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ABSTRACT

Rendering of extremely high-resolution meshes and iso-surfaces from complex simula-
tions remains one of the major challenges in 3D visualization. In recent years, new
data acquisition techniques like 3D scanning have drastically increased the amount of
available high-resolution data. This data requires quick and efficient pipelines for vi-
sualization. Unfortunately, current approaches for rendering of very large models and
meshes require expensive, time-consuming preprocessing to generate level-of-detail sim-
plifications of the input data. New approaches, which combine fast pre-processing and
efficient visualization are hence necessary.

In my work, I present a novel processing and rendering pipeline built on a resampling
strategy. The input data — either triangle-based meshes or volumes — is first converted
into a voxel representation. The resampling is very fast, even for large data sets, and
is a key enabler for efficient simplification. Instead of using the source data, my sim-
plification is performed on the much more compact voxel representation. Even though
the data has to be converted first, the complete process is orders of magnitude faster
than existing approaches. It allows even the most complex models, comprised of nearly
one billion triangles, to be prepared for visualization within minutes on commodity
hardware.

The runtime consists of a novel, GPU based renderer which combines the voxel
based simplification and the original source data. Unlike other approaches, which rely
on raytracing using the GPU compute units, I makes extensive use of the rasterization
pipeline in my system. This allows me to obtain efficient, high-quality rendering with
very low memory requirements. In particular, by using the rasterizer, is possible to take
advantage of hardware-accelerated anti-aliasing, which is crucial to obtain a smooth
and stable rendering of high-resolution geometry. The renderer also integrates occlusion
culling, level-of-detail and streaming into a single framework. Besides the advantages for
interactive rendering, the underlying data structure in conjunction with my rendering
approach also enables efficient run-time manipulation. For instance, it is possible to
remove or add new geometry without having to perform costly data structure rebuilds.

As mentioned above, voxel representations can also be rendered using GPU raytrac-
ing. This typically requires the creation of an acceleration structure. Previously, octrees
have been the only data structure used for voxel raytracing due to the simple integra-
tion of level-of-detail. In my work, I have adopted several well-known data structures



which have been used for triangle raytracing to voxel raytracing and analyzed them in
detail. I found that bounding volume hierarchies, combined with an optimized, voxel-
specific traversal routine, can outperform the currently used octree based rendering
techniques. In my investigation, I have identified key metrics for this behavior through
an extensive analysis of the execution characteristics on modern GPU hardware.

I have also developed a highly scalable, memory and time-efficient voxelization for
triangle meshes. It builds an adaptive data structure while resampling, which reduces
memory usage and also enables parallelization. The re-sampler can process extremely
detailed meshes very quickly. Beside speed, it also provides guarantees on the generated
topology. Depending on the user needs, it can generate conservative, 6- or 26-separating

voxelizations.
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ZUSAMMENFASSUNG

Die Visualisierung von sehr hoch aufgelosten Modellen und Iso-Fléchen von komplexen
Simulationen ist immer noch eine der groflen Herausforderungen in der 3D Visualisie-
rung. In den letzten Jahren hat sich die Anzahl an verfiigbaren, hoch-aufgelosten 3D
Modellen durch neue Akquise-Techniken wie 3D Scanner stark erhoht. Zur Visualisie-
rung dieser Daten sind schnelle und effiziente Rendering-Pipelines notwendig. Ungliick-
licherweise erfordern die aktuellen Ansédtze zur Darstellung sehr groffer Modelle teure,
zeitaufwéindige Vorverarbeitungs-Schritte um eine Vereinfachung der Datensétze zu ge-
nerieren. Neue Ansétze, die eine schnelle Vorverarbeitung mit effizienter Visualisierung
kombinieren, werden somit benotigt.

In meiner Arbeite stelle ich eine neue Verarbeitungs- und Visualisierungs-Pipeline
vor, die auf einer Resampling-Strategie basiert. Die Eingabe — entweder ein Dreiecks-
basiertes Modell oder ein Volumen — wird dabei zuerst in eine Voxel-Reprasentation
iiberfithrt. Diese Konvertierung ist sehr schnell, auch fiir grofle Datenséitze, und ermog-
licht eine effiziente Vereinfachung. Anstatt auf den Quelldaten wird die Vereinfachung
nun auf der Voxel-Reprasentation durchgefiihrt. Obwohl die Daten erst konvertiert
werden miissen, ist der gesamte Prozess um Groflenordnungen schneller als existieren-
de Ansétze. Damit wird es moglich, selbst die komplexesten Modelle, bestehend aus
fast einer Milliarde Dreiecken, innerhalb von Minuten auf Standard-Desktop-System
darzustellen.

Die Darstellung selbst wird von einem neuen, GPU basierten Renderer tibernom-
men, der sowohl die vereinfachten Daten als auch die Quelldaten kombiniert. Anders
als bisherige Anséitze, die sich auf GPU Raytracing stiitzen, das auf den Compute-
Units der GPU durchgefiihrt wird, nutzte ich in meinem System die Rasterisierungs-
Hardware. Dies ermoglicht mir, eine effiziente, hoch-qualitative Darstellung bei niedri-
gem Speicherverbrauch zu erreichen. Zudem kann ich die Hardware-Beschleunigung fiir
Anti-Aliasing nutzen, das fiir eine saubere und stabile Darstellung der hoch-aufgelosten
Geometrie unerlésslich ist. Der Renderer kombiniert zudem Verdeckung, Level-of-Detail
und das Streaming in einem einheitlichen System. Neben den Vorteilen bei der interak-
tiven Darstellung erlaubt die darunter liegende Datenstruktur, zusammen mit meinem
Rendering-Ansatz, die Geometrie effizient zur Laufzeit zu verdndern. Zum Beispiel
kann Geometrie hinzugefiigt oder entfernt werden, ohne Beschleunigungsstrukuten ak-

tualisieren oder neu erstellen zu miissen.

vii



Wie bereits beschrieben, kann die Voxel-Reprasentation auch mittels GPU Raytra-
cing dargestellt werden. Dies erfordert typischerweise die Erstellung einer Beschleuni-
gungsstruktur. Bisher wurden dafiir nur Octrees benutzt, da diese eine einfache In-
tegration von Level-of-Detail Vereinfachungen erlauben. In meiner Arbeit habe ich
mehrere bekannte Datenstrukturen aus dem Bereich des Dreiecks-Raytracing fiir Voxel-
Raytracing adaptiert und im Detail analysiert. Dabei stellte ich fest, dass Bounding
Volume Hierarchies, zusammen mit einer fiir Voxel optimierten Traversierung, die ak-
tuell verwendeten Octrees bei der Ausfithrungsgeschwindigkeit iiberlegen sein kénnen.
In meiner Untersuchung habe ich die Haupt-Metriken fiir dieses Verhalten durch ei-
ne umfangreiche Analyse, die sich auf die tatsidchliche Ausfithrung der verschiedenen
Algorithmen auf einer modernen GPU konzentriert, identifiziert.

Ich habe ebenfalls eine hoch-skalierbare, Speicher- und Laufzeiteffiziente Voxelisie-
rung fiir Dreiecks-Modelle entwickelt. Diese baut eine adaptive Datenstruktur wihrend
der Konvertierung, die sowohl den Speicherverbrauch minimiert als auch eine Paral-
lelisierung des Algorithmus zulésst. Der Voxelisierer kann auch sehr hoch aufgeloste
Modelle schnell verarbeiten. Neben der hohen Geschwindigkeit bietet er zudem Garan-
tien zur generierten Topologie. Je nach Anforderungen des Benutzers ist es moglich,

konservative, 6-separierende oder 26-separariende Voxelisierungen zu erzeugen.
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INTRODUCTION

1.1 OUTLINE

The rendering of very large and complex data sets is one of the major problems in com-
puter graphics. With recent advancements in acquisition and modeling tools, meshes
consisting of tens to hundreds of million triangles can be easily obtained. This rapid
growth in data set size mandates new visualization techniques to quickly inspect the
scans, allowing users to check the scan quality and spot errors early.

On the visualization side, graphics hardware has and is still becoming more powerful
every year. This is driven by the game industry and the ever increasing demand
for higher fidelity graphics. Over the years, graphics cards have become massively
parallel architectures with increasingly programmable compute units. This trend is
expected to continue in the following years. Besides flexible, programmable units,
graphics cards still sport a large variety of fixed function elements to handle tasks like
rasterization, texturing and blending. Unfortunately, memory size on GPUs as well
as triangle throughput has not scaled as rapidly as the raw compute performance. As
such, it is not possible to simply load meshes consisting of hundreds of million triangles
on even the most recent GPUs and visualize them interactively.

On the CPU size, Moore predicted that improvements in circuits would allow to
double the number of transistors on a chip every year. Looking back, we now know
that the actual rate is closer to once every two years, but the exponential improvement
did indeed occur. At the beginning of Moore’s law, the number of transistors equaled
performance, with twice as many transistors, the serial execution performance of a
given chip would also double. In recent years, due to thermal and power constraints,
serial performance is no longer a target of chip manufacturers. Instead, the additional
transistors are used to increase the number of execution units. While the total perfor-
mance is still scaling, it requires parallel algorithms to take advantage of modern multi-
and many-core architectures. GPUs are spearheading this process by relying on tens
of processing cores, each using very wide SIMD units.

Unfortunately, memory and disk I/O speed did not follow Moore’s law. Even though
modern machines have far more total capacity, the relative performance of the memory
and disk subsystem has actually decreased over the years. This trend is expected to



INTRODUCTION

continue, as power usage constraints the amount of external bandwidth that can be
provided to a chip.

These two trends require new approaches to process data. Algorithms which rely
on random access to the data sets are no longer an adequate solution. Even for in-
core algorithms, high locality and predictable access patterns are required for optimal
performance.

Additionally, for very large data sets, the ability to efficiently stream data is becoming
more and more important. It is no longer feasible to load a significant part of the data
set before displaying it to the user, as this can easily take several minutes. Instead,
low-resolution previews have to be quickly loaded and refined on-demand.

In this work, I present an optimized visualization pipeline which has been designed
from the beginning for very efficient usage of parallel compute units, disk and memory
bandwidth. This is possible by the combined design of both the preprocessing and the
rendering, which are closely tied to each other for best performance.

1.2 CONTRIBUTIONS

Efficient, scalable voxelization with topology guarantees and fast simplifi-
cation. I present a highly scalable voxelization pipeline for large triangle meshes. It
can process objects with hundreds of millions of primitives on commodity hardware
in minutes, even at very high output resolutions. Besides performance, the method
presented in this work provides topological guarantees. In particular, it can generate
minimal sets of voxels required for rendering, which is crucial to reduce memory usage
and efficient display. Combined with the very fast simplification, the rasterizer forms
the core foundation for the visualization pipeline.

Scalable, high-quality rendering. I present a novel renderer which combines the
voxel data with source geometry and enables efficient viewing of very large meshes.
The new renderer is optimized for low memory usage, high image quality and imme-
diate exploration of the scene. Combined with a fast preprocessing step, it enables
the user to inspect extremely detailed meshes within minutes of the acquisition. My
rendering framework relies purely on hardware rasterization, which allows for hardware-
accelerated anti-aliasing. This is a crucial element to obtain high-quality rendering.

Analysis of GPU execution characteristics for ray-tracing. Even though
GPUs are comprised of large amounts of simple “shaders”, the complete architecture
has become extremely complex due deep cache hierarchies, predicate-based execution
and wide vector units. This makes it necessary to re-evaluate and analyze algorithms

directly on the GPU to identify all elements that contribute to the final performance
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of an algorithm. To this end, I have performed an extensive analysis of GPU voxel
ray-tracers and measured the results on actual hardware, exposing the key algorithmic
design choices that are required for high performance on such architectures.
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FUNDAMENTALS

In this section, I will cover several fundamental concepts related to my work. First of
all, as I present a voxel based pipeline, I will introduce voxel representations. This also
includes a brief interlude on iso-surfaces. After this, I will cover the two main rendering
techniques for image generation: Rasterization, which is the primary technique used
by games, and raytracing, which is the standard technique in film rendering. Finally,
I will provide a brief explanation of the programming model on massively parallel
architectures like GPUs and how it affects algorithm design.

2.1 VOXEL REPRESENTATIONS

Voxels are the 3D equivalent of pixels in 2D. Similar as in 2D, voxels are placed on a
3D grid with typically uniform spacing in all dimensions. Just like a pixel corresponds
to a 2D square, a voxel corresponds to a 3D cube.

Voxel models have been first introduced 1993 by Kaufman in the seminal paper
[KCY93]. Compared to polygonal representations, they provide an interesting set of
advantages like easier level of detail computation and combined storage of surface and
geometry information.

In 2D, the two main representations of images are vector graphics and bitmaps. In
3D, surfaces like triangles or NURBS are the equivalent of vector lines in 2D, and voxels
are the equivalent of bitmaps. They share the similar advantages and drawbacks as
pixels in 2D. Being a sample based representation, continuous, smooth surfaces can
only be represented approximately using voxels. Depending on the resolution, the
resampling can lead to highly visible aliasing artifacts (see also Figure 1).

Mathematically, voxels can be defined as follows [COK95, Lail3]: Let Z3 be the
subset of R3 which contains only the points that can be represented using integer
coordinates. This subset is also known as the integer lattice or grid. 1 will denote
points on the grid as p; with 7,j,k € Z. For a point pjj, let V(p;jx) be the set of
points p = (x,y,z) withi <x <i+1,j<y<j+1and k <z <k+1, that is, all
points in an unit cube with the origin on the grid point. The union of all V(p) now
tessellates R?, and the interiors of all V(p) are disjoint. The set of points V(pjj) is
what I have previously introduced as a vozel.
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Given a mesh represented by a surface, it can be voxelized in two different ways:
Either as a Solid or as a surface voxelization. A surface voxelization contains only
the surface, that is, voxels are only created at points close to the original surface of
the model. A solid voxelization consists of the surface of an object and the interior.
It is closely related to a volume representation of the mesh. A solid voxelization can
be only computed exactly for a two-manifold mesh, that is, an oriented mesh with no
holes or interior faces. It is always possible to generate a surface voxelization from a
solid voxelization, while the converse is generally not true.

The size of a voxel representation is also directly tied to the resolution and the volume
extents. This is a major difference to surface based meshes, where doubling the size,
that is, the spatial extents, requires no additional storage as it is tied to the number
of vertices. For a solid voxelization, doubling the resolution will require 23 = O(n?)
more memory. The factor improves to 22 = O(n?) for sufficiently smooth surface
voxelizations, as those represent a 2D manifold within the 3D space.

A key property of a voxel representation is that it has uniform resolution and all
voxels are independent of each other. Unlike triangle meshes, which may have dense
and sparse areas, voxels are placed on a grid with equal spacing and no topological
information. This regular structure simplifies various computations and manipulations.
An example is coloring: For a triangle mesh, this is typically performed by applying
textures with roughly uniform world-space resolution, while for a voxel mesh, the voxels
can be used directly.

Manipulation is also much easier, in particular, if the topology is affected. A prime
example is cutting a hole. For a triangle mesh it is necessary to produce new edges
and to connect them with the surrounding mesh. For voxels, it is enough to simply
remove those inside the hole. As the voxels carry no topological information, no neigh-
borhood updates are necessary. For solid voxelizations, CSG operations can be also
easily computed by bitwise computations on the voxel grid.

Another advantage of voxels is the trivial simplification. Similar to mip-maps for 2D
textures, 3D volumes can be easily filtered and simplified. Typically, a simplification
factor of two is used, which combines 23 voxels into a single voxel at each step.

Finally, it is very easy to stream voxel-based data. As there is no connectivity
between voxels, an object can be easily broken apart into separate elements and loaded
on demand. Combined with a level-of-detail simplification, this makes it possible to
stream in very large 3D scenes with low memory usage.

Unfortunately, currently nearly all 3D content is created as triangle meshes. In order
to convert those into a faithful voxel representation, a vozelization is necessary. In the

next section, I will cover several modern approaches for the voxelization of meshes.



2.1 VOXEL REPRESENTATIONS

Figure 1: A voxelization of the Stanford Bunny dataset. On the left, the original input mesh,
on the right, three voxelizations at different resolutions (2563 , 643 and 163).

N

N\ N\ A\
\ N

(a) Conservative (b) 8-separating (c) 4-separating

Figure 2: Connectivity and rasterization. The thick black line is rasterized and produces the
green set, which separates the white and yellow sets. The conservative rasteriza-
tion, which covers all pixels that contain the line, results in a superset of both an
8-separating and 4-separating set.

2.1.1 Topology

A key property of a voxelization is the connectivity/separability of the resulting set.
First of all, we have to introduce a few definitions [Lail3, HYFK98, COK95, COK97] be-
fore we can discuss the connectivity of a voxelization. An Ni-path — [T, = (Vo, ..., Vi)
— is a set of voxels such that V; 1 € Nj(Vi), that is, every two consecutive voxels are
Ni-adjacent. If a set of voxels is N connected, the set is k-connected.

In 3D, a voxel has 26 neighbors. Of these neighbors, 6 share a face, 12 share and
edge and 8 share one of the vertices. We can now define three adjacency configurations:
If two voxels share only a face, we call them 6-connected; if either a face or edge is
shared, 18-connected, and if they have a common face, edge or vertex, 26-connected:
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Ne(V) = (x£1,y,z2)U(x,yx1,2)U(x,y,z£1) (1)
Nig(V) = {x+iy+jz+k}—(xy2),ijke—-10,1ixjxk=0 (2
Ny(V) = {x+iy+jz+k}—(xy2),ijke—10,1 (3)

In 2D, a pixel has 8 neighbors, and the corresponding adjacency configurations are
thus 4-connected if an edge is shared and 8-connected if either an edge or vertex is
shared:

Ny(V) = (x£1Ly)U(x,y£1) (4)
Ns(V) = {x+iy+j}—(xy)ijec—-10,1 (5)

These configurations can be seen in Figure 2. The 2D N, connectivity corresponds
to Ng in 3D, and analogous for Ng and Nopg.

Now let S be a surface embedded in R? such that R3 — S yields exactly two separate
sets I and O. Let I? and O be the voxels in I and O.

By voxelizing S, we obtain a set of points S? which is disjoint with I¢ and O%. Now,
we define separability and connectivity as follows: We call S]‘f a k-separating subset of
S, if there is no k-connected path such that Vy € I9,V,, € O4, and [1NS¢ = @.

The definitions so far can be easily translated into a 2D context. In this case, S € R?,
St e 7% and V, I, O and [ Ik similarly defined as before.

Depending on the target application, a different separability may be required. Notice
that a conservative voxelization S¢, which includes all voxels through which the surface
S passes, will be a proper superset of both Sg and $,69. Put another way, it is always
possible to obtain a k-separating voxelization from Sf by removing voxels which do not
contribute to the separability property.

For a voxelization algorithm, we are interested in finding the minimum k-separating
set of voxels. As mentioned above, a conservative voxelization will always be both
6- and 26-separable. While this allows us to use a conservative voxelization in all
cases where a 6- or 26-separable is required, it will generally contain many unnecessary
voxels.

Using the definitions above, we can now determine the required connectivity to obtain
crack-free rendering. A view ray is a 6-connected path through the voxel grid [COK97].
It is thus sufficient to produce a 6-separating voxelization to obtain a correct rendering.
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This is insofar important as the 6-separating voxelization is very sparse compared to

26-separating or conservative voxelizations, resulting in reduced memory usage.

2.1.2  Polygon to voxel conversion

When converting polygon meshes to voxels, we are usually interested in a surface
voxelization. For closed meshes, a solid voxelization can be later derived by flood-filling
the interior. While there are algorithms which can directly compute a solid voxelization,
I will focus first on the more common case of surface voxelization.

The process of converting a polygon mesh to a voxel grid is not unlike the rasteriza-
tion required in the normal graphics pipeline. There, the pixels covered by a triangle
are evaluated in 2D, while the voxelization requires to dtermine the voxels covered by
a triangle in 3D.

Very early works related to polygon voxelization adapted existing 2D scanline algo-
rithms to the 3D context [KS87]. Similar to the 2D implementations, the edges are first
rasterized in 3D and then “scanlines” between edges are filled. These algorithms did
not guarantee the separability and connectivity for meshes which consist of multiple
polygons. For meshes, problems arise in areas around vertices and edges, where gaps
must be avoided while computing a minimal voxel set.

An early work which focused on topological correctness is [HYFK98]. In their work,
they introduce a distance-based computation which can guarantee 26 and 6 separabil-
ity. However, minimality is only guaranteed for individual polygons. Moreover, the
algorithm is sensitive to the input tessellation. That is, if a plane is subdivided, the
resulting voxelization, albeit topological correct, will be different.

Due to the similarity to the 2D rasterization problem, there has been a significant
amount of work to exploit the GPU rasterization units to accelerate voxelizations. The
first technique which used the triangle rasterization hardware of a GPU to directly
compute a surface voxelization is [EDO06]. They use the rasterizer to process every
triangle and determine the xy coordinate in the output grid. For z, the discrete depth
of the currently processed triangle is computed in the fragment shader and stored into
a 4 x 8 bit color target. The output is then blended using hardware-supported binary
or blending. The x and y resolutions can be chosen freely, while the z resolution is
limited by the maximum number of bits that can be blended.

Their algorithm is not suited for the voxelization of complete scenes. In order to
bypass the depth resolution limitation, the geometry must be processed multiple times.

Moreover, the algorithm suffers from various artifacts which stem from the single per-
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spective rendering. Polygons which are parallel to the view direction for instance are
omitted completely. It is thus only suitable for approximate voxelizations.

Subsequently, the various shortcomings of the algorithm have been addressed in differ-
ent works. The problem of missing voxels has been resolved in [ZCEP07]. Compared
to previous work, the new implementation was the first one which could guarantee
a conservative voxelization. No other guarantees on the connectivity were provided
though.

An extension of [ED06] has been presented in [EDO8], which adds solid voxelization.
By storing the depth into a bit-volume, they can quickly compute the occupancy using
an XOR operation. Moreover, they provide a “density” voxelization which results in a
smooth density map instead of a binary solid voxelization. In their implementation,
they compute a solid voxelization at higher resolution and downsample it to obtain a
filtered density.

On modern GPUs, an alternative is to use the compute units and perform the trian-
gle/box overlap test there [SS10]. In their work, they present an algorithm for surface
and solid voxelization. The focus is on the surface voxelization itself, while the solid
voxelization is built on top as an extension.

The general idea is to start one thread per triangle, iterate over all potentially covered
voxels and evaluate the coverage test for each of them. As multiple triangles are
processed concurrently, this requires the use of atomic operations — specifically, atomic
or to update the bit masks — per voxel, which is a costly operation. This has been
optimized by delaying the write until multiple voxels have been processed.

Solid voxelization requires only small modifications. The key insight is to treat each
surface voxel as a “in/out” flip along a voxel column. To this end, they identify all
voxels affected by the current triangle and flip their “in/out” bit. This requires a clean,
closed mesh. One major problem with running one thread per triangle in this case is
load-balancing. Large triangles may take much longer to finish, leading to underuti-
lization of the compute units. [SS10] optimized this by using tile-based voxelization.
During a preprocess, triangles are sorted into tiles, which are then processed by a set
of threads. In this case, the threads are started per tile and loop over the triangles,
which avoids the problem of a single triangle stalling a thread for a long time.

[SS10] also show how a sparse, solid voxelization can be generated directly, instead of
starting from a full solid voxelization and identifying sparse regions. The key insight is
to build the octree bottom-up by identifying the leaf nodes first, and then propagating
the “in/out” bits through the hierarchy. In their approach, they use two voxelization
passes. In the first pass, the model is voxelized into a grid with half the target resolution.

Nodes in this grid correspond to the last level of interior nodes in the octree. From
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these nodes, the octree is built, and in a second pass the generated voxels are placed
directly in the tree.

Finally, both conservative and 6 separating tests have been presented. As the imple-
mentation does not rely on fixed-function hardware, this can be easily accomplished
by a small modification to the triangle/box test.

[Panl1] improves on this work by addressing two shortcomings of the original ap-
proach. Compared to [SS10], [Panl1] adds:

» Blending: Values can be computed for each triangle and blended together. This

allows for example to obtain smooth normals.

o Load balancing: The original algorithm is optimized for equally sized, ideally
small triangles.

The load balancing is improved by utilizing a coarse and fine raster phase, in addition
to a separate path for large triangles. For small triangles, [Panll1] performs a coarse
rasterization to identify the target tiles, and then a fine rasterization for each tile to
generate the voxels. During the fine raster stage, the threads process one tile and loop
over the triangles, similar to the solid voxelization in [SS10].

For large triangles, a separate kernel is used which starts multiple threads per triangle.
In this case, the threads loop over the bounding box of the triangle. By combining both
the small and the large triangle kernel, [Panl1] is able to handle scenes with highly
irregular triangle sizes efficiently.

Another addition is the support of attributes. They key insight is that the fragment
emission can be separated from the blending. First, all fragments for all triangles
are generated, and stored unordered into a global output buffer. In a second step,
the fragments are sorted using an efficient radix sort by their voxel id and eventually
blended together.

Recently, the idea of [Panll] has been applied to rasterization-based voxelization,
yielding the hybrid rendering pipeline of [RB13]. In their work, instead of using the
compute units, the hardware rasterizer is used again for the actual voxelization. The
key idea is to perform the classification at the same time as the processing, and only
defer large triangles to a second step.

In their work, everything is implemented using the standard rendering pipeline. The
classification is performed using the geometry shader. If a triangle is found to be suffi-
ciently small, it is processed directly in the geometry shader stage. Otherwise, it is
forwarded to the second pass, which again uses the geometry shader to create a con-

servative bound and then uses the fragment shader to perform the actual voxelization.
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There are also techniques which are not based on the rasterization of primitives into
a volume grid. Wavelet rasterization [MS11] rasterizes the primitives directly into a
wavelet. At the end, a volume is reconstructed from the wavelet, from which a surface
voxelization can be obtained by iso-surface extraction. Compared to the previously
described algorithms, the wavelet rasterization is more robust and can various errors
in the input geometry.

As mentioned, solid voxelization requires a closed object. Most real-world meshes
however contain additional geometry, small holes, duplicated faces and other problem-
atic areas, making it nearly impossible to obtain a consistent voxelization. This has
been recently resolved by the introduction of generalized winding numbers [JKSH13].
This technique is aimed at the generation of solid voxelizations and resolves many
previously ambiguous cases.

As the focus of my work is on a rendering pipeline, I will focus on surface voxelizations,
which can be directly computed from a mesh. For solid voxelizations, a separate
iso-surface extraction step is necessary, as the output is a density volume. This makes

them less suited if preprocessing performance is paramount.

2.2 ISO-SURFACES

[so-surfaces can also be easily extracted and converted into a voxel-based representation.
In general, a volume is a 3D scalar field, defined as a function f : D — R [Mie09].
For every point p = (x,y, z) inside the domain, there is a real number f(p) associated
with it. Similar to the definition of the voxel grid, we can now define f;(p4), pa € Z°>.
This a discretization of f which is only defined on the integer grid.

An iso-surface is a surface comprised of all points p with a constant value v, that is
S =peD|f(p) =0v. As the scalar field f is continuous, this surface is well defined.
Unfortunately, it is not possible to define an iso-surface directly on f;, which is no
longer continuous and only covers an enumerable subset of R3.

A very simple approach to still obtain an iso-surface from the discrete grid f; is the
cuberille algorithm [Liu77, HL79]. Instead of identifying points on the surface, it finds
the cells through with the iso-surfaces passes and generates cubes for each such cell. If
the cell value is above the iso-value and a neighbor is below, the cell is determined to
be part of the iso-surface. This results in an approximate iso-surface.

The correct solution to resolve the non-continuity is to introduce a new scalar field
fi(p) as by interpolating between the discrete grid points fz(pg). On the interpolated
grid, it is now possible to define an iso-surface again which will closely match the

original iso-surface.
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There are two major ways to approach iso-surface visualization: Direct rendering of
the iso-surface from the volume or indirect rendering, which extracts the iso-surfaces
first and renders the extracted surface.

Direct rendering has the advantage that a high-quality intersection test can be im-
plemented, which computes the exact hit point of a ray with the iso-surface. The
disadvantage is that direct rendering requires the volume to be available in memory
to allow for interpolation. Additionally, the rendering itself requires an expensive ray-
traversal which has to interpolate the volume at each single step. Depending on the
required quality, the interpolation can be very costly [MKWF04]|. The traversal can
be optimized by providing hierarchical acceleration structures, which bound the iso-
surface and allow for fast empty space skipping.

An alternative approach is to extract the surface in a pre-process. The simplest
solution is to use linear interpolation along the grid to determine the interception
points with the iso-surface and then connect those using straight lines. In 2D, this
will yield the marching squares algorithm (see Figure 3). Marching squares has 16
possible configurations, as there are four vertices which can be either above or below
the iso-value. Five of them are unique, while the rest are rotations.

The equivalent to marching squares in 3D is called marching cubes [LC87]. As there
are eight vertices, the total number of configurations is 256. Similar to marching
squares, there are only 15 unique configurations; the remaining ones can be obtained
using rotations. Implementations of marching cubes typically compute the vertices
along each edge and use an index table to create the final topology. This makes
marching cubes very efficient to implement. Moreover, by splitting large volumes into
separate parts, it can be also easily parallelized.

Both marching squares and marching cubes suffer from ambiguous configurations,
which can lead to incorrect surfaces. For example, in Figure 3, the first configuration
in the second row is assumed to be “outside” in the center of the cell. Alternatively, the
two corner vertices could be also connected, yielding a different configuration. Similar
cases appear for marching cubes. Consider the first case in the third row in Figure 4:
Here, the two “inside” vertices are assumed to be separated. An alternative configu-
ration would connect those two vertices. These ambiguities can be resolved using an
asymptotic decider [NH91, LB03]. It takes the behavior of the iso-surface inside the
cell into account and allows to resolve such cases.

Even without ambiguities, marching cubes is still prone to cracks in the geometry.
These can be only resolved if a cube and its neighborhood is considered to ensure a
consistent topology [LLVTO03].
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Figure 4: The 15 unique configurations of the marching cubes algorithm. Red dots mark

vertices above the iso-value [LC8T7].
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Figure 3: 15 configurations of the marching squares algorithm. Red dots mark vertices above
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ted. Several of the configurations can be obtained through rotation; the unique
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2.3 RASTERIZATION

(a) Scanline 2 (b) Span update (c) Fill span (d) Final result

Figure 5: Rasterizing using span rendering. In the second image, the scanline is advanced,
updating the span begin/end pixels. In the third image, the scanline is filled. The
right image shows the final result. Notice that only pixels inside the triangle are
accessed by the algorithm.

Compared to direct rendering, the advantage of marching cubes and similar algo-
rithms is that the surface is extracted only once and reused for rendering. Additionally,
as the marching cubes are only stored along the surface, they can be relatively compact
if the volume contains only a simple iso-surface. There are however multiple disadvan-
tages as well. The linear interpolation along the grid cell edges produces piecewise
linear surfaces, while a trilinear interpolation, which can be easily performed during
ray-tracing, will yield smooth surfaces.

Another disadvantage is the very large size of a marching cubes mesh. For high-
resolution iso-surfaces, the size of the mesh can rival or even exceed the size of the
original volume representation. The Richtmeyr-Meshkov instability shown in Figure 19
requires 463 million triangles, which result in a mesh size of 5.3 GiB while the original
volume requires 7.5 GiB. Finally, changing the iso-value requires re-extraction of the

surface, which in turn requires the original volume to be present.

2.3 RASTERIZATION

The first approach to triangle rasterization is span-based scan-conversion [ST86, FvDFH90].
The basic idea is to decompose a triangle into spans, that is, horizontal segments. The
implementation is straightforward: For a given triangle, the edges are sorted in y order
and then processed top-to-bottom. At each scanline, the start and end points of the
two current active edges are computed. This can be efficiently performed by a sim-
ple multiply-add per scanline if the DDA constants have been precomputed for each
edge. The start and end points define a span, which is then filled from left-to-right
(see also Figure 5). Along the way, the attributes are interpolated and written to
memory. Processing along a span has the advantage that memory access is completely
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linear. Moreover, span conversion only accesses pixels which are actually covered by
the triangle, not wasting any computation on uncovered pixels.

Span conversion has been very popular in CPU based rasterization, in particular
for games. Using low-level optimizations, it was possible to optimize the inner loop —
which interpolates across a span — to a few CPU cycles [Abr97].

Unfortunately, span-based rasterization has various problems:

o It is difficult to add support for anti-aliasing if the sample locations are not on
the pixel grid.

o The algorithm cannot be easily parallelized, as it relies on the DDA evaluation
per-scanline and variable-length loops for each span.

e Fill-rules are difficult to implement.

e There are various corner-cases which have to be handled manually, for example,

perfectly horizontal edges.

For a parallel evaluation, it is necessary to be able to evaluate the triangle cover-
age evaluation as well as the interpolation for multiple points independently. A pos-
sible implementation is to pre-compute edge and plane equations [FGH85, FPET89,
FvDFH90] and evaluate them for a complete tile of pixels. For a triangle, we can define
linear edge equations Fy(x,y), F1(x,y), F2(x,y) of the form F;(x,y) = A;x + Bjy + C.
Each edge equation separates the plane into half-space where F;(x,y) < 0 or F;(x,y) >
0. The equations can be easily determined if we transform the vertices tg, t1,t of the
triangle into homogeneous coordinates. The line connecting tg = (xo,vo0), 1 = (x1,y1)
can be computed as:

X0 X1 Yo — Y1 A
Ey = Yo X vi| = X1 — X0 = | B (6)
1 1 Xoy1 — YoX1 C

For any point p = (x,y), we can now evaluate ([xy1]T,[ABC]"); the sign will
indicate in which half-space the point lies relative to the edge. A point is inside the
triangle if F;(p) > 0 Vi (see also Figure 6).

A hardware implementation can easily evaluate multiple points in parallel. Per pixel,
only two multiply-add instructions are necessary to evaluate the equation, followed by

a sign comparison.
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(a) Edge Fy (b) Edge F; (c) Edge F, (d) Combined result

Figure 6: Rasterizing using edge equations. On the left three images, the edge equations have
been evaluated for each edge individually. In the right image, the three coverage
masks have been combined using and, resulting in the final coverage mask.

This can be further optimized if we take advantage of the linear form of the edge
equations [Giell]. Notice that for two points, p; = (x,y),pjr1 = (x +1,y), two
evaluations of the edge equations along a scanline will only differ by F;(po) — Fi(p1) =
A. Similarly, the equations will differ by B in vertical direction. This makes it possible
to pre-compute the constants c;; = iA + Bj for a grid of pixels. Evaluation now requires
only to compute F; once for the top-left corner of a tile, followed by additions. This
makes it very cheap to implement the test in hardware [Giell].

It is also not necessary to perform all the tests in floating-point precision. Instead,
the rasterization is executed on a sub-pixel grid using integer precision. All the com-
putations above are performed in screen-space coordinates, which makes it possible to
transform the vertex positions into the pixel-grid first and evaluate all computations
above using fixed-point integer arithmetic.

Unlike for scanline rasterization, it is easy to integrate fill-rules into edge-equation
based rasterization. Fill rules determine whether a pixel is covered by a triangle if the
edge passes exactly through the center of the triangle. As is easy to see above, all that
is needed to make an edge inclusive is to change the equation F;(p) > 0to F;(p) > 0, or,
alternatively, adjust the constant C. As mentioned above, the computation is typically
performed in integer coordinates, which makes the fill-rule adjustment a trivial addition
of 1 to C. Using edge equations, it is also easily possible to change the test to a
conservative coverage test [AMAOQ5]. Even despite its simplicity, this functionality is
not available on current hardware.

The whole pipeline using tile-based rasterization is as follows. Once a triangle is
ready, it is transformed into screen space and the bounds are computed. Then, for
each tile inside the bounding box, the edge equations are evaluated in parallel and the
barycentric coordinates are computed.

Another optimization which can be performed is the to use a hierarchical raster-
izer [Gre96, MMO00, SCST08, LK11b]. As explained above, the algorithm will become
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very inefficient for large triangles, where many tiles will be completely empty. However,
it is very easy to re-use the approach outlined above to compute a coarse rasterization
first, where the edge equations are evaluated for a complete tile, followed by a fine
rasterization phase where each tile is processed. Evaluating complete tiles during the
coarse phase has the additional advantage that the initial values of F; can be reused for
the fine rasterization phase. Tiles can be also classified as covered, partially covered
and empty; for fully covered tiles, the rasterization can be skipped completely.

GPUs provide dedicated hardware units to perform triangle rasterization. On mod-
ern GPUs, multiple rasterizers are present which can process one triangle each per
clock cycle. Each rasterizer is built to evaluate multiple pixels or samples in paral-
lel [Pin88, FBH'10]. Triangles are processed using large stamps, for example, 8 x 8
pixels at once [AMHHOS].

As mentioned above, scanline rasterization has the advantage that memory is written
sequentially. For tile based rasterization using stamps, it is beneficial to pre-swizzle the
framebuffer into 2D tiles. Tile-based storage also makes it possible to easily integrate
hierarchical rasterization schemes.

On modern GPUs, the rasterizer is only used to compute coverage, the z value
and the barycentric coordinates. Vertex attributes are interpolated in a separate step
using the shader ALUs. This avoids the need to set up interpolation equations for all

attributes in the setup stage. For example, the following HLSL code

float4 VS_main (float4 v : V) : SV_Target
{

return v;

Listing 1: HLSL code interpolating a float4 vertex attribute.

is compiled to the following assembly

s_mov_b32 mo, s2

; Interpolation performed in two steps
; (I-t)xa + t*xb

v_interp_pl_f32 v2, v0O, attr0.x
v_interp_p2_f32 v2, vl, attr0.x

v_interp_pl_f32 v3, v0O, attro.
v_interp_p2_f32 v3, vl, attrO.y

<

v_interp_pl_f32 v4, vO, attro.
v_interp_p2_f32 v4, vl, attr0.z

N
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v_interp_pl_f32 vO, vO, attrO.w
v_interp_p2_f32 v0O, vl, attrO.w

; export to framebuffer
v_cvt_pkrtz_f16_f32 v1, v2, v3
v_cvt_pkrtz_f16_f32 vo, v4, vO

exp mrt@, vl, vl, vO, vO done compr vm

Listing 2: GCN assembly generated for Listing 1.

By deferring the attribute interpolation to the ALUs, it is also possible to bypass the
interpolation completely. In this case, per-triangle constant data is only fetched once.
In HLSL, the nointerpolation option can be used, as in the following example:

float4 VS_main (nointerpolation float4 v : V) : SV_Target
{

return v;

Listing 3: HLSL code using a non-interpolated, float4 vertex attribute.

After compilation, the hardware will only load the attributes from the first vertex,
avoiding any interpolation:

s_mov_b32 mo, s2

;3 No interpolation, simple move
v_interp_mov_f32 vO, pO, attr0.x
v_interp_mov_f32 vl1, p0, attrO.y
v_interp_mov_f32 v2, p0, attr0.z
v_interp_mov_f32 v3, p0, attrO.w

; Export to framebuffer, omitted

Listing 4: GCN assembly generated for Listing 3.

Especially for very small triangles and of course for per-triangle constant data, dis-
abling the interpolation can be beneficial. Besides the reduced computation count, on
GCN hardware, it also reduces the amount of required registers.

Even with attribute interpolation turned off, small triangles with a size of a few
pixels at most are still inefficient. One reason is the relatively complex edge equation
setup stage, which is only beneficial if many pixels are going to be covered by a triangle.
Another problem are derivatives: In order to provide those, modern GPUs render and
shade pixel quads [FBH'10]. For pixel-sized triangles, this results in severe “overdraw”,
further reducing performance.
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Figure 7: Quality comparison between different multi-sampling levels for a single triangle.

2.4 ANTI-ALIASING

The GPU rasterizer can optionally perform anti-aliasing. As mentioned above, this
is a simple addition to the edge equation based rasterization pipeline. For maximum
efficiency, and to enable the continued use of integer units, the sample locations are
restricted onto a sub-pixel grid with a fixed resolution. The multi-sampling patterns
used by Direct3D 11 can be seen in figure 7. They have been specified on a 4-bit
sub-pixel grid.

A major difference to common anti-aliasing algorithms is how the shading is evalu-
ated on GPUs. Typically, anti-aliasing processes everything in higher resolution and
down-samples the results using a filter. On GPUs, evaluating the fragment shaders 8 x
per pixel for anti-aliasing was considered too expensive, and thus a more efficient solu-
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(a) 4x super sampling (b) 4x multi-sampling

Figure 8: Comparison between super-sampling on a regular grid and the corresponding multi-
sampling patter. At the same sample count, multi-sampling is able to capture more
gradient levels. This is particularly visible on the left and the lower edge.

tion is provided. It is based on the observation that shader aliasing is typically much
less severe than geometry aliasing. In practice, all textures are already pre-filtered
through the use of mip-maps to avoid aliasing. This can be exploited by decoupling
the fragment shader execution frequency from the coverage evaluation.

This kind of anti-aliasing is known as multi-sample anti-aliasing [AMHHO08]. Once
enabled, coverage is computed using the full sub-pixel grid and for every sample. The
actual shading is only executed once per primitive per pixel. That is, if two primitives
overlap a single pixel, and each covers two samples, the fragment shader will be invoked
only twice — once per primitive, and not four times. If the whole pixel is covered by
a single primitive, the fragment shader will be invoked only once. This reduces the
shading overhead per pixel drastically, making multi-sample anti-aliasing comparatively
cheap.

The multi-sampling patterns allow for higher quality compared to super-sample anti-
aliasing on a regular grid. All multi-sampling patterns are placed on a rotated respec-
tive irregular grid. This drastically improves edge quality compared to a high-resolution
regular grid, as can be seen in figure 8.

Current GPUs support up to 8 x multi-sampling. One difficulty which arises from
MSAA based anti-aliasing is that it is not compatible with deferred rendering. In a
deferred renderer, the actual shading is performed on a per-sample buffer, and the
original information which samples have originated from the same primitive is lost.
This information has to be reconstructed during the deferred shading pass in order to
minimize the number of actually shaded samples.
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Figure 9: The basic principle of raytracing. Rays are traced from the camera through the
pixel grid into the scene, and the closest intersection is determined.

2.5 RAYTRACING

Raytracing is an image generation technique which relies on tracing rays through a 3D
scene and computing their intersections with scene objects [App68]. It can be used to
simulate a wide range of optical effects.

A basic raytracer can be seen in Figure 9. It starts by generating one ray per pixel
of the image plane. The ray is then cast into the scene, all intersections with the scene
objects are determined and the closest intersection is returned. The initial view rays
are also known as primary rays. Such a basic raytracer is very limited and can only be
used to visualize direct lighting, without any shadows or reflections (see Figure 10a.)

For secondary effects like shadows, reflections and refractions the raytracer must be
extended to allow recursive ray generation, that is, rays can be spawned not only for
the camera, but at arbitrary points of the scene [Whi80]. These rays are known as
secondary rays. For instance, to simulate shadows, a shadow ray is spawned at the
hit point towards the light source. If it is occluded, the point is in shadow and can
be shaded accordingly. With this extension, it is possible to simulate perfect mirrors,
refractive objects as well as shadows (see Figure 10b). The main limitation of this
method is that it cannot capture effects which require integration over multiple rays,
for example, glossy reflections or motion blur.

This is solved by the introduction of distributed raytracing, which traces multiple
rays to integrate results. With distributed raytracing, it is now possible to capture
motion blur, soft shadows from area lights and glossy reflections (see Figure 10c). The
major disadvantage of using raytracing for such effects is that many more rays are
required.

The final evolution of raytracing is path tracing. A path tracer solves the rendering
equation directly by sampling individual light paths [Kaj86]. It can capture diffuse
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interreflections, caustics, and various other effects (see also Figure 10d). Compared
to distributed raytracing, path tracing requires a dramatic increase in ray counts to

achieve noise-free results.
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(a) Primary rays only [App68] (b) Primary and secondary rays [Whi80]
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(c) Distributed ray tracing [CPC84] (d) Path tracing [Kaj86]

Figure 10: Raytracing can cover a wide variety of effects. Secondary rays allow for per-
fectly specular reflections, refractions and shadows. Distributed raytracing enables
effects such as glossy reflections, motion blur and depth of field. Path tracing pro-
vides a way to directly solve the rendering equation, covering diffuse and specular
inter-reflections.

The key to fast, high-quality raytracing thus requires fast solutions for two separate
problems: Ray/scene intersections and sampling. Ray/scene intersections is a key
problem, as billions of rays have to be traced and intersected with potentially hundreds
of millions of primitives. Sampling is crucial to avoid wasting time on rays with low
contribution to the final scene. For example, ray density should be guided by the BSDF
to avoid tracing rays where the BSDF is zero.

These are also the two areas where the majority of the research has been focused.
On the sampling side, techniques like bidirectional path-tracing [LW93], multiple im-
portance sampling[VG95], Metropolis light transport [VG97, KSKAC02] have been
introduced to improve the sampling quality. There has been also considerable research

in “biased” techniques, that is, rendering techniques which do not converge exactly
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against the correct solution but approximate the result of the rendering equation in-
stead. Popular examples are irradiance caching [WRC88| and photon mapping [Jen96].

The raytracing itself, that is, the act of sending rays into the scene and intersecting
them with the primitives, can be also sped up in a variety of ways. There are three
main areas which can be optimized: Ray traversal, ray/primitive intersections and
ray/scene intersections.

Ray traversal can be optimized for instances where multiple rays have to be traced
from a spatially close location or in a similar direction. In this case, it may be more
efficient to group the rays into ray packets and use a packet traversal algorithm which
shares the computations between all rays in a packet [BELT07].

Ray/primitive intersections can be similarly optimized. For example, it is possible to
pre-compute various terms for a ray/triangle intersection in order to reduce the actual
intersection cost [Woo04].

The last area are ray/scene intersections. To this end, a large variety of acceleration
structures have been introduced, which minimize the number of ray /primitive tests that
have to be performed. In the following sections, I will cover three popular structures

which are widely used for raytracing.

2.5.1 kD tree

A kD tree is an extension of a binary tree for multiple dimensions [Ben75]. The
kD tree can be used to accelerate range queries in multiple dimensions and has been
originally designed for use in databases. Every interior node of the kD tree defines
a split position and axis. Each split divides the domain into two sub-spaces at a
hyperplane perpendicular to the split axis. In 1D, a kD tree is equivalent to a binary
tree.

In graphics, kD trees have been successfully used to accelerate ray-tracing. As men-
tioned above, the domain is split during the build. This also includes primitives; if for
instance a triangle straddles the split plane, it is split into multiple triangles (see also
Figure 12). This guarantees that leaf nodes never overlap. Depending on the depth
of the tree and the split locations, this can result in significant amounts of duplicated
references, when primitives are split multiple times.

The kD traversal algorithm (see also Algorithm 2.1), used to trace a ray through a kD
tree, is conceptually very simple [FS05]. For each interior node, the ray is intersected
with the split plane. If a hit occurs, the far child is pushed onto the stack and traversal

continues into the near child. Otherwise, traversal continues solely in the near child.
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A
(a) Initial scene (b) kD tree
E
A C
B D A G
(c) Quadtree (d) BVH

Figure 11: Acceleration structures subdivide the scene and create a hierarchical structure to
accelerate ray queries. In this example, the scene in 11a is subdivided with three
different algorithms until a leaf size of 1. Black indicates the first subdivision level,
blue the second and green the third level.
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Figure 12: The kD tree corresponding to Figure 11b. Notice that the triangle T1 is referenced
multiple times. There is also an empty node in the tree, as C contains only one
child.

1 function TRAVERSE(r, f)

2 result = miss

3 PusH(stack, "min, r00t, "max)

4 loop

5 Tmins Ymax, next = Pop(stack)

6 if ISINTERIOR(next) then

7 node = t[next]

8 close, far = SORTCHILDREN(7, node)
9 if INTERSECT(r, node, t) then

10 PusH(stack, £, 7yx, far)

11 next = close

12 Tmax =

13 else

14 next = close

15 else > Else, leaf or empty node
16 if ISLEAF(next) then

17 node = t[next]

18 if INTERSECTLEAF(node, hit, ¢) then
19 if t < 70y then

20 return result

21 if EMPTY(stack) then

22 break

23 return result

Algorithm 2.1: Standard kD tree traversal
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Once a leaf is hit, the ray is intersected with a all primitives. The traversal guarantees
that children will be visited in strict front-to-back order.

Restart traversal

Maintaining the stack can require a significant amount of memory, especially if many
rays have to be traced in parallel. The kD tree traversal can be reformulated to avoid
the need for a stack completely. Instead of a stack, the ray is shortened at each step
to the current ray/plane intersection depth. Once a leaf node is reached, the ray is
restarted from the root. This will still result in a correct, front-to-back traversal at the
expense of additional interior intersections. Notice that the restarting is only possible

as there is no overlap of objects between leaf nodes.

Short stack

It is also possible to combine restart and stack-based traversal for kD trees. In this
case, a short stack is used which only stores the last few nodes [HSHHO7]. Once
the short stack is exhausted, the algorithm falls back to a standard restart traversal.
This reduces the amount of restarts significantly compared to a completely stack-less
traversal, while maintaining good performance. The key insight is that restarts due to
leaf misses are the most expensive. With a short stack, the traversal can visit multiple

leaves before it has to start again at the root.

2.5.2  Octree

An octree recursively subdivides the domain into N equally sized sub-domains along
the three major axes (see also Figure 11c). Typically, the subdivision count is 2,
splitting the domain into 23 sub-regions (hence the name Octree.) The equivalent
in 2D is called a Quadtree. Originally, it has been used to allow efficient geometry
modeling [Mea82]. Subsequently, it has been also adopted as a spatial acceleration
structure [Sam89, Sam90]. Traversal is similar to a kD tree, with the main difference
that three separate planes have to be processed at each interior node.

In Figure 13, the tree for the scene in Figure 11c can be seen. Similar to the kD tree,
an octree may contain empty nodes and duplicated references. It is also limited in its
adaptivity to the scene. Unlike the kD tree or the bounding volume hierarchy, which
allow the split planes to be placed freely inside a node, the octree always has to split at
the center. This can lead to imbalanced trees, especially when geometry is misaligned

relative to the octree grid.
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Root

A B C D
E F G H

Figure 13: The octree tree corresponding to 1lc. Notice that the triangle T1 is referenced
three times, at multiple tree levels. There is also an empty node in the tree, F.

Octrees have become the data structure of choice for voxel rendering [CNLE09]. For
voxel data, the regular structure of the octree allows the octree grid and the voxel
grid to be coincident. Together with the fact that voxels can be trivially simplified by
merging, this allows an octree to be used for both traversal acceleration, storage and
the level-of-detail selection.

At preprocessing time, this requires to generate voxels for all levels of the tree. During
the traversal, a voxel octree raytracer keeps track of the distance to camera. Once it
reaches a node, it computes the correct level-of-detail and only descends the tree down
to this level. With this approach, it is possible to render highly complex scene with
low memory usage.

A possible traversal routine can be found in Algorithm 2.2. It uses a stack to store the
current node if multiple children have to be visited. Storing the current node instead
of all intersected children on the stack reduces the storage requirements. The traversal
can be further optimized by exploiting the power-of-two sizes and the regularity of an
octree [RUL0O, LK11a].

Similar to the kD tree, an octree can be also traversed using a stack-less traversal
kernel or using a short-stack. This is possible due to the fact that there are no overlaps

in an octree.

2.5.3 BVH

A bounding volume hierarchy is a tree which stores a bounding volume at each node
(see also Figure 11d) [RW80]. Child nodes are completely contained within their par-
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1 function TRAVERSE(r, f)

2 next = root

3 o= (0,0,0)

4 I = tdepth

5 PusH(stack, root, min, "max)
6 loop

2.5 RAYTRACING

> r has been already intersected with scene bounds

> Offset into the current node
> Current traversal level

7 if ISINTERIOR(next) then

8 node = t[next]

9 s =21

10 Cmax = Vmax

11 result = INTERSECT(r, node, t)

12 if MuLTIPLEHITS(result) then

13 PusH(stack, node, ¢yax, 1)

14 octant = CLOSESTCHILD(7, node)
15 next = GETCHILD(node, octant)
16 l - l - 1

17 UPDATEOFFSET(0, octant, 1)

18 else > Else, leaf or empty node
19 if ISLEAF(next) then

20 node = t[next]

21 if INTERSECTLEAF(node, hit) then
22 return hit

23 if EMPTY(stack) then

24 return miss

25 else

26 Tmin = Vmax

27 next, *yax, | = POP(stack)

28 CLEARBITS(0, I)

Algorithm 2.2: Octree traversal
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FaRAN oy
HdDD DO

(a) Standard BVH (b) Two wide BVH

Figure 14: Bounding volume hierarchies corresponding to Figure 11d. On the right side, two
levels of the tree have been folded to generate a BVH2.

ent. The scene is thus not subdivided by split planes like for the octree or kD tree,
but successively refined hierarchy of bounding volumes. Similar to the kD tree, the
bounding volume hierarchy depends on a good build heuristic to minimize costs.

Unlike for a kD tree or octree, a restart traversal without external storage is not
possible for a bounding volume hierarchy. Consider the case depicted in Figure 11d.
If a ray is traced from the top which intersects both nodes D and E, it is not possible
to shorten the ray such that a restart will correctly visit only E without potentially
missing intersections. It is thus necessary to use additional external storage during
traversal.

By using a stack, we can formulate the bounding volume hierarchy traversal algo-
rithm (see also Algorithm 2.3). Starting from the root, the first node is intersected.
If the node is not hit, the next node is popped from the stack; if the stack is empty,
traversal terminates. Otherwise, if the node is an interior node, the closer node is
marked as the next node for traversal and the node further away is pushed onto the
stack, and traversal continues immediately at the next node. If the node is a leaf node,
the ray is intersected with all primitives. On hit, the ray is shortened and the stack is
popped if not empty, otherwise, traversal terminates.

It is also possible to implement the algorithm by always popping from the stack and
pushing two nodes during the interior handling; using a next node pointer is a trivial
optimization which saves unnecessary stack traffic.
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An optimization which can be easily performed with bounding volume hierarchies is
merging levels to obtain wider, but more shallow trees [DHKO08]. This can be easily
performed as a post-process by merging nodes from adjacent levels. In Figure 14b, the
original tree (see Figure 14a) has been flattened by one level. As multiple bounding
boxes are stored in a single node, it is now possible to process a node using vector
instructions and achieve higher performance, at the expense of additional bounding
box tests compared to a non-flattened tree.

One additional benefit is that the bounding boxes of the leaf nodes move up to the
interior nodes. Previously, all nodes contained a bounding box and some auxiliary
data. After the flattening, only interior nodes contain bounds, while leaf nodes merely
consist of a pointer to the primitives. This separation makes it possible to pack the
data more tightly and to transform general gather instructions into efficient vector load

operations.

1 function TRAVERSE(r,t)

2 next = root

3 result = miss

4 loop

5 if INTERSECT(r, node, t) then

6 if ISINTERIOR(next) then

7 node = t[next]

8 close, far = SORTCHILDREN(7, node)
9 PusH(stack, far)

10 next = close

11

12 continue

13 else if ISLEAF(next) then

14 node = t[next]

15 if INTERSECTLEAF(node, hit, ¢) then
16 if t < 1y then rpax = t; result = hit
17 if EMPTY (stack) then

18 break

19 else

20 next = Pop(stack)

21 return result

Algorithm 2.3: Standard BVH traversal
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2.5.4  Tree building heuristics

For kD trees and bounding volume hierarchies, the decision where to place the split
planes respectively which primitives should be placed into a node has a significant
impact on performance. A standard approach to minimize the expected traversal cost
is the surface area heuristic [MB90]. It can be used for both kD trees and bounding
volume hierarchies without modification. It estimates the cost of a tree as:

Cix XN A() +Cre Xy A(l) + Cox X A1) + N(1)

1

A(root) 0

In the equation above, Nj, N; denote the number of interior and leaf nodes, N(I) the
number of objects in leaf I, and A(i), A(l) the surface area of the interior node i or the
leaf [. C;,C; and C, are constants which describe the costs of the various operations.
C; is the cost to traverse an interior node, C; the traversal cost for a leaf and C, the
cost to intersect an object.

The cost function tries to balance the number of nodes against the subdivision depth.
Very deep trees will minimize the last term at the expense of high node counts, while
a shallow tree will minimize the first two terms at the expense of a high amount of
ray/object intersections.

The surface area heuristic is evaluated while building the tree. At every subdivision
step, two cost terms are computed:

Cs(p) = C+Cox (%N(leﬁ) + %N(right)) (8)

Ct = C,*N(L) (9)

Cs describes the costs which would happen if the current set of objects is split into
two groups, left and right at a split position p; while C; is the cost of creating a new leaf
node. Computing Cs is very costly, as the best split has to be found. For scenes with
hundreds of millions of objects, this can quickly become prohibitive, as each object
boundary is a potential split location. A common optimization is to use a binned
estimator, which only considers a fixed set of split candidates [WHO06]. While this
may not find the best possible split location, in general, binned builders reach similar
quality as precise builders while making the build much faster.
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2.6 PARALLEL PROGRAMMING ON GPUS

Graphics has been accelerated very early using dedicated hardware [FPE*89]. This is
easy to explain by looking at the typical graphics workloads: Vertex transformation,
projection, rasterization and shading. All of these tasks share the property that a
tiny kernel is executed for many independent elements. Accordingly, GPUs have been
optimized for throughput processing of simple code [FH08|. This led to highly parallel
architectures, with a very high number of execution units compared to CPUs. As the
hardware was and is widely available, there has been a lot of interest to run non-graphics
algorithms on the GPU, which is called GPGPU programming [OLG107] — general
purpose GPU programming. At the beginning, this required that the algorithms are
expressed in terms of graphics API calls. For instance, to perform a dot product,
textures containing the input had to be created, and a fragment shader would be
executed to produce an output image containing the result.

Very quickly, low-level APIs like Brook [BFHT04], Lib SH [MQP02] and CTM/-
CAL [Hen07] appeared which allowed to bypass the graphics APIs in order to facilitate
compute-only code. The low-level APIs provided higher-level abstractions and com-
piled down to shader code and draw calls. As such, they shared the limitations with
the graphics APIs. A notable exception in this context is CTM, which was set below
the graphics API layer and allowed to program the shader ALUs directly using the hard-
ware ISA. Unfortunately, even CTM did not expand the programmability significantly
as the hardware was not designed for compute tasks.

Over time, both the hardware and the associated APIs evolved into full-fledges
compute programming frameworks, for example, OpenCL [Khrl2], DirectCompute,
OpenGL compute shaders [SSKLK13] and NVIDIA CUDA [NBGS08]. Hardware
changes included unified shaders, random memory access and communication between
threads. Until late 2005, GPUs had dedicated shader ALUs for vertex and fragment
processing with different capabilities. For instance, the vertex ALUs were not con-
nected to the texture units and thus it was not possible to sample textures. This
changed with the introduction of unified shaders in the XBox 360 Xenos GPU, which,
for the first time, had a unified shader ALU array capable of doing both vertex and
fragment processing [AMHHO8]. This was a crucial step for GPU programming, as
now all ALUs could be used uniformly for processing.

On the software side, the programming abstractions became increasingly high-level.
NVIDIA CUDA is NVIDIA’s in-house GPU computing language which uses an ex-
tended C++ dialect and targets only NVIDIA GPUs. The extensions to C+++ include
graphics specific built-in instructions to sample textures as well as inter-thread com-
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munication. OpenCL is a more general programming framework; targeting parallel
architectures from CPUs over FPGAs and DSPs to GPUs, using a C dialect called
OpenCL C. It also provides graphics-related functions to sample images, but has less
low-level, device-specific tuning options than CUDA. DirectCompute and OpenGL com-
pute shaders are high-level, graphics oriented APIs which aim for direct integration into
rendering pipelines.

In the following, I will introduce the OpenCL terminology to describe the hardware
units. In OpenCL, a GPU or a CPU is called a compute device. Each compute device
consists of one or more compute units and global memory. For a CPU, a compute unit
is a CPU core; on GPUs, these corresponds to AMD’s CUs or NVIDIA’s SM. Each
compute unit is comprised of processing elements, which are the ALUs that execute
the computation. Additionally, a compute unit also has local memory, which can be
only accessed from the processing elements inside the compute unit.
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Figure 15: GPU architecture of two modern GPUs. The AMD GPU has 44 compute units
with 2816 ALUs, the NVIDIA GPU has 15 compute units with 2880 ALUs.
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Using the terminology above, the AMD GCN architecture found on the R9 290X is
a GPU containing 44 compute units with 64 processing elements each (see Figure 15).
Each compute unit has 64 KiB of local memory attached, called local data store (LDS).
Additionally, a 16 KiB sized L1 cache is attached to each compute unit, which, just
like the shared 1 MiB sized L2 cache is not directly programmable from OpenCL.

Similarly, an NVIDIA GeForce GTX TITAN using the Kepler architecture contains
15 compute units with 192 processing elements each. Each compute unit has a 64 KiB
sized, combined local memory/L1 cache. It can be reconfigured to assign 16, 32 or 48
KiB to L1 or local memory. Additionally, a 48 KiB sized read-only cache is attached
to each compute unit. Finally, the chip also contains a 1.5 MiB large L2 cache. Similar
to the AMD GCN architecture, the L1, the read-only cache and the L2 cache is not
exposed to OpenCL and hence cannot be programmed directly.

Current GPUs also include additional, fixed-function hardware units. For example,
for texture access, dedicated texture units are used instead of issuing read instructions
and performing the filtering in the ALUs.

Due to their unique characteristics, GPUs require a highly parallel programming
model. In the following sections, I will explain the OpenCL execution and memory

model, which is an example of such a parallel programming model.

2.6.1 Ezecution model

GPUs are wide vector machines which require a different programming model for effi-
cient usage. On CPUs, a scalar execution model is prevalent. In the scalar execution
model, each instruction is processed in-order by a single execution thread. To execute
an operation on multiple items, a loop must be used. Parallelism is thus not explicitly
modeled, but has to be recovered from loops.

In contrast, in the parallel execution model, parallelism is explicitly modeled. Instead
of a single thread, groups of threads which execute in parallel are the basic building
block. In OpenCL, this is modeled by splitting the domain into work groups. A work
group is a set of work items, each work item representing one data element (see also
Figure 16). The execution model is also relaxed. The order in which the work items are
processed is undefined; and synchronization is only allowed within a single work group,
but not across the whole domain. The parallelism comes from the execution order,
which allows an implementation to execute all work items in parallel or sequentially.
Instead of a loop which processes multiple elements as in the sequential model, the
individual loop iterations would be modeled as separate work items to enable parallel

execution. The relaxed computation model is in fact very similar to the model used
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Figure 16: Work definition in OpenCL. On the left, the complete work domain (NDRange
is visible. It consists of multiple, independent work groups, as seen on the right.
Each work group is comprised of multiple work items.

~—

for graphics. There a single, small kernel is executed independently in non-observable
order for all vertices of a mesh or for all fragments generated by a draw call.

However, unlike in the graphics model, multiple work items inside a single work
group can be synchronized in OpenCL using barriers. These force all work items to
advance until a certain point in the program before execution continues. By using a
barrier, and local memory visible to the complete work group, it is possible to exchange
information between work items. This is a major difference to the computation model
in graphics, where all work items execute independently.

By only allowing communication inside a single work group and removing ordering
guarantees, it is possible to map the work load efficiently onto a wide range of parallel
architectures. In general, one work group is assigned to a single compute unit, and the
work items assigned to the processing elements. On an AMD GCN GPU for instance,
64 work items are queued onto the 64-wide vector unit. One difficulty that arises from
this implementation is the handling of conditional instructions, or in general, divergence
across a vector unit.

On a scalar architecture, control flow is implemented using conditional branches as
can be seen in Listing 5. If a jump is taken, instructions are skipped and execution

continues elsewhere.

void conditional (float* a, floatx b, int c)

{
if (¢ == 0) {
*a = 1337;
} else {
*b = 42;
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Listing 5: C code containing a simple conditional instruction.

When compiled for a scalar x86 CPU, it is easy to see that the condition is imple-
mented using a conditional jump instruction (see Listing 6). This will skip the memory
write completely and requires no transformations on the input code.

3 if (c == 0)
test edx, edx
; if true, execute jump

je .LBBO_2
mov dword ptr [rdi], 1109917696 ; = 42.0f
ret

.LBBO_2:
mov dword ptr [rsi], 1151803392 ; = 1337.0f
ret

Listing 6: Generated code for the C conditional example, compiled using Clang 3.4.

On a vector architecture, this approach does not work. The problem is that the in-
structions operate on multiple elements at the same time. For each lane, the conditional
may have a different result. The equivalent code for the scalar example, rewritten for
using OpenCL C, can be found in Listing 7. The key difference is the get_global_-id
(0) function call, which returns a different value for each SIMD lane. It is no longer
possible to execute a conditional jump, as this would skip the first branch for all lanes.
What we need now is a way to execute the first and second branch for a subset of the
SIMD lanes.

__kernel void conditional (
__global float* a,

__global floatx b,
__global int* c)

{
const int idx = get_global_id (0);
if (¢ [idx] == 0) {
a [idx] = 1337;
} else {
b [idx] = 42;
}
}

Listing 7: OpenCL code containing a simple conditional instruction.
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This is typically solved by masking, or function predication. Using an execution mask,
some of the vector units can be “turned off” and their results ignored. Comparisons no
longer return a single scalar, but instead a mask for all vector lanes. The code is then
transformed as following: After the mask is computed, the code for the first branch is
executed. Next, the mask is inverted and the second branch is executed, and finally,
the mask is cleared again.

On the AMD GCN architecture, this separation is directly visible through the sepa-
rate scalar and vector instructions. The vector instructions are executed on the 64-wide
vector unit. Each vector instruction inspects the current ezecution mask which con-
tains one bit for every lane. If not set, the vector lane is effectively “oft” during a
vector instruction.

Scalar instructions are executed on the scalar ALU. It is responsible to set up con-
ditional execution by keeping track of the active vector lanes. In the following code,
instructions prefixed with v are executed on the vector ALUs, instructions prefixed
with s are executed on the scalar ALU:

; load parameters
s_buffer_load_dword s0, s[4:7], Ox10

s_buffer_load_dword sl1, s[4:7], 0x60
s_buffer_load_dword s4, s[8:11], 0x20

s_waitcnt lgkment (0)

; compute get_global_id
s_min_u32 s, sO, Ox0000ffff
s_mul_i32 s@, sl1l2, sO
s_add_u32 s0, sO, s1
v_add_u32 vO, vcc, sO, vO

v_Llshlrev_b32 v@, 2, v0O

s_load_dwordx4 s[12:15], s[2:3], Ox1cO

v_add_u32 vl, vcc, s4, vO

s_waitcnt lgkment (0)

; load c into vl

tbuffer_load_format_x wv1, vl, s[12:15],
0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x00

s_buffer_load_dword s1, s[8:11], 0x10

s_waitcnt vmecnt (0)

; if (¢ [idx] == 0), per lane

v_cmp_eq_1i32 vcc, 0, vl

; save execution mask

s_and_saveexec_b64 s[4:5], vcc

s_waitcnt lgkment (0)

40



26

27

28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

48

49

50

2.6 PARALLEL PROGRAMMING ON GPUS

v_add_u32 vO, vcc, sO, vO

; if mask is 0, jump to else branch

; otherwise, continue

s_cbranch_execz 1label_0024

s_load_dwordx4 s[8:11], s[2:3], 0x180

v_mov_b32 vl, 0x44a72000 ; = 1337.0f

s_waitcnt lgkment (0)

; a [idx] = 1337

tbuffer_store_format_x v1, vO, s[8:11],

0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

label_0024:

; invert the current execution mask

s_andn2_b64 exec, s[4:5], exec

v_add_u32 vO, vcc, sl, vO

; if execution mask is 0, branch, otherwise continue

s_cbranch_execz Tlabel_002E

s_load_dwordx4 s[0:3], s[2:3], O0x1la0

v_mov_b32 vl, 0x42280000 ; = 42.0f
s_waitcnt lgkment (0)
; b [idx] = 42

tbuffer_store_format_x v1, vO, s[0:3],
0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]
label_002E:
s_endpgm
end;

Listing 8: Generated assembly for the OpenCL condition code.

In the generated assembly (see Listing 8), in line 22, the conditional is set up by
computing the execution mask. The program then continues to compute the first
branch in line 30, and, for the remaining units, the second branch in line 42.

With masking, it is possible to transform any structured control flow into vector
instructions. Unfortunately, the execution efficiency is now strongly tied to the number
of active vector units, called the execution coherency. For highly incoherent code, a
GPU may have most of its vector units masked off all the time and only execute at a

fraction of the possible theoretical throughput.

2.6.2  Memory model
For highly parallel architectures as GPUs, it is not possible to provide fast memory

access to each processing unit. An AMD R9 290X can perform one FMA operation
per cycle per ALU. Assuming a clock frequency of 1 GHZ and that all three input
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Memory space Visibility Location Access Size Speed
Private Work item On-chip R/W Small Very fast
Local Work item & group On-chip R/W  32-64 KiB fast
Constant Work item On/Off-chip R 64 KiB  slow-very fast
Global Work item & group Off-chip R/W Large slow

Table 1: Memory spaces available in OpenCL. Private memory size is in the order of few KiB;
global memory is typically several GiB.

operands have to be fetched from off-chip memory, over 30 TiB/s of read bandwidth
would be necessary to saturate the ALUs. This is roughly 100 x more than is available,
even though the GPU already uses extremely fast memory on a wide bus. In order to
reach the peak throughput, the data must be stored in on-chip memory, in this case,
the register file, which is fast enough to saturate the ALUs. Only those provide enough
bandwidth. The next closest memory, which is the local memory local to each compute
unit, only provides an aggregated bandwidth of nearly 5.5 TiB/s, followed by the level
1 cache with 2.8 TiB/s and level 2 cache with 1 TiB/s.

This makes it necessary to give the developers explicit control over where data is
stored. In general, off-chip communication must be limited as much as possible. As
mentioned in the execution model, the programming framework exposes work groups
which can be synchronized together. Additionally, all items in a work-group can also
access local memory. By using the local memory as a manually managed cache, it is
often possible to achieve substantial performance improvements, due to the extremely
high bandwidth of local memory relative to global memory.

In OpenCL, the memory hierarchy is exposed as private, local, constant and
global memory (see also Table 1). Private memory are the registers allocated for one
work item. These are typically stored in the register file. Local memory is per compute
unit; on GCN, it is placed in the local data store. Constant memory is a very small
memory space designed for read-only access. As it is constant, it can be easily cached
on-chip. Finally, global memory is the off-chip memory, generally multiple orders of
magnitude larger than the on-chip memory.

Another difference between the memory on GPUs and traditional architectures is
they way latency is handled. As mentioned above, the vector unit is rather simple and
features no out-of-order processing. Specifically, it cannot speculatively load data in
order to reduce stalls. On GPUs, this problem is magnified as the memory controllers
are optimized for throughput. The best access patterns on GPUs are large, continuous

reads which often occur when geometry or texture data is accessed and hence the
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hardware has been optimized for this scenario. Accordingly, small, random reads and
writes are not optimized and take comparatively long. This makes it necessary to hide
the latency somehow as otherwise the GPU compute units will starve while accessing
memory. The solution used on GPUs are very large register files and context switching.

They key idea is to keep multiple execution contexts on-chip and switch between
them to continue execution while memory transactions are processed. That is, instead
of running just enough work items to fill the vector unit, the scheduler will assign as
much work as can possibly fit onto a compute unit. Once a load or store instruction is
encountered, the execution switches to other work items and continues until another
load or store is encountered, and so forth. The number of work items that can be
scheduled onto a compute unit is limited by the size of the register file and the used
local memory, as the state of all concurrently executing work items must be stored.

For instance, on GCN, the vector register file has 256 KiB of memory; for 1024 work
items, this allows for 64 registers to be used per work item. The ratio of work items
that are scheduled onto a compute unit relative to the maximum number of work items
is called occupancy. For GCN, 100% occupancy can only be reached if each work item
uses 25 or less registers, exactly 40 work groups are scheduled onto a compute unit and
each work group consists of 64 work items which use at most 1.6 KiB of local memory.

The ability to hide latency does not only depend on the number of work-items in
flight. Even with 100% occupancy, the GPU will stall if every instruction is a memory
access, as there is not enough available parallelism. Thus, besides the number of work
items, the ratio of ALU to memory instructions is also crucial. For example, assuming
that a load has a latency of 400 cycles, at an ALU:Memory ratio of 20, only 5 work
groups are needed to perfectly hide latency [AMD13]. 5 work groups correspond to an
occupancy of 12.5%.

In order to obtain the best possible performance, it is thus necessary to optimize
algorithms in three areas. First, coherence during the execution should be maximized
to ensure that all ALUs are used and the maximum number of computations is per-
formed per cycle. Second, the occupancy should be maximized by using low amounts
of registers per work item. In general, this requires simple compute kernels and careful
ordering of instructions to ensure short lifetimes for variables. Third, memory access
must be optimized. This includes placing data in the right memory space as well as

the access pattern, as the off-chip memory is optimized for very large reads.
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In this section, I will cover the pre-process. This is the stage where the input — either
meshes or volumes — is converted to voxels and the level-of-detail simplification is
generated. I will first cover the voxelization itself, which is dependent on the input
type. After that, I will explain the simplification, which works directly on the voxels
and is thus input-agnostic. Finally, I will present performance and memory usage

results for a variety of scenarios.

3.1 VOXELIZATION

The voxelization converts iso-surfaces and triangle meshes into a surface vozxel repre-
sentation. For meshes, an adaptive rasterizer is used, which can also ensure different
topological constraints on the output. Iso-surfaces are converted directly by identifying

surface voxels in the volume.

3.1.1  Adaptive rasterization

The adaptive rasterizer expects that the input consists of triangles placed inside the unit
cube. For arbitrary geometry, the first step is thus to compute the scene bounding box
and determine the transformation to the unit cube. All triangles are then transformed
before being passed on to the rasterizer. In the following, all coordinates are assumed
to be in the [0, 1] range.

The voxelization is now computed as follows: Starting at the root, the node is sub-
divided in turn for each major axis. On each subdivision, the input triangle is split
into up to three triangles at the split plane. After three successive splits, the parts
of the triangle are rescaled back to the unit cube, assigned to each child and moved
into the child’s local coordinate frame. The algorithm now continues recursively at the
child nodes. In effect, the rasterizer adapts to the underlying geometry by creating an
octree during the voxelization. Each step of three successive subdivisions creates one
new octree level.

Rescaling to [0, 1] during the splitting has the advantage that the code and numeric
constants remain fixed, without accumulating floating-point errors. At each split, all
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tests are done against the same floating point constants, which is more precise than
successive subdivision of the domain and additions to get the individual split planes.

The algorithm is tuned for uniformly tessellated and very dense input meshes. In
particular, low resolution meshes with very large triangles or highly oversampled vox-
elizations will spend a lot of time in the expansion phase. In general, the best per-
formance is achieved when the voxel to triangle ratio is below or close to 1. For the
cases where low-resolution geometry is resampled, it may be beneficial to pre-tessellate
the geometry to improve efficiency during voxelization. Alternatively, a separate, large
triangle rasterizer could be included, similar to [Panll] or [RB13].

Once a leaf has been reached, the exact intersection area of the triangle with the
voxel can be immediately computed, as the triangle has been already clipped to the
voxel. At leaf nodes, I accumulate per-vertex attributes like normal direction and
color, weighted by the area of the triangle. For color, I also store the total triangle
area per voxel to be able to compute the correct average color. For normals, a simple
re-normalization is enough, which also reduces the amount of data per leaf voxel.

For each leaf, I also determine the active faces of the voxel. This is a pure rendering
optimization to reduce the amount of generated faces later on. I consider a face with
normal 1y to be active if the geometry has a normal ng which points into the same
direction. The actual test is implemented as (ng,1¢) > €. An € is needed to robustly
handled cases where a triangle is coincident or parallel with one of the voxel faces.

After all triangles have been processed, the tree is traversed and the leaf voxels are
gathered into larger chunks, typically containing 256> voxels. Each voxel is also stored
relative to the chunk origin. Using chunks of < 256 voxels allows me to store the
voxel position using 8 bits per component. Alternatively, the voxelizer can also output
world-space voxels with 16 bit per component, which is used by the voxel raytracer
described in Chapter 5.

The processing has been optimized in three areas: Tree memory storage, multi-
threading and optimized geometry input.

The first optimization helps to reduce the amount of memory required by the tree.
As it is an octree, it contains a high number of leaf nodes, so a compact storage of leafs
is paramount to reduce the memory usage. To this end, I have separated the interior
nodes from the leaf nodes during the tree building. Instead of using the union of a
leaf and interior node during the build phase, I use two separate data structures. The
interior nodes in my framework contain only leaf pointers, and the leaf nodes solely
consist of the payload. This enables a very tight, memory efficient packing of nodes,
as the interior nodes are perfectly aligned with the cache line size of current x86 CPUs

— 64 bytes for 8 pointers of 8 bytes each. This makes the access of interior nodes very
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Resolution Packed Allocated Unpacked

10243 53 64 131
20483 212 232 530
40963 855 936 2130
81923 3434 3648 8546
163843 13761 14617 34224

Table 2: Memory usage for the St. Matthew scene at different resolutions. Packed is the
minimal memory required by separating interior from leaf nodes and packing without
any alignment; Allocated is the actually used memory including the block allocator
overhead and alignment, and Unpacked is the memory required by unified leaf and
interior nodes. All numbers are in MiB.

fast, which is crucial during tree building, as each triangle hast to traverse the tree
several times until it reaches its leaf node.

Separating is possible as the leaf nodes all exist at the same level. During the
traversal, I keep a context variable which allows me to determine the current level, and
from that, I can deduce whether a pointer points a leaf or interior node. This removes
the need to store a bit per node.

The leaf nodes are specialized for each vertex format using C++ template program-
ming. This avoids the allocation of a “worst-case” leaf with all attributes required by
any possible voxelization input. The template based system is also flexible enough that
it is easily possible to add for example support for textures as the color or normal source
without having to change other parts of the voxelization pipeline. In my design, vertex
attribute fetching, interpolation and evaluation is fully orthogonal to the rasterization
algorithm itself.

Memory fragmentation is also minimized by using a custom memory allocator. Gen-
eral purpose memory allocators are optimized to work with objects of any size. During
tree building, I allocate only leaf or interior nodes, which are all very small and have
fixed size. This is a use-case which is not optimal for the system provided memory
management routines. Instead of allocating the nodes one-by-one, I use a block allo-
cator which reserves memory in large chunks. Individual node allocations are served
directly from a chunk, which is a very cheap operation as it only requires to increment
a pointer. This optimization drastically reduces memory fragmentation and also im-
proves locality, as leaf nodes which are created at the same time are also likely to be

stored nearby in memory.

47



PREPROCESSING

One problem that arises from the use of a block allocator is that individual nodes
cannot be released. Fortunately, during the build, there are only allocations but never
deallocations of nodes. The only situation where nodes are deleted is during the tree
merging at the end. I have solved this by using a separate allocator for each tree.
After a tree has been merged, the corresponding allocator is destroyed and all memory
required by the tree is released.

In total, the separation of leaf and interior nodes plus the tight packing reduces
memory usage by a factor of approximately 2.2 for the St. Matthew scene (see also
Table 2). Compared to the minimal required memory, the block allocator introduces
between 6%-10% overhead. For the very small scenes, the rounding to 8 MiB blocks is
responsible for the majority of the overhead. For larger sizes, the overhead compared
to the “packed” layout is related to alignment. In the tested configuration, the leaf
nodes are 13 bytes in size and aligned to 4 bytes, thus consuming 16 bytes.

The second important optimization is to take advantage of multi-threading. In my
work, I distribute the work across multiple CPU cores using a two-stage approach. In
the first stage, CPUs take chunks of the input geometry and rasterize it using the
technique outline above. This results in a per-CPU octree. In the second stage, the
trees from all CPUs are gathered and merged into a single tree. This tree is then
traversed once to emit all surface voxels.

The splitting is performed using work-stealing on the input data. Once a CPU thread
is ready, it locks the input file, reads the next geometry chunk, releases the lock and
continues voxelization. As the input is generally unsorted, random parts of the mesh
are assigned to each CPU (see also Figure 17).

During the merge phase, the first tree is taken as the merge target and all other
trees are merged into it sequentially. Merging of two trees is very cheap and requires
the joint traversal of both the source and target tree. If the source tree encounters a
node which is not yet present in the target, it is immediately copied the target tree
and traversal continues.

At the leaf level, an attribute specific merge function is performed if the node is
present in both the source and target tree. This is again implemented using template
functions, which allow the optimal merge function to be used for every tree configura-
tion.

It is possible to perform the tree merging using a parallel reduction. For instance, if
8 threads have been used during rasterization, the reduction can be performed in three
steps by merging the odd and even trees in each step. A downside of such a merging

scheme is that the required amount of temporary memory is linear in the number of
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(a) Thread 0 (b) Thread 1

Figure 17: The rasterization load is distributed over multiple threads. Each thread processes
a different part of the model; at the end, the results are merged into a single tree.
White indicates the bounding boxes of interior nodes, green leaf nodes.
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Model — # Triangles PLY'T PLY' (Lz4) PLY? oBJF Gst ast (High)

Lucy 28055742 509 421 1086 1190 428 408
Thai 10000000 182 146 378 404 143 134
Dragon 7219045 131 103 270 286 94 91

Atlas 507512682 10183 7451 - - 6091 4970

Table 3: On-disk data sizes for various models. GS is a plain geometry stream with “fast” LZ4
compression, GS (High) is compressed using LZ4HC. T indicates a binary format, ¥
a text based format. PLYT (LZ4) is a binary PLY file compressed using “fast” LZ4.

trees. In contrast, the sequential merge requires only temporary memory equal to the
size of the currently merged source tree.

A possible optimization to reduce memory performance and slightly improve raster-
ization speed is to perform a rough pre-sort of the input geometry. This can be done
by running the voxelization for a few levels. In this case, the work-stealing algorithm
must be also adjusted so it takes the spatial location of a geometry chunk into account.
The rasterization will benefit in two ways from this optimization: First of all, the trees
will cover smaller volumes, which reduces the required memory. Second, as the trees
become smaller, the rasterization becomes faster due to improved locality.

Eventually, this could be the basis for a complete out-of-core algorithm. In the first
stage, a pre-sort with a coarse voxelization is performed as described above. However,
instead of running the rasterization right away, the output for each block is flushed to
disk. In the second stage one rasterizer is started per coarse block and all outputs are
merged. The main difference to existing out-of-core algorithms like [BLD13] is that
the voxelizer itself is used for all steps, without the need for a separate sorting step.

A key part of the fast processing pipeline is efficient geometry storage. As mentioned
above, the multi-threaded rasterizer uses work-stealing to read new geometry data.
This makes it necessary to provide the input data in a chunked format, that is, as
blocks of independent triangles which can be quickly read from disk.

Unfortunately, common file formats like Wavefront OBJ and PLY are not suited for
this usage scenario. While very popular, OBJ does not provide a binary encoding,
which makes it necessary to perform string parsing while the file is read. This signifi-
cantly reduces reading performance for large files, in addition to the very high disk
usage requirements (see also Table 3).

PLY provides a binary encoding, which allows for efficient reading. While it is
possible to implement streaming into PLY, compression can be only performed on the
whole file, and not on parts of it.
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To solve these problems, I introduce geometry streams as the on-disk storage. Ge-
ometry streams are files which are comprised of independent geometry chunks stored
sequentially in the file. Each geometry chunk consists of per-chunk metadata, the ver-
tex data and optionally index data. Inside the chunk, all data is stored as a binary
blob, similar to binary encoded PLY files. Each chunk is completely self-contained and
can be skipped over after the metadata has been read.

To minimize disk space, the data contents of a chunk are compressed on-disk using
LZ4 compression (see also Table 3). LZ4 is a compression algorithm designed for
fast compression/decompression performance, achieving decompression rates of over
1 GiB/sec on a single thread. In general, compressing chunks does not reduce the
compression rate compared to merging all vertex data first and compressing.

For each chunk, the metadata describes the format of the chunk and provides in-
formation about the chunk including its bounding box. This allows the rasterizer to
quickly determine the size of the work domain without having to load all triangles into
memory first.

On the reader side, the file format is completely abstracted away by mesh views.
These are interface classes which provide uniform access on any geometry format sup-
ported by my framework. Using mesh views, it is possible to choose the optimal
encoding for every chunk independently without changes to the rasterizer itself. For
instance, it is possible to preprocess a mesh and decide per-chunk whether an indexed

mesh should be used or not, depending on the data size and vertex reuse.

3.1.2  Topology

By construction, the rasterizer creates all voxels which are intersected by a triangle.
This results in a conservative voxelization. As described in 2.1.1, a conservative vox-
elization is also a superset of both 6- and 26-separating voxelizations. This makes it
possible to prune the output voxel set by introducing additional tests (see also Fig-
ure 18).

To this end, I have implemented the intersection targets from [Lail3]| as a post-
process. If 6 or 26 separability is requested, each voxel that is touched by a triangle
is additionally tested against the appropriate intersection targets. If no intersection
is found, the leaf node is still created, but marked as empty. During voxel emission,
empty leafs are simply skipped. For the 6-separating test, I project the triangle onto
the xy, yz, xz planes and test if the mid-point of the unit square in that plane is
contained within the projection. For the 26-separating test, the triangle is intersected

directly in 3D with the four diagonals of the unit cube.
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(a) Conservative

(b) 26-separating

(¢c) 6-separating

Figure 18: The adaptive rasterizer can output conservative, 26-separating or 6-separating vox-
elizations. 26- and 6-separating voxelizations are created by pruning of the conser-
vative output. As can be see, all connectivity configurations allow for gap/crack

59 free rendering.
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Figure 19: A voxel iso-surface extracted from the Richtmeyr-Meshkov instability at a reso-
lution of 2048 x 2048 x 1920 voxels. The extracted surface consists of 128880391
voxels.

3.1.3  Iso-surface extraction

Iso-surfaces of volumes can be also visualized using my framework. The only difference
between volume and triangle data is the import phase, which requires a slightly different
conversion step. The simplification and rendering remains the same.

I assume that the input is provided as a block-based volume with an at least 1-wide
block border. Blocks which are completely empty, that is, where all samples are below
or above the iso-value, are ignored. For the remaining blocks, I compute a conservative
voxelization by inspecting the Ng neighborhood of every “inside” cell, that is, the cells
which have a value above the iso-value. If at least one neighbor exists with a value
below the iso-value, the voxel is emitted. [Liu77, HL79].

For high-quality rendering, it is necessary to compute a normal for each voxel. In

the 3D scalar field, this can be performed directly by computing the gradient:
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In a discrete volume, the derivatives are typically computed using central differences:

of (x,y,2) _ f(x+hy,z)—flx—hyz) (11)
ox h

These gradients are sufficient for very smooth data sets, but exhibit problem for
near-binary volumes, for example, volumes generated from a wavelet rasterizer [MS11].
During the iso-surface extraction, I use a normal estimation based on linear regres-
sion [NCKGO0]. Similar to central differences, the linear regression estimation requires
a one-wide border around each volume block.

3.2 SIMPLIFICATION

The surface voxel representation allows for very efficient simplification. All voxels are
stored in a grid, and for each simplification, the grid resolution is halved. For each
“parent” voxel, up to eight “child” voxels have to be merged. I use a merge strategy
which always creates a “parent” voxel if at least one child is visible. For the parent
voxel, the face mask is the union of all children. This is equivalent to a max operation
on a density volume. With this strategy, I can guarantee that the boundary faces of
a parent will form the convex hull of the child voxels. I will use this property during
rendering to enable efficient occlusion culling and streaming (see also Section 4.5).

During the simplification, per-voxel attributes have to be combined. Again, there
are multiple possible approaches here. If per-face data is present, the attributes can
be averaged per face. In general, this provides the highest quality but also requires
the most memory. Alternatively, data can be averaged per vozxel, which can lead to
problems if for example widely varying normals are combined. The decision can be also
performed per-voxel by using an additional bit to mark voxels with per-face attributes,
and only store the per-face attributes for those.

For my work, I have opted to use the second approach, which is to use per voxel
averages, as errors due to incorrectly merged normals typically occur after many sim-
plification steps and do not affect the rendering in normal viewing conditions. For
extremely minified views, averaged normals, albeit incorrect, have the advantage that
they reduce the amount of specular aliasing, especially if no re-normalization is per-
formed.

The simplification itself allows for efficient serial and parallel implementation. The
serial version has minimal memory requirements and is highly suited for streaming

implementations. The parallel implementation is designed for GPU based applications.
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3.2.1 Serial

The serial simplification consists of two steps:

1. Sort

2. Compact

In the sorting step, the voxels are sorted such that all child voxels corresponding
to a single parent are placed next to each together. This is easily done by taking the
position of the voxels, masking out the least-significant bit, and sorting by this new
position. This can be easily accomplished by packing all but the lowest bit into a single
integer and using it as the sorting key. Eventually, the buffer will contain “runs” of
voxels corresponding to a single parent voxel.

In the second step, the “runs” of voxels are compacted to produce the parent voxels.
Starting at the beginning of the buffer, the first voxel is examined, and all following
voxels with the same position are found. Average attributes, like color and normal, are
now computed for all these voxels and their active face bits are merged together using
a bitwise or. Finally, a new output voxel is generated; and the algorithm continues
until the complete buffer has been processed.

A minor issue of this approach is that adjacent voxels can create active interior faces
which are not visible. This can be resolved with a second pass over the generated
voxels; for all faces, where a neighbor is present, the active face flag should be cleared.
In practice, the additional faces have minimal impact on rendering and processing
performance and do not warrant an additional cleanup pass. The memory usage is
independent of the active face cleanup.

3.2.2  Parallel

The parallel simplification is similar to the serial simplification, but it adds additional
stages to the process:

1. Parallel sort
2. “Run” identification
3. Parallel prefix sum

4. Compaction
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The sorting step is the same as before, but this time, a parallel radix sort on the
32-bit combined positions is used. After the parallel sort, the identification has to be
adjusted. Previously, it would process the complete data set sequentially, which is not
suitable for massively parallel architectures. Instead, the compaction is separated into
three steps. In the first step, runs are identified by starting one thread per voxel. This
requires one additional buffer, which has one entry per voxel and is initialized to 0.
Each threads checks if the current voxel position is different from the following voxel.
If so, the voxel is marked as a run start by storing a 1 into the separate buffer. On
this separate buffer, a parallel prefix sum is computed, which now contains the start
of each run. The number of entries generated by the parallel prefix sum is also equal
to the output voxel count.

The compaction now continues similar to the serial version. One thread is started
per run, which gathers all corresponding voxels and combines them into one output
voxel.

All steps of the parallel sort can be efficiently performed even on massively parallel
architectures. The additional memory requirements are two buffers; one for the tran-
sitions and one to store the parallel prefix sum result. Additionally, the output buffer
must be pre-allocated to the worst-case size, that is, equal to the input size, unless a

read-back is performed after the prefix-sum to allocate the output buffer.

3.3 RESULTS

All tests have been performed on a dual Intel Xeon X5650 CPU at 2.667 GHz (2x 6C/12T),
using 24 threads, running Linux. The test machine has 24 GiB of memory. It is also
equipped with a Samsung 840 EVO SSD disk which achieves a read transfer rate of
265 MiB/sec.

For the testing, I have used eight different datasets (see Table 4). These data sets
cover a wide range of scenarios, ranging from very small, compact scenes (Conference)
over medium sized data sets (Lucy, Powerplant) to the very large 3D scans of the
Digital Michelangelo project [LPCT00] (Atlas, David [PGC11] and St. Matthew).
The are stored as geometry streams and chunked to allow for efficient access to parts
of the model. Except for David, which contains position and per-vertex colors, the
other data sets consist of position-only data.

The voxelization is stored in a block-based file. The block size was set to 643. No-
tice that each block only stores the surface voxels and as such, the actual number of
voxels stored per block will be varying. The maximum block size is only used as an

upper bound. The block size has been chosen to allow for efficient rendering. For
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Model # Vertices # Indices # Faces Vertex Index # Chunks
Atlas 265803606 1522538046 507512682 3042 5808 7748
Conference 189221 993537 331179 4 4 41
David 483943533 2820580659 940193553 18461 10760 14358
Lucy 18870809 84167226 28055742 432 321 429
Powerplant 10966358 38277738 12759246 251 146 236
San Miguel 5448810 23641536 7880512 104 90 13589
St. Matthew 195331421 1118302335 372767445 2235 4266 5695
Thai 6106658 30000000 10000000 140 114 153

Table 4: Statistics for the tested data sets. Vertex is the size of all vertices in MiB; index
the size of all indices in MiB. Chunks is the number of input chunks; the very high
count for San Miguel stems from many isolated objects in the original input which
have been placed into separate chunks.

preprocessing performance, a larger block size may be beneficial to allow higher disk
I/O throughput.

3.3.1  Resampling

For all test scenes, the voxelization at the highest resolution produces output scenes
with several hundred million voxels up to nearly one billion voxels for the Confer-
ence (see also Table 5). Outputs with very high voxel counts are Conference and
San Miguel, which contain few, very large polygons. At the highest resolution, the
resampling rate is close to one for all data sets except David, which is still slightly
undersampled (see also Figure 21).

The file size for the scene is directly proportional to the voxel count (see also Table 6).
For the Atlas data set, which has been resampled at close to one voxel per triangle
at 163843, the voxel file size is approximately 61% of the input data size.

The preprocessing performance is highly dependent on the scene configuration (see
also Figure 20). As the voxelization is parallelized over triangles, scenes with only a
few triangles are limited by the voxel emission speed. This affects both Conference
and San Miguel, which contain relatively few triangles covering large space extents.

For highly detailed scenes like Atlas, David and St. Matthew, the processing
time is dominated by the per-triangle work. These data sets scale only slowly with in-
creasing resolutions. In these scenes, each triangle is split only few times and produces
eventually only very few voxels (see Figure 21 and Figure 22). If the voxelization is re-
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Dataset 163843 81923 40963 20483 10243
Atlas 534931311 133688606 33362414 8303373 2061645
Conference 906645225 226417757 56400644 14056227 3449087
David 266667551 66585695 16620181 4149995 1036102
Lucy 395015023 98736987 24676214 6165296 1539968
Powerplant 310509751 72469820 16952067 3880932 880656
San Miguel 749592902 186504771 46403372 11527867 2870209
St. Matthew 420708194 105111535 26226157 6529552 1620059
Thai 568009917 141969441 35475799 8858855 2208164

Table 5: Number of generated voxels for the various test data sets. These are the counts from
direct voxelization into the specified resolution. San Miguel and Conference produce
very high amounts of voxels due to large, planar surfaces which extend through the
complete input domain.

Dataset 163843 81923 4096° 2048° 10243
Atlas 5466 1347 331 82 21
Conference 13164 3320 841 206 52
David 2786 689 171 43 11
Lucy 4103 1021 256 64 16
Powerplant 4280 980 230 51 12
San Miguel 11088 2765 691 172 46
St. Matthew 4510 1115 276 68 17
Thai 6149 1546 391 101 24

Table 6: File size for the voxelized scenes in MiB.
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Figure 20: Performance on various test scenes and output resolutions. Complex input scenes
like Atlas, David and St. Matthew are dominated by the triangle processing time
and only scale slowly with increasing resolutions. Simple scenes like Conference
and San Miguel are mostly limited by the voxel generation and scale directly with
the output size. The output time is the time to write the voxels to disk, which is
limited by disk I/O speed.
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Figure 21: Effective resampling rates for the tested data sets. A sample rate of 1 indicates
that the voxel data set has one voxel per triangle.
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Figure 22: Per triangle expansion for the individual data sets. Leafs per triangle is the total
number of generated voxels for all triangles, which contains duplicated voxels.

quired for level-of-detail purposes, a triangle/voxel ratio below 1 is sufficient, assuming
uniformly sized triangles.

The adaptive rasterizer splits each triangle into individual voxels before the topologi-
cal cleanup. Depending on the triangle size, this can result in very high expansion rates
during the voxelization phase (see Figure 22), approaching several tens of thousands of
voxels per triangle for Conference. The expansion rate is directly tied to the average
triangle size. As long as the triangles are sub-pixel sized, the scaling is sub-quadratic
with increasing resolution. Once all triangles are voxel sized or bigger, the expansion
factor approaches O(nz) — that is, doubling the resolution will roughly quadruple the

number of voxels.
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Figure 23: Multi-threading efficiency on the Lucy dataset for different resolutions. At 4096,
the rasterizer reaches near perfect scaling from 1 to 12 cores. At 81923, the merging
time starts to reduce multi-threading scalability.
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Figure 24: Simplification performance for the tested data sets. Resolutions below 10243 are
omitted, as the simplification takes less than one second at those resolutions.

The voxelizer scales very well with increasing core counts (see also Figure 23). At
low resolutions, where the time is dominated by triangle processing time, the rasterizer
scales nearly linearly up to twelve cores. With hyperthreading enabled, which improves
the performance in memory limited scenarios, the rasterizer is able to achieve perfect
scaling. At higher resolutions, the scaling becomes worse as the merging time starts to
dominate the process. As mentioned earlier, a parallel merge can be used to speed up
the merging at the expense of higher memory requirements.

[so-surface extraction is straightforward and can be quickly performed even for large
data sets. 1 have tested the extraction performance on the Richtmeyr-Meshkov insta-
bility (see also Figure 19) which consists of a volume with 2048x2048x1920 sample
points. Extraction of 128880391 voxels requires 220 seconds and is mostly spent in

1/0.
3.3.2  Simplification

I simplified all meshes starting from the source resolution of 16384 using the serial
implementation. Even though it only uses a single CPU core, it is still I/O bound.
Simplification performance is dependent on the sparsity of the scene. Conference
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Dataset 16384% 81923 4096° 20483 10243 512° 256°
Atlas 126071 31261 7702 1883 441 110 20
Conference 196250 48047 11190 2602 540 96 32
David 63714 15783 3886 933 210 45 16
Lucy 94593 23130 5458 1215 285 68 18

Powerplant 40412 7607 1523 348 125 30 8
San Miguel 169648 34038 7026 1519 293 56 14
St. Matthew 97892 24088 5911 1423 332 92 16
Thai 133723 32140 7487 1645 355 76 22

Table 7: Block counts for the various data sets and resolutions. The simplification perfor-
mance is serial, and data sets which are sparse in 3D space and contain many blocks
are slower to process due to per-block overhead. The block size is 643; the two
lowest levels of each data set contain 8 and 1 block. The block counts are for one
level-of-detail simplification starting at the highest resolution.

and San Miguel for example consist of many blocks which contain only very few
voxels, which still have to be read, processed and stored (see also Table 7). The
per-block overhead could be easily mitigated by using adaptive block sizes. While the
tree is written to disk, blocks could be merged until a reasonable amount of voxels is
found. In the tests, the block size was fixed at 643, but it could be expanded to 256°
without changes to the voxel data itself. In this case, fewer blocks would be created for
sparse areas. However, cases in which this becomes necessary are likely to be severely
oversampled and thus the correct solution is to simply use a lower target resolution.
Accordingly, I have not optimized for this specific scenario.

The simplification is very quick and requires approximately the same time as the
voxelization itself for all test scenes (see also Figure 24). If enough memory is available,
the I/O time of a combined voxelization /simplification pass can be significantly reduced
by keeping the voxels in memory instead of flushing them to disk and reading back.

Memory usage for the simplification is constant and requires worst-case storage for
nine blocks, or a few MiB. Once a block is processed, it is immediately written to the
output file and both the input and output is discarded.
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GPU RASTERIZATION

4.1 INTRODUCTION

In the previous chapter, I described an efficient approach to voxelize and simplify
triangle meshes and iso-surfaces. In this chapter, I will present the corresponding
rendering algorithm. It takes advantage of the voxel representation to enable efficient,
high-quality rendering. By combining both the pre-processing and the renderer, a very
fast visualization pipeline can be created.

4.2 RELATED WORK

In the last years, there has been a lot of research into large octrees to render such
voxel models [CNLE09, LK11a]. [CNLEQ9] subdivides the model into a sparse volume,
storing only small volume “bricks” along the surface. It uses a compute based octree
traversal to render the contained surface, and also supports fully volumetric rendering
as required for instance for clouds. However, it has significant memory overhead for
solid models as it stores parts of the volume around the object surface. It also requires
additional memory for the octree data structure on the GPU.

An interesting optimization for surface voxel models has been presented in [LK11a]:
Along with the surface data like color, they also store contours which both improve
the quality of the reconstructed surface as well as the performance of the rendering. In
this case, the octree must be built top-down as successive levels combine the contours.
Similar to GigaVoxels, the sparse voxel octrees also use the GPU’s compute units for
rendering.

Recently, [RCBW12] showed how voxel raycasting can be used for rendering very
large models. Their approach uses a very compact surface representation and switches
between voxels and triangle rendering for close-up views. They also show that voxels
can be used to provide a high quality level-of-detail simplification. However, in their
work, the level-of-detail computation is done in a pre-process and is not created from
their compact representation. This makes it very time-consuming, as it has to process
the complete model for every simplification step. Finally, they rely on ray-tracing for

rendering, making anti-aliasing very expensive.
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Point-based rendering [BK03] is also related to my technique, but there are several sig-
nificant differences. The voxelization always produces a watertight surface and requires
no blending between points. I can also integrate my rendering technique easily with
other algorithms like shadow mapping, as the representation is view-independent for
a given level-of-detail configuration. This guarantees that the voxel geometry matches
exactly for different views.

4.3 RENDERING

The renderer is designed with the following goals:

o High quality: The generated image should have clean, smooth edges and no
temporal or geometric aliasing artifacts should be visible.

e Interactive performance: The user must be able to explore the scene at interactive

frame rates.

o Instant viewing: The viewer should start up immediately without having to read

the complete mesh.

o Low memory usage: The renderer should use as little memory as possible.

The renderer uses the voxel representation created in the preprocessing as the level-
of-detail simplification of the model. For close-up views, a hybrid rendering path is
available which swaps in the source geometry where needed. High quality rendering is
ensured by using the hardware rasterizer with anti-aliasing.

All of these features, including level-of-detail, occlusion culling and streaming are
combined into a single, unified framework. Streaming is necessary to ensure that
the mesh can be viewed instantly and that memory usage is kept minimal. As it
is integrated with both occlusion culling and level-of-detail selection, the amount of
streamed data can be minimized.

In this section, I will describe the run-time structure of the renderer, starting from
the basic implementation. After that, the individual parts that comprise the renderer

are explained in detail and a performance evaluation is presented.

4.3.1 Overview
The core data structure used in the renderer is an octree, similar to GPU based voxel

raytracers. At load time, a single octree for the complete scene is created on the CPU
and all voxel data associated with the root node is loaded.
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The octree is the main data structure used to drive the rendering and managed
completely on the CPU. At run-time, the following steps are executed per frame:

 Visibility determination, including culling

Refinement and load request generation

Loading

Rendering

During the visibility determination, the tree is traversed to identify all visible nodes.
Two different culling algorithms are used, which are described in Section 4.5.

Next, nodes which are missing yet visible or undersampled are requested for loading.
To ensure high-quality rendering, it is necessary to guarantee that the maximum pixel
error is below one, that is, that the projected size of a voxel never exceeds the size of
a pixel. During the traversal, a conservative test is performed for each node; if it is
found to be undersampled, all children are requested for loading.

During the loading stage, data is fetched from disk and uploaded into GPU memory.
For optimal performance, all voxel data is placed into a single buffer, which makes it
necessary to manually manage the memory (see also Section 4.4).

Finally, all loaded blocks are drawn by issuing draw calls to the GPU. In this stage,
only small optimizations to the draw order and batching are performed to ensure the
best possible performance.

4.3.2  Vozel decompression

As mentioned above, using the rasterizer is important to get high-quality rendering
due to its hardware-accelerated anti-aliasing. However, the voxel storage format is not
suitable for direct rendering on the GPU. It consists of a compressed representation for
a single voxel. This has to be unpacked into multiple triangles before it can be drawn
using the rasterizer.

The input consists of at least voxel coordinates, which can be stored in block or world
space, a list of active faces per voxel and optionally additional attributes like color and
normals. There are two possible data layouts for the voxel attributes: Per-voxel or
per-face attributes. Per-voxel attributes are constant over a whole voxel and always
consist of one datum per voxel. Per-face attributes are constant per voxel face and

vary in count per voxel.

67



GPU RASTERIZATION

For per-face data it is thus necessary to separate the storage from the voxel buffer,
which has to be traversed using uniform stride. In my implementation, a separate
per-face buffer is created and the offset into that buffer is appended to each voxel.

It is also possible to combine both per-face and per-vertex data by using otherwise
unused bits in the position. With 8-bit positions and a 6-bit active face mask, two
bits are unused per voxel which can be used to mark the payload as either data or an
offset into a per-face buffer. A potential scenario for this approach is higher-quality
simplification: If voxels are combined with widely varying normals, a higher quality
approximation can be achieved by separating the faces and storing averaged per-face
normals for the affected voxels.

The standard voxel format consists of three 8-bit positions, followed by the 6-bit
active face mask, packed into 32-bit. Normals are quantized to 10-bit per channel and
stored in 32-bit as well. If color is present, I store it using 8-bit per channel, padded
to 32-bit as well.

As T want to use the compact representation as much as possible, the ideal place to
decompress the data is on the GPU. This can be accomplished by combining vertex,
geometry and fragment shaders.

Let’s start with the first stage, the vertex shader. I use it to perform two operations:
Unpacking of per-voxel attributes and backface culling. In the vertex shader, the
per-voxel position, which is stored in unsigned integers, is extracted and placed into
floats which can be consumed by the GPU hardware. At the same time, the view
direction from the camera to the center of the voxel is computed and used to cull the
active face mask. This is a crucial step as it guarantees that a single voxel will produce
at most three visible faces. Without the culling step, the geometry shader stage has
to handle an expansion ratio of zero to six faces per voxel; which is halved to one to
three if the vertex shader culling is used. This significantly improves the geometry
shader performance, as less memory has to be allocated in the worst case. The GPU
is then able to execute more instances in parallel, resulting in higher geometry shader
throughput.

In the geometry shader, the triangles for each voxel face a generated. The geometry
shader takes advantage of the vertex shader culling, which guarantees that per axis
at most a single face is present. It is invoked three times using instancing, once per
axis, and uses a single bit-test to identify whether it is active or not. If active, a
single face is emitted and multiplied with the current view transformation. Running
the shader three times over the input with instancing turned out to be most efficient
on modern GPUs, which have very high memory throughput and low geometry shader

performance at higher amplification rates.
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Finally, in the fragment shader, the lighting is evaluated. If per-face attributes are
present, the fragment shader will fetch them to avoid having to allocate memory per
attribute in the geometry shader. In all cases, the attribute interpolation is turned off,
as all attributes are constant over the face (see also Section 2.3).

Rendering using the rasterizer is not without problems. On the up side, it allows
to use the hardware anti-aliasing, which is a key requirement to achieve high-quality
rendering. On the down side, it exercises the GPU in two ways which are not well
optimized. First, the geometry shader is used for expansion. This is a slow path in
the GPU hardware due to very limited usage in games. Second, GPUs are inefficient
when rendering pixel-sized geometry. As explained in Section 2.3, the rasterizer has
to set up edge-equations for each triangle. In addition, to provide derivatives for
shading, the rasterizer will always generate a quad of 2 X 2 pixels, even for sub-pixel
geometry [FBH'10].

While it is possible to work around the geometry shader limitations by using addi-
tional scratch memory, the sub-pixel sized triangles will remain a problem. However, as
this issue is becoming more and more apparent for games using tessellation, it is likely
that the inefficiency for small triangles will be eventually addressed by the hardware

vendors.

4.4 MEMORY MANAGEMENT

At run-time, blocks have to be paged in and out of memory. This is an usage pattern
which is not well suited for graphics APIs like OpenGL and Direct3D, which are not
optimized to create and destroy buffers per frame. Instead of relying on the driver, the
rasterizer manually manages the GPU memory.

The memory is divided into three pools, one for the voxels, one for index data and
one for vertex data. Each pool is managed separately and is allocated at the expected
worst-case size. The memory inside each pool is managed using a linear allocator. The
allocation strategy is as follows: A high mark, indicating the upper end of the allocated
memory, is increment on each request. For each request, the block identifier, the
start position and the size is recorded. Due to hardware requirements, allocations are
also padded to satisfy alignment properties. This scheme makes allocations extremely
efficient, as they only require to increment one pointer.

For a deallocation, the corresponding request is moved onto a free list and the block
is marked as deleted, but uploaded. This makes it possible to quickly restore deleted
blocks. Before a block is reloaded from disk or for upload to the GPU, I check if the
block is on the free list. If so, it is simply removed from the free list and the loading
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Figure 25: Buffer defragmentation: The red block is deleted. If overlapping copies are allowed,
the yellow block is moved directly to the next start offset (middle). Otherwise,
an intermediate copy is placed at the end of the buffer (bottom). In this case,
one additional step is necessary before the green block can be moved to its target
location.

is skipped. This is a very efficient method to avoid re-uploading of blocks which have
been out of view for a few frames. Notice that allocations will prefer to not use the free
list, but will be serviced from the upper end of the allocated range if possible. This
guarantees tight packing of new data. In case of memory pressure, the allocator will
start to evict blocks from the free list. As block sizes rarely match, this will result in
fragmentation, which makes it necessary to defragment the memory pools regularly.

Once the buffer becomes sufficiently full or the fragmentation is too high, a defrag-
mentation is triggered which compacts the data again. The recompaction purges the
free list and moves all remaining blocks together. The packing processes sorts all allo-
cations by their memory address. Once a gap is found, the next allocation is examined.
If the size is less or equal to the gap size, it is moved directly into the gap. Otherwise,
an overlapping copy is required. As this is not supported by all hardware and APIs,
the memory manager will copy the block to the end of the pool and then copy it back
if necessary. Eventually, all blocks are packed tightly again, with no gaps in between
except when required by alignment (see also Figure 25.) The defragmentation process
has a complexity of O(n), with n being the number of wvisible blocks in a frame.

For efficient uploading, one small — in the order of several MiB — staging buffer is
used per pool. On the CPU side, the buffer is packed as tightly as possible and then
transferred to the GPU. On the GPU, the data is scattered to the appropriate slots.
Scattering on the GPU is more efficient than multiple round-trips from the CPU to
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(a) Test scene (b) Octree node bounds (¢c) Precise node bounds

Figure 26: Comparison between precise and octree node bounds. Octree node bounds encom-
pass the whole octree node and are much larger than the precise, content based
bounds.

the GPU, as the CPU/GPU bus is optimized for large transfers and has a much lower
bandwidth than GPU memory.

4.5 VISIBILITY

The renderer uses two culling algorithms to reduce the number of visible chunks. First,
a frustum culling pass is performed, followed by occlusion culling.

4.5.1 Frustum culling

The frustum culling is integrated into the CPU side octree traversal. While descending
through the tree to determine visible nodes, the bounding box of each node is also
tested against the current view frustum. If a node is determined to be outside the view
frustum, the traversal stops immediately and the node is marked as invisible. The
frustum culling is conservative and only works on the node bounding boxes, which
allows for very fast visibility tests. To improve culling efficiency, I use the precise
node bounding box instead of the bounds which would be obtained directly from the
octree. During the preprocessing, a tight bounding box over the contained voxels is
pre-computed, which is generally much smaller than the octree bounds, especially near
the leaf levels (see also Figure 26).

4.5.2  Occlusion culling
The occlusion culling has two goals: First, due to the approximative tests, the frustum

culling misses many chunks which are close to the view frustum, but yet completely

invisible. Second, for a typical scene, many chunks will be occluded by nearby geometry.
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Figure 27: Top: Camera view into a city model. Bottom: Parts visible to the camera are
highlighted in green, nodes rendered and determined invisible are gray. Notice
that our occlusion culling algorithm pruned most of the scene and only few nodes
adjacent to visible areas are rendered.

For example, every closed mesh will have roughly half its geometry occluded at any
given time.

Occlusion culling using the rasterizer requires the use of occlusion queries. An occlu-
sion query counts the number of fragments that pass depth and stencil tests for a set
of draw calls. The renderer issues one occlusion query for each block that is rendered
and reads back the results at the end of the frame. This requires a synchronization
between the GPU and CPU, and as such, it is delayed as far as possible during the
frame rendering.

During rendering, I force early depth/stencil testing and write to a buffer with one
entry per block for every pixel that passes the depth test. Using a single buffer instead
of occlusion queries is important for performance, as I typically have to issue a few
thousand draw calls per frame. It also reduces the CPU time for readback, as only
a single API call is necessary to obtain the results. In order to further improve the
efficiency of the occlusion step, all blocks are sorted by distance to camera before
rendering. Geometry blocks are also rendered before the voxels, as the geometry is
guaranteed to be at least as close to the camera as the voxels.

The occlusion query buffer itself is implemented using the ARB_image_load_store
extension in OpenGL respectively as Unordered Access Views in Direct3D 11. It is
simply a large integer buffer with one entry for each submitted block. If the fragment
shader is executed, it will write a 1 to the appropriate slot without any synchronization.

Once the results are back, I update the octree and determine the visible nodes for
the next frame. The key insight here is that any node can be used as a conservative
visibility bound of its children. This is a major difference to algorithms like [BWPP04],
which render object bounding boxes. In my algorithm, I can take easily advantage of
the level-of-detail simplification, which creates a tight convex hull for the underlying
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Figure 28: The octree traversal automatically reduces the level-of-detail for occluded areas.
The inset shows the actual camera view, with colors indicating the level-of detail.
In the side view, we can see that the occluded parts are rendered using drastically
reduced level-of-detail.

geometry at any given level. As a result, a much tighter bound for the visible data
set is obtained, as can be seen in Figure 27. This significantly improves the occlusion
culling efficiency.

Once I determined that all children of a node are invisible due to occlusion, I simply
stop the traversal in the next frame at the node itself and render it. This scheme quickly
propagates information about visibility up through the tree. As a result, occluded
branches of the tree get rendered at very low resolution. This is a safe operation, as
the level-of-detail is conservative. As such, it guarantees that a visible block can never
be missed. The effect of this optimization can be seen in Figure 28. The end result
is that occluded geometry is reduced to the absolute lowest possible level-of-detail
that still guarantees that nothing is missed, reducing memory usage and maximizing
performance.

One issue with this method is flickering that occurs if a node is visible at a level-of-
detail which requires refinement, but its children are not. In this case, the children will
be rendered in one frame, determined to be invisible; in the next frame, the parent will
be rendered, which results in a few visible pixels. In the next frame, the children will
be rendered again, but as they cover no visible pixels, flickering will be visible every
time the parent is rendered. I avoid this by disabling writes to the color buffer if I
render a node only to determine visibility (see Figure 29.) This case can be identified

by keeping a one-frame visibility history of each node.
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A A

Figure 29: On the left, a view ray hits the blue octree node which should be refined. In
the middle, the children of the blue node are highlighted in red. As all children
are invisible, I mark the blue node for occlusion rendering only in the next frame.
Otherwise, flickering will occur as the renderer will cycle through the first two
states.

.

Figure 30: Transition between two blocks at different level-of-detail. On the left, the active
faces are marked in black. Without any fixes, a gap may appear between the high-
and low-resolution block. In the following two cases, the faces at the boundary
have been closed using skirts, resolving the problem, even if the level-of-detail
difference is higher than one. In the rightmost image, the left block has been
refined to the source geometry, and the skirt ensures consistent rendering in this
case as well.
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4.6 STREAMING
4.5.3 Level-of-detail

Level-of-detail is implemented by taking advantage of the simplified voxel data from
the pre-processing step. However, one minor modification is required to allow for crack
free rendering. In the renderer, blocks of different levels will be placed adjacent to
each other. This may result in visible cracks if the voxels in one block don’t match
up exactly with those from the neighboring block. Due to anti-aliasing, even tiny gaps
will be easily visible and lead to visible flickering along block boundaries.

Fortunately, this problem can be solved using skirts. For each block, all voxel faces
at the boundary are marked as visible. If the attributes are stored per-voxel, this
change requires no additional memory, has only minimal impact on the rendering and
resolves all potential cracks (see also Figure 30). Otherwise, additional per-face data
is necessary. In general, the overhead is very minor as the skirts are only necessary for
boundary voxels, and in particular at higher simplification levels, most of the boundary
voxels will be closed anyway due to the simplification scheme.

4.6 STREAMING

Streaming is necessary to reduce run-time memory usage and to allow for quick inspec-
tion of the data. Even though memory sizes have increased over the last years, making
streaming for run-time memory reduction less important as it used to be, the relatively
low increase in available bandwidth makes it still necessary. Especially if the data set is
loaded from cold storage or over a network, it is crucial to only load the parts which are
actually visible. This becomes even more important when level-of-detail is available,
as the data set size for any given viewpoint is typically a fraction of the total data size.

Streaming is running asynchronously to the rendering and processing through a ded-
icated I/O thread. At the beginning of a frame, the scene tree is traversed and all
nodes which have to be loaded are gathered. The load requests are then sent to the
/O thread, which proceeds to load data while the rendering continues. Once per frame,
the data loaded by the I/O thread is transferred back to the main thread and uploaded
to the GPU.

The 1/O thread is synchronized once per frame to ensure that only missing data
is requested. The process consists of three steps: First, the tree visibility update is
performed which identifies all nodes that are needed for the current frame. Next, the
I/O thread results are read and uploaded to the GPU. These may include blocks which
have been requested by the previous frame which are no longer visible. While checking
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Figure 31: The two refinement strategies.

and omitting these blocks is trivial, uploading them to the GPU has the advantage
that no disk I/O bandwidth is wasted. After the upload, the load requests for the
current frame are processed. All blocks which have not yet been loaded are added to
a request queue and sent to the I/O thread, replacing the current load queue.

The upload to the GPU can be optionally limited to ensure smooth frame rates.
Without limitation, all data that has been loaded by the I/O thread will get uploaded,
which can lead to long stalls and interrupt the rendering. In general, it is not necessary
to have all results available immediately. Especially at high frame rates, waiting for
multiple frames has very little to no visible impact.

As the streaming is driven from the tree traversal, it is integrated directly into the
level-of-detail and occlusion culling schemes. In the first frame, the visible parts of
the scene are determined and the required level-of-detail is computed. Parts which are
not yet resident in GPU memory are requested and loaded from disk. This request-
driven loading guarantees that only visible parts are loaded. Due to the level-of-detail
refinement, which makes it necessary to load intermediate levels before the next level
is found to be necessary, the data cannot be loaded immediately at the target level.
Instead, the tree has to be refined in multiple steps until all data is present.

Streaming requires that the rendering side can handle missing data. In my imple-
mentation, the user can choose between two different strategies (see also Figure 31).
The first one guarantees that a closed model is displayed at all times. If missing data
is about to be displayed, the level-of-detail is reduced instead to ensure that some ge-
ometry is visible for all parts. While this guarantees that no holes are visible, it can
lead to brief flickering when the traversal branches at a high level of the tree. If a path
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(b) Zoom out with partial updates

Figure 32: Zooming out from a dataset. The full update refinement strategy reduces the
level-of-detail, while the partial update strategy simply omits missing geometry.

starting from the root node becomes visible, this approach has to reduce the resolution
to the root level before it can refine again. This typically happens when the user zooms
out, as new geometry becomes visible in this case. Zooming in onto the geometry does
not lead to any flickering.

The second approach allows for missing data. In this case, partially loaded nodes
are rendered with holes while blocks are being streamed in. The advantage of this
approach is that no flickering occurs due to level-of-detail reduction, at the expense
of missing geometry in some cases. This approach is complementary to the first one.
During zoom-in, the first approach guarantees a closed mesh and good navigation,
while the second approach exhibits holes. During zoom-outs, the first approach results
in flickering, while the second one generally allows for a stable navigation with minor
artifacts, at the expense of occasionally missing data (see also Figure 32).

Both modes can be easily switched at run-time, as they only affect the tree traversal.
In the first case, visibility and loading information is gathered bottom-up to ensure a
consistent configuration. Internally, a “visibility front” is computed which consists of
the nodes with the highest depth in the tree that are fully loaded. This may require
moving back up in the tree until a loaded intermediate node is found. In the second case,
information is only propagated top-down. The tree is traversed depth-first and each
loaded leaf is rendered. Intermediate nodes are always skipped. For both approaches,
it is necessary to keep the root node in memory at all times to ensure a fallback path.
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Figure 33: For close-up views, the source geometry, tinted in green, is rendered instead of the
voxel representation. Due to the sub-pixel error and block skirts, no transition
between the source geometry and the voxel representation is visible.

4.7 HYBRID RENDERING

The renderer can combine both source geometry and voxels for high-quality rendering.
Once a voxel block at the finest level-of-detail requires refinement due to the error
metric, it is replaced by the actual source geometry.

The replacement makes it necessary to split the mesh into blocks. Fortunately, this
can be done at the same time as the voxelization itself. In the voxel rasterizer, each
triangle is successively clipped until the leaf level. It is easily possible to simply emit all
triangles fragments for a block “on the way” with minimal impact on the performance.

At runtime, the renderer uses two additional caches for vertex and index data, similar
to the voxel cache with the same management strategy. Separating the caches makes it
easy to balance memory usage between the different data types. During the visibility
tree traversal, blocks which are at the highest resolution and still require refinement
are marked for geometry rendering. The I/O thread then requests the geometry, and,
once ready, the renderer switches to geometry rendering. For maximum efficiency,
all geometry draw calls are batched and executed before the voxel rendering. This
minimizes the amount of buffer bindings and state changes that need to be performed.
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For each block at the finest level, both geometry and voxel data is kept in memory,
even if only the geometry is visible. In general, the voxel data is much more compact
— a block containing thousands of triangles can be associated with a block comprised
of a few voxels. Keeping it in memory does not result in severe memory pressure and

allows the user to quickly zoom out without having to re-upload the voxels.

4.8 RESULTS

I have measured the performance on three large 3D scans: Atlas, Davidand St. Matthew.
For details on the data sets, see Section 3.3.1. For the rendering tests, the data sets
have been resampled into 163843 resolution.

The performance has been measured on an AMD FirePro W9100 GPU with 16 GiB
of memory and a dual-Xeon X5650 machine (2x 6C/12T) with 24 GiB of main memory.
All tests have been run using OpenGL under Linux. Data was stored on a Samsung
840 EVO SSD with 1 TiB capacity formatted as ext4. Using hdparm, I have measured
an uncached read performance of 265 MiB/sec. Unless noted otherwise, the sizes of
the voxel-, index- and vertex-cache have been set to 1536 MiB.

I have measured the performance for several zoom-ins onto the data sets as well as
a camera rotation around the Atlas mesh. For all tested data sets, the rendering
achieves interactive frame rates between 50 and 100 ms per frame. The per-frame
upload is typically in the order of a few MiB for all tested scenes while voxels are
loaded. Once the geometry is requested, the upload becomes quickly a bottleneck (see
Figure 35 and Figure 37). In the unlimited cases, the asynchronous loading has been
completely disabled. This means that for each frame, all required data is loaded from
disk which results in occasional stuttering.

As previously mentioned, this behavior can be mitigated by using an upload limit.
In this case, the asynchronous load thread is used to fetch data from disk as fast as
possible while the per-frame upload is limited. In general, the disk 1/O is slower than
the GPU upload, as can be see in Figure 35 between frame 0 and 800. After the
800th frame, the GPU upload is limited to ensure a smooth frame rate. This has only
minimal visual impact but improves the interaction performance significantly, as the
camera movement is more predictable due to the consistent frame rate. Increasing the
resolution from 1280 x 720 to 1920 x 1200 only results in more requested data for this
test case, as everything fits into the caches (see Figure 34 and Figure 35).

In the David scene, increasing the resolution from 1280 x 720 (see Figure 36) to
1920 x 1200 requires a defragmentation of the memory during the zoom-in. This can
be see in Figure 37 around frame number 975. It is triggered as the vertex cache
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becomes more than 95% full. This is the high-watermark at which I perform the
defragmentation to ensure that there is enough space left for moving blocks back and
forth, if needed.

Rotations or other coherent movements around an object require minimal upload per
frame. This can be easily seen in Figure 39, where the camera was fixed on the rotating
Atlas mesh. Except for the initial loading, less than 1 MiB of data is uploaded per
frame during the whole sequence. Towards the end of the rotation (approximately
around frame 700) the initially seen parts of the mesh come into view again, further
reducing the upload bandwidth.

The GPU upload limit is rarely hit, even though it is set to very conservative 1 MiB.
To validate this, I have tested the St. Matthew scene with an upload limit of 4 MiB.
As mentioned, the upload limit only affects the CPU to GPU transfer; if the disk I/O
is slower, the limit has no effect. In Figure 38, the upload limit is only reached once
geometry is loaded. A key point here is that even at 1 MiB/frame, the disk I/O thread
is fast enough to load all required data until approximately frame 900. This can be
easily seen by the total amount of cached voxel data, which reaches 400 MiB in both

the unlimited and limited case.

4.9 MODIFICATIONS & DYNAMIC CHANGES

Block rendering is performed using the rasterizer, which does not require a per-block
acceleration structure. For voxel-only data sets, it is thus possible to quickly perform
changes like applying stencils or cutting out voxels. In this section, I will briefly cover
a few of the possible extensions. The key assumption here is that the geometry is
represented using only voxels.

A very simple modification is the application of stencils, or “cut-outs”. This can be
performed at multiple stages: Either on the CPU, by removing the affected voxels, in
GPU memory by clearing the active face mask per voxel or in the vertex shader. If a
stencil is applied only once, performing the operation in CPU memory is most efficient.
For run-time changes, for example, when moving a “see-through” brush, the changes
should be performed in the vertex shader to minimize the amount of memory traffic.

For small volume data, it is also possible to combine the surface extraction with the
rendering and run it in real-time on the GPU. For example, a “build” volume can be
created using an 8-bit density volume which is then edited using a 3D brush. On every
modification, the surface extraction is performed and the resulting data is rendered
(see also Figure 40). Level-of-detail can be then lazily built starting from the highest
resolution blocks. Using an underlying volume is necessary in this case, as the surface
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Figure 34: Measurements for a zoom-in onto the Atlas data set at 1280 x 720 and 8 x MSAA.
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bandwidth requirements.
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(¢) Removing geometry (d) Smoothing the underlying volume

Figure 40: Dynamic editing in VoTA [CRS13], a 3D modeling package which uses a rendering
approach derived from the technique described in this work.
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GPU No MSAA 2x MSAA 4x MSAA 8x MSAA

R9 290X 17 17 18 21
HD 7970 22 22 23 24

Table 8: Rendering time for the Atlas data set at different multi-sampling levels and graphics
cards onto a 1280 x 720 viewport. Both cards exhibit only minimal slowdowns with
higher multi-sampling levels.

voxels have no topological information and no connectivity and as such performing
editing operations on them directly is not possible. For triangle meshes, this makes it
necessary to perform a conversion into a solid voxelization, for example, using wavelet
rasterization [MS11].

Finally, it is also possible to deform and animate the mesh. As long as the deforma-
tion is applied uniformly to all vertices, the mesh will remain connected and can be
rendered correctly. For instance, the model can be easily sheared or displaced using a
vector field as long as voxel vertices remain connected to each other. The only required
change to the view pipeline is an adjustment for the new boundaries during the frustum
culling phase.

4.10 ANTI-ALIASING

Anti-aliasing is crucial to obtain a stable and clean rendering. In the case of the
high-resolution 3D scans, aliasing stems from two sources: Aliasing caused by the
high-frequency geometry as well as aliasing from the rasterization. For the former, the
voxel based resampling and simplification acts as a low-pass filter over the geometry.
However, even when seen at the correct level-of-detail simplification, the Atlas data set
still exhibits aliasing, as can be seen in Figure 41. This effect is even more pronounced
under motion. This kind of aliasing can be resolved by using additional samples during
the rendering.

Due to the use of the rasterizer hardware, the scene can be easily and efficiently
anti-aliased using hardware-accelerated multi-sample anti-aliasing. Good quality can
be obtained with 4x MSAA (see also Figure 41). Unlike for GPU raytracers, the
anti-aliasing is also very cheap and has only minimal impact on the performance (see
Table 8).

The performance can be further optimized by separating the shading frequency from
the sampling frequency. As the geometry is at most pixel-sized, many triangles are
part of a single pixel which have to shaded at least once. Yet many of those triangles
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(b) 2 samples per pixel

p e

(c) 4 samples per pixel (d) 8 samples per pixel

Figure 41: Comparison between different anti-aliasing levels. In the image, a 128 x 128 crop
of the Atlas data set has been magnified. At least 4x MSAA is required to obtain
a smooth, clean image.
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are part of the same voxel, and result in exactly the same color value after the shading
has been performed.

If more complex shaders are used, this can be exploited by subpixel-reconstruction
anti-aliasing (SRAA). The key idea behind SRAA is to reconstruct which shading
samples correspond to the same input primitive and shade those only once.

Originally, SRAA was designed for deferred rendering in games. It is a post-process
anti-aliasing algorithm which takes shaded input at low frequency — typically, one
sample per pixel — and a super-resolution geometry buffer — four samples or more. It
assumes that the shading is the most expensive part of the rendering pipeline and thus
tries to minimize the amount of shader execution.

At filtering time, SRAA tries to associate geometry samples with shading samples.
For low-resolution geometry, where each pixel is fully covered by a single triangle,
SRAA is equivalent to MSAA, albeit running as a post-process and a slightly larger
filter.

In the context of voxel rendering, SRAA can be used to enforce a shading frequency
of approximately one sample per pixel at the cost of a separate shading pass. For
complex, physically based shader models and scenes with multiple shadow maps, a
deferred shading system combined with SRAA for voxel models is likely to outperform

forward rendering.
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In this chapter, I will describe my analysis of raytracing acceleration structures on wide
architectures with a focus on voxel rendering. Voxels are an interesting analysis target
due to their unique requirements on the underlying data structure.

5.1 INTRODUCTION

In recent years, voxel raytracing has become increasingly popular. In the previous
chapter, I have shown how rasterization can be a viable alternative, yet there are many
use cases where pure raytracing is desirable.

So far, octrees have been the data structure of choice for raytracing thanks to their
simple traversal routines and the easy integration of level-of-detail schemes. This
stands in stark contrast to triangle raytracing, where bounding volume hierarchies
and kD trees are the dominant data structures due to their superior spatial partition-
ing properties. The choice of octrees for voxel rendering was mostly motivated by the
level-of-detail aspect, but the question whether octrees are a the best data structure
for highly regular data like voxels remains open.

One aspect which has not been well researched yet is how data structures affect
traversal coherency on architectures with very wide vector units such as GPUs. Pre-
vious approaches to investigate the coherency have been performed using SIMD sim-
ulation, but not measured on real GPU hardware. The problem with simulations is
that caches, switching between different work groups and other secondary aspects are
very hard to simulate and often omitted. Fortunately, it is now possible to get precise
measurements of various metrics like execution coherency, cache usage, cache hit rates
and bandwidth usage directly from the hardware through hardware counters. This
method has been standard on CPUs, where it is widely used for profiling, but has only
been recently available on GPUs.

In this work, for the first time, I use the hardware counters on a GPU to provide
comprehensive and accurate measurements of the behavior of different acceleration
structures. In particular, I measure and analyze how bounding volume hierarchies,
kD trees and octrees behave in a wide range of scenarios. My analysis shows how

coherency, performance and data structure design are directly related. With the pro-
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vided information, I hope to pave the way towards coherency-optimized GPU data
structures.

Besides its current popularity, one reason for analyzing voxel raytracing is that the
used acceleration structures, unlike those typically used for triangle raytracing, do not
have overlaps at the leaf level. In triangle scenes, it is very likely that leaf nodes
overlap and each, and the handling these overlaps has significant impact on the overall
performance. In many cases, the tree has to traversed multiple times before a hit can
be reported, as all overlapping nodes have to be processed before the closest hit can
be identified.

In voxel raytracing, most of the execution time is spent in tree traversal, making it
the ideal vehicle to focus the analysis on the acceleration data structure. Additionally,
I have chosen a very wide SIMD architecture which puts further emphasis on the

coherency.

5.2 RELATED WORK

Voxel raytracing has been performed on GPUs since many years now [CNLE09, LK11a].
So far, all GPU voxel raytracers use an octree as the underlying acceleration structure
due to the simple integration of level-of-detail. Interestingly, nearly no work has been
done on exploring alternative data structures for voxel raytracing.

This is particularly surprising as kD trees and bounding volume hierarchys have been
the gold standard for triangle raytracing for many years. This has carried over to GPU
triangle raytracing as well [WMS06, WIK*06, PGSS07, HSHH07, GPSS07]. An early
work which focused on a detailed analysis of GPU raytracing is [AL09]. In their work,
a SIMD simulator was used to identify the best traversal pattern and subsequently
validated on actual hardware. The focus has been placed on the traversal, and not
on the data structure, for which a standard bounding volume hierarchy was used.
While the results were validated on the actual hardware, only total execution time was
measured.

One of the main differences between GPUs and CPUs are the very wide vector units.
On the GPU, there is no choice but to use packet raytracing with 32 rays or more.
Such wide packets have significant impact on the obtainable performance. Even on
CPUs, with 4-8 wide vector units, packet raytracing is not always feasible. [BELT07]
found that packet traversal was only beneficial for primary rays. For incoherent rays,
[WWB™14] show that it may be even more efficient to switch to single-ray traversal.
These coherency problems observed on relatively narrow vector architectures become

more pronounced on 32 & 64-wide vector units as used by current GPUs. Several
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techniques have been proposed to improve performance. The focus has been placed on
the actual execution of the traversal, i.e. by re-scheduling of rays as proposed in[AK10,
BAM14], but not by investigating how the acceleration structure affects coherency.

Data structures themselves have only come into attention very recently, in particular,
[AKL13] has investigated in detail why bounding volume hierarchies do not perform as
good as expected on GPUs. They introduce two important metrics beside the standard
SAH cost metric: The end-point overlap (EPO) and the leaf-count variability (LCV).
The EPO describes how many nodes any given point in the scene overlaps. For triangle
bounding volume hierarchies, this numbers is typically greater than zero, as leaf nodes
are highly likely to overlap. The LCV describes the standard deviation of the number
of leaf nodes intersected by a ray. The higher the variance, the more likely it is that
the intersection kernel will become more incoherent as some rays will intersect the leaf
while the rest will be traversing the tree. In this work, only one data structure is used,
but many different builders are compared. Together with the SAH, the EPO and LCV
provide a much better explanation for the observed GPU performance.

One important difference between their analysis and this thesis is that I investigate
voxel raytracing, which has an EPO of 0 for all data structures. This means that unlike
a normal triangle ray-tracer, which has to spend a significant amount of time to resolve
overlapping leafs, the raytracing kernels described in this work spend nearly all of their
time in the tree traversal. The impact of leaf intersections on the measurement is thus
significantly reduced, allowing me to focus on the acceleration structure characteristics

instead.

5.3 IMPLEMENTATION & TESTING METHODS

In this section, I will describe my test methodology in detail. This includes the test
scenes as well as the tree traversal and building routines.

The test scenes (see also Figure 42) are created from a six-separating voxelization to
minimize the number of generated voxels (see also Table 9). The data sets have been
generated separately for each resolution and not obtained from a simplification.

Each voxel consists of the world-space position, a normal obtained from the inter-
polated input geometry and a color. High-quality per-voxel normals are necessary to
obtain a correct hemisphere for ambient occlusion ray-tracing. For simplicity, all data
sets are stored with color, even though only David has actually a color channel. For
the other data sets, the color is set to a constant white.

I have limited the maximum scene size to 65535° voxels. This allows me to use 16-bit
bounding boxes for the BVH and 16-bit plane offsets for the kD tree.
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(a) David (d) San Miguel

Figure 42: The test scenes used for the analysis.
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The surface normal and color are stored in a separate buffers. This maximizes
the cache usage when tracing “any”-intersection rays, as those don’t have to fetch the
voxel normal. In total, three buffers are used: The voxel buffer storing 16-bit, unsigned
integers, the normal buffer storing quantized 10-bit per channel normals, padded to
32-bit and the color buffer storing 24-bit color, padded to 32-bit.

To simulate level-of-detail, I have voxelized each test scene at different resolutions.
For the target rendering resolution (1280 x 720), a voxel resolution between 20483 and
4096° results in the correct level-of-detail, while 10242 is undersampled and 81923 is
oversampled. For two data sets, I have added a 163843 voxelization to identify the
impact of highly oversampled data.

For a fair comparison, all data structures use world-space voxels. While it is possible
to further reduce the size of a voxel by storing it in node-relative coordinates for
the octree, this would require a separate intersection routine and bias the results by
improving the cache efficiency on the octree. Hence, all voxels are stored using 16-bit
coordinates and the same leaf intersection code is shared between all data structures.

The data structures are generated in an offline process on the CPU and linearized
before uploading to the GPU. As the GPU has a separate address space, this step
is necessary to ensure that the links between the nodes remains valid. Just before
upload, the pointers are replaced by 32-bit integer offsets into the respective buffers.
Additionally, the data structure is split into separate buffers for the leaf and interior
nodes. As most of the traversal time is spent accessing interior nodes, splitting the
tree results in improved locality and reduces memory usage.

I have implemented all traversal kernels using OpenCL [Khr12] and integrated them
into a common, OpenCL based raytracing framework. For the actual measurement, I
have instrumented the framework using the AMD GPUPerfAPI. This is the same API
used by AMD’s profiling tools. On the tested target architecture the hardware counters
provide accurate vector unit utilization, cache hit rates as well as memory usage.

I have tried to keep the traversal routines short and as divergence-free as possible.
In particular, I have not used CPU-focused optimizations which introduce additional
branching. For instance, I avoid filtering of NaN results with branches. Instead, I rely
on careful ordering of operands and the IEEE mandated NaN handling of the min/max
instructions.

Another example is the empty node handling, which is necessary for the kD tree and
octree. I chose to push them during interior traversal and let the leaf intersection rou-
tine handle empty nodes. This improves coherency as other rays are likely to traverse
through a leaf in such a scenario as well. The alternative would be to skip an empty

leaf directly in the interior node intersection code. This requires an additional branch
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Dataset Resolution  # Voxels  Size
Atlas 10243 1197215 16
20483 4857871 65
4096° 19832781 265
81923 81202823 1084
163843 332965775 4446
Conference 10243 3185580 43
20483 12989135 173
40963 52280443 698
81923 209928684 2803
David 10243 615490 8
20483 2477190 32
40963 10007754 134
81923 40725349 544
163843 166481909 2223
San Miguel 10243 2648049 35
20483 10788306 144
4096° 43676406 583
81923 176316146 2355

Table 9: Overview of the tested data sets. The size is the total size of all voxels including
normal and color data in MiB.
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(a) Primary rays (b) Ambient occlusion

(d) Soft shadows

Figure 43: The four ray types used in the tree analysis.

and stack pop call in the already branch-heavy interior traversal code, which reduces
coherency.

For each scene, four separate tests are run to measure the coherency of primary and
secondary rays (see Figure 43). For secondary rays, I have used three different tests
with varying levels of coherency. For high coherency secondary rays, I use shadow
rays to a directional light source. For medium coherency, I trace shadow rays to a
directional light source in a narrow cube, and for low coherency rays, I trace ambient
occlusion rays in a hemisphere. The soft shadow rays and ambient occlusion rays use
36 rays per pixel. For the ambient occlusion, the maximum ray length is set to % of
the scene.

54 ACCELERATION STRUCTURES

I have used a bounding volume hierarchy, an octree and a kD tree in my testing. All
of the data structures have been adapted to voxel raytracing.
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5.4.1 kD tree

The kD tree is built using a standard SAH builder (see also Section 2.5.4). This turned
out to be crucial to get a high-quality kD tree which can be rendered efficiently. For
example, a middle-split kD tree results in roughly 10X slower raytracing performance.
The builder uses a binned SAH estimation with 32 bins. At each step, voxels are binned
along their major axis and the SAH cost is computed for each bin.

I use a straightforward adaption of the triangle SAH cost heuristic for voxels. Each
surface voxel uses the same surface area, that is, each voxel is assumed to be a cube with
six faces which are equally likely to be hit. With this assumption, the cost of a voxel
is simply normalized to one and only the number of voxels is taken into account. This
could be optimized further by using the active surface mask of a voxel and estimate
the surface area using the number of active faces.

A split may create an empty leaf node. I mark these nodes using a special null
marker.

The traversal routine (see also Algorithm 5.1) computes the intersection between
the ray and the current node’s splitting plane. If an intersection has been found, the
traversal continues into the closer node. The other node, which is guaranteed to be
further away is pushed onto the stack, together with the current ray maximum. Just
like the bounding volume hierarchy and octree traversal, once a leaf node is reached,
the ray is intersected with all primitives. If no intersection is found, the stack is popped;
if the stack is empty, a restart is performed.

If a null node is encountered, the traversal skips the leaf intersection and directly
continues to pop the stack. A major difference between this traversal routine and the
default kD traversal (see Algorithm 2.1) is that the algorithm stops on the first voxel
hit. As the traversal is guaranteed to be front-to-back for each ray, and there is no
potential overlap, the first hit is also guaranteed to be the closest hit.

5.4.2 Octree

The octree is built using a top-down process. The octree builder takes a list of surface
voxels from the voxel rasterizer. The voxels are then sorted in-place by their morton
order index. To compute the index, I simply combine the x, ¥ and z coordinates by
interleaving the bits. Once the data is sorted, every voxel is already placed at the right
offset and the interior nodes have to be created. I use a simple recursive subdivision on
the sorted voxel list. The first three bits of every voxel position are used to assign the
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1 function TRAVERSE(r, )

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

next = root

Smax = Tmax

loop

if ISINTERIOR(next) then

node = t[next]

if INTERSECT(r, node, t) then
close, far = SORTCHILDREN(7, node)
PUSH(t, *ax, far)
next = close
Tmax =t

else
next = CLOSECHILD(node, ray)

else
if ISLEAF(next) then
node = t[next]
if INTERSECTLEAF (node, hit) then
return hit

if EMPTY(stack) then
Tmin = Vmax
"max = Smax
next = root
else
min, Ymax, Next = PoP(stack)

if 7,00 2 Tmax then
return miss

5.4 ACCELERATION STRUCTURES

> otherwise, empty node

Algorithm 5.1: kD tree kernel used in the voxel raytracer. Compared to the standard kD tree
traversal, this algorithm adds a short-stack with restart.
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voxels into children, then one level of the tree is created and the recursion continues
with the next three bits.

The recursion stops if the number of voxels is eight or less. As this may create leaf
nodes at higher levels of the tree, the voxels are stored with their complete position,
allowing them to be freely positioned inside a leaf. Similar to the kD tree, the octree
may contain empty leaf nodes. During linearization, a special null marker index is
emitted for such nodes.

The traversal (see also Algorithm 5.2) computes which interior planes are intersected
by the current ray and traverses into the closest child node. If an interior plane is hit,
both the current node index and the current ray minimum/maximum is pushed onto
the stack. Pushing the current node instead of computing all intersected children and
pushing them allows for better usage of the short stack and simplifies the traversal
routine. Similar to the bounding volume hierarchy, the traversal stack is popped once
a leaf node is reached; if the stack is empty, a restart is performed. Just like in the kD
tree, a leaf intersection stops traversal immediately.

The special null marker is checked when a leaf is intersected, in this case, the
traversal skips the leaf intersection. The logic here is the same as for the kD tree.

The octree does not use level-of-detail during traversal. While simple level-of-detail
is a major feature of octrees, I didn’t integrate it into the traversal to allow for a fair
comparison of the data structures. Instead, as mentioned earlier, I have voxelized the

scene at different resolutions.

5.4.3  Bounding volume hierarchy

I use a standard bounding volume hierarchy builder with a middle-split heuristic. Com-
pared to an SAH based builder, the middle split builder creates a more balanced tree
while providing the same raytracing performance. The bounding volume hierarchy is
built top-down by identifying the longest axis first, and then splitting exactly in the
middle. This is performed recursively until a leaf-size of eight or less voxels. Unlike
the octree and the kD tree, the bounding volume hierarchy has no empty nodes, so a
dedicated null marker is not required.

During the linearization, the tree is packed to a BVH2 (see also Section 2.5.3) by
moving the bounding boxes up to their direct parents. That is, every interior node
contains the two bounding boxes of its children. This enables an efficient traversal and
allows me to store the leaf nodes without bounding boxes.

The traversal routine (see also Algorithm 5.3) is very similar to the standard bound-

ing volume hierarchy traversal. The main difference stems from the BVH2 merging and
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1 function TRAVERSE(r, t) > r has been already intersected with scene bounds
2 next = root

s offset =(0,0,0)

4 level = tdeptn

5 Smax = Vmax

6 loop

7 if ISINTERIOR(next) then

8 node = t[next]

9 5 = zlevel—l

10 Cmax = TVmax

11 result = INTERSECT(r, node, t)

12 if MuLTIPLEHITS(result) then

13 PusH(stack, node, ¢yqy, level)

14 octant = CLOSESTCHILD(r, node)

15 next = GETCHILD(node, octant)

16 level = level — 1

17 UPDATEOFFSET(0f fset, octant, level)

18 else

19 if ISLEAF(next) then

20 node = t[next]

21 if INTERSECTLEAF(node, hit) then

22 return hit .
> otherwise, empty node

23 if EMPTY(stack) then

24 Tmin = Vmax

25 Ymax = Smax

26 next = root

27 OffSEt = (O, 0, 0)

28 level = tgopin

29 else

30 Tmin = Vmax

31 next, ryqx, level = POP(stack)

32 CLEARBITS(0f fset, level)

33 if 700 > Vimar then

34 return miss

Algorithm 5.2: Octree traversal for the voxel raytracer. Compared to the standard octree
traversal, a short-stack with restart has been added.
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1 function TRAVERSE(r,t)

10

11

12

13

14

15

16

17

18

19

20
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22

23

24

25

26

next = root
loop

if 7,00 > "max then
return miss
if ISINTERIOR(next) then
node = t[next]
result = INTERSECT(r, node, tg, t1)
if BoruHIT(result) then
close, far = SORTCHILDREN(7, node)
nextMin = max(to, f1)
next=close
PusH(far)
else if FIRSTHIT(result) then
next=FIRSTCHILD(node)
else if SecondHit(result) then
next=SECONDCHILD(node)

else if ISLEAF(next)) then

node = t[next]

if INTERSECTLEAF(node, hit) then
return hit

if EMPTY (stack) then
Pmin = maXx (7, nextMin)
next = root

else
next = Pop(stack)

> r is the ray, t the tree

Algorithm 5.3: BVH traversal used in the voxel raytracer. Compared to the standard BVH
traversal, this algorithm is designed to run on a BVH2 and uses a short-stack
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Tree Ray type With stack  Without stack

BVH Primary 5.1 13.0
Shadow 5.3 21.0
Soft-shadow 216.5 789.2
AO 369.9 811.1

kD Primary 6.2 11.3
Shadow 8.8 12.9
Soft-shadow 301.3 476.1.9
AO 481.5 797.4

Octree Primary 6.5 10.0
Shadow 6.5 8.5
Soft-shadow 306.2 416.9
AO 420.0 634.7

Table 10: Execution time in milliseconds with and without a short-stack. For the bounding
volume hierarchy, a short-stack with 8 entries is used. For the kD and octree the
stack size is 4, due to larger stack entries. In every case, total execution time is
improved by the addition of a short-stack. I have also measured a corresponding
increase in coherency.

the fact that the voxel tree has no overlaps. Instead of intersecting with the bounding
box when a node is entered, the bounds are only checked when an interior node is
visited. If both are hit, the traversal continues into the closer one and the further away
node is pushed onto a short traversal stack. Once a leaf node has been reached, the
stack is popped; if the stack is empty, a full restart is performed. Unlike for triangle
raytracing, where overlapping nodes have to be resolved using auxiliary storage, I can
perform a restart once the stack becomes empty. Just as for the octree and kD tree, a
leaf intersection immediately stops traversal.

5.4.4 Short stack and restart traversal

For all traversal kernels, I use a short stack combined with restarts. The stack is placed
in local memory and pre-allocated. If the stack runs empty, a restart is performed. For
voxel rendering, this change is possible as there are no overlapping nodes in any of the
acceleration structures which would require additional storage to resolve.

Adding a short stack is beneficial for all algorithms (see also Table 10). The short

stack is implemented as a circular buffer. Pushing onto the stack always succeed. If
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the stack is full, the oldest pushed element will be overwritten. During pop, either
the last pushed item is retrieved, or, if the stack is empty, an error is reported which

triggers a traversal restart.
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Tree BVH kD Octree

Scene Res # 1  Size # L Size # 1 Size # L Size # 1 Size # L Size

Atlas 1024 186028 6 186029 1 316342 4 193637 1 105406 3 367221 3
2048 768075 26 768076 6 1302189 15 798005 6 428138 13 1486192 11
4096 3205277 110 3205278 24 5384670 62 3314389 25 1741729 53 6057483 46
8192 13394650 460 13394651 102 22377048 256 13780426 105 7071909 216 24618817 188
16384 55817473 1916 55817474 426 92735073 1061 57171972 436 28704198 876 99822901 762

Conference 1024 493343 17 493344 4 611691 7 537589 4 236386 7 772894 6
2048 2012348 69 2012349 15 2517517 29 2201666 17 995400 30 3263460 25
4096 8060684 277 8060685 61 10201124 117 8863479 68 4186866 128 13288870 101
8192 32327634 1110 32327635 247 42111409 482 35642710 272 17187681 525 53408132 407

David 1024 101587 3 101588 1 171112 2 105765 1 54047 2 188035 1
2048 409964 14 409965 3 695008 8 425792 3 218576 7 756084 6
4096 1662811 57 1662812 13 2823240 32 1720653 13 882934 27 3043292 23
8192 6820183 234 6820184 52 11573444 132 7031430 54 3575402 109 12327749 94
16384 28093398 965 28093399 214 47657376 545 28964514 221 14489447 442 50013999 382

San Miguel 1024 455873 16 455874 3 552202 6 457005 3 193407 6 662241 5
2048 1850685 64 1850686 14 2134505 24 1858228 14 843955 26 2699159 21
4096 7474030 257 7474031 57 8300898 95 7512657 57 3509074 107 10968532 84
8192 30083854 1033 30083855 230 32922155 377 30320213 231 14337661 438 44446093 339

Table 11: Sizes of the acceleration structures for the various test scenes. # I is the number of interior nodes, # L the number of

leaf nodes, size the size in MiB for the node type, and Res the resolution of the voxelization.
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Ray generation

Trace

TracePrimary

Request buffer

TraceShadow TraceSoftShadow TraceAO

Figure 44: The rendering pipeline for the analysis. Boxes indicate kernels which are instru-
mented. Two rendering paths are provided in order to eliminate the primary
ray-tracing impact for the secondary ray measurements.

5.5 RESULTS & ANALYSIS

I have measured the performance on an AMD FirePro W9100 GPU with 16 GiB of
memory. The host machine was a Dual-Xeon X5650 machine, with 12 cores/24 threads
total and 24 GiB of memory. The tests were run using Windows 8.1 and Direct3D 11.1.

For each test scenario, the test runner starts the test application from scratch and
renders the test scenario 32 times. Profiling results are temporarily recorded in memory
and dumped to the console at the application end. The test runner then gathers the
results, stores them, terminates the application and starts a new instance for the next
test. The execution of the test kernel is instrumented using the GPUPer fAPI. Due to
limitations on how many counters can be written in a single pass, the test kernel had
to be executed multiple times to gather all performance counters.

The analysis is split into multiple passes (see Figure 44). For primary rays, the
ray-generation is part of the kernel. For secondary rays, a modified primary ray kernel
is executed which records the hits for each ray and writes them into a buffer. In the
second pass, each thread reads one request from this buffer and traces the secondary
rays. In all cases, the rays are grouped in screen-space tiles to maximize coherency.

In some cases, the total number of executed wavefronts measured is less than the
number of requested wavefronts, indicating that the counters have not run for the

complete kernel execution. As the number of wavefronts is known and constant, any
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result with a different number is rejected. For the remaining counter results, I have
used one representative measurement.

As the instrumented runs require multiple passes, the execution time is measured in
a separate run. In this case, the total frame time is measured, which is more stable
than the actual kernel execution time. The overhead is minimal, as it solely consists
of the drawing of a single textured quad to the framebuffer. For the execution time, I
have taken the median value as the representative value.

5.5.1 Measurement results

I have tested four different scenes: Atlas, David, Conference and San Miguel.
Atlas is a 3D scan with a lot of surface detail as well as noise. Unlike the other scenes,
Atlas exhibits many tiny holes in the surface, which complicates traversal. David is a
very clean 3D scan without any holes, allowing nearly all rays to traverse once to the
leaf level and terminate.

San Miguel and Conference are in-door scenes. In both cases, the camera is placed
within the boundaries of the data set. This leads to a completely different traversal
behavior compared to the 3D scans, where the camera is positioned outside of the
object. In the scenes where the camera is outside, the traversal starts from the tree
root and descends once to the leaf node level. In the interior scenes, the traversal has
to descend immediately to a very low level in the tree and then continues traversal near
the leaf nodes. This puts additional pressure on the tree traversal and the back-track

performance.
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Tree BVH kD Octree
Scene Res Prm Shd Soft AO Prm Shd Soft AO Prm Shd Soft AO
Atlas 1024 59.7 52.6 474 33.5 40.7 30.9 28.0 16.2 524 404 375 229
2048  50.5 429 405 322 322 225 21.3 145 445 31.3 29.9 20.5
4096  44.3 370 36.0 31.5 27.1 174 17.0 13.4 394 247 242 19.0
8192 41.0 33.5 33.0 309 245 144 142 125 358 204 20.2 1738
16384 39.2 31.3 309 304 231 124 124 119 334 175 175 16.8
David 1024 57.9 585 582 356 414 39.2 399 184 53.3 49.2 495 252
2048 50.0 50.3 50.6 34.6 33.5 29.4 302 16.5 46.8 39.7 40.4 23.0
4096 45.0 45.1 456 33.8 28.7 23.2 239 150 419 326 334 21.1
8192 42.1 422 427 33.2 26.0 19.5 20.1 13.9 384 277 284 196
16384 40.3 40.5 40.9 327 24.5 17.1 176 13.1 359 24.2 249 185
Conference 1024 70.0 56.9 555 358 43.7 39.3 40.3 19.1 48.8 44.0 43.6 21.8
2048 67.8 50.3 499 359 436 343 354 179 473 38.6 38.4 209
4096 66.6 49.9 496 36.2 41.9 31.1 32.1 17.0 46.7 36.0 35.5 20.7
8192 66.2 496 49.2 36.4 405 28.8 29.6 16.3 46.0 33.7 33.0 20.3
San Miguel 1024 65.2 52.7 43.8 27.2 46.1 340 28.1 14.1 51.3 404 349 18.7
2048  56.5 43.7 374 26.3 360 24.6 21.0 12.1 424 31.9 279 16.9
4096  50.2 374 339 26.1 294 187 16.8 10.7 36.7 26.0 23.4 15.6
8192 46.8 349 32.7 26.5 264 156 14.5 10.0 33.3 22.0 20.5 14.8
Average 53.3 45.0 43.2 322 339 251 246 146 43.0 322 31.3 19.7

DNIDVUHLAVY NdD

Table 12: Measured coherency across various test scenes and ray types. Res is the resolution of the scene, Prm are primary rays, Shd
shadow rays, Soft are soft-shadows and AO are ambient occlusion rays. For soft-shadows and ambient occlusion, 36X as
many rays have been casted as for the primary and shadow rays tests.
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Figure 45: Histograms of the tree depth and number of leaves/interior nodes at a particular depth for the data sets at 81923 resolution.
The y-axis is in logarithmic scale. The first few levels of the kD tree bound the scene and have one only interior child.

Afterwards, the split count is comparable to the bounding volume hierarchy. The octree has 8 x more nodes at each level
and produces a much more shallow tree.
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Figure 46: Histograms for the trees at 10243 resolution.

Octree

20

25

30

35

Interior nodes
Leaf nodes

Interior nodes
Leaf nodes

Interior nodes
Leaf nodes

Interior nodes
Leaf nodes

40

45

ONIDVILAVY NdD



TTI

Conference David Atlas

SanMiguel

107

Bounding volume hierarchy kD tree Octree

[ Interior nodes [ Interior nodes [ Interior nodes
[ Leaf nodes l Leaf nodes [ Leaf nodes
[ Interior nodes [ Interior nodes [ Interior nodes
[ Leaf nodes [ Leaf nodes [ Leaf nodes
[Z771 Interior nodes =771 Interior nodes =771 Interior nodes
[ Leaf nodes . [ Leaf nodes [ Leaf nodes
=71 Interior nodes =71 Interior nodes =71 Interior nodes

[ Leaf nodes [ Leaf nodes

[ Leaf nodes
10 20 30 40

40 50 0 50 20 30 40 50

Figure 47: Histograms for the trees at 2048> resolution.
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Figure 48: Histograms for the trees at 4096 resolution.
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5.5 RESULTS & ANALYSIS

As can be seen in Table 12 and Table 13, on average, the bounding volume hierarchy
has the highest coherency across all test scenes and the best traversal performance. The
coherency of the bounding volume hierarchy is high even for very large trees, unlike
the kD tree and the octree. It also degrades less for incoherent rays, maintaining at
least 30% efficiency for the largest data sets, or, translated to the 64-wide vector unit,
approximately 19 active vector lanes.

Coherency is also related to the tree depth. Very deep trees are likely to exhibit
lower coherency, as long execution chains can be created. I have measured the average
depth at which leafs nodes are present (see also Figure 49 and Figure 45). Compared
to the bounding volume hierarchy, the kD tree is between 38% to 92% deeper. The
bounding volume hierarchy is 120% to 170% deeper than the octree. Notice that the
first six levels of the kD tree, corresponding to 13%-20% of the total tree depth, are the
global bounds of the scene and thus highly coherent. I cannot conclude that a higher
tree depth has significant impact on the coherency, as the kD tree exhibits similar
coherency to the octree, despite much deeper trees. For instance, in the Conference
scene, the kD tree reaches 40% coherency for primary rays, compared to 46% for the
octree. For comparison, the bounding volume hierarchy, with an average depth right
between the kD and the octree, achieves 66% coherency.

We can also see that primary ray coherency is up to twice as high as for secondary,
incoherent rays. This result is similar to the observations made in [AL09], however, in
their work, a 32-wide architecture was used which is half as wide as the hardware used

in my test.
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Figure 49: The average depth and standard deviation for the different trees. The octree
has near zero variance at the leaf, which are mostly placed at the last or second
last level. The average variance of the interior and leaf depth for kD tree is
approximately twice that of the bounding volume hierarchy, which is again twice
as high as that of the octree. In all cases, the variance is nearly independent of
the tree size.
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Tree BVH kD Octree
Scene Res Prm Shd  Soft AO Prm Shd Soft AO Prm Shd  Soft AO
Atlas 1024 3.0 4.1 168.9 190.8 4.4 6.1 219.8 271.3 3.7 4.3 201.9 216.3
2048 4.0 59 2331 2447 56 10.1 336.3 3781 50 6.6 3004 291.0
4096 53 7.9 315.7 2956 7.4 14.7 501.3 490.6 6.2 9.7 4343 369.6
8192 6.5 99 399.2 348.3 9.0 20.8 712.0 6209 7.8 13.6 601.4 457.0
16384 7.5 12.0 480.7 447.8 104 28.0 9499 873.6 9.0 182 7952 551.8
David 1024 23 1.1 437 1086 3.1 1.7 550 1448 34 14 614 132.0
2048 32 1.7 634 1400 43 29 914 2007 44 20 89.3 172.2
4096 40 23 8.1 1720 56 4.5 143.1 268.6 54 3.0 1281 218.7
8192 4.9 3.1 1156 203.5 7.2 6.5 205.5 342.7 6.7 4.2 1772 2718
16384 5.7 3.9 1423 236.7 82 88 2828 4270 7.8 58 236.0 328.4
Conference 1024 3.7 23 96.0 331.2 28 20 693 2746 55 29 138.0 397.2
2048 4.3 29 125.0 364.1 34 2.6 90.8 322.5 6.2 4.0 185.6 489.5
4096 4.9 3.4 143.1 393.1 3.9 3.1 110.0 366.5 6.5 4.8 227.1 545.9
8192 9.9 3.8 158.3 423.3 4.4 3.9 1329 4114 6.9 6.0 274.5 602.0
San Miguel 1024 4.5 45 209.5 5165 5.0 50 199.5 499.0 47 3.8 199.1 370.8
2048 6.1 6.4 2926 6386 7.1 83 321.9 7144 6.7 6.1 314.1 5324
4096 7.8 85 3780 736.1 9.1 12,5 469.1 9296 9.1 89 4484 714.3
8192 9.3 109 443.1 866.9 11.2 17.0 621.6 1129.8 11.4 12,5 611.6 900.0
Average 51 53 2165 3699 6.2 88 3062 4815 6.5 6.5 301.3 420.0

Table 13: Measured execution time in milliseconds. The captions are the same as in Table 12. Notice that Soft and AO trace 36 %

more rays.
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Tree Ray type Cache hit rate (%)

BVH Primary 59.0
Shadow 49.8
Soft-shadow 72.3
AO 56.2

kD Primary 64.2
Shadow 51.5
Soft-shadow 73.4
AO 69.0

Octree Primary 59.8
Shadow 47.8
Soft-shadow 75.1
AO 66.7

Table 14: Average level 2 cache hit rates for the different scenes, as measured on the AMD
FirePro W9100 with 1 MiB of L2 cache.

Besides the coherency, I have also measured the execution time to understand how the
coherency translated into actual ray-tracing performance. As can be seen in Table 13,
the coherency is a good indicator for the achievable performance. This is a strong
hint that all of the tested traversal algorithms are limited by execution speed and not
by memory bandwidth. The hardware counters also indicate that the kernels never
block on memory accesses. For very low coherency values, the execution time increases
non-linearly — I assume that we can see the effects of few, very long running rays in
this case.

I have also measured the cache usage (see also Table 14) to identify the impact
of large nodes in the acceleration structure. The bounding volume hierarchy has the
biggest interior nodes, consisting of two bounding boxes, two pointers and the split
dimension. In total, an interior node requires 33 byte of data (padded to 36 byte). A
kD interior node stores the split position, dimension and two pointers and requires 11
bytes (padded to 12). Finally, an octree node stores 8 child pointers each and requires
32 bytes. The leaf nodes occupy 8 bytes for all acceleration structures and consist of
the start primitive offset and the primitive count. The complete tree sizes can be seen
in Table 11. Even though the kD tree has roughly twice as many interior nodes as
the bounding volume hierarchy, it is the smallest data structure due to the compact

nodes. The octree is approximately twice as big as the kD tree. The bounding volume
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hierarchy, which has similarly sized nodes as the octree, but requires more nodes, is
the largest data structure.

As expected, the kD tree shows the best cache efficiency due, yet it does not translate
into better performance. Interestingly, shadow rays exhibit by far the worst cache
efficiency, even worse than primary rays. The reason for this is that shadow rays all
start at different positions in the tree, unlike primary rays, which traverse through the
same part of the tree for the first few intersection steps. Soft-shadows and ambient
occlusion show very good cache usage as many rays originate from the similar points
in the tree and only traverse small regions of the tree.

5.5.2  Analysis

My analysis shows that the data structure has a significant impact on the traversal
coherency. Interestingly, the data structure with the most complex spatial partitioning
performs best from both coherency and performance points of view. This can be
explained by investigating how precise the spatial partitioning is. In general, a single
step in the bounding volume hierarchy traversal performs 12 plane intersections (6
for each child); a single step in the octree performs 3 plane intersections and the kD
tree only plane intersection. As can be seen, the probability that a bounding volume
hierarchy node will result in a push is very low compared to both the octree and kD
tree.

We can get a better intuition into this problem by looking at the probabilities of
each traversal step. For example, the kD tree traversal has only two outcomes: Either
the split plane is intersected or not. The chance that some SIMD lanes take one path
and others take the other path is thus very high, leading to overall low coherency, as
the execution tree will have many branches. On the other hand, the bounding volume
hierarchy has a very low probability that a node is hit. It is very likely that all paths
will hit only one node and execute the same code path. The octree is in-between —
initially, it would seem that its behavior should be equal to a kD tree, but the fact that
the ray is shortened by potentially up to three planes per step significantly reduces
the chance of an intersection. The key observation is that a long and complicated
intersection test does not put a data structure at a disadvantage, coherency wise. As
long as the test can be formulated in a branch-free manner, which is easily done for
a bounding-box intersection, the resulting traversal will benefit from higher coherency
due to the improved selectivity of the test.

Another important observation is that even the most incoherent acceleration struc-

ture never dips below 12% coherency in the worst case — that is, 8 units of the 64-wide
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vector unit can be always filled. This strongly suggests that for CPUs, which only sup-
port 4 & 8-wide SIMD, efficient re-packing of rays would allow to reach near perfect
utilization of this comparatively narrow vector units.
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CONCLUSION AND FUTURE WORK

In this thesis I have described a voxel-based rendering pipeline for high-resolution
geometry. After covering the fundamental concepts, I have presented the two core
ingredients of my approach: A highly scalable pre-process, which includes voxelization
and simplification, and a corresponding renderer. Due to its focus on rasterization, the
renderer allows for high-quality viewing, low memory usage and run-time modifications.
Finally, I have analyzed the performance of GPU voxel raytracing in detail on modern
hardware to gain insight into which algorithm characteristics are most important for
performance.

The pre-processing can be further improved in multiple ways. First of all, an out-of-
core path for very high resolution output would be desirable. This can be implemented
by storing intermediate results and replaying the voxelization process. Second, the
voxelizer currently always uses the input triangle mesh. It would useful to implement
support for other surface types, in particular subdivision surfaces or NURBS with
displacement maps. The evaluation of the limit surface could be integrated into the
voxelization process, avoiding the need for very finely tessellated input meshes. Finally,
the preprocessor currently works exclusively on the CPU. Especially with an out-of-
core pre-pass, it should be possible to implement the “leaf” rasterization stage on the
GPU for even higher performance.

The rasterization algorithm described in this thesis can be also optimized to improve
performance. The usage of the geometry shader for expansion is not well supported by
current graphics hardware and is one of the main bottlenecks of the presented algorithm.
It is likely that a two-pass algorithm, which first decompresses into temporary memory
and then renders without any expansion will result in higher triangle throughput. A
key insight here is that the output topology for a voxel is either one quad consisting of
two triangles, if only one face is visible, or a triangle strip consisting of four triangles,
for both two or three visible faces. This makes it possible to efficiently identify the
cases and handle them using only two temporary buffers and draw calls.

The rendering quality can be also improved for iso-surfaces by integrating hybrid
rendering for those as well. In the current implementation, hybrid rendering for iso-
surfaces makes it necessary to extract an iso-surface as geometry in a preprocess. For
best quality, the renderer should be modified to use direct volume ray-tracing in this

case.
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CONCLUSION AND FUTURE WORK

On the ray-tracing side, I have identified that a voxel-optimized bounding volume
hierarchies results in superior performance compared to the commonly used octrees if
no level-of-detail is used. An interesting question in this context is how level-of-detail
can be integrated into a bounding volume hierarchy. As the detail level is just another
dimension, it seems feasible to build a 4D tree which directly integrates level-of-detail.

I have also briefly explored the effect of data structures on ray-tracing coherency.
For bounding volume hierarchies and kD trees, it seems possible that the builder can
actually exploit this to build coherency-optimized acceleration structures. This will
requires changes the cost heuristics which take the resulting “tree coherency” into
account.

In conclusion, I have presented a very fast pipeline for the rendering of very large
meshes. By focusing on the data flow from the input mesh to the final renderer, I was
able to exploit optimization opportunities and different stages along the pipeline. In
the end, my approach makes it possible to quickly investigate and explore even the

most complex meshes on commodity machines.
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