages and unstructured
data has to be supported. All components of an experiment have to dump their
configuration into Sonar for a subsequent analysis. It is necessary that such
information is stored in a human readable text format. JSON serialized objects
proved to be a viable option. By this way, data can be indexed and searched
by a full text search engine as well.

Service orientation — Searching and fetching monitored data has to be equally
easy as loading a CSV file. In Sonar all data is aligned by the real-world
timeline. Each entity like a metric reading or a log message is stored with
the Unix timestamp of its creation. A hostname and a sensor name identify

B.2. Related work 139

its origin. Consequently three values are required to query data: timeframe,
hostname, and sensor name.

Data archive — Typical meta data about an experiment includes its name,
date, and a description. Additional attributes depend on the concrete exper-
iments and the requirements. Sonar focuses on providing a stable data store
for experimental monitoring data only. In addition, it is easily possible to use
a meta data store on top of Sonar which perfectly fits the specific require-
ments of ones research. This can be anything from a relational database to a
spreadsheet.

B.2 Related work

A lot of data center monitoring solutions exist today but do not fit our special
requirements. Their design goal is to detect errors for system administrators.
Examples are Nagios1, Collectd2, and Munin3. They provide rudimentary
monitoring of CPU, memory, and disk utilization to indicate if these resources
will become a bottleneck or if they will fail. Readings are only conducted
on 5min to 60min intervals. A functionality to reconfigure or install sensors
on the fly with automatic (re-)deployment during operation is not supported.
Usually, data gets downsampled and ultimately removed to reduce required
storage capacity.

Ganglia4 and Astrolobe [91] are designed to handle a high degree of monitoring
detail but cannot store extensive amounts of data either. Each node is storing
all of the monitored data which gets cloned using a peer-to-peer approach.
This ensures a high data redundancy and safety in case of catastrophic fail-
ures but puts additional load on the servers which might distort utilization
measurements. Monitoring data gets removed after some time in order to fit
the data on a single node. Virtualized cloud infrastructures in our research

1http://www.nagios.org
2http://collectd.org
3http://munin-monitoring.org
4http://ganglia.sourceforge.net

140 CHAPTER B – Sonar testbed monitoring

are subject to constant change which would require the peer-to-peer system to
clone servers frequently.

Chukwa5 is capable of storing time series data as well as application logs. Its
primary design goal is resilience against failures. All data is stored locally
on the monitored system as well as in a central Hadoop distributed file sys-
tem (HDFS). Search and browse functionality requires additional mechanisms
not provided by HDFS or Chukawa. Analysis scripts have to be designed as
MapReduce jobs which suits analysis of big data but makes analysis unneces-
sary difficult if only a small fraction of the data is analyzed.

INCA6 pursues similar goals as for example Nagios but in the context of a
Grid environment. It is not built to handle dynamic environments. Sensors
and the structure of monitored data need to be configured in advance which
complicates its use in dynamic scenarios. Similar to many other systems, INCA
stores data in a relational database which limits storage scalability.

Other systems exist for storing application logs but do not support resource
utilization monitoring. Apache Flume7 provides a configurable plugin and data
sink concept for routing data within the infrastructure. Scribe8 is designed to
stream application logs from a large number of servers. It does not support
querying as the data is written to HDFS without any indexing. Otus and its
successor vOtus [69, 68] are application log aggregators which are based on a
MySQL database. Graylog29 uses the JSON format to transfer log data from
the servers to the monitoring system which stores them in a MySQL database.
Again, storage capacity is limited by the relational database.

OpenTSDB [80] is the system which closest fulfills our requirement of a research
monitoring solution. It focuses on storing large amounts of measurements
in an HBase database. Data is never down-sampled or deleted and can be
queried efficiently by an HBase row scan operation. OpenTSDB is designed

5http://wiki.apache.org/hadoop/Chukwa
6http://inca.sdsc.edu
7https://cwiki.apache.org/FLUME
8https://github.com/facebook/scribe
9http://www.graylog2.org

B.3. Sonar architecture 141

Sensory-yMEM

Sensory-yCPU

Sensory-yNET SensoryHub

MonitoredyserveryoryVM

Collector

ServiceyAPI

HBase

HDFS

MySQL

WebyUI

Controller

Figure B.1: Overview of the Sonar components and their dependencies

for metric data elements only, application logs are not supported. Dynamic
reconfigurability of sensors is not supported, they have to be deployed and
started manually on each node. It is necessary to register metrics before their
usage which additionally complicates the setup process of an experiment. Data
can be passed to OpenTSDB by an HTTP or Telnet based asynchronously
handled RPC call. However, HTTP requires a high processing overead on
server and client side and both, HTTP and Telnet are not bandwith efficient
compared to binary protocols like Google’s ProtoBuf10 or Apache Thrift [82].

B.3 Sonar architecture

In the following we will describe the architecture of Sonar which leans itself to
the implementation of OpenTSDB. Figure B.1 depicts its overall architecture.

All data flows from the left to the right starting with the Sensor components. A
Sensor measures data and passes it to the SensorHub which transforms it and
forwards it to the Collector. The Collector is designed to scale horizontally,
which allows the system to scale with the number of monitored servers. It
receives data from all SensorHubs and writes it into the HBase database which
in turn stores everything in HDFS. MySQL is used to hold a configuration
management database (CMDB) as well as the binaries of all Sensors.

In contrast to OpenTSDB, Sonar solely uses Apache Thrift for telemetry. Each
10http://code.google.com/p/protobuf

142 CHAPTER B – Sonar testbed monitoring

metric reading and log message is passed to the Collector using a Thrift RPC
call. Thrift was chosen because of its high serialization and deserialization
speed, its efficient storage format and its support for a wide range of program-
ming languages [82].

B.3.1 Sensor and SensorHub components

A Sensor is a small program whose job is to read system metrics such as mem-
ory or CPU utilization, e.g. by using PAPI-V [23]. Each Sensor is executed in
a separate process managed by the SensorHub. The communication between
a Sensor and the SensorHub happens through the standard process input and
output streams. A Sensor encapsulates each reading in a single line of comma
separated text and flushes it to the standard output stream. The SensorHub
listens and reads the data from multiple Sensor standard output streams us-
ing the select and poll operations of the Linux Kernel in order to keep the
resource footprint low. All received data is serialized in a Thrift object. For
an increased TCP/IP package utilization, a single Thrift object aggregates
multiple measurements that are sent to the Collector.

In the bootstrapping sequence a SensorHub determines its hostname. By us-
ing the configuration API of the Collector it checks whether the hostname is
already registered in the CMDB and does so if not. Subsequently it fetches a
list of Sensors assigned to the hostname. Sensor programs are packed in a ZIP
file and stored in the CMDB as well. The SensorHub downloads all relevant
Sensor packages, extracts and executes them with their configuration settings
from the CMDB. The standard output stream of the new process is registered
internally.

In order to keep the Sensor packages up to date, the Sensor list is reloaded
each 30 s. A Sensor binary is reloaded and restarted if the MD5 hash of the
local Sensor package is not equal to the one stored in the CMDB.

Sensors can also be used to monitor log files and transfer new lines to the
Collector. However, application logging is typically integrated in the appli-
cation itself. For Java applications like JBoss, Glassfish, and Apache Tomcat

B.3. Sonar architecture 143

a custom Log4J appender is provided which sends the application logs to the
Collector. Most of our scripts are written in Python. These scripts use Python
logging to dump their configuration settings and their results into Sonar by
writing JSON serialized objects as log messages.

One important aspect while designing the SensorHub and the Sensors was their
own resource footprint. On an idling entry level server with a single quad-core
CPU, 16GB of memory and 1Gbit Ethernet connection, the 95th percentile of
the CPU utilization remains below 1%. The memory consumption is difficult
to determine due to shared libraries. Linux reports a resident set size of about
15MB for the SensorHub process plus 7MB for each Sensor. For 5 Sensors
this is approximately 50MB of memory consumption, about 0.3% of the total
16GB available memory. The network traffic remained below 50 kBps.

B.3.2 Collector component

The Collector is a central component in Sonar. It provides a number of network
services for monitoring as well as for configuration. It receives all logs and
metric measurements from SensorHubs and applications.

A configuration service is used by a WebUI which provides a user interface to
configure and monitor the whole infrastructure. It can be used to assign Sen-
sors to hostnames with a specific configuration, to query and plot time series
data, or to display log data. All configuration changes affect the operation of
the infrastructure almost instantaneous. For example, if a Sensor is applied
to a hostname, the corresponding SensorHub will automatically download and
(re-)start it.

The Collector provides a relay functionality which can be used by any soft-
ware component to subscribe for utilization measurements of a specific host-
name and metric. Experiments in our testbed infrastructure often comprise
programs which take actions based on resource utilization measurements of
servers and VMs. For example, a dynamic controller migrates VMs between
servers in dependence to their utilization. Usually, such components discover

144 CHAPTER B – Sonar testbed monitoring

the infrastructure state on their own. However, this is already accomplished by
Sonar which simplifies the development of such components and unifies data
acquisition.

The Collector is designed to achieve a high throughput for receiving and storing
metric readings and log data. It is implemented in Java and accepts Thrift
packages which are stored in a processing queue first. The queue is processed
by a worker thread that writes the data into HBase.

In contrast to OpenTSDB, the Collector is still based on a synchronous net-
work model to receive data from SensorHubs and applications. A dedicated
thread is used for each incoming TCP/IP connection. An synchronous model
was chosen for two reasons. First, Mutsuzaki [58] showed that asynchronous
processing is not optimal to achieve high message throughput using Thrift
RPC. Second, each SensorHub creates a single TCP/IP connection indepen-
dent to the number of Sensors. Asynchronous processing is of great benefit if
the number of TCP/IP connections is extremely high as state by the C10K
problem [44]. However, the number of SensorHubs per Collector is most likely
below 1000 which can be handled by a synchronous approach efficiently.

To achieve high HBase throughput OpenTSDB uses a proprietary HBase client
called asynchbase11. This client is not officially supported and newer HBase
versions might not work with it. Sonar uses the official client library which
is likely to be more reliable and still provides enough performance to moni-
tor small testbeds. Throughput bottlenecks can be mitigated by scaling the
Collector horizontally.

The underlying HBase table structure for time series data closely resemble the
ones used by OpenTSDB but does not support labeling of measurements. The
schema consists of the tsdb and uidmap table which are described in Figure
B.2 and B.3. For completeness, the schema is described here, as no official
documentation or reference exists except various presentation slides [81, 80].

The tsdb table’s row-key consists of three fields: The first two elements are
the hostname where the reading occurred followed by the metric name, e.g.

11https://github.com/OpenTSDB/asynchbase

B.3. Sonar architecture 145

Metric readings table (tsdb)

data

qualifier qualifier qualifier
key

Row key structure

hostname metric timestamp_h

Qualifier structure

timestamp_secs

Figure B.2: HBase table schema for storing time series data

CPU or memory. A row holds all measurements which occurred during the
same hour. The hour is stored in the third key-field as a Unix timestamp.
All measurements are stored in separate cells in the column-family data. The
qualifier of a cell is equal to the second(s) at which the reading occurred within
the hour addressed by the row-key.

HBase sorts the data based on the row-key and uses a column oriented storage
schema as described in the Google BigTable paper [17]. All values for the same
host and metric are stored in one coherent block on disk. All measurements
are stored in a coherent block as their timestamp grows monotonous. Sonar
queries address values within a time frame for a given hostname and sensor.
They directly translate to a linear scan, the most efficient operation of HBase.

Each HBase cell holds only a single numeric value of double precision. This
is space inefficient as described by the OpenTSDB team [80]. The complete
row-key is stored redundantly for each cell of a row. If a cell contains 4 Byte
of data, the ratio of the row-key size and cell content size is imbalanced to
the disadvantage of the cell content. Sonar runs a row compaction regularly
as does OpenTSDB. It aggregates the data of all cells in a row in a single cell
using a Thrift serialized object. The cells are removed after the compaction
which eventually frees up the memory consumed by the row-keys and cells.

To save memory, the hostname and the metric name are not stored as strings
but as integers in the row-key. The uidmap table maps strings to integers
for this purpose (see Figure B.3). If a metric or hostname occurs which is
not mapped, a new mapping is created on demand. The uidmap table uses
column-families to differentiate between forward and backward mappings and

146 CHAPTER B – Sonar testbed monitoring

UniquevIdentifiervMappingvTablev(uidmap)

forward

hostname sensor ...
key

backward

hostname sensor ...

2 srv0 dummy

dummy3

counter 5 3

dummy

srv0

3 2

2

Figure B.3: Hbase table schema for the uidmap lookup table

columns for mapping different types, e.g. hostnames and metric names. Col-
lissions between mappings with the same name but different types are avoided
this way.

A forward lookup for a given string and mapping type works as follows. Lookup
the row with the given string as row-key. Get the column family for the forward
mappings. Finally, get the cell where the column equals the mapping type.
The cell value then contains the searched integer value.

Reverse mapping works similarly. First lookup the row with row-key beeing
equal to the integer value. Get the column family for backward mappings. Get
the cell where the column name equals the mapping type. The cell contains
the searched string value.

The identifiers are maintained in a special row with row-key counter. It holds
a counter for each mapping-type in the forward lookup column family. Each
time a new mapping is created the appropriate counter is incremented in an
HBase transaction to generate a new identifier. The name counter is a special
name which cannot be used for any mappings to rule out conflicts.

In addition to storing utilization measurements Sonar also has the capability
of storing application logs. For application logs we propose a modified storage
schema (see Figure B.4).

The row key is slightly modified and stores the complete Unix timestamp, not
just the hour. Each log message is stored in the column-family and column
data. The inter-message arrival time is below 1 s. Therefore, multiple log mes-
sages have to be stored in the same row. To prevent new logs from overwriting

B.3. Sonar architecture 147

Application log table (logs)

data

data
key

sample t=0 "msg0"

Row key structure

hostname

t=1 "msg1" t=n "msg n"

metric timestamp

Figure B.4: HBase table schema for application logs

old log messages, the HBase versioning feature is used. Each time a cell is
modified, a new version of the cell is created without deleting or overwriting
existing data.

Internally HBase stores the row-key for each cell version which can be storage
inefficient. The ratio of the content of a cell and the size of the row-key
has to be balanced to achieve a high store efficiency. For the table logs a
row-key consumes 12B. We analyzed over one million log messages from Sonar.
The mean message length was 229.32 characters with a standard deviation of
740.92 characters. The 10th percentile was 27, the 50th 35, and the 90th 841
characters.

These results indicate that 50% of the log messages consume more than 280B.
The row-key is 12B long, which is below 4.3% of this message size. This
imbalance might be mitigated by introducing a compaction process as used
for the tsdb table. Compaction itself requires additional resources to run and
slows down querying on compacted cells. For the logs table, the problem only
affects below 5% of all cells where the message length is below 25 characters.
Therefore we decided to trade storage capacity for CPU resources and do not
run a compaction process on the logs table.

The table schemes not only have to be designed for fast reads, but they also
have to enable a scalable write performance. Writes scale with the number of
HBase region servers if they are evenly distributed across the row-key space of
each table. Then, write operations are distributed across the regions of a table
and the region servers. In case of the metric table this is the case as described
by George Lars [31]. The key space of the log tables is built in a very similar
way as for the metric tables and therefore scales in the same way.

148 CHAPTER B – Sonar testbed monitoring

B.3.3 Structure of analysis scripts

Analysis scripts can download data from the Sonar system using the query
service of the Collector. Network services are published by Apache Thrift so
that analysis scripts are not forced into a specific programming language. The
underlying HBase schema provides a high scan performance to guarantee a
fast download of time series as well as log data.

In our case, analysis scripts are written in Python and use a custom layer on
top of the Thrift bindings. Listing B.1 describes the steps needed to load a
time series. Analysis scripts written in R leverage a Python bridge to query
data from Sonar.
1 from sonarlytics import fetch_ts , timestamp
2 frame = (timestmp('16/09/2012␣20:20:41'),
3 timestmp('16/09/2012␣20:20:41'))
4

5 # Query time series
6 data, time = fetch_ts('server0', 'CPU', frame)

Listing B.1: Sample of a Python analysis script which queries data from Sonar

Two functions of the sonarlytics package are imported in the beginning. By
doing so, the sonarlytics package automatically connects with a Collector. In
lines 2 and 3 the time frame of the experiment is specified. In the example
the formatted date strings need to be converted to timestamps first. Line
6 represents the load command which fetches a time series from Sonar and
returns a tuple of two Numpy12 arrays. The first array contains the actual
data and the second one the timestamps for each data point in the first array.
The function is parameterized with the query information: hostname, sensor
name and timeframe. Now, an arbitrary analysis job can be executed based
on the Numpy arrays which are the foundation for almost all scientific Python
libraries. Fetching application logs works the same way as fetching time series
data.

12http://www.numpy.org

B.3. Sonar architecture 149

This approach has several advantages while at the same time being as simple
as loading data from a CSV file. First, all the data is available to all people
involved in the project. This becomes more important as the data volume
grows. In our case, the HDFS held more than 500GB after 3 years of develop-
ing and using Sonar on a small testbed with about 30 servers and VMs. Such
an amount of data cannot be emailed or sent over the network easily. Due to
version conflicts it is not practicable to copy all the data or data fragments
to other computers where it is used for analysis processing. Using Sonar, the
data is available by means of a service to all devices with a network connection,
even while the experiment is running and instantaneously after the experiment
ended.

It is guaranteed that the data in Sonar is the RAW data. It has not been
processed or altered in any way, so that all analysis is working on the same
data.

Analysis scripts work very well if the data volume fetched by the script easily
fits into the main memory. If a large amount of data has to be processed, it is
better to exploit the MapReduce functionality provided by HBase and Hadoop.
This allows to process the data in parallel on all HBase servers without sending
all the data over the network. In this case, however analysis scripts get more
complicated as the user needs detailed knowledge of the Sonar table schemes,
data locality and the implementation of MapReduce programs.

150 CHAPTER B – Sonar testbed monitoring

Appendix C

Relay infrastructure control

We did not find appropriate tools to (re-)configure our testbed infrastructure
in order to fulfill the prerequisites of an experiment. The Relay system was
designed to establish such prerequisites like starting system services, deleting
and loading databases, deploying applications, and synchronizing the Rain
workload generators before an experiment is triggered as well es during an
experiment where new VMs get allocated by the IaaS service.

Relay exploits parallelism to speedup the testbed setup process, so that mul-
tiple servers and VMs are set-up in parallel. Due to the high degree of paral-
lelism with multiple servers and VMs such a process gets complicated to imple-
ment. It needs to support research environments with continuously changing
requirements where flexibility and prototyping are important. For this purpose
we implemented Relay. It leverages behavior trees as an alternative to finite
state machines (FSMs) in conjunction with asynchronous network program-
ming techniques.

This work is based on an interdisciplinary project done with D. Srivastav.

151

152 CHAPTER C – Relay infrastructure control

C.1 Architecture

Conducting an experiment usually requires the testbed infrastructure to be
in a certain predefined state for each experiment. Usually some kind of auto-
mated setup process is developed to achieve things like migrating VMs, starting
services, or loading database dumps.

In Unix environments SSH and Bash scripting can be considered as the stan-
dard tools to achieve this. In our first attempt we faced some drawbacks using
this tools in the context of a research environment. SSH connections need
authentication which has to be configured correctly for all servers and VMs.
For our testbed, security was of no concern, however. Writing Bash scripts
and especially changing them in case of changing demands proved to be an
error prone process. Our best approach was to follow the keep it simple and
small concept (KISS) and split the code into fine granular modules to keep it
maintainable and stable. Still, a central Bash script was needed to trigger all
the smaller scripts on a number of difference servers in parallel. The central
script often had to wait for a specific service to start and generate some type of
a log message. This introduced the need for concurrency and synchronization
which are hard to implement and debug in Bash scripts.

We introduced a service called Relay to bypass SSH connections and Bash
scripting on a high level. Each server runs a Relay service that publishes a
Thrift network service. It provides only a few functions to transfer a ZIP
package to the service. The package must contain a main file that can be
a Python script, Bash script, or any executable binary. Relay executes the
package by extracting it and launching this main file.

The package execution function blocks until the package finished its execu-
tion. An alternative function launches the package and immediately returns
its process identifier (PID) without waiting for the process to finish. It can
be used in conjunction with other service functions to check the process state
or to terminate it. Such a functionality is required to launch server processes
which will run for a longer period of time or to run a database dump script.

Sometimes it is required to wait for some text to occur in the standard output

C.1. Architecture 153

stream of a process. If this process terminates and the text was not found in its
output stream the package is re-executed. Restarts are limited by a predefined
number, however. If all restarts are used up an error is returned to the caller.
For example, this mechanism is used to wait for a domain to become available
after starting the Glassfish server.

A similar function exists which starts the package only once and then scans its
standard output stream for a message. The API call returns with the process
PID as soon as the message is found or until a timeout occurred without
terminating the package execution. Alternatively, the function executes the
package and opens a file handle on a log file instead of the standard output
stream.

Relay is implemented as an asynchronous Thrift service to keep the memory
and CPU footprint low. The asynchronous implementation style eliminates all
multithreaded and therefore deadlock related problems of synchronous server
and client implementations. The concepts are explained in the following.

The reconfiguration process of an infrastructure is described in a single Python
script by triggering asynchronous function calls. Each function transfers and
launches a ZIP package on a Relay service instance. As the asynchronous calls
are non-blocking, all ZIP packages are executed in parallel. Deferred lists are
used to synchronize calls by waiting for multiple asynchronous functions to
return.
1 def function finished():
2 pass
3

4 def function deploy(connections):
5 dlist = []
6

7 # Launch Glassfish servers
8 for server in hosts_list:
9 dlist.append(relay.launch(connections , server ,

10 'glassfish_start', wait=False))
11 dlist.append(relay.poll_for_message(connections ,
12 server , 'glassfish_wait', 'domain␣1␣running'))
13

154 CHAPTER C – Relay infrastructure control

14 # Load database dumps
15 for server in database_list:
16 dlist.append(relay.launch(connections , server ,
17 'spec_dbload'))
18

19 # Wait for all operations to finish
20 defer.DeferredList(dlist).addCallback(finished ,
21 client_list)
22

23 def function connect():
24 dlist = connect_all(hosts_list)
25 defer.DeferredList(dlist).addCallback(deploy)

Listing C.1: Sample implementation of a testbed setup process

Listing C.1 describes a simplified version of such a setup process script. The
connect function establishes a connection with an arbitrary number of servers
running a Relay service. In line 25 a deferred list is used to wait for all
connections to be established and calls the deploy callback handle afterwards.
The glassfish_start package is used to start an instance of the Glassfish service
on all Relay connections in line 9. Setting the wait flag to false tells Relay
not to wait for the package execution to finish and the function call returns
immediately with the process PID. The glassfish_wait package is executed
on all Relay connections as well. It waits until the primary Glassfish server
domain is available and then returns the call. A domain is running if the
Glassfish command line interface tool prints the string “domain 1 running”.
Finally, in line 16 the spec_dbload package is executed on all connections.
It loads a database dump for the SPECjEnterprise2010 application and then
returns.

Due to the asynchronous programming style all remote functions calls immedi-
ately return a deferred object. This object is used to register a callback handle
that gets called as soon as the asynchronous function call returns a proper
value. In the example, a deferred list is used in line 20 to group the deferred
objects from multiple remote function calls. The list calls its own callback
handle finished if all its asynchronous calls returned.

C.2. Behavior trees 155

In summary, the setup process waits until Glassfish is up and running and
the database dump is loaded on all connected servers. After that, new remote
function calls can be triggered within the finished function.

We found asynchronous programming to simplify the programmatic descrip-
tion of such setup workflows that incorporate many servers and Relay connec-
tions. Creating small independent packages like starting a Glassfish service
enabled us to describe a process by chaining the execution of existing reusable
packages.

The program structure resembles a FSM which does not contain any code to
handle concurrency. The workflow is described by chaining callback handlers
of deferred objects or lists together (see Listing C.1). For larger programs this
proved to be difficult to maintain as the definition of the workflow is spread
across the whole program and leads to an uncontrolled growth of new program
functions.

C.2 Behavior trees

Behavior trees [48] let us describe the complete workflow in a single place. A
behavior tree consists of action and control nodes. Each node returns a binary
status after its execution. Sequence control nodes execute all their child nodes
sequentially from the left to the right. The execution is stopped if one node
returns a false execution status. Then the sequence node returns false too.
Probe control nodes execute their child nodes sequentially from left to right
until a node returns true. The remaining child nodes are not executed and
the probe node returns true too. A probe node returns false if none of the
child nodes executed successfully (returned true). A concurrent control node
executes all child nodes concurrently and waits for all childs to return. A
logical AND operation on all child execution statuses gives the return value of
the concurrent node. Action nodes are a wrapper around the existing packages
described before. They execute a concrete operation on one or multiple Relay
service instances.

156 CHAPTER C – Relay infrastructure control

Probe

Glassfish Inactive? Sequence

Stop Glassfish Wait for Stop

Concurrent

Load DB Dump Sequence

Start Glassfish Wait for Glassfish

Launch Experiment

Figure C.1: Infrastructure setup workflow description as a behavior tree

Figure C.1 shows an example of a behavior tree. Its execution starts at the
root node of the type sequence. It calls the leftmost probe node which in turn
calls the first action node. The action node checks whether all Glassfish servers
are stopped and returns true if so. Otherwise, it causes the probe node to call
its next child node, another sequence node. It triggers two action nodes which
stop all Glassfish servers and wait for them to terminate.

The second subtree of the root node is based on a concurrent node. It executes
an action node that loads a database dump as well as a sequence node in paral-
lel. The sequence node has two action nodes attached which start the Glassfish
server and then wait for it to become available. The parallel node returns true
if the database dump is loaded and all Glassfish servers are running.

Our implementation of behavior trees is based on asynchronous programming
as well. A child node that gets called does not block the call but returns a
deferred object instead. The calling node might register itself as a handle in
the deferred object so that it gets called if the child node finishes its work. This
approach has two advantages. First, action nodes trigger package executions
and are already implemented asynchronously which very well integrates with
the asynchronous behavior tree implementation. Second, it is straight forward
to implement concurrent nodes without threads and synchronization by using
asynchronous programming.

Summarized, behavior trees completely separate the technical implementation
aspects of asynchronous programming from the workflow description. Still

C.2. Behavior trees 157

they can be described in Python’s data structures in a readable and concise
way. A high degree of reusability can be achieved as subtrees can be part of
multiple behavior trees. Changes in a complex behavior tree do not risk the
stability of the whole tree but only a subtree. In addition, testing of complex
workflows is simplified as each subtree can be tested independently.

158 CHAPTER C – Relay infrastructure control

Appendix D

Cloudburst

One challenge we faced in building and using our testbed infrastructure was,
how to simulate realistic load on the applications inside VMs. A number of
well-known tools such as Faban1 and Rain2 exist that provide some but not all
functionality to generate realistic workload. First, an IaaS workload generator
has to generate variable load over time on multiple target VMs. Second, it
must allocate and deallocate VMs from the cloud infrastructure dynamically
according to a predefined schedule. Third, it needs to keep track of several
statistics and counters for later analysis such as the average request throughput
and response time or the total number of triggered requests.

Another problem is to provision enough hardware to generate sufficient load
on all VMs in the testbed. We found that Faban and Rain utilize lots of
memory while CPU was not a bottleneck in our case. Both are based on Java
and create a new thread for each simulated user. Lots of users are required for
each VM to generate realistic load. Each thread introduces additional memory
and CPU overhead. Using a different paradigm of parallel programming such
as provided by Erlang, Scala, or Go may lead to an performance improvement
with a reduced memory footprint.

1http://www.faban.org
2https://github.com/yungsters/rain-workload-toolkit

159

160 CHAPTER D – Cloudburst

We implemented Cloudburst3, a load generator that is designed to generate
workload for IaaS cloud environments. It is developed in the Go programming
language that allows simulating a huge number of users in parallel. Goroutines
substitute threads and consume less memory.

Our finding is, Cloudburst uses significantly less memory while generating the
same workload as Rain. Rain has a lower CPU utilization, most likely due to
the high optimization degree of the Java VM. If memory is a scarce resource
compared to CPU, Cloudburst and Go can simulate more users with the same
hardware.

In Section D.1 we discuss related work such as Rain and Faban. Different pro-
gramming languages with alternative programming paradigms for concurrency
such as Erlang, Scala, and Go are discussed in Section D.2. The architecture
and components of Cloudburst and the SPECjEnterprise load generator imple-
mentation are described in Section D.3. Section D.4 presents an experimental
evaluation by comparing the performance of Rain and Cloudburst.

Texts in this chapter are based on a previous publication [50].

D.1 Related work

Faban is a load generator that simulates dynamic load on a single target sys-
tem. Dynamic load varies the number of simulated users on a target system
over time according to a given time series as shown in Figure D.1. In contrast,
traditional peak performance benchmarks such as ApacheBench4 only simulate
a constant number of users.

With Faban we found it hard to generate load on multiple targets at the
same time as multiple load generator instances have to be configured and
started synchronously. Its software architecture renders it virtually impossible
to implement more advanced features required by an IaaS load generator. An

3http://www.github.com/johanneskross/cloudburst
4http://httpd.apache.org/docs/2.2/programs/ab.html

D.1. Related work 161

0

50

100

150

200

0 2 4 6

Time [h]

W
o

rk
lo

a
d

 [
#

 o
f

u
s

e
rs

]

Workload Profile

WP1

WP2

WP3

Figure D.1: Three workload profiles
that describe the number of simulated
users over time that are used by the

load generator

0

10

20

30

0 200 400 600

Lifetime of VMs [min]

V
ir

tu
a

l
m

a
c

h
in

e
Figure D.2: VM arrival and

departure schedule that is used by the
IaaS load generator

opinion that is shared by Rean Griffith5 and lead to the development of Rain
[7].

Initially we extended Rain to provide all features required by an IaaS driver.
We’ll refer to Rain as this extended version6. It loads a VM schedule that
describes the temporal sequence of VM allocations with their lifetimes as de-
picted in Figure D.2. After allocating a VM, it is initialized by installing
and starting applications. Then, dynamic workload is generated towards it
following a predefined workload profile as shown in Figure D.1.

Faban and Rain are based on a thread per user architecture. Both tools start
a thread pool with the size of the maximum number of users that will be
simulated in parallel over the benchmark. Depending on the current number
of simulated users some of the threads are blocked so that the number of active
threads resembles the number of active users for each target VM at any time.
In Faban each thread represents a single user while Rain decouples threads
and users which allows more flexibility regarding closed- and open-loop load
generators. Open-loop generators allow a asynchronous processing of requests
without actively waiting for a response.

5http://www.youtube.com/watch?v=qgZ1jtnrIEs
6http://www.github.com/jacksonicons/rain

162 CHAPTER D – Cloudburst

Each thread exhibits a constant memory and CPU footprint for managing its
state and context switches. Our goal was to simulate as many users on as
many target VMs as possible with minimal server hardware. We found that
Rain required a considerable amount of memory while CPU was not a limiting
resource in our case. In order to minimize the memory footprint we looked into
programming paradigms that are designed for highly concurrent applications.

D.2 Background

Load generation comprises a high amount of concurrency which is the most
important aspect while choosing the underlying technology and software ar-
chitecture.

Rain is implemented in Java and leverages threads for concurrency. “A Thread
is a basic unit of program execution that can share a single address space with
other Threads - that is, they can read and write the same variables and data
structures” [72]. According to the Oracle Java VM documentation7 each thread
allocates between 256 kB and 512 kB to hold its stack depending on the system
platform. This value can be set manually by the -XX:ThreadStackSize=512
parameter of the Java VM.

In Rain all simulated users are independent which keeps thread synchronization
at a minimum. At certain points like updating central counters and recording
metrics synchronization is inevitable. Here, queues minimize wait times so
that synchronization does not cause performance bottlenecks of any kind. All
queue buffer sizes are monitored and size limited to rule out memory leaks.

Carl Hewitt [93] proposes the actor model as an alternative to the thread
model. Each object represents an actor that comprises a mailbox and a be-
havior. Multiple actors run concurrently and send messages to others actors’
mailboxes. If an actor receives a message it calls its behavior which might
trigger another message. All message transfers happen asynchronously so that
senders and receivers are not blocked. In contrast to threads where locks are

7http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

D.2. Background 163

used as controlling instances, the actor model uses messages without shared
variables.

Erlang8 is a functional programming language that is built upon the actor
model in order to provide high concurrency at a low resource footprint [93].
Actors and messages are scheduled internally by Erlang and not by the oper-
ating system. Each Erlang process runs on a single CPU core independent to
the number of actors. Multiple Erlang processes are required to fully utilize a
many CPU and core architecture.

Scala9 provides the actor model as a library to Java applications. In contrast to
Erlang it supports Java object-orientation as well as functional programming.
Programs are compiled into Java intermediate code and run on top of the Java
VM. The actor model implementation is similar to Erlang with additional
features such as a message reply function. Scala introduces the concept of
channels that are used to transfer messages. A channel defines a set of message
types that are allowed to be transferred. As Scala integrates with Java it
supports two types of actors. A thread based actor is resembled by a Java
thread. Event-based actors are processed together on a single thread. They
are a lightweight alternative to the first one. Both actor types can be used
within an application in order to benefit from each ones advantages.

Go10 is a compiled language designed for concurrent programming, multicore
processors and networked systems [64]. It leverages communicating sequential
processes (CSP) as originally proposed by Tony Hoare [41] that remind at
Erlang and Scala. Functions that are able to run concurrently with other
functions are called goroutines. Variables are shared by sending them around
in channels so that they are always owned by a single goroutine and locking is
unnecessary. Channels are either buffered or unbuffered. If data is transmitted
by an unbuffered one, the sender has to wait for the receiver. For buffered
channels, sender and receiver are decoupled by a buffer.

8http://www.erlang.org/
9http://www.scala-lang.org/

10http://golang.org/

164 CHAPTER D – Cloudburst

According to latest benchmarks11, creating a new goroutine entails a memory
overhead of approximately 4 kB to 5 kB. Because they share the same address
space they are a lightweight alternative compared to Java threads that demand
between 256 kB and 512 kB as noted above.

Other aspects have to be considered if choosing one of the concurrency models
discussed so far. Erlang is made for concurrency and scalability but its func-
tional programming style seems to limit the number of available developers.
Scala is object-oriented and integrates seamlessly with Java code. As most of
our load generating code and especially the SPECjEnterprise2010 benchmark
are written in Java this would be beneficial. However, Scala runs on top of the
Java VM and the integration of functional programming with Java’s object
oriented features seems to increase complexity. In addition, all load generator
deployments would require a Java VM with multiple JARs of the load gener-
ator framework, load driver implementation, helper libraries such as Apache
Commons, and a start script to configure the Java classpath.

Go in contrast is designed to be as simple as possible with a low footprint
and installation overhead. Programs are compiled into a single executable. It
supports a huge degree of parallelism by supporting similar models as Erlang
and Scala. Its syntax is similar to Python and C. Because of this aspects we
developed a new load generator in Go. At some point this decision is also based
on personal preferences. As Go uses similar models than Erlang and Scala
we argue that our experimental results are transferable to other languages.
Especially as Go is a relatively young language and has not undergone as
much optimization as any of the alternatives mentioned beforehand.

D.3 Architecture

In this section we describe the system architecture of the Cloudburst load
generator that is similar to the one of Rain. It consists of several components
as shown in Figure D.3.

11http://en.munknex.net/2011/12/golang-goroutines-performance.html

D.3. Architecture 165

Scenario

Benchmark

TargetManager

TargetSchedule
Target

Configuration

Target

TargetFactory Generator

Agent

Scoreboard

LoadManager

Generator

Ooperation

Createv
Operation Operation

N

N N

Create
Generator

Loadvdrivervimplementation

Figure D.3: The Cloudburst load generator architecture with a load driver
implementation

System configuration settings are passed to the Benchmark that initializes a
new Scenario. A Scenario coordinates the execution of a benchmark. It creates
a TargetSchedule and a TargetManager instance that in turn governs multiple
Target instances.

TargetSchedule parses the benchmark configuration and creates multiple Tar-
getConfiguration instances, one for each VM that will be used during the
benchmark. For each target multiple configuration settings like ramp-up,
ramp-down, load duration, and the load profile are stored.

A TargetManager manages the lifecycle of all Target instances. It waits for
the TargetSchedule until a new Target should be created. Timings depend
on a schedule configuration as shown in Figure D.2. New instances of Target
are created by the TargetManager leveraging the TargetFactory. The Target-
Manager waits until all Targets reached their end of life and then terminates
itself.

Each Target instance is bound to one VM. It allocates and deallocates the VM
from the IaaS layer and initializes it. Then, it generates load on the applica-
tions running within the VM. Load is generated by an instance of LoadManager
that schedules the allocation and deallocation of Agent instances. The number
of Agents over time is described by the load profile as shown in Figure D.1.

An Agent sends queries towards a VM. The next query to run is chosen by the
Generator which is shared amongst all Agents of the same Target. Each time
the Generator is called it returns a new Operation. An Operation comprises

166 CHAPTER D – Cloudburst

a run-method that actually triggers queries against an application. After an
operation has been executed, an Agent waits for some time until it requests
another Operation.

Scoreboard instances receive and aggregate operational statistics of a Target.
Such statistics comprise waiting times and number of successful and failed
operations.

A separate load driver component provides an implementation of how actual
workload is generated on the VMs and IaaS services allocate and deallocate
VMs. For that, it implements the TargetFactory, Generator, and Operation
interfaces. It extends the abstract Target class to implement the interaction
with the IaaS layer in order to allocate, deallocate, and initialize VMs.

D.3.1 Differences to Rain

The basic architecture is fairly similar between Rain and Cloudburst and both
support exactly the same feature set. Most noticeable differences are the way
Agents are managed and how concurrency is realized. In Rain, a Target starts
new Agent threads while the number of threads is equal to the maximum
number of users that will be used in parallel during the benchmark. All threads
are created while initializing the Target. Each Agent is in one of two states:
active or inactive. Active Agents run and execute Operations while inactive
ones are idle and wait for their reactivation. The Target adjusts the number
of active and inactive Agents in compliance to the load profile.

In Cloudburst, a Target only starts the number of Agents that are required at a
time. New Agents are started if the number of users in the load profile increases
while existing ones are terminated and garbage collected with a decreasing
number of users in the load profile.

Since Rain is written in Java and Cloudburst in Go, they are based on two
different concurrency models and use different ways to communicate between
concurrent entities. In Rain, objects and variables are shared by threads. For
instance, one Scoreboard is shared by all Agents of each Target. In order to

D.4. Experimental results 167

report results from Operations, the Scoreboard uses synchronization and locks
certain variables for an exclusive access.

In Go, channels are used to share object-pointers between goroutines. Taking
the same example, a Scoreboard holds a channel where it receives results and
processes them one at a time. This channel is shared by all Agents of the same
Target. Explicit locking is not necessary in this case.

D.3.2 SPECjEnterprise2010 load driver

Cloudburst and Rain workload generators only provide the framework to sim-
ulate users. The operations that a simulated user performs on a VM are
implemented by a load driver that is loaded as a submodule and integrates
with the load generator interfaces.

We implemented a Go version of the SPECjEnterprise2010 load driver in order
to benchmark Cloudburst against Rain. The same driver is implemented in
Java that runs with Rain. The SPECjEnterprise2010 driver generates Opera-
tions that create and send HTTP requests towards the SPECjEnterprise2010
business application running within a Java enterprise container in a VM. This
application closely resembles the behavior of real-world business applications.

D.4 Experimental results

Cloudburst and Rain are evaluated in a testbed infrastructure. Both are in-
stalled on a server with a Fedora Linux 19 (64-bit) operating system, a Intel
Core 2 Duo CPU E6750 at 2.66GHz, 4GB RAM and a 1Gbit full duplex net-
work interface. Go version 1.1.2 linux/amd64 and Java version 1.7.025 (64-bit)
are used. Both simulate a varying number of users over a duration of 4 h ac-
cording to a workload profile. Our goal was to measure memory efficiency
in dependence to the workload profiles. Therefore, the VM allocation and
deallocation feature was not used for this benchmark.

168 CHAPTER D – Cloudburst

Users Workload Replica # Users Workload Replica

50 WP1 3 100 WP3 3

50 WP2 3 150 WP1 3

50 WP3 3 200 WP1 3

100 WP1 3 200 WP2 3

100 WP2 3 200 WP3 3

Table D.1: Summary over all experimental treatments to benchmark Rain
against Cloudburst

The load is generated on 8 identical Windows 7 (32-bit) workstations in the
same network. All are equipped with an Intel Core 2 Duo CPU E6750 at
2.66GHz, 4GB RAM and a 1Gbit full duplex network interface. A GlassFish
v3 application server with the SPECjEnterprise2010 application and a MySQL
5.5 database server were installed on each machine.

Three different workload profiles (WP1, WP2, WP3) were picked to test the
load generators under different conditions. WP1 contains strong variations,
WP2 is balanced and WP3 has mixed characteristics. All profiles are shown
in Figure D.1. Each workload profile was tested using 50, 100, and 200 users
by normalizing the profile to the user count so that it requires the desired
number of users at its global maximum. For each profile and user combination
we conducted three experiments with Cloudburst and Rain respectively. For
WP1 another experiment with 150 users was conducted. Table D.1 shows the
experimental treatments for all 60 experiments, each with a duration of 4 h.

For each execution we measured CPU and memory utilization on the load
generating server in a 10 s interval using Linux’s SAR utility that is based on
SYSSTAT package12. SYSSTAT uses the /proc directory in Linux to collect
system performance data provided by the Linux Kernel. For the effective CPU
utilization we report the %SYSTEM value minus the average of the first 6 mea-
surements of %SY STEM while the load generator was not running. Effective
memory consumption is calculated by KBMEMUSED - KBBUFFERS - KB-
CACHED. This approximately gives the actual memory demand during oper-
ation. However, an exact calculation or measurement of memory is difficult

12http://sebastien.godard.pagesperso-orange.fr/

D.4. Experimental results 169

●

●
●

●
●●

●

●

●

●
●●

●
●●

●●
●

●●

●

●●●

2.5%

5%

7.5%

10%

50 100 150 200

Benchmark size [# users]

P
ro

c
e

s
s

 C
P

U
 u

ti
li

z
a

ti
o

n

Generator

●

●

Cloudburst

Rain

Figure D.4: Cloudburst’s and Rain’s
50th quantiles of CPU utilization in

relation to number of users

0%

4%

8%

12%

0 100 200

Benchmark time [min]

P
ro

c
e

s
s

 C
P

U
 u

ti
li

z
a

ti
o

n

Generator

Cloudburst

Rain

Figure D.5: Cloudburst and Rain
CPU utilization over time applying

WP1 normalized to a maximum of 100
users

due to various buffers and shared libraries.

D.4.1 CPU utilization

A regression of CPU utilization in relation to users is shown in Figure D.4.
It indicates that the CPU utilization increases linearly with the number of
users for both systems. Rain constantly consumed less CPU and its demand
increased slower with additional users compared to Cloudburst. The linear
regression equation for Rain was cpuR(u) = 0.0282·u−0.135 and for Cloudburst
it was cpuCB(u) = 0.0452 · u+ 0.547.

As an example, Figure D.5 shows the CPU usage over time for an experiment
with WP1 at 100 users. For both systems, the measured CPU graphs closely
resemble the workload profile that describes the number of simulated users
over time. It is obvious that Cloudburst constantly consumes more CPU than
Rain. At t = 0 it can be seen that Rain with Java consumes more CPU while
starting compared to a less pronounced peak for Cloudburst with Go.

For 100 users and all three workload profiles we calculated the CPU utilization
taking the 50th quantile. Figure D.6 puts them side by side. All results are
summarized in Table D.2. For WP1 and WP3 the difference in CPU utilization

170 CHAPTER D – Cloudburst

0%

1%

2%

3%

4%

5%

WP1 WP2 WP3
Workload profile

P
ro

c
e

s
s

 C
P

U
 u

ti
li

z
a

ti
o

n

Generator

Cloudburst

Rain

Figure D.6: Cloudburst and Rain 50th quantiles of CPU utilization over three
runs using workload profiles normalized to a maximum of 100 users

was comparably large. For WP2 it was negligible, however. Most likely this
is due to the workload profile characteristics as WP2 is more balanced than
WP1 or WP3.

For experiments with 50 and 200 users the number of operations executed by
Rain and Cloudburst differ. For 50 users Cloudburst executed 2.3% opera-
tions more while for 200 users it executed −7.5% operations less. We looked
closer into this finding as it might indicate failures in our implementation of
the SPECjEnterprise2010 driver or Cloudburst itself. An analysis of execution
times reveals that Cloudburst takes 0.57 s on average for the execution of a sin-
gle operation while Rain only requires 0.11 s. This difference is likely caused by
inefficient implementations of the HTTP libraries and programming language.
We found similar reports in the mailing list of the Go programming language.
This causes an operation of Cloudburst to take longer on average compared to
Rain which negatively effects the total number of executed operations.

In the following we conducted experiments with 100 users because both load
generators triggered a similar amount of operations in this case.

For 100 users we applied statistical tests to see whether both CPU demands
differ significantly from each other. For all experiments we took the 50th
quantile of the CPU load and conducted a two-sided Student’s t-test. For

D.4. Experimental results 171

●●●

●●●

●●●

●●●

●

●●

●

●
●

●
●
●

●●
●

200

400

600

800

50 100 150 200
Benchmark size [# users]

M
a

xi
m

u
m

 p
ro

c
e

s
s

 m
e

m
o

ry
 [

M
B

]

Generator

●

●

Cloudburst

Rain

Figure D.7: Cloudburst and Rain
maximum memory demand in relation

to number of users

0

200

400

600

0 100 200
Benchmark time [min]

M
a

xi
m

u
m

 p
ro

c
e

s
s

 m
e

m
o

ry
 [

M
B

]

Generator

Cloudburst

Rain

Figure D.8: Cloudburst and Rain
memory demand over time applying

WP1 normalized to a maximum of 100
users

WP2, it gave t(2.59) = 0.76, p = 0.5089 so that the CPU utilization cannot be
considered as significant. However, it resulted t(4.00) = 42.40, p = 1.882e− 06

for WP1 and t(3.65) = 6.73, p = 0.003518 for WP3 indicating that Cloudburst
has a significantly higher CPU utilization than Rain.

One reason for this might be that Java has been optimized for CPU and
memory utilization over years. Go is a relatively young language and CPU
performance optimization was set on a low priority until now.

D.4.2 Memory utilization

As for the CPU, a regression of the maximum memory consumption in depen-
dence of user count is shown in Figure D.7 for WP1 at 100 users. Comparing
the mean or median memory consumption would not be entirely fair as Rain
initializes all threads right away while Cloudburst initializes goroutines on-
demand. Again, both systems use linearly more memory with increased users.

The linear regression equation for Rain was memR(u) = 2.84 · u+ 270.21 and
for Cloudburst it was memCB(u) = 1.12 · u + 16.01. So, Cloudburst required
2.5 times less memory than Rain for each additional user and 16.9 times less
memory in ground state.

172 CHAPTER D – Cloudburst

Memory consumption courves of a run with 100 users are illustrated in Figure
D.8. It shows that Rain noticeably demands more memory than Cloudburst
all the time. Differences in the garbage collection and thread creation are
noticeable. Memory demand for Rain is almost constant with a slight trend
upwards. In contrast, Cloudburst clearly depicts the workload profile. Most
likely this is because Rain initializes all threads during its initialization and
releases all of them right before termination. Cloudburst creates and deletes
goroutines on-demand as the number of users changes. If a goroutine is deleted
its memory is released as well which is reflected by the graph.

This is also the reason why average memory demand is a bad indicator. The
maximummemory demand was used instead. It compares the memory demand
of both generators during peak-load where equally many goroutines as threads
are active.

Despite the different architectural design, the different memory management
of Go and Java becomes noticeable comparing concrete values. Figure D.9
presents the maximum memory demand over three replicas for each workload
profile. For WP2 the memory consumption for Rain was 358 MByte and the
standard deviation 4 MByte. The memory consumption of Cloudburst was 41
MByte and the standard deviation was 9 MByte. A similar scenario is drawn
for WP1 and WP3.

We compared the maximum memory consumption of Rain and Cloudburst
for 100 users over three replications and workload profiles. Student’s t-Test
gives t(2.04) = −27.68, p = 0.001159 for WP1 which indicates that Cloudburst
uses significantly less memory compared to Rain. For WP2 we got t(2.7) =

−57.06, p = 2.939e − 05 and for WP3 t(2.7) = −26.50, p = 0.0002424. This
confirms our initial hypothesis that memory consumption of a load generator
can be reduced by leveraging a concurrency model other from threads.

An extrapolation based on our CPU and memory utilization measurements
indicates that Cloudburst can handle more users than Rain on our workload
generating test server. Based on the linear regression models of Sections D.4.1
and D.4.2 we calculated the maximum number of users supported by our test
system for 100% CPU and 4GB of memory utilization. Cloudburst is CPU

D.5. Conclusions 173

0

200

400

600

WP1 WP2 WP3
Workload profile

M
a

xi
m

u
m

 p
ro

c
e

s
s

 m
e

m
o

ry
 [

M
B

]
Generator

Cloudburst

Rain

Figure D.9: Cloudburst and Rain maximum memory consumption over three
replicas using workload profiles normalized to 100 users

bound and supports 2203 users (3497 for memory) while Rain is memory bound
and supports only 1348 users (3553 for CPU).

D.5 Conclusions

In this work we implemented a new IaaS load generator that allows us to
evaluate IaaS resource allocation controllers in experimental testbeds under
realistic workloads. Such a load generator is required to simulate a varying
number of users over time for multiple VMs that get allocated and deallocated
on the IaaS testbed according to a predefined schedule.

We found that an extended version of the Rain load generator had a consid-
erable memory footprint. Our objective was to cut memory consumption to
generate more load with less hardware. Rain is based on Java where each simu-
lated user is handled by a dedicated thread. Each thread introduces additional
CPU and memory overhead.

We looked into alternative programming models for highly concurrent appli-
cations such as Erlang, Scala, and the Go programming language. For the
following reasons we decided to implement a new load generator based on Go.

174 CHAPTER D – Cloudburst

Generator Profile CPU [%] Memory [MB]

50 Users

Cloudburst WP1 02.96, 02.48, 02.58 073.33, 075.03, 067.00

Rain WP1 01.41, 01.20, 01.26 426.37, 386.42, 384.41

Cloudburst WP2 00.20, 00.31, 00.41 037.03, 038.38, 033.72

Rain WP2 00.30, 00.26, 00.56 264.25, 282.84, 282.51

Cloudburst WP3 01.85, 01.77, 01.31 055.07, 043.52, 043.17

Rain WP3 00.76, 00.81, 00.75 290.93, 329.03, 315.51

100 Users

Cloudburst WP1 04.84, 04.96, 04.99 136.98, 137.64, 132.23

Rain WP1 02.38, 02.38, 02.51 618.76, 578.30, 564.74

Cloudburst WP2 00.78, 00.41, 00.56 049.50, 041.65, 031.88

Rain WP2 00.45, 00.55, 00.60 353.62, 357.77, 361.19

Cloudburst WP3 03.57, 03.11, 03.37 069.18, 086.95, 107.88

Rain WP3 01.97, 01.77, 01.25 413.68, 400.71, 416.00

150 Users

Cloudburst WP1 06.86, 07.50, 07.04 190.25, 193.21, 194.84

Rain WP1 03.88, 03.96, 04.31 674.84, 657.96, 674.06

200 Users

Cloudburst WP1 09.46, 09.30, 09.15 248.71, 253.88, 238.92

Rain WP1 05.44, 05.33, 05.36 852.41, 846.62, 835.90

Cloudburst WP2 00.90, 00.86, 00.53 066.25, 065.96, 060.15

Rain WP2 00.90, 00.75, 00.70 384.06, 387.83, 415.83

Cloudburst WP3 04.92, 06.29, 05.93 108.04, 107.93, 095.00

Rain WP3 03.32, 03.65, 03.29 459.05, 485.05, 476.51

Table D.2: Experimental outcomes on Cloudburst and Rain: CPU – median of
the CPU utilization, Memory – maximum memory utilization

It has a simple and concise syntax that is similar to Python, Java, and C. Go
programs are compiled into a single executable binary which does not require
anything like a Java VM or additional libraries on the deployment system. Go
provides lightweight parallelism by its goroutines and channels. This paradigm
is similar to the ones found in Erlang or Scala. It enables us to simulate a huge
number of users in parallel at a low memory footprint.

To see whether the Go load generator outperforms the Rain implementation we
conducted a number of experiments in a testbed infrastructure. Our results
indicate that Cloudburst consumes more CPU but less memory than Rain.
According to linear extrapolations Rain is memory bound and was only able
to simulate 1348 users on our test server. Switching to Cloudburst that is
CPU bound allows to simulate 2203 users. In summary, Cloudburst allows us

D.5. Conclusions 175

to generate more workload using the same hardware.

176 CHAPTER D – Cloudburst

Appendix E

Workload data

E.1 Time series data

A similar analysis was done by B. Speitkamp and M. Bichler [86] for data set
SET1. The results reported in this thesis are done one data sets SET1 and
SET2 with a different interpretation. All illustrations and results for SET1
and SET2 were recreated.

Experiments are based on a set of time series data that describes the CPU
utilization or application request throughput in two data centers of large Eu-
ropean IT service providers. Speitkamp et al. [86] used a subset of this data
and contributed descriptive statistics. In this section we provide similar de-
scriptive statistics on both data sets.

The first data set (SET1) contains time series data on the CPU utilization
of servers running ERP and WAD services. SET1 consists of 419 time series
data files, each over a duration of 78 days in a 5min sampling rate. Based on
auto correlation function (ACF) plots we found that most of the time series
show a seasonality on a daily and weekly level. Figure E.1 shows the ACF
function with different lags from 288 to 26208. A lag of 288 represents 24 h.
Based on the first and second subplot with lags 288 and 2016 it is obvious that
this particular time series under consideration shows a strong daily seasonality.

177

178 CHAPTER E – Workload data

Max. lag = 288

Max. lag = 2016

Max. lag = 8064

Max. lag = 26208

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 100 200 300

0 500 1000 1500 2000

0 2000 4000 6000 8000

0 10000 20000
ACF lag

P
e

a
rs

o
n

s
 c

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t

Figure E.1: ACF function with
different lags over a sample utilization

time series from SET1

Max. lag = 24

Max. lag = 168

Max. lag = 672

Max. lag = 2184

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25

0 50 100 150

0 200 400 600

0 500 1000 1500
ACF lag

P
e

a
rs

o
n

s
 c

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t

Figure E.2: ACF function with
different lags over a sample utilization

time series from SET2

Plots with a longer lag indicate that there is an superimposed seasonality at
lag 2016 that represents a one week time frame.

A similar analysis was done for the second data set (SET2) that contains time
series of web service request throughput. It consists of 32 time series with a
sampling rate of 60min over a duration of 77 days. Figure E.2 shows the ACF
functions with similar results as for SET1. This time, a 24 h seasonality with
a lag of 24 and a weekly seasonality at lag 168 is noticeable.

Based on the ACF functions we assume a daily and a weekly seasonality. One
time series of SET1 and SET2 was picked as an example and the utilization

E.1. Time series data 179

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

M
o

n
d

a
y

T
u

e
s

d
a

y
W

e
d

n
e

s
d

a
y

T
h

u
rs

d
a

y
F

rid
a

y
S

a
tu

rd
a

y
S

u
n

d
a

y

0 5 10 15 20 25
Time [h]

C
P

U
 u

ti
liz

a
ti

o
n

 [%
] (

a
ve

ra
g

e
 o

f
5

 m
in

 in
te

rv
a

ls
)

Figure E.3: One week sample of a
randomly picked time series of SET1

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

M
o

n
d

a
y

T
u

e
s

d
a

y
W

e
d

n
e

s
d

a
y

T
h

u
rs

d
a

y
F

rid
a

y
S

a
tu

rd
a

y
S

u
n

d
a

y

0 5 10 15 20
Time [h]

C
P

U
 u

ti
liz

a
ti

o
n

 [%
] (

a
ve

ra
g

e
 o

f
6

0
 m

in
 in

te
rv

a
ls

)

Figure E.4: One week sample of a
randomly picked time series of SET2

of an arbitrary chosen week was plotted in Figures E.3 and E.4. All data is
normalized to the maximum value of each time series. This data is used to
estimate the CPU utilization on a server.

For SET1 a daily seasonality is clearly noticeable. Each day shows the same
utilization behavior and on Monday through Thursday there is a batch job
at around 17 h. No load exists during the weekend which explains the weekly
seasonality in the ACF plots. A similar behavior is noticeable for SET2. The
plots do not contain as much noise as for SET1 because of the sampling rate of
60min instead of 5min for SET1. However, a daily pattern is clearly noticeable
and a reduced service demand during the weekend is noticeable as well.

180 CHAPTER E – Workload data

0

50

100

150

200

0% 5% 10% 15% 20%

90th percentile CPU utilization

C
o

u
n

t

Figure E.5: Histogram of the 90th
percentile values over all utilization

time series of SET1

0

5

10

15

20

25

0% 5% 10% 15% 20%

90th percentile CPU utilization

C
o

u
n

t

Figure E.6: Histogram of the 90th
percentile values over all utilization

time series of SET2

Over all 451 utilization time series of SET1 and SET2 we calculated histograms
over the 90th percent utilization of each time series. Both are shown in Figures
E.5 for SET1 and Figure E.6 for SET2 respectively. The CPU utilization
remained below 15% in most cases. This somewhat confirms other findings
like [6] but still is comparable low. One reason might be that enterprise servers
are oversized to handle extreme peak load conditions. Another reason might
be that services are deployed on dedicated machines for reasons of resource and
software isolation without considering their resource footprint so that servers
were massively oversized.

We calculated statistical core-metrics over all 451 utilization time series of
SET1 and SET2. For each utilization time series we calculated the minimum,
maximum, mean, and median utilization value as well as the standard devia-
tion. Over all time series these core-metrics were then aggregated by the mean,
median, and 90th percentile functions. Results are reported in Table E.1.

E.2 Workload profile calculation

Workload profiles are calculated as proposed by Speitkamp et al. [86]. For
completeness we describe the concrete procedure used in this work. A time
series uraw

l is split into a set of seasons S, e.g. of a 24 h duration. Each season

E.2. Workload profile calculation 181

Set Statistic Minimum Maximum Median Mean SD

SET1 Mean 0.04 11.08 0.61 1.12 1.39

SET1 Median 0.02 11.88 0.20 0.49 0.95

SET1 p90 0.03 20.95 1.28 2.80 3.69

SET2 Mean 0.00 7.45 0.15 1.28 2.19

SET2 Median 0.00 5.90 0.09 0.86 1.68

SET2 p90 0.00 16.81 0.32 2.84 4.80

Table E.1: Descriptive statistics over all utilization time series in SET1 and SET2

● ● ● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●
●

● ● ● ● ● ●

●

● ●
● ● ●

●
● ● ● ● ●

●

● ●

●

●
●

● ● ● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

● ●

● ●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
● ● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ●
● ●

●

●
● ●

●

●

●
●

● ●

●
●

●

●

●
●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●

●

● ● ● ● ● ●

● ●

●

●

● ● ●

●

●
●

●
●

● ●

●●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
● ●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ● ● ● ●
●

●

●

●

●

●

●
●

●

●

● ●

● ● ●
●

● ●
● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●● ●

● ● ● ● ● ●
●

● ●

● ●
●

●

●

●

●
●

●

●
●

● ●

● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ● ● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

● ● ● ● ●
●

●

●

●

● ● ●

●
●

●

●

● ● ●
●

●●

●

●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ● ● ● ●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
● ●

● ● ● ●
● ●

●
● ●

●

●
●

●

● ● ●

●

●
●

●

● ●
●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ● ● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●●

●
● ● ● ● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
● ● ● ● ●

● ● ●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ● ● ● ● ● ● ●

●
● ●

●

● ●
●

●

●
●

●
●

●

●

●

●●
●

● ● ● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ● ●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ● ●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

●

●
● ● ● ●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ● ●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ● ● ● ● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●0%

25%

50%

75%

100%

1 7 12 18 23

Time [h]

C
P

U
 u

ti
li

z
a

ti
o

n

Figure E.7: Calculation of a workload profile based on Equation E.1

consists of τ values indexed by {1, · · · , t, · · · , τ}. A set Ut contains all values
at index t over all seasons S as shown in Equation E.1[86].

Ut =
S−1⋃
s=0

{uraw
(s·τ+t)} (E.1)

For each random variable Ut a representative is calculated, e.g. by taking the
mean or 95th percentile of the values. This leaves τ representatives for the
workload profile. Subsequently, the number of representatives can be down-
sampled by aggregating adjacent representatives into one value by taking the
maximum or median value. Figure E.7 shows a scatter plot of a time series
with the calculated workload profile. In this case weekends were not removed
so that some of the data points are very low between 8 h and 21 h.

The following steps were passed through to calculate a workload profile of a

182 CHAPTER E – Workload data

given time series:

1. Remove weekends (Saturday and Sunday) from the time series.

2. Eliminate outliers. Outliers are values that are larger than the 99th
percentile of the time series values. Each outlier is replaced by a value
that is calculated by taking the mean of the w = 5 values in front of the
outlier (window).

3. Sets Ut are calculated. In contrast to Speitkamp the period is split into
τ ′ equidistant regions resulting in τ ′ sets Ut. By this, a similar effect as
the downsampling done by Speitkamp is achieved.

4. For each set a representative is calculated by an aggregation function. For
the workload profiles the mean function is used as aggregation function,
resulting in a workload profile of τ ′ values.

5. The resolution (number of values) of the profile is increased (upscaling)
by duplicating values so that a sampling rate of 5min is achieved. Fi-
nally the workload profile is smoothed slightly with a single exponential
smoothing average at α = 0.9.

6. Gaussian noise is modulated onto the workload profile. Gaussian noise
values are chosen out of a range that depends on the standard deviation
of the values in sets Ut.

E.3 VM arrival and departure schedules

Texts in this section are based on a previous publication [99].

Schedules define arrival and departure times of VMs as shown in Figure 7.1.
Whenever a VM arrives, it is allocated to a server. Correspondingly, whenever
a VM departs, it is deallocated from a server. Since VM migrations may be
applied, allocation and deallocation servers might not be identical.

E.3. VM arrival and departure schedules 183

Factor Low High

Lifetime (h) 1 6
Inter-arrival time (min) 5 20
VM launches 400 500
VM sizes 2x x

Table E.2: Factors and levels for schedule configuration sensitivity analysis

A schedule is an instance of a schedule configuration, which comprises the
actual factor levels used for generating a schedule instance. A 2k fully factorial
design with k = 4 factors (Table E.2) was used to create sixteen different
schedule configurations based on the factors that exerted the highest impact
on placement controller efficiency. These schedules are of synthetic nature and
facilitate screening of significant factors:

• Lifetime based on a neg-exponential distribution (bars in Figure 7.1).

• Inter-arrival time based on a neg-exponential distribution (time differ-
ence between the arrival times of two neighboring launches in Figure 7.1).

• Launches as the total number of arriving VMs (total number of bars in
Figure 7.1)

• Sizes chosen by uniformly distributed random numbers to describe the
VMs’ resource demand that is either integral with all demands exponents
of two, or fractional.

For each of the 16 schedule configurations, 25 schedule instances were cre-
ated and benchmarked with 9 different placement controllers: First-Fit, First-
Fit-Demand, Best-Fit, Best-Fit-Demand, Worst-Fit, Worst-Fit-Demand, Dot-
Product, Dot-Product-Demand, and Random. A detailed description of each
controller can be found in Chapter 7. This resulted in a total of 16·25·9 = 3600

runs.

The simulation framework described in Appendix A provided the necessary in-
frastructure for conducting all simulation runs. Every simulation run yielded

184 CHAPTER E – Workload data

two metrics based on the specific schedule used: average SD and peak server
demand dSDe. For example, SDFF is the average server demand for the First-
Fit (FF) controller. Calculations are based on Equations 1.1, 1.2.

Allocation efficiency is the preferred performance metric for placement con-
trollers as it denotes underutilized server capacities. Given the theoretical
lower bound LB on the server demand for a schedule instance, the efficiency
of e.g. the First-Fit controller is then calculated by SDFF/LB.

Calculations for lower bounds are based on the notation introduced in Section
1.3. For reservation-based controllers we extract arrival and departure
queries from a stream of VM allocation and deallocation requests as shown in
Figure 7.1. VM resource reservations are defined by rjk over k ∈ K resources
and VMs j ∈ J . Server capacity sk is identical for all servers. zjn = 1 if VM j

is active after allocation or deallocation query n out of ν queries.

For demand-based controllers lower bounds are calculated based on mini-
mum resource utilization dik since the last query instead of using VM reserva-
tions rjk.

A lower bound LB(n, k) on maximum server demand between queries n

and n+1 for resource k is calculated by Equation E.2. It adds up the resource
demands of all active VMs at query n and divides it by the server capacity.

LB(n, k) =

⌈
1

sk

∑
j∈J

zjnrjk

⌉
(E.2)

A lower bound over all queries and resources is then calculated by Equation
E.3. It determines the maximum lower bound over all resources and queries.

L̂B = max

(
ν−1⋃
n=1

⋃
k∈K

LB(n, k)

)
(E.3)

A lower bound for the average server demand weights the lower bound on
maximum server demand for each query by the time delta to the subsequent
query. Summing up all weighted lower bounds and dividing the sum by the

E.3. VM arrival and departure schedules 185

Stable server

demand

Monoton server

demand growth

0

5

10

15

20

0 250 500 750 1000

Lifetime of VMs [min]

V
ir

tu
a

l
m

a
c

h
in

e

Figure E.8: Peak server demand in a idealized schedule

total time delta from query 1 to ν results in the lower bound on average server
demand as shown in Equation E.4.

LB =

ν−1∑
n=1

max
k∈K

(
LB(n, k) · (an+1 − an)

)
aν − a1

(E.4)

Initial simulations used schedule configurations with 40 and 80 VM launches.
Contrary to our expectations, the factor VM launches had a significant effect on
controller efficiency. Upon closer inspection, the synthetic schedule instances
allocated most of the VMs in the beginning of the schedule, with VMs having
a lifetime covering most of the schedule duration. In other words, the number
of active VMs grew monotonically, explaining the significance of the factor VM
launches.

Such a schedule does not reflect the aforementioned stream of allocation and
deallocation requests data centers experience. A more realistic, yet idealized
schedule is shown in Figure E.8 with interwoven VM allocations and dealloca-
tions. The total number of active VMs and the server demand grow monoton-
ically over the first 300min. After that, server demand stabilizes as VMs get
deallocated and new ones get allocated. Therefore, we increased the minimum
number of VMs in a schedule to 400.

186 CHAPTER E – Workload data

A dedicated ANOVA analysis for each placement controller found lifetime and
inter-arrival time as well as their interaction effect significant in all cases, with
levels of p < 0.001. In rare cases, the factor launches was significant, with
p < 0.01. Q-Q plots and residual plots showed no abnormalities.

A TukeyHSD test found no differences within each of the two groups of reserva-
tion and demand based controllers. Differences between the groups were found.
In all cases, demand-based significantly outperformed reservation-based con-
trollers. Still, demand-based controllers require dynamic controllers to avoid
server overload situations and can, therefore, not be considered as a clear win-
ner.

Appendix F

KMControl and TControl
parametrization

Texts in this chapter are based on a previous publication [99].

A design of experiments (DoE) [56] was chosen to find a good parametriza-
tion for KMControl and TControl controllers used in Chapter 7. ANOVA and
contour plots were used to determine parametrization that minimize the aver-
age server demand while keeping migrations and service level violations in a
desired operation range.

The simulation framework as described in Appendix A.2 was used. Initially,
all VMs are allocated to the servers in a round robin approach were VM with
index i is assigned to server imod n with n servers. Simulations were conducted
for a scenario size of 390 VMs and 90 servers. The number of VMs in the
infrastructure did not change during a simulation.

Metrics returned for each simulation were: migration count, server demand,
service level violations T v (number of simulation intervals where server load
was above 100%), and T a (total number of simulation intervals). A service
level is calculated by 1− T v/Ta. It is important to understand that calculated
service level differs from service levels reported for experiments as explained
in Section A.2.

187

188 CHAPTER F – KMControl and TControl parametrization

KMControl TControl

Factor Low High Low High

Overload Threshold To 80 95 80 95

Underload Threshold Tu 10 40 10 40

Executiong Interval I (secs) 60 900 60 900

k value 10 100 50 200

m value 8 80 - -

α - - 0.05 0.1

Table F.1: Factors and levels for KM- and TControl parametrization

Simulations were conducted according to a 2k fully factorial design. Factor
levels are shown in Table F.1 for both controllers. Each factor is one controller
parameter as explained in Section 7.4. Each treatment was replicated 20 times
with different CPU workload traces. In total, 640 simulations were conducted
for each controller, discarding invalid factor level combinations for KMControl
where k < m.

The desired operation range of both controllers was defined based on our ex-
perience with European data center operators as follows: Service level above
95%, minimal number of VM migrations, and minimal average server demand.
The following analysis steps are performed on both controllers with respect to
each of the metrics: violations, migrations, and servers.

1. Construct a full ANOVAmodel that contains a combination of all factors.

2. Check Q-Q and residual plots for the full model.

3. Construct a reduced ANOVAmodel that contains significant factors only.

4. Check Q-Q and residual plots for the reduced model.

5. Create contour plots of all interactions effects.

Exemplary contour plots for the KMControl controller are shown in Figures
F.1, F.2, and F.3.

F.1. Results on KMControl 189

F.1 Results on KMControl

Initial ANOVA analysis over all simulations included all factors and their inter-
actions. All factors were coded to design variables in a range of [−1, 1]. Data
was log-transformed as initial results indicated heteroscedasticity in the resid-
ual plots and deviations from the normality assumption. Some factors were
found to be significant at p < 0.05. A second linear ANOVA model for each
target variable was constructed based on significant factors only. QQ-plots of
the model residuals indicated a normal distribution with slight deviation in the
tails. Scatter plots of residuals vs. fitted values did not show any patterns or
heteroscedasticity. Contour plots were generated based on the linear ANOVA
models to find a global optimal parametrization. Based on this plots we gained
a number of insights:

1. Server demand can be decreased by choosing a large To, a large Tu, and
a large m in conjunction with a small k. It is independent to the interval
length I.

2. VM migrations can be decreased by increasing To, m, and I. However,
k and Tu should be small. Especially the demand for a small Tu is
in contradiction with the goal to decrease average server demand with a
high Tu. We chose the highest level for Tu so that the migration constraint
is satisfied in order to minimize server demand.

3. Violations can be decreased by increasing To, I, and m while decreasing
Tu, and k. These requirements are closely aligned with the requirements
to achieve a low number of migrations.

Based on the contour plots, we determined a controller parametrization with
To = 95, Tu = 27, k = m = 65, and I = 750.

190 CHAPTER F – KMControl and TControl parametrization

F.2 Results on TControl

The same analysis approach as for the KMControl controller was chosen. Based
on the contour plots for the TControl controller we gained the following in-
sights:

1. Server demand can be decreased by increasing both To and Tu thresholds
and by decreasing factors k and I.

2. Migrations can be minimized by increasing To, k and I while TU should
be minimized. Increasing To and k is in contradiction with the goals
to minimize server demand. We choose values so that average server
demand is minimized and migrations remain within the desired operation
range.

3. Violations are minimized by decreasing all factors while To and Tu are
the strongest contributors.

Based on the contour plots, we determined a controller parametrization with
To = 90, Tu = 25, k = 170, and I = 400.

F.3 Differences KMControl and TControl

We conducted additional simulations to compare the performance of both con-
trollers. Both were configured with the settings of the previous analysis. Com-
parison is based on 20 simulations with a different set of workload traces. Key-
metrics were: server demand, migrations, and violations. For each metric the
mean, medium, maximum, minimum, first-, and third-quartile was calculated.

For server demand, we found TControl to outperform KMControl significantly
based on a two-sided t-test at p = 0.007529. In all scenarios TControl was
better regarding server demand. Both controllers performed equally good for
migrations while TControl has a slight tendency to trigger more migrations.

F.3. Differences KMControl and TControl 191

57.6

73.8

90

140 170 200

Parameter K

P
a

ra
m

e
te

r
M

20

40

60

80

level

57.6

73.8

90

660 780 900

Interval

P
a

ra
m

e
te

r
M

20

30

40

50

60

70

80

level

10

16

22

28

34

40

70 75 80 85 90 95

Overload Threshold

U
n

d
e

rl
o

a
d

 T
h

re
s

h
o

ld

11

12

13

14

15

16

17

level

28

34

40

660 780 900

Interval

U
n

d
e

rl
o

a
d

 T
h

re
s

h
o

ld

12.5

13.0

13.5

14.0

14.5

level

140

170

200

28 34 40

Underload Threshold

P
a

ra
m

e
te

r
K

4

6

8

10

12

14

level

57.6

73.8

90

28 34 40

Underload Threshold

P
a

ra
m

e
te

r
M

20

30

40

50

60

70

80

level

Figure F.1: Effect of parameter setting on server demand for KMControl

A two-sided t-test found significant differences at p = 0.01888. For a scenario
with 100 VMs over 20 simulation runs, KMControl performed 136 migrations
on median vs. 155 migrations for TControl. We could not find significant
differences for violations between both controllers with p = 0.4264.

192 CHAPTER F – KMControl and TControl parametrization

50

80

110

140

170

200

300 420 540 660 780 900

Interval

P
a

ra
m

e
te

r
K

30

60

90

120

level

9

25.2

41.4

57.6

110 140 170 200

Parameter K

P
a

ra
m

e
te

r
M

100

200

300

400

level

9

25.2

41.4

300 420 540 660 780 900

Interval

P
a

ra
m

e
te

r
M

50

100

level

22

28

34

40

70 75 80 85 90 95

Overload Threshold

U
n

d
e

rl
o

a
d

 T
h

re
s

h
o

ld

10

20

30

40

50

60

70

level

300

420

540

660

780

900

10 16 22 28 34 40

Underload Threshold

In
te

rv
a

l

20

40

60

level

Figure F.2: Effect of parameter setting on migrations for KMControl

50

80

110

140

170

300 420 540 660 780 900

Interval

P
a

ra
m

e
te

r
K

30

40

50

60

level

9

25.2

41.4

57.6

73.8

90

50 80 110 140 170 200

Parameter K

P
a

ra
m

e
te

r
M

25

30

35

40

45

50

level

9

25.2

41.4

57.6

73.8

90

300 420 540 660 780 900

Interval

P
a

ra
m

te
r

M

20

30

40

50

level

16

22

28

34

40

70 75 80 85 90 95

Overload Threshold

U
n

d
e

rl
o

a
d

 T
h

re
s

h
o

ld

20

30

40

50

60

70

80

level

300

420

540

660

780

900

10 16 22 28 34 40

Underload Threshold

In
te

rv
a

l

25

50

75

100

level

Figure F.3: Effect of parameter setting on violations for KMControl

Bibliography

[1] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper. Predicting
the performance of virtual machine migration. In Modeling, Analysis
Simulation of Computer and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on, pages 37–46, Aug 2010. doi:
10.1109/MASCOTS.2010.13.

[2] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resource savings of
utility computing models. Technical report, HP Laboratories, 2002.

[3] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware au-
tonomic resource allocation in multitier virtualized environments. Ser-
vices Computing, IEEE Transactions on, 5(1):2–19, Jan 2012. ISSN
1939-1374. doi: 10.1109/TSC.2010.42.

[4] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. A compari-
son of flexible schemas for software as a service. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, pages 881–888, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-551-2. doi: 10.1145/1559845.1559941. URL
http://doi.acm.org/10.1145/1559845.1559941.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164–177, Oct. 2003. ISSN 0163-5980.
doi: 10.1145/1165389.945462. URL http://doi.acm.org/10.1145/
1165389.945462.

193

194 BIBLIOGRAPHY

[6] L. A. Barroso and U. Hölzle. The case for energy-proportional com-
puting. IEEE Computer, 40, 2007. URL http://www.computer.org/
portal/site/computer/index.jsp?pageID=computer_level1&path=
computer/homepage/Dec07&file=feature.xml&xsl=article.xsl.

[7] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A. Patterson.
Rain: A workload generation toolkit for cloud computing applications.
Technical report, Berkeley RAD Lab, 2010.

[8] A. Beloglazov and R. Buyya. Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers.
In Proceedings of the 8th International Workshop on Middleware for
Grids, Clouds and e-Science, MGC ’10, pages 4:1–4:6, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0453-5. doi: 10.1145/1890799.
1890803. URL http://doi.acm.org/10.1145/1890799.1890803.

[9] M. Bichler, T. Setzer, and B. Speitkamp. Capacity planning for virtu-
alized servers. In Workshop on Information Technologies and Systems
(WITS), Milwaukee, Wisconsin, USA, volume 1. sn, 2006.

[10] M. Bichler, T. Setzer, and B. Speitkamp. Provisioning of resources in
a data processing system for services requested. European Patent No.
PCT/EP2007/063361, 2006.

[11] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main
memory hash join algorithms for multi-core cpus. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, pages 37–48, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0661-4. doi: 10.1145/1989323.1989328. URL http:
//doi.acm.org/10.1145/1989323.1989328.

[12] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual
machines for managing sla violations. In Integrated Network Manage-
ment, 2007. IM ’07. 10th IFIP/IEEE International Symposium on, pages
119–128, May 2007. doi: 10.1109/INM.2007.374776.

BIBLIOGRAPHY 195

[13] S. Bobrowski. Optimal multitenant designs for cloud apps. In Cloud
Computing (CLOUD), 2011 IEEE International Conference on, pages
654–659, July 2011. doi: 10.1109/CLOUD.2011.98.

[14] C. Bodenstein, G. Schryen, and D. Neumann. Energy-aware work-
load management models for operation cost reduction in data cen-
ters. European Journal of Operational Research, 222(1):157 – 167,
2012. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.2012.04.
005. URL http://www.sciencedirect.com/science/article/pii/
S0377221712002810.

[15] N. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti. Vm placement
strategies for cloud scenarios. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 852–859, June 2012. doi:
10.1109/CLOUD.2012.113.

[16] S. Casolari and M. Colajanni. Short-term prediction models for
server management in internet-based contexts. Decision Support Sys-
tems, 48(1):212 – 223, 2009. ISSN 0167-9236. doi: http://dx.doi.
org/10.1016/j.dss.2009.07.014. URL http://www.sciencedirect.com/
science/article/pii/S0167923609001778. Information product mar-
kets.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2):
4:1–4:26, June 2008. ISSN 0734-2071. doi: 10.1145/1365815.1365816.
URL http://doi.acm.org/10.1145/1365815.1365816.

[18] W. chun Feng, X. Feng, and R. Ge. Green supercomputing comes of
age. IT Professional, 10(1):17–23, Jan 2008. ISSN 1520-9202. doi:
10.1109/MITP.2008.8.

[19] E. Coffman, Jr., M. Garey, and D. Johnson. Dynamic bin packing. SIAM
Journal on Computing, 12(2):227–258, 1983. doi: 10.1137/0212014. URL
http://dx.doi.org/10.1137/0212014.

196 BIBLIOGRAPHY

[20] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for np-hard problems. In D. S. Hochbaum, editor, –, chap-
ter Approximation Algorithms for Bin Packing: A Survey, pages 46–93.
PWS Publishing Co., Boston, MA, USA, 1997. ISBN 0-534-94968-1.
URL http://dl.acm.org/citation.cfm?id=241938.241940.

[21] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler, M. Sei-
bold, E. Simon, and F. Waas. The mixed workload ch-benchmark. In
Proceedings of the Fourth International Workshop on Testing Database
Systems, DBTest ’11, pages 8:1–8:6, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0655-3. doi: 10.1145/1988842.1988850. URL http:
//doi.acm.org/10.1145/1988842.1988850.

[22] G. Dasgupta, A. Sharma, A. Verma, A. Neogi, and R. Kothari. Workload
management for power efficiency in virtualized data centers. Commun.
ACM, 54(7):131–141, July 2011. ISSN 0001-0782. doi: 10.1145/1965724.
1965752. URL http://doi.acm.org/10.1145/1965724.1965752.

[23] S. De Chaves, R. Uriarte, and C. Westphall. Toward an architecture for
monitoring private clouds. Communications Magazine, IEEE, 49(12):
130–137, December 2011. ISSN 0163-6804. doi: 10.1109/MCOM.2011.
6094017.

[24] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. A. Wood. Implementation techniques for main memory database
systems. In Proceedings of the 1984 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’84, pages 1–8, New York, NY,
USA, 1984. ACM. ISBN 0-89791-128-8. doi: 10.1145/602259.602261.
URL http://doi.acm.org/10.1145/602259.602261.

[25] G. Dhiman, G. Marchetti, and T. Rosing. vgreen: A system for energy
efficient computing in virtualized environments. In Proceedings of the
2009 ACM/IEEE International Symposium on Low Power Electronics
and Design, ISLPED ’09, pages 243–248, New York, NY, USA, 2009.

BIBLIOGRAPHY 197

ACM. ISBN 978-1-60558-684-7. doi: 10.1145/1594233.1594292. URL
http://doi.acm.org/10.1145/1594233.1594292.

[26] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for
a warehouse-sized computer. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, ISCA ’07, pages
13–23, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-706-3.
doi: 10.1145/1250662.1250665. URL http://doi.acm.org/10.1145/
1250662.1250665.

[27] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
Sap hana database: Data management for modern business appli-
cations. SIGMOD Rec., 40(4):45–51, Jan. 2012. ISSN 0163-5808.
doi: 10.1145/2094114.2094126. URL http://doi.acm.org/10.1145/
2094114.2094126.

[28] D. Filani, J. He, S. Gao, M. Rajappa, A. Kumar, P. Shah, and R. Na-
gappan. Dynamic data center power management: Trends, issues, and
solutions. Technical Report 1, Intel Technology Journal, 2008.

[29] H. Frenk, J. Csirik, M. Labbé, and S. Zhang. On the multidimen-
sional vector bin packing. University of Szeged. Acta Cybernetica, pages
361–369, 1990.

[30] F. Funke, A. Kemper, S. Krompass, H. Kuno, R. Nambiar, T. Neu-
mann, A. Nica, M. Poess, and M. Seibold. Metrics for measuring
the performance of the mixed workload ch-benchmark. In R. Nam-
biar and M. Poess, editors, Topics in Performance Evaluation, Mea-
surement and Characterization, volume 7144 of Lecture Notes in Com-
puter Science, pages 10–30. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-32626-4. doi: 10.1007/978-3-642-32627-1_2. URL http:
//dx.doi.org/10.1007/978-3-642-32627-1_2.

[31] L. George. HBase: The Definitive Guide. O’Reilly Media, 2011.

198 BIBLIOGRAPHY

[32] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload anal-
ysis and demand prediction of enterprise data center applications. In
Workload Characterization, 2007. IISWC 2007. IEEE 10th International
Symposium on, pages 171–180, Sept 2007. doi: 10.1109/IISWC.2007.
4362193.

[33] D. Gmach, J. Rolia, and L. Cherkasova. Satisfying service level objectices
in a self-managing resource pool. In Self-Adaptive and Self-Organizing
Systems, 2009. SASO ’09. Third IEEE International Conference on,
pages 243–253, Sept 2009. doi: 10.1109/SASO.2009.27.

[34] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Resource pool man-
agement: Reactive versus proactive or let’s be friends. Computer Net-
works, 53(17):2905–2922, 2009. ISSN 1389-1286. doi: http://dx.doi.org/
10.1016/j.comnet.2009.08.011. URL http://www.sciencedirect.com/
science/article/pii/S1389128609002655. Virtualized Data Centers.

[35] H. Goudarzi and M. Pedram. Multi-dimensional sla-based resource al-
location for multi-tier cloud computing systems. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 324–331, July
2011. doi: 10.1109/CLOUD.2011.106.

[36] P. Graubner, M. Schmidt, and B. Freisleben. Energy-efficient manage-
ment of virtual machines in eucalyptus. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 243–250, July 2011. doi:
10.1109/CLOUD.2011.26.

[37] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and
X. Zhu. Vmware distributed resource management: Design, implementa-
tion, and lessons learned. VMware Technical Journal, 1(1):45–64, 2012.

[38] J. Hall, J. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. On algorithms
for efficient data migration. In Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’01, pages 620–629,

BIBLIOGRAPHY 199

Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathe-
matics. ISBN 0-89871-490-7. URL http://dl.acm.org/citation.cfm?
id=365411.365549.

[39] J. D. Hamilton. Time Series Analysis. Princeton University Press, 1994.
ISBN 0691042896.

[40] A. Hios and T. Ulichnie. Top 10 data center business management pri-
orities for 2013 about the uptime institute network. Technical report,
Uptime Institute, 2013.

[41] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, Aug. 1978. ISSN 0001-0782. doi: 10.1145/359576.359585.
URL http://doi.acm.org/10.1145/359576.359585.

[42] C. Ingle. Beyond organisational boundaries: Answering the enterprise
computing challenge. Technical report, IDC, 2009.

[43] Z. Ivkovic and E. Lloyd. Fully dynamic algorithms for bin packing: Being
(mostly) myopic helps. SIAM Journal on Computing, 28(2):574–611,
1998. doi: 10.1137/S0097539794276749. URL http://dx.doi.org/10.
1137/S0097539794276749.

[44] D. Kegel. The c10k problem, 2014. URL http://www.kegel.com/c10k.
html.

[45] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. 2014 IEEE 30th
International Conference on Data Engineering, 0:195–206, 2011. doi:
http://doi.ieeecomputersociety.org/10.1109/ICDE.2011.5767867.

[46] S. Kikuchi and Y. Matsumoto. Performance modeling of concurrent live
migration operations in cloud computing systems using prism probabilis-
tic model checker. In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 49–56, July 2011. doi: 10.1109/CLOUD.
2011.48.

200 BIBLIOGRAPHY

[47] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus. Proc. VLDB Endow., 2(2):
1378–1389, Aug. 2009. ISSN 2150-8097. doi: 10.14778/1687553.1687564.
URL http://dx.doi.org/10.14778/1687553.1687564.

[48] B. Knafla. Introduction to behavior trees, 2 2011.
URL http://www.altdevblogaday.com/2011/02/24/
introduction-to-behavior-trees/.

[49] S. Krompass, H. Kuno, J. L. Wiener, K. Wilkinson, U. Dayal, and
A. Kemper. Managing long-running queries. In Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, EDBT ’09, pages 132–143, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-422-5. doi: 10.1145/1516360.1516377.
URL http://doi.acm.org/10.1145/1516360.1516377.

[50] J. Kroßand A. Wolke. Cloudburst - simulating workload for iaas clouds.
In Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, 2014.

[51] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong. Enacloud: An energy-
saving application live placement approach for cloud computing envi-
ronments. In Cloud Computing, 2009. CLOUD ’09. IEEE International
Conference on, pages 17–24, Sept 2009. doi: 10.1109/CLOUD.2009.72.

[52] X. Li, A. Ventresque, N. Stokes, J. Thorburn, and J. Murphy. ivmp: An
interactive vm placement algorithm for agile capital allocation. In Pro-
ceedings of the 2013 IEEE Sixth International Conference on Cloud Com-
puting, CLOUD ’13, pages 950–951, Washington, DC, USA, 2013. IEEE
Computer Society. ISBN 978-0-7695-5028-2. doi: 10.1109/CLOUD.2013.
4. URL http://dx.doi.org/10.1109/CLOUD.2013.4.

[53] H. Liu. A measurement study of server utilization in public clouds.
In Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE

BIBLIOGRAPHY 201

Ninth International Conference on, pages 435–442, Dec 2011. doi: 10.
1109/DASC.2011.87.

[54] K. Maruyama, S. Chang, and D. Tang. A general packing algorithm for
multidimensional resource requirements. International Journal of Com-
puter & Information Sciences, 6(2):131–149, 1977. ISSN 0091-7036. doi:
10.1007/BF00999302. URL http://dx.doi.org/10.1007/BF00999302.

[55] K. Mills, J. Filliben, and C. Dabrowski. An efficient sensitivity analysis
method for large cloud simulations. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 724–731, July 2011. doi:
10.1109/CLOUD.2011.50.

[56] D. C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, 2006. ISBN 0470088109.

[57] H. Mühe, A. Kemper, and T. Neumann. How to efficiently snapshot
transactional data: Hardware or software controlled? In Proceedings
of the Seventh International Workshop on Data Management on New
Hardware, DaMoN ’11, pages 17–26, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0658-4. doi: 10.1145/1995441.1995444. URL http:
//doi.acm.org/10.1145/1995441.1995444.

[58] M. Mutsuzaki. Thrift java servers compared, 2013.
URL https://github.com/m1ch1/mapkeeper/wiki/
Thrift-Java-Servers-Compared.

[59] NASCIO. State cio priorities for 2013. Technical report, NASCIO, 2013.

[60] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent migration for
virtual machines. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, pages 25–25, Berkeley, CA,
USA, 2005. USENIX Association. URL http://dl.acm.org/citation.
cfm?id=1247360.1247385.

[61] K. Parent. Consolidation improves it’s capacity utilization. Technical
report, Court Square Data Group, 2005.

202 BIBLIOGRAPHY

[62] N. B. V. Partner. Future of cloud computing survey. Technical report,
North Bridge Venture Partners, 2011.

[63] C. Peng, M. Kim, Z. Zhang, and H. Lei. Vdn: Virtual machine im-
age distribution network for cloud data centers. In INFOCOM, 2012
Proceedings IEEE, pages 181–189, March 2012. doi: 10.1109/INFCOM.
2012.6195556.

[64] R. Pike. Go at google: Language design in the service of software
engineering, 2012. URL http://talks.golang.org/2012/splash.
article.

[65] S. Piramuthu. On learning to predict web traffic. Decision Support Sys-
tems, 35(2):213 – 229, 2003. ISSN 0167-9236. doi: http://dx.doi.org/10.
1016/S0167-9236(02)00107-0. URL http://www.sciencedirect.com/
science/article/pii/S0167923602001070. Web Data Mining.

[66] H. Plattner. A common database approach for oltp and olap using an
in-memory column database. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, pages
1–2, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-551-2. doi: 10.
1145/1559845.1559846. URL http://doi.acm.org/10.1145/1559845.
1559846.

[67] V. Radulovic. Recommendations for tier i energy star computer specifica-
tion. Technical report, United States Environmental Protection Agency,
Pittsburgh, PA, 2011.

[68] M. S. Rehman, M. Hammoud, and M. F. Sakr. Votus: A flexible and
scalable monitoring framework for virtualized clusters. In Proceedings
of The 3rd International Conference on Cloud Computing and Science
(CloudCom 2011), Athens, Greece, pages 1–4, 2011.

[69] K. Ren, J. López, and G. Gibson. Otus: Resource attribution in data-
intensive clusters. In Proceedings of the Second International Work-
shop on MapReduce and Its Applications, MapReduce ’11, pages 1–8,

BIBLIOGRAPHY 203

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0700-0. doi: 10.
1145/1996092.1996094. URL http://doi.acm.org/10.1145/1996092.
1996094.

[70] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical service as-
surances for applications in utility grid environments. Performance
Evaluation, 58(2-3):319–339, 2004. ISSN 0166-5316. doi: http://dx.
doi.org/10.1016/j.peva.2004.07.015. URL http://www.sciencedirect.
com/science/article/pii/S0166531604000793. Distributed Systems
Performance.

[71] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak. A capacity man-
agement service for resource pools. In Proceedings of the 5th International
Workshop on Software and Performance, WOSP ’05, pages 229–237, New
York, NY, USA, 2005. ACM. ISBN 1-59593-087-6. doi: 10.1145/1071021.
1071047. URL http://doi.acm.org/10.1145/1071021.1071047.

[72] B. Sanden. Coping with java threads. Computer, 37(4):20–27, April
2004. ISSN 0018-9162. doi: 10.1109/MC.2004.1297297.

[73] M. Seibold, A. Kemper, and D. Jacobs. Strict slas for operational busi-
ness intelligence. In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 25–32, July 2011. doi: 10.1109/CLOUD.
2011.22.

[74] M. Seibold, A. Wolke, M. Albutiu, M. Bichler, A. Kemper, and T. Setzer.
Efficient deployment of main-memory dbms in virtualized data centers.
In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on, pages 311–318, June 2012. doi: 10.1109/CLOUD.2012.13.

[75] S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671,
Sept. 2002. ISSN 0004-5411. doi: 10.1145/585265.585269. URL http:
//doi.acm.org/10.1145/585265.585269.

[76] S. Seltzsam, D. Gmach, S. Krompass, and A. Kemper. Autoglobe:
An automatic administration concept for service-oriented database ap-

204 BIBLIOGRAPHY

plications. In Data Engineering, 2006. ICDE ’06. Proceedings of
the 22nd International Conference on, pages 90–90, April 2006. doi:
10.1109/ICDE.2006.26.

[77] T. Setzer and M. Bichler. Using matrix approximation for high-
dimensional discrete optimization problems: Server consolidation based
on cyclic time-series data. European Journal of Operational Research,
227(1):62–75, 2013. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/
j.ejor.2012.12.005. URL http://www.sciencedirect.com/science/
article/pii/S0377221712009368.

[78] T. Setzer and A. Wolke. Virtual machine re-assignment considering mi-
gration overhead. In Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 631–634, April 2012. doi: 10.1109/NOMS.
2012.6211973.

[79] T. Setzer, M. Bichler, and B. Speitkamp. Capacity management for
virtualized servers. In INFORMS Workshop on Information Technologies
and Systems (WITS), Milwaukee, USA, 2006.

[80] B. Sigoure. Lessons learned from opentsdb,
2012. URL http://www.cloudera.com/resource/
hbasecon-2012-lessons-learned-from-opentsdb/.

[81] B. Sigoure. Opentsdb tired of 10 + year old monitoring systems? OS-
CON, 2012.

[82] E. Smith. jvm-serializers, 2012. URL https://github.com/eishay/
jvm-serializers/wiki/Staging-Results.

[83] J. H. Son and M. H. Kim. An analysis of the optimal number of servers
in distributed client/server environments. Decision Support Systems,
36(3):297 – 312, 2004. ISSN 0167-9236. doi: http://dx.doi.org/10.
1016/S0167-9236(02)00142-2. URL http://www.sciencedirect.com/
science/article/pii/S0167923602001422.

BIBLIOGRAPHY 205

[84] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and
S. Kamath. Automatic virtual machine configuration for database work-
loads. ACM Trans. Database Syst., 35(1):7:1–7:47, Feb. 2008. ISSN
0362-5915. doi: 10.1145/1670243.1670250. URL http://doi.acm.org/
10.1145/1670243.1670250.

[85] B. Sotomayor, R. S. Montero, I. Llorente, and I. Foster. Virtual infras-
tructure management in private and hybrid clouds. Internet Computing,
IEEE, 13(5):14–22, Sept 2009. ISSN 1089-7801. doi: 10.1109/MIC.2009.
119.

[86] B. Speitkamp and M. Bichler. A mathematical programming approach
for server consolidation problems in virtualized data centers. Services
Computing, IEEE Transactions on, 3(4):266–278, Oct 2010. ISSN
1939-1374. doi: 10.1109/TSC.2010.25.

[87] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the 2008 Conference on Power Aware
Computing and Systems, HotPower’08, pages 10–10, Berkeley, CA, USA,
2008. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1855610.1855620.

[88] A. Stage. A Study of Resource Allocation Methods in Virtualized En-
terprise Data Centres. Dissertation, Technische Universität München,
München, 2013.

[89] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. Re-
source allocation algorithms for virtualized service hosting plat-
forms. Journal of Parallel and Distributed Computing, 70(9):962–974,
2010. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.2010.05.
006. URL http://www.sciencedirect.com/science/article/pii/
S0743731510000997.

[90] K. Talwar, R. Ramasubramanian, R. Panigrahy, and U. Wieder. Validat-
ing heuristics for virtual machines consolidation. Technical report, Mi-

206 BIBLIOGRAPHY

crosoft Research, 2011. URL http://research.microsoft.com/apps/
pubs/default.aspx?id=144571.

[91] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management,
and data mining. ACM Trans. Comput. Syst., 21(2):164–206, May 2003.
ISSN 0734-2071. doi: 10.1145/762483.762485. URL http://doi.acm.
org/10.1145/762483.762485.

[92] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migration
cost aware application placement in virtualized systems. In V. Issarny
and R. Schantz, editors, Middleware 2008, volume 5346 of Lecture Notes
in Computer Science, pages 243–264. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-89855-9. doi: 10.1007/978-3-540-89856-6_13. URL
http://dx.doi.org/10.1007/978-3-540-89856-6_13.

[93] R. Vermeersch. Concurrency in erlang & scala: The ac-
tor model, 2009. URL http://savanne.be/articles/
concurrency-in-erlang-scala/.

[94] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of
virtual machine live migration in clouds: A performance evaluation.
In M. Jaatun, G. Zhao, and C. Rong, editors, Cloud Computing,
volume 5931 of Lecture Notes in Computer Science, pages 254–265.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-10664-4. doi:
10.1007/978-3-642-10665-1_23. URL http://dx.doi.org/10.1007/
978-3-642-10665-1_23.

[95] A. Wolke and C. Pfeiffer. Improving enterprise vm consolidation with
high-dimensional load profiles. In Cloud Engineering (IC2E), 2014 IEEE
International Conference on, 2014.

[96] A. Wolke and D. Srivastav. Monitoring and controlling research ex-
periments in cloud testbeds. In Proceedings of the 2013 IEEE Sixth
International Conference on Cloud Computing, CLOUD ’13, pages

BIBLIOGRAPHY 207

962–963, Washington, DC, USA, 2013. IEEE Computer Society. ISBN
978-0-7695-5028-2. doi: 10.1109/CLOUD.2013.97. URL http://dx.
doi.org/10.1109/CLOUD.2013.97.

[97] A. Wolke and L. Ziegler. Evaluating dynamic resource allocation strate-
gies in virtualized data centers. In Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on, 2014.

[98] A. Wolke, M. Bichler, and T. Setzer. Planning vs. dynamic control:
Resource allocation in corporate clouds. IEEE Transactions on Cloud
Computing, 2014. Accepted.

[99] A. Wolke, T.-A. Boldbaatar, C. Pfeiffer, and M. Bichler. More than bin
packing: A large-scale experiment on dynamic resource allocation in iaas
clouds. Under Review, 2014.

[100] P. W. Wong, F. C. Yung, and M. Burcea. An 8/3 lower bound for
online dynamic bin packing. In K.-M. Chao, T.-s. Hsu, and D.-T. Lee,
editors, Algorithms and Computation, volume 7676 of Lecture Notes in
Computer Science, pages 44–53. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-35260-7. doi: 10.1007/978-3-642-35261-4_8. URL http://
dx.doi.org/10.1007/978-3-642-35261-4_8.

[101] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines.
Computer Networks, 53(17):2923 – 2938, 2009. ISSN 1389-1286. doi:
http://dx.doi.org/10.1016/j.comnet.2009.04.014. URL http://www.
sciencedirect.com/science/article/pii/S1389128609002035. Vir-
tualized Data Centers.

[102] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang. Live migration of
multiple virtual machines with resource reservation in cloud computing
environments. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 267–274, July 2011. doi: 10.1109/CLOUD.2011.69.

208 BIBLIOGRAPHY

