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Abstract—In this paper, we consider power-controlled wireless
multiantenna sensor networks with interference and study the
general trade-off between energy consumption and quality-of-
service expressed in terms of the signal-to-interference ratio
(SIR). First, we develop a model for the energy consumption
of multiantenna nodes (i.e., energy consumption for transmission
and hardware) and then study the trade-off between accuracy
and energy costs for channel estimation by deriving a bound for
the estimation error variance, since most multiantenna strategies
require adequate channel knowledge. Then, we numerically
compare different MIMO strategies with the energy consumption
and the achievable SIR of a standard SISO system, to obtain
insights into the strength of the discussed trade-off and to provide
guidelines on the choice of strategies for different applications.

I. INTRODUCTION

Some of the most exciting applications for wireless sensor

networks require that sensor nodes be powered by batteries.

Energy efficiency is therefore a major design paradigm to

ensure a long network lifetime. In addition to the scarce

energy resources, the challenge is exacerbated by wireless

sensor applications that often involve performing certain tasks

having significantly different (more stringent) requirements

with respect to data rate, delay and reliability than applications

in traditional wireless networks. An example of such an

application is fire detection where the task to perform is a

fast and reliable detection of a fire based on some noisy

sensor measurements. For this application, robust communi-

cation with very low delay is of highest priority during alarm

situations, which can be achieved at the cost of higher energy

consumption per transmitted bit due to a general trade-off

between energy consumption and quality of service (QoS).

From information theory it is well known that multiple-

input multiple-output (MIMO) systems offer higher robustness

against link failures (or higher data rates) by the same transmit

power budget than single-input single-output (SISO) counter-

parts [1]. That is why MIMO systems are highly attractive for

sensor network applications with strict QoS-requirements. The

information-theoretic insights, however, ignore the increase

in hardware/circuit energy consumption due to additional

components (e.g., mixer, DA-converters, filters, amplifiers,
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microcontrollers), which in the case of wireless sensor applica-

tions is often comparable to the transmit energy consumption

[2]. Focusing on minimizing transmission energies only is

therefore highly insufficient, especially because the majority of

MIMO strategies require appropriate channel state information

(CSI) at the transmitter and/or receiver side, typically acquired

by transmitting pilots, which further increases the total energy

consumption.

In this paper, we study the trade-off between energy con-

sumption and robustness in uncoordinated power-controlled

sensor networks, consisting of simultaneously transmitting

multiantenna sensor nodes, where the robustness is measured

in terms of achievable signal-to-interference ratios (SIRs).

First we develop a model for the energy consumption of

multiantenna nodes (i.e., transmission energy plus hardware

energy), and then we study the trade-off between accuracy

and energy costs for standard least squares training-based

channel estimation by deriving a bound for the estimation

error variance that depends on the length of pilot-sequences,

the number of interfering nodes, the worst-case interference

power, etc. It is clear that channel estimation errors result in

increased overall receiver noise powers and thus in decreased

SIR values. Therefore, to increase SIRs, the length of pilot-

sequences has to be increased, which in turn increases the

energy consumption for channel estimation. The impact of this

trade-off on the performance of different MIMO transmit and

receive strategies is then explored by numerical examples.

A. Related Work

To the best of our knowledge, Cui et al. were the first

who analyzed in [2] whether multiantenna nodes are useful

for sensor network applications at all due to the increase

in circuit energy consumption proportional to the number of

antennas. In contrast to the single-user system model in [3],

Feistel et al. considered in [4] the minimization of the overall

energy consumption in a network of interfering MIMO links

by determining the optimal number of parallel data streams

per link. Using the same system model, Wiczanowski et al.

characterized in [5] different regimes of transmit covariance

matrices that allow to better understand the behavior and the

design of energy efficient MIMO strategies. More recently

Chong and Jorswieck provided in [3] an energy-efficient power
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control mechanism for a single-user MIMO link (i.e., the

interference-free downlink in a cellular system) that suffers

from fading by also taking the hardware energy consumption

into account.

B. Paper Organization

The rest of the paper is organized as follows. In Section

II we present our interference network model as well as the

model for the energy consumption of multiantenna sensor

nodes. Section III takes a closer look at the impact of channel

estimation errors on achievable SIRs, while we numerically

compare in Section IV different multiantenna strategies with

a SISO system regarding the achievable robustness and energy

consumption. Finally, Section V concludes the paper.

C. Notational Remarks

Vectors and matrices are denoted by bold lowercase and

bold uppercase letters, respectively. The conjugate, the trans-

pose and the Hermitian transpose of a vector or a matrix are

denoted by (·)∗, (·)T and (·)H, while tr{A}, ρ(A) and ‖A‖F
are the trace, the spectral radius and the Frobenius norm of

matrix A.

II. SYSTEM MODEL

A. Network Model

Consider a power-controlled wireless sensor network of

fixed topology that consists of K ∈ N spatially distributed and

simultaneously active transmitter-receiver pairs (i.e., single-

hop links), represented by the set K := {1, . . . ,K}. All

transmitters and receivers are identical and equipped with

N ∈ N antenna elements. The frequency-flat baseband chan-

nel between the transmitter of link ℓ ∈ K and the receiver

of link k ∈ K is described by the random but fixed matrix

H(k,ℓ) = (h
(k,ℓ)
ij ) ∈ CN×N such that the complex vector-

valued symbol received at the receiver of the kth MIMO link

can be written as

y(k) = H(k,k)x(k) +
∑

ℓ 6=k

H(k,ℓ)x(ℓ) + n(k) (1)

with x(k) ∈ CN being the transmit vector of link k, k ∈ K.

The corresponding receiver noise is described by n(k) ∈ C
N ,

where we assume E{n(k)} = 0 and E{n(k)n(k)H} = σ2
kIN ,

for all k ∈ K, with σ2
k > 0 the noise variance. Furthermore,

the channels, the transmit signals and the noise are mutually

independent.

Let p := [p1, . . . , pK ]T ∈ P be the vector of transmit

powers pk = E
{
‖x(k)‖22

}
, k ∈ K, and let P := {p ∈

RK
+ | ∀k ∈ K : pk ≤ P} be the set of feasible power

vectors, respectively, where P > 0 denotes a common power

constraint. Then, the SIR on link k ∈ K has the form

SIRk(p) :=
pk

Ik(p)
, (2)

with Ik : P → R++ the affine interference function [6]

Ik(p) = (V p+ z)k =
∑

ℓ∈K

vkℓpℓ + zk . (3)

Here, the nonnegative gain matrix V = (vkℓ) ∈ R
K×K
+

encompasses the effective power gains vkℓ := Vkℓ

Vk
≥ 0, with

vkk = 0 (i.e., no self-interference), where Vk > 0 denotes

the signal path power gain and Vkℓ the power gain of the

interference path from the ℓth transmitter to the kth receiver,

respectively. Finally,

z = [z1, . . . , zK ]T =
[
σ2
1

V1
, . . . ,

σ2
K

VK

]T

∈ R
K
++ (4)

is the vector of effective noise variances.

Remark 1. Note that in general, the effective power gains

vkℓ and the effective noise variances zk depend on channel

realizations as well as on concrete adaptive transmit and

receive strategies (e.g., on transmit and receive beamformers),

which can be seen in Section IV-A.

In this paper, the SIR (2) is a QoS measure of interest in the

sense that larger SIR values imply a better QoS performance

and we call a transceiver strategy more robust against link

failures compared to other strategies, if it is possible to achieve

larger SIR targets at the same power constraint. In what

follows, let γ > 0 be any common SIR target, which means

that

∀k ∈ K : SIRk(p) ≥ γ (5)

is desired.1 Solving this linear system of inequalities leads to

the optimal transmit power vector/allocation

p⋆(γ) =

(
1

γ
IK − V

)−1

z , (6)

fulfilling the SIR target with equality on each link, such that

p⋆k(γ) is the necessary transmit power consumption of link

k ∈ K.

Remark 2. Since the gain matrix V in (3) is nonnegative and

the corresponding vector z of effective noise variances strictly

positive, the solution (6) exists, is unique and strictly positive

if and only if ρ(V ) < 1
γ

[6, Theorem A.51]. Of course, the

existence does not necessarily imply p⋆(γ) ∈ P .

B. Hardware and Energy Model

The energy consumption of a particular link crucially de-

pends on the following:

1) Application

2) Protocols (generally specified by a standard)

3) Baseband signal processing including MIMO transmit

and receive strategies

4) Hardware realization including RF components

For example, regarding the network model from Section II-A,

the sensor network application defines the SIR target γ (i.e.,

the required robustness) and thus the necessary transmit power

budget (6). Therefore, we present in this section an energy

model that takes 1)–4) into account. To this end, we first

introduce an appropriate frame model.

1Only for ease of presentation, we use in this paper a common SIR target
γ on each link. A generalization to individual SIR targets γk > 0, k =

1, . . . ,K , is straightforward.
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1) Frame Model: Sensor node design generally follows

the low duty cycle principle, which means that a node is

asleep/passive for the major part of a frame, wakes up shortly

for processing and transmitting data and returns to sleep.

Therefore, we consider in this paper the following frame model

TF := Ta + Tb + Tc + Td (7)

with temporal contributions

• TF: the frame length in seconds

• Ta: the fraction of TF for transmitting channel estimation

pilots

• Tb: the fraction of TF for channel estimation computations

in the microcontroller

• Tc: the fraction of TF for payload transmission

• Td: the fraction of TF in which the transmitter and the

receiver of a link are in their passive modes.

Let L ∈ N be the length of complex-valued pilot sequences

and let R ∈ R+ be the data rate. Then, the time per frame

required for channel estimation purposes can be modeled as

Ta = L/R . (8)

After receiving pilots, the channel estimate is computed in

the microcontroller and the corresponding computation time

mainly depends on the number of required arithmetic oper-

ations. The time for a single arithmetic operation is usually

specified as a multiple ncycles ∈ N of main clock cycles [7] so

that we model Tb as

Tb = T ′
b + T0 := (1 + β)T ′

b = (1 + β)n
ncycles

fMCLK

. (9)

Here, fMCLK ∈ R++ denotes the main clock frequency of

the microcontroller and n ∈ N the number of arithmetic

operations required to compute the channel estimate. The term

T ′
b describes the computation effort and T0 := βT ′

b, β ∈ R++,

corresponding temporal contributions generated by read/write

operations, loops for addressing, copying coefficients into

operand registers, etc.

Now, let B ∈ N be a fixed number of complex-valued

payload symbols that have to be transmitted in each frame.

Then, the time per frame for payload transmission is

Tc = B/R . (10)

With (8), (9) and (10), the time per frame in which the

transmitter and the receiver of a link are in its passive modes

is

Td = TF − (Ta + Tb + Tc) . (11)

2) Energy Model: According to the frame model (7), the

energy consumption per frame is modeled as

EF := Ea + Eb + Ec + Ed . (12)

Most existing single-antenna sensor node hardware is based

on an integrated design in which the energy consumption is

mainly determined by the microcontroller and the transceiver-

chip [8]. In order to enable the modeling of the energy

summands in (12), we assume that a multiantenna node is

TABLE I
POWER CONSUMPTIONS OF THE MICROCONTROLLER (µC) AND THE

TRANSCEIVER-CHIP IN THEIR PASSIVE AND ACTIVE MODES.

P
p
mc power consumption of the µC in its passive mode

P a
mc basic power consumption of the µC in its active mode

P r
tc power consumption of the transceiver-chip in its receive mode

P
p
tc power consumption of the transceiver-chip in one of its passive

modes P
ps
tc , P

pi
tc

P
ps
tc power consumption of the transceiver-chip in its passive “sleep”

mode in which most parts of the transceiver are switched off

P
pi
tc power consumption of the transceiver-chip in its passive “idle”

mode in which the transceiver is sensing the wireless medium

for a receive signal

P ce
in

input power consumption of the transceiver-chip when

sending pilot sequences for channel estimation

built of a bank of low-power transceiver chips (i.e., one for

each antenna).

To maintain long battery lifetimes, available low-power

devices offer multiple active and passive modes in which

different hardware components are switched on/off. Table I

summarizes the corresponding elements that are used in the

following to meaningfully model the summands in (12).

The energy consumption per frame while transmitting chan-

nel estimation pilots is modeled as

Ea = ξTa

(
NP ce

in +NP r
tc + 2P a

mc

)
, (13)

where ξ = 1 if the considered MIMO strategy requires channel

knowledge at the receiver and ξ = 2 if the strategy requires

channel knowledge at both sides of the link, respectively. Let

f : R+ → R+ be a bijective mapping that appropriately

approximates the loss characteristic of the transceiver-chip

in its transmission mode2. In other words, f specifies the

input power that is necessary to provide a desired transmit

power on a certain link such that the input power for trans-

mitting pilots (uniformly distributed over transmit antennas) is

P ce
in = 1

N
f(pk), pk ∈ [0, P ], k ∈ K.

The energy consumption per frame for channel estimation

computations in the micro controller is modeled as

Eb = Tb

(
ξP a

mc + (2 − ξ)P p
mc + 2NP p

tc

)
, (14)

P p
tc ∈ {P

ps
tc , P

pi
tc }, with ξ ∈ {1, 2} as before. We assume that

while computing the estimate, the transceiver chips at both

sides of the link and at each antenna are in its passive modes,

resulting in the term 2NP p
tc.

With (10), the energy expenditure for transmitting B bits

per frame is modeled as

Ec = Tc

(
‖p⋆

in(γ)‖1 +NP r
tc + 2P a

mc

)
, (15)

where p⋆
in(γ) = [p⋆in,1(γ), . . . , p

⋆
in,K(γ)]T ∈ R

K
+ de-

notes the vector of input powers that are necessary to

2The measured loss characteristic of a particular transceiver chip is usually
depicted in its datasheet.
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support the optimal transmit powers (6) (i.e., p⋆(γ) =
[
f−1(p⋆in,1(γ)), . . . , f

−1(p⋆in,K(γ))
]T

).

Since Td is the time per frame in which the transmitter and

the receiver of a link are in its passive mode, we model the

corresponding energy consumption as

Ed = Td

(
2P p

mc + 2NP p
tc

)
, (16)

P p
tc ∈ {P

ps
tc , P

pi
tc } (see Table I).

III. CHANNEL ESTIMATION

A. Linear Least Squares

To incorporate the SIR deterioration due to channel esti-

mation errors, we model the channel matrix of link k ∈ K
as

H(k,k) = Ĥ
(k,k)

LS +∆
(k,k)
H

, (17)

where Ĥ
(k,k)

∈ CN×N denotes the linear least squares (LS)

estimate of H(k,k) and ∆
(k,k)
H

∈ CN×N is the corresponding

estimation error. Hence, it follows immediately from (1)

y(k) =
(

Ĥ
(k,k)

+∆
(k,k)
H

)

x(k) +
∑

ℓ 6=k

H(k,ℓ)x(ℓ) + n(k)

= Ĥ
(k,k)

x(k) + ñ(k) (18)

with ñ(k) := ∆
(k,k)
H

x(k) +
∑

ℓ 6=k H
(k,ℓ)x(ℓ) + n(k) ∈

CN being the overall noise.3 Let us assume that ∀k, ℓ :
E{H(k,ℓ)} = 0 and that all H(k,ℓ) are spatially white (i.e.,

E
{
H(k,ℓ)HH(k,ℓ)

}
= N

(
σ
(k,ℓ)
H

)2
IN ,

(
σ
(k,ℓ)
H

)2
> 0, for

all k, ℓ) as well as mutually independent. Then, it follows

E
{
∆H

(k,k)∆H
(k,k)H

}
= N

(
σ
(k,k)
∆H

)2
IN , with

(
σ
(k,k)
∆H

)2
≥ 0

being the estimation error variance, and

E
{
ñ(k)ñ(k)H

}
=

∑

ℓ 6=k

E
{
H(k,ℓ)x(ℓ)x(ℓ)HH(k,ℓ)H

}

+
((

σ
(k,k)
∆H

)2
pk + σ2

k

)

IN (19)

the covariance matrix of the overall noise. The second row

in (19) indicates that the channel estimation error results in

an increased noise variance as long as the estimation error

variance is different from zero. Therefore, we define

σ̃2
k := (σ

(k,k)
∆H

)2pk + σ2
k ≤ (σ

(k,k)
∆H

)2P + σ2
k (20)

to be the overall noise variance.

To find a simple and tractable parametrization of
(
σ
(k,k)
∆H

)2
,

we assume now that the transmitter of link k ∈ K transmits

pilot sequences of length L ∈ N per antenna, L ≥ N .

Grouping the corresponding L receive vectors into a matrix

of dimension N × L, (1) yields

Y (k) = H(k,k)S(k) +
∑

ℓ 6=k

H(k,ℓ)X(ℓ) +N (k)

︸ ︷︷ ︸

=:Ñ
(k)

∈CN×L

(21)

3Even if, for example, linear minimum mean-square-error (MMSE) esti-
mation generally leads to a better estimation performance, we assume LS
estimation in this paper due to its lower complexity and due to the fact that
MMSE estimators generally require knowledge about the covariance matrix

of the overall noise ñ
(k), k ∈ K.

with X(ℓ) ∈ C
N×L, ℓ ∈ K\{k}, the independent interfering

transmit signals and S(k) ∈ CN×L the pilot symbol matrix that

is known to the receiver of link k ∈ K. Due to the transmit

power constraint, tr
{
S(k)S(k)H

}
= Lf−1(P ce

in ) ≤ LP has to

be fulfilled, for all k ∈ K. Using the received training block

(21), the LS estimate of H(k,k) has the explicit form [9]

Ĥ
(k,k)

LS = Y (k)S(k)H
(
S(k)S(k)H

)−1
= Y (k)S(k)† , (22)

such that the estimation error variance can be expressed as

(
σ
(k,k)
∆H

)2
=

1

N2
E

{∥
∥∆H

(k,k)
∥
∥
2

F

}

=
1

N2
tr
{

(S(k)†)HE
{
Ñ

(k)H
Ñ

(k)}
S(k)†

}

.(23)

Under the previous assumptions and the assumption that the

interfering transmit symbols are uncorrelated, the expected

value in the second row of (23) is

E
{
Ñ

(k)H
Ñ

(k)}
=

∑

ℓ 6=k

E

{

X(ℓ)HH(k,ℓ)HH(k,ℓ)X(ℓ)
}

+Nσ2
kIL

=
(

N
∑

ℓ 6=K

(
σ
(k,ℓ)
H

)2
pℓ +Nσ2

k

)

IL . (24)

Now, combining (σ
(k)

Ñ
)2 := N

∑

ℓ 6=K

(
σ
(k,ℓ)
H

)2
pℓ +Nσ2

k with

(23) results in

(
σ
(k,k)
∆H

)2
=

(σ
(k)

Ñ
)2

N2
tr
{(

S(k)S(k)H
)−1

}

. (25)

The following Lemma provides a lower bound for the trace.

Lemma 1. Let the Hermitian matrix S(k)S(k)H ∈ C
N×N be

invertible. Then,

tr
{(

S(k)S(k)H
)−1

}

≥
N2

tr
{
S(k)S(k)H

} , (26)

with equality if and only if S(k)S(k)H = αIN , for some

constant α ∈ R.

Proof: The proof can be found in [10].

Proposition 1. Let the channels in (1) be spatially white with

variances
(
σ
(k,ℓ
H

)2
> 0, k, ℓ ∈ K, let the transmitter of link

k ∈ K transmit pilot sequences at the maximum transmit

power (i.e., tr
{
S(k)S(k)H

}
= LP ), and let all interferers

transmit data with maximum transmit powers as well. Then,

under this worst-case interference power assumption, the

estimation error variance can be lower bounded by

(
σ
(k,k)
∆H

)2
≥

NP
∑

ℓ 6=k

(
σ
(k,ℓ)
H

)2
+Nσ2

k

LP
, (27)

with equality if and only if orthogonal pilot-sequences are

used.

Remark 3. Note that (27) depends on the number of interfer-

ers, because
∑

ℓ 6=k

(
σ
(k,ℓ)
H

)2
in the numerator consists of K−1

nonzero elements.
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According to Proposition 1, any training matrix that satisfies

S(k)S(k)H =
LP

N
IN (28)

minimizes the estimation error variance, such that (22) reduces

to

Ĥ
(k,k)

LS =
N

LP
Y (k)S(k)H . (29)

Remark 4. In the case of colored interference, the covariance

structure of the interference crucially impacts the design of

pilot sequences, such that (28) is generally suboptimal [11].

Assuming orthogonal pilot sequences, N,K < ∞ and using

(27) in (20), we conclude that ∀k ∈ K : limL→∞ σ̃2
k = σ2

k as

one would expect for an adequate channel estimator. Replacing

the noise variances in (4) by σ̃2
1 , . . . , σ̃

2
K provides the desired

trade-off between achievable SIR performance and energy

consumption since the channel estimation errors increase the

interference and thus decrease the SIR. To improve the per-

formance, the length of pilot sequences has to be increased at

the expense of a higher energy consumption.

Corollary 1. Let ε > 0 be any desired estimation accuracy

on link k ∈ K with respect to
(
σ
(k,k)
∆H

)2
and let S(k) such

that (28) is satisfied. Then, a sufficient condition for achieving
(
σ
(k,k)
∆H

)2
≤ ε is

L ≥
NP

∑

ℓ 6=k

(
σ
(k,ℓ)
H

)2
+Nσ2

k

εP
. (30)

B. Comments on Energy Consumption

To efficiently perform computations on a sensor node, the

most suitable microcontrollers have a hardware multiplier that

rapidly performs multiply-accumulate operations [12]. Since

a standard matrix multiplication merely consists of additions

and multiplications, the least squares estimator (29) requires

n′ = N2L complex-valued multiply-accumulate operations.

Multiplying two complex numbers in the most naive way,

however, requires 4 real additions and 4 real multiplications

so that we assume in the following that the time required

to perform complex-valued multiply-accumulate operations is

higher by a factor of 4. Hence, (9) has with n = 4n′ = 4N2L
the form

T ′
b = 4N2L

ncycles

fMCLK

. (31)

Remark 5. An appropriate determination of the number ncycles

of cycles per multiply-accumulate operation is generally dif-

ficult since ncycles depends on the program code, the chosen

compiler and the used programming language. Assuming an

ideal implementation of the least squares estimator in machine

language, we choose ncycles = 3 for the numerical examples

in Section IV [7].

Remark 6. Instead of modeling the energy consumption for

computation purposes such as in (14) and (9), a more precise

model could be

Eb = naEadd + nmEmult + E0 , (32)

where na, nm ∈ N denote the numbers of required real

floating-point additions and multiplications, Eadd, Emult ∈ R+

the corresponding energy consumptions for a single floating-

point addition or multiplication and E0 ∈ R+ summarizes

the energy consumption for certain overhead (e.g., reading

from memory, copying coefficients), respectively. Following

the complexity analysis for least squares channel estimation

in [13] leads to

na =

(
35

2
N2 −

7

2
N

)

L+
7

6
N3 − 3N2 −

13

6
N (33)

nm =

(
15

2
N2 +

5

2
N

)

L+
1

2
N3 +N2 +

1

2
N (34)

required real floating-point multiplications and additions to

perform (22). In the case of white interference, (33) and (34)

reduce to

na = 3N2L (35)

nm = (7L− 2)N2 , (36)

since (29) requires only a complex matrix multiplication. The

big disadvantage of the model (32) is that Eadd and Emult are

usually unknown and therefore not specified in datasheets.

IV. NUMERICAL EXAMPLES

Based on the adapted SIR (i.e., with channel estimation

errors) and the energy model given in Section II-B, we

numerically compare in this section different MIMO strategies

with the energy consumption and the achievable SIR of a

standard SISO system. This provides some insights into the

trade-off between energy consumption and robustness and

gives notes on the choice of appropriate transmit and receive

strategies for different applications. To this end, we use typical

sensor node hardware parameters (see Section IV-C) and

channel matrices of maximum or minimum diversity order.

The maximum diversity case is covered with probability one

by using zero mean complex Gaussian channel matrices (i.e.,

non-line-of-sight (NLOS)) and the minimum diversity case by

using a constant rank-one matrix (i.e., line-of-sight (LOS)),

respectively.

A. Transmit and Receive Strategies

In this subsection, we shortly summarize the MIMO strate-

gies that are used for comparisons with SISO.

1) Beamforming: The beamforming strategy refers to the

case in which each link matches the transmit and receive

beamformers to the own channel. Therefore, let H(k,k) =
V (k,k)Σ(k,k)U (k,k)H, k ∈ K, with Σ(k,k) ∈ R

N×N
+ the diag-

onal matrix of singular values of H(k,k) and U (k,k),V (k,k) ∈
C

N×N the unitary matrices of corresponding right and left sin-

gular vectors. Then, the column of U (k,k) associated with the

largest singular value is chosen as the transmit beamforming

vector uk ∈ CN , ‖uk‖2 = 1, while the column of V (k,k)

associated to the largest singular value is defined to be the
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Vkℓ =

∣

∣h
(k,k)∗
11 h

(k,ℓ)
11 + h

(k,ℓ)∗
12 h

(k,k)
12 + h

(k,k)∗
21 h

(k,ℓ)
21 + h

(k,ℓ)∗
22 h

(k,k)
22

∣

∣

2

2
+

∣

∣h
(k,k)∗
11 h

(k,ℓ)
12 − h

(k,ℓ)∗
11 h

(k,k)
12 + h

(k,k)∗
21 h

(k,ℓ)
22 − h

(k,ℓ)∗
21 h

(k,k)
22

∣

∣

2

2
(40)

receive beamforming vector vk ∈ CN , ‖vk‖2 = 1. Thus the

elements of the gain matrix V in (2) have the form

vkℓ =

{
Vkℓ

Vk
=

|vH

kH
(k,ℓ)

uℓ|
2

|vH

k
H(k,k)uk|2

, for k 6= ℓ

0, for k = ℓ
(37)

and the elements of the vector (4) of effective noise variances

the form

zk = ‖vk‖
2
2

σ̃2
k

Vk

=
‖vk‖

2
2σ̃

2
k

|vH

kH
(k,k)uk|2

. (38)

Remark 7. Choosing beamforming vectors only with respect

to the own link is generally suboptimal in interference net-

works [14].

Beamforming requires channel knowledge at both sides of the

link such that ξ = 2 in (13) and (14).

2) 2 × 2 Alamouti Space-Time Block Coding: For this

strategy, all links in the network apply the Alamouti space-

time block coding scheme from [15], such that the elements

of the gain matrix can be expressed as

vkℓ =

{
Vkℓ

Vk
= Vkℓ

1
2‖H

(k,k)‖2
F

, for k 6= ℓ

0, for k = ℓ
(39)

with Vkℓ ≥ 0, k 6= ℓ, as in (40) at the top of the page [16],

and the elements of the equivalent noise vector as

zk =
σ̃2
k

Vk

=
σ̃2
k

1
2‖H

(k,k)‖2F
. (41)

Remark 8. Note that the SIR is equal for both Alamouti

transmit symbols, which is generally not the case for higher

order orthogonal space-time block codes [16].

In contrast to beamforming, Alamouti space-time block coding

requires CSI at the receiver side only, so that we choose ξ = 1
in (13) and (14).

3) SISO Antenna Selection: For SISO antenna selection,

the transmitter and receiver of each link form a SISO system

by selecting the antenna elements that correspond to the best

channel gain, that is (i⋆, j⋆) = argmax1≤i,j≤N

∣
∣h

(k,k)
ij

∣
∣
2
, k ∈

K. As in the case of beamforming, SISO antenna selection

requires channel knowledge at both sides of the link.

B. Outage Probability

Besides considering the sum energy consumption required

to achieve a certain SIR target, we consider in the simulations

the outage probability as a function of γ, which is defined as

Pout(γ,P) := P
(
p⋆(γ) /∈ P

)
(42)

Here, the probability considers the outage events that either for

a given SIR target no power allocation exists that guarantees

TABLE II
SIMULATION PARAMETERS.

TF 3 s P a
mc 3mW

B 120 bytes P
p
mc 15 µW

R 250 kbit/s P
p
tc 35 µW

P 1mW (0 dBm) P r
tc 35.5mW

σ2 −95 dBm P ce
in

31.3mW

fMCLK 8MHz

∀k ∈ K : SIRk ≥ γ, or that a power allocation exists which

however violates the power constraints. Simply put: given a

transceive strategy, Pout visualizes with which probability a

particular SIR target cannot be achieved.

C. Simulation Parameters

For the numerical examples, we consider a multiantenna

sensor network consisting of K = 18 interfering 2 × 2 links.

Without loss of generality, each node is built of a bank of

IEEE 802.15.4 compliant Chipcon CC2420 transceiver-chips

[12], [17] (one for each antenna) and of a Texas Instruments

MSP430F1611 microcontroller [18]. From the corresponding

datasheets, we calculated the relevant simulation parameters

summarized in Table II (considering the typical CC2420

supply voltage of 1.8V), where the number B of payload

bits per frame is chosen to generate in combination with

TF a low duty cycle, and where we set the noise variance

on each receiver to the CC2420 receiver sensitivity (i.e.,

σ2
1 = · · · = σ2

K = σ2 = −95 dBm).

According to the datasheet, the loss characteristic of the

CC2420 between transmit powers and associated necessary

input powers (see Section II-B) is slightly nonlinear but can be

adequately approximated in the relevant transmit power range

−25 dBm (3.162µW)) - 0 dBm (1mW) by the affine function

pin,k = f(pk) = α(pk − 0.00316)mW + 15.3mW , (43)

k ∈ K, with α = (31.3− 15.3)/(1− 0.00316).

D. Evaluation

Since the performance of the strategies described in Section

IV-A varies in dependency of the realization of the gain matrix

V , the numerical examples depicted in Figures 1–4 are based

on 1500 independent channel realizations for each SIR target

γ. In each run, V is randomly chosen and it is checked by the

spectral radius ρ(V ) if γ is achievable (i.e., if ρ(V ) < 1/γ).

If this is the case, the optimal transmit power allocation (6) is

determined and subsequently the sum energy (12).

For each fixed γ, the corresponding sum energy consump-

tions may differ for different realizations of V . However,

the average over the 1500 sum energies is inadequate due
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Fig. 1. Achievable SIR values per link vs. energy consumption per link for
Alamouti space-time coding, different pilot sequence lengths L and a perfect
NLOS channel. The scenario consists of K = 18 simultaneously active 2×2

links and the black line refers to the benchmark of perfect channel knowledge
(i.e., L = ∞) without energy costs.

to the fact that divergent transmit powers can occur, which

generate singularities (i.e., p⋆k(γ) → +∞, for all k ∈ K, if

γ → 1/ρ(V )). Therefore, the energy consumption plots in

Figures 1–4 represent the 85th percentile.

To illustrate the relative dependency of the trade-off be-

tween energy consumption and robustness on the length of

pilot sequences for channel estimation, Fig. 1 depicts the sum

energy consumption of Alamouti space-time block coding over

achievable SIRs for different L and ideal NLOS channels. In

this example, the maximum achievable SIR is approximately

6.8 dB (i.e., −10 log10(ρ(V )) ≈ 6.8 dB in 85% of all cases,

resulting in a vertical energy slope). To achieve the same

performance to within 0.4 dB under channel estimation errors

and L = 100, the energy consumption increases by ≈ 2.3%.

Figures 2 and 3 compare the strategies from Section IV-A

for pilot sequence lengths of L = 10 and L = 100 and

ideal NLOS channels. It turns out that SISO antenna selection

achieves in this full-diversity scenario already for L = 10
a ≈ 10 dB higher SIR than SISO at the cost of a negligible

increase in energy consumption, while for L = 100, the energy

consumption of SISO antenna selection compared to SISO

is increased by 3.38%. In contrast, the maximum achievable

SIR of Alamouti is that of SISO antenna selection at an

approximately 75.5% higher energy cost.

The significant difference in the basic energy consumption

of Alamouti and Beamforming compared to SISO and SISO

antenna selection relies on the fact that Alamouti and Beam-

forming use all transmit antennas. In contrast to Beamforming

and SISO antenna selection, Alamouti and SISO do not require

channel knowledge at the transmitter.4

It is clear that strategies that benefit from transmit and

receive diversity are superior with respect to achievable SIRs

in the ideal NLOS scenario. In the LOS situation depicted in

Fig. 4, all strategies are therefore closer together such that in

practice, switching between different strategies is favorable in

dependency of the SIR requirements as well as of the current

4SISO requires channel knowledge at the receiver to enable the coherent
detection of symbols.
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Fig. 2. Achievable SIR values vs. energy consumption and outage probability
for pilot sequences of length L = 10 and perfect NLOS channels. The solid
plots refer to the benchmark of perfect channel knowledge (i.e., L = ∞)
without energy costs.

diversity order.

Remark 9. Compared to the basic energy consumption, the

energy cost for channel estimation appears to be negligible in

the depicted numerical examples. Note, however, that even an

increase in energy consumption of 1 − 2% can be crucial if

network lifetimes of many years are required. In addition, due

to Corollary 1, the energy consumption for channel estimation

further increases if the number K of interfering links increases.

V. CONCLUSION

In this paper, the trade-off between energy consumption and

robustness in power-controlled multiantenna sensor networks

with interference was investigated. Since most multiantenna

transmit and receive strategies are channel aware, after pre-

senting a detailed energy model that takes into account circuit

energy consumption, we analyzed the SIR degradation caused

by channel estimation errors, to incorporate the trade-off

between corresponding energy consumption and estimation

accuracy. Then, based on the resulting adapted SIR model,

we numerically compared different MIMO strategies with a

standard SISO system for different pilot sequence lengths

and different ideal channel models. It turns out that in an

exemplary network of 18 interfering 2× 2 full-diversity links,

beamforming achieves up to 13 dB higher SIR targets than

SISO, at an increase in energy consumption of approximately

75%. On the other hand, a simple SISO antenna selection
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Fig. 3. Achievable SIR values vs. energy consumption and outage probability
for pilot sequences of length L = 100 and perfect NLOS channels. The solid
plots refer to the benchmark of perfect channel knowledge (i.e., L = ∞)
without energy costs.

strategy is able to achieve 10 dB higher SIRs than SISO by a

negligible increase in energy consumption. Since this changes

if the diversity order of the channels decrease, switching

between different strategies is recommended.
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ergy consumption in wireless sensor networks,” in Proc. International

ITG/IEEE Workshop on Smart Antennas (WSA), Vienna, Austria, Feb.
2007.

[5] M. Wiczanowski, A. Feistel, S. Stańczak, and H. Boche, “On energy
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[6] S. Stańczak, M. Wiczanowski, and H. Boche, Fundamentals of Resource

Allocation in Wireless Networks – Theory and Algorithms, 2nd ed., ser.
Foundations in Signal Processing, Communications and Networking.
Berlin Heidelberg: Springer, 2009, vol. 3.

[7] W. Goh and K. Venkat, “MSP430 competitive benchmark,” Texas
Instruments Application Report (SLA205C), 2009.

−15 −10 −5 0 5 10

4

6

8
·10−2

Achievable SIR γ [dB]

S
u

m
E

n
er

g
y

C
o

n
su

m
p

ti
o

n
[W

s]

−10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Achievable SIR γ [dB]

O
u

ta
g

e
P

ro
b

ab
il

it
y

Alamouti L = ∞ Alamouti L = 50

Beamforming L = ∞ Beamforming L = 50

SISO L = ∞ SISO L = 50

SISO Ant. Sel. L = ∞ SISO Ant. Sel. L = 50

Fig. 4. Achievable SIR values vs. energy consumption and outage probability
for pilot sequences of length L = 50 and perfect rank-one LOS channels.
The solid plots refer to the benchmark of perfect channel knowledge (i.e.,
L = ∞) without energy costs.

[8] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. 4th International Symposium on

Information Processing in Sensor Networks (IPSN), Los Angeles, USA,
Apr. 2005, pp. 364–369.

[9] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, New Jersey: Prentice-Hall, 1993.

[10] H. Viswanathan and J. Balakrishnan, “Space–time signaling for high
data rates in edge,” IEEE Trans. Signal Process., vol. 51, no. 6, pp.
1522–1533, Nov. 2002.

[11] T. F. Wong and B. Park, “Training sequence optimization in MIMO
systems with colored interference,” IEEE Trans. Commun., vol. 52,
no. 11, pp. 1939–1947, Nov. 2004.

[12] Texas Instruments, “MSP430x1xx family,” User’s Guide (SLAU049F),
2006.

[13] S. Yatawatta, A. P. Petropulu, and C. J. Graff, “Energy-efficient channel
estimation in MIMO systems,” EURASIP Journal on Wireless Commu-
nications and Networking, no. 2, pp. 1–11, Apr. 2006.
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