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ABSTRACT

We consider a power-controlled wireless network with an es-
tablished network topology in which the communication links
(transmitter-receiver pairs) are subject to general constraints on
transmit powers and corrupted by the co-channel interference and
background noise. In this paper, we characterize the max-min SIR
power allocation and provide a saddle point characterization of this
power allocation under weaker conditions. This characterization is
a basis for novel algorithms for computing a max-min SIR power
allocation.

Index Terms— Power Control, Max-Min Fairness, Utility Max-
imization

1. INTRODUCTION

One of the most common ideas of fairness is max-min fairness [2].
The idea behind the max-min fair approach is to treat all users as
fairly as possible by making all rates as large as possible. More
precisely, among all rate allocation strategies saturating a network,
the max-min fair rate allocation makes the rates as equal as possible
so that it is not possible to increase any rate without deteriorating
other rates that are smaller or equal.

In this paper, we consider a power-controlled wireless network
in which power control is the only mechanism for resource alloca-
tion.1 Consequently, max-min fairness is a power control problem
and the max-min fair rate allocation is achieved by the so-called
max-min fair power allocation (see also Definition 2). This power
allocation is usually obtained by solving the max-min SIR problem,
which is a widely studied resource allocation problem for wireless
networks (see, for instance, [10], [9], [7]) and references therein).
The main challenge is to solve the max-min SIR problem in a dis-
tributed manner. Another question is under which conditions the
max-min SIR power allocation is equivalent to the max-min fair
power allocation, and therefore achieves max-min fairness in the
sense of [2].

This paper characterizes the max-min SIR power allocation for
a large class of wireless networks that are not necessarily entirely
coupled by interference, which was assumed in [6]. For this class of
wireless networks (specified by Condition (A.4)), it is shown that the
max-min SIR power allocation is unique and equal to the max-min

The work was supported by the German Research Foundation (DFG)
under grant STA864/3-1 and by the German Federal Ministry of Education
and Research (BMBF) under grant 01BU920.

1There is no scheduling and all users (transmitter-receiver pairs) share a
common bandwidth

fair power allocation (which is always unique). Furthermore, we use
a class of utility functions to prove a saddle-point characterization of
the max-min SIR power allocation. For brevity, the characterization
is proven for networks that are entirely coupled by interference but
the result can be easily extended to capture the more general case.
However, in contrast to the previous work [6, 8], the utility functions
are not necessarily differentiable functions. We finish the paper by
presenting a saddle-point algorithm that converges to the max-min
SIR power allocation. A simulation result illustrates the convergence
behavior of the algorithm.

2. DEFINITIONS AND PROBLEM STATEMENT

We consider a wireless network with an established network topol-
ogy, in which K ≥ 2 users (point-to-point logical links) share a
common wireless spectrum and transmit their independent data con-
currently. Let K = {1, . . . ,K} and let p = (p1, . . . , pK) ≥ 0,
be the power vector or power allocation, where pk, k ∈ K, is the
transmit power of user k. Due to power constraints, we have p ∈ P
where P is a compact convex set of all feasible power allocations
(called feasible power region) assumed to be2

P = {p ∈ R
K
+ : Cp ≤ p̂,C ∈ {0, 1}N×K} ⊂ R

K
(1)

for some given p̂ = (P1, . . . , PN ) > 0, N ≥ 1 (the number of
power constraints) and C with at least one 1 in each column. Let
N = {1, . . . , N}. The main figure of merit is the SIR at the output
of each receiver given by

(A.1) SIRk(p) = pk/Ik(p), k ∈ K, where the interference func-

tion Ik is Ik(p) = (Vp+ z)k =
∑K

l=1 vk,lpl + zk.

V := (vk,l) ∈ R
K×K
+ is the gain matrix, vk,l = Vk,l/Vk,k if l �= k

and 0 if l = k where Vk,l ≥ 0 with Vk,k > 0 is the attenuation of
the power from transmitter l to receiver k. The kth entry of z :=
(z1, . . . , zK) is zk = σ2

k/Vk,k, where σ2
k > 0 is the noise variance

at the receiver output.

Definition 1 (Max-Min SIR power vector). The power vector p̄ is
said to be a max-min SIR power vector/allocation if

min
k∈K

SIRk(p̄) = sup
p∈P

min
k∈K

SIRk(p) . (2)

where the supremum is attained because mink∈K SIRk(p) is con-
tinuous on the compact set P.

2
R+,R++ are nonnegative and positive reals, respectively.
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Since p̄ > 0, we can focus on P+ := P ∩ R
K
++. Considering

this and (1), p̄ defined by (2) can be written as

p̄ = argmax
p>0

min
k∈K

(SIRk(p)) s.t. max
n∈N

gn(p) ≤ 1 (3)

where
gn(p) := 1/Pnc

T
np ≤ 1, n ∈ N (4)

and cn ∈ {0, 1}K is equal to the nth row of C. It is pointed out
that there may be multiple max-min SIR power allocations (which
stands in contrast to the max-min fair power allocation). Let P̄ ⊂ P
be the set of all max-min SIR power allocations. Later we will prove
a sufficient condition for |P̄| = 1.

Now let φ : R++ → Q ⊆ R be

(A.2) any continuous and strictly increasing utility function.

We assume that

(A.3) φ(ex), x ∈ R, is a concave function.

Examples of functions satisfying (A.2) and (A.3) are x 
→ log(x), x >
0, and x 
→ −1/xn, n ≥ 1, x > 0. By strict increasingness,
φ(mink∈K SIRk(p)) = mink∈K φ(SIRk(p)) for all p > 0. Thus,
as p̄ ∈ P+, we have

p̄ = argmax
p∈P+

min
k∈K

φ(SIRk(p)) . (5)

Given φ, let F ⊂ QK be the feasible QoS region:

F =
{
η ∈ QK : ηk ≤ φ

(
SIRk(p)

)
, k ∈ K,p ∈ P+

}
. (6)

With the above, the following can be said about F.

Observation 1. There is a bijective continuous map from F onto
P+. If (A.2)–(A.3) hold, then F is downward comprehensive and
convex. Finally, p̄ achieves a point on the boundary of F.

Note that the boundary of F is the set of all points of F such that,
if p is the corresponding power vector in (6), then Cp ≤ p̂ holds
with at least one equality.

3. CHARACTERIZATION OF MAX-MIN SIR POWER
ALLOCATION

In this section we recall some of previous results that are used later
in this paper [6, 7, 8]. We can easily observe the following.

Lemma 1. The following holds (i) maxn∈N gn(p) = 1 for any
p ∈ P̄ and (ii) there exists a unique p ∈ P̄ such that

∀k∈K 1/SIRk(p) = β, β > 0 . (7)

Let us have a closer look at the max-min SIR power allocation
satisfying (7). An immediate consequence of (ii) with (i) in Lemma
1 is that there is a unique p̄ ∈ P̄ and some n ∈ N such that

βp̄ = Vp̄+ z gn(p̄) = 1 . (8)

From this we have βp̄ = Vp̄+z ·gn(p̄) for each n ∈ N0(p̄) where
N0(p) :=

{
m ∈ N : m = argmaxn∈N gn(p)

}
. Note that by (i)

of Lemma 1, the cardinality of N0(p̄) must be larger than or equal
to 1. Consequently, (8) is equivalent to

βp̄ = B(n)p̄, β > 0, p̄ ∈ R
K+1
++ , n ∈ N0(p̄) . (9)

with B(n) ∈ R
K×K
+ (for each n ∈ N) defined to be

B(n) := V +
1

Pn
zcTn =

(
V +

1

Pn
zcTn

)
. (10)

Unless otherwise stated, it is assumed that

(A.4) B(n) ≥ 0 is irreducible for some n ∈ N0(p̄).

Notice that the above assumption is weaker than irreducibility of
V, in which case the network is entirely coupled by interference.
Indeed, if V is irreducible, then B(n) is irreducible for each n ∈ N,
no matter how cn is chosen. On the other hand, if cn is positive for
some n, then B(n) is irreducible regardless of the choice of V ≥ 0.
This is the case when users are subject to a sum power constraint,
and therefore are entirely coupled by the power constraints.

Theorem 1. If (A.4) holds, then p̄ ∈ P+ solves the max-min SIR-
balancing problem (3) if and only if there is n ∈ N0(p̄) such that p̄
is a unique positive right eigenvector of B(n) associated with β =
ρ(B(n)) > 0 such that gn(p̄) = 1.

Theorem 1 implies that if (A.4) is true, then p̄ > 0 is the (posi-
tive) right eigenvector of B(n) associated with ρ(B(n)) ∈ σ(B(n))

for some n ∈ N0(p̄) where σ(B(n)) is used to denote the spec-

trum of the matrix B(n). Another consequence of the theorem is the
following corollary.

Corollary 1. Suppose that (A.4) holds. Then, p̄ is the unique max-
min fair power vector.

If the rate is a strictly increasing function of the SIR, max-min
fairness can be defined as follows.

Definition 2 (Max-Min Fair Power Allocation). p̂ ∈ P is said to be
max-min fair power allocation if any SIRk(p̂) cannot be increased
without decreasing some SIRl(p̂), l �= k, which is smaller than or
equal to SIRk(p̂).

The problem is, however, that N0(p̄) is not known as this set is
determined by the solution to the max-min SIR-balancing problem,
and hence its determination is itself a part of the problem. As the SIR
targets are feasible if and only if they are met under p̄, the following
characterization of the set N0(p̄) immediately follows from [4].

Theorem 2 ([4]). We have

N0 := N0(p̄) =
{
n0 ∈ N : n0 = argmax

n∈N

ρ(B(n))
}
. (11)

Moreover, η ∈ F if and only if maxn∈N ρ(diag(η)B(n)) ≤ 1 where
diag(η) = diag(η1, . . . , ηK).

It is worth pointing out that by Theorem 1, the uniqueness of the
max-min SIR power allocation is ensured if V is irreducible [3, 5]
since, as mentioned before, the irreducibility property implies (A.4).
The difference is that if the gain matrix is irreducible, then p̄ is the
normalized positive right eigenvector of B(n) for each n ∈ N0(p̄),
whereas under (A.4) this is ensured only for some n ∈ N0(p̄). For
brevity, in what follows, we assume that

(A.5) V ≥ 0 is irreducible.

It is however emphasized that the results can be extended to the
weaker condition (A.4).

4. SADDLE POINT CHARACTERIZATION

Let ΠK := {x ∈ R
K
+ : ‖x‖1 = 1} and Π+

K = ΠK ∩ R
K
++. We

define G : Π+
K × P+ → R as

G(u,p) := −
∑
k∈K

ukφ
(
SIRk(p)

)
=

∑
k∈K

ukθ
( 1

SIRk(p)

)
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where
θ(x) := −φ(1/x), x > 0 (12)

is a strictly increasing function. Thus, any power vector minimiz-
ing G(w,p) with respect to p ∈ P for some given weight vector
w > 0 is optimal in the sense of the utility maximization problem
considered in [7]. The following theorem, which is used later for the
saddle-point characterization, extends previous results [7] to a class
of continuous (but not necessarily differentiable) functions.

Theorem 3. Assume that (A.1)–(A.5) hold. Let B = B(n) for some
n ∈ N, and let w = y ◦x ∈ Π+

K ⊂ ΠK where y and x are positive
left and right eigenvectors of B. Then, for all p > 0,

θ(ρ(B)) ≤
∑
k∈K

wkθ
( (Bp)k

pk

)
. (13)

Equality holds if and only if p = x > 0.

Proof. As B is irreducible, it follows from [7] that

log
1

ρ(B)
≥

∑
k∈K

wk log
pk

(Bp)k
(14)

for all p > 0 with equality if and only if p = x. Let ϕ(x) =
−φ(x), x > 0. By (A.2), ϕ(ex), x ∈ R, is strictly decreasing. So,
taking the function ϕ(ex) of both sides of (14) yields

ϕ
(
e
log 1

ρ(B)
)
= ϕ

( 1

ρ(B)

) ≤ ϕ
(
e
∑

k∈K wk log
pk

(Bp)k

)

for all p > 0. As R → Q : x 
→ ϕ(ex) is strictly decreasing, we
have equality if and only if p = x. By (A.3), ϕe(x) = ϕ(ex) is
convex. Thus, since ‖w‖1 = 1, applying Jensen’s inequality gives

ϕ
( 1

ρ(B)

) ≤ ϕe

(∑
k∈K

wk log
pk

(Bp)k

) ≤
∑
k∈K

wkϕe

(
log

pk
(Bp)k

)

=
∑
k∈K

wkϕ
(
e
log

pk
(Bp)k

)
=

∑
k∈K

wkϕ
( pk
(Bp)k

)

for all p > 0. Equality if and only if p = x. Now defining θ(x) =
ϕ(1/x), x > 0, proves the theorem. �

Corollary 2. Let the conditions and definitions be as in Theorem 3.
Then,

θ(ρ(B)) = min
p>0

max
u∈ΠK

∑
k∈K

ukθ
( (Bp)k

pk

)
(15)

with the minimum attained if and only if p = x > 0.

Proof. Clearly, for any u ∈ ΠK and all p > 0, one has

inf
p>0

∑
k∈K

ukθ
( (Bp)k

pk

)
≤ inf

p>0
max
k∈K

θ
( (Bp)k

pk

)

= θ
(
inf
p>0

max
k∈K

(Bp)k
pk

)
(a)
= θ

(
min
p>0

max
k∈K

(Bp)k
pk

)
(b)
= θ

(
ρ(B)

)

where (a) and (b) follow from Collatz-Wielandt formula [5] as B is
irreducible. Moreover, for any u ∈ Π+

K (positive), equality holds if
and only if p = x > 0. Combining this with Theorem 3 shows (15),
with the minimum attained if and only if p = x > 0. �

Notice that by the proof of Corollary 2, (13) holds for all p > 0
if and only if w = cy ◦ x for some c > 0.

In the proof of the “min-max” part, we use the following lemma.

Lemma 2. Suppose that (A.1)–(A.5) hold and let B = B(n) for
some n ∈ N. Then, the function E : Π+

K → R given by

E(u) := min
p>0

∑
k∈K

ukθ
( (Bp)k

pk

)
(16)

is strictly concave.

The proof is omitted here due to the lack of space but we point
out that the lemma extends [7, Lemma 1.32] to continuous but not
necessarily differentiable functions

Theorem 4. Let the conditions of Theorem 3 be satisfied, and let
B = B(n) for an arbitrary n ∈ N. Then,

max
u∈ΠK

min
p>0

∑
k∈K

ukθ
( (Bp)k

pk

)
= θ(ρ(B)) . (17)

The minimum is attained and u ∈ ΠK is a minimizer if and only if
u = w where w = y ◦ x.

Sketch of the proof. Proceeding as in the proof of Corollary 2 shows
that, for any u ∈ ΠK , one has E(u) ≤ θ(ρ(B)). A careful ex-
amination of this bound and Theorem 3 leads us to conclude that
w = y◦x is a maximizer of E over ΠK . Due to strict concavity of E
(Lemma 2), the maximizer is unique, and the theorem follows. �

Now combining Corollary 2 and Theorem 4 yields the saddle
point characterization of the Perron root. Note that the theorem
extends the results of [6, 7] (see also references therein) to non-
differentiable functions.

Theorem 5. Suppose that (A.2) and (A.3) hold, and V is irreducible.
Let w = y ◦ x > 0 where ρ(B(n0))x = B(n0)x, ρ(B(n0))y =

(B(n0))Ty with yTx = 1. Then, for each n0 ∈ N0,

θ(ρ(B(n0))) = max
u∈ΠK

min
p∈P

G(u,p) = min
p∈P

max
u∈ΠK

G(u,p) (18)

and (w, p̄) is the unique saddle point in ΠK × P+.

5. ALGORITHM AND SIMULATIONS

Now the goal is to use the characterization of Theorem 5 to design
an iterative saddle-point algorithm that maximizes G(u,p) with re-
spect to u ∈ ΠK and simultaneously minimizes this function over
the feasible power region P. Due to Theorem 5, the algorithm will
converge to a saddle point (u∗,p∗) of G(u,p), which is a unique
point in ΠK × P. For brevity, we assume in this section that φ is
continuously differentiable and point out that the algorithms can be
extended to incorporate non-differentiable functions by considering
sub-gradient methods [1].

The function G(u,p) is in general not concave in p ∈ P but
by Theorem 5, we have p∗ > 0 (and u∗ > 0). Therefore, by [7,
Section 6.2], Gs(u, s) := G(u, es) is well-defined on ΠK × S with
S := {s ∈ R

K : s = log(p),p ∈ P+} and concave with respect to
s ∈ S. So, Gs(u, s) is a convex-concave function on ΠK × S.

A straightforward approach consists in applying the gradient
projection method, in which case the algorithm takes the form:

u(n+ 1) = PΠK [u(n) + δ∇uG(u(n), es(n))]

s(n+ 1) = PS[s(n)− δ∇sG(u(n), es(n))]
(19)
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where δ > 0 is a suitably chosen step size, and PΠK [x] =
argminu∈ΠK

‖x − u‖2 and PS[y] = argmins∈S‖y − s‖2 de-

note the projections of x ∈ R
K on ΠK and y ∈ R

K on S,
respectively. The gradients in (19) can be easily computed to
yield (∇uG(u, es))k = fk(s), k ∈ K and (∇sG(u, es))k =

esk
∑

l �=k vl,k
gl(e

s)
Il(e

s)
− gk(e

s), k ∈ K where fk and gk are

fk(s) := θ(1/SIRk(e
s)), k ∈ K (20)

gk(e
s) :=

ukθ
′(1/SIRk(e

s))

SIRk(es)
, k ∈ K. (21)

with Ik and φ given by (A.1) and (12), respectively. In general, the
projection on S may be difficult to implement in a distributed man-
ner but still there are many cases of practical relevance, in which
the projection is amenable to distributed implementation. For in-
stance, under individual power constraints, we have P = {p ∈ R

K
+ :

∀k∈Kpk ≤ p̂k} so that the projection PS[y] reduces to (PS[y])k =
min(yk, log(p̂k)), k ∈ K. The projection can also be performed
locally in the case of per-node power constraints.

To facilitate distributed implementation, we replace the equality
constraint ‖u‖1 = 1 with two inequalities, ‖u‖1 − 1 ≥ 0 and 1 −
‖u‖1 ≥ 0. 3 Augmenting the constraints yields a Lagrange function
L : RK × S× R

2
+ → R given by

L(u, s,λ) = G(u, es)+
∑2

j=1
λj(−1)j

(
1−

∑
k∈K

uk

)
. (22)

Due to the convex-concave property, there is no dual gap and the
saddle point of G(u,p) can be found by maximizing the Lagrange
function over ΠK and simultaneously minimizing it with respect to
(s,λ) ∈ S× R

2
+. The algorithm is formally stated as follows:

u(n+ 1) = max[u(n) + δ∇uL(u(n), s(n),λ(n)), 0]

s(n+ 1) = PS[s(n)− δ∇sL(u(n), s(n),λ(n))]

λ(n+ 1) = max[λ(n)− δ∇λL(u(n), s(n),λ(n)), 0]

(23)

where PS[y] is as before. Furthermore, we have

(∇uL(u, s,λ))k = fk(s) + λ1 − λ2, k ∈ K

(∇sL(u, s,λ))k = esk
∑

l �=k
vl,k

gl(e
s)

Il(es)
− gk(e

s), k ∈ K

(∇λL(u, s,λ))j = (−1)j
(
1−

∑
k∈K

uk

)
, j = 1, 2

with fk and gk are given by (20) and (21), respectively.
Notice that in certain cases one of the two inequalities ‖u‖1 −

1 ≥ 0 and 1−‖u‖1 ≥ 0 may be redundant. This is for instance true
if ∀x>0θ(x) > 0, in which case can be simplified by omitting the
constraint and the corresponding multiplier λj from the Lagrange
function (22).

Compared with (19), the projection PΠK [u] is not needed in
(23) but it is necessary for each user to know the values of

∑
k∈K uk

and λ. Obtaining them can be achieved using appropriate auxiliary
protocols which is in general a less complex task than computing
PΠK [u]. An efficient distributed computation of (∇sL(u, s,λ))k
can be realized with the help of adjoint network [7].

In what follows, we demonstrate the behavior of algorithm (23)
by a simple example.

Example 1. Let a network be given consisting of K = 10 active
users, where each is equipped with a unity individual power con-
straint (i.e., according to (1), Cp ≤ p̂ = (1, . . . , 1), with C the

3In general it is not sufficient to replace ‖u‖1 = 1 by 1− ‖u‖1 ≥ 0.

0 50 100 150 200
0
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10

15

number of iterations

S
IR

k

Fig. 1. Evolution of the SIR’s of all users k ∈ K (i.e., SIRk), with
|K| = 10, as a result of algorithm (23).

K ×K identity matrix). The entries of the gain matrix V ∈ R
K×K
+

are independent, identically and exponentially distributed (V is ir-
reducible with probability one) with expected values equal to 1/10.
Furthermore, σ2

k = 1/5, for all k ∈ K.

Figure 1 shows the evolution of the SIRk of each user k ∈ K,
based on the iterations (23), for an appropriately chosen step size
δ > 0. The plots confirm Theorem 5 since all users converge to the
same SIR value.
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