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Abstract

This thesis investigates two special cases of 3D reconstruction: The reconstruction from only
a single input image and the reconstruction over time from multiple-view image sequences.
For both cases we propose several mathematical models which share the same basic idea: We
compute a surface with minimal area that best fits the input data and suitable priors as the
solution of a variational, convex optimization problem. Compared to state-of-the-art methods
the proposed single-view reconstruction approaches require significantly less user input and
yield competitive reconstruction results. For the space-time multi-view case, we show that
the quality of a temporally coherent reconstruction improves substantially compared to time-
independent approaches. A novel data fidelity term, the estimation and integration of surface
normals and the integration of a novel, generalized form of connectivity constraints leads to
reconstruction results that outperform the state of the art in both reconstruction accuracy
and computation time.

keywords: single-view reconstruction, spatio-temporal multi-view reconstruction, minimal
surfaces, convex optimization, shape priors, volume priors, connectivity constraints

Kurzfassung

Diese Arbeit untersucht zwei Spezialfälle der 3D Rekonstruktion: Die Rekonstruktion von
einem einzigen Eingabebild, sowie die räumlich-zeitliche Rekonstruktion anhand von Bild-
sequenzen mehrerer Kameras. Für beide Szenarien schlagen wir mehrere mathematische
Modelle vor, die der gleichen Idee zugrunde liegen: Wir berechnen eine Minimalfläche,
welche die Eingabedaten und geeignete a-priori Annahmen am besten erfüllt, als Lösung eines
variationellen, konvexen Optimierungsproblems. Im Vergleich zu anderen aktuellen single-
view Verfahren benötigt die vorgeschlagene Methode deutlich weniger Benutzereingaben
und erzielt dabei Ergebnisse, die sich mit dem Stand der Technik messen können. Für
den Fall der räumlich-zeitlichen Rekonstruktion zeigen wir, dass sich die Qualität einer
zeitlich-kohärenten Rekonstruktion im Vergleich zu einer zeitlich unabhängigen Rekonstruk-
tion deutlich verbessert. Ein neuer Datenterm, die Schätzung und Integration von Flächen-
normalen, sowie die Integration einer neuen, generalisierten Form von Konnektivitätsbedin-
gungen führen zu Rekonstruktionsergebnissen, die aktuelle vergleichbare Verfahren in Bezug
auf Genauigkeit und Rechenzeit übertreffen.

Stichworte: Einzelbildrekonstruktion, räumlich-zeitliche Rekonstruktion, Minimalflächen, kon-
vexe Optimierung, Gestaltannahmen, Volumenannahmen, Konnektivitätsbedingungen
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Summary

Recovering three-dimensional geometry from a set of color images is a central problem in
computer vision and has a wide range of applications. This thesis contributes approaches to
two extreme cases of this task. The reconstruction of 3D geometry from a single input image
only, referred to as Single-View Reconstruction, and the 3D reconstruction of a dynamic
scene from a set of multiple, simultaneously filmed videos, referred to as Spatio-Temporal
Multi-View Reconstruction.

For both cases we propose several mathematical models which share the same basic idea.
We compute a surface with minimal area that best fits the input data and suitable priors
as the solution of a variational, convex optimization problem. The frequent occurrence of
minimal surfaces in nature and man-made objects as well as their elegant mathematical
formulation with several desirable properties constitutes them as a reasonable and attractive
prior assumption for this task. We further propose and study additional shape, volume,
symmetry and connectivity priors to guide the reconstruction process in the two different
scenarios which are discussed separately in the following.

Single-View Reconstruction is the most difficult case in image-based reconstruction, because
correspondences between multiple input images cannot be utilized to recover the depth in-
formation that is lost due to the projective mapping. Instead of recovering a view-dependent
depth representation of the scene, we aim to estimate full non-exact but plausible 3D models
with the help of novel priors and a small amount of user input. We propose three different
models for interactive single-view reconstruction which demonstrate the effectiveness of the
minimal surface prior in conjunction with 1) a reflective planar symmetry prior to recover
the back side of the object; and 2) either an explicit shape prior or a volume prior to inflate
the scene into the third dimension. Due to a non-parametric surface representation, the so-
lutions of these models can have arbitrary topology and are either globally optimal or within
small bounds of the optimal solution. All models require significantly less user input and the
reconstruction results compare well to state-of-the-art methods.

Spatio-Temporal Multi-View Reconstruction generalizes the problem of 3D reconstruction
from multiple images of a static scene to the time domain. That is, the goal is a temporally
coherent 3D reconstruction of a dynamic scene from multiple input videos, for instance, hu-
man motion over time. In a sense the problem is opposite to the single view case, because
it deals with huge amounts of input data. With the reasonable assumption that dynamic
scenes only change slowly over time we show that the quality of a temporally coherent recon-
struction improves compared to a time-independent approach by leveraging information from
consecutive time steps. Building on existing work on static multi-view 3D reconstruction,
several extensions and improvements are suggested and evaluated, demonstrating that the
proposed minimal surface approach outperforms state-of-the-art reconstruction methods in
quality and speed.
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Part I: Introduction

1. Overview

Insight must precede application.

Max Planck
(1858-1947)

1.1. Motivation

Humans navigate in the world mostly based on what they see with their eyes. A long standing
goal and a core area of research in Computer Vision is to enable computers to perform similar
complex tasks based on images acquired with cameras. Apart from autonomous navigation,
the need to simply and cheaply obtain accurate 3D models of the world arose in many areas
of research and industry, and is further growing, for instance, in architectural planning,
civil engineering, medical imaging, cultural heritage archiving, as well as for the movie and
entertainment industry.

The basic task is to get an understanding of the 3D world from the 2D data available in form
of images. These images arise from the camera sensors measuring the amount of incoming
light that has been reflected by surrounding objects. Naturally, the depth information, that
is, distances between objects and the camera are not measured and are therefore lost in the
acquisition process. The goal of 3D reconstruction is to recover the depth and geometry of
the scene from a given set of images. This is called an inverse problem, because one tries
to invert the image formation process in the camera. If several images of the same scene
from different view points are available, 3D reconstruction can be performed by solving a

Figure 1.1.: Multi-view 3D reconstruction of a Beethoven bust. Given a set of images which observe
the object from different view points, the goal is to recover the 3D geometry of the object.
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correspondence problem, that is, estimating which 2D points in the images belong to the
same point in the 3D world. Figure 1.1 illustrates a 3D reconstruction setup from multiple
input images.

This multi-view 3D reconstruction problem is still very difficult, because the input data is
usually noisy, or insufficient, if parts of the scene are unobserved or occlude each other in the
images. Further, the matching problem can be extremely difficult. Depending on the objects’
structure, material properties and lighting conditions, parts of the same object can appear
very differently from different view points, for example, due to specular reflections on shiny
surfaces.

Nowadays, a variety of combined image and depth sensors are available, which increasingly
have useful output resolutions and affordable prices. Therefore, a legitimate question to ask
is why inferring depth information from 2D images is still a problem that deserves research
interest. There are several arguments to encounter that question: 1) Several depth cameras
rely on active sensors (e.g. structured light or time-of-flight cameras) which, in contrast
to classical cameras, have limited range or do not work for arbitrary light conditions. 2)
Currently, all depth cameras are considerably larger than classical cameras which also limits
their applicability (e.g. for endoscopy in medical imaging). 3) Generally, 3D reconstruction
from images is necessary when depth sensors are not applicable or available (e.g. recov-
ering geometry from historic images). 4) Depth sensors are still and will probably remain
more expensive than classical cameras. Therefore, 3D reconstruction from images is still an
important problem to solve.

For decades the 3D reconstruction problem has been receiving a large amount of attention in
research and a wide variety of methods and corresponding literature exists. Many of these
works have studied the problem of two cameras observing a static scene, and extensions to
non-static scenes exist too. Another significant number of these works deal with a slightly
more general problem of having an arbitrary number of cameras observing a static scene.
In contrast to the two-camera stereo reconstruction approaches, which usually compute a
depth map with respect to one of the cameras, a general multiple camera setup can be used
to obtain a full and dense 3D model of the scene. Nevertheless, there are more cases of 3D
reconstruction that can be considered.

In this thesis we investigate two extreme cases of the 3D reconstruction problem: 1. The
reconstruction of objects from only a single image which we will refer to as single-view re-
construction, and 2. the reconstruction of a dynamic scene from multiple, synchronously
captured input videos which we will call spatio-temporal multi-view reconstruction.

Single-View Reconstruction. For the single-view case the inverse problem is much harder,
because a correspondence with other views cannot be attained. To deal with this additional
complexity, most approaches try to solve a simplified problem by restricting the type of input
images, the class of scenes or objects, their material properties or they take the human in the
loop to assist the reconstruction. Similar to most other works in this field our approach will
be a combination of the aforementioned simplifications, that is, we will focus on a small but
reasonable subclass of objects and most importantly will only require a very small amount of
human interaction to obtain plausible 3D reconstructions from a single input image.

Spatio-Temporal Multi-View Reconstruction. In the multi-view case the problem is almost
contrary. Instead of rather little image information one has to deal with a very large amount of
input data and the problem how to use this data efficiently and how to get the most out of it.
Compared to the static scene case, the point correspondence problem is significantly harder,
because objects in the scene might move or even deform over time. A reasonable question
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to ask is why should one look for temporal correspondences in the first place. Why is it not
sufficient to use the technology we already have and perform an ordinary 3D reconstruction
at every time step independently? The short answer is that the output quality of any 3D
reconstruction algorithm is bound to the resolution and quality of input images and the
use of additional image data from other time steps can result in an improved reconstruction
accuracy. Similar ideas have also been used for image enhancing techniques from several input
images, for example super-resolution [220]. A more detailed discussion of the motivation,
challenges and benefits of adding temporal coherence will be given in Part III.

One goal of this thesis is to work towards a unified general 3D reconstruction model that is
easily extendible and applicable to a variety 3D reconstruction scenarios. Another important
goal is to formulate appropriate priors that help to deal with the ill-posedness of the recon-
struction task. Psychologists [151, 172] have identified several priors in the human visual
system that serve as heuristics to interpret what we see and do not see, namely: symmetry,
planarity, maximum compactness, and minimum surface. A big challenge is to integrate these
priors into a practicable 3D reconstruction approach. In this thesis we will look at some of
these priors and demonstrate their usefulness in various scenarios.

The most popular and practicable prior is the minimum surface prior, because it successfully
deals with most of the common problems in 3D reconstruction: missing data, redundant data,
measurement noise and outliers.

In this thesis we will adopt a variational 3D reconstruction approach which allows to compute
a minimal surface as a critical point of an energy cost function. In Part II, we propose several
priors and an alternative surface representation to tailor the reconstruction framework for the
case of single-view reconstruction. In Part III, we generalize the variational 3D reconstruction
approach to the spatio-temporal multi-view case, for which we also propose a novel data term,
an extension with surface normal estimation and a novel generalized connectivity prior.
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1.2. Main Contributions of this Thesis

The main contributions of this thesis can be summarized in the following points:

• Convex variational formulation of single-view reconstruction. To the best of
our knowledge we present the first variational approach to single-view reconstruction
based on convex energy minimization that allows to reconstruct objects of arbitrary
topology. This approach in combination with different priors and scene representations
is described in Part II, Chapters 5 to 9, and has been presented in several publications [1,
2, 3, 4, 5, 6].

• Convex variational formulation of spatio-temporal multi-view reconstruc-

tion. To the best of our knowledge we present the first variational spatio-temporal
multi-view reconstruction based on convex energy minimization. This approach and
two extensions are discussed in Part III, Chapters 10 to 13, and have been published
in [7, 8, 9].

• Efficient topological constraints for 3D reconstruction. To the best of our knowl-
edge we present the first work on multi-view 3D reconstruction in which constraints on
the topological genus (i.e. the number of holes of an object) can be efficiently enforced.
In particular we can guarantee that the topological genus of the reconstruction is not
smaller than the one of the visual hull. This work is presented in Chapter 13 and has
been published in [9].

• Significant extensions toward a general and unified model for 3D recon-

struction. The basis of this thesis is the variational 3D reconstruction approach by
Kolev et al. [134]. We have tailored this approach for its use in two very different 3D
reconstruction sub-problems by proposing and adding a variety of novel, useful priors
and constraints. In fact, the spatio-temporal multi-view approach in Part III is a true
generalization as it reduces to the approach by Kolev et al. [134] if the scene is static
or only one time instant is considered. The surface representation, the efficient compu-
tation via convex energy minimization, and the extensibility with a variety of priors,
makes the approach suitable for many 3D reconstruction scenarios - as demonstrated
in this thesis. To the best of our knowledge no other approach in the literature has
been shown to work well on such a variety of 3D reconstruction problems.

1.3. Thesis Outline

This thesis is organized in 15 chapters which are grouped into the following four parts:

• Part I: Introduction (Chapters 1 to 4)

• Part II: Single-View Reconstruction (Chapters 5 to 9)

• Part III: Spatio-Temporal Multi-View Reconstruction (Chapters 10 to 13)

• Part IV: Conclusions and Outlook (Chapters 14 and 15)

After a general introduction into the problem of recovering geometry from images, each part
will refine the problem statement to its specific conditions. Nevertheless, we will use the same
general reconstruction framework for both input scenarios and investigate several variants for
each scenario. The particular contents of each part are detailed in the following paragraphs.

Part I: Introduction. After an overview in Chapter 1 which motivates and outlines this
thesis, Chapter 2 introduces the mathematical background on convex analysis, duality the-
ory, variational calculus and the total variation norm which form the basis of all surface
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reconstruction approaches in this thesis.

Chapter 3 explains the surface representation which is based on the geometric properties
of the total variation to describe minimal surfaces. This leads to a general model for 3D
reconstruction of which several variants are studied in Part II for the single-view reconstruc-
tion case and which is extended to the spatio-temporal multi-view reconstruction scenario in
Part III.

Chapter 4 discusses how these surfaces can be efficiently computed by transforming the op-
timization problems into equivalent ones which are easier to solve. After describing necessary
conditions for computing minima, we present several numerical algorithms for non-smooth
convex optimization problems which are suitable for efficiently solving these minimal sur-
face problems. We further explain numerical details such as the proper discretization of the
derivate operators.

Part II: Single-View Reconstruction. Chapter 5 gives an introduction to the single-view
reconstruction problem and provides an overview on related work. Moreover, we propose a
taxonomy to classify different single-view reconstruction approaches based on several prop-
erties, such as the scenes representation, considered object classes, reconstruction accuracy,
etc. The literature overview and classification is part of a survey paper published in [6].

Chapter 6 introduces the first variational framework for convex single-view reconstruction
using a shape prior. This work has been published at DAGM 2009 [1] and also appeared as
part of book chapters [4, 2, 6]. The work has been awarded the DAGM paper prize.

Chapter 7 discusses a variant of the single-view framework in which the shape prior is
replaced by a volume prior. This tackles several shortcomings of the shape prior approach
and further reduces the amount of necessary user input. This chapter is based on work
published at ACCV 2010 [3] and a comparison to the shape prior approach appeared in the
book chapters [4, 2, 6]. This work received an ACCV honorable mention award.

Chapter 8 presents another variant of the single-view framework with a volume prior. We
show that the same problem can be solved more efficiently and accurately by replacing the
memory intensive implicit surface representation with a simpler height field representation.
This chapter contains work published at CVPR 2012 [5].

Chapter 9 provides a thorough comparison of our single-view approaches with shape and
volume priors to the most related state-of-the-art approaches. This comparison is also part
of the survey paper published in [6].

All published works in this part have been conducted in close collaboration with Eno Töppe
and have also been part of his PhD thesis [211].

Part III: Spatio-Temporal Multi-View Reconstruction. Chapter 10 gives an introduction
to spatio-temporal multi-view reconstruction, explains challenges and provides an overview
of related work.

Chapter 11 introduces the first variational framework for convex spatio-temporal multi-view
reconstruction. We further propose a novel data term that is better suited for sparse camera
setups. Moreover, we propose to compute photoconsistency matches differently and with
lower complexity than previous approaches, which lead to significantly lower computation
times with a similar reconstruction quality. This framework has been presented at the ICCV
4DMOD workshop [7].

Chapter 12 proposes several improvements of the spatio-temporal multi-view reconstruction
approach. In particular, we propose to estimate surface normals in an iterative reconstruction
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approach and demonstrate that these surface normals can be used to 1) improve photometric
matching scores, and 2) regularize the surface in an anisotropic manner that better preserves
small surface details. This chapter presents work published at BMVC 2014 [8].

Chapter 13 demonstrates how recent advances on imposing connectivity constraints can be
1) integrated into our spatio-temporal multi-view reconstruction framework, and 2) general-
ized to useful topological constraints in order to maintain the connectivity of objects with
arbitrary topological genus. This work has been published at ECCV 2014 [9].

Part IV: Conclusions and Outlook. The last part of the thesis summarizes the achievements
of this work in Chapter 14. Finally, in Chapter 15, we discuss shortcomings of the proposed
approaches together with possible directions for future work.

8 1. Overview



Part I: Introduction

2. Mathematical Preliminaries

Perplexity is the beginning of knowledge.

Khalil Gibran
(Lebanese Poet, 1883 - 1931)

This chapter and the following two chapters define the mathematical framework for this
thesis by introducing basic concepts and notations for describing and computing images and
surfaces in two, three and four dimensional spaces.

2.1. Convex Analysis

In this section we introduce several properties of functions that will be necessary to efficiently
compute minimal surfaces as a minimizer of an objective function. The following definitions
and properties are basic definitions and can be found widely in the respective literature, see
for instance [187, 188, 26]. An important and strong property for sets and functions is the
notion of convexity. In particular for functions, this property helps to proof the existence and
uniqueness of minimizers and simplifies the optimization of such functions drastically, which
will also be discussed in Chapter 4.

Definition 2.1 (Convex Set). A set C is called convex if λx + (1− λ)y ∈ C for all x, y ∈ C
and 0 ≤ λ ≤ 1.

Geometrically this means that a set is convex if and only if the connecting line between any
two points in the set is also entirely contained in the set.

Convexity is not only a property of sets but also for functions defined over a convex domain.
Considering a function f : V → R with domain V, the graph of the function being defined as
{(x, f(x)) | x ∈ V} divides the function space into two sets which are (1) all points above the
graph - called epigraph - and (2) all points below the graph - called the hypograph.

Definition 2.2 (Epigraph). The epigraph of a function f : V → R is the set of all points
which lie above or on the graph:

epi f = {(x, t) | x ∈ V, t ∈ R, f(x) ≤ t} . (2.1)

The epigraph links the convexity property of functions with the one of sets. A function f
is then said to be convex if and only if the epigraph of the function is a convex set. This
also implies that the function domain needs to be a convex set. However, in the literature
one usually finds the following equivalent definition which is often easier to verify on more
regular functions.

Definition 2.3 (Convex Function). A function f : V → R is called convex if the function
domain V is a convex set and if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ V and 0 ≤ λ ≤ 1 . (2.2)

2. Mathematical Preliminaries 9
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Function f is called strictly convex if the inequality in Equation (2.2) holds strictly for all
x, y ∈ V.

Further, a function f is called (strictly) concave if the function −f is (strictly) convex.

The visual meaning of Equation (2.2) is the following: For any two points (x, f(x)) and
(y, f(y)) on the graph of f , each point on the line segment that connects the points must
lie above the graph (or on the graph for non-strict convexity). See Figure 2.1(a) for an
illustration of a convex function and Figure 2.1(b) for the non-convex case.

The definition of convex functions in Equation (2.2) is called the zero-order condition for
describing convex functions. For differentiable functions f , convexity is equivalent to first-
order condition

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ V , (2.3)

which means that the function f is globally above the tangent at x. If f is even twice-
differentiable an equivalent second-order condition is the positive semi-definiteness of the
Hessian:

∇2f(x) � 0 ∀x ∈ V , (2.4)

which means that the function f is either flat or curved upwards in every direction.

The following function properties will occur occasionally as technical requirements in defini-
tions and theorems.

Definition 2.4 (Proper Convex Function). A convex function f : V → R ∪ {−∞,∞} is
called proper if its epigraph is non-empty and contains no vertical lines, or equivalently, if
f(x) < +∞ for at least one x and f(x) > −∞ for all x.

Many properties and proofs in convex analysis require functions to be continuous, however,
often it is sufficient to assume the following weaker property:

Definition 2.5 (Lower Semi-Continuous Function). A function f : V → R is lower semi-
continuous if and only if its epigraph is closed, or equivalently, if it is lower semi-continuous
at every point x ∈ V. The function f(x) is lower semi-continuous at point x, if

f(x) = lim inf
y→x

f(y) = lim
ǫ↓0

(inf{f(y) | |x− y| ≤ ǫ}) . (2.5)

The combination of lower semi-continuity and, its analogue, upper semi-continuity yields
ordinary continuity.

2.2. Duality

Definition 2.6 (Convex Conjugate - Legendre-Fenchel Transform). Let f : V → R be a
function. Then, the function f∗ : V∗ → R,

f∗(p) = sup
x∈V
{〈p, x〉 − f(x)} (2.6)

is called the convex conjugate or Legendre-Fenchel transform of the function f . V∗ is called
the dual space of V.

Some vector and function spaces are self-dual, for instance for V = R
n, it holds that V = V∗

The idea behind the Legendre-Fenchel transform is to represent the function f in the space
of supporting lines (or hyperplanes) of the graph being represented as tuples of the slope (or
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(a) (b) (c)

Figure 2.1.: Illustration of convex, non-convex functions, the epigraph, the convex conjugate, and
the convex envelope. (a) shows the graph of the function (black), the epigraph (gray) is the set of
points above the function graph. For convex functions the line segment (green) between two arbitrary
points on the graph should be entirely above the graph or touching it. (b) Function graph of a non-
convex function. The green line segment is partially below the graph. The orange line illustrates
the computation of the convex conjugate. For any given slope p a graph-supporting line is computed
which has intercept −f∗(p). (c) Considering all possible slopes p, the set of all supporting lines forms
the convex envelope f∗∗.

plane normal) and the corresponding maximal intercept. Hence, the supremum operation is
used for the transformation from the space of

(
x, f(x)

)
to the space of gradient and conjugate(

p, f∗(p)
)
.

The convex biconjugate f∗∗ = (f∗)∗ ≤ f is the maximal convex function below f and repre-
sents the convex hull of the epigraph of f . It is also called the convex envelope of function f .
See Figure 2.1(b,c) for an illustration of these definitions.

Theorem 2.7 (Fenchel-Moreau). For proper convex, lower semi-continuous functions f ,
f = f∗∗ holds true.

Proofs of this theorem can be found in [187, 44] or [188, page 474]. Another important result
of duality theory is the concept of the adjoint operator (see e.g. [33, Def. 2.23]).

Definition 2.8 (Adjoint Operator). Let Hx,Hy be Hilbert spaces, with respective inner prod-
ucts 〈·, ·〉Hx, 〈·, ·〉Hy and let A : Hx → Hy be a continuous linear operator. One can show that
there exists a unique continuous linear operator A∗ : Hy → Hx having the following property:

〈Ax, y〉Hy = 〈x, A∗y〉Hx ∀x ∈ Hx, y ∈ Hy. (2.7)

Operator A∗ is called the adjoint operator of A.

Together with the concept of the weak derivative which will be described in the next section,
the adjoint operator will be useful to “shift” differential operators from one variable to other
within a scalar product. Further, the property that two operators are adjoint will be necessary
when discretizing differential operators for duality-based numerical solvers.

2.3. Variational Calculus and Total Variation

So far, we did not specify the function domain V in the definitions above, which can for
example be finite, e.g. a subset of R

n. However, we will also consider infinite function
domains, because in this thesis we want to recover surfaces which are described by functions.
In order to evaluate the quality of different surface reconstructions we look at energy functions
that assign a cost to each surface, that is, a function which takes a function as its argument
and returns a real number. Mathematically, this is called a functional and is the basis of an
entire field in mathematics, the calculus of variations, which studies their properties.
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Definition 2.9 (Functional). A functional E : V → R is a real-valued function on a vector
space V which assigns every element of the space a real number.

In our setup the vector space V will be a space of functions, that is, V = {u : Rn → R}.
Note that all previous definitions hold for functions as well as for functionals, although some
operators such as the gradient need to be generalized, but we will only discuss the details we
need (see [13] for more details).

The following functional will play a central role in this thesis, because it defines a measure
of “smoothness” for a given function and has many useful properties which are discussed in
the next chapter.

Definition 2.10 (Total Variation for Differentiable Functions). Let u ∈ C1(Ω,Rn) be a
differentiable function, then

TV(u, Ω) =
∫

Ω

|∇u|2 dx (2.8)

is called the total variation of u on domain Ω.

Figure 2.2.: Illustration of total
variation. All these functions have
the same total variation on the de-
picted interval.

The set Ck(Ω,Rn) denotes the set of functions f : Ω→
R

n being k-times differentiable. For better readability
and completeness we will define all function spaces only
at the end of this section.

The total variation sums up all absolute height differ-
ences of a function. If we interpret a function as an el-
evation profile of a hiking trail, the total variation only
measures the sum of all altitude differences for going
up and down the hill - regardless of how long the trail
is. In that sense, the length of the trail or its steepness
is irrelevant as long as it adds up to the same height
difference. A climber who climbs straight up a vertical
wall has the same effort (total variation) as the hiker
who takes a longer walking trail to get to the same peak. See Figure 2.2 for an illustration.

For many practical purposes this definition of the total variation can also be generalized
for non-differentiable functions using the concept of weak derivates. Motivated by the “in-
tegration by parts” technique one can define a weak derivative for functions which are not
everywhere differentiable in the classical sense (i.e. they do not have a strong derivative).

Definition 2.11 (Weak Derivative). Let Ω ⊂ R
n and u ∈ L1(Ω), then function v ∈ L1(Ω)

is a weak derivative of u if,

∫

Ω

u · div(p) dx = −
∫

Ω

v · p dx (2.9)

for all functions p being infinitely differentiable and with compact support in Ω, i.e. p ∈
C∞

c (Ω,Rn).

This relationship essentially represents the integration by parts formula, because the third
integral over the boundary of Ω vanishes due to the fact that p and all its derivatives are
zero on the boundary. The principle idea behind the weak derivative is that Equation (2.9)
allows to shift the differential operator from one variable to other which is defined to be
always differentiable. As long as the two integrals in Equation (2.9) sum up to the same
value v is a weak derivative of u and everywhere where u has a classical derivative it holds
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that v(x) = ∇u(x). Note that the integral in Equation (2.9) corresponds to an inner product
in the space L1(Ω), that is, 〈u, div(p)〉 =

∫

Ω
u · div(p) dx. Then, according to the definition

of the adjoint operator (Definition 2.8) the symbols div(p) and −∇u in Equation (2.9) are
adjoint (for v = ∇u).

Further, consider the following property of the 2-norm for non-zero arguments

|∇u|2 = |∇u|2 ·
|∇u|2
|∇u|2

=
〈∇u,∇u〉

|∇u|2
= 〈∇u,

∇u

|∇u|2︸ ︷︷ ︸
p

〉 for ∇u 6= 0 , (2.10)

which leads to a dual representation of the 2-norm

|∇u(x)|2 = sup
‖p(x)‖

2
≤1
〈∇u(x), p(x)〉 . (2.11)

As Chan et al. [48] proposed, we can use the definition of the weak derivative (Definition 2.11)
and the dual representation of the 2-norm in Equation (2.11) to derive a more general defi-
nition of the total variation for weakly differentiable functions:

Definition 2.12 (Total Variation (TV)). A functional of the form

TV(u, Ω) := sup

{
−
∫

Ω

u · div(p) dx

∣∣∣∣∣ p ∈ C
1
c (Ω,Rn), ‖p‖L∞(Ω) ≤ 1

}
(2.12)

is called total variation or variation of u on domain Ω.

In fact, Definition 2.12 is a generalization of the total variation in Definition 2.10 to weakly
differentiable functions. For differentiable functions u ∈ C1(Ω,R) Definition 2.10 and Defini-
tion 2.12 are equivalent with the vector field p ∈ L1(Ω,Rn) defined by

p(x) =





∇u(x)
|∇u(x)|

2

if |∇u(x)|2 6= 0

0 otherwise ,
(2.13)

Equation (2.12) reduces to Equation (2.8). For ease of notation one commonly denotes
the total variation as in Definition 2.12 and remarks that the integral is evaluated in a
“distributional sense” as written in Definition 2.10. We will make use of this notation in the
rest of this thesis. The dual definition of total variation and related minimization algorithms
have been studied extensively in the literature, especially in the context of image restoration,
see for example the PhD theses [40, 255, 174] and related publications. Further, Chambolle
et al. [44] provide a solid and comprehensive introduction to the theory of total variation and
its applications in computer vision.

A simple but useful generalization of the total variation is the weighted total variation which
has been first studied in [160] and introduced into computer vision by Bresson et al. [34].

Definition 2.13 (Weighted Total Variation). For a weight function g : Ω ⊂ R
n → R≥0 and

u ∈ L1
loc(Ω,Rn) one defines

TVg(u, Ω) := sup

{
−
∫

Ω

u · div(p) dx

∣∣∣∣∣ p ∈ C1
c (Ω,Rn), ∀x ∈ Ω : ‖p(x)‖2 ≤ g(x)

}

=
∫

Ω

g(x) |∇u|2 dx , (2.14)
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where the second equality only holds for differentiable functions u ∈ C1(Ω,R).

Since we will make heavy use of the total variation in many objective functionals, an important
property for their minimization is its convexity which is not difficult to show.

Proposition 2.14 (Convexity of the Total Variation). For any function u : Ω ⊂ R
n → R

the functional E(u) = TV(u, Ω) is convex in u.

Proof. Using the zero-order convexity condition in Definition 2.3 we select two arbitrary
functions u1, u2 : Ω ⊂ R

n → R and derive

TV(λu1 + (1− λ)u2) ≤ λ TV(u1) + (1− λ) TV(u2) (2.15)

⇔
∫

Ω

∣∣∇
(
λu1 + (1− λ)u2

)∣∣ dx ≤ λ

∫

Ω

|∇u1| dx + (1− λ)
∫

Ω

|∇u2| dx (2.16)

⇔
∫

Ω

|λ∇u1 + (1− λ)∇u2| dx ≤
∫

Ω

(
|λ∇u1|+ |(1− λ)∇u2|

)
dx , (2.17)

where the last inequality holds because of the triangle inequality.

Function spaces. In our notation we will use the following function spaces which group a
set of functions according to some property. In particular we will look at functions with finite
norms.

Definition 2.15 (Lp Spaces or Lebesgue Spaces). A function u : Ω ⊂ R
n → R is element of

the Lp-space, written as u ∈ Lp(Ω,R) if its corresponding norm is finite

Lp(Ω,R) =
{
u ∈ L1

loc(Ω,R)
∣∣ ‖u‖p <∞

}
with ‖u‖p =



∫

Ω

|u(x)|p dx




1

p

, (2.18)

where L1
loc(Ω,R) is the space of locally integrable functions with domain Ω and image R.

Following Definition 2.12 one can define the following function space as a set of functions
with bounded (total) variation.

Definition 2.16 (Functions of Bounded Variation (BV-space) [13]). The set of functions
with bounded variation, that is, with a variation smaller than infinity, is defined as

BV(Ω,R) =
{
u ∈ L1

loc(Ω,R)
∣∣ TV(u, Ω) <∞

}
. (2.19)

The total variation defines a semi-norm on the space of bounded variations and is therefore
often called TV-norm. Further, we have already made use of the space of differentiable
functions Ck(Ω,Rn) being defined as

Ck(Ω,Rn) =
{
u : Ω→ R

∣∣ u is k-times continuously differentiable
}

. (2.20)

With the additional subscript c in Ck
c (Ω,Rn) we denote that the function has compact support

in the domain Ω, which essentially means that the function values and all its derivates are
zero at the domain boundary ∂Ω (see [13] for an exact definition).
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3. Minimal Surface Reconstruction via Binary
Segmentation

Everything should be made as simple as possible, but not simpler.

Albert Einstein
(1879-1955)

In this thesis we formulate image-based 3D reconstruction as a minimal surface problem.
We are looking for a surface with minimal surface area which is subject to some constraints
or certain boundary conditions. In our setup these constraints reflect information about
the surface that has been extracted from one or several input images. The main idea and
advantage behind this approach is to have a consistent way to deal with missing, redundant or
even conflicting data that usually occurs in 3D reconstruction setups. Due to the constraints,
the surface will align with the data as good as possible. In areas with redundant, but
slightly different measurements we get an interpolating behavior of the surface, while in areas
with missing data it will span a minimal surface and thus reflect an extrapolating behavior.
Further, we will have the possibility to trade data alignment and surface smoothness with a
single parameter in order to deal with noisy input data.

In this chapter we give a definition of minimal surfaces and show how they can be represented
and efficiently computed by calculating the total variation of indicator functions.

3.1. Minimal Surfaces

Figure 3.1.: Soap bubbles form
minimal surfaces in order to con-
nect the geometry they are applied
to. In this example two paral-
lel aligned rings are connected and
form the shape of a catenoid. Im-
age courtesy from [199].

Many equivalent definitions of minimal surfaces exist in
the literature. We refer to Meeks and Perez [119] for
an overview. In this work we make use of the following
variational definition.

Definition 3.1 (Minimal Surface [119]). A surface Σ ⊂
R

n is minimal if and only if it is a critical point of the
area functional for all compactly supported variations.

This means that any small variation of the minimal sur-
face shape leads to an increase of the total surface area.
In this sense minimal surfaces are a higher dimensional
analogue to geodesics [41] which describe the shortest
path between points on some embedded subspace. Fig-
ure 7.2 depicts the minimal surface of a soap bubble
between two circles forming the shape of a catenoid.

In Part II (Single-View Reconstruction) of this thesis we
look at surfaces being two-dimensional manifolds em-
bedded into the three-dimensional space R

3. Later, in
Part III (Spatio-Temporal Multi-View Reconstruction),
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we raise the dimensionality by including a temporal dependency and study three-dimensional
manifolds embedded into the four-dimensional space R

4.

3.2. Geometric Properties of the Total Variation

Figure 3.2.: Illustration of the indica-
tor function 1S(x), the set S ⊂ Ω, the
set boundary ∂S and the normal n of
the set boundary. The length of the
sets’ boundary curve Hn−1(∂S) equals
the perimeter of the set Per(S, Ω) and
the total variation of the sets’ indicator
function TV(1S , Ω) because 1S jumps by
1 everywhere along the set boundary and
nowhere else.

In this section we discuss important geometric
properties of the total variation and how they can
be used to compute non-parametric minimal sur-
faces based on perimeter minimization of sets that
are represented via indicator functions.

Definition 3.2 (Indicator function). Let S ⊆
Ω ⊆ R

n, then the indicator function 1S : Ω →
{0, 1} of the set S is defined as

1S(x) :=

{
1 if x ∈ S

0 if x /∈ S
(3.1)

Definition 3.3 (Perimeter). Let S ⊂ Ω ⊆ R
n.

The perimeter of the subset S in Ω is defined as

Per(S, Ω) = Hn−1(∂S) = TV(1S , Ω) , (3.2)

where Hn−1(·) is the (n − 1)-dimensional Haussdorff measure and ∂S is the boundary of
the set S. This means that the perimeter of a set in dimension n is an (n − 1)-dimensional
measure of length, for instance, the length of the 1D-curve outlining a set in 2D space, or
the 2D area of the surface in 3D space. The second equality holds because of the divergence
theorem, which states that −

∫

S
div(p) dx =

∫

∂S

n ·p ds. By Definition 2.12 of the TV we have

for all vector fields p ∈ C1
c (Ω,Rn):

TV(1S , Ω) = sup
‖p‖

∞
≤1

{
−
∫

Ω

1S · div(p) dx
}

(3.3)

= sup
‖p‖

∞
≤1

{
−
∫

S

div(p) dx
}

(3.4)

= sup
‖p‖

∞
≤1

∫

∂S

n · p ds (3.5)

=
∫

∂S

ds (3.6)

= Hn−1(∂S) , (3.7)

since Equation (3.5) is maximized by any normalized vector field with p
∣∣
∂S

= n. The
relationship of these measures for the 2D-case is depicted in Figure 3.2. Hence, we can easily
compute this measure by evaluating the total variation of the sets’ indicator function. Note
that this result holds for any dimension n. As a result, minimizing the total variation of an
indicator function 1Σ is equivalent to computing a minimal surface Σ.

The following two properties are important for optimization purposes and will later be used
to show equivalence of TV-minimizers. One of them has been introduced by Fleming and
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Rishel [82] in the following Theorem 3.4 which states that the total variation of a function
equals the sum of the length of all its level lines.

Theorem 3.4 (Coarea formula [81, 82]). Let function u ∈ BV(Ω,R), then

TV(u, Ω) =
+∞∫

−∞

TV(1{u≥t}, Ω) dt =
+∞∫

−∞

Per({u ≥ t}, Ω) dt . (3.8)

For a derivation and a proof of the theorem see [80, 13]. The following Theorem 3.5 is related
to the previous one. It states that if the area under the function is sliced into horizontal
layers (like a "layer-cake"), then the function value at any point x can also be computed as
the sum of all these layers at x. In mathematical terms this is called the sum of all level sets
of function u at x.

Theorem 3.5 (Layer-cake representation). Let u be a non-negative, real-valued, measurable
function on Ω. Then

u(x) =
∞∫

0

1{u≥t}(x) dt . (3.9)

Proof. The formula can be transformed as follows

∞∫

0

1{u(x)≥t}(x) dt =
∞∫

0

1[0,u(x)](t) dt =

u(x)∫

0

dt =
[

t
]u(x)

0
= u(x) . (3.10)

3.3. Minimal Surfaces for 3D Reconstruction

Now we have all mathematical tools together to define the basis of our 3D reconstruction
model. The key ingredient is the total variation, but in order to avoid trivial solutions further
information in form of additional terms, constraints or boundary conditions is needed. In
most cases, we will encode this information in form of a regional term model by means of a
cost function f which locally favors either an interior or an exterior label. Then, the surface
energy can be defined as follows.

Definition 3.6 (Non-parametric Minimal Surface). LetM(V ) be the space of closed (n−1)-
dimensional manifolds in V and int(Σ) be the interior of surface Σ. Further, let function
f : V → R define the surface shape and λ ∈ R≥0 control its smoothness. Then a minimal
surface is a minimizer of

Σ∗ ∈ arg min
M(V )





Per(Σ, V ) + λ

∫

int(Σ)

f dx





. (3.11)

Now we can make use of the total variation properties on indicator functions from the pre-
vious Section 3.2 and construct the following equivalent optimization problem. Let u : V ⊂
R

3 → {0, 1}, u(x) = 1int(Σ)(x) be the binary labeling function indicating the interior or
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exterior of the surface, then the following minimization problem is equivalent to the one in
Equation (3.11):

u∗ ∈ arg min
BV(V,{0,1})



TV(u, V ) + λ

∫

V

f · u dx



 . (3.12)

The indicator function defines a surface as the boundary of two disjunct subsets in R
3, for

instance a surface is the boundary between two different physical materials, such as air and
wood or any other solid material.

Note that this implicit surface representation has several strong and desirable properties
compared to other scene representations such as point clouds, mesh representations or other
parametric surfaces like non-uniform rational B-splines (NURBS) [83]. The implicit surface
representation can model arbitrary shapes of surfaces with an arbitrary topology (i.e. number
of holes in an object) and an arbitrary number of surfaces (i.e. objects in the scene). Further,
the implicit surface representation inherently defines a surface orientation, it disallows surface
self-intersections and holes in the surface (i.e. surface boundaries), it makes the surface
representation simple and independent of the object topology. A change of the object topology
is implicitly handled, thus allowing a larger search space of feasible solutions with shapes of
different topology. Moreover, it automatically assures a manifold with no boundaries which
is often described as a ’watertight’ surface in the literature.

Historical Note on Related Work on 3D Reconstruction via Minimal Surfaces. Minimal
surfaces have already been studied quite early in 1760 by J.L.Lagrange [147] as the surface
area of a two-dimensional function graph. Over the centuries many well-known mathemati-
cians have contributed to this field (see [118] for more details).

Their application in computer vision began much later and has been influenced by adaptive
object models for the purpose of object segmentation such as snakes, active contour models
[128] and weighted geodesic contour models [132, 41] which describe the evolution of an object
contour model that aligns with the image data. These approaches attracted much research
and their generalization to the 3D domain was immediate [42, 43]. The major drawback of
these models is the fixed topology, that is, the number of holes in the object either has to be
fixed in advance or sophisticated splitting and merging techniques need to be applied.

This disadvantage has been tackled by level-set methods [169] which lift the problem to a space
of higher dimension making topology changes natural and simple. Again, this approached had
big impact on the computer vision community and was applied to 2D and 3D segmentation
tasks, 3D reconstruction [79, 244] as well as spatio-temporal 3D reconstruction [95, 94].

The main disadvantage of both, the active contour models and the level set approaches, is
their strong dependence on proper initialization due to local optimization.

This has been changed by Chan, Esedoḡlu, and Nikolova [47] who proposed an implicit surface
representation via indicator functions in the context of two-region image segmentation and
most importantly showed the equivalence of minimizers for the binary and the corresponding
relaxed optimization problem for their efficient computation. Later, this model has been
extended to multi-view 3D reconstruction by Kolev et al. [135, 134] and formed the basis for
follow-up works [216, 106].

18 3. Minimal Surface Reconstruction via Binary Segmentation



Part I: Introduction

4. Nonsmooth Convex Optimization

In fact the great watershed in optimization
isn’t between linearity and nonlinearity,

but convexity and nonconvexity.

Ralph Tyrrell Rockafellar
(Mathematician and expert in optimization theory, 1935 - present)

smooth convex nonsmooth convex non-convex

Figure 4.1.: Example plots of a smooth convex, a nonsmooth convex and (smooth) non-convex
function illustrating the difficulty of their global optimization in increasing order. The nonsmooth
function is not differentiable at its minimizer. In contrast to the smooth convex function, gradient-
based optimization methods are not directly applicable. Globally optimizing non-convex functions
efficiently is an open research problem.

In this thesis we make constant use of convex optimization techniques and variational cal-
culus. While convex optimization problems have important properties like duality theory
and the property that any local minimum is also a global minimum, nonsmooth optimiza-
tion deals with the problem of minimizing functions which are typically non-differentiable at
their minimizers, see Figure 4.1 for an illustration. The total variation norm and its variants
considered in this thesis share the properties of being convex and non-differentiable at zero
which makes its minimization more difficult. However, powerful numerical algorithms have
been developed in recent years and are briefly introduced in this chapter for their frequent
use later in this thesis.

Respective articles will be cited along with the method’s description, but there are also
many good books providing an overview. The classic textbook on convex analysis is by
Rockafellar [187]. The book of Boyd and Vandenberghe [26] gives an excellent introduction
into convex optimization. Introductory books to variational calculus include [92, 65, 212, 188].
Books introducing variational calculus with focus and applications to image processing and
computer vision are by Aubert and Kornprobst [14] and the German book by Bredies and
Lorenz [33].

4.1. Convex Relaxation

In case a minimization problem is not directly solvable, a classical approach is to define a so
called relaxed minimization problem that is substantially easier to solve and whose minima
are equal or close to the minima of the original problem. While Aubert and Kornprobst [14]
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provide a quite general definition of relaxation based on the convergence of sequences, in this
thesis we only deal with one particular type of relaxation. Looking back at definitions in the
previous Chapter 2, the convex envelope of the original non-convex functional is a convex
functional that is closest to the original one and is thus the ideal candidate to pose a relaxed
problem that is easier to solve. In general, however, it can be very difficult to find or compute
the convex envelope of a non-convex functional.

In this thesis we mostly deal with convex functionals which are possibly constrained by
convex constraints but defined on a non-convex domain. This is due to the binary inside-
outside representation of the surface u : V → {0, 1} which is embedded in some 3-dimensional
subspace V ⊂ R

3. Hence we will deal with the following (hard) binary optimization problem.

u∗
bin ∈ arg min

u∈BV(V,{0,1})
E(u) (4.1)

The binary function u∗
bin corresponds to a minimal surface being a critical point of some

convex energy functional E : BV(V, {0, 1})→ R that assigns a real-valued cost to every BV-
function. Relaxing the binary domain constraint by allowing function values on the full [0, 1]
interval makes the overall problem convex and thus much easier to solve.

u∗
rel ∈ arg min

u∈BV(V,[0,1])
E(u) (4.2)

However, we now look at a different optimization problem and it is not clear how a minimizer
of the relaxed problem u∗

rel relates to a minimizer of the binary problem u∗
bin that we actually

want to compute. In the literature (e.g. [96]), one tries to find “tight” convex relaxations in
a sense that they are close to the convex envelope of the original non-convex optimization
problem. For some energies one can show that both, the non-convex and the corresponding
relaxed problem are equivalent.

Equivalence of minimizers for certain functionals. Chan et al. [47] show for a widely
usable problem class that the optimal solution of the binary problem can be obtained from
the solution of the relaxed problem via simple pointwise thresholding. This is stated for the
class of minimal surface energies in the following theorem.

Theorem 4.1 (Equivalence of Minimizers via Thresholding [204, 47]). Let functional E :
BV(V, [0, 1]) → R be of the form E(u) = TV(u, V ) + λ

∫

V
fu dx with function f : V → R,

λ ∈ R≥0 and let

u∗
rel ∈ arg min

u∈BV(V,[0,1])

{
TV(u, V ) + λ

∫

V

fu dx
}

(4.3)

be a global minimizer of the relaxed problem. Then, for any threshold value θ ∈ (0, 1) the
thresholded solution

uthr(x) =

{
1 if u∗

rel(x) ≥ θ

0 if u∗
rel(x) < θ

(4.4)

is a global minimizer of the corresponding binary minimization problem, that is,

uthr = 1{u∗

rel
≥θ} ∈ arg min

u∈BV(V,{0,1})

{
TV(u, V ) + λ

∫

V

fu dx
}

. (4.5)

Proof. We proof the theorem by contradiction. Using the layer-cake representation in Equa-
tion (3.9) and the coarea formula in Equation (3.8) the energy in Equation (4.3) can be
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expressed as

E(u) = TV(u, V ) + λ

∫

V

fu dx

=
1∫

0

{
TV(1{u≥θ}, V ) + λ

∫

Ω

f · 1{u≥θ} dx
}

dθ (4.6)

=
1∫

0

E(1{u≥θ}) dθ .

Since u∗
rel solves the relaxed problem, we have E(u∗

rel) ≤ E(1{u∗

rel
≥θ}). Now assume that

the Theorem 4.1 does not hold, that is, there exists some set Σ ⊂ V with a lower energy
E(1Σ) < E(1{u∗

rel
≥θ}). We then derive

E(1Σ) = E(1Σ)
1∫

0

dθ =
1∫

0

E(1Σ) dθ <

1∫

0

E(1{u∗

rel
≥θ}) dθ = E(u∗

rel) , (4.7)

which contradicts the fact that u∗
rel is a global minimizer of Equation (4.3).

This result is not necessarily intuitive on the first sight as different thresholds will possibly
lead to different binary solutions, but according to Theorem 4.1, possible different binary
solutions will have the same energy and are all valid minimizers of the binary problem.

Figure 4.2.: Illustration of the en-
ergy bound. Since u∗

bin is unknown,
the energy difference a is unknown
too, but it is bounded by the energy
difference b ≥ a. So b is a worst case
estimate of a.

Energy bounds for the general case. For arbitrary
functionals E(u) the thresholding Theorem 4.1 does
not hold in general. Nevertheless, it is useful to know
how far any thresholded solution uthr is away from the
binary optimum u∗

bin. This can be computed based
on the corresponding energies. Since E(u∗

bin) is usu-
ally unknown, one can still give the following maxi-
mum energy bound on the energy distance between
the thresholded and the optimal binary solution. The
idea is also sketched in Figure 4.2.

Proposition 4.2 (Energy bounds for the distance to
the optimum). Let u∗

bin be the global optimal solution of
the binary problem, u∗

rel be the global optimal solution
of the relaxed energy and uthr = 1{u∗

rel
≥θ} be a solution

obtained by thresholding u∗
rel at θ. Then the following

relation holds:

E(uthr)− E(u∗
bin) ≤ E(uthr)− E(u∗

rel) . (4.8)

Proof. Equation (4.8) directly follows from the fact
E(u∗

bin) ≥ E(u∗
rel).
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4.2. Properties of Optimization Problems

4.2.1. Constrainted Optimization Problems

We now discuss methods for dealing with optimization problems that are subject to a set of
constraints. The definitions and notations mostly follow the ones in the book of Boyd and
Vandenberghe [26, page 215ff] which we also recommend for further reading.

Let function u ∈ BV(V,R) and let {Ei : BV(V,R) → R}mi=0 and {Hi : BV(V,R) → R}pi=1 be
sets of functionals of which E0 is the objective and the remaining functionals form sets of m
inequality constraints {Ei(x) ≤ 0}mi=1 and p equality constraints {Hi(x) = 0}pi=1. Consider
the following constrained optimization problem in normal form

u∗ = arg min
u∈BV(V,R)

E0(u)

s.t. Ei(u) ≤ 0, i = 1, . . . , m (4.9)

Hi(u) = 0, i = 1, . . . , p .

This optimization problem will be called the primal problem and might also be written as
follows

u∗ = arg min
u∈UC

E0(u) (4.10)

with UC =
{

u ∈ BV(V,R)
∣∣∣ Ei(u) ≤ 0 ∀i = 1, . . . , m , Hi(u) = 0 ∀i = 1, . . . , p

}
.

The set UC is called the feasible set of the optimization variable u. This notation already
gives an intuition about one possible way to deal with the constraints: We can numerically
minimize E0, for instance with gradient descent, and project onto the set UC after each
iteration, leading to a projected gradient descent. These numerical optimization methods are
later explained in Section 4.3. Essentially, one alternates between ignoring and enforcing the
constraints during the numerical optimization. However, this approach requires the projection
onto the set UC to be feasible and practicable.

Another possible way is to transform the constrained optimization problem (4.10) into an
unconstrained optimization problem by augmenting the objective function with a weighted
sum of the constraint functions

L(u, λ, ν) = E0(u) +
m∑

i=1

λiEi(u) +
p∑

i=1

νiHi(u) , (4.11)

where function L : BV(V,R)× R
m × R

p → R is called the Lagrangian and the new variables
λ = (λ1 · · ·λm)T , ν = (ν1 · · · νp)T - exactly one for each constraint - are called Lagrangian
multipliers.

Lagrangian dual function. By minimizing the Lagrangian in Equation (4.11) over the primal
variable u yields a new functional that only depends on dual variables λ, ν:

G(λ, ν) = inf
u∈BV(V,R)

L(u, λ, ν) = inf
u∈BV(V,R)

{
E0(x) +

m∑

i=1

λiEi(x) +
p∑

i=1

νiHi(x)

}
, (4.12)

The dual function provides lower bounds on the optimal value u∗ of the primal problem, that
is, for any λ and any ν � 0 it holds that G(λ, ν) ≤ u∗. More importantly for our purposes,
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if the primal problem is convex, then this bound is tight and we have

sup
λ,ν�0

G(λ, ν) = sup
λ,ν�0

inf
u∈BV(V,R)

L(u, λ, ν) = inf
u∈UC

E0(u) , (4.13)

Soft constraints. Related to the method of Lagrangian multipliers is the idea of adding the
equality constraints with a scalar weight that controls how much the corresponding constraint
should be enforced and provides an order about the priority among all constraints:

E(u; ν) = E0(u) +
p∑

i=1

νi |Hi(u)|d for fixed ν and d ∈ {1, 2} , (4.14)

where the absolute value and parameter d ensures that possible negative values of Hi(u)
translate into positive costs when minimizing the overall energy. For infinitely large weights
ν1, · · · , νp the constraint terms govern the minimization as any constraint violation immedi-
ately yields a suboptimal result. Conversely, for smaller weights a constraint violation has
less impact on the overall energy and the constraints are enforced in a “soft” manner, in a
sense that constraint-compliant solutions are preferred but not enforced.

Duality theory provides important results on how optima of primal and dual problems are
characterized, how they are related and how they can be computed. However, as we have
seen in Equation (4.13), instead of minimizing the original primal problem, or maximizing
the dual problem one can also solve a saddle point problem which depends on both the primal
and the dual variables.

4.2.2. Saddle Point Problems

v
u

E
(u

;v
)

Figure 4.3.: A saddle point prob-
lem. The functional E(u, v) is con-
vex in variable u and concave in vari-
able v.

For optimization purposes (described in the next Sec-
tion 4.3), we are mainly interested in computing sad-
dle points of convex-concave functionals.

Definition 4.3 (Convex-Concave Functional). A
functional E : U × V → R ∪ {−∞,∞} on the vec-
tor spaces U and V is called convex-concave if

• the mapping ∀v ∈ V : u 7→ E(u, v) is either
convex or constant −∞, and

• the mapping ∀u ∈ U : v 7→ E(u, v) is either
concave or constant ∞.

Definition 4.4 (Saddle Point). Let E : U × V →
R ∪ {∞} be a functional on the vector spaces U and V. The tuple (u∗, v∗) ∈ U × V is called
a saddle point of E if

u∗ ∈ arg min
u∈U

E(u, v∗) and v∗ ∈ arg max
v∈V

E(u∗, v) (4.15)

As we have just seen, saddle point problems arise by transforming constrained optimization
problems or computing convex conjugates. For the optimization problems we consider in this
thesis, optimization algorithms which directly operate on saddle point energies are currently
among the fastest ones. More information on duality theory and saddle points can be found
in [187, 26].
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4.2.3. Extremality Conditions

As for analyzing and finding extrema of functions similar properties also hold for functionals.
An important property is the necessary condition for a minimum value of a differentiable
functional given in the following definition.

Definition 4.5 (Euler-Lagrange equation). Considering continuously differentiable function-
als of the form E(u) =

∫

V
L(x, u,∇u) dx, with L : V × R × R

n → R and domain V ⊆ R
n.

Then, the necessary condition for a minimum of the functional is given by the corresponding
Euler-Lagrange equation

0 =
dE

du
=

∂L

∂u
−

n∑

i=1

d

dxi

∂L

∂uxi

, (4.16)

in which L(·) is called the Lagrangian density. Further, we used the shorthand notation
uxi

= ∂u
∂xi

.

Equation (4.16) usually describes a partial differential equation (PDE) [78] that needs to be
fulfilled. Solving this equation with respect to u is also a common way to compute minimizers
of the energy.

Saddle-Point Problems. Similarly, the first order condition that the local gradient vanishes
must also hold for saddle point problems, but for both variables.

Proposition 4.6. Let function E : U ×V → R∪{−∞,∞} be convex-concave, then the point
(u∗, v∗) is a saddle point if and only if

0 ∈ ∂uE(u∗, v∗) and 0 ∈ ∂vE(u∗, v∗) , (4.17)

where ∂x denotes the subgradient of E with respect to x.

4.3. Algorithms for Total Variation Minimization

In this section we discuss several methods for minimizing the total variation norm in conjunc-
tion with convex data terms and possible additional constraints. This will be the basis for
the numerical computation of solutions to all the optimization problems posed in this thesis.

The first two of the following minimization algorithms, namely “gradient descent” and the
“lagged diffusivity fixed point iteration” approach by [231], require differentiability of the
objective function. In order to deal with the non-differentiability of the TV-norm Rudin,
Osher, Fatemi [191] suggested a slight perturbation of the TV-norm:

TV(u, Ω)ǫ =
∫

Ω

|∇u|ǫ dx with |∇u|ǫ =
√
|∇u|22 + ǫ , (4.18)

where ǫ > 0 is a small positive number. The choice of this number is a trade-off between
the numerical stability of the method and the accuracy of the result. Note that the other
optimization methods considered in this section do not need such an approximation as they
directly deal with the non-differentiability. Further note, that there exist a lot more methods
and variants for minimizing TV-based functionals, e.g. Split-Bregman methods [98], or the
alternating direction method of multipliers (ADMM) [76, 159] which are not detailed in this
thesis.
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4.3.1. Gradient Descent

gradient descent

projected gradient descent

Figure 4.4.: Gradient descent steps
on a quadratic function with and
without constraints on the feasible
domain (light gray). The bottom
figure shows algorithm iterates after
each combined descent and projec-
tion step (black and red). Separate
steps for the descent step and the
projection are plotted in dark gray
below the graph.

Gradient descent is one of the most basic minimization
algorithms which can only be applied if the gradient of
the function to be minimized can be computed, that is,
the energy E(u) needs to be differentiable in u. Since the
gradient of the energy function dE/du locally indicates
in which way u has to be changed in order to lower the
energy E(u), the main idea is to use this property within
an evolutionary process over time.

du

dt
= −

dE

du
(4.19)

If we interpret the energy E as a mountain range over
the space of u, this equation states that for every time
change, the energy should decrease by the negative gra-
dient −dE/du which points towards the steepest descent
direction. Hence, this process corresponds to a downhill
walk. The approximation of the temporal derivative by a
forward difference du/dt ≈ (uk+1 − uk)/τ yields an iter-
ative update scheme. Starting with an initial solution u0

the algorithm iterates

uk+1 = uk − τ
dE(uk)

du
(4.20)

and converges to the next local minimum or saddle.
Possible convergence criteria are discussed later in Sec-
tion 4.3.5. The choice of the step size τ > 0 steers both
speed and stability of the method. Large step sizes easily
lead to oscillation or unstable behavior while small step
sizes make the method extremely slow. The best trade-
off between these contrary goals depends on the particular
problem instance and is not easy to find. Compared to other algorithms, if applicable, gra-
dient descent is usually among the slowest methods. An example plot of gradient descent
iterations is shown in Figure 4.4.

Projected Gradient Descent is a generalization of the gradient descent method to minimize
functions on a restricted domain UC (also called feasible domain). To this end, the update
step in Equation (4.20) is augmented with a projection step onto the feasible domain. The
method is summarized in Algorithm 1. For unrestricted domains, the projection is the identity
operation ΠUC

(u) = u and the method reduces to the ordinary gradient descent. Figure 4.4

Algorithm 1 Projected Gradient Descent (PGD)

Input : initial value u0 ∈ U
Output: locally optimal value u∗ ∈ UC

loop until convergence

uk+1 = ΠUC

[
uk − τ

dE(uk)
du

]
(4.21)

end loop
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illustrates gradient descent steps in comparison with the ones from projected gradient descent.
The bottom figure shows the case that the function minimum is not in the feasible area, then
the gradient step leads outside the feasible set and the projection step yields again a feasible
point at the boundary of the feasible set.

4.3.2. Lagged Diffusivity Fixed Point Iterations

In [231], Vogel and Oman proposed the lagged diffusivity fixed point iteration (LDFPI)
scheme for minimizing a total variation-based cost function. For our purposes we consider
TV together with a linear data term f : V → R, but in principle this algorithm works with
any additional term that has a linear derivative.

u∗ = arg min
u∈U





∫

V

|∇u| dx + λ

∫

V

fu dx



 (4.22)

The extremality condition is given by zeroing the corresponding Euler-Lagrange equation

λf − div
(
g∇u

)
= 0 with g =

1
|∇u|ǫ

(4.23)

which corresponds to a diffusion equation and function g, called diffusivity, steers the amount
of diffusion in every point. The perturbed norm |·|ǫ avoids a division by zero and is defined
above in Equation (4.18). The diffusivity g is the only source of nonlinearity in Equa-
tion (4.23) for the case that g locally depends on u. The key idea is to neglect this dependency
for a moment and treat g as a constant. Then Equation (4.23) describes a linear system of
equations which can be solved efficiently. In order to deal with the nonlinearity of g, the
problem of solving the linear system with constant g is embedded within an outer fixed point
iteration in which g is recomputed based on the current estimate of u. In this sense, the value
of the diffusivity g is lagging behind, because for solving the linear system the previous value
of g is always used. Chan et al. [49] proved the linear convergence of this algorithm.

Hence, a linear system needs to be solved for every fixed point step. Vogel-Oman [232] use a
preconditioned conjugate gradient solver for that purpose. Similar to Kolev et al. [135] we use
Successive Over-Relaxation (SOR) [245] because of its quick convergence and its suitability
for parallelization. With the SOR update equations, the outer fixed point iteration scheme
can be shown to correspond to a Quasi-Newton method (see [134, Proposition 2]). After

Algorithm 2 Lagged Diffusivity Fixed Point Iterations (LDFPI)

Input : initial value u0 ∈ U
Output: globally optimal value u∗ ∈ U

loop until convergence ⊲ fixed-point iteration
gk ← g(uk) ⊲ re-compute diffusivities
uk+1 ← solve: 0 = λf − div

(
gk∇uk+1

)
⊲ solve linear system with fixed diffusivities

end loop

discretizing function u and the differential operators the Euler-Lagrange equation with fixed
diffusivities in Algorithm 2 can be written as the linear system 0 = Au − b in which A is
a sparse matrix containing the discretized differential operators. The sparsity of A makes
the implementation and parallelization of the SOR algorithm easy, as been described in the
following.
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Gauss-Seidel and Successive Over-Relaxation Algorithms aim to solve a linear system of
equations

Ax = b (4.24)

with respect to vector x ∈ R
n for a given vector b ∈ R

n and a given matrix A ∈ R
n×n with

A = L∗ + U being split into a lower triangular matrix with diagonal entries L∗ and the upper
triangular matrix U .

L∗ =




a11 0 · · · 0

a21 a22
...

...
. . . 0

an1 . . . an,n−1 ann




(4.25) U =




0 a12 · · · a1n

0 0
...

...
. . . an−1,n

0 . . . 0 0




(4.26)

Figure 4.5.: Lin-
ear extrapolation
in Successive Over-
relaxation: The
algorithm step from
xk to x̄k+1 is further
extrapolated to xk+1.

By using the decomposition of matrix A and by introducing a tem-
poral dependency of vector x, Equation (4.24) can be cast into an
iterative numerical update scheme.

(L∗ + U)x = b (4.27)

x = L−1
∗ (b− Ux) (4.28)

xk+1 = L−1
∗ (b− Uxk) (4.29)

This is the Gauss-Seidel algorithm which is guaranteed to converge
as long as matrix A is either diagonally dominant, that is ∀i : |aii| ≥∑

j 6=i |aij |, or symmetric and positive definite [17].

The algorithm can be further accelerated by the following simple lin-
ear extrapolation step.

xk+1 = (1− ω)xk + ωx̄k+1 (4.30)

For any interpolation or extrapolation variable ω ∈ (0, 2) the algo-
rithm is proven to converge [124, 36]. In our experiments, values
ω ∈ [1.5, 1.9] gave the best performance.

Algorithm 3 Successive Over-Relaxation (SOR)

Input : initial value x0 ∈ R
n

Output: solution x∗ ∈ R
n

loop until convergence

x̄k+1
i =

1
aii

(
bi −

∑

j>i

aijxk
j

︸ ︷︷ ︸
U

−
∑

j<i

aijxk+1
j

︸ ︷︷ ︸
L∗

)
∀i ∈ {1, . . . , n} (4.31)

xk+1 = (1− ω)xk + ωx̄k+1 (4.32)

end loop

4.3.3. Fast Iterative Shrinkage and Thresholding Algorithm

Many problems in computer vision consist of minimizing the sum of two terms, mostly a data
term and a regularization term. In [20], Beck and Teboulle proposed an efficient algorithm
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for minimizing the sum of two convex functions

min
u∈U

F (u) + G(u) (4.33)

for a smooth function G(u) and a possibly nonsmooth function F (u). The algorithm is an
accelerated variant based on a class of iterative shrinkage and thresholding algorithms (see for
example [66]) which have a runtime complexity ofO (1/k). In contrast, the accelerated FISTA
is proven to converge in O

(
1/k2

)
time. The first step in Equation (4.34) of the algorithm

Algorithm 4 Fast Iterative Shrinkage and Thresholding Algorithm (FISTA)

Input : initial value u0 ∈ U , upper bound L ≥ L(G) on the Lipschitz constant L(G) of
∇G.

Output: globally optimal value u∗ ∈ U
initialize ū1 = u0, τk = 1
loop until convergence

uk = proxL−1F

(
ūk −

1
L
∇G(ūk)

)
(4.34)

τk+1 =
1
2

(
1 +

√
1 + 4(τk)2

)
(4.35)

ūk+1 = uk +

(
τk − 1
τk+1

)
(uk − uk−1) (4.36)

end loop

is a gradient descent step in the differentiable component G and a subsequent subgradient
descent step in the non-differentiable component F . Step three in Equation (4.36) is a linear
extrapolation step similar to the one in the Successive Over-Relaxation Algorithm 3 and the
step before Equation (4.35) computes the step width of the extrapolation adaptively. The
proximity operator proxτG(·) (e.g. see [58]) implicitly performs a subgradient descent step of
step size τ on the functional G and is defined as

proxτG(u) := arg min
v

{
1
2
‖u− v‖2 + τG(v)

}
. (4.37)

4.3.4. First Order Primal-Dual Algorithm

In [173, 46], Chambolle and Pock suggested an algorithm for minimizing the sum of two
convex functions one of which is allowed to be non-differentiable.

min
u∈U

F (Ku) + G(u) (4.38)

Both functions F, G : U → R need to be proper, convex, lower-semicontinuous functions.
The input of the function F is transformed by a linear operator K : U → P and F itself
can be non-differentiable. In most of our applications, F will represent the non-differentiable
total variation regularizer by the 2-norm and K = ∇ being the gradient operator. The
corresponding adjoint operator K∗ (Definition 2.8) can be found via Definition 2.11 to be
K∗ = −div.

Using the definitions of the convex conjugate (Definition 2.6) and the adjoint operator (Defi-
nition 2.8) the so called primal minimization problem in Equation (4.38) can be transformed
into the following equivalent (primal-dual) saddle point problems (see Section 4.2.2) or the
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dual maximization problem:

min
u∈U

F (Ku) + G(u) (primal) (4.39)

= min
u∈U

max
p∈P
〈Ku, p〉 − F ∗(p) + G(u) (primal-dual) (4.40)

= max
p∈P

min
u∈U
〈u, K∗p〉 − F ∗(p) + G(u) (dual-primal) (4.41)

= max
p∈P

−(F ∗(p) + G∗(−K∗p)) (dual) (4.42)

The algorithm in [173, 46] solves the primal-dual saddle point problem in Equation (4.40) by
iterating the numerical update scheme in Algorithm 5. The first two update steps represent

Algorithm 5 First Order Primal-Dual (PD) Algorithm

Input : initial values u0 ∈ U, p0 = 0
Output: globally optimal value u∗ ∈ U

loop until convergence

pk+1 = proxσF ∗

(
pk + σKūk

)

uk+1 = proxτG

(
uk − τK∗pk+1

)
(4.43)

ūk+1 = uk+1 + θ(uk+1 − uk)

end loop

a projected gradient descent in the primal variable and the projected gradient ascent in the
dual variable. The third step is an extrapolation step which is needed to guarantee algorithm
convergence. Moreover, the step sizes σ > 0, τ > 0 need to be sufficiently small, in particular
τσL2 < 1 with L being the Lipschitz constant of F which can be estimated by the Frobenius
norm of operator K, i.e. L = ‖K‖.

The algorithm also makes use of the proximity operator (defined in Equation (4.37)) which is
a generalization of a projection operator onto a convex set. If the function G of the proximity
operator proxG(x) is the characteristic function of a convex set C, that is, G(x) = χC(x),
where χC(x) := {0 if x ∈ C,∞ else}, then the proximity operator simplifies to the Euclidean
projection, denoted as ΠC , onto the set C. Thus, proxχC

(x) = ΠC(x) (please refer to [58] for
more details).

Primal-Dual Gap. The dual maximization problem in Equation (4.42) is useful to analyze
the algorithms’ convergence, because the algorithm does not necessarily decrease the pri-
mal energy or increase the dual energy in every step. Instead the algorithm minimizes the
difference of both energies, called the primal-dual gap, defined as

Gap(u, p) = F (Ku) + G(u) + F ∗(p) + G∗(−K∗p) . (4.44)

Preconditioning. In a follow-up work, Pock and Chambolle [175] suggested a better way for
choosing the step sizes in the update steps in order to improve the convergence speed of the
algorithm. In a slightly modified update scheme, the real-valued step sizes τ, σ are replaced
by corresponding matrices T, Σ which can provide different step sizes for each dimension. In
particular, Lemma 2 in [175] suggests to use diagonal preconditioners by choosing the primal
and dual step sizes as follows. Let K be an m × n matrix with n = dim U and m = dim P ,
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then choose T = diag(τ1, . . . , τn) and Σ = diag(σ1, . . . , σm) with

τj =
1

∑m
i=1 |Ki,j |

2−α , σi =
1∑n

j=1 |Ki,j |
α (4.45)

for any α ∈ [0, 2]. Throughout this thesis we always used α = 1. In sum, the preconditioned
primal-dual algorithm is a slight modification of Algorithm 5. The necessary conditions for

Algorithm 6 Preconditioned First Order Primal-Dual (PD) Algorithm

Input : initial values u0 ∈ U, p0 = 0
Output: globally optimal value u∗ ∈ U

loop until convergence

pk+1 = proxΣF ∗

(
pk + ΣKūk

)

uk+1 = proxT G

(
uk − TK∗pk+1

)
(4.46)

ūk+1 = uk+1 + θ(uk+1 − uk)

end loop

the algorithms’ convergence are still valid and faster convergence rates have been empirically
shown for several computer vision applications [175].

Essentially, the step size for each dimension is scaled by the operator norm of the correspond-
ing matrix row Ki,∗ or matrix column K∗,j , respectively. This choice of step size acts like
a normalization and equalizes the step sizes among different dimensions with respect to the
function scale. The intuition behind this scaling is the fact that a gradient descent converges
very fast if the shape of the cost function is isotropic, because the gradient direction always
points towards the global optimum as shown in Figure 4.6 (a). If the cost function has an
anisotropic shape the convergence is slower because the gradient direction does not necessar-
ily point towards the minimum. Depending on the cost function and the chosen step size this
may lead to the typical zig-zag pattern of gradient descent iterations, see Figure 4.6 (b). For
the optimization problem in Equation (4.38), matrix K has large influence on the anisotropy
of the overall function shape. With Equation (4.45) this information is used to rescale the
step sizes independently for each dimension to get a convergence behavior that is closer to
the isotropic case and usually leads to faster convergence as illustrated in Figure 4.6 (c).

(a) (b) (c)
Figure 4.6.: Plots of gradient descent iterations on an isotropic and an anisotropic convex function
schematically illustrate the principle of the preconditioning [175] for the primal-dual algorithm. (a)
gradient descent quickly approaches the minimum on convex functions with isotropic shape, (b) the
same convex function has been scaled in one dimension leading to slower convergence due to zig-zag
patterns in the gradient descent, (c) proper dimension-wise scaling of the step sizes improves the
convergence rate.
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Many optimization problems in computer vision can be cast into the form of Equation (4.38).
For this problem class the preconditioned primal dual algorithm is currently among the fastest
ones available for efficient minimization, especially if each update step in Equation (4.46) can
be parallelized over the function domain. On the downside, this algorithm usually needs
more memory due to the additional dual variable and extra storage for a copy of the primal
variable needed for the extrapolation step.

4.3.5. Convergence Criteria

For the optimization algorithms discussed above different convergence criteria are possible
and found in the literature. In this section we briefly discuss their properties. The following
convergence criteria have been considered in this thesis:

1. Fixed number of iterations. The number of iteration depends on the optimiza-
tion algorithm and the particular problem instance and should thus be chosen to be
sufficiently large. It is usually necessary to also check one of the following criteria.

2. Energy based. For methods which reduce the energy in every iteration, such as gradi-
ent descent, it is reasonable to check if the percental energy change between consecutive
iterations falls below a predefined threshold θE .

∣∣∣∣∣
E(uk−1)− E(uk)

E(uk)

∣∣∣∣∣ < θE (4.47)

This scheme is not suited for the primal-dual algorithm because it minimizes the differ-
ence between primal and dual energies, that is, the primal dual gap (Equation (4.44)).
Each of these energies may decrease or increase in arbitrarily small amounts between
two iterations. Therefore, for the primal-dual algorithm the scheme above should be
modified to check the convergence of the primal-dual gap rather than the primal energy:

∣∣∣∣∣
Gap(uk−1, pk−1)−Gap(uk, pk)

Gap(uk, pk)

∣∣∣∣∣ < θGap . (4.48)

3. Solution based. A simple convergence check is look at the percental change between
two consecutive solutions:

|uk − uk+1|

|uk|
< θU . (4.49)

Even for large problems, this criterion is usually very cheap to compute because the
current solution uk is computed anyway. Note that this method is not robust to oscilla-
tions, which may for instance occur for large step sizes in the gradient descent scheme.
This can be tackled by combining the scheme with one of the above ones.

The energy computations in Equations (4.47) and (4.48) are usually costly to compute. To
keep the numerical optimization fast, a common remedy is to the check convergence only
after a set of iterations of the algorithm rather than in every iteration.

4.4. Discretization

Since we formulate our approaches in a continuous setting we still need to discretize all equa-
tions and operators for their numerical implementation. A legitimate question is why we
describe all theory in a continuous setting and not directly on a discrete grid. A continu-
ous formulation has several advantages: 1) the theory is independent of the choice of the
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underlying grid and only the discretization needs to be changed when switching to another
grid representation. 2) Some continuous formulations are simpler and more general (e.g.
rotational invariance with respect to the input data). 3) Discrete approaches suffer from
metrication errors stemming from the underlying grid structure which do not vanish in the
limit if the grid size is refined (see Klodt et al. [133]).

For the discretization of images, we consider a two dimensional regular Cartesian grid of size
N ×M with equidistant grid spacing hΩ ∈ R≥0

Ω =
{

(i · hΩ, j · hΩ) ∈ R
2
∣∣∣ i, j ∈ Z, 1 ≤ i ≤ N, 1 ≤ j ≤M

}
. (4.50)

Likewise, we use a three dimensional regular Cartesian grid of size O × P × Q for the dis-
cretization of the volume with grid spacing hV ∈ R≥0:

V =
{

(i · hV , j · hV , k · hV ) ∈ R
3
∣∣∣ i, j, k ∈ Z, 1 ≤ i ≤ Q, 1 ≤ j ≤ P, 1 ≤ k ≤ Q

}
. (4.51)

In this thesis we use simple finite difference schemes to approximate differential operators on
a discrete grid, because for our setting they offer the best trade-off between computational
efficiency and sufficient approximation accuracy (see [45] for more information).

In the following we describe the discretization of the differential operators for the three-
dimensional case. The two- and four-dimensional cases are analog. The gradient operator
∇u =

(
∂u
∂x , ∂u

∂y , ∂u
∂z

)T is discretized as

(∇u)i,j,k =
(
δ+

x ui,j,k, δ+
y ui,j,k, δ+

z ui,j,k

)T (4.52)

discrete derivatives for the gradient operator are approximated via forward differences

δ+
x ui,j,k =

ui+1,j,k − ui,j,k

hV
δ+

y ui,j,k =
ui,j+1,k − ui,j,k

hV
δ+

z ui,j,k =
ui,j,k+1 − ui,j,k

hV
(4.53)

In order to ensure the adjointness (Definition 2.8) of the gradient and the divergence operator,
i.e. ∇∗ = −div, a similar condition has to be fulfilled in the discrete setting, that is, for every
p ∈ P and u ∈ U the equation 〈∇u, p〉P = 〈u,−div(p)〉U should hold. This fixes the choice
of discretizing the divergence operator div : P → U of a vector field p = (p1, p2, p3)

div p =
∂p1

∂x
+

∂p2

∂y
+

∂p3

∂z
(4.54)

with corresponding backward differences

(div p)i,j,k = δ−
x p1

i,j,k + δ−
y p2

i,j,k + δ−
z p3

i,j,k (4.55)

being defined as

δ−
x pi,j,k =

p1
i,j,k − p1

i−1,j,k

hV
δ−

y pi,j,k =
p2

i,j,k − p2
i,j−1,k

hV
δ−

z pi,j,k =
p3

i,j,k − p3
i,j,k−1

hV
.

(4.56)
This discretization scheme has been used for the gradient descent and primal-dual opti-
mization methods in combination with the corresponding boundary conditions. For solving
the linearized Euler-Lagrange Equation (4.23) within the LDFPI-scheme the following dis-
cretization has been applied. The divergence operator with diffusivity g is according to its
definition

div(g∇u) =
∂

∂x

(
g ·

∂u
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)
+

∂

∂y

(
g ·
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)
+

∂

∂z

(
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)
(4.57)
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The outer spatial derivates are approximated by means of central differences evaluated at
half-grid locations:
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In turn, the derivatives at half-grid locations are approximated by central derivatives of
adjacent pixels and the corresponding diffusivity value is averaged:
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The advantage of computing derivatives between grid points is that this scheme still only
needs the common small 6-neighborhood structure, although second derivates need to be
approximated. This makes the scheme highly efficient, especially when implemented on a
GPU.
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5. Introduction

A picture is worth a thousand words.

Arthur Brisbane
(Newspaper Editor, 1864 - 1936)

One of the most impressive abilities of human vision is the extraction of three-dimensional
information from images. Human observers have an excellent ability to generate plausible 3D
models of objects around them – even from a single image. To this end, they partially rely
on prior knowledge about the geometric structures and primitives in their world. Yet, they
also generate plausible models of objects they have never seen before. It is beyond the scope
of this work to contemplate on the multitude of criteria the human visual system may be
employing for solving the single-view reconstruction problem. Instead, we will demonstrate
in this part, that for a large variety of real-world images very simple extremality assumptions
give rise to convincing 3D models.

From the mathematical point of view, depth information is lost due to the projection. In
contrast to multi-view methods, this operation cannot be simply inverted. Hence, depth
information can only be guessed by image features like object contours, edges and texture
patterns. Especially for images of textured objects under complex lighting conditions, shape
from shading methods usually fail to work and further assumptions or user interactions are
required.

In this part of the thesis we aim to reconstruct objects from single real-world photographs
taken under arbitrary light conditions and containing objects with arbitrary topology and
texture. An example for single-view reconstruction is shown in Figure 5.1. We aim to quickly
generate plausible 3D models from single images and tackle the ill-posedness of the problem
with simple priors, and user input which we aim to keep as low as possible. To further
simplify the problem, we do not aim for an accurate metric 3D reconstruction. In many cases
such as photo or video editing, it often suffices to have an approximate shape of the object
in question.

Figure 5.1.: Illustration of single-view reconstruction task. The goal is to obtain 3D geometry from
a single input image.
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Before we define our problem setting and detail our approach in Section 5.4, we give an
overview of related work in the following section and classify them with respect to their
major properties.

5.1. Related Work and Classification of Single-View
Reconstruction Algorithms

In this section we give a survey on the subject of single-view reconstruction. We provide an
introduction to the field and examine basic image information and assumptions that are used
in order to compensate for ill-posedness. In the next section we then review, categorize and
compare existing state-of-the-art approaches.

For specific assumptions imposed on an image a variety of methods to estimate 3D geometry
exist in literature. However, a thorough comparison has not been carried out so far.

The reason for this lies partly in the significant diversity of existing approaches which in
turn is due to the inherent ill-posedness of the underlying problem: during image formation,
depth is irrecoverably lost. In their effort to make the problem tractable, single-view methods
have come up with an abundance of very different assumptions, methods and priors to infer
the geometry of a depicted scene or object. The reconstruction precision of such approaches
exceeds that of plausible estimates only in very few cases. Consequently, the reconstruction
objectives are of very different nature, which makes a comparison difficult.

The geometric information that is to be retrieved from a single image can be of very different
manifestation reaching from purely relational information, sparse metrics or dense depth
information to a complete 3D model of a single object or even a scene. This circumstance in
combination with the inherent ill-posedness of the problem is the main reason for the strong
diversity that is witnessed among the works in single-view reconstruction and it is by no
means a straightforward task to develop a taxonomy let alone a comparison.

In the following we will give an overview on the different types of image information ("image
cues”) used in the different reconstruction processes and list typical priors that are assumed
in order to overcome the ill-posedness. This will also serve as a survey on related single-view
works. Later in Section 5.2, we will classify a number of single-view approaches and compare
their properties.

5.1.1. Image Cues

Approaches to single-view reconstruction extract specific higher or lower level information
contained in the input image either automatically or with the help of user input. This
information is then interpreted to infer geometric relations of the depicted object or scene.
In the following we list the most important categories and give prominent references.

Shading. The problem of Shape from Shading (SfS) is to infer a surface (height field) from a
single gray level image by using the gradual variation of shading that is induced by the surface
interaction of light. Some approaches also co-estimate lighting conditions and reflection
properties. In general, the goal is to find a solution to the following image formation model

R(n(x)) = I(x) , (5.1)

where I is the image, n is the normal field of the surface and R is the reflectance function
which is dependent on the object. In most SfS approaches a Lambertian reflectance model
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is assumed. There are, however, other models which also include the specular case (e.g.
Wang et al. [235]). SfS is an ill-posed problem, although there has been progress on deriving
conditions for unique solutions by Prados and Faugeras [180].

As shown by Durou et al. [75] and Zhang et al. [254] reconstruction from real world images
is limited in the sense that each approach exhibits special and sometimes unrealistic require-
ments on lighting conditions or reflection properties. Especially the presence of texture is
an issue. Work has been done, however, to incorporate interreflection [162], shadowing and
perspective projection [61] just to name a few. One of the first minimization approaches to
SfS is by Ikeuchi and Horn [120]. For a current survey see Durou et al. [75].

Shadow. The shadow that is thrown by objects conveys geometric information relative to
the viewpoint of the light source. This information can be used to narrow down possible
reconstruction results. Often point light sources have to be assumed as soft shadows do not
provide enough information. Furthermore, shadow is not always thrown on known geometry,
which makes the problem even more complex. Apart from reconstruction ambiguities, it is
not straightforward to extract shadow borders from images. References include works by
Daum and Dudek [67], Kender and Smith [131], Yu and Chang [246] and Hatzitheodorou
[109].

Contour Edges. Contour edges are salient structures in the image that are induced by sur-
face discontinuities, occlusion, object boundaries or reflectance changes. They give evidence
for geometry and relative pose/position of objects. Junction points or corners, where multiple
contour edges meet or end, are also of importance for single-view reconstruction.

Subclasses of contour edge-based methods are contour-based and silhouette-based reconstruc-
tion methods. Shape from Contour approaches try to infer geometry from given or estimated
object contours. With contour, we refer to the set of all visible points on a surface, whose
image rays are tangent to the surface. In most cases reconstructions are ambiguous, es-
pecially smooth surfaces often do not exhibit sufficient contour lines in the image. Shape
from Contour approaches based on closed contour drawings include Horaud et al. [112],
Ulupinar et al. [214] and Li et al. [151]. Karpenko et al. [127, 126] interpret user line draw-
ings. Other single-view reconstruction approaches that use contour edges for reconstruction
include [70, 104, 138, 110, 192, 193].

Silhouette. Closely related to Shape from Contour are approaches that infer geometry given
the object silhouette. Such as in a shadow play, the silhouette of an object is defined as the
set of all points in the image plane being covered by the projection of the objects’ surface
onto the image plane. Thus, the silhouette forms a solid shape with a featureless interior and
with a single closed contour that corresponds to the outline of the object.

The goal of silhouette based approaches is to find a geometric reconstruction, whose projection
into the image plane agrees with the silhouette. As there are always infinitely many objects
that are silhouette consistent this cue suffers from inherent ambiguity if used alone.

There are several silhouette based single-view reconstruction algorithms that we will consider
in more detail later. These include works by Prasad et al. [182, 183], Oswald et al. [1] and
Töppe et al. [3]. Related to these approaches are a class of sketch based modeling tools e.g.
by Igarashi et al. [117], Karpenko et al. [126] and Nealen et al. [163].

Texture. Besides geometry, the appearance of real world objects is also determined by
texture. Although a complete distinction from shading is not possible, texture is considered
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as an inherent property of an object rather than a result of an interaction of light and
geometry.

If one assumes objects to have a regular and known texture it is possible to infer their
geometry from the way the texture is deformed after image projection. These Shape from
Texture approaches, obviously, impose strong constraints on the reconstructable objects. An
example constitutes the work of Malik and Rosenholtz [158].

Further single-view reconstruction algorithms that use texture cues include Super et al. [208],
Hassner and Basri [108] and Vetter et al. [226]. Approaches that combine texture and
contour edges for reconstruction by considering so-called ’superpixels’ are Hoiem et al. [110]
and Saxena et al. [193].

Defocus. Due to physical aspects of image formation, the sharpness of a depicted object
correlates with its distance to the camera. This fact can be used to infer a dense depth map
from an image. However, the accuracy of such methods is limited and camera calibration is
necessary. References include works from Levin [149] and Bae and Durand [16].

Location. The location of objects in the image can infer semantic knowledge of the objects.
For example, ground, floor or sky can be identified more easily from their location in the
image. This information can be helpful for 3D reconstructions. Hoiem et al. [110] reconstruct
vertical objects by distinguishing them from the ground and the sky. Delage et al. [70] use a
Bayesian network to identify floor pixels.

5.1.2. Priors

Priors are of utter importance in single-view reconstruction in order to compensate for the
problem of ill-posedness. Depending on the ultimate reconstruction goal and the target
group of objects, different priors or a combination of them can be applied. Priors can either
be chosen in fixed form, or they can be gained by learning. Furthermore, there are low-level
and high-level priors. In the following we will list priors that are most frequently assumed in
single-view reconstruction.

Smoothness. Smoothness can be defined as the small spatial change of some property. In
single-view reconstruction we are often not able to infer a dense reconstruction. It is therefore
good practice to choose among the possible reconstruction surfaces those which tend to be
smooth. Smoothness naturally plays a significant role in the reconstruction of curved surfaces
as in [253, 183],[1, 3].

Smoothness in a wider sense can also be learned as the consistency of object surfaces. Hoiem
et al. [110] use a machine learning approach to find image features indicating the assignment of
neighboring superpixels to the same object. Saxena et al. [193] use image cues and geometric
relations to learn the relative depth of neighboring superpixels. Liu et al. [154] use a semantic
segmentation of the image and infer a depth value for each pixel based on the predicted
semantic label.

Geometric Relations. Basic geometric relations are often encountered specifically in man-
made environments. As a prior they can help to dissolve ambiguities in the reconstruction
process. As part of those basic geometric relations we consider e.g. coplanarity, collinearity,
perpendicularity and symmetry. An early work which makes use of such simple rules is the one
of Lowe [157]. By assuming planes to be parallel or perpendicular one can also derive camera
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parameters (see Criminisi et al. [63]). This is even more important, as perspective projection
is not angle-preserving and the image of parallel lines will not necessarily be parallel. We
can often assume objects to stand vertically on the ground plane [110, 70, 104], or can infer
depth relations from parallel lines or curves [140].

Symmetric objects exhibit identical sections, which are projected to different locations in the
input image. Knowing that these parts possess similar geometric and reflectance properties
one can interpret their respective projections as views of the same object part from different
observation points. This can be seen as a weak multi-view scenario providing more infor-
mation for reconstruction [111]. Also, occluded geometry can be inferred from this prior
[104].

Volume / Area. With smoothness as a prior on its own, solutions tend to be trivial or
flat depending on the reconstruction approach. Adding a volume prior to the reconstruction
process will ensure an inflation of the object surface and will still result in a certain compact-
ness of the solution due to the smoothness assumption. Volume priors can be found in Li et
al. [151] and Töppe et al. [3].

Semantic Relations. Semantic relations infer high-level knowledge on the relative position
and inner structure of different objects and their depth values. Han and Zhu [104], for
example, infer occluded points based on semantic human knowledge, e.g. that leaves are
connected to the plant. Koutsourakis et al. [138] introduce semantic knowledge to ensure
the consistency of different floors. Finally, knowledge on the location of the ground and the
sky represents an important cue for 3D reconstruction. The ground is often used as starting
point for the reconstruction as objects, especially walls, are usually perpendicular to this
plane [104, 70, 110].

Shape Priors. Shape priors impose high-level knowledge on the objects to be reconstructed.
Among commonly used priors, full shape priors usually impose the strongest restrictions. On
the one hand, this leads to a rather limited applicability of the approach. On the other hand,
the reconstructions are usually of high quality and work automatically without user input.

Shape priors can be defined or learned. In [138], Koutsourakis et al. define a full shape
grammar for the reconstruction of facades. This limits the approach to the reconstruction of
buildings in urban environments. In contrast, Rother and Sapiro [190] and Chen and Cipolla
[55] shape priors are learned from a database of sample objects. Hence, they are not a-priori
limited to a specific object class. However, their choice of samples intrinsically limits their
approach to the object classes represented in the database.

The representation of shape priors ranges from specified sets of grammar rules over parametric
models to probabilistic priors. In [55], Chen and Cipolla learn depth maps of human bodies
by means of principal component analysis. This model imposes strong assumptions on the 3D
object, but the dimension of the state space is reduced and only valid 3D reconstructions are
obtained. In contrast, Rother and Sapiro [190] impose less strong assumptions on the learned
model. For each object class a shape prior is learned as the relative occupancy frequency of
each voxel in the object.

5.2. Classification of Single-View Approaches

In this section we will examine selected works in the field of single-view reconstruction. Due
to the abundance and diversity of approaches we selected algorithms with respect to the
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following criteria: the chosen approaches are applicable to real world images that are not
taken under special or unrealistic material or lighting conditions. We rather concentrate
on approaches inferring objects from ordinary photographs where reconstruction plausibility
is more important than precision. The selection, furthermore, focuses on works that are
representative and state-of-the-art. We provide a classification and examine differences and
similarities.

For classification we found several categories ranging from application domain over image cues
and shape priors to user input and the surface representation. However, these categories are
not suitable to partition the set of approaches due to strong overlap. Instead, we think that
the most important information for each single-view reconstruction approach is its application
domain, i.e. the set of objects and scenes, which can be reconstructed. We introduce the
literature sorted by the following four categories:

• Curved Objects

• Piecewise Planar Objects

• Learning Specific Objects

• 3D Impression from Scenes

We distinguish between objects and scenes. Reconstructions of scenes aim at producing
3D impressions or depth maps from the whole scene contained in the image. In contrast,
object reconstruction approaches focus on single objects within the scene. Approaches that
reconstruct curved objects principally aim at producing arbitrary, mostly smooth objects.
Often, minimal surface approaches are used, which try to minimize the surface of the object
given a fixed area or volume. The second class consists of methods that focus on piecewise
planar objects such as buildings and man-made environments. Furthermore, we distinguish
arbitrary curved and planar objects from learning specific objects. Approaches in this class
cannot reconstruct arbitrary objects, but are inherently limited to specific object classes
by shape information learned from sample databases. Finally, we discuss methods that do
not aim to reconstruct exact or plausible 3D geometry but rather provide a pleasing 3D
Impression from Scenes. In the following, we will present and classify approaches to related
single-view approaches.

5.2.1. Curved Objects

In this category we list works which aim to reconstruct object with a smooth curved surface.
Since we also aim for reconstructing curved objects, this category will list competing methods
to which we later compare and which we therefore describe in more detail.

Zhang et al. Zhang et al. [253] proposed a method for interactive depth map editing based
on an input image. The depth map reconstruction is the result of minimizing a thin plate en-
ergy [74], which favors smooth surfaces and penalizes bending. User input comes as a variety
of constraints on the thin plate energy that can be placed interactively into the depth map.
These comprise of position constraints, surface normals, surface or normal discontinuities,
planar region constraints or curves on which curvature or torsion is minimized.

From a mathematical point of view the thin plate energy for a continuous function f on a
two dimensional rectangular domain [0, 1]2 is defined as:

E(f) =
1∫

0

1∫

0


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where functions α, β, γ : [0, 1]2 → {0, 1} extend the thin plate model with weighting functions
which can be used to define local surface discontinuities. Zhang et al. [253] discretize this
minimization problem by introducing a function gi,j that samples values of the depth map
function f : [0, 1]2 → R on a discrete rectangular grid, that is, gi,j = f(id, jd), with d being
the distance between neighboring grid points. For efficiency and accuracy the grid resolution
can be locally refined by the user. By stacking all values gi,j into a single vector g and by
discretizing the partial derivatives of g, the energy in Equation (5.2) can be written in matrix
form as

gT Cg subject to Ag = b , (5.3)

where the condition Ag = b may contain any constraints on the surface that can be expressed
in linear form. For a detailed description on how the constraints are incorporated into this
quadratic optimization problem we refer to [253]. A description of these constraints from the
user’s point of view is given later together with the experimental comparison ( Section 9.1.2).

Prasad et al. The works [183] and [182] of Prasad et al. introduce a framework for single-
view reconstruction of curved surfaces. The method is related to the one by Zhang et al. [253]
but aims at reconstructing closed surfaces.

The main idea involves computing a parametric minimal surface by globally minimizing the
same thin plate energy ( Equation (5.2)) as Zhang et al. [253], with the difference, that they
minimize with respect to a parametrized 3D surface f : [0, 1]2 → R

3 instead of a depth map.
As a result, function domain and image domain are no longer equivalent. For implementation
purposes, the discretization of the optimization problem with constraints is done similar to
Zhang et al. [253] (see Equation (5.3)).

The choice of constraints is mostly different from Zhang et al. [253]. The main source of
reconstruction information is the silhouette: Prasad et al. [183] use the fact that normals
along the contour generator c(t) can be inferred from the 2D silhouette as by definition they
are parallel to the viewing plane for a smooth surface. This leads to the constraints

π(f(u(t), v(t))) = c(t) (5.4)

n(c(t))f(u(t), v(t)) = 0 ∀t ∈ [0, 1] , (5.5)

where n(c(t)) is the normal at the point c(t) in R
3 and π the orthographic projection function.

The user has to determine the coordinates (u(t), v(t)) of the contour generator in parameter
space. This is done by placing lines within the grid of the parameter space and setting them
in correspondence with the parts of the contour generator. Similar to Zhang et al. [253]
the user can employ position constraints to define the object inflation locally. Also, surface
discontinuities can be optionally specified to relax the surface smoothness along curves in the
parameter space.

Important to note is that in order to define the topology of the object, the user has to define
which parts of the parameter space boundary are connected. For example, the connection of
the left and right boundary defines a cylindrical shape of the function domain.

Other Approaches. Francois and Medioni [87] present an interactive 3D reconstruction
method based on user labeled edges and curves, which are represented by non-uniform rational
basis splines (NURBS). The reconstructed objects are either modeled as generalized cylinders
or as a set of 3D surfaces. Terzopoulos et al. [209] propose deformable elastic 3D shape models,
which evolve around a symmetry axis and whose projection into the image is attracted by
strong image gradients. Cohen and Cohen [56] propose a generalization of snakes to 3D
objects based on a sequence of 2D contour models for medical images.
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Another approach to 3D reconstruction are surfaces of revolution [241, 221, 57]. They are
common in man-made objects and represent a subclass of straight homogeneous generalized
cylinders. These approaches strongly rely on the assumption of rotational symmetry of
the objects. A surface of revolution is obtained by revolving a planar curve, referred to
as scaling function, around a straight axis, the revolution axis. For instance, Colombo et
al. [57] formulated the task of 3D reconstruction as the problem of determining the meridian
curve from the imaged object silhouette and two given imaged cross sections. Based on
the computation of fixed entities such as the vanishing line or the objects’ symmetry axis,
camera calibration can be done and the surface of revolution is inferred. Texture acquisition
is obtained by inverse normal cylindrical projection.

A closely related work that appeared after the publication of our approach is by Chen et
al. [54]. Based on basic one input the approach fit generalized cylinders or cuboids into
an input image which automatically align with prominent edges in the image and texture
information is automatically transferred. Several of these simple objects can be combined to
create more sophisticated 3D models. This work can be seen as a generalization of the work
by Terzopoulos et al. [209].

5.2.2. Piecewise Planar Objects and Scenes

In this category we specify related single-view approaches that aim to reconstruct piecewise
planar surfaces as can be found in many man-made environments. Some methods even restrict
the orientation between surfaces to be either parallel or orthogonal. Generally, methods in
this category are not able to reconstruct smooth, curved surfaces.

Kanade [125] recovers shape from geometric assumptions. The world is modeled as a collec-
tion of plane surfaces, which allows for a qualitative object recovery. Quantitative recovery
is achieved by mapping image regularities into shape constraints. Piecewise planar scenes
are computed by Liebowitz et al. [153] based on camera and geometric constraints such as
parallelism and orthogonality, e.g. for the reconstruction of buildings.

Criminisi et al. [63] describe how 3D affine measurements can be obtained from a single image
that depicts planes and parallel lines under perspective projection. They estimate vanishing
points and lines in order to compute distances between parallel planes and lines which finally
enables them to compute a basic 3D model of the scene.

Delage et al. [70] describe an approach for the automatic reconstruction of 3D indoor scenes
that only contain orthogonal planes (“Manhattan world assumption”). Assuming the cam-
era calibration to be known, the authors estimate plane and edge orientation by means of a
Markov Random Field (MRF) [150]. The work can be seen as a modification and generaliza-
tion of Sturm and Maybank [206].

In [138], Koutsourakis et al. generate urban 3D reconstructions from images by estimating
the parameters of a 3D shape grammar in a MRF approach, so that the generated building
best matches the image. Due to the shape grammar the approach always produces well-
defined buildings and the complexity of the optimization as well as the dimensionality of the
problem is strongly reduced.

Apart from symmetry and planarity, two additional shape constraints for object reconstruc-
tion are introduced by Li et al. [151]: maximum compactness and minimum surface. Instead
of computing vanishing lines, Kushal et al. [139] perform 3D reconstruction of structured
scenes by registering two user indicated world planes. In a later work Kushal and Seitz [140]
compute 3D models from vanishing points, line directions and face normals estimated from a
single image. Focusing on parallel lines in images of man-made architecture, Ramalingam and
Brand [184] recover their corresponding 3D location via linear programming approach with
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connectivity constraints. Hong et al. [111] study the relation between symmetry of objects
and the viewer’s relative pose to the object. An important principle for the reconstruction
of symmetric objects is that one image of a symmetric object is equivalent to multiple im-
ages. Li et al. [152] describe a method for reconstructing piecewise planar objects by using
connectivity and perspective symmetry of objects.

5.2.3. Learning Specific Objects

In this category we list approaches which learn the shape or regularity properties of objects
or relations between objects and their appearance.

Han and Zhu [104] propose a 3D reconstruction approach based on manually defined shape
priors, which can on the one hand be applied to polyhedral objects and on the other hand
to grass and tree-like objects. They represent the 3D scene by two graphs, one consisting 3D
objects, the other representing the relations between the objects in the scene. The model is
formulated in a Bayesian approach and optimized with Markov Chain Monte Carlo methods.

Rother and Sapiro [190] present a framework for pose estimation, 2D segmentation, object
recognition and 3D reconstruction from a single image which is well-suited to reconstruct
bounded objects, but not for elaborate scenes. They learn object shapes by means of voxel
occupancy grids and perform the reconstruction task as a probabilistic recognition of object
pose and class. The most likely hypothesis is computed with a branch and bound algorithm.

Chen and Cipolla [55] propose to infer 3D information directly from shape priors which
are learned from pairs of silhouettes and corresponding depth maps. Both silhouettes and
depth maps are aligned and dimensionality-reduced by principal component analysis (PCA)
and then learned with Gaussian processes. Any given input silhouette is then similarly
transformed via PCA and the most likely depth estimate for each pixel is estimated via the
trained model.

Hassner and Basri [108] aim at depth reconstruction from a single image based on examples.
The samples are given in a database containing mappings of images to their corresponding
depth maps. For an input image depth values are inferred by comparing image patches with
patches in the database and selecting the most likely one. Different depth hypotheses from
overlapping patches are averaged to obtain depth value for single pixels. To ensure consistency
of neighboring patches a global optimization procedure is proposed which iteratively refines
depth estimates.

Vetter [226] learned a parametric model for the reconstruction of faces by applying PCA to a
database of registered 3D faces. Then the model parameters can be found, which best explain
the given image of a face. In Nagai et al. [161], objects are learned from a sample database.
A Hidden Markov Model is used to model the correspondence between intensity and depth.

5.2.4. 3D Impression from Scenes

In [110], Hoiem et al. propose a fully automatic approach for creating 3D models from single
photographs, which is similar to the creating of pop-up illustrations in children’s books. They
divide the world into ground, sky and vertical objects. The appearance of these classes is
described by image cues, which are learned from sample images. An input image is segmented
into superpixels. In a probabilistic framework the superpixels are grouped into constellations
with similar class labels which are inferred by the trained model. Finally, a depth impression
of the picture is obtained by aligning class label-specific image parts in 3D.

Saxena et al. [193] propose another approach for obtaining 3D structure from a single image
of an unstructured environment. The only assumption the authors make is that the world
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consists of small planes, whose 3D position and orientation is to be estimated. Similar to
Hoiem et al. [110], the authors start out from a superpixel segmentation of the image. Then
they train a Markov random field (MRF) model to learn the relation between superpixel
appearance and its corresponding depth and orientation. A polygonal mesh representation
of a scene is obtained via maximum-a-posteriori inference of the trained MRF-model.

In Horry et al. [114], simple 3D scenes are reconstructed based on user input such as vanishing
points and foreground objects. The background of the scene is then modeled by rectangles, the
foreground by hierarchical polygons. Barinova et al. [18] propose a reconstruction approach
for urban scenes yielding visually pleasing results. The method is based on fitting 3D models
containing vertical walls and ground plane to the scene.

In the next section we give an overview of selected methods from each category and compare
them with respect to their properties.

5.3. Properties and Comparison of Related Works

In this section, we compare important works of each category with respect to several prop-
erties: image cues, priors, surface representation, important assumptions, type of user input
and the method’s precision. Table 5.1 compares the presented approaches and the ones
presented in this thesis (Chapters 6 to 8) with respect to their categories and properties.

Category, Assumptions, Precision. As described above we grouped the related work into
four categories which reflect their application domain (first column of Table 5.1).

The applicability of an approach is also characterized by its assumptions. If specific as-
sumptions are not met, the reconstruction process easily fails. Assumptions for each method
are given in column five of Table 5.1. Typical assumptions are a calibrated camera [70], a
simplified scene composition [70, 110], an object database containing samples for learning
shape priors [55, 190], a specific viewpoint [183],[1, 3] or given geometric properties such as
vanishing lines of reference planes [63].

Another aspect which determines the applicability of an approach to a special problem is its
envisaged reconstruction precision. The precision of a method describes the consistency of
the reconstructed 3D model with the actual real-world scene. There is a trade-off between
precision and reconstruction feasibility. One can witness a correlation between reconstruc-
tion precision and requirements: the higher the envisaged reconstruction precision, the more
assumptions and priors have to be made on the reconstruction domain.

Reconstructions can be exact, if the computed lengths and orientations of the inferred 3D
objects accurately correspond to the true object. This is usually only possible from a single
image if strong assumptions are made, e.g. piecewise planarity with only three orientations
(Manhattan assumption) [70] or known reference heights and a calibrated camera [63]. Since
such strict assumptions strongly limit the applicability of the approach, most approaches
revert to computing the most likely solution to the ill-posed reconstruction problem with-
out guaranteeing accuracy. The probability of a solution is usually measured by means of
manually defined [104] or learned shape priors [55, 190]. We call this a plausible precision.
Finally, there are approaches, which do not aim at reconstructing the real object. Instead,
they find solutions which look good to the viewer when animated [110, 193, 114] or can be
used to synthesize approximate new views of a scene. We call these reconstructions pleasing.
The reconstruction precision is indicated in the third column of Table 5.1. ’=’ indicates
exact precision, ’≃’ plausible precision and ’≈’ a pleasing approach. Surely there are smooth
transitions between these classes.
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Chapter 6/[1] [data term]
Vol.Prior 3D ≃ closed sideview, silhouette, x x x
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Chapter 7/[3] [volume]
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Hoiem ≈ pw. planar simple scene: none x x x L x
et al. [110] depth map sky, vertical

walls&ground
Saxena ≈ pw. planar world none x x x L x
et al. [193] depth map consists

of planes

Table 5.1.: Overview of single-view methods: for each approach the most important characteristics
are indicated: Precision of the method (exact ’=’, plausible ’≃’, pleasing ’≈’), the representation of
the 3D object, important assumptions made by the approach, the necessary user input and image
cues as well as priors which are used in the reconstruction process. The ’L’ indicates a prior which is
not assumed but learned by the approach. Terms in brackets are optional.
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Surface Representation. The form of surface representation is closely connected to the re-
construction algorithm. Firstly, only those objects are reconstructable that can be adequately
represented. Seen the other way, the representation has to reflect the reconstruction domain
well. And secondly, the representation model has to conform to the reconstruction process.

We distinguish between parametric and implicit surface representations. Each point on a
parametric surface can be uniquely described by a coordinate. Finding a good parametriza-
tion for an object is not straightforward and generally does not allow for arbitrary topology.
Implicit surfaces are a remedy to this problem. In this case, the surface is a level set of a
function defined on R

3. In contrast to parametric surfaces, single points on the surface are
not easily addressed. Polygonal surface representations are neither parametric nor implicit
and can be described as a planar graph with nodes, edges and faces. Note that polygonal
surfaces often describe piecewise planar objects but are also used for approximating curved
parametric surfaces. Finally, representations can describe closed and non-closed 3D surfaces.
As a special case we also regard depth maps, which assign a depth to each pixel.

User Input. Completely automatic reconstruction on a single input image is often not fea-
sible or the output quality is limited. Therefore, the user may be required to give cues on
important image features. Most single-view approaches aim to keep user input simple. User
input can convey low-level and high-level information. High-level input is of semantic quality
which helps to dissolve ambiguities, e.g. the object silhouette.

This stands in contrast to tools, where the user models the reconstruction with the help of
low-level operations, e.g. by specifying surface normals or cutting away object parts. Many of
these modeling tools [123, 240, 24] are not image-based and therefore only remotely related to
single-view reconstruction. In Sketch-based modeling tools [117, 163, 126, 249] such modeling
operations are driven by user indicated lines. The Teddy tool will be examined in more detail
in Section 9.1. A pioneering work on free-form modeling was done by Welch and Witkin [238].

There is 2D and 3D user input. Most approaches use 2D input which in most cases is directly
applied to the input image [1, 3, 5]. This involves tracing contour edges such as creases or
vanishing lines. 3D input is directly applied to the reconstruction surface and is often more
involved for the user as he needs to navigate in 3D space (e.g. specifying normals).

For some approaches the user input stage is separate from the reconstruction stage [55, 63].
Other methods compute a first reconstruction, then the user can add further input and the
process is continued, e.g. [253, 183] and our proposed approaches in Chapters 6 to 8 [1, 3, 5].

Image Cues and Priors. The last columns of Table 5.1 list image cues and priors that have
been identified previously in Sections 5.1.1 and 5.1.2. A cross “x” in the respective column
indicates that a methods makes use of this image cue or prior, while an “L” indicates that
the respective prior has been learned.

5.4. Problem Setting and Approach

In this section we specify the problem setting of our single-view reconstruction approach,
explain its central idea and crucial assumptions, describe the general workflow and mention
possible applications.

48 5. Introduction



Part II: Single-View Reconstruction

5.4.1. Problem Statement

As revealed in the previous three sections, so far every approach to single-view reconstruction
focuses on a particular subproblem, e.g. the class of scenes or input images, in order to
diminish the ill-posedness of the reconstruction task. Currently, there exists no method
which is able to deal with the complexity of the general single-view reconstruction problem.
Our work will not be an exception. We will also restrict the problem class and rely on a small
amount of user input. Our setup pursues the following goals for the reconstruction of objects
from a single image:

• Arbitrary object topology (with respect to its silhouette).

• Arbitrary light conditions.

• Arbitrary object materials.

• Realistic and non-realistic images (e.g. photos and paintings).

• Full 3D object reconstructions (rather than depth maps).

• Amount of user input is small/minimal.

These goals can be achieved by restricting the class of objects and making the following
assumptions:

• Plausible rather than exact 3D reconstructions.

• The exact silhouette of the object in the image is provided.

• The topological genus of the object is equal to the one of its silhouette.

• The input image is a side view of a plane symmetric object.

• We aim for curved objects with a mostly smooth surface.

In order to achieve these goals we propose the following approach to single-view reconstruc-
tion.

5.4.2. Our Approach to Single-View Reconstruction

In our approach we heavily rely on the expressiveness of object silhouettes, which can usually
be simply extracted with recent segmentation techniques. Further, we will make use of the
minimum surface approach explained previously in Chapter 3. That is, we are aiming to
compute a minimal surface that is consistent with a given input silhouette. Clearly, these
two ingredients are not sufficient to create three-dimensionals objects, since a silhouette-
consistent minimal surface is entirely flat. Therefore, additional constraints are necessary
to inflate the objects into the third dimension. In short, we propose silhouette-consistent
minimal surfaces in combination with an inflation heuristic for reconstruction of objects from
a single image.

Intuitively, the main idea of our approach can be imagined as inflating a soap bubble (like
the one in Figure 7.2) that spans the frame of arbitrary shape which is given by the silhouette
contour of some object.

In this part of the thesis, we propose two different inflation techniques which are appropriate
for this task and reflect our goal of minimizing the amount of user input. We also explain
how these approaches can be efficiently computed. Moreover, we will show on a variety of
examples that our approach targets a limited but relevant class of real world objects.

Applications. Our approach is particularly applicable to image and video editing, e.g. when
copying an object from one image to another. With our approach novel views on the object
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can be synthesized. Once having a 3D representation of an object one can change its material
and reflectance properties. One can perform three-dimensional relighting of the object, e.g.
to match the light conditions in the new image after copying. Further, our approach is a
powerful tool for any image-based modeling. The reconstructions by our algorithms which
are quickly obtained from images can be the basis for professional 3D modeling of objects.

5.4.3. Workflow of Our Approach

Image Segmentation. The main prerequisite for a good result with our approach is a rea-
sonable silhouette. The number of holes in the segmentation of the target object determines
the topology of the reconstructed surface. Notably, our reconstruction method can also cope
with disconnected regions of the object silhouette. A silhouette S : Ω → {0, 1}, being a
binary function on the image domain Ω, can be obtained with any segmentation algorithm
like the interactive methods in [28, 29, 189, 219]. We use a graph cut-based algorithm which
calculates two distinct regions based on respective color histograms which are defined by
representational pen strokes given by the user (see Figure 5.2). Based on the silhouette ob-

Graphcut-based

segmentation

user strokes

interactive

adaption of

model

parameters

Figure 5.2.: General workflow of all proposed single-view reconstruction approaches. With scribble-
based interactive segmentation a silhouette is extracted. A first reconstruction is obtained and can
be refined with additional user-input until the reconstruction result is satisfactory.

tained from the input image, our approach inflates the silhouette and produces a first 3D
reconstruction (third picture in Figure 5.2). The user can then interactively adapt the model
parameters until it suits the needs of the user and eventually obtains the final reconstruction
(last picture in Figure 5.2).

5.5. Conclusion

This chapter introduced the problem of single-view reconstruction and gave a detailed overview
of the works which are most related to our problem setting. At the same time we provided
a classification of single-view approaches into four classes: curved objects, piecewise planar
objects, learning specific objects, and 3D impression from scenes. We have identified several
properties that help to compare the algorithms, namely: the type of surface representation,
method assumptions, type and amount of user input, precision of the output, as well as typ-
ical image cues and priors. Further, we defined our considered problem setting and outlined
our general approach. In the following three chapters we will discuss particular methods
for single-view reconstruction based on minimal surfaces which are combined with different
priors and surface representations.
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6. Single-View 3D Reconstruction with a
Shape Prior

We become what we behold. We shape our tools, and thereafter our tools shape us.

Marshall McLuhan
(Canadian Philosopher, 1911-1980)

6.1. Introduction

In this chapter, we propose a variational convex optimization approach to user-guided 3D
reconstruction from a single image. Figure 6.1 gives two examples for input and output of
our method. We make use of the previously explained minimal surface prior (Chapter 3)
and combine it with a novel silhouette-based shape prior in order to estimate 3D information
from a single image. The algorithm targets a limited but relevant class of real world objects.

Contributions. Our single-view reconstruction approach has several desirable properties and
makes the following contributions with respect to existing work:

• We present the first approach to single-view reconstruction with a non-parametric sur-
face representation. In contrast to existing work, our method can deal with any surface
topology and genus due to the proposed implicit surface representation.

• We propose a novel shape prior based on the distance transform of the silhouette that
provides a good inflation heuristic for many natural and man-made objects.

• Compared to other state-of-the-art methods our approach needs significantly less user
input in order to obtain comparable reconstructions.

• The approach can be solved efficiently in a globally optimal manner and is hence in-
dependent of the initialization. Due to parallelization, results can be computed in
interactive rates on consumer hardware.

In the following, we will introduce a variational framework for single-view reconstruction and
show how it can be solved by convex relaxation techniques. In Section 6.3, we give an overview
of the proposed reconstruction framework and explain how users can provide silhouette and

Figure 6.1.: Input images and textured reconstruction results from the method proposed in this
chapter.
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additional information with minimal user interaction. The viability of our approach is tested
on several examples in Section 6.4, followed by concluding remarks in Section 6.5.

6.2. Variational Framework for Single-View Reconstruction

6.2.1. Variational Formulation

Let V ⊂ R
3 be a volume surrounding the input image I : Ω→ R

3 with image plane Ω ⊂ V .
We are looking for a closed surface Σ ⊂ V which inflates the object in the image I and is
consistent with its silhouette S. For simplicity, an orthographic projection is assumed and
defined by π : V → Ω. In order to handle arbitrary topologies, the surface Σ is represented
implicitly by the indicator function u : V → {0, 1} denoting the exterior (u = 0) or interior
(u = 1) of the surface as u = 1int(Σ). The semantics and relations of these sets and functions
is illustrated in Figure 6.2.

A smooth surface with the desired properties is obtained by minimizing the following energy
functional:

E(u) = Edata(u) + νEsmooth(u) , (6.1)

where ν ≥ 0 is a parameter controlling the smoothness the surface. The smoothness term is
imposed via the weighted total variation norm (Definition 2.13)

Esmooth(u) =
∫

V

g(u) |∇u(x)| dx , (6.2)

where the diffusivity g : V → R≥0 can be used to adaptively adjust smoothness properties of
the surface in different locations. The range of g needs to be non-negative to maintain the
convexity of the model. The data term

Edata(u) =
∫

V

u(x) φshape(x)dx +
∫

V

u(x) φsil(x)dx (6.3)

realizes two objectives: volume inflation with a shape prior and silhouette consistency.

Image and Volume Silhouette Implicit Representation Surface Mesh

Figure 6.2.: Illustration of our volumetric setup and notation. The image domain Ω is centered
within the reconstruction volume V . We constrain the surface Σ, implicitly represented by function
u, to be consistent with the silhouette S.
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6.2.2. Silhouette Consistency

The function φsil(x) merely imposes silhouette consistency. It assures that all points pro-
jecting outside the silhouette will be assigned to the background (u = 0) and that all points
which are on the image plane and inside the object will be assigned as object (u=1):

φsil(x) =





−∞ if x ∈ S

+∞ if π(x) /∈ S

0 otherwise ,

(6.4)

where π(x) denotes the orthogonal projection of point x ∈ V onto the image plane Ω.

6.2.3. Volume Inflation

The volume inflation function φshape allows to impose some guess of the shape of the object.
The function can be adopted to achieve any desired object shape and may also be changed by
user-interaction later on. In this chapter, we make the simple assumption that the thickness
of the observed object increases as we move inward from its silhouette. For any point x ∈ V
let

dist(x, ∂S) = min
s∈∂S

‖x− s‖ , (6.5)

denote its distance to the silhouette contour ∂S ⊂ Ω. Then we set:

φshape(x) =

{
−1 if dist(x, Ω) ≤ h(π(x))

+1 otherwise ,
(6.6)

where the height map h : Ω→ R≥0 depends on the distance of the projected 3D point to the
silhouette according to the function

h(y) = min
{

λcutoff , λoffset + λfactor ∗ dist(y, ∂S)k
}

(6.7)

with four parameters k, λoffset, λfactor, λcutoff ∈ R≥0 affecting the shape of the reconstructed
object. How the user can employ these parameters to modify the computed 3D shape will be
discussed in Section 6.3.

Silhouette Constraints Silhouette Contour Distance Smooth Solution

Figure 6.3.: Illustration of the data term consisting of silhouette constraints and our proposed
distance-based shape prior. The surface is forced to be silhouette consistent by setting the gray area
(left) to infinity, while the silhouette itself is known to be part of the surface.
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Note that this choice of φshape implies symmetry of the resulting model with respect to the
image plane. Since the backside of the object is unobservable, it will be reconstructed properly
for plane-symmetric objects.

6.2.4. Optimization via Convex Relaxation

To minimize energy (6.1) we follow the framework developed in [135]. To this end, we
relax the binary assumption by allowing u to take on intermediate values, i.e. u : V →
[0, 1]. Subsequently, we can globally minimize the convex functional (6.1) by solving the
corresponding Euler-Lagrange equation

0 = φshape + φsil − ν div
(

g
∇u

|∇u|

)
, (6.8)

using the lagged diffusivity fixed-point iteration scheme described in Section 4.3.2. A global
optimum of the original binary labeling problem is then obtained by simple thresholding of
the solution of the relaxed problem (as described in Chapter 4).

6.3. Interactive Single-View Reconstruction

6.3.1. Interactive Editing

From the input image and silhouette a first reconstruction is generated, which - depending
on the complexity and the class of the object - can already be satisfactory. However, for
some object classes and due to the general over-smoothing of the resulting mesh, we propose
several editing techniques on a 1D (parameter) and a 2D (image space) level. The goal is to
have easy-to-use editing tools which cover important cases of object features.

In this chapter we present three different kinds of editing tools: parameter-based, contour-
based and curve-based tools. The first two classes operate directly on the data term of
Equation (6.1), whereas the third one alters the diffusivity of the TV-norm in Equation (6.2).

Shape Prior Parameters. By altering the parameters λoffset, λfactor, λcutoff and the exponent
k of the shape prior function in Equation (6.6), users can intuitively change the data term
in Equation (6.3) and thus the overall shape of the reconstruction. Note that the impact
of these parameters is attenuated with increasing importance of the smoothness term. The
effects of the offset, factor and cutoff parameters on the shape prior are shown in Figure 6.4
and are quite intuitive to grasp. The exponent k of the distance function in Equation (6.6)
mainly influences the objects curvature in the proximity of the silhouette contour. This can
be observed in Figure 6.4 showing an evolution from a cone to a cylinder just by decreasing
k.

Local Data Term Editing. Due to the use of a distance function for the volume inflation,
depth values of the data term will always increase for larger distances to the silhouette
contour. Thus, large depth values will never occur near the silhouette contour. However this
can become necessary for an important class of object shapes like for instance the bottom
and top of the vase in Figure 6.5. A simple remedy to this problem is to ignore user specified
contour parts during the calculation of the distance function. We therefore approximate the
object contour by a polygon which is laid over the input image. The edges of the polygon are
points of high curvature and each edge represents the contour pixels between the endpoints.
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k = 2 k = 1 k = 1/100

Figure 6.4.: Effect of λoffset, λfactor, λcutoff (left) and various values of parameter k and resulting
(scaled) shape prior plots for a circular silhouette.

Figure 6.5.: Top row: shape priors and corresponding reconstructions with and without marked
sharp contour edges. Bottom row: input image with marked contour edges (blue) and line strokes
(red) for local discontinuities which are shown right.

By clicking on the edge, the user indicates to ignore the corresponding contour pixels during
distance map calculation (see Figure 6.5 top right).

Local Discontinuities. Creases on the surface often add critically to the characteristic shape
of an object. With the diffusivity function of the smoothness term in Equation (6.2) we are
given a natural way of integrating discontinuities into the surface reconstruction. By setting
the values of g to less than one for certain subsets of the domain, the smoothness constraint
is relaxed for these regions. Accordingly for values greater than one smoothness is locally
fortified. To keep things simple, we let the user specify curves of discontinuities by drawing
them directly into the input image space. In the reconstruction space, the corresponding
pre-images are uniquely defined hyperplanes (remembering that we make use of parallel
projection). For the points lying on these planes or surrounding them, the diffusivity is
reduced resulting in a surface crease at the end of the reconstruction process.
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6.3.2. Implementation

In order to efficiently solve the Euler-Lagrange Equation (6.8) and allow fast interactive
modeling the choice of the solving method and its appropriate implementation is crucial to
achieve short calculation times.

Instead of minimizing Equation (6.1) with a gradient descent scheme, we solve the approxi-
mated system of linear equations with successive over-relaxation (SOR) as proposed in [135].
On the one hand, this increases the convergence speed drastically and on the other the solu-
tion method can be parallelized to further increase computational speed. Therefore, we make
use of the CUDA framework to implement SOR with a Red-Black scheme which speeds up
calculations by factor 6 compared to the sequential method. Moreover, the computational
effort for the surface evolution during interactive modeling can be further reduced by initial-
izing the calculations with the previous reconstruction result. For small parameter changes
this initialization is usually close to the next optimal solution. In sum, this allows single-view
reconstruction close to realtime.

6.4. Experiments

In the following we apply our method to several input images. We show different aspects of
the reconstruction process for typical classes of target objects. Further we mention runtimes
and limitations of the approach.

The experimental results are shown in Figure 6.6. Default parameters for the shape prior
(Equation (6.6)) are k = 1, λoffset = 0, λfactor = 1, λcutoff = ∞. Each row depicts several
views of a single object reconstruction starting with the input image.

The following main advantages are showcased in the examples. The fence (top row) is an
example of an object with complex topology, the algorithm can handle. Obviously recon-
structions of the shown type are nearly impossible to achieve with the help of parametrized
representations. The same example is also a proof for how little user interaction is necessary
in some cases to obtain a good reconstruction result. In fact, the fence was automatically
generated by the method right after the user segmentation stage. The rest of the examples
demonstrate the power of the editing tools described in Section 6.3. The reconstructions were
edited by adding creases and selecting sharp edges. It can be seen, that elaborate modeling
effects can be readily achieved with these operations. Especially for the cockatoo a single
curve suffices in order to add the characteristic indentation to the beak. No expert knowledge
is necessary. For the socket of the Cristo statue, creases help to attain sharp edges, while
keeping the rest of the statue smooth. It should be stressed, that no other post-processing
operations were used.

The experiments in the lower three rows stand for a more complex series of target objects.
A closer look reveals that the algorithm clearly attains its limit. The structure of the opera
building (third row) as well as the elaborate geometry of the bike and its drivers cannot
be correctly reconstructed with the proposed method due to a lack of information and more
sophisticated tools. Yet the results are appealing and could be spiced up with the given tools.
To keep the runtime and memory demand within convenient limits, we work on 2562-input
images. These result in a very detailed mesh. On a GeForce GTX card an update step of
the geometry takes about 2-15 seconds, dependent on the applied operation.

Figure 6.7 illustrates some possible applications of our single-view reconstruction approach
which can be used for image and video editing. Apart from novel view synthesis one can easily
change material and reflectance properties as shown in the pictures. Especially relighting of
objects is often necessary when they are copied from one image to another. With a plausible
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Figure 6.6.: Input images (1st column) and corresponding reconstruction results (2nd-4th column):
textured model, untextured geometry, textured model without image plane.

3D reconstruction the relighting is more realistic and probably needs less user-interaction
then a manual purely image-based relighting.
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Input with User-Strokes Stone Porcelain Varnish Aluminum

Figure 6.7.: Possible applications of our single-view reconstruction approach. Novel view synthesis
and change of material and reflectance properties of the surface.

6.5. Conclusion

In this chapter we presented the first variational approach for single-view reconstruction of
curved objects with arbitrary topology. It allows to compute a plausible 3D model for a
limited but reasonable class of single images. By using an implicit surface representation
we eliminate the dependency on a choice of surface parametrization and the subsequent
difficulty with objects of varying topology. The proposed functional integrates silhouette
information and additional user input. Globally optimal reconstructions are obtained via
convex relaxation. The algorithm can be used interactively, since the parallel implementa-
tion of the underlying nonlinear diffusion process on standard graphics cards only requires
short runtimes. The minimal surface prior and a plane symmetry prior strongly guide the
surface reconstruction process and thus simplify editing and modeling of these aspects. We
demonstrated that only few user-defined parameters are necessary to define a shape prior
that results in plausible object reconstructions. Compared to other works, the amount of
user input is small and intuitive, post-editing is kept simple and does not require expert
knowledge.

One disadvantage of the proposed shape prior is the edgy structure of central object parts
due to the fact that the applied distance transform has strong discontinuities at points with
equal distance to several points of the silhouette boundary. Although these discontinuities
are smoothed out locally by the minimal surface prior, they are usually visible on larger
scales and could make the user-editing tedious. In the next chapter, we show that perfectly
curved objects can be obtained even simpler by exchanging the shape prior with a volume
prior which also further decreases the amount of necessary user input.

58 6. Single-View 3D Reconstruction with a Shape Prior



Part II: Single-View Reconstruction

7. Single-View 3D Reconstruction with a
Volume Prior

Simplicity is the ultimate sophistication.

Leonardo da Vinci
(1452-1519)

7.1. Introduction

In the previous Chapter 6 we proposed a shape prior to tackle the inflation problem. Despite
a number of convincing results, this work suffers from several drawbacks: Firstly, imposing
a thickness proportional to the distance from the silhouette outline is very strong and not
always a correct assumption. Secondly, this inflation heuristic has strong discontinuities at
points having a similar distance to several points on the silhouette outline. Even for higher
smoothness values, this discontinuity is usually apparent in the reconstruction result. Thirdly,
the modeling requires a large number of not necessarily intuitive parameters controlling the
data term. In this chapter, we show that the shape prior can be replaced with a volume
prior which provides an inflation heuristic that is perfectly smooth and requires less tuning
parameters. The key idea is to compute a silhouette-consistent weighted minimal surface for a
user-specified volume. In this sense, the proposed formulation is closely related to the concept
of Cheeger sets – sets which minimize the ratio of area over volume [52]. Reconstruction
results with discontinuities such as the one Figure 7.1 can still be obtained by additional
scribble-based user input in the same manner as in the previous chapter.

Our shape prior approach and the related works on single-view reconstruction mentioned in
Section 5.1 have in common that they revert to inflation heuristics in order to avoid surface
collapsing. These techniques boil down to fixing absolute depth values, which undesirably
restrict the solution space. A precursor to volume constraints are the volume inflation terms
pioneered for deformable models by Cohen and Cohen [56]. However, no constant volume
constraints were considered and no implicit representations were used.

Image with User Input Reconstructed Geometry Textured Geometry
Figure 7.1.: The proposed method generates convincing 3D models from a single image computed
by fixed volume weighted minimal surfaces. Colored lines in the input image mark user input, which
locally alters the surface smoothness. Red marks low, yellow marks high smoothness (see Section 7.4.4
for details).
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Contributions. The main contributions of this chapter can be summarized as follows:

• We propose a weighted minimal surface approach for single-view reconstruction with a
volume constraint for surface inflation. To the best of our knowledge this is the first
work on convex shape optimization with guaranteed volume preservation.

• We show that the fixed-volume minimal surface problem is a convex problem which so-
lutions can be shown to be within provable energetic bounds from the optimal solution.

• Due to the volume constraint no further inflation heuristics are required. The amount
of user input is significantly reduced.

The work in this chapter was published in [3] and was part of a comparison to the previous
shape prior approach and other related works in [4, 6].

7.2. Fixed-Volume Minimal Surface Formulation

In this section, we will drop the data term that was used for surface inflation in the previous
Chapter 6. Therefore, the silhouette consistency of the surface will be enforced by means of
constraints to the minimal surface problem.

The weighted minimal surface problem is posed by minimizing the total variation over a
suitable set U of feasible indicator functions u ∈ BV(V, {0, 1}):

u∗ = arg min
u∈U

∫

V

g(x)|∇u(x)| dx , (7.1)

where ∇u denotes the derivative in the distributional sense and the surface smoothness is
locally affected by the weighting function g(x) : V → R≥0 which can be used for further
optional user modeling.

How does the set U of feasible functions look like? For simplicity, we assume the silhouette to
be enclosed by the surface. Then all surface functions that are consistent with the silhouette
S must be in the set

US =





u ∈ BV(V, {0, 1})
∣∣∣ u(x) =





0 if πΩ(x) /∈ S

1 if x ∈ S

0 or 1 otherwise





(7.2)

Minimizing Equation (7.1) with respect to the set US of silhouette consistent functions will
result in the silhouette itself. In the following section we will show a way to avoid this trivial
solution.

7.2.1. Volume Constraint

In order to inflate the solution of Equation (7.1) we propose to use a constraint on the size
of the volume enclosed by the minimal surface. We formulate this both as a soft- and as a
hard constraint and discuss the two approaches in the following.
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Hard Constraint. By further constraining the feasible set US one can force the reconstructed
surface to have a specific target volume Vt. We regard the problem

u∗ = arg min
u∈US∩UV

E(u) with E(u) =
∫

V

g(x)|∇u(x)| dx (7.3)

and UV =



u ∈ BV(V, {0, 1})

∣∣∣
∫

V

u(x) dx = Vt



 (7.4)

where UV denominates all reconstructions with bounded variation that have the specific
volume Vt.

Soft Constraint. For the sake of completeness we also consider the soft formulation of the
volume constraint. One can add a ballooning term to Equation (7.1):

EV (u) = λ



∫

V

u(x) dx− Vt




2

(7.5)

The integral quadratically punishes the deviation of the surface volume from a certain target
volume Vt. In contrast to the constant volume constraint above, this formulation comes with
an extra parameter λ which is why in the following we will focus on the hard constraints in
Equation (7.3) instead.

Different approaches to finding Vt can be considered. In the implementation the optimization
domain is naturally bounded. We choose Vt to be a fraction of the volume of this domain.
In a fast interactive framework the user can then adapt the target volume with the help of
instant visual feedback. Most importantly, as opposed to a data term driven model volume
constraints do not dictate where inflation takes place. Intuitively, this approach to single-
view reconstruction corresponds to a balloon being placed inside the silhouette-constrained
domain and being inflated to a given volume.

7.2.2. Fast Minimization

In order to convexify the problem in Equation (7.3) we make use of the relaxation technique
in [47], which is explained in Section 4.1. To this end we relax the binary range of functions u
in Equation (7.2) and Equation (7.4) to the interval [0, 1]. In other words we replace UV and
US with their respective convex hulls U rel

V and U rel
S . The corresponding optimization problem

is then convex:

Proposition 7.1. The relaxed set U rel := U rel
S ∩ U rel

V is convex.

Proof. The constraint in the definition of UV is clearly linear in u and therefore U rel
V is convex.

The same argument holds for US . Being an intersection of two convex sets U rel is convex as
well.

One standard way of finding the globally optimal solution to this problem is gradient descent,
which is known to converge very slowly. Since optimization speed is an integral part of an
interactive reconstruction framework, we employ a recently proposed significantly faster and
provably convergent primal-dual algorithm published in [173]. The scheme is based on the
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weak formulation of the total variation:

u∗
rel = min

u∈Urel

∫

V

g(x)|∇u| dx = min
u∈Urel

sup
|p(x)|2≤g(x)





∫

V

−u div p dx



 (7.6)

Optimization is done by alternating a gradient descent with respect to the function u and a
gradient ascent for the dual variable p ∈ C1

c (R3,R3) interlaced with an over-relaxation step
on the primal variable:





pk+1 = Π|p(x)|2≤g(x)(pk + τ · ∇ūk)

uk+1 = ΠUrel(uk + σ · div pk+1)

ūk+1 = 2uk+1 − uk

(7.7)

where ΠA denotes the projection onto the set A. Projection of p is done by simple clipping
while that of the primal variable u will be detailed in the next paragraph. The scheme in
Equation (7.7) is numerically attractive since it avoids division by the potentially zero-valued
gradient-norm which appears in the Euler-Lagrange equation of the TV-norm. Moreover,
it is parallelizable and we therefore implemented it on the GPU. On a volume of 63x47x60
voxels the computation takes only 0.47 seconds.

7.2.2.1. Projection Scheme

The projection ΠUrel in Equation (7.7) needs to ensure three constraints on u: Silhouette
consistency, constant volume and u ∈ [0, 1]. In order to maintain silhouette consistency
(Equation (7.2)) of the solution we restrict updates to those voxels which project onto the
silhouette interior excluding the silhouette itself.

For the projection ΠUrel(u) we make use of the algorithm by Boyle and Dykstra [31] which
computes the Euclidean projection of a point onto the intersection of arbitrary convex sets
and provably converges to the projection solution.

Figure 7.2.: Illustration of the projection
scheme by Boyle and Dykstra [31]. Alter-
nating projection onto different convex sets
finally leads to the projection onto their in-
tersection.

Formally, for our case step i of this algorithm re-
duces to two separate projections for volume and
unit domain





ui
V = ui−1

R − vi−1
V + Vd

|V |

vi
V = ui

V − (ui−1
R − vi−1

V )
(7.8)

{
ui

R = Π[0,1](ui
V − vi−1

R )

vi
R = ui

R − (ui
V − vi−1

R ) ,
(7.9)

where we initialize uR with the current uk in Equa-
tion (7.7) and vR, vV with zero. Π[0,1](u) sim-
ply clips the value of u to the unit interval and
Vd :=

∫

V
u dx − Vt is the difference between the target volume Vt and the current volume

of the values ui−1
R − vi−1

V . |V | is the number of voxels in the discrete implementation. In
Equation (7.9) ui

R represents the current estimate which converges towards ΠUrel(u) with
increasing iterations i.
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7.2.3. Optimality Bounds

Having computed a global optimal solution u∗
rel of the relaxed problem in Equation (7.6),

the question remains how we obtain a binary solution and how the two solutions relate
to one another energetically. Unfortunately no thresholding theorem holds, which would
imply energetic equivalence of the relaxed optimum and its thresholded version for arbitrary
thresholds.

Nevertheless we can construct a binary solution uthr via thresholding, but the threshold no
has to fulfill the volume constraint and can be found as follows:

Proposition 7.2. The relaxed solution can be projected to the set of binary functions in such
a way that the resulting binary function preserves the user-specified volume Vt.

Proof. It suffices to order the voxels x by decreasing values u(x). Subsequently, one sets the
value of the first Vt voxels to 1 and the value of the remaining voxels to 0.

Concerning an optimality bound the following holds:

Proposition 7.3. Let u∗
rel be the global optimal solution of the relaxed energy and u∗

bin the
global optimal solution of the binary problem. Then

E(uthr)− E(u∗
bin) ≤ E(uthr)− E(u∗

rel) . (7.10)

A proof and a discussion of this relation was given in Section 4.1.

7.3. Theoretical Analysis of Material Concentration

Figure 7.3.: The two cases considered in the analysis of the material concentration. On the left hand
side we assume a hemi-spherical condensation of the material. On the right hand side the material is
distributed evenly over the volume.

As we have seen above, the proposed convex relaxation technique does not guarantee global
optimality of the binary solution. The thresholding theorem [47] – applicable in the uncon-
strained problem – no longer applies to the volume-constrained problem. While the relaxation
naturally gives rise to a-posteriori optimality bounds, one may take a closer look at the given
problem and ask why the relaxed volume labeling u should favor the emergence of solid
objects rather than distribute the prescribed volume equally over all voxels.

In the following, we will prove analytically that the proposed functional has an energetic
preference for material concentration. For simplicity, we will consider the case that the
object silhouette in the image is a disk. And we will compare the two extreme cases of all
volume being concentrated in a ball (a known solution of the Cheeger problem) compared
to the case that the same volume is distributed equally over the feasible space (namely a
cylinder) – see Figure 7.3.
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Input Image Reconstruction +25% Volume +35% Volume

Figure 7.4.: The inflation of the reconstruction model can be intuitively changed by varying the
target volume.

Proposition 7.4. Let usphere denote the binary solution which is 1 inside the sphere and 0
outside – Figure 7.3, left – and let ucyl denote the solution which is uniformly distributed (i.e.
constant) over the entire cylinder – Figure 7.3, right. Then we have

E(usphere) < E(ucyl), (7.11)

independent of the height of the cylinder.

Proof. Let r denote the radius of the disk. Then the energy of usphere is simply given by the
area of the half-sphere:

E(usphere) =
∫

V

|∇usphere| dx = 2πr2. (7.12)

If instead of concentrated to the half-sphere, the same volume, i.e. v = 2π
3 r3, is distributed

uniformly over the cylinder of height h ∈ (0,∞), we have

ucyl(x) =
v

πr2h
=

2πr3

3πr2h
=

2
3

r

h
. (7.13)

inside the entire cylinder, and ucyl(x) = 0 outside the cylinder. The respective surface energy
of ucyl is given by the area of the cylinder weighted by the respective jump size:

E(ucyl) =
∫

V

|∇ucyl| dx =
(
1−

2r

3h

)
πr2 +

2r

3h
(πr2 + 2πrh) =

7
3

πr2 > E(usphere). (7.14)

7.4. Experimental Results

Having detailed the idea of variational implicit weighted surfaces and their fast computation,
in this section we will study their properties and applicability within an interactive recon-
struction environment. We will compare our approach to methods which resort to heuristic
inflation techniques and finally show that appealing and realistic 3D models can be generated
with minimal user input.

7.4.1. Cheeger Sets and Single-View Reconstruction

Solutions to Equation (7.3) are Cheeger sets [52], that is, minimal surfaces for a fixed volume.
In the simplest case of a circle-shaped silhouette one therefore expects to get a ball. Figure 7.5
demonstrates that in fact round silhouette boundaries (in the unweighted case) result in round
shapes.
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Input Image Reconstructed Geometry Textured Geometry

Figure 7.5.: The proposed volume prior approach favors minimal surfaces for a user-specified volume.
Therefore the reconstruction algorithm is ideally suited to compute smooth, round reconstructions.

Input Image Data Term Reconstruction with Reconstruction with
as Shape Prior Data Term Volume Prior

Figure 7.6.: Using a silhouette distance transform as shape prior the relation between data term
(second from left) and reconstruction (third from left) is not easy to assess for a user. With only one
parameter our method delivers more intuitive and natural results.

7.4.2. Fixed Volume vs. Shape Prior

Many approaches to volume reconstruction incorporate a shape prior in order to avoid surface
collapsing. A common heuristic is to use a distance transform of the silhouette boundary for
depth value estimation. We show that the fixed-volume approach solves several problems of
such a heuristic.

Figure 7.6 shows that it is hard to obtain ball-like surfaces with a silhouette distance transform
as a shape prior. Another issue is the strong bias a shape prior inflicts on the reconstruction
resulting in cone-like shapes (see Figure 7.7) and inhibiting the flexibility of the model. The
uniform fixed-volume approach fills both gaps while exhibiting the favorable properties of the
distance transform (as seen in Figure 7.9). With the results in Figure 7.6 and Figure 7.7 we
directly compare our method to [1] and [183], in which the reconstruction volume is inflated
artificially.

7.4.3. Varying the Volume

Apart from the weighting function of the TV-norm (see next section), the only parameter
we have to determine for our reconstruction is the target volume Vt. The effect on the
appearance of the surface can be witnessed in Figure 7.4. One can see that changing the
target volume has an intuitive effect on the resulting shape which is important for a user
driven reconstruction.
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Input Image Reconstruction with Reconstruction with
Shape Prior Volume Prior

Figure 7.7.: In contrast to the shape prior approach [1], the proposed volume prior does not favor
a specific shape and generates more pleasing 3D models. Although in the center reconstruction the
dominating shape prior can be mitigated by a higher smoothness, this ultimately leads to the vanishing
of thin structures like the handle.

Image with User Input Reconstructions Geometry
Figure 7.8.: The proposed volume prior also allows to generate 3D models with sharp edges. The
red user strokes define locations for which the surface can be non-smooth by down-weighting the
corresponding costs in the regularizer (see Section 7.4.4 for more details).

7.4.4. Weighted Minimal Surface Reconstruction

So far all presented reconstructions came along without further user input. The weight
g(x) of the TV-norm in Equation (7.6) can be used to locally control the smoothness of the
reconstruction: with a low g(x), the smoothness condition on the surface is locally relaxed,
allowing for creases and sharp edges to form. Conversely, setting g(x) to a high value locally
enforces surface smoothness. For controlling the weighting function we employ a user scribble
interface. The parameter associated to each scribble marks the local smoothness within the
respective scribble area and is propagated through the volume along projection direction. In
Figure 7.8 we show that with this tool not only round, but other very characteristic shapes
can be modeled with minimal user interaction.

The air plane in Figure 7.1 represents an example, where a parametric shape prior would fail
to offer the necessary flexibility required for modeling protrusions. Since our fixed-volume
approach does not impose points of inflation, user input can influence the reconstruction
result in well-defined ways: Marking the wings as highly non-smooth (i.e. low g(x)) effectively
allows them to form. Note that apart from Figures 7.1 and 7.8 the adaption of the target
volume was the only user input for all experiments.

In Figure 7.10 we compare the proposed volume prior with the shape prior from the pre-
vious Chapter 6 on a variety of objects. The results look mostly similar, but the different
inflation heuristics are often distinguishable, because the shape prior via distance transform
has a discontinuity at points that have similar distance to several boundary points. As a re-
sult, the reconstructions with the volume prior exhibit smoother surfaces. A more thorough
comparison of the two approaches and other state-of-the-art methods will be given later in
Chapter 9.
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Input Reconstruction Different View Geometry

Figure 7.9.: Volume inflation dominates where the silhouette area is large (bird) whereas thin struc-
tures (twigs) are inflated less.

7.5. Conclusion

In this chapter, we presented a novel framework for single-view reconstruction which allows
to compute 3D models from a single image in form of Cheeger sets, i.e. minimal surfaces for a
fixed user-specified volume. The framework allows for appealing and realistic reconstructions
of curved surfaces with minimal user input. The reconstruction problem is posed as finding
a silhouette-consistent minimal surface with a user-specified volume. The resulting convex
energy is optimized globally using an efficient provably convergent primal-dual scheme. A
parallel GPU implementation allows for computation times of a few seconds, allowing the
user to interactively increase or decrease the volume. We proved that the computed surfaces
are within a bound of the optimum and that they exactly fulfill the target volume. On
a variety of challenging real world images, we showed that the proposed method compares
favorably over existing implicit approaches, that volume variations lead to families of realistic
reconstructions and that additional user scribbles allow to locally reduce smoothness so as
to easily create protrusions.

The proposed approach also has several drawbacks. Similar to the shape prior approach
(Chapter 6) the volumetric surface representation needs considerable memory resources and
is computationally expensive due to the high number of variables to be optimized. Therefore,
the image and depth resolution is limited which may lead to noticeable discretization artifacts.
Another disadvantage is that the volume-preserving thresholding scheme does not guarantee
optimality of the original binary problem, that is, the thresholding Theorem 4.1 does not
hold in combination with the volume constraint. In the next chapter, we will show that the
same energy with a parametric surface representation tackles all these disadvantages.
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Input Image Reconstruction with Geometry with
Shape Prior Volume Prior Shape Prior Volume Prior
(Chapter 6) (Chapter 7) (Chapter 6) (Chapter 7)

Figure 7.10.: Output of single-view methods with the shape prior (Chapter 6) in comparison with
the volume prior (Chapter 7) for several examples.
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8. Single-View 2.5D Reconstruction with a
Volume Prior

Chi conosce la geometria, può compremendere tutto in questo mondo.

Galileo Galilei
(1564-1642)

8.1. Introduction

In this chapter, we show that the single-view method with the volume prior from the previous
Chapter 7 can be solved more efficiently and accurately by using a parametric 2.5D surface
representation, rather than an implicit 3D surface representation. In comparison to the
implicit method, the optimization becomes globally optimal and reconstruction results, such
as the one in Figure 8.1, can be obtained by an order of magnitude faster. With a 2.5D
representation, we refer to a height map that is parametrized in 2D and assigns a height in
the third dimension to every point in the domain.

In short, the 3D implicit approach from the previous Chapter 7 has the following drawbacks:

• The volumetric representation imposes strong constraints on memory and runtime.
Even with an efficient GPU-accelerated primal-dual algorithm the method requires
around a second of computation time for moderate resolution reconstructions. As a
consequence, higher-resolution 3D models cannot be generated at interactive runtimes.

• Although the method in the previous Chapter 7 was shown to provide exactly volume-
consistent solutions, the algorithm is based on convex relaxation and thresholding. In
the absence of a threshold theorem, the method is not guaranteed to provide the globally
minimal surface of specified volume. Furthermore, it is not clear whether subsequent
thresholding of the relaxed solution actually leads to a spatially coherent structure
(rather than a scattered set of voxels).

• The method is essentially computing a height map, because the advantages of a fully
volumetric representation are not used. The required discretization of possible depth
values imposes a limitation on the possible resolution in the z-direction.

Input Image Reconstructed Geometry Textured Geometry

Figure 8.1.: The proposed algorithm computes optimal silhouette-consistent minimal surfaces of
given volume in computation times below 1s.
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Contributions. In this chapter, we propose a novel algorithm for computing single-view
reconstructions which remedies the above shortcomings. More precisely:

• We propose to solve the above problem by means of a height-field representation. As a
consequence, we can allow for a spatially continuous set of depth values.

• Due to the 2.5D surface representation we have substantially reduced computation time
and memory requirement (quadratic rather than cubic). Experiments confirm that the
proposed method allows to compute solutions about an order of magnitude faster, even
for higher resolutions.

• In contrast to the fully volumetric approach in Chapter 7, the proposed method does not
require convex relaxation and thresholding. As a consequence, the algorithm provably
computes silhouette-consistent minimal surfaces of a specified volume.

The method in this chapter was published in [5].

8.2. Fixed Volume Minimal Surfaces on a Two-Dimensional Grid

The main difference to the fully volumetric approach is the surface representation. The
objects’ surface will be represented by means of a height map

u : S ⊂ Ω→ R≥0 (8.1)

assigning a height value u(x, y) to each point (x, y) ∈ S of the silhouette which is embedded
in the image domain Ω ⊂ R

2.

uy dy

dy

dx

ux dx

u(x, y)

ds

Figure 8.2.: The area of an infinitesi-
mal surface element ds based on the par-
tial derivatives of u.

As shown in the schematic plot in Figure 8.2, an in-
finitesimal surface area element ds of the surface repre-
sented by the function u can be computed as the area
of the parallelogram via the cross product and is given
by

ds =

∣∣∣∣∣∣∣




dx
0

ux dx


×




0
dy

uy dy




∣∣∣∣∣∣∣
=
√

1 + |∇u|2 dx dy

(8.2)
where ux and uy are abbreviations for the correspond-
ing partial derivatives of the height map, that is ∇u =

(ux, uy)T =
(

∂u
∂x , ∂u

∂y

)T
. The overall area of the surface

denoted by u is given by

E(u) =
∫

Σ

ds =
∫

S

√
1 + |∇u|2 dx dy (8.3)

This minimal surface energy has first been derived by Joseph Louis Lagrange [147, p.354ff]
in the year 1760, but without any additional constraints. More studies of this energy can be
found in [118, p.8] and [65].

Again, for brevity dx will denote a vectorial integrand being two-dimensional in this chap-
ter. Reconstructing a minimal surface enclosing a given target volume Vt can therefore be
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expressed as the minimization problem

u∗ = arg min
u∈U

E(u), with U =



u ∈ C1(S,R≥0)

∣∣∣∣∣

∫

S

u dx = Vt



 . (8.4)

Note, that the target volume Vt in the volume constraint effectively defines the object’s
average depth value, since the volume is the product of the average depth value and the
silhouette area.

Proposition 8.1. The two-dimensional fixed volume minimal surface problem defined in
Equation (8.4) is convex.

Proof. The volume constraint in Equation (8.4) is linear in u, and thus defines a convex
optimization domain. Moreover, the functional E in Equation (8.4) is convex. This can be
shown by using the triangle inequality, the linearity of the gradient operator and the zero-
order convexity condition in Definition 2.3. For any functions u1 and u2 and any α ∈ (0, 1)
the following inequality holds

E(αu1 + (1− α)u2)

=
∫ √

1 +
∣∣∇
(
αu1 + (1− α)u2

)∣∣2 dx

=
∫ √

1 +
∣∣α∇u1 + (1− α)∇u2

∣∣2 dx

=
∫ ∥∥∥∥∥

(
α∇u1 + (1− α)∇u2

α + (1− α)

)∥∥∥∥∥ dx

=
∫ ∥∥∥∥∥α

(
∇u1

1

)
+ (1− α)

(
∇u2

1

)∥∥∥∥∥ dx (8.5)

≤
∫

α

∥∥∥∥∥

(
∇u1

1

)∥∥∥∥∥+ (1− α)

∥∥∥∥∥

(
∇u2

1

)∥∥∥∥∥ dx

=
∫

α
√

1 + |∇u1|2 + (1− α)
√

1 + |∇u2|2 dx

= αE(u1) + (1− α)E(u2) .

In contrast to the volumetric formulation proposed in [3], the two-dimensional formulation
proposed here is convex. As a consequence, we do not need to revert to the generally subopti-
mal strategy of convex relaxation and thresholding. Instead we can directly compute globally
optimal solutions by solving (8.4).

8.3. Minimization of the Proposed Energy

Minimization of the convex problem in Equation (8.4) can be achieved by solving the Euler-
Lagrange extremality condition given by the partial differential equation

dE

du
= −div

(
∇u√

1 + |∇u|2

)
= 0. (8.6)

This is a nonlinear diffusion equation which is similar to the well-known model by Perona
and Malik [170] for edge-preserving image smoothing, but with a different diffusivity g(x) =
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1/
√

1 + |∇u|2 which was proposed by Charbonnier et al. [51].

Our derivation of Equation (8.6) via Equation (8.3) therefore provides a geometric interpre-
tation of the Perona-Malik diffusion with the Charbonnier-diffusivity: In image diffusion the
image gray values can be interpreted as a height map whose surface area is minimized as the
diffusion process minimizes energy (8.3) (see also [200] for more details).

However, we use Equation (8.6) in a completely different setting. Instead of using a data
term we impose a global volume constraint and special boundary conditions which depend
on the input silhouette. In the following we describe how these constraints are chosen and
incorporated into the numerical optimization of Equation (8.6).

8.3.1. Numerical Optimization

We employed three optimization schemes and compared their performance. We briefly sketch
all three methods in the following. In [59] Paul Concus proposed a numerical scheme for
solving the minimal surface problem (8.4) except that he did not consider a volume constraint.

Projected Gradient Descent. As explained in Section 4.3.1, gradient descent is the simplest
numerical solver for differentiable objective functions. Since our domain is restricted by the
linear volume constraint, we have to apply projected gradient descent in order to stay within
the feasible domain. In each iteration we advance in the direction of the negative gradient of
the energy, and back-project onto the feasible set U step:

uk+1 = ΠU

[
uk − τ

dE(uk)
du

]
(8.7)

where τ is the step size and ΠU (u) is the Euclidean projection of u onto the set U being
defined in the next subsection. Since the minimization problem (8.4) is convex, the gradient
descent method will converge to the global optimum of the energy.

Fast Iterated Shrinkage and Thresholding Algorithm (FISTA). This algorithm by Beck
and Teboulle [20] (see Section 4.3.3) can be considered as a generalized gradient descent
scheme for a certain class of functions. Applied to our case it amounts to an ordinary
projected gradient descent with an adaptive over-relaxation step:

uk = ΠU

[
ūk −

1
L

dE(ūk)
du

]

τk+1 =
1
2

(
1 +

√
1 + 4(τk)2

)
(8.8)

ūk+1 = uk +

(
τk − 1
τk+1

)
(uk − uk−1) .

The parameter L is the Lipschitz constant of the functional E and defines the step width of
the descent scheme.

Lagged Diffusivity Fixed Point Iteration (LDFPI). The Lagged-diffusivity approach by
Vogel and Oman [232] (see Section 4.3.2) solves the Euler-Lagrange equation like a Quasi-
Newton method. By keeping the diffusivity g(x) =

√
1 + |∇u|2 in Equation (8.6) fix over a

number of iterations one can solve the resulting sparse linear equation system div(g(x)∇u) =
0 with numerical solvers like Jacobi, Gauss-Seidel or Successive Over-Relaxation (SOR).
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We update the diffusivity every few iterations and project the solution onto the feasible set
U . Note, that due to the projection this scheme will not provably converge to the optimal
solution, but, as we will show later, it turned out to be the fastest solver which leads to
visually similar results.

8.3.2. Implementation

In order to solve the optimization problem in Equation (8.4) with one of the three optimiza-
tion methods from above we proceed as follows: We compute one or more iterations of our
optimization algorithm and then project the current solution back to the convex set U of
functions with a pre-described volume.

Projection Scheme. The orthogonal projection of any function u onto U can be described
as the following optimization problem:

ΠU (u) = arg min
u′

1
2

∫

S

∥∥u− u′
∥∥2

dx s.t.
∫

S

u dx = Vt . (8.9)

By introducing the Lagrange multiplier λ ∈ R and calculating the partial derivatives of the
corresponding Lagrangian function we obtain the following extremality conditions:

0 = u− u′ + λ ∀x ∈ S (8.10)

0 =
∫

S

u dx− Vt (8.11)

Inserting Equation (8.10) into Equation (8.11) yields

ΠU (u) = u +
(Vt −

∫
S u dx∫

S dx

)
· 1S (8.12)

as a simple update scheme for the volume projection. Function 1S is again the indicator
function (Definition 3.2) which is 1 at every point x ∈ S and 0 otherwise. Equation (8.12)
means that the residual volume is evenly distributed over all function values of u in S.

Boundary Conditions. In order to guarantee silhouette consistency induced by the set S, we
apply Dirichlet boundary conditions at the silhouette boundary ∂S and Neumann boundary
conditions if the silhouette coincides with the image boundary ∂Ω:

u
∣∣∣
∂S\∂Ω

= 0 and ∇nu
∣∣∣
∂Ω

= 〈∇u, n〉
∣∣∣
∂Ω

= 0 , (8.13)

where ∇n is the directional derivative in orthogonal direction n ∈ R
2 to the image boundary.

This way silhouette consistency is ensured and objects touching the image boundary are cut
orthogonal to the image plane. Intuitively, this means that object surfaces continue uniformly
at image boundaries rather than dropping to zero.

Parallelization. All minimization methods described in Section 8.3.1 have been parallelized
on recent graphics hardware. This includes the projection step since it can be applied to each
pixel independently once the difference between target and current volume is known. For
parallelization of the LDFPI method with SOR a Red-Black scheme has been employed.
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8.3.3. Weighted Minimal Surfaces

Without adding further constraints to the solution, the problem in (8.4) tends to be smooth
by definition. In order to enable our method to reconstruct non-smooth objects, we can add
local weights to the energy functional. More formally Equation (8.3) extends to

E(u) =
∫

S

ρ(x)
√

1 + |∇u|2 dx . (8.14)

Fortunately, the introduction of the weighting function ρ : S → R≥0 does not affect the
convexity of the energy.

Proposition 8.2. The two-dimensional fixed volume minimal surface problem defined in
Equation (8.4) extended with the weighting function as shown in Equation (8.14) is convex.

Proof. The proof is a straight-forward extension of the one from Proposition 8.1.

Further, this extension is easily integrated into the optimization methods described above.
Adding weights to the surface considerably extents the class of possible reconstructions.
Setting all weights ρ(x) = 1 leads to the original formulation in Equation (8.3). In the
implementation we use this as a default setting, however, the user can locally adapt this
surface parameter.

8.4. Experimental Results

We tested our method on several real-world images, compared the results with our full 3D
single-view reconstruction approach from the previous Chapter 7, and two other state-of-the-
art methods. Further, we evaluated visual appearance, runtime and amount of user input.

Since one cannot obtain true depth values from a single image we do not strive for a com-
parison with ground truth data. We rather focus on plausibility and pleasantness of the
reconstructions. Again, we assume the reconstructions to be symmetric with respect to the
image plane in order to reconstruct the backsides of objects as well. Due to the symmetry
assumption, we are also able to obtain closed object representations from height maps.

8.4.1. Qualitative Comparison to Related Methods

In Figure 8.4 we visually compare our results to the ones obtained with the methods by
Zhang et al. [253], Prasad et al. [183] and our 3D single-view approach with a volume prior
(Chapter 7/[3]). For comparison we used the implementation from [253]. We do not have an
implementation of Prasad et al. [183] and therefore used the results presented in [181].

The method by Zhang et al. [253] sticks out in this comparison because it is restricted to depth
map reconstructions while the other methods focus on curved 3D objects. Except for our 3D
single-view method [3] all approaches are globally optimal and compute reconstructions at
interactive frame rates. The methods mostly differ in the necessary amount of user input.

For the method of Zhang et al. [253], the user has a variety of choices for surface manipulations
such as position and normal constraints, discontinuity constraints, planar region constraints
and manual mesh-subdivision. Usually many of these constraints are necessary for reasonable
reconstructions leading to modeling times of several minutes to hours even for experienced
users. We, as moderately experienced users, spent 20-40 minutes for each of the examples
shown in Figure 8.4.
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Similarly, the method by Prasad et al. [183] needs concise input and expert knowledge. The
user has to assign parts of contour lines to lines in the parameter space, which becomes
harder for objects of higher genus. As a result, the topology is restricted to genus two. Still,
objects of higher genus exhibit over-oscillation of the surface as seen in the teapot example
in Figure 8.4. Moreover, for volume inflation the user needs to define a set of interpolation
constraints. In subsequent steps the user may need to add further constraints for allowing
surface creases. On the other hand and in contrast to our approach, Prasad et al. [183] can
cope better with some images, in which the symmetry plane of the object is not parallel to
the image plane. An example for this is represented by the donut in Figure 8.4.

Our single-view method with volume prior on the full 3D volume being described in the
previous Chapter 7 minimizes a similar energy and need the same amount of user input,
which is considerably less compared to the other reconstruction methods. Several examples
in Figures 8.4 and 8.5 compare both approaches. Since the 2.5D method needs less memory
and computation time, it is feasible to use input images with considerably higher resolution.
This results in higher detailed silhouettes and reconstructions as can be seen in the plane
example in Figure 8.7. Also, results of our method appear smoother as we compute continuous
depth values (see e.g. the balloon). In contrast, the full 3D single-view method [3] scales
poorly with the input image size since a voxel field needs more memory and runtime resources.

8.4.2. Experimental Evaluation of our Approach

Figures 8.4 and 8.5 show reconstruction results of our method for various input images.
The examples represent objects of very different quality reaching from natural to man-made
objects. One can see that the reconstructions appear quite plausible.

In general, since we compute a minimal surface, reconstructions will often exhibit a balloonish
appearance. However, the final minimal surface strongly depends on the shape of the input
silhouette. With regard to this, a strength of our approach is that volume is inflated naturally
in correspondence to silhouette compactness. Examples for this favorable behavior are the
bird, the stone arch and also the teapot in Figure 8.4. They show that parts of the silhouette
that are compact inflate more, whereas thinner structures are inflated less.

All the examples in Figure 8.5 and Figure 8.4 come without smoothness adaption (see Sec-
tion 8.3.3). In these cases, the only parameter of our approach is the volume of the recon-
struction. Figure 8.6 visualizes how changes of the target volume Vt intuitively affect the
shape of the reconstruction.

In the other cases the user changed the smoothness of the surface locally. User scribbles
define the locations for which the weighting factor ρ(x) of Equation (8.14) can be set to a
user defined value. Setting ρ(x) to less than 1 locally allows for sharp edges and surface
extrusions like the airplane wings in Figure 8.7, while values larger than 1 have the opposite
effect of creating indentations. We employed this mechanism as part of an interactive feature
in our single-view reconstruction tool. Remember that ρ(x) = 1 everywhere the user did not
specify weighted regions.

Figure 8.7 shows some results for which the user altered the smoothness locally. One can see
that non-smooth reconstructions can be achieved intuitively. Next to each reconstruction the
corresponding user scribbles are shown.

Runtime Comparison. As described in Section 8.3, we employed a gradient descent scheme,
FISTA and LDFPI for solving problem (8.4). All experiments have been done on a PC
with a 2.27GHz Intel Xeon CPU, 12GB RAM equipped with a NVidia GeForce GTX480
graphics card running a recent Linux distribution. For comparing runtimes of the respective
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Figure 8.3.: Runtime comparison of different algorithms minimizing Equation (8.4) measured on the
teapot example without user-scribbles.

example Volume Prior 3D [3] Volume Prior 2.5D [5] speedup

teapot
size 131x101x58 131x101
time 1.82s 0.14s 13.0

arch
size 179x137x79 179x137
time 6.24s 0.99s 6.3

ladybug
size 151x122x27 151x122
time 1.62s 0.15s 10.8

bird
size 157x244x4 157x244
time 2.12s 0.2s 10.6

balloon
size 82x97x44 82x97
time 2.65 0.15s 17.7

Table 8.1.: Runtime comparison of the 3D approach [3] with the 2.5D approach with volume prior [5]
for the examples depicted in Figures 8.5 and 8.6.

optimization algorithms, we ran each on a reconstruction example until convergence. We
then plotted for each time step t the distance d(ut, u∗) of the intermediate result ut to the
precomputed converged result u∗.

d(ut, u∗) :=
∫

Ω

(
ut(x)− u∗(x)

)2
dx (8.15)

The convergence criterion for all experiments has been set to
∣∣∣∣
E(ut−1)− E(ut)

E(ut)

∣∣∣∣ < θ , (8.16)

with θ = 10−15. Figure 8.3 shows the results for the three optimization schemes. As can
be clearly seen, the LDFPI approach of Section 8.3 is the most efficient algorithm in terms
of time to convergence. The FISTA algorithm is only slightly faster than gradient descent.
This is due to the fact that for differentiable functionals the algorithm degrades to a gradient
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Input Image Zhang et al. [253] Prasad et al. [181] Volume Prior 3D Volume Prior 2.5D

Figure 8.4.: Comparison of reconstruction results for several single-view methods. Qualitatively
our methods (right column) keeps up with state-of-the-art methods and sometimes even compares
favorable over them.

descent. The performance gain stems from the adaptive over-relaxation step. Note that
due to the constraints on the feasible set, we have no proof that LDFPI converges to the
global optimum (see Projection Scheme). However, the results of LDFPI were almost equal
to results from methods attaining the global optimum.

In order to evaluate the overall computational efficiency of our method we measured the com-
putation times of the fastest optimization scheme until convergence and compared them with
the 3D volume prior approach (Chapter 7/[3]). Table 8.1 shows detailed runtime comparisons
for all experiments in Figure 8.5. Since both methods optimize a convex energy, the results
are independent of the initialization. The number of iterations needed until convergence,
however, is not.

For all experiments the empty surface, respectively the empty volume, has been used for
initialization. When the user changes the target volume on a computed result, we can initialize
the re-computation cycle with the previously computed solution. This will effectively result in
a faster convergence. For input silhouettes with large areas, like the stone arch, the diffusion
process has to propagate along longer distances, which leads to the relatively high runtime.

Generally, Table 8.1 clearly shows that the 2.5D approach is significantly faster than the
3D approach. This difference mainly stems from the additional dimension that is used in
the latter in order to discretize the depth values while 2.5D approach directly computes
continuous solutions.
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Input Image Geometry Textured Geometry
Volume Prior 2.5D Volume Prior 3D Volume Prior 2.5D Volume Prior 3D

Figure 8.5.: Reconstruction results of the proposed 2.5D approach are similar to our full 3D ap-
proach [3] from the previous Chapter 7 but in contrast are obtained for higher resolutions, less memory,
lower computation times and higher precision.

reconstruction +10% +20% +30%

Figure 8.6.: Influence of the volume parameter on the reconstruction. The volume distributes natu-
rally, with more volume on compact silhouette parts and less on thin silhouette structures. The input
image for this reconstruction is the arch depicted in Figure 8.5

8.5. Conclusion

In this chapter we showed that the 3D single-view approach with a volume prior from the
previous Chapter 7 can equivalently be computed by means of a 2.5D height map as surface
model. In contrast to the implicit 3D approach from Chapter 7, the proposed 2.5D approach
has three advantages: First, the resolution in the depth dimension no longer needs to be
explicitly discretized as depth values are directly computed. Secondly, the computed solution
is provably optimal (rather than suboptimal). Thirdly, the 2.5D formulation drastically
reduces memory and computation time by about an order of magnitude. For a large variety
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Figure 8.7.: Reconstruction results with user input altering the local smoothness of the surface. Next
to the reconstructions the input images are shown with the respective user scribbles. User scribbles
(yellow) decrease the surface smoothness locally.

of objects and good image resolutions, plausible reconstructions are computed in fractions of
a second, making this method well suited for interactive 3D modeling from images.

In the following chapter, we will compare our single-view reconstruction approaches to other
state-of-the-art methods theoretically and experimentally.
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9. Comparison of Approaches

Beauty in things exists merely in the mind which contemplates them.

David Hume
(Philosopher, 1711 - 1776)

9.1. Comparison of Approaches for Curved Surface Reconstruction

In this chapter we focus on selected methods from Section 5.1 that aim for the reconstruction
of curved surfaces and compare them theoretically and experimentally. In particular, we
discuss the methods by Zhang et al. [253], Prasad et al. [183], Igarashi et al. [117] and the
ones proposed in this thesis (Chapters 6 to 8). This chapter is part of the publication in [6].

9.1.1. Theoretical Comparison

In the following we will compare the aforementioned approaches with respect to four topics
which are important in surface reconstruction.

The Inflation Problem. A common problem of approaches for curved surface reconstruction
is that reconstructions tend to be flat since - by default - there are no inflation forces present
due to a lack of depth information. A remedy is to let the user specify the depth of certain
constraint points of the reconstruction, which are then interpolated by the minimal surface
[253, 183], Chapter 6/[1]. This is tedious for the user. The depth constraints can be estimated
fully automatically from the silhouette only for cylindrical objects as is done in some examples
by Prasad et al. [181]. Several heuristics are conceived for more complicated cases. Igarashi et
al. [117] automatically set the depth by a heuristic based on a signed distance function of the
silhouette outline. A similar heuristic is used in Chapter 6/[1] in order to define a data term
for the variational minimal surface approach. However, in contrast to Igarashi et al. [117]
the user is able to adapt the parameters of this data term and thus the final surface. Our
proposed volume prior in Chapters 7 and 8 leads in many cases to natural inflation behavior.

Surface Representation and Topology. The reconstructability of curved surfaces with ar-
bitrary topology depends on the surface representation. Our proposed implicit surface rep-
resentation in Chapters 6 and 7 is generally better suited for this task than parametric
ones [183, 253], since the parameter space has to reflect the topology. The same holds for
mesh-based approaches such as the one by Igarashi et al. [117]: during modeling operations it
can be tedious to keep the mesh consistent, especially during topology changes. The paramet-
ric representation by Prasad et al. [183] has other implications. Firstly, uniformly distributed
points in the parameter space are not uniformly distributed on the surface. This property
may lead to oscillations, especially in the case of higher genus. Further, the relation between
points in parameter space and points on the surface is non-trivial for inexperienced users.
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Silhouettes. Similar to our single-view reconstruction approaches (Chapters 6 to 8) Prasad
et al. [183] used silhouettes for surface inference. Full silhouette consistency of the reconstruc-
tion, however, is only enforced in our approaches, because Prasad et al. [183] derive merely
local constraints from the silhouette.

View Constraints. Finally, view constraints are of practical importance. All our single-
view approaches assume plane symmetric objects. Reconstructions work best if symmetry
and viewing plane are parallel. This implies that the contour generator is planar. The
approach by Prasad et al. [183] allows for non-planar contour generators and, thus, in some
cases for slightly more general view points than just a side-view.

9.1.2. Experimental Comparison

In this section we experimentally compare the methods discussed in the previous subsection.
For all experiments, we used the single-view modeling tool by Zhang et al. [253] and the
software called SmoothTeddy which incorporates results of several works by Igarashi et al.:
[117, 115, 116] which are both publicly available. The reconstruction results by Prasad et al.
are taken from the works [182, 183, 181]. In the experiments we only compare our proposed
shape prior (Chapter 6) against the volume prior (Chapter 7). The height map approach with
a volume prior (Chapter 8) uses a different surface representation as the implicit approach
(Chapter 7), but effectively minimizes the same energy and produces very similar results.

In Figures 9.1 to 9.3 we compare the reconstruction results of the five methods on ten dif-
ferent examples, covering various types of objects and related method issues such as object
shape, topology, viewing angle and image type. Instead of explaining every example, we
rather concentrate on the examples which demonstrate properties, advantages or drawbacks
discussed in the theoretical comparison as well as issues we identified during the experiments.

User Input and Modeling Time. Since the necessary amount of user input and thus the
simplicity of the modeling process is of particular interest for practical purposes, we also
explain and compare the user input for each method.

The method by Zhang et al. [253] is more a single-view modeling tool rather than a re-
construction tool. Every detail, every extrusion or inflation has to be modeled by the user.
Figure 9.4 illustrates the variety of different constraints listed in Table 9.2 and their general
effects on the surface shape. None of these constraints is required by the method, but for
most reconstructions a reasonable amount of constraints will be necessary. The large amount
of user input results in higher modeling times which are shown in Table 9.1. The difficulty
of modeling a non-side view considerably increased the modeling time for the donut example
(Figure 9.2). This tool needs user experience.

In contrast, the modeling with the method by Igarashi et al. [117] is very simple and fast.
None of the user input in Table 9.2 needs much experience or even expert knowledge: From
a given closed contour line the method instantly inflates a 3D mesh. See Figure 9.4 for the
exemplary user input of the teapot example. In all experiments this method needed the least
user input (cf. Table 9.1) at the price of producing the least accurate reconstructions with
respect to the given input silhouette (see Figures 9.1 to 9.3).

The user input for the method by Prasad et al. [183] is versatile. Most of the user input
listed in Table 9.2 is illustrated in Figure 9.5. After the contour extraction (Figure 9.5
(a)) normal constraints are generated along the contour shown as red discs with needles in
Figure 9.5 (d),(g),(h). The definition of corresponding parameter space boundaries and the
assignment of contour line parts to lines in the parameter space is shown in Figure 9.5 (b),(c).
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Banana Fish Dory (Finding Nemo) Vase

input images

Zhang et al. [253]

Igarashi et al. [117]

Prasad et al. [183]

Proposed Approach with Shape Prior (Chapter 6 / Oswald et al. [1])

Proposed Approach with Volume Prior 3D (Chapter 7 / Töppe et al. [3])

Figure 9.1.: Experimental comparison of several methods for curved object reconstruction. The
Figures for Prasad et al. are taken from [181].
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Squash Orange Ostrich Donut

input images

Zhang et al. [253]

Igarashi et al. [117]

Prasad et al. [183]

Proposed Approach with Shape Prior (Chapter 6 / Oswald et al. [1])

Proposed Approach with Volume Prior 3D (Chapter 7 / Töppe et al. [3])

Figure 9.2.: Continuation of Figure 9.1: Experimental comparison of several methods for curved
object reconstruction. The Figures for Prasad et al. are taken from [181].
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Jelly Bean Teapot Teapot Geometry

input images

Zhang et al. [253]

Igarashi et al. [117]

Prasad et al. [183]

Proposed Approach with Shape Prior (Chapter 6 / Oswald et al. [1])

Proposed Approach with Volume Prior 3D (Chapter 7 / Töppe et al. [3])

Figure 9.3.: Continuation of Figure 9.2: Experimental comparison of several methods for curved
object reconstruction. The Figures for Prasad et al. are taken from [181].
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Example Zhang Igarashi Prasad Shape Volume Volume
et al. [253] et al. [117] et al. [183] Prior [1] Prior 3D [3] Prior 2.5D [5]

Banana 20 min <1 min 10 min 5 min <1 min <1 min
Fish 15 min <1 min 2 min 8 min 1 min <1 min
Dory 40 min <1 min 5 min 7 min 1 min 1 min
Vase 20 min <1 min 2 min 13 min 4 min 3 min
Squash 12 min <1 min 2 min 2 min 1 min 1 min
Orange 14 min <1 min <1 min 3 min <1 min <1 min
Ostrich 30 min <1 min 15 min 7 min 2 min 2 min
Donut 55 min <1 min 10 min 3 min 1 min 1 min
Jelly Bean 15 min <1 min 2 min 4 min 1 min 1 min
Teapot 35 min <1 min 20 min 15 min 4 min 3 min

Table 9.1.: Approximate modeling times for a medium experienced user for the examples shown in
Figures 9.1 to 9.3. Together with these reconstruction results this table reveals significant differences
in the efficiency of the methods on the presented examples.

Objects with cylindrical shape about a virtual free-form 3D curve or spine can be inflated by
generating interpolation constraints along the spine with a depth value equal to the minimal
distance between the point of the spine and the contour line. This inflation heuristic is
generalized for more complex objects as object parts can be independently inflated with the
same technique. To this end the user defines pairs of inflation curves (Figure 9.5 (e)) for
which interpolation constraints are generated along the (virtual) medial spine (Figure 9.5
(g),(h)). The necessity and complexity of each single user input step depends on the object
to be reconstructed leading to very different modeling times for the presented experiments
(see Table 9.1).

The user input of our Shape Prior Approach (Chapter 6) amounts to some user strokes
for silhouette extraction and the adaption of the data term shape by changing parameters
k, λoffset, λfactor, λcutoff from Equation (6.7) which is necessary in most cases. Surface creases
can be optionally added, but were not necessary for most experiments.

For both our Volume Prior Approaches (Chapters 7 and 8) the object shape is mainly
defined by the silhouette and by adapting the object volume which can be done very quickly.
However, the 2.5D approach is faster then the full 3D one, and is thus more interactive and
allows for quicker modeling.

The user inputs for each method is summarized in Table 9.2. Necessary user input is printed
in bold. The other inputs are either optional or the program provides a heuristic to initialize
these values reasonably well.

Evaluation of Experiments. The modeling process with the tool by Zhang et al. [253] can
be cumbersome because most constraints only have a local influence on the surface shape
and many of them are usually necessary. The oblique position of the donut with respect to
the image plane (Figure 9.2) is difficult to model with local constraints only. Further, fine
scale structures such as the teapot handle or the leg of the ostrich (Figure 9.3) are hard or
impossible to model due to the limited mesh resolution. An advantage of this method is the
full user control due to a variety of modeling possibilities which allows for modeling details
like the round shaped eye of Dory or its side fin bending away from the fish body (Figure 9.1).
Such details cannot be modeled with the other four methods in this comparison. However,
the freedom in modeling incurs a larger amount of user input.

The method by Igarashi et al. [117] generally over-smoothes the input silhouette which can
be seen in many examples, e.g the peak of the bird in the ostrich example in Figure 9.2, or
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general effect of constraints constraints for teapot

Zhang et al. [253]

contour outline

model coloring

Igarashi et al. [117]

Figure 9.4.: User input for the methods of Zhang et al. [253] and Igarashi et al. [117]. The first
image shows the general effects of different constraints and is taken from [253]. In particular, the
constraints are: (a) position (blue) and normal (red) constraints, (b) depth discontinuity constraint,
(c) crease constraint, (d) planar region constraint, (e) curvature minimizing fairing curve and (f)
torsion minimizing fairing curve (see [253] for further details).

(a) extracted contour (red) (b) contour constraint (c) parameter space (d) cylindrical inflation

(e) inflation curves (blue) (f) spillage correction (g) generated model (h) different view

Figure 9.5.: Necessary and optional steps and user input for Prasad et al. [183]: (a) contour ex-
traction; (b) lines of the contour have to be related to lines in the parameter space (c); (d) and (e)
demonstrate different inflation heuristics; (f) during the optional spillage correction, the user can ac-
count for silhouette inconsistencies by adding further constraints; (g) and (h) show the final model
and generated interpolation constraints as yellow dots. Note that (b) and (c) show a genus 2 recon-
struction, while the other teapot images show a genus 1 reconstruction. All Figures are taken from
[181].

the grip of teapot lid in Figure 9.3. The main advantage of this approach is the fast and
intuitive modeling of geometrically simple objects. One of the drawbacks is the restricted
topology, the hole in the donut example in Figure 9.2 cannot be reconstructed. A further
disadvantage is the limited influence of the user during the modeling process. The fact
that surface discontinuities like sharp edges are not allowed, largely decreases the class of
reconstructable objects, e.g. the tail fin of Dory in Figure 9.1, the bottom parts of vase and
teapot in Figure 9.3. Only very simple roundish objects like the banana (Figure 9.1), squash
and orange (Figure 9.2) or the jelly bean (Figure 9.3) can be easily and reliably reconstructed.
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Method User Input (optional and required)

Zhang
et al. [253]

• depth map dimensions
• normal / position constraints
• discontinuity lines (position / normal discontinuity)
• planar region constraint
• curvature / torsion minimizing fairing curve constraints
• manual mesh-subdivision

Igarashi
et al. [117]

• rough contour lines

• union or cut operations between objects
• object coloring

Prasad
et al. [183]

• mesh resolution
• silhouette extraction

• define corresponding parameter space boundaries (defines topology)
• assign parts of the contour to lines in the parameter space

• choose inflation heuristic (cylindrical, cylindrical by parts, distance
transform, approximation constraints) + further inflation input
• spillage correction (correct silhouette consistency violated through opti-

mization)
• surface creases

Shape
Prior [1]
Chapter 6

• volume dimensions
• silhouette extraction

• define data term shape interactively (4 parameters)
• surface creases

Volume
Prior [3, 5]
Chapters
7,8

• volume dimensions
• silhouette extraction

• define target volume interactively (1 parameter)
• surface creases

Table 9.2.: Necessary (bold) and optional user inputs and modeling steps for several methods in
comparison. Optional user inputs are still required algorithm inputs but they can be predefined by
default values or simple heuristics and later on changed by the user if desired. Note that the variety of
user input shown in this table does not reflect the amount or complexity of the input that is necessary
for a reconstruction.

The main characteristic of the method by Prasad et al. [183] is parametric surface repre-
sentation. For simple geometry such as the orange example in Figure 9.2 or the jelly bean
in Figure 9.3 this facilitates the reconstruction of objects. However for objects with higher
surface genus, e.g. the genus 2 teapot example (Figure 9.3), the parametrization gets sophis-
ticated. Further, the parametrization is not uniform on the surface which makes it difficult
to model elongated structures like the ostrich in Figure 9.2. This also leads to surface oscilla-
tions of the object surface as visible on the teapot handle (Figure 9.3). Another disadvantage
is that silhouette consistency is not strictly enforced. Nonetheless, this method generated the
most accurate results for the non-side-view examples (banana and teapot).

Single-view modeling with our Shape Prior Approach (Chapter 6) is mostly intuitive and
many examples did not need much effort and little user experience. For instance, the banana,
fish, dory (Figure 9.1), squash, orange, ostrich and donut examples (Figure 9.2) or the jelly
bean (Figure 9.3) example are easy to accomplish, especially in comparison to the method
by Zhang et al. [253]. In contrast to the other methods, we assume to get side-views of
symmetric objects, which restricts the applicability of our method, e.g. in the donut example
in Figure 9.2 the size of the hole is too small.
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The results of our Volume Prior Approaches are fairly similar. Apart from the quicker
modeling this approach shares most of the advantages and disadvantages with our shape prior
approach.

Method Advantages (+) and Disadvantages (−)

Zhang + large variety of constraints allows for flexible user modeling
et al. [253] + user has full control of every surface detail

− reconstructions are restricted to a depth map
− occluded object parts cannot be modeled,

synthesized views from different angles will reveal those areas
− large amount of user input is often necessary
− user experience and training necessary

Igarashi + very easy to use and fast interactive modeling
et al. [117] − over-smoothes the input silhouette

− smoothness properties cannot be changed by the user
− not silhouette consistent
− topology is limited to genus 0

Prasad + objects can also be modeled from oblique view points
et al. [183] + apart from the silhouette the user can also use contour edges for modeling

− parametric surface representation limits topology and
object shape (many long elongated structures are difficult to model)

− higher complexity of user input (requires expert knowledge)
− silhouette consistency is not guaranteed and may require additional user input

Shape + moderately fast modeling
Prior [1] + reconstructions are silhouette consistent
Chapter 6 − objects need to be symmetric, a side view is required

Volume + fast modeling
Prior, + very little user input
[3, 5] + reconstructions are silhouette consistent
Chapters − objects need to be symmetric, a side view is required
7,8 − user can barely influence the surface shape

− limited possibilities to add surface creases

Table 9.3.: Overview of advantages and disadvantages for each method. Note that the number
of advantages and disadvantages is not important in this listing since each point weights differently
depending on the desired application of each method.
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9.1.2.1. Summary

The theoretical and experimental comparison of the methods for curved object reconstruction
identified several advantages and disadvantages which are listed in Table 9.3. In general, the
performance of a method highly depends on the application. Each method has its strengths
and weaknesses when applied to a specific class of single-view reconstruction problems.

The results of our experiments support the hypothesis that generality and flexibility of a
reconstruction method is traded for the amount of user input or expert knowledge. Expert
knowledge refers to the variety or complexity of the user input. The flexibility of modeling
fine details with the method by Zhang et al. [253] requires the user to know and understand
a variety of modeling constraints and it needs a large amount of user input. On the other
hand, the method by Prasad et al. [183] needs less user input, but increases its complexity
such as the definition of a suitable surface parametrization. The comparatively simple and
small amount of user input for the methods by Igarashi et al. [117], and the ones proposed in
this thesis (Chapters 6 to 8) comes along with the limited generality and flexibility of these
methods.

9.2. Conclusion

In this chapter, we compared the single-view approaches proposed in this thesis (Chapters 6
and 7) with closely related state-of-the-art methods. Apart from a qualitative comparison
on a wide variety of natural and man-made objects, we also compared important algorithm
properties (see classification Section 5.2), especially the amount of user input, and highlighted
advantages and disadvantages of each method.
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10. Introduction

They always say time changes things, but you actually have to change them yourself.

Andy Warhol
(American Artist, 1928 - 1987)

In this part of the thesis we want to generalize the 3D reconstruction model by Kolev et
al. [134] to the spatio-temporal multi-view case. Instead of a static scene, we now want to
recover the dynamically changing surface of a moving scene based on the image sequences from
a set of cameras which observe the same scene from different view points. Figure 10.1 depicts
an example scene in which two children have been filmed by 16 cameras. The input images
are shown next to their corresponding pre-computed camera location. Essentially, with the
time domain, we simple add one more dimension to the original 3D reconstruction problem,
but we will see in the following that several things change and need special consideration.

The benefit of such a generalization should of course be a reconstruction of better quality. In
contrast to time-independent 3D reconstruction, the basic idea is to make use of additional
input information from other time steps to improve the accuracy of the reconstruction by
enforcing some kind of temporal coherence. If 3D reconstruction is performed separately for
each time step, the location of the reconstructed surface might change drastically and incor-
rectly over time in areas with low, missing or ambiguous input information. Moreover, for

Figure 10.1.: Spatio-temporal multi-view reconstruction of a dynamic scene from 16 simultaneous
input sequences visualized at their corresponding camera positions. (’Children playing’ scene from
[121]).
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non-artificial input data, the camera images will always contain noise which also leads to noise
in the reconstructed surface. This noise becomes visible as a jittering of the reconstructed
surface when played over time.

Compared to the typical scenario of multi-view 3D reconstruction of static scenes, a general-
ization to a spatio-temporal setup brings up several practical challenges:

• Fewer cameras. Video cameras are usually more expansive than photo cameras which
results in setups with viewer cameras and thus wider average baseline. Many existing
3D reconstruction approaches rely on small baselines for photometric matching and the
reconstruction quality drops significantly with fewer cameras or breaks down completely.

• Lower resolution. Video cameras typically have a lower resolution than photo cam-
eras, which results in coarser reconstructions.

• More camera noise. Video cameras usually possess a higher noise level than photo
cameras which leads to lower photometric matching scores.

• Temporal camera noise. The noise pattern of the camera images changes over time
and leads to different depth estimates in every time step even if both the camera position
and the scene is static.

• Motion blur. Depending on the motion speed of the dynamic scene and exposure
settings of the camera, image parts observing fast motion might be substantially blurred
which makes the photometric matching more difficult.

• Camera sychronization. In contrast to static scenes, the cameras need to be tem-
porally synchronized in order to perform any photometric matching.

• High demands on memory and computation time. Since cameras usually acquire
images at 25-30 frames per second, the amount of input data, even for short video
sequences, is very large. Further, the demands on memory and computation time of
the reconstruction algorithm increase substantially if one wishes to exploit the temporal
coherence of the reconstruction over consecutive time frames.

We will approach these problems in the next Chapter 11 by extending our 3D reconstruction
framework to favor temporal consistency.

10.1. Problem Statement and Notation

We now formulate the problem of spatio-temporal mutli-view reconstruction as finding a
minimizer of a variational minimal surface energy. Following the idea of the first variational
approach to multiple view 3D reconstruction by Faugeras and Keriven [79], we want to find
a surface Σ ∈ R

3 which minimizes the photometric error.

Similar to the previous Part II we will make use of the weighted total variation (Defini-
tion 2.13) and extend the 3D reconstruction model in Equations (3.11) and (3.12) in the
following way.

Σ∗ ∈ arg min
Σ





∫

Σ

ρ ds +
∫

int(Σ)

f dx





, (10.1)

where int(Σ) denotes the interior of the surface (and its boundary is again the surface:
∂int(Σ) = Σ). The function ρ locally weights the surface area in a geodesic manner and will
encode the photometric matching data. This way the surface will “snap” to locations with
high photoconsistency because the corresponding surface area is locally decreased.

As described in Chapter 3, the definitions and properties for minimal surfaces hold for any
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dimension and we can simply define surface Σ to be a 3-dimensional hypersurface embedded
in the 4-dimensional spatio-temporal space. By transforming the reconstruction problem in
Equation (10.1) via an indicator function u on a higher dimension, we lift it from 3D to the
spatio-temporal (4-dimensional) domain u ∈ V×T ⊂ R

3 × R≥0 with u = 1int(Σ)

u∗ ∈ arg min
BV(V×T ,{0,1})





∫

V×T

ρ |∇u| dx +
∫

V×T

f · u dx





, (10.2)

in which ρ : R
3 → R is a normalized measure of photometric consistency (abbreviated

as photoconsistency) between the input images. Now, we still have to make sense of the
4-dimensional gradient norm, because and isotropic penalization of spatial and temporal
dimensions might not be meaningful. We will define the regularization term more precisely
later on the respective chapters, but Equation (10.2) essentially reflects the main idea of our
approach.

To make the reconstruction problem tractable, we will impose the following assumptions:

• Synchronized image sequences. We do not deal with camera synchronization in
this work.

• Calibrated cameras. We do not deal with camera calibration in this work.

• Lambertian-like light model. We use one of the simplest light models.

• Silhouettes. They significantly help to recover geometry in sparse camera setups.

• Smooth surface. The minimal surface prior favors smooth surfaces.

Silhouettes. As silhouettes we define binary images S : Ω ⊂ R
2 → {0, 1} which separate

one or several objects of interest from the background in an input image. They are usually
obtained with some kind of segmentation algorithm (e.g. [189, 219]) or, more typical for
videos, with background subtraction techniques (see e.g. [171, 207, 21]). We assume to have
one silhouette for each corresponding input image. We will mainly use the silhouettes in
order to reduce the solution space by projecting and intersecting all available silhouettes in
the 3D space which leads to the visual hull concept.

Figure 10.2.: Visual Hull as the inter-
section of silhouette pre-images (picture
from [25]).

Visual Hull. Visual hulls unify the information gained
from an object silhouette to the multi-view case. In
his PhD thesis, Baumgart [19] introduced an algorithm
which calculates the intersections of projected silhou-
ettes in 3D space. Later on Laurentini [148] coined the
term “visual hull” and studied the problem in several
publications.

Definition 10.1 (Visual Hull). Let {πi}
N
i=1 be the pro-

jection matrices of N cameras observing a scene and
let {Si}

N
i=1 be a set of corresponding silhouette im-

ages with Si : Ω → {0, 1}. Then, the visual hull
VH : V ⊂ R

3 → {0, 1} is defined as the intersection of the silhouette pre-images from
all cameras:

VH =
N⋂

i=1

π−1(Si) , (10.3)

where π−1(Si) denotes the pre-image (or “unprojection”) of silhouette Si into the 3D domain.
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The projection matrices πi represent the projective pinhole camera model for the rest of this
thesis (see [107, page 153ff] for details).

For correctly segmented silhouettes, the visual hull is the largest volume that is consistent
with the silhouettes and contains the true scene. In this sense, it is a conservative estimate of
the scene geometry as it misses any holes and concavities that are not visible in the silhouettes.
The definition of the visual hull can be easily extended to the spatio-temporal case by adding
temporal indices to the silhouettes and projection functions.

Later on, in Chapter 13, we will also use the visual hull to analyze its topology and to define
topological constraints for the reconstruction process.

10.2. Related Work

In this section, we give an overview of related and important works on spatio-temporal multi-
view reconstruction. Mostly, the basis for such a method is a working 3D reconstruction
method. Therefore, before we discuss spatio-temporal reconstruction approaches, we also
discuss some selected works on static 3D reconstruction.

10.2.1. Related Work on Multi-view Stereo Reconstruction

Static multi-view stereo reconstruction has been a central research fields since decades and
a huge of amount of research paper exist. This subsection only gives a brief overview by
naming a selection of important works on that topic. For more information a good overview
is provided by Seitz et al. [195] and the accompanying benchmark website1 which usually
contains the most recent advances in the field.

Silhouettes-based approaches. The simplest algorithms for 3D reconstruction from silhou-
ettes are algorithms based on the concept of the visual hull [19, 148, 25, 27, 84, 85, 86, 101].

Space carving. Instead of silhouettes Seitz and Kutulakos [141] used a voxel-based photo-
metric matching score and defined the photo hull which is computed by iteratively carving
voxels with high photometric error - after starting with a fully occupied scene. This idea has
then been extended in several ways, e.g. [196, 35]. Generally space carving is very sensitive
to outliers, because incorrectly carved surface voxels can lead to deep holes in the model due
to the low photoconsistency scores of non-surface voxels.

Point cloud and mesh-based approaches. Furukawa et al. [89, 91] compute oriented point
clouds based on image feature matching. In an iterative process new 3D points are expanded
next to existing ones and possibly filtered due to inconsistencies with respect to the photo-
metric matching score and the visibility. The output is a “dense” oriented point cloud which
can be meshed with other methods, e.g. the popular Poisson surface reconstruction method
by Kazhdan et al. [129]. Although the approach relies on local optimization and uses many
heuristics it performs well on several benchmarks and is thus still considered to be among
the state-of-the-art methods. Goesele et al. [93] went for larger scales and built a system for
reconstructing 3D scenes from internet photo collections. Similarly, Vu et al. [234] proposed a
multi-view stereo approach for large-scale reconstructions. Jancosek and Pajdla [122] propose
a weighting scheme to better reconstruct weakly supported surfaces. The method extends
the one by Labatut et al. [142] which computes Delaunay tetrahedra on point clouds and

1Middlebury Multi-view Stereo evaluation benchmark: http://vision.middlebury.edu/mview/eval/

96 10. Introduction

http://vision.middlebury.edu/mview/eval/


Part III: Spatio-Temporal Multi-View Reconstruction

determines their occupancy label within a graph-cut framework. Generally, the extension
of point cloud-based approaches to the temporal domain is difficult, because some kind of
temporal correspondence needs to be estimated to constrain the temporal coherence.

Volumetric approaches. An interesting volumetric and entirely probabilistic approach for
scene reconstruction is the one by Calakli et al. [39] which is based on the model by Pollard et
al. [176] developed for 3D change detection. This model been made efficient by using octrees
in [64] and forms has now recently been extended to the 4D domain by Ulusoy et al. [215].

Kolev et al. [135, 136, 134] proposed the convex variational minimal surface approach for
multi-view 3D reconstruction that has been derived in Chapter 3 and forms the basis of this
thesis. The main advantage of this approach in 3D reconstruction is the natural way of sur-
face regularization in 3D space, compared to stereo-based approach which usually regularize
depth or disparity discontinuities. Since the method also handles arbitrary topologies, is
easily extendible and globally optimizable it unifies many desirable properties. Variants of
this approach have also been used in by Ummenhofer and Brox [216] for combined 3D recon-
struction and camera pose estimation and by Häne et al. [106] for joint 3D reconstruction
and class segmentation.

As said in the beginning of this subsection the number of static 3D reconstruction approaches
is enormous. Generally, the generalization of 3D reconstruction techniques to the spatio-
temporal reconstruction from videos is by no means straightforward.

10.2.2. Related Work on Spatio-temporal Multi-view Stereo Reconstruction

Silhouettes-based approaches. The visual concept is easily extendible to the temporal do-
main and because of its simplicity there exist many works on that topic e.g. [22, 146, 100]
For 4D reconstruction these approaches are still the basis for the current state of the art in
commercial products2. An interesting scene representation based on 4D Delaunay meshes
has been proposed by Aganj et el. [12] in which every time frame corresponds to 3D Delau-
nay meshes with occupancy flags for each cell. The advantage of this surface representation
is that Delaunay also defines a correspondence of vertices between time steps which makes
linear interpolation between times frames straightforward. Generally, pure silhouette based
approaches cannot recover object concavities which are not visible in the silhouettes. For
a good surface approximation usually a higher number of input views is necessary as the
surface approximation is coarse for a small number of cameras.

Later, in [11] Aganj et el. extended their silhouette-based approach. Rather than using
silhouettes they start with a 4D point cloud computed by feature matching in every time
step. After tessellating the point cloud into 4D Delaunay pentatopes each of them is then
label as occupied or empty by means of a globally optimal graph-cut approach. Although
the scene representation has several attractive properties the main drawback of this method
is the point cloud generation step, which is prone to noise and outliers.

Wuermlin et al. [243] used dynamic point samples in space-time for real-time free-viewpoint
video. This approach is merely a view point interpolation system which uses splatting tech-
niques for novel view point rendering.

2.5D+time approaches. As one of the first works, Zhang et al. [252] extended the prob-
lem of classical binocular stereo matching to the spatio-temporal domain. Guillemaut and
Hilton [102] jointly solve the problem of multi-layer segmentation and depth estimation within

2see for example http://www.4dviews.com
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a graph-cut framework. They enforce temporal coherence by means of optical flow measures
which are weighted according to their confidence to account for unreliable flow estimates.
Richardt et al. [186] proposed a method for spatio-temporal filtering and upsampling of RGB-
Depth videos. Generally, these approaches mostly rely on the properties of their 2.5D surface
representation and their generalization to full 3D is usually not straightforward. Also in order
to obtain full 3D models an additional merging step of several depth maps is necessary.

Volumetric approaches. Pioneering work on the topic of spatio-temporal multi-view 3D
reconstruction in a continuous setting has been done by Goldluecke et al. [94, 95, 97]. They
described the evolution of a space time surface by means of level set functions which iter-
atively approach a local minimum of the respective energy. Generally, level set methods
rely on a proper initialization to converge to the desired solution due to the locally optimal
optimization procedure. Starck and Hilton [201] proposed a spatio-temporal reconstruction
pipeline which first estimates shapes from silhouettes and later refines the reconstruction with
photometrically matched features and information about the reconstruction result from the
previous time step with volumetric graph-cuts.

Generally, volumetric approaches have proved to be suitable for spatio-temporal reconstruc-
tion, because temporal alignment can be expressed similarly as spatial alignment. The spatio-
temporal reconstruction approaches proposed in this thesis also belong to this category.

Scene flow approaches. The term scene flow often refers to 2.5D approaches that the
estimate motion of the maps over time, e.g. Wedel et al. [236], or Vogel et al. [233]. Since
we are interested in full 3D models the following approaches which compute a 3D scene flow
are more related to this work. Vedula et al. [224] compute the 3D dimensional scene flow
based on the 2D optical flow from several input videos. Guan et al. [99] compute a dense
volumetric occupancy flow from silhouettes within a probabilistic framework which is solved
by a locally optimal expectation-maximization optimization.

Combined scene flow and 3D reconstruction approaches. Vedula et al.[225] generalized
space carving approach to the spatio-temporal domain by defining a photoconsistency mea-
sure in 6D space. The jointly estimate motion and geometry by rejecting (carving) inconsis-
tent ones. The work by Neumann and Aloimonos [164] is one of the early works that estimated
the 3D geometry and its movement jointly over time. Using a multi-resolution subdivision
surface representation they jointly estimate the position and motion of each vertex over time.
Vedula et al.[223] estimate 3D scene flow from multiple optical flows for spatio-temporal view
point interpolation. The quality of this approach is limited the view point interpolation is
done via ray-casting on an approximate surface proxy that has been fitted to space-carved
voxel model. In [179], Pons et al. proposed a variational method for combined stereo recon-
struction non-rigid motion estimation and presented later in [177] a more general method for
combined multi-view stereo reconstruction non-rigid motion estimation from multiple video
sequences. In a later work, Pons et al. [178] jointly estimate scene geometry and scene flow
by minimizing the reprojection error in a locally optimal coarse-to-fine approach. Sharf et
al. [198] study the problem of space-time reconstruction by means of incompressible flow.
Courchay et al. [60] propose a mesh-based approach with fixed vertex connectivity imposing
limitations in cases where objects join or separate or change their topology. Such cases need
special consideration and are non-trivial in the general case. Tung et al. [213] do not com-
pute scene flow, but incorporate optical flow of the input sequences as additional features
which are fused in a probabilistic Markov random field framework for spatio-temporal 3D
reconstruction.
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Model-based approaches. The idea behind model-based approaches is to treat the two
problems of reconstructing geometry and estimating their motion separately, because it usu-
ally simplifies the problem. The geometry model only needs to be acquired once in advance
with any 3D reconstruction algorithm or by using handcrafted models. Computing its mo-
tion can then be seen as a tracking or model alignment problem which usually has much
less unknowns then the original joint estimation problem. The simplicity of this approach is
bought by giving up flexibility: 1) Every object in the scene needs to be acquired in advance
usually under controlled conditions to ensure all necessary details are captured. 2) It is more
difficult to handle topology changes of the models over time. 3) Due to the reduced number of
parameters the models usually cannot recover smaller details of the deformation. A classical
example for this issue are foldings and wrinkles in clothing that cannot be tracked correctly
when recovering the geometry of humans over time. Although these approaches use the same
input data they address and solve a slightly different problem, which is mostly body pose
estimation. Nevertheless, we want to mention a few important works in this subfield.

Furukawa et al. [90] capture a model via reconstruction based on their PMVS-3D reconstruc-
tion approach [89], then the polyhedral mesh with fixed topology is propagated by tracking
its vertices. Pose estimation and articulated mesh animation from silhouettes have been in-
vestigated by Vlasic et al. [229]. They further deform the shape of the mesh to fit the input
silhouettes after the pose estimation for each frame. De Aguiar et al. [69] do not use skeleton
models or pose estimation, but directly estimate 3D vertex correspondences and use a Lapla-
cian mesh deformation scheme to align high-quality meshes. This approach is better suited
for larger model deformations, e.g. when tracking people wearing wide clothing. They further
improved the approach by combining surface-based with volumetric deformation techniques
[68]. Varanasi et al. [222] identify sparse, but robust matching vertices in consecutive time
frames based on geometric and photometric information and then densify the motion field
with Laplacian diffusion. Cagniart et al. contributed a patch-based approach [37] and a
probabilistic approach [38] to deformable mesh tracking.
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11. Spatio-Temporal Multi-View 3D
Reconstruction

Essentially, all models are wrong, but some are useful.

George Edward Pelham Box
(Professor em. of Statistics, University of Wisconsin, 1919 - 2013)

11.1. Introduction

In this chapter, we generalize the variational convex 3D reconstruction approach by Kolev
et al. [135] to the spatio-temporal domain (see Figure 11.1). The global optimality of the
approach and especially the more natural regularization in the 3D domain rather than in
the image domain makes the approach attractive. Although a variety of useful regularizers
for depth maps have been presented in the literature, intuitively they do not provide a
good regularization in a multi-view setup because we are usually looking for a connected
and locally smooth surface rather than a smooth depth map. 3D reconstruction based on
depth maps is a popular approach to this problem and many works exist on this topic e.g.
[248],[122]. Inherently these approaches split the overall problem into two separate ones:
depth reconstruction followed by surface reconstruction based on these depth maps. As a
result, important information such as the consistency of an estimated depth map value is
usually not handed over into the following surface reconstruction. In contrast, our goal is to
carry as much information as possible into the final global 3D surface optimization.

Apart from the work by Kolev et al. [135], our approach is also related to the space-time
2D tracking framework by Unger et al. [218]. They cast the problem of tracking objects in
images over time as a 3D segmentation problem to model temporal smoothness or deal with
temporally short occlusions of the tracked object. Although the task and several properties
are quite different we use a similar model, but in a 4D rather than a 3D setting.

Figure 11.1.: One of the input images and several time frames of a space-time surface evolution.
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Figure 11.2.: Outline of the proposed space-time reconstruction framework. Two men are filmed
synchronously by 16 cameras. The figure shows (left to right) one input image, estimated photocon-
sistencies, a level set of the proposed data term, the final reconstructed mesh shaded and textured.

Contributions.

• We generalize the works of Unger et al. [218] and Kolev et al. [135] from the three-
dimensional setup to a four dimensional one leading to a mathematically transparent
and globally optimal approach for space-time multi-view 3D reconstruction.

• In order to make the 3D reconstruction approach by Kolev et al. [135] work in wide-
baseline camera setups we propose a novel data term, which has several desirable prop-
erties and improves the one in [135] in several aspects. Firstly, it better preserves surface
edges and concavities. Secondly, it has better hole filling abilities when photoconsis-
tency information is weak and sparse. Finally, it does not have a global influence, that
is, it does not affect surface parts which are not visible in the respective camera.

• Further, we reduce the computation time per frame from several hours, as reported by
[135], to about 1-2 minutes for equivalent volume sizes. This aspect is important when
processing longer sequences.

In the following we introduce our space-time reconstruction framework which is outlined in
Figure 11.2. We then explain how to compute respective terms. In Section 11.3 we discuss
the optimization procedure and give some details on the implementation in Section 11.4.
Section 11.5 presents results on several data sets and Section 11.6 concludes the chapter.

11.2. Variational Space-Time Reconstruction

Let V ⊂ R
3 describe a volume in space and let T ⊂ R≥0 represent the temporal domain. We

are looking for a smooth hypersurface Σ in the space V×T which best explains the series of
input images with known projections {πi}

N
i=1. For ease of notation we will drop the temporal

index whenever the meaning is clear by the context. Similar as in [135] we represent surface
Σ by means of a binary labeling function u : V×T → {0, 1} which indicates surface interior
(1) or exterior (0). We follow the path of their work and define an energy function which
measures both the surface smoothness and how well the surface fits to the input data.

E(u) =
∫

V×T

(
ρ|∇xu|+ gt|∇tu|

)
dxdt + λ

∫

V×T

fu dxdt (11.1)

The data term f in the second term of Equation (11.1) gives local preferences for either an
interior or an exterior label and will be defined in Section 11.2.2. It is weighted by parameter
λ > 0 to favor either a smooth surface or a surface that aligns with the potentially noisy data.
The task of the first term - the regularization term - is to reject outliers, deal with locations
of missing data and to favor a spatially and temporally smooth surface. To account for the
inherent difference between spatial and temporal dimensions this term is split into a spatial
and a temporal part which then regularizes these dimensions in an anisotropic manner.
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The spatial regularization is weighted by function ρ : V×T → R which represents the photo-
consistency measure being defined in the following section. Weighting down the penalization
of the gradient norm ρ makes the surface boundary snap to probable surface locations which
are indicated by a low value of ρ. Note that for this reason, there is an inverse relation
between a high photoconsistency corresponding to a low value of ρ and vice versa.

In Equation (11.1) function gt : V×T → R steers the temporal smoothness. We choose it as
a function that depends on the gradient magnitude of the data term:

gt(x, t) = exp
(
− a|∇tf(x, t)|b

)
. (11.2)

This choice of gt(·) prevents locations with strong gradients from being over-smoothed which
is a favorable property in the presence of fast surface motions. The purpose of the temporal
regularization is mainly to suppress temporal noise in the surface reconstruction rather than
penalizing surface motion in a dynamic scene. The effects of parameters a and b will be
discussed in the experimental section.

11.2.1. Photoconsistency Estimation

For every time step and for each camera i we define a cost function1 Ci : V × R→ R which
calculates a matching cost at a location defined by distance d from the camera center towards
or through point x based on the normalized cross correlation (NCC)

Ci(x, d) =
∑

j∈C′\i

wj
i (x) ·NCC

(
πi
(
ri(x, d)

)
, πj
(
ri(x, d)

))
. (11.3)

The function ri : V × R → V returns points on the ray from camera i through point x

according to a given distance d from the camera and πi, πj are the projection matrices for
cameras i and j. The normalized cross-correlation function NCC : Ωi ×Ωj → [0, 1] measures
the discrepancy between two normalized image patches in cameras i and j. Let Ī(p) =∑

q∈N (p) be the mean patch color and Ĩi = I(qi) − Ī(pi) be the color difference of neighbor
pixel qi and the mean patch color at pixel pi for invariance against additive lighting changes
then we use the zero mean normalized cross correlation as

NCC(pi, pj) =
∑

(qi,qj)∈N (pi,pj)

Ĩi · Ĩj√
1

|N (pi)|

∑
qi∈N (pi) Ĩ2

i ·
√

1
|N (pj)|

∑
qj∈N (pj) Ĩ2

j

, (11.4)

where N (pi) defines the image patch around pi as a local neighborhood of pi ∈ Ω. To
calculate Ci(·) we select a subset of front-facing cameras C′ ⊂ C for which the angle between
the viewing directions is below γmax=85◦. The contribution of each camera is weighted by
a normalized Gaussian weight wj

i (x) of the angle between view directions of cameras i and
j. Further, we discard unreliable correlation values by means of a threshold τNCC = 0.3 and
truncate Ci to zero by setting

C̄i(x, d) =

{
0, if Ci(x, d) < τNCC

Ci(x, d), otherwise
(11.5)

This prevents Ci(·) from being negative and the truncation to zero will lead to a neutral
behavior for its use in the regularizer as well as in the data term. For the photoconsistency

1The temporal dependency is omitted for better readability.
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measure ρ we employ the voting scheme of Hernández and Schmitt [77]

ρ(x, t) = exp
[
− µ

∑

i∈C′

δ
(
dmax

i =depthi(x)
)
· C̄i(x, dmax

i )
︸ ︷︷ ︸

VOTEi(x)

]
(11.6)

which accumulates votes from different cameras only in locations x ∈ V if the maximum
quality along the ray through the center of camera i and x is found at distance dmax

i =
arg maxd C̄i(x, d). Thus, every camera ray has exactly one measurement if the corresponding
matching score exceeds the threshold. Function depthi : V → R returns the Euclidean
distance of x to the center of camera i. The scaling parameter has been set to µ = 0.15.
Function ρ(·) represents a matching score of how well a small surface patch in x matches
both corresponding camera images. It thus indicates probable surface locations with a low
value. In the next section we explain how this information can be used for a proper modeling
of the data term.

11.2.2. Data Term for Multi-View Reconstruction

The data term is necessary to avoid trivial solutions when minimizing Equation (11.1) and
replicates photoconsistency information in form of local labeling preferences. In a multi-
view setup, each label of u(x) depends on the labels of all points along all the camera rays
passing through x. Considering these dependencies accurately generally leads to an involved
non-convex optimization problem. We argue that these dependencies can be approximated
by means of unary potentials f . Negative values of f favor an interior label, while positive
ones an exterior label of u. The photoconsistency measure defined in the last section gives
hints about probable surface locations. However, it is not directly usable to express regional
affinity. Our goal is to carry the uncertainties about the surface location indicated by quality
functions Ci(·) into the unaries f and thus into the global optimization of energy (11.1). We
assume that the maximum-filtered NCC score at point x has the following relation to the
probability that surface Σ passes through this point:

Pi(x ∈ S) = 1−
1
Z

exp
[
− η ·VOTEi(x)

]
(11.7)

where Z is a normalization constant. Parameter η steers the exponential relationship between
the number of cameras giving a vote, their corresponding voting qualities VOTEi(x) and the
probability that the point x is part of the surface. Each camera ray may give a single vote for
a probable surface location. Starting from this location and walking towards the respective
camera i we follow the idea that each time we pass another probable surface location, the
probability of being in the surface interior further decreases. This idea is expressed in the
following equation which defines the probability of point x being in the surface interior for a
reference camera i:

Pi
(
x ∈ int(S)

)
=

N∏

j=1

∏

depthi(x)<d≤dmax

i

[
1− Pj

(
ri(x, d) ∈ S

)]
(11.8)

The inner product integrates the surface probability votes along the ray between depthi(x)
and dmax

i and the outer product accounts for the fact that these probabilities come from other
cameras. We assume independence of individual cameras and obtain the overall probability
that x is an interior point:

P
(
x ∈ int(Σ)

)
=

N∏

i=1

Pi
(
x ∈ int(Σ)

)
(11.9)
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depth
i
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P (x ∈ S)
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Figure 11.3.: Schematic plots of probabilities along a camera ray. The center of camera i is in the
coordinate origin. Pi

(
x ∈ int(S)

)
and visi(x) multiplicatively integrate the probabilities P (x ∈ S)

along the ray before and behind location x respectively (when looking from the camera).

Finally we define data term f in Equation (11.1) as the log-probability ratio:

f(x, t) = − ln

(
1− P

(
x ∈ int(S)

)

P
(
x ∈ int(S)

)
)

. (11.10)

Equation (11.8) is related to the probabilistic visibility model used by Pollard and Mundy
[176, Eq.(4)]. They define the visibility visi(x) of a point x as the probability that x is not
occluded by any other point between x and the camera center:

visi(x) =
∏

0<d<depthi(x)

[
1− Pi

(
ri(x, d)∈S

)]
(11.11)

One could argue that 1 − visi(x) is also a good indicator for being in the surface interior.
However, as long as none of the Pi

(
x ∈ S

)
equals exactly one, visi(x) never reaches zero and

will influence the probability of x being inside the surface far behind the camera vote. This
model propagates the uncertainty that a ray from the camera center has passed a surface
forward infinitely into the scene. In contrast, we propose a more conservative approach: we
propagate the uncertainty of a ray-surface intersection from the local camera vote only to-
wards the respective camera centers. This way the uncertainty is only distributed in between
the camera and the location of its vote. Figure 11.3 illustrates the shape of these probabil-
ity distributions schematically. Visually speaking, every camera vote carves its way towards
the camera with its corresponding probability measure and the multiplication of all such
camera bundles gives the probability of being in the surface interior. As a desirable result,
this approach does not influence areas where photoconsistency information is missing. This
way the data term favors the photo hull wherever photoconsistency information is missing or
unreliable. Note that we do not need to assume any minimal surface thickness as it is usually
done in approaches dealing with truncated signed distance functions (e.g. [248]). In contrast
to the data term proposed in [135] our approach does not influence the estimates of other
surfaces behind the camera vote.
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11.3. Global Optimization

To minimize energy (11.1) we relax the image of function u to [0, 1] and employ the precondi-
tioned primal-dual algorithm by Pock and Chambolle [175] - see Section 4.3.4. Equation (11.1)
can be rewritten by introducing a dual variable p : V×T → R

4 that helps to deal with the
non-differentiability of the total variation norm. The derivations follow the ones of Unger et
al. [218]:

E(u) = max
‖p‖≤1

∫

V×T

〈u,−div(p)〉 dxdt + λ

∫

V×T

fu dxdt (11.12)

This saddle point problem is optimized by means of an iterative update scheme performing
a gradient ascent in the dual and a gradient descent in the primal variable:

pk+1 = ΠC

[
pk + σ∇ūk

]

uk+1 = Π[0,1]

[
uk + τ(div(pk+1)− λf)

]
(11.13)

ūk+1 = 2uk+1 − uk

The projection Π of u onto the unit interval [0, 1] is done by thresholding. Projection onto
the set C = {q = (qx, qt)T : V×T → R

4
∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1} is a projection on a 4D hyperball

and can be done as follows:

ΠC(q) =


 qx

max(1, ‖qx‖
ρ )

, max
(
− gt, min(gt, qt)

)



T

(11.14)

The step sizes σ and τ are chosen adaptively by keeping track of the corresponding operator
norms as suggested in [175] for diagonal preconditioning. For the primal variable u we
assume von Neumann boundary conditions for both spatial and temporal derivatives and
corresponding Dirichlet boundary conditions for p, that is ∇u

∣∣∣
∂(V×T )

= 0 and p
∣∣∣
∂(V×T )

= 0.

The update scheme in Equation (11.13) provably converges to a global minimum of relaxed
energy (11.1). The corresponding optimal binary labeling can be found by simple thresholding
of the relaxed solution [175].

11.4. Implementation

Both the photoconsistency estimation as well as the energy optimization have been imple-
mented on the GPU using the NVidia CUDA framework. The optimization scheme in Equa-
tion (11.13) lends itself to a parallel implementation. In the result section we also briefly
detail the implementation of the photoconsistency estimation.

A limiting factor of our method is memory requirement. Overall, the method needs 8|V ||T | ·
4 bytes, one volume for the data term and photoconsistency each, two for the primal and
four volumes for the dual variable. The second primal variable is needed because of the over-
relaxation step in Equation (11.13). In practice memory resources are limited and smoothing
over too many frames is usually not meaningful in dynamic scenes. Therefore, we limit |T |
to a fixed number of frames and process longer sequences with a sliding window approach for
which we take the center frame of the window as the smooth solution.
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11.5. Results

We applied our algorithm to several data sets provided by the INRIA 4D repository [121] and
the free viewpoint video data sets from Tsinghua University provided by Liu et al. [155]. Both
data sets also provide silhouette information which is quite useful in a sparse camera setup.
We used the silhouette information provided with the data sets to speed up photoconsistency
matching and optimization by restricting all computations to the interior of the visual hull
(see Definition 10.1). Note that we do not need exact visual hull information, which is often
difficult to obtain in a fully automatic manner. Due to the search space restriction, we only
assume that the visual hull fully contains all objects to be recovered. Hence, the visual hull
can be larger, but should not be smaller than the exact one. In some frames the silhouettes
are incorrect and lead to missing scene parts in some experiments. All experiments have
been computed on a Intel Xeon E5520 PC with 12GB RAM, equipped with an NVidia Tesla
C2070 card and running a recent Linux distribution.

Given the relaxed solution of the energy in Equation (11.1), we extracted an isosurface
at u = 0.5 with the Marching Cubes algorithm [156] at every time step. To better see
the jittering reduction, all experiments show pure results of our algorithm after Marching
Cubes without any mesh smoothing, filtering or remeshing. The following section details the
photoconsistency and data term computation to explain differences and compare to previous
work.

11.5.1. Photoconsistency and Data Term Evaluation

input (a) (b) (c) (d)
Figure 11.4.: Comparison of the data term from Kolev et al. [135] (a) and the proposed one (b) for a
lower cross section of the skirt. Shown are the voxels’ probabilities of being inside (white) and outside
(black) the surface. Corresponding photoconsistencies are respectively displayed in (c) and (d). Dark
pixels represent higher matching scores. Although the photoconsistency is slightly worse, the proposed
data term yields sharper contours and better carves out concavities because only front facing cameras
determine their shape, rather than all cameras. The volume resolution was 128x256x192.

As explained in Section 11.2.2 the data term is built based on the photoconsistency measure ρ.
The quality of this measure directly influences the quality of the data term. Kolev et al. [135]
iteratively improved the quality of the photoconsistency by calculating the NCC scores based
on a surface normal estimate which they first take from the visual hull and later update with
the solution of the surface reconstruction in an iterative manner. In the photoconsistency
voting scheme as described in [135] each point x defines a ray to each camera. Point x only
gets a vote if the normal corresponding to x maximizes the NCC along the whole ray in
point x. This means that for every point x the photoconsistency has to be calculated for all
points on the corresponding camera rays with respect to the same normal. This makes the
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1 of 16 input images Kolev et al. [135] Jancosek and Pajdla [122] proposed

Figure 11.5.: Comparison of the reconstruction results using the data term by Kolev et al. [135]
and the proposed one. Further we show the result of the method by Jancosek and Pajdla [122]. The
ball has low texture information and further exhibits strong reflections which makes it difficult to
reconstruct.

photoconsistency estimation inherently slow and explains the long computation times (up to
10 hours for one scene) reported in [135]. In our 4D setup we dropped this dependency by
maximizing the photoconsistencies along rays independent of the normal direction. This way
the photoconsistency calculations can be done independently and thus easily be parallelized
to speed up computations. We simply use the viewing direction of the reference camera
towards x as the surface normal estimate. As result, we achieved speedups of one or several
orders of magnitude (depending on the volume resolution) for obtaining comparable results.
We compared the results with our reimplementation of the normal dependent maximization
and found fairly similar results. Figure 11.4 shows exemplarily results for these different
photoconsistency estimation schemes.

On the left part of Figure 11.4 we compare the proposed data term with the one in [135]. We
briefly repeat its definition to clarify the differences. They also define a quality measure for
each camera ray defined by point x and camera j:

ρj
int(x) = H(dmax

i − d) · (1− f(C̄i(x, d))) + (1−H(dmax
i − d)) · f(C̄i(x, d)) (11.15)

with

H(x) = 1{x<0} =

{
0, x < 0

1, x ≥ 0
(11.16)

being the Heavyside step function switching between two different costs depending on whether
d is larger or smaller than dmax

i , i.e. if the point x is either before or behind the voting location.
The data term is then defined as the average of ρj

int(·) over all cameras. The key difference
to our approach is that their model influences the data term in front of and behind the
camera vote while our approach only influences the data term between the camera and the
camera vote. This global influence in their model degrades the quality of back faces and other
object parts which are unrelated to the camera vote. This is visible in Figure 11.4 showing
the differences in the data term, as well as in Figure 11.5 which depicts a resulting surface
reconstruction. For comparison we also show the reconstruction result of Jancosek and Pajdla
[122]. The scenes with the gymnastic ball are especially challenging because the ball surface
has low texture information and a shiny surface. In Figure 11.6 we compared the output of
our method with the methods by Jancosek and Pajdla [122] and to the ones of Liu et al. [155]
who provided the data. Both methods yield much smoother surface reconstructions, but also
blur fine scale details like the hand. Figure 11.7 shows more reconstruction results of our
methods on various data sets. Table 11.1 lists average computation times for the experiments
depicted in Figure 11.7.
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J&P Liu ours J&P Liu ours
Figure 11.6.: Comparison of the proposed method for |T | = 1 with other 3D reconstruction methods.
From left to right (twice): J&P=Jancosek and Pajdla [122], Liu=Liu et al. [155] and the proposed
method. The approach by Jancosek and Pajdla wrongly connects points at the hand and the armpits.
Our approach method better preserves several details such as the hand.

data set volume size pc+d opt
kick one 3843 89 28/93/-
boy cartwheel 384× 384× 256 21 18/59/-
children playing 384× 384× 256 18 18/60/-
adult child 3843 43 31/91/-
red skirt 2563 90 10/31/88

Table 11.1.: Average runtimes per frame for our method on different data sets for the photocon-
sistency and data term estimation (pc+d) and the surface optimization (opt) for different sizes of
|T | ∈ {1, 3, 5}. Timings are in seconds/frame for different temporal window sizes. In comparison the
method by Jancosek and Pajdla [122] computed 600-1200 seconds/frame.

11.5.2. Temporal Regularization

Figure 11.8.: Illustration
of the exponential temporal
weighting gt = exp(−a|∇tf |

b).
The effect of parameter a is
plotted for b = 1 and x =
∇tf . This weighting sup-
presses temporal smoothing in
the presence of fast motion
(i.e. large |∇tf |).

We studied the influence of the temporal window size |T | and
weighting gt = exp(−a|∇tf |

b) in Equation (11.2). Figure 11.9
gives an overview for |T | ∈ {3, 5, 7} (horizontal) and different
a ∈ {0.001, 1} (left, vertical). The effect of gt on the solu-
tion is mainly governed by parameter a. When a approaches
zero the temporal regularization gets maximal and the recon-
structed surface tends towards the intersection with neighbor-
ing time slices (see the disappearance of the lower leg part in
Figure 11.9, top row). An illustration of the exponential weight-
ing via parameter a is given in Figure 11.8. We did not observe
significant differences for varying values of b and set b = 1 in
all experiments. The differences are largest between window
sizes |T | = 1 and |T | = 3. Choosing larger window sizes only
led to subtle differences which do not pay off the increase in
computation time and memory resources. Since no other 4D
reconstruction implementations are publicly available and it is
difficult to obtain ground truth geometry, we visually compared
our method with (a) time-independent reconstruction by Jan-
cosek and Pajdla [122], (b) time-independent reconstruction as
proposed with |T |=1, (c) temporal Gaussian smoothing of (b)
as post processing for temporal smoothness, and (d) the proposed method with |T |= 3. In
particular, we computed a smoothed occupancy labeling ū from the time-independent result
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children playing - 16 cameras, 1624 × 1224

kick one - 16 cameras, 1624 × 1224

adult child - 16 cameras, 1624 × 1224

boy cartwheel - 16 cameras, 1624 × 1224

red skirt - 20 cameras, 1024 × 768

frame 10 frame 20 frame 50 frame 70 frame 100

Figure 11.7.: Results of our framework on several data sets for |T | = 3. For the cartwheel sequence
we selected frame numbers (120,130,222,347,442) and for red skirt frame numbers (41,45,50,55,58).
Please refer to the supplementary material [7] for video sequences.

û as follows:

ū(x, t) =
1
Z

|T |−1∑

i=0

exp

[
−

(i− |T |/2)2

2σ2

]
û(x, t + i− |T |/2) (11.17)

Figure 11.10 shows a representative frame for each method. Generally, the Gaussian filtering
cannot reach the same level of smoothness as (d) while preserving fast moving object parts.
For preserving fast movements σ needs to be chosen very small such that voxel jittering is
barely reduced. The proposed method balances these issues much better.

11.6. Conclusion

In this chapter we presented a novel approach to space time multi-view 3D reconstruction
that generalizes several previous works into a 4D setting. In order to get competitive re-
constructions on wide-baseline camera setups we further proposed a novel data term that
better preserves concavities and fine details. 3D reconstruction results compare favorably
to other works. Our approach directly accounts for temporal surface coherence within the
reconstruction process. In comparison to single frame-by-frame reconstruction our approach
clearly reduces the amount of noise on the estimated surface. In several experiments we
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s|T | = 1 |T | = 3 |T | = 5 |T | = 7 |T | = 1 |T | = 3, a = 0.5

Figure 11.9.: Effect of the temporal regularization. The approach allows to impose temporal reg-
ularity over multiple time steps |T |. For a small weight of temporal smoothness (a = 1, left bottom
row) the regularity reduces the jittering of voxels over time (see supplementary video [7]), whereas
for strong temporal smoothness (a = 0.001, left top row) the regularization starts to deteriorate fast
moving structures like the right foot. Temporal coherence also improves reconstructions with weak
photoconsistencies in single time frames (right).

(a) Jancosek and (b) time-independent (c) temporal filtering (d) proposed
Pajdla [122] (|T | = 1) (|T | = 1) (|T | = 3) (|T | = 3)

Figure 11.10.: Comparison of different reconstruction techniques. (a) produces strong surface jit-
tering, wrongly connects the leg and hand and misses parts of the head. (b) Voxel jittering is visible.
(c) Voxel jittering can be reduced, but fast moving object parts start disappearing, e.g. the foot.
The edge on the lower leg is an artifact of the averaging of consecutive time frames. (d) Due to the
weighting and the TV-regularization the problems of (c) can be balanced much better (see also the
supplementary video [7]).

showed the viability of the proposed framework. To our knowledge, this is the first time that
space-time 3D reconstruction was formulated as a convex variational problem. The solutions
are provably optimal in terms of the objective function, independent of initialization and
recover fine details.
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12. Surface Normal Integration and Spatially
Anisotropic Regularization

If you do not change direction, you may end up where you are heading.

Laozi
(Philosopher and Poet, 604 BC - 531 BC)

Figure 12.1.: Frame 17 (of 409) from the “jumping rope sequence” [121] and corresponding recon-
structions of this and the following time frames computed with the proposed method. By minimizing
a single convex functional, we obtain a family of reconstructions over time. By integrating normal
information into the photoconsistency estimation and into an anisotropic space-time regularization,
we are able to preserve fine scale details such as the (substantially motion-blurred) rope.

In this chapter we show that surface normal information allows to significantly improve the
accuracy of a spatio-temporal multi-view reconstruction. On one hand, normal information
can improve the quality of photometric matching scores. On the other hand, the same normal
information can be employed to drive an adaptive anisotropic surface regularization process
which better preserves fine details and elongated structures than its isotropic counterpart.
We demonstrate how normal information can be used and estimated and explain crucial steps
for an efficient implementation. Experiments on several challenging multi-view video data
sets show clear improvements over state-of-the-art methods. This chapter has been published
in [8].

12.1. Introduction

The extension of multi-view 3D reconstruction approaches to the spatio-temporal domain
is far from straightforward: Firstly, with the processing of huge amounts of data, com-
putational speed becomes more important. Algorithms which take around an hour for a
single reconstruction are hardly scalable to multi-view videos taken at 30 frames per second.
Secondly, integrating temporal regularization gives rise to a substantial increase in mem-
ory requirements because the reconstructions for multiple time steps need to be computed
jointly. Thirdly, the acquisition of actions over time brings about substantial motion blur of
fast moving structures – see the rope in Figure 12.1. And lastly, one typically uses far fewer
cameras with lower resolution (the synchronization and joint acquisition being tedious) such
that classical photoconsistency approaches often break down.
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12.1.1. Related Work

In this section we give a brief overview of most related related works on multi-view stereo
reconstruction which used or estimated surface normals in their approach.

An early work considering surface normals while estimating a 3D surface is by Zabulis and
Daniilidis [247]. They estimate voxel occupancy at the surface and corresponding normals
in a voxel grid by locally maximizing corresponding surface patch correlation values. The
optimization is spatially local and results in rather noisy and disconnected surfaces. Furukawa
et al. [91] proposed to jointly estimate depth and orientation of surface patches by means
of an oriented point cloud which can then be transformed into a mesh e.g. via Poisson
surface reconstruction [129]. Goesele et al. [93] built a system for reconstructing 3D scenes
from internet photo collections. They show that optimizing surface normal information with
respect to the photoconsistency measure significantly improves the reconstruction quality.
Both methods [91, 93] are based on an oriented point cloud which is grown and filtered
iteratively around existing matches by starting from sparse feature matches. Generally, an
extension of such models into a spatio-temporal domain is by no means straightforward
because the correspondence of points over time needs to be identified first.

Ladikos et al. [145] used a narrow band graph-cut approach for multi-view reconstruction.
They jointly maximized a normalized cross-correlation (NCC) photoconsistency measure and
computed the best normal by discretely sampling a dense set of normals in the cone around
an initial normal estimate. Vu et al. [234] proposed a reconstruction pipeline for large scale
scenes. They also experimented with choosing different orientations during the reconstruction
and keeping only the best one, yet they did not observe noticeable improvements. Kolev et
al. [136] improved the results of multi-view 3D reconstruction with an anisotropic regularizer
and a given normal field. We use a similar regularizer, but additionally discuss how to
compute such a normal field and how it can be used to improve photometric measures.

Wu et al. [242] estimate normals from multi-view video based on a coarse tracked shape
model over consecutive time steps and use this information to augment the same model with
the estimated fine details.

There exist a wide range of works which aim to reconstruct surfaces from a given normal
vector field. Note that these works aim to solve a different problem to the one we consider in
this chapter. Nevertheless, some of these works share similar ideas and approaches and are
worth mentioning in this context. Chang et al. [50] integrate several normal fields captured
by structured light techniques from multiple views and merge all information within a level-
set framework to recover the full 3D shape of a target object. Vlasic et al. [230] use a
costly camera dome setup with structured light to accurately estimate normal and depth
maps and merge them so single model in a data-driven manner. Weinmann et al. [237]
use structured light to estimate the normals and surface location of objects with mirroring
surface properties. Kazhdan et al. [129, 130] wrote a series of works on “Poisson surface
reconstruction” from oriented point clouds which gained a lot of popularity in the community
as a final 3D reconstruction step to obtain hole-free “watertight” meshes. Similar to our
approach they compute a surface via a binary interior/exterior indicator function. The sparse
normal information is integrated by solving a Poisson equation on an octree-based data-
adaptive grid.

12.1.2. Contributions

In this chapter, we propose a convex variational approach to space-time reconstruction which
estimates surface normal information and integrates it into the photoconsistency estimation
as well as into an anisotropic spatio-temporal total variation regularization. As such, the
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proposed method generalizes the works of Chapter 11 ([7]) and the one of Kolev et al. [136]
on anisotropic regularization. Although [136] already studied anisotropic regularization they
did not estimate normals but used the normals from [91]. The combination of these methods,
[136] and [91], is more than 40 times slower than our method as [136] alone needs about
1h to compute a single frame. In contrast, our method only takes about 3 minutes per
frame including normal estimation and temporal regularization due to the proposed efficient
implementation. Moreover, the method by Kolev et al. [136] does not work well on the 4D
data sets we consider, as shown in Figure 11.5 of the previous Chapter 11. With the estimated
normals at hand, we further propose an improvement of the photoconsistency voting scheme
by Hernández and Schmitt [77] resulting in superior accuracy especially for sparse camera
setups.

12.2. Variational Space-Time Reconstruction Model

Similar to the previous Chapter 11, we aim to find a smooth hypersurface Σ in the spatio-
temporal space V×T in which V ⊂ R

3 represents the spatial and T ⊂ R≥0 the temporal
domain. A non-static scene is observed from N cameras with known projections {πi}

N
i=1 and

approximate silhouettes {Si(t)}Ni=1. Similar to Chapter 11, we assume the silhouettes to fully
enclose the object of interest and restrict the solution space to the visual hull (Definition 10.1).
We do not rely on exact silhouettes as they are difficult to estimate in a general 4D setup.
Hence, methods using exact silhouettes such as [62] are not applicable. Again, we will drop
temporal indices whenever possible for better readability.

First, we introduce a binary labeling function u : V×T → {0, 1} to represent the hypersurface
Σ by means of an inside-outside labeling in each point. This implicit surface representation
easily deals with topology changes and allows to compute minimal surfaces that align with
locations of high photometric consistency in a globally optimal manner [135]. We compute a
hypersurface as a minimum of the following energy.

E(u) =
∫

V×T

[
|∇xu|Dx

+ gt|∇tu|+ λ fu
]

dxdt (12.1)

The parameter λ ≥ 0 steers the smoothness of the solution by balancing the costs of the
regularization term and the data term. The function f : V×T → R represents unary poten-
tials which indicate local preferences for either an interior or an exterior label based on the
photoconsistency being defined in the next section. The task of the regularization term is to
reject outliers, to deal with locations of missing data and to favor a spatially and temporally
smooth surface. The regularization term consists of two terms, one for the anisotropic spatial
regularization with the norm defined as |y|Dx

= 〈y, Dxy〉1/2 (see [168] for details) and the
other term takes care of the temporal regularization. Both terms are detailed in the following.

Spatial Regularization. The symmetric positive-definite matrix Dx accounts for an anisotropic
spatial regularization and is defined similarly as in [185].

Dx(x, t) = ρ(x, t)2nnT + n0nT
0 + n1nT

1 . (12.2)

It lowers smoothing in the direction of the surface normal n ∈ R
3 and favors smoothness

along the corresponding tangential directions n0 and n1 = n × n0. The anisotropic total
variation norm |∇xu|Dx

is a generalization of the total variation norm [168], because for
Dx(x, t) = diag

(
ρ(x, t)2

)
the regularization term reduces to the isotropic weighted total

variation norm
∫

ρ |∇xu| dx.
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The photoconsistency measure ρ : V×T → [0, 1] is detailed in the next section. Essentially,
Dx performs a change of basis and aligns the local coordinate system along the favored
surface normal n. The vector components in normal direction are downscaled with the
photoconsistency measure ρ while the tangential directions remain untouched. As a result,
gradients in normal direction are less penalized then other directions and ∇u is more likely to
be aligned to n. On the one hand the anisotropic regularization better preserves small scale
surface details [136], on the other hand it is important when reconstructing fine elongated
structures [185] like human arms, or parts of clothes and hair.

In contrast to the isotropic weighted total variation model (Dx = ρ2
I3×3) only one spa-

tial direction is downscaled by ρ(x), while in the isotropic case all spatial directions are
weighted. Consequently, the overall diffusivity is larger in the anisotropic case and therefore
the smoothness parameter λ in Equation (12.1) has to be chosen larger in order to obtain
results of similar smoothness. Since we will estimate normals based on photoconsistency
information this weighting makes perfect sense, because a low photoconsistency measure also
indicates that the corresponding normal estimate is uncertain.

Temporal Regularization. In Equation (12.1) function gt : V×T → R≥0 regulates the tem-
poral smoothness. By setting gt(x, t) = exp

(
− a|∇f(x, t)|

)
we make it dependent on the

data term in order to reduce temporal smoothing in regions with fast motion. The purpose
of this regularization is to reduce surface jittering in scene parts with slow motion. The effect
of this term is studied in Chapter 11. We used values for a between 0.2 and 1 in our setting.

12.3. Surface Normal Integration

Normal information is used in all stages of our approach, namely during the photoconsistency
and data term estimation as well as during the global surface optimization.

12.3.1. Photoconsistency and Data Term Estimation

In order to estimate photometric consistency measures and to build a corresponding data
term, we use the same model as proposed in Section 11.2.1 in the previous chapter, but
integrate available normal information to obtain better matching scores. For every time step
we estimate the photometric consistency of a point on the surface by means of a cost function
Ci : V × R→ R based on the NCC score of corresponding small image patches surrounding
the projection of that point in each camera.

Ci(x, d) =
∑

j∈C′\i

wj
i (x) ·NCC

(
πi
(
ri(x, d)

)
, πj
(
ri(x, d)

))
(12.3)

The value d is the Euclidean distance of x from camera center i along camera ray ri(x, ·)
through point x. C′ ⊂ C is a subset of front-facing cameras of which the angle between
the viewing directions is below γmax=85◦. The contribution of each camera is weighted by
a normalized Gaussian weight wj

i (x) of the angle between the voxel-to-camera directions of
cameras i and j. Furthermore, we discard unreliable correlation values by setting Ci(·) to zero
if it falls below a threshold τncc = 0.3. To account for image distortion between two cameras
during the NCC computation the image coordinates are mapped with the homography Hij =
(nT x)RT

ij − RT
ijtijnT , with n being the surface normal, x ∈ V the current point and Rij ∈

SO(3), tij ∈ R
3 being the relative rotation and translation between local coordinates of

cameras i and j [79].
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Since the correlation scores Ci(·) are usually noisy and contain many local maxima we denoise
them with the voting scheme by Hernández and Schmitt [77] and define the photoconsistency
measure ρ(x) for the regularizer as

ρ(x) = exp
[
− µ

∑

i∈C′

δ
(
dmax

i =depthi(x)
)
· Ci(x, dmax

i )
︸ ︷︷ ︸

VOTEi(x)

]
. (12.4)

This scheme accumulates only the best score along each camera ray. The point with maximum
score is expressed by its distance to the camera center

dmax
i = arg max

d
Ci(x, d) . (12.5)

In comparison, for most 3D reconstruction approaches that first estimate depth maps before
fusing them into a single 3D model, e.g. [248], the matching scores of single depth estimates
are not considered in the depth fusion process. In contrast, the voting scheme accumulates
matching scores and we hand them over to the global surface estimation. Another significant
difference to such methods is the missing regularization of depth values in the image domain,
which often helps to avoid depth ambiguities and to suppress noise. We therefore propose
to introduce a dependency between neighboring camera rays by the following modification of
the voting scheme in Equation (12.5):

dmax
i = arg max

d

∫

Vx

Ci(x− y, d) G(y; Σn) dy , (12.6)

where Vx ⊂ V is a small volume surrounding x. Each value of Ci(·) represents the matching
score of a small surface patch with location x and orientation n and should also influence
neighboring matching scores according to the patch size. We model this dependency by
a Gaussian convolution of the matching scores before the maximization. Again, the nor-
mal information comes in handy to better represent the shape of the surface patch by an
anisotropic 3D Gaussian G(·) with covariance matrix Σn = Rn diag(σ2

n, σ2
t , σ2

t )RT
n . σn and

σt are the standard deviations for normal and tangential directions and rotation matrix Rn

aligns the x-axis of the coordinate system with the normal n. This scheme effectively denoises
depth hypotheses and improves the quality of matching scores for piecewise smooth surfaces
as it helps to avoid local maxima by integrating information from neighboring viewing rays.

In order to avoid trivial solutions of energy (12.1) the photoconsistency is further imposed
by means of an unary data term f , defined as the log-probability ratio

f(x, t) = − ln
(

1− P (x ∈ int(Σ))
P (x ∈ int(Σ))

)
. (12.7)

The probability P (x ∈ int(Σ)) that point x belongs to the interior of surface S is defined
based on the voting locations and qualities of corresponding camera rays ri(x, ·) through
point x

P (x ∈ int(Σ)) =
N∏

i=1

N∏

j=1

∏

depthi(x)<d≤dmax

i

1
Zj

exp
[
−η ·VOTEj

(
ri(x, d)

)]
(12.8)

Zj is a normalization constant and parameter η steers how many cameras and which matching
scores are necessary to favor an exterior label for all points from x towards the camera.
Intuitively, the data term represents a probabilistic space carving and due to the restriction
of the solution space to the visual hull, the visual hull is the fall back solution for all areas
where photometric information is insufficient.
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12.3.2. Normal Estimation

Similar to [145] we experimented with estimating the normal direction by global maximization
of the NCC score via discrete sampling around the camera-to-point direction. Generally,
pointwise optimization of the surface normal is prone to local minima and we merely got
noisy and unsatisfactory results with this approach. Similar results have also been reported
by [234]. We also tried estimating normals based on the data term f as done in [185] which also
yields defective normals due to the fact that f is very noisy and misses a lot of data for most
of our experiments. Kolev et al. [135] estimated normal directions for the photoconsistency
computation based on the visual hull. Especially in sparse camera setups we found that the
visual hull does not provide good normal estimates for recovering concavities.

Instead we use the camera-to-point direction as a first normal estimate for photoconsistency
estimation which is a common (inherent) assumption in most stereo-based methods. We then
compute a surface with isotropic spatial regularization and use the surface normals of this
solution for a second pass of photoconsistency, data term estimation and surface optimization
with anisotropic spatial regularization. For that purpose the surface normals are propagated
in space by means of a signed distance function (Section 12.5). In sum, we make use of surface
normals at three places within our method: (a) NCC score, (b) voting scheme regularization
and (c) anisotropic surface regularization. We run our algorithm in two passes:

Pass 1: camera-to-point direction as normal for (a) and (b), isotropic surface regularization
with high λ for (c)

Pass 2: normals from the previous pass for (a),(b) and (c) with lower λ for surface smoothness
as desired

This scheme could be further iterated, but in our experience two passes achieve the best
trade-off between quality improvements and additional computation time.

12.4. Optimization

In order to deal with the non-differentiability of the total variation norm by using the
Legendre-Fenchel transform we first rewrite the anisotropic spatial regularization term in
energy (12.1) based on the following equalities.

|∇xu|Dx
=
√

(∇xu)T Dx∇xu

=
√

(∇xu)T
(
D

1/2
x

T
D

1/2
x

)
∇xu

=

√(
D

1/2
x ∇xu

)T (
D

1/2
x ∇xu

)
(12.9)

=
∣∣∣D1/2

x ∇xu
∣∣∣
2
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Since matrix Dx is positive-definite, it has a unique square root which can be found by
diagonalization:

Dx
1/2 =

(
ρ(x, t)2 nnT + n0nT

0 + n1nT
1

)1/2

=
(
PΛP−1

)1/2

= PΛ1/2P−1 (12.10)

= ρ(x, t) nnT + n0nT
0 + n1nT

1

with P =


 n n0 n1


 and Λ =




ρ(x, t)2 0 0
0 1 0
0 0 1


 . (12.11)

Since matrix P is composed of three orthogonal vectors as its columns, we have P−1 = PT

and computing the square root of Dx is as simple as computing Dx itself.

The minimization problem in Equation (12.1) becomes convex by relaxing the image of func-
tion u to [0, 1]. We globally minimize the energy with the preconditioned primal-dual algo-
rithm by Pock and Chambolle [175] which solves certain saddle-point problems efficiently. To
this end, we introduce a dual variable p : V×T → R

4 which tackles the non-differentiability
of the total variation norm:

u∗ = arg min
u

E(u) (12.12)

= arg min
u

∫

V×T

[ ∣∣∣D1/2
x ∇xu

∣∣∣
2

+ gt|∇tu|2 + λ fu
]

dxdt (12.13)

= arg min
u

max
p∈P

∫

V×T

[
〈px, D1/2

x ∇xu〉+ 〈pt,∇tu〉+ λ fu
]

dxdt , (12.14)

with set P being defined below. The algorithm converges to the globally optimal solution by
iterating a projected gradient descent and gradient ascent for the primal and dual variables
respectively. The pointwise update equations for each iteration k are as follows.

pk+1 = ΠP

[
pk + σ

(
D1/2

x ∇xūk , ∇tū
k
)T
]

(12.15)

uk+1 = Π[0,1]

[
uk + τ

(
div

(
(D1/2

x pk+1
x , pk+1

t )T
)
− λf

)]
(12.16)

ūk+1 = 2uk+1 − uk (12.17)

Π[0,1] projects u onto the unit interval [0, 1] via simple thresholding. The projection onto the
set P = {p = (px, pt)

T : V×T → R
4
∣∣ ‖px‖ ≤ 1, |pt| ≤ 1} can be done as follows:

ΠP (p) =
(

px

max(1, ‖px‖)
, max

(
− 1, min(1, pt)

))T

(12.18)

Set P can be imagined like a “capsule pill”, i.e. a 3D ball shifted along the 4th dimension.
The step sizes σ and τ are chosen adaptively by keeping track of the corresponding operator
norms as suggested in [175]. Note that the linear operators that transform between primal
and dual space contain the discretized differential operators and the diffusion matrix Dx

which need to be considered for the preconditioning.For the primal variable u we impose
Neumann boundary conditions for both spatial and temporal derivatives and accordingly
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Dirichlet boundary conditions for p:

∇nu
∣∣∣
∂(V×T )

= 〈∇u, n〉
∣∣∣
∂(V×T )

= 0 and p
∣∣∣
∂(V×T )

= 0 , (12.19)

where n is the normal to the domain boundary in this case. Note that this optimization
procedure solves the relaxed optimization problem. In order to get a binary occupancy
labeling one can simply threshold the values of u. However, the relaxed solution provides
sub-voxel accuracy when extracting an iso-surface which we do at 0.5 using the Marching
Cubes algorithm [156]. To better see voxel jittering effects all experiments show the direct
outcome of this algorithm without any smoothing or remeshing. In most examples one can
observe particular voxel layers, which indicates that the relaxed solution of optimization
problem (12.1) is close to the solution of the original binary formulation in locations where
information about the surface is strong. These discretization artifacts can be tackled with
better iso-surface extraction methods or simple post-smoothing.

12.5. Implementation

Both the photoconsistency estimation and the surface optimization are highly parallelizable
and have been implemented on the GPU using the NVidia CUDA framework. An efficient in-
tegration of the anisotropic regularization is challenging because in every point the derivative
of the spatially and temporally varying diffusion tensor Dx needs to be evaluated based on
the normal estimate n in each point. A straightforward implementation would easily double
the overall memory consumption and render the numerical problem infeasible for reasonable
volume resolutions. To save memory we do not precompute or save the 3 × 3 diffusion ma-
trix Dx, but we recompute Dx and its derivative as needed and make use of its symmetry.
Further, instead of saving a dense normal field for every time step, we store a signed dis-
tance function of the previous surface estimate which requires only one additional volume per
frame and allows us to densely compute normal estimates as its derivative everywhere in the
volume. To compute D

1/2
x via n, n0, n1, we use the Gram-Schmidt orthogonalization method

starting with the local normal estimate n and the unit vector that points in the direction of
the smallest absolute entry of n. Further, we approximate spatial and temporal derivates of
D

1/2
x with forward and backward differences for the primal and dual steps, respectively, in

order to ensure the adjointness of primal and dual operators. For instance, for the spatial
derivates at a fixed time step t (omitted here for better readability) we used

D1/2
x ∇xu ≈ D1/2

x ·




u(x+1, y, z)− u(x, y, z)

u(x, y+1, z)− u(x, y, z)

u(x, y, z+1)− u(x, y, z)


 (12.20)
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and

div
(
D1/2

x (x, y, z)px(x, y, z)
)

≈
(
d11( x, y, z ) p1( x, y, z ) +d12( x, y, z ) p2( x, y, z ) +d13( x, y, z ) p3( x, y, z )

)
−

(
d11(x−1, y, z) p1(x−1, y, z) +d12(x−1, y, z) p2(x−1, y, z) +d13(x−1, y, z) p3(x−1, y, z)

)
+

(
d21( x, y, z ) p1( x, y, z ) +d22( x, y, z ) p2( x, y, z ) +d23( x, y, z ) p3( x, y, z )

)
−

(
d21(x, y−1, z) p1(x, y−1, z) +d22(x, y−1, z) p2(x, y−1, z) +d23(x, y−1, z) p3(x, y−1, z)

)
+

(
d31( x, y, z ) p1( x, y, z ) +d32( x, y, z ) p2( x, y, z ) +d33( x, y, z ) p3( x, y, z )

)
−

(
d31(x, y, z−1) p1(x, y, z−1) +d32(x, y, z−1) p2(x, y, z−1) +d33(x, y, z−1) p3(x, y, z−1)

)
,

(12.21)

where dij denote the elements of matrix D
1/2
x and pj denote the elements of vector px.

As a result, the total amount of required memory per frame is 9 · |V×T | · 4 bytes. One
volume for the data term, photoconsistency and signed distance function each, two for the
primal and four volumes for the dual variable. The second primal variable is needed for the
over-relaxation step in Equation (12.17). Based on the experimental results of Section 11.5.2
in the previous chapter, we used |T | = 3 and processed longer sequences with a sliding time
window approach considering also the frames before and after the current one and took the
center frame of the window as the temporally smoothed solution. Further significant memory
savings (factor 1/4 to 1/10) and speedups (factor 25 to 30) can be achieved by restricting
all computations and data structures to the visual hull using indexed lists. For the scenes
we have evaluated in this chapter this approach is very useful because the size of volume V
is large to capture the dynamics of the scene over time. Thus only a small amount of the
volume is labeled as interior.

12.6. Results

We tested our approach on several multi-view sequences with 16 cameras and 1624 × 1224
image resolution from the INRIA 4D repository [121]. We computed all experiments on a
Linux-based PC with a 2.27GHz Xeon CPU, 24GB RAM and an NVidia Titan 6GB graphics
card. For quality assessment we compared our method with several state-of-the-art 3D and
4D reconstruction methods: PMVS [91] + Poisson surface reconstruction [129], Jancosek and
Pajdla [122] and the isotropic method in Chapter 11 (also referred to as [7] for brevity). For all
methods we used default parameters, full input image resolution and provided approximate
silhouettes if possible (all except [122]).

Figure 12.2 shows the influence of normal information on the reconstruction quality in ev-
ery step of the reconstruction process. For the first pass of our method we used higher
standard deviations (σn = 0.4, σt = 0.9) for the anisotropic Gaussian smoothing kernel in
Equation (12.6) to achieve a higher denoising of NCC scores from potentially wrong initial
normal estimates. The anisotropic smoothing of the NCC scores makes them more discrim-
inative in comparison to the viewing ray independent voting scheme used in the previous
Chapter 11 and leads to more distinctive votes (top row). Fine details are only preserved for
low smoothness values (bottom row). In the second pass we reduced the Gaussian smoothing
(σn = 0.3, σt = 0.7) to better preserve fine details in the reconstruction. The normal esti-
mates from pass 1 further improve the photoconsistencies (e.g. the hair) and the anisotropic
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input without normal pass 1 pass 2 comparison

integration [7] (proposed) column 2 & 4

Figure 12.2.: Effects of the proposed normal integration. Column 2 shows the results without
normal integration. The photoconsistency ρ(x) (top) is noisy and less discriminative leading to a
reconstruction (bottom) that misses details like the thumb and the hair due to low photometric
information. In comparison the photoconsistency for the first pass was denoised with neighborhood
information (Equation (12.6)). The corresponding reconstruction with isotropic regularization is used
to estimate surface normals for the second pass. These normals provide a better estimate than the
typically assumed camera-aligned direction used in classical stereo matching. The normals from the
first pass further improve photometric scores and fine details (e.g. the thumb) are better preserved
due to the anisotropic regularization. The last column compares textured meshes of the results in
column 2 and 4. (|V×T | = 2563 · 3)

regularization preserves fine details like the thumb also for a higher surface smoothness.

input and
close ups

Jancosek and PMVS [91] + isotropic model anisotropic model
Pajdla [122] Poisson [129] w/o normals [7] with normals [8]

Figure 12.3.: Comparison of our results to other methods. Two views (top/bottom row) of the
’kick one’ scene [121] (frame 1) next to an input image and close ups on details. The reconstructions
by Jancosek and Pajdla [122] miss many details like the belt and the hand of the left person and
parts of both heads (see close ups). Large triangles are generated at locations with low photometric
information (bottom row). In contrast, the Poisson reconstruction hallucinates balloonish structures
at such locations. The isotropic method in Chapter 11 yields similar results to the proposed one, but
misses fine details like the belt or the hair which is difficult to recover because of noisy photometric
information. The proposed normal integration yields superior results. (|V×T | = 2563 · 3)

In Figure 12.3 we show reconstruction results on a martial art scene in comparison. The
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method by Jancosek and Pajdla [122] tends to misconnect points which are close but not
related to each other. The reconstruction of the left person shows many details on the front,
because the method found many inlier points. However, the backside of the left person
and most of the right person contains only few triangles which heavily degrade the visual
perception of the reconstruction. Generally, this method fails to reconstruct small details
and regions with low texture information like the hair or the over-bright cloth section on
the shoulders. PMVS [91] performs mostly well in recovering fine details. Since PMVS is a
point cloud-based method, point connectivity information is not available for the subsequent
Poisson surface reconstruction [129]. This leads to misconnected points and even balloonish
surface parts in regions with low photometric information. Moreover, the iterative filtering
and expansion approach of [91] in combination with [129] makes the method temporally
unstable in sparse camera setups.

In comparison to [122] and [91], the isotropic reconstruction method in Chapter 11/[7] per-
forms better but cannot fully recover the belt due to bad photometric scores as well as the
isotropic regularization scheme which penalizes the surface area and tends to remove thin
structures (shrinking bias).

Figure 12.4 depicts results of challenging scenes with strong motion blur such as the rope
jumping girl or the man with the stick. Our method does not always recover the full geome-
try, but generally yields better results over full video sequences (see supplementary video [8]).
Mostly, fine or elongated structures are better preserved such as the fingers of the boy in the
cartwheel sequence. Especially, the proposed normal-driven Gaussian smoothing in Equa-
tion (12.6) yields superior results in regions with noisy photoconsistency. In particular, the
hair is consistently better reconstructed in all sequences we have evaluated. However, in
areas where the photometric information is very sparse, the Gaussian smoothing can also
degrade the matching score and lead to slightly worse results, e.g. the back of the person
in Figure 12.3. Essentially, the reconstruction with the isotropic regularization in the first
pass only serves as a smoothing of the estimated normal field. Due to the smoothing the
recovered normals encode rather low-frequency details of the surface. This is in contrast to
the related works mentioned in Section 12.1.1 which estimate normals to better recover the
high-frequency details of the surface. However, experiments show that the estimated nor-
mals from the first pass can be estimated with moderate effort and improve the photometric
matching scores in many surface regions.

Runtime. Depending on the scene, the photoconsistency and data term estimation needed
about 15-30s for all 16 cameras per frame. For a volume size of |V | = 3843 voxels the isotropic
surface estimation in the first pass needed about 1s for |T | = 1 and 2-3s for |T | = 3. The
anisotropic surface estimation in the second pass needed approximately 5s for |T | = 1 and
30s for |T | = 3. For the anisotropic regularization the optimization was 6 times faster if
the normals were stored separately in a normal field instead of storing a signed distance
function, but at the cost of higher memory consumption. These timings exclude loading and
storing from disk and filling data structures. In comparison our method is considerably faster
than PMVS [91]+Poisson [129] which needed about 20min/frame for the ’kick one’ scene and
6-7min/frame for the ’cartwheel’ scene. The method by Jancosek and Pajdla [122] needed
about 7-10min/frame. Note that the runtime comparison is only for qualitative information,
because all evaluated methods utilize CPU and GPU parallelism in a different manner and
have different runtime and memory complexities. Especially the runtime of PMVS [91] is
highly data-dependent because of the iterative filtering approach.
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input Jancosek and PMVS [91] + isotropic model anisotropic model
Pajdla [122] Poisson [129] w/o normals [7] with normals [8]

Figure 12.4.: Reconstruction results on different scenes (rope jump, boy cartwheel, stick) from
[121]. Although the voxel resolution limits the quality of the rope reconstruction, normal information
improves the photometric consistency and helps to better recover fine details in the matching phase and
to preserve them during the surface optimization, e.g. the boys thumb or the fast moving stick or rope.
Both methods [122, 91] reconstruct frames independently and show severe surface jittering. Enforcing
temporal coherence visibly reduces the jittering (see supplementary video [8]) (|V×T | = 3843 · 3).

12.7. Conclusion

In this chapter we showed how surface normal information can be estimated and effectively
used within a spatio-temporal multi-view reconstruction setup. Proper estimates of normal
information firstly help to improve the accuracy of photometric measures and secondly im-
prove reconstruction results by reducing the shrinking bias of common regularizers. Further,
we demonstrated that a modification of the photoconsistency voting scheme [77] improves ro-
bustness and quality of the estimated photoconsistencies, making it more similar to methods
that determine a regularized fusion of precomputed depths maps. By harnessing the power of
consumer graphics cards we showed that an efficient implementation leads to low computa-
tion times despite the large amount of data being processed. Numerous experiments showed
the improvements of the proposed approach over competitive reconstruction methods.

We could demonstrate that the proposed normal integration helps to recover fine elongated
surface parts such as the rope or the stick in Figure 12.4. Nevertheless, the reconstructions are
far from perfect, because the reconstructed rope is disconnected in many parts. In the next
chapter, we will show that by enforcing the connectivity of the solution the reconstruction
results can be further significantly improved.
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13. Generalized Connectivity Constraints

Only through our connectedness to others can we really know and enhance the self. And
only through working on the self can we begin to enhance our connectedness to others.

Harriet Lerner
(Clinical Psychologist, 1944 - present)

1 of 16 input images No Connectivity With a Connectivity Generalized Connec-
Constraint [7] Constraint [205]+[7] tivity Constraint

Figure 13.1.: Embedding connectivity constraints into multi-view reconstruction clearly helps to
recover fine structures like the rope. The tree-shaped connectivity prior [205] only works for objects
without holes (genus 0), resulting in disconnected parts when the rope touches the head. The proposed
generalized connectivity constraint works for objects with arbitrary genus. Dataset: ’jumping rope’
sequence from the INRIA 4D repository [121].

This chapter extends the spatio-temporal multi-view reconstruction framework presented in
Chapter 11 and introduces connectivity preserving constraints which help to better recover
fine and elongated object structures. We efficiently model connectivity constraints by pre-
computing a geodesic shortest path tree on the occupancy likelihood. Connectivity of the
final occupancy labeling is ensured with a set of linear constraints on the labeling function.
In order to generalize the connectivity constraints from objects with genus 0 to an arbitrary
genus, we detect loops by analyzing the visual hull of the scene. A modification of the con-
straints ensures connectivity in the presence of loops. The proposed efficient implementation
adds little runtime and memory overhead to the reconstruction method. Several experiments
show significant improvement over state-of-the-art methods and validate the practical use of
this approach in scenes with fine structured details. This work has been published in [9].

13.1. Introduction

Research in multi-view 3D reconstruction has various goals and is thus driven in many dif-
ferent directions. Apart from realistic physical modeling of the inverted imaging process, it
is also of common interest to model learned and prior information (e.g. smoothness or shape
priors), or imposing intuitive constraints on the solution, such as symmetry, connectedness
or surface genus (i.e. the number of holes in the scene). In this chapter, we propose a method
that is first: able to enforce connectedness of the computed solution, and second: able to
preserve holes in the reconstructed scene within a multi-view reconstruction setup. We can
guarantee that the solutions’ surface genus is not smaller than the one of the visual hull.
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Our approach is motivated by the spatio-temporal multi-view 3D reconstruction of scenes
containing small object structures that we want to preserve in the reconstruction. Although
fine object structures can also be preserved by incorporating exact silhouette information,
such as in the work of Cremers and Kolev [62], this method is not applicable if the precom-
puted silhouettes are not accurate. For instance, the 3D reconstruction of a rope-jumping girl
in Figure 13.1 demonstrates that a connectivity constraint on the solution helps to recover fine
detailed structures like the rope. However, enforcing connectivity does not necessarily pre-
serve holes in the reconstructed object, because such constraints only ensure that everything
is connected at least once, leading to a tree shaped object structure with genus zero. The
proposed generalized connectivity constraints tackle this limitation for objects of arbitrary
topological genus.

13.1.1. Contributions

• We embed the concept of connectivity constraints for image segmentation into a spatio-
temporal multi-view reconstruction setup.

• Since the connectivity constraints proposed in [205] only work well for scenes and objects
of genus zero, we propose a generalization of the connectivity constraints to an arbitrary
genus.

• We suggest an efficient implementation of the generalized connectivity constraints with
a small additional memory footprint and an almost unchanged computation runtime
per optimization iteration. The necessary preprocessing only adds about one minute to
the three minutes computation time per frame for the presented experiments.

13.1.2. Related Work on Connectivity Constraints

The basis of this work is the spatio-temporal reconstruction method presented in Chapter 11
This method is a generalization of the 3D reconstruction by Kolev et al. [135] to the temporal
domain. Both approaches use a volumetric representation of the surface within an energy
minimization framework which makes it easy to impose additional constraints on the solution.

To the best of our knowledge the only previous work on connectivity in 3D reconstruction is
the work of Bleyer et al. [23], in which the authors propose to use connectivity information
for joint stereo matching and object segmentation. In contrast to our work, this method is
rather a 2.5D than a 3D or even a 4D reconstruction method. While the authors in [23]
correctly define connectivity as the existence of a connecting path, they instead propose to
determine the connectivity of a pair of points by testing along a straight line that connects
both points, thus only favoring convexity of objects.

In the field of image segmentation, topology preserving extensions have been proposed in
different algorithmic frameworks. For the graph cut [30] algorithm, Zeng et al. [251] proposed
a topology preserving refinement scheme. Chen et al. [53] propose to alternate between
estimating a graph cut segmentation and modifying the respective unaries based on a level-
set representation in order to fulfill predefined topological constraints. In contrast to our
approach, this method does not compute minimal geodesic connections with respect to the
input data and its runtime is much longer due to the iterative optimization. For the level set
method a topology preserving extension was proposed by Han et al. [105]. Vicente et al. [228]
use connectivity priors for a Markov random field segmentation. The authors propose an
approximation scheme to enforce connectivity of the segmented object with respect to user
given seed points. The drawback of all methods on connectivity mentioned so far is that
they only converge to a local minimum and therefore depend on the initialization. Moreover,
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apart from Bleyer et al. [23] all approaches are made for 2D domains.

Recently, three different globally optimal approaches were proposed. One is the work of
Nowozin and Lampert [167], in which the constrained image segmentation problem is formu-
lated as a linear programming relaxation. The drawback of this method is that the complexity
does not scale well with the image size and therefore prevents its use for 3D or 4D reconstruc-
tion methods where the problem size easily reaches thousands or even millions of variables.

A closely related work is that of Gulshan et al. [103]. The foreground segment is restricted
to the shape of a geodesic star with respect to a geodesic distance measure that depends on
the image gradient. By placing several input seeds, this constraint allows several geodesic
star shaped objects, their union is called a geodesic forest. However, the authors only present
results on 2D image data and because the method is formulated in a graph-cut segmentation
framework the boundary length regularizer is affected by the discretization.

Another globally optimal segmentation method with connectivity constraints is the work of
Stühmer et al. [205]. The authors propose a geodesic tree-shaped connectivity prior for image
segmentation in an efficient convex optimization framework that allows the segmentation of
large scale problems as they arise for example in 3D medical imaging data. In contrast to
[103], this method is formulated using a continuous segmentation framework and does not
suffer from discretization artifacts with respect to the boundary length regularizer. It is
perfectly suited to accurately segment objects with fine detailed tree-like structures, such as
blood vessels in angiography, or the legs of insects in photographs. They first compute a
single-source geodesic shortest path tree based on the image data. Then, the tree-connected
segmentation is computed by imposing linear constraints on the solution, based on the pre-
computed shortest path tree. As such, these constraints only impose connectivity for objects
without any holes or loops (genus 0).

We follow this idea in the context of spatio-temporal multi-view reconstruction and generalize
the connectivity constraint to objects with arbitrary genus.

13.2. Review of Connectivity Constraints for Image Segmentation

In this section, we briefly review the connectivity constraints by Stühmer et al. [205] which
will be the basis for a generalized notion of connectivity in the context of spatio-temporal
3D reconstruction. In their work they introduced an efficient method for ensuring the con-
nectedness of one region in the context of variational binary image segmentation. To sketch
the main idea of [205] we consider a segmentation model which is similar to our 3D recon-
struction energy. We use the same notation, but for simplicity we only consider the 2D
case in this section. The segmentation problem is modeled by the binary labeling function
u : Ω ⊂ R

2 → {0, 1} indicating either a foreground or a background label in each point of the
image domain Ω. Hence, the labeling function u splits the image domain into two disjunct
sets Ωu=1 ∪ Ωu=0 = Ω, Ωu=1 ∩ Ωu=0 = ∅. As an example, consider the image of a blood
vessel in Figure 13.2(a) in which we want to separate the blood vessel from the background.
The goal is to ensure the connectivity of the foreground region Ωu=1 during the segmentation
task. For a mathematical description of this task we make use of the following definition.

Definition 13.1 (Connectivity of a subset). Let Cx′

x : [0, 1]→ Ω be a continuously connected
curve between two points x, x′ ∈ Ω with Cx′

x (0) = x and Cx′

x (1) = x′. The subset Ωu=1 ⊂ Ω
is called connected, if for any two points x, x′ ∈ Ωu=1 there exist a path Cx′

x between x and
x′ which is entirely contained in Ωu=1, that is Cx′

x ⊂ Ωu=1.

An example of a disconnected path Cx′

x between two points x, x′ ∈ Ωu=1 in the foreground
region is depicted in Figure 13.2(b). This definition of connectivity can directly be used to
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(a) input image (b) connecting path (c) geodesic shortest path

(d) shortest path tree (e) example path on tree (f) final segmentation

Figure 13.2.: Illustration of the connectivity constraints for image segmentation. (a) Image of a blood
vessel to be segmented. (b) Example path Cx

′

x
between points x, x′ through disconnected foreground

regions. (c) Geodesic shortest path between two separate foreground regions. (d) Illustration of the
geodesic shortest path tree being grown from source node s through the entire image. (e) Example
path on the tree. The constraint forces the labeling function u to grow on all paths towards the
source node s, thus ensuring connectivity of the foreground set Ωu=1. (f) Exemplary final connected
segmentation. More fine, connected structures can be obtained by adjusting the smoothness parameter
λ in Equation (13.2).

constrain the following variational binary image segmentation problem

min
u∈BV(Ω,{0,1})

∫

Ω

|∇u| dx + λ

∫

Ω

fu dx (13.1)

s.t. ∀x, x′ ∈ Ωu=1 : ∃Cx′

x ⊂ Ωu=1 .

Unfortunately, this constrained optimization problem is NP-hard (cf. Vicente et al. [228])
and efficient minimization is difficult. To get around this problem, the idea is to analyze
which change to the labeling function u connects separated foreground regions and adds a
minimum amount of cost to the energy in Equation (13.1). The answer is: It is the minimal
geodesic path that connects the two regions - see Figure 13.2(c). The key idea of Stühmer et
al. [205] for an efficient computation of problem (13.1) is to precompute these geodesic paths
with respect to a given source point s ∈ Ωu=1 in the foreground region. This constitutes a
geodesic shortest path tree which is grown from source point s and spreads the entire image
- this is sketched in Figure 13.2(d). If one now enforces labeling function u to grow towards
the source node s along all geodesic paths on the tree, the connectivity of all foreground
regions along any path is automatically ensured. Stühmer et al. [205] proposed the following
approximation of problem (13.1) by enforcing a negative directional derivate along all paths
on the precomputed geodesic shortest path tree.

min
u∈BV(Ω,{0,1})

∫

Ω

|∇u| dx + λ

∫

Ω

fu dx (13.2)

s.t. δe (u(x, t)) ≤ 0, e ∈ E
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The advantage of this approach is the simplicity of the constraints - they are all linear
constraints and can be efficiently handled within the optimization process. Figure 13.2(e)
shows an example path which illustrated the effect: a change of the labeling function u from
an interior label (≈ 1) to an exterior label (≈ 0) as shown in Figure 13.2(b) is disallowed
by the constraints. This finally leads to a segmentation in which all foreground regions are
connected - see Figure 13.2(f).

13.3. 3D Reconstruction with Connectivity Constraints

In this section we discuss how to integrate the connectivity constraints of Stühmer et al. [205]
into our spatio-temporal multi-view method (Chapter 11). The combination of both methods
allows image-based globally optimal 3D reconstruction while preserving connectivity of the
object. As shown later in the experiments, this constraint also helps to reconstruct fine scale
details of the scene.

For spatio-temporal multi-view reconstruction we consider exactly the same model as pro-
posed in Chapter 11. That is, we aim to minimize the following energy.

E(u) =
∫

V×T

(
ρ|∇xu|+ gt|∇tu|

)
dxdt + λ

∫

V×T

fu dxdt (13.3)

where λ > 0 controls the smoothness of reconstructed hypersurface and all other variables
and functions are defined similarly as in Chapter 11.

Now, we will combine the connectivity constraints with our reconstruction energy and define
all necessary variables and terms. Without loss of generality we assume that the visual
hull is connected. For the case that is not connected, the same approach can be applied
component-wise after identifying independent connected components of the visual hull. We
define connectivity constraints independently for each time step to allow topology changes
between time steps. For better readability we drop the temporal dependency in the following
notation.

Graph Structure. For every time step we define a geodesic shortest path tree Gs on the
visual hull VH with respect to a given source node s that contains for each point x ∈ VH
inside the visual hull the shortest geodesic path Cx

s from s to x that minimizes the cost
function

Ds(x) = ℓ(Cx
s ) =

1∫

0

ef(Cx

s
(r))dr , (13.4)

which is a positive geodesic measure that depends on the data term. Variable r parametrizes
the path from s to x. Ds(x) is a shorthand for the distance map of the shortest geodesic
path from the source node s to any point x ∈ VH. The edges of the shortest paths form the
edge set E of the shortest path tree Gs.

Source Node Computation. It is desirable to center the source node for the geodesic short-
est path computation within the data term. To this end, we compute the source node s(t) as
the point which minimizes a spatio-temporal convolution of the data term f with a sufficiently
large Gaussian kernel G.

s(t) = arg min
x

t+1∫

t−1

(
f ∗ G

)
(x, τ) dτ (13.5)
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The minimization reflects the fact that negative data term values f < 0 indicate a favor for
an interior label and thus ensures a position that has high probability of being interior. The
position of the source node has not much influence on the result, but this choice favors a
smoothly temporal change of its position within the data term while maximizing the distance
to the surface. An example rendering of a shortest path from a leaf node to the source is
shown in Figure 13.5a.

Constrained Optimization. The connectivity constraint from [205] is included into the re-
construction process as a monotonicity constraint of the labeling function u with respect to
the edges E in Gs. This monotonicity can be ensured by including inequality constraints on
the directional derivative δe (u(x, t)) of u along every edge e ∈ E . Thus, computing a spatio-
temporal 3D reconstruction with connectivity constraints can be achieved by computing a
minimizer of the constrained optimization problem

min
u∈BV(V×T ,{0,1})

E(u) (13.6)

s.t. δe (u(x, t)) ≤ 0, e ∈ E

with one constraint for each edge e in the edge set E of the shortest path tree Gs. BV(·)
denotes the function space of bounded variations [13] - see Section 2.3.

13.4. Generalized Connectivity Constraints for Objects of
Arbitrary Genus

The key idea to generalize the connectivity constraint to objects with arbitrary genus is a
modification of the constraints that are defined on the geodesic shortest path tree. The key
ingredient to this modification is to detect loops in the object and to identify parts of these
loops with a ’thin’ geometry, called handles. This is described in the following.

13.4.1. Handle and Tunnel Loops

In [73], Dey et al. study arbitrary surfaces represented by a simplicial complex, that is,
a hierarchy of p-simplicies with different dimensions p (e.g. p = 0, . . . , 2 corresponding to
points, edges, and faces). The surface M separates the simplicial complex into an interior
part I and an exterior part E, both including the surface, i.e. I ∩ E = M. Since we want to
analyze the topology of the visual hull, these sets will be shorthands for M = ∂VH, I = VH
and E = (V \ VH) ∪ ∂VH.

The authors in [73] define and study cycles of edges (’loops’) on the surface which build
equivalence classes with respect to contraction or translation of the cycle - like a rubber band
which can be moved along the surface, but not above holes in the surface. In this chapter
we call this equivalence relation ∼M ’contractible’ on the set M, for example, we denote the
relation that a loop l1 ⊂ M is contractible to a loop l2 ⊂ M on the set M as l1 ∼M l2.
For simplicity we try to define terms and notation on a more intuitive level which should
be sufficient to follow the rest of the chapter. For mathematically precise definitions based
on persistent homology we refer to [73]. Following their work, we now consider loops on the
surface with the following properties.

Definition 13.2 (Handle and tunnel loops). A handle loop h ⊂ M is a cycle of edges on
the surface that is contractible in the interior (h ∼I 0) and not contractible on the surface
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(h ≁M 0). A tunnel loop t ⊂M is a cycle of edges on the surface that is contractible in the
exterior (h ∼E 0) and not contractible on the surface (h ≁M 0).

With respect to the above mentioned equivalence relation, a closed surface of genus g has
exactly g classes of handle loops and g classes of tunnel loops induced by the surface embed-
ding. We consider one representative loop with approximate minimal geometric length per
class and denote them as the set of handle loops {hi}

g
i=1 and the set of tunnel loops {ti}

g
i=1.

Hence, for each surface hole i we have a corresponding pair (hi, ti) of representative handle
and tunnel loops.

Examples of handle and tunnel loops are shown in Figures 13.3 and 13.4 and Figure 13.5c.
Dey et al. [73] also propose an algorithm which computes handle and tunnel loops with
approximate minimal length that is perfectly suited to process volumetric data. However,
this algorithm is considerably slower than a recently published algorithm by Dey et al. [72]
which only works for meshes. To this end, we extract an iso-surface mesh of the visual hull
to efficiently compute handle and tunnel loops. The speed advantage of the method in [72]
stems from the fact that it does not need a 3D tessellation of the scene. In [72], the concept of
Reeb graphs is used to estimate an initial set of handle and tunnel loops and their geometric
length is shortened in a subsequent refinement step.

(a) (b) (c) (d)

Figure 13.3.: Various sets defined in this section visualized on a teapot model of genus 2. (a) Exterior
E (red), (b) Interior I (green), (c) Handle and tunnel loops {h1, h2}, {t1, t2} (green+red), (d) Handle
segments H1, H2 (yellow+blue).

Handle Segmentation. We aim to segment the ’thin’ geometric parts around the holes of the
surface, called handles. These handle segments will help to make the connectivity constraints
adaptive to the data term. For this purpose we introduce the following definitions.

Definition 13.3 (Handle Segment Surface). We define the handle segment surface as the
connected subset of all points x ∈ M for which a handle loop hx exists which is contractible
to hi subject to the additional constraint that the ratio of ℓ(hx) and ℓ(hi) does not exceed a
user given threshold σ:

MHi
=
{

x ∈M

∣∣∣ ∃hx ⊂M : hx ∼
σ
I hi

}
(13.7)

where hx ⊆ M denotes a handle loop through the surface point x and hx ∼
σ
I

hi means that
handle loop hx is contractible to hi subject to the constraint ℓ(hx) < σℓ(hi).

Definition 13.4 (Handle Segment). Given the handle segment surface MHi
from the previous

definition, we define the corresponding volumetric handle segment Hi ⊆ I as the set of all
points in the visual hull for which the closest point on the visual hull boundary is on the
handle segment surface MHi

.

Hi =

{
x ∈ I

∣∣∣∣ arg min
y∈M

dist(x, y) ∈MHi

}
(13.8)
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where dist(x, y) denotes the Euclidean distance between point x ∈ I in the interior and point
y ∈M on the surface.

In practice, we compute Hi by a breadth first search algorithm on the visual hull. Starting
from the handle loop hi a wavefront is propagated in both directions. Independently for each
wavefront, we stop the search if the ratio between the current length of the wavefront and
the initial position exceeds the threshold σ.

13.4.2. Loop Connectivity Constraints

With the handle and tunnel loops of the visual hull we are now able to generalize the con-
nectivity constraint in the presence of loops. By enforcing interior labels along each tunnel
loop ti we can assure that loops in the visual hull are preserved in the final segmentation.
However, in order add a minimum amount of costs to the energy in Equation (13.6) when
enforcing loop connectivity, we need to find corresponding loops that respect the costs of
the data term. We approximate these geodesics shortest loops by computing corresponding
loops tGs

i ⊂ I on the precomputed geodesic shortest path tree Gs which are contractible to
the original tunnel loop on the surface, i.e. tGs

i ∼I ti. The computation of tGs

i is discussed
later in this section. For each tunnel loop ti of the visual hull we define a loop preserving
constraint as

∀i ∈ [1, . . . , g] :
{
∀x ∈ tGs

i : u(x) = 1
}

. (C0)

Proposition 13.5. The constraint (C0) preserves the handle and tunnel loops and thus all
holes of the visual hull in the reconstructed object. The topological genus of the reconstructed
object is larger or equal to the one of the visual hull.

Proof. Let us assume that the proposition does not hold. To let the genus of the reconstructed
object decrease, either (i) at least one hole of the visual hull needs to be filled or (ii) at least
one tunnel loop has to be disconnected in the reconstructed object. Because the domain of the
reconstructed object is restricted to the visual hull, (i) cannot be fulfilled. By construction,
(ii) is fulfilled if (C0) is fulfilled. Therefore the genus of the reconstructed object has to be
larger or equal to the genus of the visual hull.

Note that, depending on the data term f the reconstructed object is allowed to have more
holes than the visual hull. In some cases, it is not desirable to exactly preserve all holes and
corresponding handles of the visual hull. A possible scenario is depicted in Figure 13.4 where
aliasing artifacts of the visual hull lead to spurious handle loops which should not be preserved
in the final reconstruction. Therefore we propose to relax the loop preserving constraint (C0)
such that either the connectivity of a handle is preserved in the final reconstruction or, in
case the photometric support via f is not strong enough, the handle segment Hi is suppressed
completely. We define the generalized connectivity constraint as

∀i ∈ [1, . . . , g] :
{
∀x ∈ tGs

i ∩Hi :
d

ds
u(x) = 0

}
(C1)

where d
ds is the directional derivative along the loop tGs

i .

Finding the optimal connected loop tGs

i . For objects of genus 0, the use of the shortest path
tree in the connectivity constraint is motivated by the optimal connecting path, that adds
the minimum cost to the final segmentation result. In case of objects with higher genus, we
wish to preserve the connectivity with respect to loops in the final segmentation. Therefore
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(a) Visual Hull (b) Result with strict loop
connectivity (C0)

(c) Result with generalized
connectivity (C1)

Figure 13.4.: Comparison of the two connectivity constraints. (a) In some cases artifacts of the vi-
sual hull can lead to spurious handle loops which should not be preserved in the final reconstruction.
(b) The constraint C0 strictly preserves all loops in the solution. (c) Relaxing the topology preserving
constraint to our generalized connectivity constraint allows to suppress handles where the photocon-
sistency is not strong enough. The rope, where the support of the photoconsistency is sufficient, is
still completely preserved. Handle and tunnel loops are depicted in green and red, respectively.

a loop through each handle needs to be found, which is optimal in the same way, i.e. that it
also adds the minimum cost to the final segmentation. Using the already computed shortest
path tree Gs, we can find the shortest loop tGs

i with respect to Gs for each handle i by the
following steps: With a depth first search on Gs, starting from the boundary of a handle
segment Hi, we compute the partitions H1

i ∪H2
i = Hi, H1

i ∩H2
i = ∅ which are disconnected

on the shortest path tree Gs. These partitions are shown in Figure 13.5d. If one of these
partitions is empty, i.e. all points in the handle segment Hi are connected on Gs, then no
further constraints need to be added in order to preserve handle segment Hi. Otherwise, we
compute an optimal pair of points

(p, q) = arg min
(x∈H1

i
,y∈H2

i
,y∈N (x))

Ds(x) +Ds(y) (13.9)

which are leaf-nodes in Gs. The set N (x) denotes the local spatial neighborhood of a point
x ∈ V . The optimal path through the handle is computed by tracing the path backwards
along the predecessors of both nodes p, q in Gs, resulting in the path with minimum costs
through the handle (Figure 13.5e).

While the tree connectivity constraint resulted in an inequality constraint on the derivative
of the label function, the loop connectivity is preserved by adding the equality constraints

δe (u(x, t)) = 0, e ∈ E=. (13.10)

to the optimization problem in Equation (13.6), where E= is the set of edges of the optimal
path through the handle.

13.5. Numerical Optimization

To minimize energy (13.6) using convex optimization we first relax the discrete image function
to the continuous interval [0, 1]. The constraints defined on the derivative of the image
function remain the same as in the discrete setting.
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(a) (b) (c) (d) (e) (f)

Figure 13.5.: Visualization of various properties that we compute based on the shape of the visual
hull (genus 2 in this case) and the data term. (a) Example shortest path from a leaf node to the source
node s (red); (b) color-coded geodesic distance map Ds with respect to the source node s; (c) handle
(green) and tunnel (red) loops; (d) handle segmentations Hi = H1

i
∪H2

i
(green+orange), the coloring

shows disconnected parts within the handle with respect to the geodesic path tree Gs. (e) shortest
path through the handle for which the equality constraints (C1) are imposed; (f) final reconstruction
result.

Because the total variation norm is non-differentiable, we introduce a dual variable p :
V×T → R

4 and reformulate the optimization problem Equation (13.6) as the equivalent
saddle-point problem

min
u

max
‖p‖≤1

∫

V×T

〈u,−div(p)〉 dxdt + λ

∫

V×T

fu dxdt . (13.11)

s.t. δe (u(x, t)) ≤ 0, e ∈ E

δe (u(x, t)) = 0, e ∈ E=

The constraints on u over the edge sets E and E= are included in the optimization using
Lagrangian multipliers β and γ. The Lagrangian associated to problem (13.11) becomes

min
u

max
‖p‖≤1,
β≥0,
γ

∫

V×T

〈u,−div(p)〉 dxdt + λ

∫

V×T

fu dxdt (13.12)

+
∫

T

{∑

e∈E

βe δe (u) +
∑

e∈E=

γe δe (u)
}

dt .

This saddle point problem is optimized using the preconditioned primal-dual algorithm by
Pock and Chambolle [175]. The algorithm results in an iterative update scheme with a
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gradient ascent in the dual and a gradient descent in the primal variable

pk+1 = ΠC

[
pk + σ∇ūk

]

βk+1
e = Π≥0

[
βk

e + µ δe

(
ūk
)]

γk+1
e = γk

e + ν δe

(
ūk
)

(13.13)

uk+1 = Π[0,1]

[
uk + τ

(
div pk+1 + div βk+1 + div γk+1 − λf

)]

ūk+1 = 2uk+1 − uk

where Π[0,1] is the projection of u onto the unit interval [0, 1] and Π≥0 onto positive values.
The projection onto the set C = {q = (qx, qt)T : V×T → R

4
∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1} is a

projection on a 4D hyperball and can be done as follows:

ΠC(q) =


 qx

max(1, ‖qx‖
ρ )

, max
(
− gt, min(gt, qt)

)



T

(13.14)

The step sizes τ , σ, µ and ν are chosen as suggested in [175]. Because our energy model is
convex and the linear constraints preserve convexity of the optimization problem, the update
scheme (13.13) converges to a global minimum of the relaxed energy (13.6). An optimal
binary labeling can be found by thresholding the relaxed solution [175].

Implementation. The proposed iterative scheme for minimal surface reconstruction with
connectivity constraints (13.13) allows a high degree of parallelization and is implemented
using the CUDA programming framework. The connectivity graph precomputation is more
difficult to parallelize and therefore is implemented on the CPU.

13.6. Experiments

We evaluated our method on several spatio-temporal multi-view data sets provided by the
INRIA 4D repository [121]. All scenes were synchronously recorded by 16 cameras in a green
room environment.

In the experiments we mainly focus on comparing reconstruction results with and without
connectivity constraints. Since no other 4D reconstruction methods are publicly available,
we compare our results with the ones of the state-of-the-art 3D reconstruction methods by
Jancosek and Pajdla [122] and the combination of Furukawa et al. (PMVS) [91] and Poisson
surface reconstruction [129].

Approximate silhouette information was used for all methods except of the method by Jan-
cosek and Pajdla [122] for which it cannot be used. We used the 6-neighborhood for the
computation of the geodesic shortest path tree Gs. In this setting, the generalization to ar-
bitrary genus by using equality constraints does not increase the number of dual variables
(Lagrange multipliers), because some inequality constraints are exchanged by equality con-
straints.

Runtime and Memory Resource Evaluation. The memory footprint of the suggested im-
plementation increases only by |V×T | bytes in comparison to the original approach. The
numerical optimization runtime per iteration remains almost unchanged, but depending on
the scene structure more iterations are needed for sufficient convergence. All experiments
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were run on a Linux-based Intel Xeon E5520 PC with 24GB RAM and NVidia GTX Titan
graphics card. For the genus 0 connectivity [205] the precomputation time per frame was
about 20 seconds for computing the tree of the tree-shaped connectivity constraints. For the
generalized connectivity constraints the precomputation time was about 1 minute for handle
and tunnel loop detection, handle segmentation and computation of the tree. The optimiza-
tion needs about 3 minutes per frame resulting in a total runtime of about 4 minutes per
frame when using the generalized connectivity constraints.

13.7. Conclusion

In this chapter we introduced tree-shaped connectivity constraints into spatio-temporal multi-
view 3D reconstruction. By detecting loops in the object we are able to generalize the
connectivity constraint to objects with non-tree structure of arbitrary genus. In several ex-
periments, we demonstrated that the proposed connectivity constraints significantly improve
the reconstruction quality in the presence of fine elongated structures.

To the best of our knowledge, apart from the work in [23], which uses a strong simplification
of a connectivity prior and essentially is a 2.5D method, this is the first work which imposes
connectivity constraints in a multi-view 3D reconstruction setup and provides an efficient
way to enforce them.

The connectivity constraint is especially useful in 4D multi-view settings, for which exact
silhouettes are usually not available and exact silhouette constraints are not applicable. As-
suring temporal coherence of the connectivity constraints would need explicit modeling of
the occupancy flow and remains for future work.
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1 of 16 Input Images

Jancosek and Pajdla [122]

Furukawa et al. (PMVS) [91] + Poisson surface reconstruction [129]

Without Connectivity Constraint [7]

With Connectivity Constraint [205]+[7]

Proposed Generalized Connectivity Constraint

Figure 13.6.: Comparison of different reconstruction methods: Existing state-of-the art approaches
[122, 91, 129] fail to recover thin structures like the stick and the rope. The connectivity constraint
allows to preserve the stick, but for the rope-jump scene with higher genus, it does not completely
preserve the connection of the rope. Our proposed generalized connectivity constraint allows to
correctly reconstruct both scenes (volume resolution |V | = 3843).
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14. Concluding Remarks

Anyone can initiate. The real skill is knowing how to “finitiate”.

Devarajan (Dave) Thirumalai
(Professor of Biophysics, University of Maryland, 1955 - present)

This thesis investigated two extreme cases of 3D reconstruction: the reconstruction from a
single image and the reconstruction over time from multiple-view image sequences. Although
both problems exhibit very different challenges, we demonstrated that the investigated 3D
reconstruction framework with a minimal surface prior is suitable to work with all cases. For
both cases we presented a series of novel methods which tackle the problem-specific difficulties
with various priors.

Single-View Reconstruction. In Part II, we introduced three novel approaches to user-
guided single-view reconstruction. All three methods are tailored to reconstruct curved 3D
objects from an input silhouette with arbitrary topology which was not possible with previous
methods. All methods require significantly less user input to obtain plausible reconstructions
than related methods.

In Chapter 5, we discussed the single-view reconstruction problem and gave an overview
of related work. Further, we classified and compared the related work with respect to a
number of method properties such as their application domain, kind of surface representation,
important assumptions, their user input, as well as image cues and priors used by the method.

In Chapter 6, we introduced our single-view reconstruction framework with a minimal surface
prior in combination with a novel silhouette-based shape prior for solving the surface inflation
problem more elegantly and effectively than related approaches.

In Chapter 7, we showed that the shape prior can be replaced with a volume prior which
further reduced the amount of user input and made it more intuitive to use. Moreover,
the volume prior avoids surface discontinuities that are apparent in all shape prior-based
reconstructions.

In Chapter 8, we identified that the model with the volume prior can be solved much more
efficiently and accurately by giving up some flexibility and reverting to a simpler parametric
surface representation.

In Chapter 9, we demonstrated that our methods compare well to other state-of-the-art meth-
ods. We further showed that our methods need significantly less user input and modeling
time while obtaining comparable reconstruction results. This is mainly because our proposed
inflation priors keep the amount of the user input minimal and intuitive. Further, we com-
pared our methods to the most related ones ([117, 253, 183]) with respect to their advantages
and disadvantages.

Spatio-Temporal Multi-View Reconstruction. In Part III, we proposed a novel approach
to spatio-temporal multi-view reconstruction by generalizing the 3D reconstruction method
by Kolev et al. [134] to the temporal domain.

In Chapter 11, we demonstrated that this generalization is non-trivial. We proposed a novel
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data-term to better deal with the sparsity of typical multi-view video setups and to lower
the complexity of its computation in order to make the approach usable to process longer
sequences. The approach yields competitive and temporally smoother reconstruction results
with shorter computation times than comparable approaches which do not even enforce tem-
poral coherence.

In Chapter 12, we showed that our simple but efficient way for approximating surface nor-
mals helps to improve the reconstruction quality significantly, as this information can be used
effectively in several places of our reconstruction approach: for improving photometric match-
ing scores, for computing anisotropically smoothed depth-hypotheses and for regularizing the
surface in an anisotropic manner. The reconstruction results showed clear improvements over
the isotropic approach.

In Chapter 13, we proposed the first 3D/4D reconstruction framework which integrates con-
nectivity constraints that are efficiently computable. Further, we were able to generalize
the connectivity constraints into topological constraints which are particularly useful for
spatio-temporal 3D reconstruction. Due to the constraints our method clearly outperformed
state-of-the-art methods.

General 3D Reconstruction. In this thesis we further demonstrated that all cases of 3D
reconstruction can be modeled within an almost unified variational 3D reconstruction ap-
proach, which is flexible, elegant and highly extendible for incorporating a variety of prior
information. So far, the special cases of single-view reconstruction and spatio-temporal multi-
view reconstruction have usually been studied separately in the literature, and most of these
methods do not share many similarities and their extension to other reconstruction scenarios
is usually not straightforward. In this sense, this work can also be seen a first step to create
a general model that is able to deal with any number of input images. An important feature
of such a model will be the possibility to integrate and combine a number of priors that
are valid for any input scenario and most importantly help to tackle the ill-posedness of the
reconstruction task. In this thesis, we extended the 3D reconstruction model by making use
of a minimal surface prior, as well as symmetry, shape, volume, and connectivity priors.
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15. Limitations and Future work
The scientist, by the very nature of his commitment, creates more and more questions,

never fewer. Indeed the measure of our intellectual maturity, one philosopher suggests, is
our capacity to feel less and less satisfied with our answers to better problems.

Gordon W. Allport
(American Psychologist, 1897 - 1967)

15.1. Single-View Reconstruction

Since the proposed 3D reconstruction framework is very universal and extendible, a rather
general direction for future work is trying to include other priors, constraints or model exten-
sions. First advances have already been successfully made by Töppe et al. [210] and Vicente
and Agapito [227]. When looking at the results, the most astonishing fact about the pro-
posed single-view approach is certainly that only silhouette information is used. Of course,
the proposed depth-inference heuristics impose strong limitations on the class of objects that
can be reconstructed. Obviously, more image information should be used in order to obtain
better and accurate rather than pleasing reconstruction results.

One possible way of using more image information is by learning approaches which learn the
relation between the appearance of image regions and for example depth values or surface
normals and are then able to estimate these properties from a single input image. Recent
advances on that topic by Ladický et al. [143, 144] yield promising results.

Another interesting direction is to formulate a weaker and a more general form of the sym-
metry constraint, because the required side-view is a rather strong assumption that limits
the applicability of the approach considerably. Interestingly, there exists a single-view recon-
struction method by Köser et al. [137] which requires nearly frontal views of plane symmetric
objects or scenes. Since their approach together with our method cover the extreme cases
of viewing angles on plane symmetric objects, it would be interesting to know whether a
combination of these methods will help to handle arbitrarily oblique viewing angles.

15.2. Spatio-Temporal Multi-View Reconstruction

As we have already demonstrated in this thesis the proposed spatio-temporal reconstruction
approach is easily extendible and there are many possibilities for improvements and several
limitations which deserve further investigation.

Photoconsistency measure. The limitations of the Lambertian reflection model are well
known and still it is widely used because of its simplicity. Thus, it belongs to the “usual
suspects” for possible improvements. Nevertheless, more realistic light models easily make
the corresponding optimization problem infeasible.

Another important aspect that has been widely ignored in most photometric stereo ap-
proaches is the influence of image scale on the matching process. The inherent assumption in
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most 3D reconstruction methods (apart from scale-invariant feature based methods) is that
all parts in the input images are perfectly in focus or at least have a similar out-of-focus
blur when being compared in the matching process. Although Hornung and Kobbelt [113]
already considered this issue in 2006, especially recent work on multi-view stereo by Bradley
and Beeler [32] and work on optical flow estimation by Sevilla-Lara et al. [197] demonstrated
a significant accuracy increase. In contrast to Bradley and Beeler [32] who select the best-
matching level in the scale-space, Sevilla-Lara et al. [197] create a feature vector containing
all scales and use that for matching. Both approaches are not difficult to integrate into the
3D reconstruction approach considered in this thesis.

Surface priors. As motivated in the beginning of this thesis, priors help to deal with the
ill-posedness of the problem and several priors have also been identified in human vision.
The challenge is to formulate them in a tractable and feasible manner. Obviously, it would
be useful in some cases to also use (more general) symmetry priors or volume priors in the
multi-view reconstruction case. In fact, we have implemented volume priors also into our
spatio-temporal framework, the same way as for the single-view case. However, their effect
was not as expected and not useful, because the compactness argument (Section 7.3) of the
volume-constrained reconstruction approach relies on a proper data fidelity term and most
importantly on the boundary conditions which are typically different in both setups. In the
general case, the compactness of the relaxed solution cannot be guaranteed, but might be
enforced by adding non-convex penalizers to the energy that repel non-binary solutions.

Regularization. The spatial regularization via total variation has many desirable advantages,
but a major drawback is the so-called shrinking bias towards smaller solutions due to the
surface area penalization. As a further result of the area penalization, solutions tend to
be compact and fine structures and details are suppressed. As shown in Chapter 12 this
effect can be reduced by using anisotropic metrics, but the general problem still persists.
Curvature-based regularization (e.g. [194, 166]) seems to offer a solution to this problem, but
since even weak approximations are computationally much more expensive, further research
on this topic is necessary. An interesting approach to go beyond total variation, is the idea to
learn the regularizer from example data. For instance, Häne et al. [106] categorize different
scene parts (such as trees, houses, and streets) into classes and learn separate regularizers for
each class. In a combined class segmentation and 3D reconstruction process the regularization
resembles the class-specific surface properties and thus improves the reconstruction accuracy.
Apart from generalizing this approach into a 4D setup, a similar approach might be useful
for temporal regularization, if, for example, different repetitive motion patterns are present
in the scene.

The temporal regularization model as proposed in this thesis is very simple and only affects
static or nearly static scene parts. The proposed temporal weighting avoids artifacts that
would occur in scene parts with faster motion. Instead of penalizing local scene changes it
would be more meaningful to jointly estimate the motion of all scene parts and then, in turn,
regularize the motion field to penalize non-smooth local deformations.

Scalability. If volumetric reconstruction approaches are discretized on a regular grid, as
presented in this thesis, considerable amounts of memory are needed even for small scenes with
practicable volume resolutions. In a straightforward manner, this approach does not scale well
to large-scale scenarios. A solution to this problem are data adaptive domain discretizations.
For example voxel octrees have been shown to scale well for a variety of approaches and
have been used extensively in the literature, for depth map fusion [39, 88, 250, 202, 203], or
point cloud-based surface reconstruction [129, 130], and have also been extended to a spatio-
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temporal setting [215]. Other promising approaches for data-adaptive data storage include
voxel hashing [165] or time adaptive storage of static scene parts [239].

Optimality. Although the estimation of the weighted minimal surface in our approach is
globally optimal, the pre-computation of the data fidelity term is not. In particular, the
applied voting scheme determines decisions about depth values that are potentially wrong.
In this sense, our approach still has similarities to methods that fuse pre-computed depth
maps as the solution of two sequential subproblems. However, in contrast to these methods,
our approach also transfers matching qualities along with the depth maps in the form of
probability distributions. A much better approach would be to couple these two dependent
problems and solve them jointly in a single optimization approach.

Camera calibration and texture. The ultimate goal is to have a robust reconstruction
approach, which estimates everything at the same time: surface geometry and motion, color
or texture information and camera calibration. In the current setup, the cameras are assumed
to be pre-calibrated and surface textures are computed in a post-processing step. Along the
lines of works that already address joint calibration and reconstruction, such as [217, 15], or
the combination of texture estimation and reconstruction as in [64, 39, 215], or both [71],
their globally optimal integration in the present framework remains a challenge.

15. Limitations and Future work 145





Notation

〈a, b〉 inner product of a and b

1A indicator function for set A: 1A(x) = 1 if x ∈ A; 1A(x) = 0 if x /∈ A

BV(Ω, [0, 1]) space of functions f : Ω→ [0, 1] with bounded variation (cf. Definition 2.16)
Ck

c (Ω,Rn) set of all functions f : Ω→ R
n being k-times continuously differentiable

and with compact support, k ∈ [1, . . . ,∞]

diag(·) diagonal matrix, e.g. diag(σ1, σ2, . . . , σn) =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 . . . σn




div(p) divergence of vector field p: div(p) =
∑n

i=1
∂pi

∂xi

Gap(·) primal-dual gap, i.e. difference of primal and dual energies
G(·) standard Gaussian distribution
H(x) Heavyside step function, H(x) = 1{x<0}

Hn−1(·) (n− 1)-dimensional Haussdorff measure
int(A), ext(A) interior and exterior of a set A

I image function I : Ω→ R
d with d-dimensional pixel values

L(·) Lagrangian density
Lp(Ω,R) Lebesgue space of functions with domain Ω, image R and finite p-norm
n dimension of a function domain, e.g. R

n

N number of cameras in the scene
Per(A, Ω) perimeter of set A ⊂ Ω in the domain Ω
proxτG(u) proximity operator [58]
R set of real numbers
R≥0 set of positive real numbers R≥0 = {x ∈ R | x ≥ 0}
S silhouette (as a subset of the image domain S ⊂ Ω)
SO(3) special orthogonal group SO(3) ⊂ R

3×3 (group of rotation matrices)
T temporal domain T ⊂ R≥0

TV(u; Ω) total variation of function u on the domain Ω
TVg(u; Ω) weighted total variation of function u on the domain Ω
u implicit representation of a hypersurface
U set of all implicit hypersurfaces
V three dimensional volume domain V ⊂ R

3

V×T spatio-temporal volume domain
Vt target volume
x a point in 3D x ∈ V or 4D space x ∈ V×T (depending on the context)
Z set of integer numbers
Σ surface - being a manifold embedded in either R

3 or R
4

Ω two dimensional image domain Ω ⊂ R
2

∂A boundary of set A

π orthogonal/perspective projection of points in 3D euclidean space
ΠA orthogonal euclidean projection onto the set A
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List of Abbreviations

1D, 2D, 3D, 4D n-dimensional, n = 1, 2, . . .

2.5D 3D points are parametrized via a 2D domain (depth map approach).
ACCV Asian Conference on Computer Vision
ADMM Alternating Direction Method of Multipliers (see [76])
BMVC British Machine Vision Conference
BV Bounded Variation
cf. compare (from latin “confer”)
CUDA Compute Unified Device Architecture (parallel computing platform by NVidia)
CPU Central Processing Unit
CVPR International Conference on Computer Vision and Pattern Recognition
DAGM German Conference on Pattern Recognition (GCPR) formerly DAGM
e.g. for example (from latin “exempli gratia”)
etc. and so on (from latin “et cetera”)
ECCV European Conference on Computer Vision
FISTA Fast Iterative Shrinkage Algorithm (by Beck and Teboulle [20])
GCPR German Conference on Pattern Recognition
GPU Graphics Processing Unit
i.e. that is (from latin “id est”)
ICCV International Conference on Computer Vision
INRIA Institut national de recherche en informatique et en automatique
LDFPI Lagged Diffusivity Fixed Point Iteration (algorithm by Vogel and Oman [231])
MRF Markov Random Field
NCC Normalized Cross-Correlation
NURBS Non-uniform rational B-spline
NVidia Company which mainly produces graphics processors and related software.
PC Personal Computer
PCA Principal Component Analysis
PD Primal-Dual
PDE Partial Differential Equation
PMVS Patch-based Multi-view Stereo (method by Furukawa et al. [91])
RAM Random Access Memory
SfS Shape from Shading
SOR Successive Over-Relaxation
s.t. subject to
TV Total Variation
w/o without
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