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1 Introduction

1.1 Background
With the worldwide turnover of chemicals valuing e 2744 billion in 2011 (European Union:

e 539 billion) the chemical industry constitutes one of the largest economical sectors in the

world and virtually supplies all other sectors. [1] Moreover, the chemical industry is ever

growing as for instance exemplified by the chemical turnover increase of over 28 % in the

European Union on a ten year perspective. Polymers contribute to the overall chemical

output with a striking amount of 24.3 % in the European Union in 2011. [1] Polymers are

used in numerous applications as for example packaging, paints, insulation, adhesives or as

molded parts due to their inexpensiveness, good processability and their outstanding physical

properties like formability, durability and chemical, electrical and thermal resistance.

Because of the limited global resources and the severe environmental challenges the world

faces today sustainability has become a focal point in the chemical industry over the last

decades. But not only because of these environmental issues but also in order to remain

competitive in a global market a further development of classical processes and products is

essential nowadays. Consequently, research and development (R & D) is more important for

chemical companies than ever before. The energy intensity as measured by the energy input

per unit of chemicals production already halved on a twenty year perspective as one of the

results of these efforts. [1]

In the course of further development, the classical design process, which heavily relied upon

intuition, experience and empiricism, shifted drastically towards new design alternatives being

based on detailed physical and chemical modeling. This shift was mainly facilitated by

the decreasing cost of computers and the developments in computational science, which

meanwhile allow to perform complex calculations at low computational costs. Detailed

modeling can not only provide a better insight into production processes and predict product

properties but in some cases may even completely render expensive experimental setups

unnecessary and be a stand-alone tool for innovative new design of processes.

Figure 1.1: Variety of extrusion profiles.
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Figure 1.2: Sketch of a profile extrusion line.

Computational Fluid Dynamics (CFD) is a promising and already well-established discipline

in the field of numerical modeling. By use of CFD the behavior of fluids in the production

process can be predicted and thereby assist to propose better apparatus designs and improve

product properties. As an example CFD is nowadays widely used in designing profile

extrusion lines. Films, pellets, cables, tubes and differently shaped profiles (cf. Fig. 1.1)

are examples of the variety of extrusion products.

Fig. 1.2 shows a typical plastics profile extrusion line, which commonly consists of a single-

screw extruder, which is fed with plastic pellets through a hopper, the extrusion die, a

calibrator and cooling stage, a haul-off and a saw. The extruder melts and homogenizes

the polymer and builds up the required pressure to feed the extrusion die. The extrusion

die gives the polymer the desired form of the profile. The calibrator has two objectives,

which are to prescribe final outer dimensions of the profile and to solidify the outer layers

of the polymer to ensure sufficient rigidity for the remaining cooling step. [2] Subsequently,

the profile is hauled-off and cut to a specified length. A typical extrusion die is shown in

Fig. 1.3: the main objective of extrusion die design is to find an optimal die geometry such

that a continuous polymer stream is shaped into an extrudate profile with the prescribed

product dimensions. [3] This main objective is mostly achieved by finding a balanced die,

which delivers the polymer at a uniform velocity over the cross-section to the exit. [4] The

opposite - flow imbalance - leads to distortion of the profile.

Figure 1.3: Example of an extrusion die.
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(a) Flow channel of a profile extrusion die

(b) Initial trial geometry (c) Best design obtained with numerical op-
timization

Figure 1.4: Flow channel (a) and simulated ratios between axial velocity and the
objective velocity at the die exit (b, c). [5]

Unfortunately, finding a balanced die is a difficult task even for rather simple profiles. Besides

that, there are many - sometimes even conflicting - secondary objectives that need to be

fulfilled such as a low pressure drop over the die, a maximum possible production rate of the

extrudate as well as a high quality of the product in terms of a minimum level of internal

stresses and the avoidance of rheological defects and thermal degradation. [6] The traditional

die design approach requires the designer to vary the die geometry on a trial-and-error basis.

This process is repeatedly started over again before finding the desired die shape. As such,

this approach relies extensively on the experience of the designer and is a very time consuming

and cost expensive task. Recently, the possibilities of using CFD in this design stage were

discovered, see for example Wang [7]. By use of CFD the flow at the die exit can be predicted

numerically from the rheological properties and the operating conditions and thereby help

to drastically reduce the number of die prototypes and significantly speed up this design

process and reduce the costs. By now, even completely automated optimization routines

were developed by parametrizing the geometry and aggregating the various objectives in a

single objective function. [8, 9] In Fig. 1.4 (a) the flow channel of a profile extrusion die used
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in the optimization study of Nóbrega et al. [5] is depicted. A comparison of the numerically

predicted velocity at the die exit cross-section for the initial trial design and the optimized

design is shown in Fig. 1.4 (b) and (c). With use of the automatic optimization routine a

die design was found, which is much more balanced in terms of having a more uniform axial

velocity at the die exit compared to the initial design.

In spite of these achievements, there is still a gap between the engineer’s need and the

current state-of-the-art and challenges in numerical modeling - and here in particular in CFD

simulation of polymer processing - still remain at hand: typically, polymeric flows include

numerous phenomena, which require the use of models to describe these as for instance

non-isothermicity, viscoelasticity and multiphase flows. In most of the currently performed

numerical studies one or often even more phenomena are neglected and/or drastically simpli-

fied. However, the predicted results will only be as good as the ability of the model itself to

describe the real-world [10] and in some cases the predicted behavior may - as a result of these

simplifications - severely deviate from the real behavior. Furthermore, due to the nature of

molten polymers the flow behavior is very complex, which commonly requires the simulations

to be performed three-dimensionally and transiently. However, this is very expensive in terms

of computation time and thus high-order methods to obtain accurate solutions even on coarse

grids and time-steps as well as fast solution strategies are highly needed.

1.2 Objectives
The objective of this thesis is to develop new numerical models and improve existing ones

for use in the field of polymer processing. Thereby, focus is set on the development and

implementation of models for viscoelastic multiphase flows, non-isothermal models as well as

improving the underlying numerical algorithms in terms of stability, accuracy and efficiency.

This thesis is organized such that each chapter can be read independently of each other.

In Chapter 2 the fundamental and comprehensive theory for the following chapters is pre-

sented. Focus is set on viscoelastic behavior in general, conservation laws to describe the

behavior of fluid flows and the numerical solution of which by use of the finite volume

method.

A semi-implicit method for handling the viscoelastic constitutive equation to promote stability

and avoid checkerboarding effects is developed in Chapter 3. Simulation results for the vis-

coelastic flow in a three-dimensional planar and a three-dimensional square-square contraction

are presented to show the benefits of using this technique. Comparison of the numerical

predictions is pursued with experimental measurements and other simulation results depicted

from the literature.
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In Chapter 4 The log-conformation reformulation (LCR) is implemented in the collocated

finite volume method OpenFOAM R© in order to remedy the high Weissenberg number prob-

lem, which is a general numerical instability in the simulation of viscoelastic flows. The

implementation is outlined and focus is set on efficiency and accuracy. Validation is done

by comparison with an analytical solution for the startup Poiseuille flow of a viscoelastic

fluid. Simulation results for time-dependent and three-dimensional lid-driven flows under

demanding conditions are subsequently presented.

A general module to handle non-isothermal effects in viscoelastic flows is developed in

Chapter 5. Furthermore, an accurate extrapolation boundary condition for the viscoelastic

constitutive equation on solid walls is developed, which can be used for any type of mesh and

viscoelastic constitutive equation. A steady viscoelastic Poiseuille flow shows the improved

accuracy of the boundary condition. Simulation of non-isothermal flows in an axisymmetric

contraction are presented and the results compared to a similar numerical study.

A new two-phase model for viscoelastic fluids governed by the Oldroyd-B equation is derived

in Chapter 6. The derivation is based on conditional volume averaging of the single-phase

equations and subsequent closure modeling. Reformulation of the model, which is motivated

from a numerical point of view, is done and the numerical implementation is outlined.

Thorough validation of the model is pursued with basic flow scenarios including a single-

phase Poiseuille flow as well as a two-phase shear flow and a pressure-driven flow of stratified

fluids. Surface tension closure is tested with a quiescent cylinder.

In Chapter 7 the conditionally volume averaged viscoelastic two-phase model is improved in

order to be able to handle moving and deforming interfaces. As it was shown that the model

requires a sufficient spatial resolution of the interfacial transition region an intermediate

step is adopted in order to ensure a constant interface thickness. The intermediate step is

tested with a rotating cylinder. Two-dimensional and three-dimensional simulations of a

Newtonian droplet deforming in a viscoelastic matrix under steady simple shear is presented

and comparison is made with experimental data.

In Chapter 8 the question of frame invariance of viscous dissipation is addressed, which is

a controversial subject in literature. Single-screw extruders are often simplified in analytical

approaches by keeping the screw fixed and rotating the barrel. The question, whether the

results obtained are equal to the real case, in which the barrel is stationary and barrel is

rotated, is addressed by transient two-dimensional and three-dimensional simulations of the

temperature rise in a single-screw extruder.

The final Chapter 9 gives a summary of this thesis and provides suggestions for further

research, which are either directly tied to the manuscripts presented in this work or serve as

proposals for new fields of research.
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2 Theory

2.1 Viscoelasticity
Polymers consist of long-chain macromolecules, which are composed of repeated subunits.

Due to their complex chemical structure the rheological behavior of molten polymers is non-

Newtonian since it is considerably different from ideally Newtonian fluids. In particular,

polymers are classified as viscoelastic materials. Viscoelasticity means that polymers show an

intermediate behavior in between that of ideal fluids, which behave purely viscous, and ideal

solids, which behave purely elastic. If polymers are deformed at small deformation amplitudes

and deformation rates the macromolecules have given enough time to relax through Brownian

motion and the linear viscoelastic range prevails. However, if deformation amplitudes and

rates increase, the time to relax becomes smaller and the macromolecules start to orient

with the flow. As a result, their behavior becomes dependent on time, deformation and

deformation rate and non-linearity of material properties prevails. [1]

2.1.1 Linear viscoelasticity

Relaxation time

In accordance to Owens and Phillips [2] the small deformation of a rectangle OABC to the

parallelogram OAB′C ′ within the time-interval ∆t = t2 − t1 is considered in the following,

see Fig. 2.1. The angle Θ, which is independent of the coordinates x, y and z, is called strain.

For small strain Θ one can define a relative deformation gradient γxy (t2, t1)

γxy (t2, t1) =
x (t2)− x (t1)

y (t1)
= tan Θ (t2)

Θ→0
≈ Θ (t2) (2.1)

Figure 2.1: Shear deformation of a square region OABC about the angle Θ to the
parallelogram OAB′C ′ within the time interval ∆t = t2 − t1. [2]
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Figure 2.2: Spring with modulus G and damper with viscosity η connected in series
(Maxwell model).

For a Hookean spring the relation between shear stress σxy and strain Θ is linear

σxy (t) = GΘ (t) (2.2)

G is the rigidity modulus of the material. If the material is a Newtonian fluid the relation

between shear stress σxy and rate of deformation γ̇xy is linear

σxy (t) = ηγ̇xy

(
Θ→0
≈ η

∂Θ

∂t

)
(2.3)

In the following a step function in time is considered for strain Θ (t), which can mathematically

be written as a heaviside-function

Θ (t) = Θ0H (t) =


0 if t < 0

Θ0/2 if t = 0

Θ0 if t > 0

(2.4)

The resulting stress in a Hookean linear elastic material is

σxy (t) = GΘ0H (t) (2.5)

The shear stress is constant in time with a value of GΘ0 after imposition of the strain Θ0.

For a Newtonian fluid the resulting shear stress is

σxy (t) = ηΘ0δ (t) (2.6)

where δ (t) is the Dirac delta function. The abrupt strain results in an infinite stress value at

time t = 0 and is 0 ∀ t 6= 0.

The simplest possibility to describe viscoelastic material behavior is by combination of an

elastic spring and a viscous damper, which are connected in series, see Fig. 2.2. This is the

so-called Maxwell model. Stress is equal in the damper and spring, σxy (t) = σxy,V (t) =

σxy,E (t), and strain (or rate of deformation) sums up, Θ (t) = ΘV (t) + ΘE (t) (or γ̇xy (t) =

γ̇xy,V (t) + γ̇xy,E (t)). Thus, one can write

γ̇xy (t) =
∂γxy,V
∂t

+
∂γxy,E
∂t

=
1

η
σxy (t) +

1

G

∂σxy
∂t

(2.7)
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Figure 2.3: Stress σxy as a function of time t for three different relaxation times λ1,i.

Integration of Eq. 2.7 leads to the following expression [2]

σxy (t) =

t∫
s=−∞

η

λ1
exp

(
− t− s

λ

)
γxy(s)ds (2.8)

The constant λ1 = η/G is called relaxation time. Considering the step-strain function

described by Eq. 2.4 the Maxwell model has the following particular solution [2]

σxy (t) = GΘ0exp

(
− t

λ1

)
(2.9)

From Eq. 2.9 one finds that the initial stress GΘ0 caused by the sudden strain Θ0 relaxes

exponentially to GΘ0e
−1 within the time interval λ1 = η/G. The Maxwell model thus

predicts exponential decay of stress as exerted by a constant strain. This can be thought of

an exponentially fading memory of the material. If the viscosity of the damper is decreased or

the elasticity of the spring is increased, the time required for relaxation of the stress increases

and vice versa. This is shown in Fig. 2.3, in which Eq. 2.9 is plotted for three different

relaxation times and the limiting case of λ1 → ∞, which corresponds to a purely elastic

material. Relaxation times can vary from 10−12 s for water to 28 h for glass. Low density

polyethylene has a typical relaxation time in the range of 10 s. [2]

The ratio between relaxation time and observation time T of the process under consideration

is called the Deborah number De and characterizes the rheological behavior of the material

De =
λ1

T
(2.10)

Viscous materials with λ1 → 0 result in De → 0 and elastic materials with λ1 → ∞ in

De → ∞. Low values of De correspond to viscous material behavior and large values in

elastic material behavior. In contrast, if the observation time increases the material will

behave more viscous than in a shorter period of time. This way one can explain for example

that glass is commonly understood as a solid material, but given a long enough period of time
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glass can indeed flow. Another dimensionless number used in this regard is the Weissenberg

number Wi (sometimes denoted We), which is the ratio of the relaxation time of the material

and a characteristic time of the flow, e.g. the inverse of the rate of deformation γ̇−1
xy

Wi = λ1γ̇xy (2.11)

If the flow under consideration is fast and rapid deformations occur (γ̇−1
xy → 0), the material

will not be given enough time to relax and adapt to the flow and thus behavior of the

material becomes more elastic. However, such a clear discrimination between the Deborah

number and the Weissenberg number is not always made in literature and they are often used

synonymously.

Relaxation spectra

Polymers are generally composed of macromolecules of different chain length. As a result,

such materials exhibit a relaxation time spectrum rather than a single relaxation time. A

more sophisticated model to describe such a material is the generalized Maxwell model, which

consists of n Maxwell elements connected in parallel, see Fig. 2.4. Each macromolecule chain

length is represented by a Maxwell entity and associated with a characteristic relaxation time

λ1,i. In this model, strain (or rate of deformation) is equal in all Maxwell entities and the

total stress is the sum of the stress of all Maxwell entities σxy,i (t)

σxy (t) =
n∑
i=1

σxy,i (t) (2.12)

Figure 2.4: Generalized Maxwell model represented by n Maxwell models connected
in parallel.
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Figure 2.5: Spring with modulus G and damper with viscosity η connected in parallel
(Kelvin model).

Retardation time

The Maxwell model cannot describe the behavior of creep and of creep recovery, a behavior

commonly exhibited by viscoleastic solids. [1] We will therefore consider the sudden imposition

of a shear stress in accordance to Owens and Phillips [2] in the following

σxy (t) =

0 if t < 0

σxy,0 if t ≥ 0
(2.13)

A Hookean spring will strain instantaneously at time t = 0 to the level
σxy,0
G

Θ(t) =

0 if t < 0

σxy,0
G if t ≥ 0

(2.14)

A Newtonian fluid on the other hand will start to flow with the rate of deformation be-

ing
σxy,0
η

γxy(t) =

0 if t < 0

σxy,0
η t if t ≥ 0

(2.15)

In order to describe creep behavior, the material is modeled with a viscous damper and an

elastic spring connected in parallel, see Fig. 2.5. This is the so-called Kelvin model. Strain

(or rate of deformation) is equal in the spring and damper Θ (t) = ΘV (t) = ΘE (t) (or

γ̇xy (t) = γ̇xy,V (t) = γ̇xy,E (t)) and stress sums up σxy (t) = σxy,V (t) + σxy,E (t) . Thus, one

can write

σxy (t) = GΘ + η
∂Θ

∂t
(2.16)

The solution of Eq. 2.16 with the stress function given in Eq. 2.13 is [2]

Θ(t) =
σxy,0
G

[
1− exp

(
− t

λ2

)]
(2.17)
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Figure 2.6: Strain Θ as a function of time t for three different retardation times λ2,i.

λ2 = η/G is called retardation time. In contrast to an elastic material, which strains to the

level
σxy,0
G immediately after imposition of the stress, the strain of a viscoelastic material will

reach the value
σxy,0
G (1− e−1) within the time interval λ2. In Fig. 2.6 strain as a function of

time is plotted for three different retardation times λ2,i and an ideal elastic spring (λ2 → 0).

If the elasticity of the spring increases or the viscosity of the damper decreases, the material

creeps faster and vice versa. Considering an experiment in which the stress is suddenly

removed, the Kelvin model predicts complete strain recovery. Polymer melts in general do

not show such a behavior, but creep recovery is only partial. In order to allow for such a

behavior at least another damper must be connected in series. [1, 2]

The ratio between relaxation and retardation time is the so-called retardation factor β and

determines the amount of creep to stress relaxation of a material

β =
λ1

λ2
(2.18)

2.1.2 Non-linear viscoelasticity

Industrial processes for manufacturing polymers involve rapid and large deformations of the

material and the non-linear viscoelastic range prevails. Properties such as viscosity become

functions of time, deformation and rate of deformation. In the following the non-linear

behavior of polymers under two ideal flow conditions often studied, which are a steady simple

shear flow and a steady shear-free extensional flow, will be discussed.

Shear flow

Shear flows are easy to generate and thus most widely used in experimental characterization

of polymers. A simple shear flow is defined by the following velocity field

Us (y) =


γ̇xyy

0

0

 (2.19)
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Figure 2.7: Shear viscosity η(γ̇)-functions as a function of shear-rate γ̇.

For Newtonian fluids a linear relation between shear-rate and stress holds

σxy = η
∂Us,x

∂y
= ηγ̇xy (2.20)

Non-Newtonian fluids do not show a linear relationship. Instead, there is a non-linear

relationship expressed by an apparent viscosity η(γ̇), which is a function of the shear-rate

γ̇ ≡ ||γ̇xy||

σxy = η(γ̇) γ̇xy (2.21)

Viscosity is commonly also time-dependent for a viscoelastic fluid and viscosity as a function

of shear-rate γ̇ as shown in Fig. 2.7 is usually reported under steady-state conditions

η(γ̇) = lim
t→∞

σxy(t)

γ̇xy
(2.22)

Polymers show shear-thinning (or pseudo-plastic) behavior, while other non-Newtonian mate-

rials can also exhibit shear-thickening, see Fig. 2.7. The zero shear-rate viscosity η0 is defined

as

η0 = lim
γ̇→0

η(γ̇) (2.23)

Besides a shear stress polymers exert normal stresses in steady simple shear and the Cauchy

stress tensor takes the form

σ =


σxx σxy 0

σyx σyy 0

0 0 σzz

 (2.24)

It is noted here that the Cauchy stress tensor is always symmetric, i.e. σxy = σyx. Viscoelastic

fluids can generally be considered as incompressible and thus normal stresses are isotropic and
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do not cause any deformation. Only differences between normal stresses cause deformations

and are of relevance. [1] Thus, another two viscometric functions besides the apparent viscosity

η(γ̇) are identified, which are the first and a second normal stress difference, N1 and N2,

respectively

σxx − σyy = Ψ1(γ̇) γ̇2
xy = N1(γ̇) (2.25)

σyy − σzz = Ψ2(γ̇) γ̇2
xy = N2(γ̇) (2.26)

Ψ1 and Ψ2 are called first and second normal stress coefficients, respectively. N1 is positive,

while N2 is negative and much smaller for polymers. Presence of normal stress differences is

the reason for quite spectacular flows such as die swelling and rod climbing. [2]

Extensional flow

Knowledge of the behavior of polymers in extensional flows is important since many industrial

processes, such as spinning, extrusion take-off or vacuum forming involve stretching of the

fluid [3]. Three different types of extensional flows can be distinguished, which are uniaxial

extensional flow

Uu (x, y, z) =


ε̇x

− ε̇
2y

− ε̇
2z

 (2.27)

biaxial extensional flow

Ub (x, y, z) =


ε̇
2x

ε̇
2y

−ε̇z

 (2.28)

and planar extensional flow [4]

Up (x, z) =


ε̇x

0

−ε̇z

 (2.29)

A schematic view of the three extensional flows is shown in Fig. 2.8. The fluid undergoes no

shearing and thus the Cauchy stress tensor takes the following general form

σ =


σxx 0 0

0 σyy 0

0 0 σzz

 (2.30)
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Figure 2.8: Schematic view of uniaxial, biaxial and planar extensional flow. [1]

In extension only one material property is measurable, which is the elongational viscosity.

For uniaxial and planar extension, the elongational viscosity is defined as

ηE(ε̇) =
σxx − σyy

ε̇
(2.31)

while for biaxial extension the elongational viscosity is [4]

ηE,b(ε̇) =
σxx − σzz

ε̇
(2.32)

Again, elongational viscosities are functions of time t and viscosities are commonly reported

under steady-state conditions

ηE(ε̇) = lim
t→∞

σxx(t)− σyy(t)
ε̇

(2.33)

The ratio between elongational viscosity and zero shear-rate viscosity is called Trouton ratio

Tr(ε̇) = ηE(ε̇)
η0

. For a Newtonian fluid in uniaxial extension the Trouton ratio is Tr = 3.

Polymers have the same ratio only for close to zero elongational rates

lim
ε̇→0

ηE,u(ε̇) = 3η0 (2.34)

For small elongational rates polymers commonly exhibit extension-thickening and after un-

dergoing a maximum in the Trouton ratio show extension-thinning for large extensional rates,
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Figure 2.9: Trouton ratio Tr as a function of elongational rate ε̇ in uniaxial extension.

see Fig. 2.9. The limit of the Trouton ratio for small elongational rates under planar extension

is

lim
ε̇→0

ηE,p(ε̇) = 4η0 (2.35)

while for biaxial one finds [4]

lim
ε̇→0

ηE,b(ε̇) = 6η0 (2.36)

Extensional effects can play a major role for the fluid behavior. An example of a visually

striking phenomenon is the tubeless syphon effect. [2]

2.1.3 Temperature dependencies

Material properties such as viscosity or relaxation time are dependent on temperature. In

industrial polymer processing temperatures can vary over a wide range and consequently

temperature dependencies have to be taken into account. If the viscoelastic material property

can be shifted by a single factor to one master curve, the material is considered thermo-

rheologically simple and time-temperature-superposition (TTS) can be used. In doing so,

quantities of stress are shifted vertically with the factor bT and quantities of time, such as

relaxation time, horizontally with aT [1]

λ1(γ̇, T ) = aTλ1,R(γ̇) (2.37)

T is temperature and λ1,R is called reduced relaxation time. Viscosity, which is defined by

stress divided by shear rate and thus includes both stress and time, is shifted with aT /bT

η(γ̇, T ) =
aT
bT
ηR(γ̇) (2.38)
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Figure 2.10: Shear viscosity η(γ̇, T ) as a function of shear-rate γ̇ for different values
of temperature T .

Similar, ηR is called reduced viscosity. Due to the increased Brownian motion of the

macromolecules, viscosity decreases with increasing temperature. This behavior is shown

in Fig. 2.10.

The vertical shift factor is defined as [1]

bT =
Trefρref
Tρ

(2.39)

where ρ is density and the index ref referes to reference values for temperature and density.

Usually bT ≈ 1, which is why the vertical shift can be neglected in most cases. [1] The

horizontal shift is calculated with appropriate models, such as the Williams-Landel-Ferry

(WLF) model [5]

log(aT ) = −
C1(T − Tref )

C2 + (T − Tref )
(2.40)

The WLF model can be used for T ≤ Tg + 100K, where Tg is glass transition temperature.

For higher temperatures, the Arrhenius law is more appropriate [1]

log(aT ) = −EA
R

(
1

T
− 1

Tref

)
(2.41)

Another model often used for modeling temperature dependencies of polymers is the Vogel

equation [6]

log(aT ) = C1 +
C2

T − Tref
(2.42)

17



2 Theory

2.1.4 Constitutive equations

In order to be able to predict the stresses in a fluid, closure relations for the Cauchy

stress tensor σ are needed, which relate the stresses to kinematics and material properties.

Therefore, the Cauchy stress tensor is first decomposed as

σ = −pI + τ (2.43)

where I is the identity matrix and p is called pressure, which is defined as the negative average

of the diagonal stress components p = −1
3 tr(σ). tr denotes the trace of a matrix and τ is

the deviatoric stress or extra-stress tensor. [2]

Newtonian

According to Eq. 2.3 the Cauchy stress in a Newtonian fluid is proportional to the rate

of deformation (or rate of strain). For a general type of flow the deviatoric stress can be

calculated by [7]

τ = 2ηD− 2

3
η (∇ ·U) U = η

[
∇U + (∇U)T − 2

3
(∇ ·U) U

]
(2.44)

where 2D is the rate of deformation tensor. It is noted here that for an incompressible fluid

∇ ·U = 0 holds, which is why the last term of Eq. 2.44 is zero.

Generalized Newtonian Liquid

Generalized Newtonian Liquids are fluids in which the constant relationship between stress

and rate of deformation is replaced by a more general non-linear relationship according to

Eq. 2.21. This leads to

τ = 2η(γ̇)D (2.45)

The non-constant viscosity is a function of the shear-rate γ̇, which is defined as the second

invariant of the rate of deformation tensor [2]

γ̇ = 2
√

D : D (2.46)

Model relations for η(γ̇) are for example Power-Law, Cross or Carreau. These models can

be used for fitting data obtained from shear viscosity measurements (cf. Fig. 2.7). However,

since generalized Newtonian Liquids do not exhibit normal stresses in steady simple shear

elastic material behavior cannot be predicted their use is limited to relatively simple flows,

in which elastic effects are negligible. [2]
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Viscoelastic

In order to be able to model arbitrary types of polymer flows and predict elastic effects,

more sophisticated constitutive equations are needed. Viscoelastic constitutive equations can

be categorized into differential and integral constitutive equations. In this work differential

models will be considered only. The deviatoric stress tensor is commonly first decomposed

into two additive terms, a Newtonian solvent contribution with viscosity ηS and a viscoelastic

contribution τP , which is governed by an appropriate constitutive equation

τ = τS + τP = 2ηSD + τP (2.47)

Two viscoelastic constitutive equations, both from the family of Oldroyd-type equations, will

be presented in the following since they are used in the subsequent chapters.

• Oldroyd-B

The perhaps simplest viscoelastic constitutive equation is the Oldroyd-B equation proposed

by Oldroyd in 1950 [8]

τP + λ1
O
τP= ηP

[
∇U + (∇U)T

]
(2.48)

ηP is the polymeric viscosity and
O
τP denotes the upper-convected time derivative, which is

defined as

O
τP=

∂τP
∂t

+∇ · (UτP )− (∇U)T · τP − τP · ∇U (2.49)

The Oldroyd-B equation can be derived from molecular theory, in which dumbbells are

suspended in a Newtonian solvent. The dumbbells consist of two beads connected by a

spring obeying the Hookean Law. The Oldroyd-B model predicts a constant shear viscosity

and an extensional viscosity, which blows up at a finite extensional rate, see Fig. 2.11. The

model is only suitable for modeling dilute polymeric solutions. [2]

The retardation time of the model is

λ2 =
ηS

ηP + ηS
λ1 =

ηS
η0
λ1 (2.50)

and consequently the retardation factor is

β =
ηS
η0

(2.51)

The Oldroyd-B model in conjunction with no solvent contribution (ηS = 0 or λ2 = 0) reduces

to the so-called upper-convected-Maxwell model.
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Figure 2.11: Shear viscosity (a) and extensional viscosity (b) as predicted by the
Oldroyd-B model.

• Simplified Phan-Thien-Tanner (SPTT)

A more accurate viscoelastic constitutive equation is the simplified Phan-Thien-Tanner

(SPTT) model, which was derived by network theory and can be used to model the rheological

behavior of concentrated solutions and polymer melts. [9] Two versions of the SPTT model

are available, an exponential and a linearized form. In this work, the linearized version will

be used (
1 +

ελ1

ηP
tr (τP )

)
τP + λ1

O
τP= ηP

[
∇U + (∇U)T

]
(2.52)

ε is the extensibility parameter with which the extensional viscosity can be limited. It is

noted that for ε = 0 the Oldroyd-B model is recovered. The shear and elongational viscosities

predicted by the SPTT model predict are shown in Fig. 2.12 for three different values of ε.

The model predicts shear-thinning behavior and limits the elongational viscosity, which has

a maximum for intermediate values of λε̇ for small values of ε.

• Multi-mode models

As already discussed polymers consist of macromolecules with not only a single chain length

but a length distribution. Consequently, there is a relaxation spectrum rather than a single

relaxation time. A relaxation spectrum is modeled according to Eq. 2.12

τP =

N∑
i=1

τP,i (2.53)

The stress of each mode τP,i is calculated by a viscoelastic constitutive equation with the

respective relaxation time λ1,i and model parameters, such as for example polymeric viscosity

ηP,i and extensibility parameter εi.

20



2 Theory

Figure 2.12: Shear viscosity (a) and extensional viscosity (b) as predicted by the
SPTT model. [10]

2.2 Conservation laws
Conservation laws are derived from conservation of extensive properties such as mass, linear

and angular momentum, species or energy. Conservation of mass states that for a closed

system mass m must remain constant over time t (dmdt = 0), while for momentum conservation

the rate of change of momentum must equal to the external forces F acting on the closed

system (d(mU)
dt = F ). Energy conservation holds if the rate of change of internal energy equals

the sources and sinks W of the same (d(mu)
dt = W ). [11]

The respective extensive property Φ can be calculated by integration of an intensive property

ϕ over the closed system - the control mass CM - according to [7]

Φ =

∫
VCM

ρϕdV (2.54)

where VCM is the volume of the control mass. With use of the Reynolds-Transport-Theorem

Eq. 2.54 can be formulated in terms of control volumes CV [7]

d

dt

∫
VCM

ρϕdV =
d

dt

∫
VCV

ρϕdV +

∮
SCV

ρϕ(U−Ub) · nSdS (2.55)

where S is the surface area, Ub is the velocity of the control volume surface at point S and

the vector nS is the unit normal vector pointing outward of the control volume at point

S. It is most convenient to consider steady control volumes, thus Ub = 0. Volumetric
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and surface-based sources and sinks, QV and QS , respectively, can be distinguished and one

obtains a general conservation equation [11]

d

dt

∫
VCV

ρϕdV +

∮
SCV

ρϕU · nSdS =

∫
VCV

QV (ϕ) dV +

∮
SCV

QS (ϕ) · nSdS (2.56)

An equivalent differential form can be formulated

∂ρϕ

∂t
+∇ · (ρUϕ) = QV (ϕ) +∇ ·QS (ϕ) (2.57)

Conservation of mass, for which ϕ = 1, leads to

∂ρ

∂t
+∇ · (ρU) = 0 (2.58)

The rate of change of linear momentum, for which ϕ = U, must equal the surface-force

exerted by the Cauchy stress tensor σ and the force exerted by gravity, which is a volumetric

source

∂ρU

∂t
+∇ · (ρUU) = ∇ · σ + ρg (2.59)

Conservation of energy, for which ϕ = u, states that the rate of change of internal energy

must equal the energy transported by conduction, which is denoted by the term ∇ · q. All

other possible sources/sinks are summarized in the term ρQu

∂ρu

∂t
+∇ · (ρUu) = −∇ · q + ρQu (2.60)

Polymers can commonly be considered as incompressible (ρ = const.) and thus the conserva-

tion of mass simplifies to

∇ ·U = 0 (2.61)

Incompressibility and use of the decomposition of the Cauchy stress tensor and the deviatoric

stress tensor according to Eqs. 2.43 and 2.47, respectively, leads to

∂U

∂t
+∇ · (UU)−∇ · νS∇U = −∇p∗ +

1

ρ
∇ · τP (2.62)

where νS = ηS
ρ is the kinematic viscosity. By use of a modified pressure p∗ = 1

ρ (p− ρg · x)

the gravity term cancels out. x denotes the position vector. [7]
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Assuming constant pressure and incompressibility the internal energy can be written as

∂u = cP∂T and thus the conservation of energy can be reformulated to an equation for

temperature T [7]

∂T

∂t
+∇ · (UT )−∇ · k

ρcP
∇T =

1

cP
Qu (2.63)

In Eq. 2.63 heat conduction was expressed by Fourier’s Law q = −k∇T , where k is the

thermal conductivity.

2.3 Finite volume method
The conservation laws, Eqs. 2.61-2.63, in conjunction with an appropriate viscoelastic con-

stitutive equation, Eqs. 2.48, 2.52 or 2.53, constitute a set of partial differential equations,

which cannot be solved analytically for almost any problem. Thus, numerical procedures are

required for solution by discretizing the solution domain in time and space. Appropriate

discretization techniques are for example finite difference method (FDM), finite element

method (FEM) or finite volume method (FVM). The latter of which is used in this thesis

and shortly outlined in the following.

2.3.1 Discretization of the solution domain

Figure 2.13: Space and time discretization in the finite volume method.

The solution domain is first discretized in space and time, see Fig. 2.13. Time discretization

is achieved by dividing the continuous time into a finite number of discrete time-steps ∆t.

Space discretization is achieved by dividing the solution domain into a finite number of non-

overlapping volumes (or cells). Finite volume methods can be distinguished between staggered

and collocated methods. In the staggered method, variables are defined and stored in either

the cell center or the cell face, while in the collocated finite volume method all variables φ

are stored in the cell center and values on cell faces φf are obtained from interpolation of the
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values of adjacent cells. The collocated finite volume method will be used in this work. Cell

centers xP and cell face centers xf are defined in the center of mass [12]∫
VP

(x− xP ) dV = 0,

∫
Sf

(x− xf ) dS = 0 (2.64)

2.3.2 Equation discretization

All partial differential equations Eqs. 2.61-2.63 and Eqs. 2.48 and 2.52 have a similar form

and can be reduced to a standard transport equation for the variable φ [11]

∂φ

∂t︸︷︷︸
temporal term

+ ∇ · (Uφ)︸ ︷︷ ︸
convection term

−∇ · (Γφ∇φ)︸ ︷︷ ︸
diffusion term

= Sφ (φ)︸ ︷︷ ︸
source term

(2.65)

Γφ is the diffusion coefficient. Only four different terms arise in the standard transport

equation, which are the temporal term, the convection term, the diffusion term and a source

term. For solution of Eq. 2.65 the standard transport equation is first integrated over the

volume of cell P , VP ,∫
VP

∂φ

∂t
dV +

∫
VP

∇ · (Uφ) dV −
∫
VP

∇ · (Γφ∇φ) dV =

∫
VP

Sφ (φ) dV (2.66)

Eq. 2.66 will be used to discuss the discretization practices of the four terms in the following.

• Temporal term

Discretization of the temporal term can be achieved with the Euler method according to∫
VP

∂φ

∂t
dV =

φn+1 − φn

∆t
VP (2.67)

where the exponents n and n + 1 of the variable φn and φn+1 denote φn = φ(t) and

φn+1 = φ(t+ ∆t), respectively. The Euler method is first-order accurate and bounded if the

remaining terms (the convection, diffusion and source term) are calculated at time-level n+1.

In this case the method is called implicit Euler

φn+1 − φn

∆t
VP = R

(
φn+1

)
(2.68)

On the other, if the remaining terms are calculated with the value of the variable at time-

level n the method is called explicit Euler

φn+1 − φn

∆t
VP = R (φn) (2.69)
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Another scheme related to the discretization technique of Eq. 2.67 is the Crank-Nicholson

scheme, which is a second-order accurate and bounded scheme

φn+1 − φn

∆t
VP = 0.5R (φn) + 0.5R

(
φn+1

)
(2.70)

Independently of the time-level the remaining terms are calculated with, second-order accu-

racy can also be achieved with a three time-level Gear (or backward) scheme∫
VP

∂φ

∂t
dV =

1.5φn+1 − 2φn + 0.5φn−1

∆t
VP (2.71)

Similar to before the exponent n− 1 in φn−1 denotes φn−1 = φ(t−∆t). The drawback of the

scheme is that it is unbounded due to its extrapolative nature. [11]

• Convection term

For calculation of the convection term the volume integral is first converted into a surface

integral by use of the Gauss theorem. The value of which is then calculated by a summation

over cell faces ∫
VP

∇ · (Uφ) dV =
∑
f

(Uφ)f · Sf =
∑
f

Ffφf (2.72)

where Sf is the normal vector to face f with its length proportional to the cell face area,

see Fig. 2.13. Ff denotes the flux over the cell face, Ff = Uf · Sf . Various convection

based schemes based on the sign (or direction) of the flux Ff are available to obtain the face

value φf . A first-order and bounded scheme is the upwind scheme:

φf =

φP if F ≥ 0

φN if F < 0
(2.73)

However, the truncation error resembles a diffusive flux. The effect of which is called numerical

diffusion and leads to very low accuracy of this scheme. [12] A more accurate scheme of

second-order is linear interpolation (or central differencing)

φf = fxφP + (1− fx)φN (2.74)

where the weight is calculated with the distances (cf. Fig. 2.13)

fx =
fN

PN
(2.75)
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However, solutions obtained with linear interpolation can be prone to unphysical oscillations

since the scheme is unbounded. In an approach to overcome this issue and obtain a compro-

mise between accuracy and boundedness blended schemes are used, which are a combination

of upwind differencing and central differencing

φf = (1− γ) (φf )UD + γ (φf )CD (2.76)

where γ is the blending factor, which is calculated on a face-by-face basis with use of various

boundedness criteria. [11]

• Diffusion term

Similar to the convection term, the volume integral of the diffusion term is first transformed

into a surface integral and then calculated by summation over cell faces∫
VP

∇ · (Γφ∇φ) dV =
∑
f

(Γφ∇φ)f · Sf =
∑
f

(Γφ)f (∇φ)f · Sf (2.77)

For orthogonal meshes, for which PN || Sf holds, the face gradient term (∇φ)f · Sf can be

calculated directly by

(∇φ)f · Sf = |Sf |
φN − φP∣∣PN ∣∣ (2.78)

This linear scheme is second-order accurate and conservative, but unbounded. In case of

non-orthogonal meshes a non-orthogonal correction is necessary. [11]

• Source terms

Source terms are all other terms, which cannot be expressed as temporal, convection or

conduction terms. Source terms can be arbitrary functions of the variable φ. The source

terms are first linearized (Sφ = Su + Sp φ) and then integrated over the volume with a

second-order accurate scheme [11]∫
VP

Sφ (φ) dV = Su VP + Sp VPφP (2.79)

• Spatial terms

Spatial derivatives, which can be gradient or divergence terms, are again first transformed to

surface integrals with use of the Gauss theorem and then calculated by summation over cell
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faces, where cell face values φf are obtained with appropriate interpolation methods such as

linear interpolation [11] ∫
VP

∇φdV =
∑
f

φfSf (2.80)

∫
VP

∇ · φdV =
∑
f

φf · Sf (2.81)

2.3.3 Boundary and initial conditions

In section 2.3.1 the discretization of the solution domain was outlined. Initial conditions

are necessary in order to be able to calculate the time derivative in the first time-step since

values at time φn are required. Furthermore, boundary values are required in order to be

able to calculate spatial derivatives in cells next to the solution domain boundary. Values of

φf and (∇φ)f cannot simply be obtained from interpolation, but need to be specified at cell

faces coinciding with the solution domain. Two general types of boundary conditions can be

distinguished, Dirichlet and Neumann boundary conditions. One can either specify the value

on the boundary face φb (Dirichlet boundary condition) or the gradient (∇φ)b (Neumann

boundary condition). All other boundary conditions can be expressed as either one or a

combination of both. [12]

2.3.4 Solution of sets of linear equations

Discretization of Eq. 2.65 leads to a set of linear equations, one for each cell, with which the

new values φn+1
j corresponding to time t + ∆t can be calculated for each cell j. The new

value in a cell P , φn+1
P , is both dependent on the value φnP of the previous time step (and

φn−1
P if a three time-level temporal scheme is used) and on the neighboring cell values φn+1

P,N ,

because the terms φf and (∇φ)f require interpolation with the values from neighboring cells.

The linear equation for cell P thus reads [12]

aPφ
n+1
P +

∑
N

aP,Nφ
n+1
P,N = bP (2.82)

Terms calculated with φnP (and φn−1
P ) are absorbed in bP . Contributions to the diagonal

coefficient aP can stem from the temporal term, for which the Euler and Crank-Nicholson

scheme create a coefficient VP
∆t , while a Gear scheme creates a coefficient of 1.5VP∆t ; from the

source-term creating a coefficient of Sp VP ; and from the convection and diffusion term if

they are treated implicitly (i.e. calculated with values φn+1
P ). Contributions to the off-diagonal

coefficients aP,N can stem from the convection and diffusion term if they are treated implicitly

(i.e. calculated with values φn+1
P,N ). bP comprises contributions from the temporal term, for

which Euler and Crank-Nicholson contribute with
φnP
∆tVP , while the Gear scheme contributes

with
2φnP−0.5φn−1

P
∆t VP ; from the convection and diffusion term if either they are treated explicitly
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(i.e. calculated with values φnP and φnP,N ) or if a Crank-Nicholson scheme is used; and from

the source-term with the contribution Su VP . The set of linear equations can be written in

matrix form as [12]

[A]
[
φn+1

]
= [b] (2.83)

where [A] is a NxN -dimensional matrix and
[
φn+1

]
and [b] are N -dimensional vectors. N is

the number of control volumes. The matrix [A] is a sparse matrix since only adjacent cells

can create non-zero off-diagonal coefficients. The set of linear equations is usually not solved

directly with exact methods, but iteratively with appropriate linear solvers that preserve the

sparseness. Conjugate gradient (CG) methods, such as preconditioned bi-conjugate gradi-

ent (PBiCG), preconditioned conjugate gradient (PCG) or bi-conjugate gradient stabilized

(BiCGstab) solvers, are widely used. [7]
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2.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

aP Diagonal coefficient of computational cell P

aP,N Off-diagonal coefficient of computational cell P

aT Horizontal shift factor [−]

A Matrix

b Vector of source terms

bP Source term of computational cell P

bT Vertical shift factor [−]

C1 Constant of Williams-Landel-Ferry model [−]

or constant of Vogel model [−]

C2 Constant of Williams-Landel-Ferry model [K]

or constant of Vogel model [K]

cP Heat capacity [ m
2

s2K
]

D Rate of deformation tensor [s−1]

EA Activation energy [ kgm
2

s2mol
]

fx Weight factor [−]

F Force [kgm
s2

]

or volumetric flux [m
3

s ]

Ff Flux through face f [m
3

s ]

g Gravitational acceleration vector [m
s2

]

G Rigidity modulus [ kg
ms2

]

H Heaviside-function [−]

i Index [−]

I Identity matrix [−]

k Thermal conductivity [kgm
s3K

]

m Mass [kg]

nS Unit normal vector to surface at point S [−]

N Number of stress modes [−]
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Symbol Description Unit

N1 First normal stress difference [ kg
ms2

]

N2 Second normal stress difference [ kg
ms2

]

p Pressure [ kg
ms2

]

p∗ Modified pressure [ kg
ms2

]

q Heat flux [kgm
2

s3
]

Qu Internal energy source or sink [kgm
2

s3
]

QS Surface-based source or sink

QV Volumetric source or sink

R Ideal gas constant [ kgm2

s2molK
]

or right hand side of discretized equation

S Surface area [m2]

SCV Surface area of control volume [m2]

Sf Surface area normal vector at cell face f [m2]

Sφ Source term

Sp Source term linear dependent of variable

Su Source term independent of variable

t Time [s]

T Observation time [s]

or temperature [K]

Tg Glass transition temperature [K]

Tref Reference temperature [K]

u Specific internal energy [m
2

s2
]

U Velocity [ms ]

Uf Velocity at cell-face f [ms ]

Us Shear velocity field [ms ]

V Volume [m3]

VCM Volume of control mass [m3]

VCV Volume of control volume [m3]

VP Volume of computational cell P [m3]

W Energy source or sink [kgm
2

s3
]

x Position [m]

x Position vector [m]
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Symbol Description Unit

xf Face center of a cell [m]

xP Cell center of computational cell P [m]

y Position [m]

z Position [m]

Greek Symbols

Symbol Description Unit

γ Blending factor [−]

γ̇ Shear-rate [s−1]

γxy Relative deformation gradient [−]

γ̇xy Rate of deformation [s−1]

γ̇xy,E Rate of deformation of spring [s−1]

γ̇xy,V Rate of deformation of damper [s−1]

Γφ Diffusion coefficient

δ Dirac delta function [−]

∆t Time interval [s]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

ε Extensibility parameter of SPTT model [−]

ε̇ Extension-rate [s−1]

η Dynamic viscosity [ kgms ]

η0 Zero shear-rate viscosity [ kgms ]

ηE Elongational viscosity [ kgms ]

ηE,b Biaxial elongational viscosity [ kgms ]

ηE,p Planar elongational viscosity [ kgms ]

ηE,u Uniaxial elongational viscosity [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηS Solvent viscosity [ kgms ]

Θ Angle or strain [◦]

Θ0 Strain level [◦]

ΘE Angle or strain of spring [◦]
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Symbol Description Unit

ΘV Angle or strain of damper [◦]

λ1 Relaxation time [s]

λ1,i Relaxation time of i-th Maxwell mode [s]

λ1,R Reduced relaxation time [s]

λ2 Retardation time [s]

ν Kinematic viscosity [m
2

s ]

νS Kinematic solvent viscosity [m
2

s ]

ρ Density [ kg
m3 ]

ρref Reference density [ kg
m3 ]

Σ Cauchy stress tensor [ kg
ms2

]

σxx Normal stress in x-direction [ kg
ms2

]

σxy Shear stress [ kg
ms2

]

σxy,0 Shear stress level [ kg
ms2

]

σxy,E Elastic shear stress in spring [ kg
ms2

]

σxy,i Shear stress of i-th Maxwell mode [ kg
ms2

]

σxy,V Viscous shear stress in damper [ kg
ms2

]

σyy Normal stress in y-direction [ kg
ms2

]

σzz Normal stress in z-direction [ kg
ms2

]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τP,i Polymeric stress tensor of the i-th mode [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

φ General variable

φb Variable value on Dirichlet boundary

φf General variable at cell face f

φN General variable at computational cell N

φP General variable at computational cell P

ϕ General intensive property

Φ General extensive property

Ψ1 First normal stress coefficient [ kgms ]

Ψ2 Second normal stress coefficient [ kgms ]
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Subscripts, Superscripts and Oversymbols

Symbol Description

Qn−1 Time level n− 1

Qn Time level n

Qn+1 Time level n+ 1

QT Transpose of matrix Q
O
Q Upper-convected time derivative

Nondimensional Groups

Symbol Description Definition

De Deborah number λ1
T

Tr Trouton ratio ηE
η0

Wi Weissenberg number λ1γ̇xy

β Retardation factor λ1
λ2

or ηS
η0

Abbreviations

Abbreviation Description

BiCGstab Bi-conjugate gradient stabilized

CG Conjugate gradient

CM Control mass

CV Control volume

FDM Finite difference method

FEM Finite element method

FVM Finite volume method

PBiCG Preconditioned bi-conjugate gradient

PCG Preconditioned conjugate gradient

SPTT Simplified Phan-Thien-Tanner

TTS Time temperature superposition

WLF Williams-Landel-Ferry

34



3 Semi-implicit stress formulation for vis-

coelastic models: Application to three-

dimensional contraction flows

3.1 Introduction
Over the last decades the use of finite-volume methods has become very popular in the

simulation of viscoelastic flows, mainly due to the beneficial memory and time savings when

comparing to finite-element methods. [1, 2]

Finite-volume methods can be divided into methods using staggered grids and non-staggered

(collocated) grids. In the latter all variables are located at the centroid of the control

volumes. Examples of the staggered finite-volume method are the work of Hu and Joseph, who

simulated the flow around a circular cylinder using the upper Convected Maxwell model [3],

and Sasmal [4], who applied a staggered finite-volume approach to the simulation of the

flow in an abrupt axisymmetric contraction. Although inherently ensuring a strong coupling

between all variables and thereby avoiding decoupling effects the main drawback of staggered

grid methods is the difficult extension to complex non-orthogonal grids.

Despite the possible appearance of decoupling phenomena resulting in unphysical checker-

board fields of pressure [5] and velocity [6], the easy extension of the collocated finite-volume

method to non-orthogonal grids seems to outweigh this drawback. In addition, efficient inter-

polation techniques have been developed to avoid these decoupling effects. [7, 8] Noteworthy

developments of the collocated finite-volume method for viscoelastic flow are by the group of

Oliveira [6, 9, 10] and more recently the development of a solver for the free-to-use software

OpenFOAM R© [11], which has already been applied to the simulation of three-dimensional

contraction flows [12] and extended to the simulation of nonisothermal [13] and multiphase

flows [14].

Discretizing the pressure gradient in the collocated method with the use of second-order linear

interpolation leads to a relationship between alternate nodal pressures rather than adjacent

ones, which may result in checkerboard fields for pressure. This is the case in Newtonian and

viscoelastic flow. The most widely used remedy to that problem is the use of the interpolation

scheme of Rhie and Chow [7], which has subsequently been numerously revised and improved,

for example by Majumdar [15], Choi [16] and Yu et al. [17]. In the simulation of viscoelastic

flow with collocated finite-volume methods velocity checkerboard fields can also arise, which

are due to a similar effect when discretizing the divergence of stress. The problem has first

been addressed by Oliveira et al. [6] by finding an adequate cell-face interpolation for stress.

The interpolation is done in the spirit of Rhie and Chow [7]. Although already ensuring a
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strong coupling, an inconsistency in the sense that steady-state solutions depend upon the

time-step (∆t) was eliminated in a later publication. [8]

In the work of Favero et al. [11] second-order linear interpolation is used to obtain cell-face

stress values in the approximation of the stress divergence, which - depending on the geometry

and flow conditions - may lead so severe velocity checkerboarding. To remedy this issue, a new

interpolation technique is developed in this work, which is also based on the interpolation

of Rhie and Chow [7], similar to the work of Oliveira et al. [6] and Matos et al. [8]. Yet,

besides ensuring a strong coupling between velocity and stress, this new approach allows for

the deformation part of the constitutive equation to be treated implicitly in the momentum

equation, which makes the numerical method somewhat more stable by increasing the elliptic

operator in the momentum equation.

Contraction flows are of major importance in polymer processing and have been studied

extensively for over three decades now. [18] The contraction gives rise to locally complex

profiles being difficult to predict numerically, which is why this geometry evolved as a

benchmark problem to test numerical algorithms. [19] Our new approach is tested with a

three-dimensional 3.97:1 planar contraction as it is used in the experiments of Quinzani et

al. [20] and a three-dimensional 4:1 square-square contraction, which was experimentally

examined by Sousa et al. [21]. A simplified Phan-Thien-Tanner (SPTT) model is used to

describe the viscoelastic fluid in both cases.

This work is organized as follows: In Section 3.2 the governing equations, our new interpo-

lation method for stress and the numerical algorithm are described. In Section 3.3 the new

interpolation technique is tested with a planar and a square-square contraction. The results

are compared to experimental values and numerical data from the literature. Section 3.4

closes with a summary.

3.2 Governing equations and numerical method

3.2.1 Governing equations

In this work we consider the flow of an incompressible and isothermal viscoelastic fluid. The

governing equations are the mass and momentum balance

∇ ·U = 0 (3.1)

ρ

(
∂U

∂t
+∇ · (UU)

)
= −∇p+∇ · τ (3.2)
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where U is the velocity, ρ is the density, t is time, p is pressure and τ is the total stress, which

can be written as the sum of a solvent and polymer contribution for a general Maxwell-type

fluid

τ = τS + τP (3.3)

The Newtonian law holds for the solvent contribution

τS = ηS

[
∇U + (∇U)T

]
(3.4)

where ηS is the solvent viscosity. For the polymeric contribution τP , the linear SPTT equation

may hold in this work [22](
1 +

ελ

ηP
tr (τP )

)
τP + λ

O
τP= ηP

[
∇U + (∇U)T

]
(3.5)

where ε is the extensibility parameter, λ is the relaxation time and ηP is the polymer viscosity.
O
τP denotes the upper-convected time derivative defined as

O
τP=

∂τP
∂t

+∇ · (UτP )− (∇U)T · τP − τP · ∇U (3.6)

The retardation ratio β is defined as the ratio between solvent viscosity ηS and total viscosity

η0 = ηS + ηP

β =
ηS
η0

=
ηS

ηS + ηP
(3.7)

Introducing the stress-splitting of Eq. 3.3 together with the Newtonian law Eq. 3.4 into the

momentum equation a modified Stokes problem is obtained

ρ

(
∂U

∂t
+∇ · (UU)

)
−∇ · ηS∇U = −∇p+∇ · τP (3.8)

3.2.2 Numerical method

Both-Side-Diffusion

In case of β → 0 the elliptic diffusion term in Eq. 3.8 becomes small, however, in order to

ensure numerical stability the elliptic term is required to be the dominant term over the entire

range of retardation ratios. The both-side-diffusion (BSD) [23] technique therefore introduces

an additional elliptic term proportional to ηP into the momentum equation

ρ

(
∂U

∂t
+∇ · (UU)

)
−∇ · η0∇U = −∇p+∇ · τP −∇ · ηP∇U (3.9)

37



3 Semi-implicit stress formulation for viscoelastic models: Application to three-dimensional
contraction flows

Figure 3.1: Schematic representation of the stress in a 1-D problem.

Velocity-stress decoupling

The above described model was recently implemented in the software package OpenFOAM R©

by Favero et al. [11]. OpenFOAM R© uses a non-staggered finite-volume method (FVM) and is

capable of handling not only complex mesh types such as tetrahedral and polyhedral meshes,

but also dynamic mesh techniques such as adaptive remeshing as well as prescribed and

solution-dependent mesh motions. Convective terms were discretized by the first-order up-

wind scheme due to its inherent stability benefits and the avoidance of oscillations. Diffusion

terms and the pressure gradient were evaluated by second-order linear interpolation onto cell

faces with an explicit non-orthogonal correction. Continuity was ensured by the SIMPLE

pressure-correction technique. Despite its flexibility and the implementation of the most

commonly used constitutive equations, the major drawback of this numerical algorithm is

that it is prone to produce velocity checkerboard fields, which is caused by a velocity-stress

decoupling. The reason for that can be explained as follows:

The divergence of the polymeric stress in the momentum equation is numerically evaluated

by a second-order Gaussian formula∫
VP

∇ · τPdV =
∑
f

Sf · τP,f (3.10)

where the cell face values τP,f are obtained from second-order linear interpolation. However,

this leads to decoupling between velocity and stress, which can be easily shown for a 1-D

problem (cf. Fig. 3.1)∑
f

Sf · τP,f = Sfe · τP,fe + Sfw · τP,fw

= Sfw ·
1

2
(τP,E + τP,P ) + Sfe ·

1

2
(τP,P + τP,W )

|Sfi|=1︷︸︸︷
=

1

2
(τP,E − τP,W ) (3.11)

The stress-divergence in point P , which is used to calculate the velocity in P with use of the

momentum balance, does not depend anymore on the stress value in P , but only on the stress

values of the adjacent cells E and W . A proposed solution by the group of Oliveira [6, 24, 8]

is an explicit correction to the linearly interpolated stress values similar to the standard Rhie-

Chow interpolation [7]: stresses are linearly interpolated onto the cell-faces, but terms of the

constitutive equation being proportional to the velocity gradient are evaluated directly on the

cell-face. This technique guarantees a strong coupling between velocity and stress. Although

initially having an inconsistency in the sense that converged solutions were dependent upon
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the time-step, this deficiency was eliminated in a later work by finding an interpolation, in

which the time-derivative term was fully linearly interpolated onto cell faces. [8]

Semi-implicit handling of the constitutive equation

During this work we developed a different approach, which even allows for a more implicit

handling of the constitutive equation. The technique can be applied to a variety of constitutive

equations such as the Oldroyd-B, Giesekus and FENE-type models. In this work the technique

is exemplified for the SPTT model. The derivation starts by reordering the terms of the

constitutive equation and division by the relaxation time(
1

λ
+

ε

ηP
tr (τP )

)
τP +

∂τP
∂t

+∇ · (UτP )

=
ηP
λ

[
∇U + (∇U)T

]
+ (∇U)T · τP + τP · ∇U (3.12)

Next, we cast the equation into a semi-discretized form by discretizing terms on the l.h.s.

and leaving terms on the r.h.s. as they are, which is similar to deriving the well-known

pressure-correction methods

AτPτP = HτP (τP ) +
ηP
λ

[
∇U + (∇U)T

]
+ (∇U)T · τP + τP · ∇U (3.13)

AτP denotes the diagonal coefficient formed by the contributions from the three terms on

the l.h.s. of Eq. 3.12. In the time-stepping procedure, which we use in this work, the

time derivatives are approximated with a second-order accurate three-point scheme. For a

thorough discussion we refer the reader to the work of Xue et al. [25]. In this case the diagonal

coefficient is

AτP =

(
1/λ+

ε

ηP
tr
(
τnP,P

))
VP +

3

2

VP
∆t

+ aCP (3.14)

The term aCP comprises the contributions from the convection term to the diagonal. For

simplicity, we will use a first-order upwind scheme in this work, although higher-order schemes

such as the Gamma [26] and the CUBISTA [27] scheme have been successfully tested. The

term HτP (τP ) comprises the explicit part of the inertia term and the off-diagonal convection

contributions

HτP (τP ) =
2τnP,P −

1
2τ

n−1
P,P

∆t
VP −

∑
N

aNτP,N (3.15)

The polymeric stress can be obtained by division of Eq. 3.13 with the diagonal coefficient

τP =
HτP (τP )

AτP︸ ︷︷ ︸
τ̃P

+
1

AτP

{ηP
λ

[
∇U + (∇U)T

]
+ (∇U)T · τP + τP · ∇U

}
(3.16)
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τ̃P summarizes the contribution of the three terms on the l.h.s. of Eq. 3.12 to the polymeric

stress τP . Next, we take the divergence of Eq. 3.16, because this is the relevant coupling term

between stress and velocity appearing in the momentum equation

∇ · τP =

∇ · τ̃P +∇ ·
{

1
Aτ
P

{ηP
λ

[
∇U + (∇U)T

]
+ (∇U)T · τP + τP · ∇U

}}
(3.17)

The divergence of the deformation part can be recast into a diffusion term and a correction

term stemming from the non-constant pre-factor

∇ · τP = ∇ · τ̃P +∇ · ηP
AτPλ

∇U +∇U · ∇ ηP
AτPλ

+∇ ·
{

1

AτP

{
(∇U)T · τP + τP · ∇U

}}
(3.18)

Introducing Eq. 3.18 into the momentum equation Eq. 3.9, we obtain

ρ

(
∂U

∂t
+∇ · (UU)

)
−∇ ·

(
η0 +

ηP
AτPλ

)
∇U

=

−∇p+∇ · τ̃P +∇ ·
{

1

AτP

{
(∇U)T · τP + τP · ∇U

}}
+∇U · ∇ ηP

AτPλ
−∇ · ηP∇U (3.19)

It can be seen from Eq. 3.19 that our method allows for the deformation contribution in the

constitutive equation to be treated implicitly in the momentum equation and thus allows

for a semi-implicit handling of the constitutive equation. This promotes the stability of our

numerical algorithm. The divergence of τ̃P is numerically treated as a standard divergence

term (see Eq. 3.10) with the cell-face values being obtained from linear interpolation. The

diffusion-correction term (the fourth term on the r.h.s. of Eq. 3.19) is treated as a standard

source term with second-order Gaussian integration.

Pressure-correction equation

To obtain the pressure equation, Eq. 3.19 is recast into a semi-discretized form

AU
P U = HU

P (U)−∇p+
1

ρ
∇ ·
{

1

AτP

{
(∇U)T · τP + τP · ∇U

}}
(3.20)

where the new velocity field can be obtained by division by the diagonal coefficient

U =
HU
P (U)

AU
P︸ ︷︷ ︸

Ũ

+
1

AU
P

{
−∇p+

1

ρ
∇ ·
{

1

AτP

{
(∇U)T · τP + τP · ∇U

}}}
(3.21)
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The momentum balance must also hold on cell-faces

Uf = Ũf +
1

AU
P |f

{
−∇p+

1

ρ
∇ ·
{

1

AτP

{
(∇U)T · τP + τP · ∇U

}}}
|f (3.22)

where interpolated terms are obtained from linear interpolation. A Poisson-equation for

pressure is obtained by taking the divergence and assuming that the new velocity field must

be divergence-free (i.e. ∇ ·Uf = 0)

∇ · 1
AU
P |f
∇p =

∇ · Ũf +∇ · 1
ρ AU

P |f
∇ ·
{

1
Aτ
P

{
(∇U)T · τP + τP · ∇U

}}
|f (3.23)

The last term on the r.h.s. is numerically evaluated on cell-faces. We note here that this kind

of approximation is similar to the approximation used in Eq. 3.22 and is done in all of the

pressure-correction techniques. We therefore obtain the final form of the pressure equation

∇ · 1
AU
P |f
∇p =

∇ · Ũf +∇ · 1
ρ AU

P |f
∇ ·
{

1
Aτ
P |f

{
(∇⊥f U)T · τP,f + τP,f · ∇⊥f U

}}
(3.24)

The face normal gradient is approximated with a second-order accurate scheme as (cf.

Fig. 3.1)

∇⊥feU =
UE −UP

|d|
(3.25)

where d is the distance vector between the centroids of the two adjoining cells.

Despite the fact of increasing the elliptic operator in the momentum equation, the major

advantage of our method is the strict avoidance of velocity-stress decoupling. The last step of

evaluating the stretching and rotation term of the constitutive equation on cell-faces directly

(Eq. 3.24) is therefore of major importance.

3.2.3 Numerical algorithm

In this work we use a variant of the PISO algorithm. A thorough discussion on the various

pressure-correction techniques for transient viscoelastic flow can be found in Xue et al. [25].

We found that the initial step of solving the momentum equation did not improve the

iterative convergence of the pressure equation or even impair it in creeping flow conditions.

Furthermore, this is not a necessary step to obtain the final velocity field and is thus omitted in

this work. Pressure-velocity correction is instead addressed by solving the pressure equation

only and then updating the fluxes and velocities with the new pressure guess p∗ according

to Eq. 3.22 and 3.21, respectively. The pressure equation Eq. 3.24 is solved twice with the

intermediate step of updating Ũf . A conjugate-gradient solver with AMG preconditioning

at a tolerance of 10−10 is used as the linear solver for the pressure equation. The constitutive
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equation is solved after the PISO-loop with a BiCGstab solver in conjunction with a Cholesky

preconditioner at a tolerance of 10−8. The very small tolerances of the linear solvers are

justified by the fact that we are interested in assessing the time-step dependency of the

converged solutions, similar to the work of Matos et al. [8]. Simulations were stopped, if the

residuals of all variables fall below a value of 10−8.

3.3 Results
In this section we present the simulation results for a three-dimensional planar contraction

and a square-square contraction.

3.3.1 Planar contraction

Quinzani et al. [20] examined the flow of a well-characterized polymer solution (5.0 wt-%

polyisobutylene dissolved in tetradecane) through a planar contraction in order to have a basis

of comparison to assess the predictive quality of various constitutive equations in describing

the fluid behavior in such type of flows. The contraction ratio is H1/H2 = 3.97 and the

slit width 2W in the experiments is large compared to the upstream channel height 2H1

(W/H1 = 40), which is why the geometry is commonly approximated two-dimensionally in

numerical studies, see for example Azaizez et al. [28] and Favero et al. [11]. H1 is half the

upstream channel height and H2 half the downstream channel height. Velocity and stress

profiles were attentively measured with laser-doppler velocimetry (LDV) and flow-induced

birefringence (FIB). The profiles were obtained at the center plane of the contraction (i.e.

half the slit width W/2). The scanning locations are summarized in Fig. 3.2.

Figure 3.2: Scanning positions (planar contraction); lengths are normalized with half
the downstream channel height H2.

We intend to fully capture the three-dimensionality of the flow by doing three-dimensional

simulations. Nonetheless, flow symmetry is assumed by making use of the two symmetry

planes in transversal direction. The upstream channel length is L1/H2 = 40 and the
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Table 3.1: Properties of the meshes used for the planar contraction.

M1 M2 M3

Ncells 302,400 592,440 1,020,600

∆xmin/2H2 0.0130 0.0111 0.0079

∆ymin/2H2 0.0139 0.0115 0.0091

∆zmin/2H2 0.0147 0.0127 0.0103

downstream channel length is L2/H2 = 160 in the simulations. We impose a uniform

velocity at the inlet and zero gradient for the stresses. Three meshes were used to prove

mesh independency of our results. The meshes are graded towards the solid walls, since these

are the regions where the largest gradients are to be expected. The total cell number and

normalized lengths of the smallest cell are listed in Table 3.1 for the three meshes. A detailed

isometric view of mesh M1 is shown in Fig. 3.3. Detailed views of the three meshes in the

center plane, in which the experimental profiles were measured and the simulation data is

compared to, are shown in Fig. 3.4.

Figure 3.3: Detailed isometric view of mesh M1 in the contraction area (planar
contraction).

(a) M1 (b) M2 (c) M3

Figure 3.4: Detailed view of the center plane for the three meshes (planar contraction).

A similar three-dimensional simulation of the experiments of Quinzani et al. [20] was recently

done by Mu et al. [29] using a finite-element code. However, in their study a rather coarse
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mesh was used without showing mesh convergence of the obtained results. The values of the

parameter of the SPTT used herein can be found in Mu et al. [29]. The values are ε = 0.25

and λ = 0.03 s.

In Fig. 3.5 we show an upstream velocity profile obtained by using the standard linear

interpolation with the solver developed by Favero et al. [11] and the same profile obtained

when using our improved method. One can clearly see the zig-zag-pattern close to the

wall when using a linear interpolation, while with our improved method a smooth profile

is obtained. This is the result of the strong coupling between velocity and stress. When

using the linear interpolation solver, a slight checkerboard pattern of the velocity magnitude

was visible almost in the whole domain, not only close to the wall, whereas the flow field

was completely smooth with our new method. No difference in the average simulation time

per time-step or total number of iterations needed for convergence is found between our new

interpolation technique and the standard linear interpolation. This is similar to Matos et

al. [8], who found that the total number of iterations is similar between linear interpolation

and their Rhie-Chow-type interpolation - except for the case of very small time-steps, for

which the linear interpolation diverged.

−4 −3 −2 −1 0

0

-0.01

-0.02

x/H2 [−]

U
y

[ m s

]

Figure 3.5: Comparison of the velocity component Uy obtained by using the standard
linear interpolation and our improved method at line b-1 for mesh M1 (planar
contraction).
( ): standard linear interpolation, ( ): improved method.

We now turn to the comparison with the experimental profiles of Quinzani et al. [20] and

the simulations of Mu et al. [29]. The results are shown in Figs. 3.6 - 3.16. Our results

are clearly converged for all profiles and flow variables under consideration. In Fig. 3.6 the

vertical velocity profiles are shown. When approaching the contraction area, the fluid gets

accelerated in the center while decelerating in the wall-near regions. Our predicted profiles are

in quantitative agreement with the measurements of Quinzani et al. [20], while the velocity in

the center of profile a-1 predicted by Mu et al. [29] perceivably deviates from the measurements

and Mu et al. only obtain qualitative agreement. The horizontal velocity profiles are in good

agreement with the experiments (cf. Fig. 3.7). There is a noticeable deviation from the results

of Mu et al. [29] at line b-1 close to the reentrant corner. In the downstream channel, the
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axial velocity profile is slightly overpredicted in the center of the channel, however, not to

such an extent as in the simulations of Mu et al. [29], see Fig. 3.8. Comparing line c-3 to

the analytical solution of Cruz et al. [30] for fully developed channel flow of a SPTT fluid

we find a qualitative agreement. The reason for the lack of quantitative agreement is due

to our simulations being performed for a rectangular channel rather than a two-dimensional

channel. The pressure gradient in the analytical solution was chosen such that the average

velocities in the analytical solution and the simulation are equal. The agreement with the

analytical solution lets us conclude that deviations from the measurements must stem from a

mismatching of the assumed rheology with the real fluid. The upstream shear stress profiles

(cf. Fig. 3.9 and 3.10) are in very good agreement with the experimental profiles, except

for the maximum value of profile a-1, which is slightly overpredicted by our simulation. We

find that our simulations are generally in better agreement with the experimental data than

the results of Mu et al. [29] for all upstream shear stress profiles. The downstream shear

stress profile shown in Fig. 3.11 is in qualitative agreement with the experimental data with

some distinct deviations, particularly in the wall-near region and for the profiles close to the

contraction area. The axial shear stress profiles are again in almost quantitative agreement

with the experimental values (cf. Fig. 3.12), whereas the results of Mu et al. [29] are only in

qualitative agreement with the experimental data. The maximum value of the shear stress

found at the reentrant corner decreases towards the center (line d-2), where it has a local

maximum and further downstream increases to a constant value. In the centerline (line

d-3), no local overshoot can be found for the shear stress. The vertical profile of the first

normal stress difference N is also in very good agreement with the experimental data, see

Fig. 3.13. Our predicted maximum value in the center for the two lines a-1 and a-2 close to

the contraction is in much better agreement with the experimental value than the predictions

of Mu et al. [29]. However, for the horizontal profiles in the upstream channel (Fig. 3.14), the

vertical downstream profiles (Fig. 3.15) and the axial profiles (Fig. 3.16) we observe distinct

deviations for all profiles from the measurements.
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Figure 3.6: Comparison between measured and predicted velocity in the upstream
section (planar contraction).
( ): measured at a-1, ( ): measured at a-2, ( ): measured at a-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.7: Comparison between measured and predicted velocity in the upstream
section (planar contraction).
( ): measured at b-1, ( ): measured at b-2, ( ): measured at b-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.8: Comparison between measured and predicted velocity in the downstream
section (planar contraction).
( ): measured at c-1, ( ): measured at c-2, ( ): measured at c-3, ( ): analytical
solution of Cruz et al., ( ): simulation of Mu et al. [29], ( ): M1, ( ): M2,
( ): M3.
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Figure 3.9: Comparison between measured and predicted shear stress in the upstream
section (planar contraction).
( ): measured at a-1, ( ): measured at a-2, ( ): measured at a-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.10: Comparison between measured and predicted shear stress in the upstream
section (planar contraction).
( ): measured at b-1, ( ): measured at b-2, ( ): measured at b-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.11: Comparison between measured and predicted shear stress in the down-
stream section (planar contraction).
( ): measured at c-1, ( ): measured at c-2, ( ): measured at c-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.12: Comparison between measured and predicted shear stress in the down-
stream section (planar contraction).
( ): measured at d-1, ( ): measured at d-2, ( ): measured at d-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.13: Comparison between measured and predicted first normal stress differ-
ence in the upstream section (planar contraction).
( ): measured at a-1, ( ): measured at a-2, ( ): measured at a-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.14: Comparison between measured and predicted first normal stress differ-
ence in the upstream section (planar contraction).
( ): measured at b-1, ( ): measured at b-2, ( ): measured at b-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.15: Comparison between measured and predicted first normal stress differ-
ence in the downstream section (planar contraction).
( ): measured at c-1, ( ): measured at c-2, ( ): measured at c-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.16: Comparison between measured and predicted first normal stress differ-
ence in the downstream section (planar contraction).
( ): measured at d-1, ( ): measured at d-2, ( ): measured at d-3, ( ): simulation
of Mu et al. [29], ( ): M1, ( ): M2, ( ): M3.

3.3.2 Square-square contraction

Alves et al. [31] and later Sousa et al. [21] visualized the flow of a viscoelastic fluid through a

square-square contraction with particle image velocimetry (PIV) and streak line photography.

The fluid used in their experiments is a solution composed of water and glycerol, which is

doped with PAA. The SPTT fit is listed in Table 3.2. In the work of Sousa et al. they

considered four different contraction ratios, however, we will only focus on the results for

the contraction ratio of 2H1/2H2 = 4 in that work. Vortex lengths and axial velocity

profiles at the centerline were measured as a function of the Deborah number at creeping

flow conditions. Moreover, they proposed a flow pattern map with different flow regimes

ranging from Newtonian-like flow, vortex enhancement, diverging streamlines to unsteady

flow.

Table 3.2: Physical properties of the fluid used in the square-square contraction. [21]

ρ
[

kg
m3

]
ηS

[
kg
m·s

]
ηP

[
kg
m·s

]
λ [s] ε [-]

1156 0.03 1.62 32 0.06

The upstream and downstream channel lengths in the simulation are chosen to be L1/H2 = 40

and L2/H2 = 160, respectively. Flow symmetry is again assumed by making use of the

symmetry planes in transversal direction, although we are aware of the fact that with this

simplification we restrict ourselves to the steady flow regions, which ranged up to a Deborah

number of approximately De ≈ 300 for the 4:1 contraction ratio in the experiments. A

uniform velocity was assumed at the inlet and a zero gradient for the stresses. The mesh

properties are listed in Table 3.3. A detailed isometric view of mesh M1 at the contraction is

shown in Fig. 3.17 and the center planes of the three meshes are shown in Fig. 3.18.
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Table 3.3: Properties of the meshes used for the square-square contraction.

M1 M2 M3

Ncells 31,590 114,660 388,962

∆xmin/2H2 0.0216 0.0148 0.0100

∆ymin/2H2(= ∆zmin/2H2) 0.0220 0.0144 0.0096

Figure 3.17: Detailed isometric view of mesh M1 in the contraction area (square-
square contraction).

(a) M1 (b) M2 (c) M3

Figure 3.18: Detailed view of the center plane for the three meshes (square-square
contraction).

Simulations were performed for thirteen different Deborah numbers De = λU2/H2 in the

experimentally determined range of steady flows, with a maximum value of De = 310.59.

U2 denotes the average velocity in the downstream channel. To prove the robustness of our

algorithm, we note that stable and convergent simulations were continued up to a Deborah

number of De = 700 without loss of positive definiteness of the conformation tensor. This

was ensured by verifying det(c) ≥ 0. However, we note that in this case we are already in the

region of unsteady flows, which we do not address correctly with making use of symmetry

planes. Simulations were stopped at De = 700 due to clearly leaving the steady region,

however, we note that no upper limit in the Deborah number was found for this case. Velocity
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checkerboard fields were not present in any of the simulations even at those very large Deborah

numbers. Since we are interested in the steady solutions in this work, we also examined

the use of under-relaxing the momentum equation and the pressure in our time-stepping

algorithm. The under-relaxation parameter were 0.8 for both. This significantly helped to

speed up the simulations to reach the stopping criteria, since larger time-steps were realizable.

Simulations times forDe = 108 and a time step corresponding to a maximum Courant number

of Comax ≤ 0.5 are approximately 195 s simulation time per second of real-time for mesh M1,

25 min for mesh M2 and 2.5 h for mesh M3. The general trend of decreasing maximum

Deborah number with mesh refinement could not be verified, since simulations were stable

for all three meshes and Deborah numbers considered, however, we expect our algorithm to

behave in a similar way.

Fig. 3.19 shows the dimensionless vortex length χ = LR/2H1 as a function of the maximum

Courant number Comax =
(

∆t U
∆x

)
max

, which was used to determine the time-step ∆t of our

time-stepping algorithm. LR is the vortex length at the upstream wall. The figure illustrates

the consistency of our method in the sense that the final steady-state recirculating flow length

is independent of the time-step ∆t. Thus, the final formulation for the interpolation of the

stress onto cell-faces is proved to be invariant of the time-step ∆t, similar to the formulation

found in Matos et al. [8]. For larger Deborah numbers, however, we note that the maximum

Courant number that can be used diminishes in view of obtaining stable and convergent

solutions.
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Figure 3.19: Dimensionless vortex length χ as a function of the maximum Courant
number Comax for a Deborah number of De = 5.9 (square-square contraction).

Fig. 3.20 illustrates the dependence of the dimensionless vortex length χ on the Deborah

number. The predicted vortex lengths are in very good agreement with both the measured

and simulated values of Sousa et al. [21] in the Newtonian-like flow regime (De . 1.5) and

the vortex enhancement region (1.5 . De . 15). In the Newtonian-like flow regime the

elastic forces are negligible small and the fluid behaves similar to an ideal Newtonian fluid.

In the vortex enhancement region the vortex length is significantly increasing due to the

strong elastic effects. In the regime of diverging streamlines (15 . De . 300) the simulated
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recirculating flow lengths perceivably depart from the measurements. In the experiments the

effect of diverging streamlines occurred simultaneously with the vortex enhancement effect.

Diverging streamlines were not obtained numerically and, moreover, a saturation effect was

found numerically in the sense that the rate at which the recirculating flow increases with

decreasing Deborah number. This is in contrast to the experiments, in which an almost linear

increase can be found. The predicted vortex lengths are sufficiently independent of the mesh

as can be seen in Fig. 3.19 and a better agreement with mesh refinement can be excluded.

We believe that the deviation is due to the deficiency of the SPTT model to describe this

flow behavior.

10−2 10−1 100 101 102 103
0.1

1

10

De

χ

Figure 3.20: Dimensionless vortex length as a function of the Deborah number
(square-square contraction).
( ): measurements of Sousa et al. [21], ( ): simulation of Sousa et al. [21],
( ): M1, ( ): M2, ( ): M3.

In Fig. 3.21 we present the axial velocity profiles at the centerline for three different Deborah

numbers in the diverging streamlines regime. When approaching the contraction area in

the upstream channel, there is a point at which the fluid accelerates. At the contraction a

distinct overshoot in the axial velocity is present after which the fluid decelerates again until

reaching developed flow conditions. With increasing elastic effects (or Deborah number) the

point, where the fluid accelerates, significantly shifts upstream, the peak becoming more

distinct and the downstream length, at which developed flow conditions are found, is shifted

downstream. For the smallest Deborah number, both the point at which the fluid accelerates

and the upstream slope is predicted quite good, however, there is no pronounced peak

at the contraction but a smooth overshoot, which stretches out far into the downstream

channel. However, it is noted that for lower Deborah numbers a sharp peak is predicted at

the contraction (cf. Fig. 3.22). At larger Deborah numbers, the point of fluid acceleration

is perceivably underpredicted. This is in agreement with the results shown in Fig. 3.20.

The point, where developed flow conditions are reached is shifted far downstream in the

simulations when comparing to the experimental data.
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Figure 3.21: Dimensionless axial velocity profile at the centerline of the square-square
contraction.
( ): measurements of Sousa et al. [21], ( ): M1, ( ): M2, ( ): M3.
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Figure 3.22: Dimensionless axial velocity profile at the centerline of the square-square
contraction.
( ): M1, ( ): M2, ( ): M3.

3.4 Conclusions
In this work we developed a new approximation for the divergence of stress in the collocated

finite-volume method. This technique not only completely avoids the presence of unphysical

checkerboard patterns of velocity, but also allows for a semi-implicit handling of the constitu-

tive equation, which promotes the numerical stability of our algorithm. The method is proved

to be consistent in the sense that converged solutions are independent of the time-step ∆t.

Applying the method to the simulation of three-dimensional planar and square-square con-

traction flows of a SPTT-fluid, we were able to obtain stable and accurate solutions over a

wide range of Deborah numbers. Mesh convergence of the results was shown in all cases. A

comparison of the numerical predictions with the experimental data for the planar contraction

showed generally good agreement for velocity, shear-stress and first-normal stress difference

with the agreement being better in the upstream channel than in the downstream channel.

The simulations of the flow through a square-square contraction are in good agreement with

the experimental data in the Newtonian-like and vortex enhancement flow regime. However,

in the diverging streamline regime distinct deviations between simulation and experiment

were found, which we assume to be caused by a deficiency of the SPTT model to describe

the flow behavior in this flow regime.
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3.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

aN Off-diagonal coefficient stemming from convection term

aCP Diagonal coefficient stemming from convection term of cell P

AU
P Diagonal coefficient of semi-discretized momentum equation

of cell P

AτP Diagonal coefficient of semi-discretized constitutive equation

of cell P

c Conformation tensor [−]

d Distance between two adjoining cell centers [m]

H1 Upstream channel height [m]

H2 Downstream channel height [m]

HU
P Off-diagonal coefficients and source-vector of semi-

discretized momentum equation of cell P

HτP Off-diagonal coefficients and source-vector of semi-

discretized constitutive of cell P

L1 Upstream channel length [m]

L2 Downstream channel length [m]

LR Vortex length [m]

N Number of adjacent cells [−]

or first normal stress difference [ kg
ms2

]

p Pressure [ kg
ms2

]

Sf Surface area normal vector at cell face f [m2]

Sfe Surface area normal vector at cell face fe [m2]

Sfw Surface area normal vector at cell face fw [m2]

U Velocity [ms ]

UE Velocity at cell E [ms ]

Uf Velocity at cell-face f [ms ]

UP Velocity at cell P [ms ]

U2 Average downstream channel velocity [ms ]
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Symbol Description Unit

Ux Axial velocity component [ms ]

Uy Vertical velocity component [ms ]

Ũ Semi-discretized velocity contribution [ms ]

t Time [s]

VP Volume of computational cell P [m3]

W Slit width [m]

x Position [m]

y Position [m]

Greek Symbols

Symbol Description Unit

∆t Time step size [s]

∆x Characteristic length of computational cell [m]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

∇⊥f Face normal gradient at cell face f [m−1]

∇⊥fe Face normal gradient at cell face fe [m−1]

ε Extensibility parameter of SPTT model [−]

η0 Zero shear-rate viscosity [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηS Solvent viscosity [ kgms ]

λ Relaxation time [s]

ρ Density [ kg
m3 ]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τP,E Polymeric stress tensor in computational cell E [ kg
ms2

]

τP,f Polymeric stress tensor at cell face f [ kg
ms2

]

τP,fe Polymeric stress tensor at cell face fe [ kg
ms2

]

τP,fw Polymeric stress tensor at cell face fw [ kg
ms2

]

τP,N Polymeric stress tensor in computational cell N [ kg
ms2

]

τP,P Polymeric stress tensor in computational cell P [ kg
ms2

]

τP,W Polymeric stress tensor in computational cell W [ kg
ms2

]
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Symbol Description Unit

τ̃P Semi-discretized stress contribution [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

τxx Axial normal stress [ kg
ms2

]

τxy Shear stress [ kg
ms2

]

Subscripts, Superscripts and Oversymbols

Symbol Description

det(Q) Determinat of matrix Q

QE Property Q in computational cell E

Qf Property Q at cell face f

Qfe Property Q at cell face fe

Qfw Property Q at cell face fw

Qmax Maximum of Q in computation domain

Qn−1 Time level n− 1

Qn Time level n

Qn+1 Time level n+ 1

QP Property Q in computational cell P

QT Transpose of matrix Q

QW Property Q in computational cell W

Q∗ Estimate of variable Q
O
Q Upper-convected time derivative

Q̃ Semi-discretized contribution

Q|f Q linearly interpolated to cell face f

Nondimensional Groups

Symbol Description Definition

β Retardation factor ηS
η0

Co Courant number ∆tU
∆x

De Deborah number λU2
H2

χ Dimensionless vortex length LR
2H1
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Abbreviations

Abbreviation Description

AMG Algebraic multigrid

BiCGstab Bi-conjugate gradient stabilized

BSD Both-side-diffusion

CUBISTA Convergent and universally bounded interpolation scheme for treatment of

advection

FENE Finite extensible non-linear elastic

FIB Flow-induced birefringence

FVM Finite volume method

LDV Laser-doppler velocimetry

l.h.s. Left hand side

r.h.s. Right hand side

PAA Poly acrylic acid

PISO Pressure implicit with splitting of operator

PIV Particle image velocimetry

SIMPLE Semi-implicit method for pressure linked equations

SPTT Simplified Phan-Thien-Tanner
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3.C Summary
In this chapter a new formulation for the divergence of the viscoelastic stress for the collocated

(cell-centered) finite-volume method is proposed. The reformulation allows for a semi-implicit

handling of the constitutive equation, which promotes the numerical stability. Simulations

of a three-dimensional planar and a square-square contraction show the robustness of this

technique. The new formulation is completely devoid of unphysical checkerboard patterns

of the velocity, which are present when using standard approximations for the divergence in

conjunction with non-staggered grid methods. The consistency is ensured by giving results,

which are independent of the time-step ∆t for steady-state problems. The results for the

planar contraction are generally in good agreement with experimental data for velocity, shear

stress and first-normal stress difference. Stable simulations for the square-square contraction

could be performed over a wide range of Deborah numbers. The vortex length is in agreement

with the experimental results in the Newtonian-like and vortex-enhancement flow regime,

however, the results deviate from the experiments in the diverging streamline regime.
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4 Numerical simulation of the viscoelastic

flow in a three-dimensional lid-driven cav-

ity using the log-conformation reformula-

tion in OpenFOAM R©
4.1 Introduction
Simulation of complex viscoelastic flows at high Weissenberg numbers is an outstanding

challenge. Fortunately, the last years provided significant progress in developing stable

and accurate numerical algorithms. [1, 2, 3] Benchmark problems used in academia to test

numerical algorithms include contraction flows [4, 3], flows around spheres [5, 6] and cavity

flows [2, 7, 8] besides others.

Most of the work on cavity flows done so far was solely theoretically motivated, which is

mainly because remarkably complex flow patterns develop in this very simple geometry. [9]

Nevertheless, predicting and understanding the flow inside cavities is also of particular

industrial relevance for short-dwell and flexible blade coaters. [10] Numerical simulation of the

flow of a Newtonian fluid inside a cavity is straightforward and literature on that is exhausting,

e.g. Sheu and Tsai [11], who studied the steady flow topology in a three-dimensional lid-

driven cavity with a finite-element method at a Reynolds number of Re = 400. In contrast,

predicting the flow of a viscoelastic fluid in a cavity is demanding and literature about that

is few so far. A reason for the little interest may partly be due to the comparatively very

low Weissenberg number that can be achieved. For example, Demir [12] studied the transient

flow of a viscoelastic fluid governed by the upper convected Criminale-Ericson-Filbey (CEF)

equation and the maximum Weissenberg number obtained was only Wemax = 0.01 for all

Reynolds numbers considered. Similar to others, Demir [12] imposed a uniform velocity at

the moving lid, which leads to discontinuities at the two upper corners. This limits the

maximum attainable Weissenberg number typically to below 0.2. [13] More recent works

impose regularized boundary conditions in order to have a vanishing velocity and velocity

gradient at the two upper corners, see for example Fattal and Kupferman [7]. However, a

thin boundary layer close to the lid and a singular point for the conformation tensor at the

downstream upper corner remain, which still leave this problem to be difficult and pose an

upper limit for the Weissenberg number. [8]

Fattal and Kupferman [2, 7] proposed the so-called log-conformation reformulation (LCR),

in which a logarithmized evolution equation for the conformation tensor is solved instead

of solving the constitutive equation itself. This removes the exponential variation of the

stress (and also the conformation tensor) at stagnation points. The new variable (the
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logarithm of the conformation tensor) can better be approximated by polynomial-based

interpolation schemes than the exponentially behaving conformation tensor (or stress) itself.

A beneficial side-effect of this technique is that the positive-definiteness of the conformation

tensor is always preserved. Fattal and Kupferman tested this technique for a two-dimensional

viscoelastic cavity flow of a FENE-CR [2] and Oldroyd-B [7] fluid and they presented stable

simulations up to a Weissenberg number of 5. Oscillations in the kinetic energy show the loss

of convergence and the onset of a transient flow pattern for Weissenberg numbers above 3.

Pan and Hao [14] applied the log-conformation technique in operator-splitting form to their

finite-element code and simulated the two-dimensional Stokes flow of a viscoelastic fluid in a

cavity up to a Weissenberg number of 3. They solve the logarithmized evolution equation for

the conformation tensor on a coarser grid than the velocity, similar as it was done in the work

of Fattal and Kupferman [2, 7]. This reduces the number of high frequency modes, which,

in turn, further stabilizes the solution of the logarithmized equation. A first-order upwind

difference scheme was used for discretizing the advection term of the constitutive equation in

that work. Upwind differencing, however, is known to be least accurate as it introduces a large

amount of numerical diffusion, although this helps to stabilize the solution and significantly

increases the maximum achievable Weissenberg number. Oliveira [9] used a finite-volume

method to simulate the steady flow and the transient recoil of a FENE-CR fluid with a

regularized boundary condition and a comparatively large retardation ratio of 0.79. The

maximum Weissenberg number was 10 for creeping flow conditions (Re = 0). The advection

term of the constitutive equation was discretized with the convergent and highly accurate

CUBISTA scheme, which is formally of order three. [15] Yapici et al. [16] used a finite-volume

method code, in which they also use the upwind scheme for treating the convective term in

the constitutive equation. They performed simulations for the flow of an Oldroyd-B fluid in

a cavity at different Reynolds numbers and presented results up to a Weissenberg number of

1 for creeping flow conditions.

In this work, the log-conformation reformulation is implemented in the collocated finite-

volume based open-source software OpenFOAM
R©

. Results are presented for the flow of an

Oldroyd-B fluid in a startup Poiseuille flow and a three-dimensional cavity at creeping flow

conditions. The remaining of this work is organized as follows: in Section 4.2 the governing

equations are presented and the theory of the log-conformation approach is explained. In

the following Section 4.3 the numerical implementation in OpenFOAM
R©

is described. In

Section 4.4 the results for the startup of Poiseuille flow and the three-dimensional lid-driven

cavity are presented and discussed. Finally, in Section 4.5 this work ends with a summary.
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4.2 Mathematical background

4.2.1 Governing equations

We consider the flow of an incompressible and isothermal viscoelastic fluid, which is gov-

erned by the Oldroyd-B constitutive equation. [17] The balance equations are the mass and

momentum balance

∇ ·U = 0 (4.1)

ρ

(
∂U

∂t
+∇ · (UU)

)
= −∇p+∇ · τ (4.2)

where U is the velocity, ρ is the density, t is time, p is pressure and τ is the extra stress

tensor, which can be written as the sum of a solvent and polymer contribution

τ = τS + τP (4.3)

For the solvent contribution the Newtonian law holds

τS = ηS

[
∇U + (∇U)T

]
(4.4)

where ηS is the solvent viscosity. For the polymeric contribution τP , the Olroyd-B equation

may hold in this work, although it should be noted here that numerous other constitutive

equations, such as the Giesekus, SPTT or FENE-type models as well as multi-mode models

are forthcoming within this framework. The Oldroyd-B equation is defined as follows

τP + λ
O
τP= ηP

[
∇U + (∇U)T

]
(4.5)

where λ is the relaxation time and ηP is the polymer viscosity.
O
τP denotes the upper-

convected time derivative

O
τP≡

∂τP
∂t

+∇ · (UτP )− (∇U)T · τP − τP · ∇U (4.6)

The retardation ratio β is defined as the ratio between solvent viscosity ηS and total viscosity

η0 = ηS + ηP

β =
ηS
η0

=
ηS

ηS + ηP
(4.7)

The Oldroyd-B equation may be rewritten in terms of the conformation tensor c

τP =
ηP
λ

(c− I) (4.8)
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where I is the identity matrix. Using Eq. 4.8 the constitutive equation Eq. 4.5 becomes

∂c

∂t
+∇ · (Uc)− (∇U)T · c− c · ∇U =

1

λ
(I− c) (4.9)

Instead of Eq. 4.5, Eq. 4.9 can be solved and subsequently the polymeric stress obtained with

use of Eq. 4.8.

4.2.2 Log-conformation approach

The conformation tensor c is required to be strictly positive definite for the evolution equation

Eq. 4.9 to be well-posed. In flows of high elasticity, this property may be violated, which

often results in the numerical computation to fail. The main issue was shown for a 1-D

problem [7]: in areas of high deformation rates the stretching and relaxation terms exhibit

exponential growth. The only term to balance this growth is the convection term. However,

since the convection term is based on polynomial interpolations, the convection term fails

to balance the exponential amplification, which then results in the numerical simulation to

blow up. To cope with this instability, Fattal and Kupferman [2] suggested a logarithmic

transformation of Eq. 4.9, which became known as the ’log-conformation approach’ and will

shortly be outlined in the following.

Since the conformation tensor c is a symmetric positive-definite (SPD) matrix, it can be

diagonalized according to

c = R ·Λ ·RT (4.10)

Λ is a diagonal matrix consisting of the three eigenvalues of c on the diagonal and R is an

orthogonal matrix, which is formed by the three eigenvectors of c. Any diagonal matrix can

be logarithmized by taking the logarithm element-wise on the diagonal. The logarithm of the

conformation tensor c is thus defined as

Ψ = log (c) = R · log (Λ) ·RT (4.11)

Accordingly, Ψ is now our new variable. The main feature of the log-conformation reformu-

lation is the following decomposition of the velocity gradient ∇U

∇U = Ω + B + N · c−1 (4.12)

where Ω and N are both anti-symmetric matrices. B is a symmetric and traceless matrix,

which commutes with c. Ω accounts for rotations, B accounts for pure extensions and the

last term of Eq. 4.12 acts as a ’dummy part’. [4] Introducing this decomposition into Eq. 4.9,

one easily obtains

∂c

∂t
+∇ · (Uc)− (Ω · c− c ·Ω)− 2B · c =

1

λ
(I− c) (4.13)
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In order to obtain the matrices Ω and B the velocity gradient is first rotated into the principal

axes of the conformation tensor c [18]

RT · ∇U ·R = RT ·Ω ·R + RT ·B ·R + RT ·N · c−1 ·R (4.14)

For a three-dimensional flow problem we subsequently define

M̃ =


m̃xx m̃xy m̃xz

m̃yx m̃yy m̃yz

m̃zx m̃zy m̃zz

 = RT · ∇U ·R (4.15)

The matrices Ω and B can now be obtained by

Ω = R ·


0 ωxy ωxz

ωyx 0 m̃yz

ωzx ωzy 0

 ·RT , B = R ·


m̃xx 0 0

0 m̃yy 0

0 0 m̃zz

 ·RT (4.16)

where ωij = (Λjjm̃ij + Λiim̃ji) / (Λii − Λjj). In case of Λii = Λjj this would result in an

undefined division by zero. Fortunately, this is only the case for the first time-step when

c = I. In that case, we set Ω = 0 and B = 1/2
[
∇U + (∇U)T

]
. Finally, we can rewrite

Eq. 4.13 in terms of our new variable Ψ:

∂Ψ

∂t
+∇ · (UΨ)− (Ω ·Ψ−Ψ ·Ω)− 2B = R ·

[
1

λ

(
Λ−1 − I

)]
·RT (4.17)

After solving this equation the inverse transformation can be applied. The newly obtained

Ψ is decomposed according to

Ψ = R ·ΛΨ ·RT (4.18)

and the conformation tensor can be calculated by

c = exp (Ψ) = R · exp (ΛΨ) ·RT (4.19)

It is emphasized here that the relation between the eigenvalues of the conformation tensor Λ

and the eigenvalues of the working variable ΛΨ is

Λ = exp (ΛΨ) (4.20)

while the eigenvectors R are the same for both c and Ψ. This is relevant in view of

implementing an efficient numerical algorithm, which is described in the following chapter.

One of the main advantages of the log-conformation is the strict positive-definiteness of the

conformation tensor. This will be ensured even on the discrete level. Thereby, the high

67



4 Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using
the log-conformation reformulation in OpenFOAM R©

Weissenberg number instability is removed. [7] The positive-definiteness can be verified by

checking det(c) ≥ 0.

4.3 Numerical method
In this section we seek to describe the numerical method developed in this work. The above

described model is implemented in the software package OpenFOAM R© and the developed

solver can be thought of a further-development of the initial work by Favero et al. [19] and

our continuative paper [20].

4.3.1 Discretization schemes

The advection term in the constitutive equation will be discretized either by the upwind

scheme or by the CUBISTA scheme. The upwind scheme is first-order accurate and known

to introduce an excessive amount of numerical diffusion, although it is highly stable. [21] For

most complex problems it is inadequate and should generally be avoided. The CUBISTA

convection differencing scheme developed by Afonso et al. [15] is a high-accuracy scheme

specially developed for the convection term of viscoelastic constitutive equations. The scheme

is based on the third-order QUICK scheme and is formally of order three on uniform meshes

and smooth flows. It can be described in Sweby’s diagram [22] by

ϕ(r) = max {0,min (1.5, 1.5r, 0.75 + 0.25r)} (4.21)

where ϕ is the flux limiter and r is the ratio of successive gradients of the interpolated

variable φ. [15] Jasak et al. [23] introduced a modification in order to avoid the need for

determining the value φU in the far upwind cell, which is impractical for unstructured meshes.

With this modification r is calculated from

r = 2
d · (∇φ)C
φD − φC

− 1 (4.22)

where d is the distance vector between node C and the downwind node D. The face value

φf is then blended with ϕ(r) between the face value obtained by upwind differencing φf,UD

and the face value obtained by central differencing φf,CD

φf = (1− ϕ)φf,UD + ϕφf,CD (4.23)

In this way the convection term is discretized fully implicitly as it only contributes to the

matrix but not to the source vector. This implementation is in contrast to the deferred

correction approach used in Afonso et al. [15], in which the part corresponding to the upwind

scheme is discretized implicitly, while the remaining higher-order part is discretized explicitly,

thereby ensuring diagonal dominance. The CUBISTA scheme in the deferred correction
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approach was recently applied to the convection term in the log-conformation formulation

within the collocated finite-volume framework by Afonso et al. [24].

The convection term in the momentum balance is negligible in all simulations of this work.

Nevertheless, the term is retained and discretized with the same scheme as the one used in

the constitutive equation.

The time derivatives appearing in the momentum and logarithmized constitutive equation are

discretized with a generalized three-point scheme, also known as ’Gear’ scheme. This scheme

is second-order accurate in time, however, it increases the storage requirements due to the

need of storing the variables at steps n and n − 1. This scheme was thoroughly evaluated

by Xue et al. [25] for a transient Poiseuille flow of a viscoelastic fluid. The generalized

three-point scheme was found to have the smallest relative error and allowed the largest

time-step in their simulations. At the first time-step, however, only the initial conditions are

known and the variables n − 1 do not exist yet. Due to that, the implicit Euler scheme is

used for the first time-step. The diffusion term in the momentum balance is discretized by

second-order accurate linear interpolation in conjunction with Gaussian integration. In case

of non-orthogonal meshes a correction approach is used as being explained in Jasak [26] in

order to retain second-order accuracy. A second-order Gaussian formula for source terms (all

terms but the inertia and convection term in Eq. 4.17) is applied. The velocity gradient,

which must first be computed before doing the decomposition shown in Eq. 4.12, is also

calculated using a second-order accurate Gauss formula based on linear interpolations.

4.3.2 Momentum equation discretization

Introducing the stress-splitting of Eq. 4.3 together with the Newtonian law Eq. 4.4 into the

momentum equation and discretizing the time derivative results in

ρ

(
3

2

Un+1

∆t
+∇ ·

(
Un+1Un+1

))
−∇ · ηS∇Un+1

=

−∇pn+1 +∇ · τn+1
P + ρ

(
2Un − 1

2Un−1

∆t

)
(4.24)

In case of creeping flow conditions (Re → 0) and negligible solvent contributions (ηS → 0)

Eq. 4.24 becomes singular. To ensure Eq. 4.24 to be solvable and allow for an update of the

velocity field an additional elliptic term proportional to ηP can be introduced

ρ

(
3

2

Un+1

∆t
+∇ ·

(
Un+1Un+1

))
−∇ · η0∇Un+1

=

−∇pn+1 +∇ · τn+1
P −∇ · ηP∇Un+1 + ρ

(
2Un − 1

2Un−1

∆t

)
(4.25)
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This is known as the both-side-diffusion (BSD) technique [25] and is often used to stabilize

simulations even in non-creeping flow conditions and non-zero solvent viscosities. The BSD,

however, is not a proper choice for transient problems as it introduces a large portion of

transient diffusion and may cause fictitious responses. [25] The problem exists if the diffusion

terms on the l.h.s. and r.h.s. do not cancel out exactly. In that case, the resulting error is

diffusion-like in time. This may either be because velocities of different time-steps are used

for the two terms (Un+1 for the term on the l.h.s. and Un for the term on the r.h.s) or if -

although using Un+1 for both terms as shown in Eq. 4.25 - no convergence is achieved within

a time-step. However, if convergence is achieved the two terms cancel out exactly and the

negative side-effects of BSD can be avoided. A further discussion follows in Section 4.3.5.

For solving the momentum balance we need to impose boundary conditions for τP . Although

no PDE is solved for τP (it is calculated from Eq. 4.8) we need to impose boundary conditions

in order to be able to calculate the divergence of τP with use of the Gauss theorem. On

solid walls we will therefore either assign a second-order extrapolation boundary condition

as described in Habla et al. [27] or a zero gradient boundary condition. The second-

order extrapolation method is generally used since it is more accurate (but less stable). If

stability is an issue we reduce the order of the extrapolation to first-order, which is done by

neglecting terms proportional to the first spatial derivative of τP . Eventually, this first-order

extrapolation is equal to the zero gradient boundary condition.

4.3.3 Flux formulation and pressure equation

Terms on the l.h.s. of Eq. 4.24 or 4.25 are evaluated implicitly and terms on the r.h.s. explicitly.

A pressure-correction equation is obtained by casting these equations into a semi-discretized

form, in which all terms but the pressure gradient are discretized. The time-indicator n+ 1

is dropped in the following for readability. We can write

AU
P U = HU

P (U)−∇p (4.26)

The term HU
P (U) comprises the off-diagonal coefficients and the (explicit) source terms. By

division with the diagonal coefficient AU
P the velocity can be written as

U =
HU
P (U)

AU
P

− 1

AU
P

∇p (4.27)

After linear interpolation, the flux through cell-faces can be obtained by taking the dot

product with the cell-face area vector Sf

F = U · Sf ≈
HU
P (U)

AU
P

· Sf − |Sf |
1

AU
P

∇⊥f p (4.28)
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The linear interpolation onto the cell-faces is denoted by the overbar. Finally, taking the

divergence and making use of the mass balance, Eq. 4.1, which must also hold on cell-faces,

we arrive at an equation for pressure

∇ ·
(
|Sf |

1

AU
P

∇⊥f p
)

= ∇ ·

(
HU
P (U)

AU
P

· Sf

)
(4.29)

4.3.4 Constitutive equation discretization

Eq. 4.17 is discretized as follows

3

2

Ψn+1

∆t
+∇ ·

(
Un+1Ψn+1

)
=(
Ωn+1 ·Ψn+1 −Ψn+1 ·Ωn+1

)
+ 2Bn+1

+Rn+1 ·
[

1

λ

(
Λn+1−1 − I

)]
·Rn+1T +

2Ψn − 1
2Ψn−1

∆t
(4.30)

where the discretization of the convective term with the CUBISTA scheme is omitted due

to readability. Terms on the l.h.s. are discretized implicitly, while terms on the r.h.s. are

discretized explicitly. When doing outer-iterations per time-step, the terms belonging to

time-step n + 1 on the r.h.s. are calculated with the most recent guess for the respective

variable. Due to the hyperbolic nature of Eq. 4.30 we only need to assign boundary conditions

at the inlet, but not at solid walls and outlets.

4.3.5 Solution algorithm

In view of developing a code suitable for the simulation of time-dependent viscoelastic flows,

we adopted a PISO algorithm. Given known Un, pn, τn, Λn and Rn (as well as Un−1 and

τn−1 to calculate the Gear time-derivative) the algorithm can be summarized as follows

1.) (optionally) Solve the momentum equation to obtain a new velocity guess U∗ (Eq. 4.24

or Eq. 4.25).

2.) Calculate AU
P and HU

P (U∗) (Eq. 4.26).

3.) Solve the pressure equation (Eq. 4.29) to obtain a new pressure guess p∗.

4.) Correct the velocity with p∗ to obtain U∗∗ (Eq. 4.27).

5.) Update HU
P (U∗∗) using the new velocity guess U∗∗.

6.) Solve the pressure equation to arrive at pn+1.
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7.) Correct the velocity with pn+1 to obtain Un+1 (Eq. 4.27).

8.) Update the polymeric stress. Therefore:

8.1.) Decompose the velocity gradient ∇Un+1 (refer to Eqs. 4.15 and 4.16).

8.2.) Solve the logarithmized constitutive equation in order to obtain Ψn+1 (Eq. 4.17).

8.3.) Calculate the eigenvalues Λn+1 and eigenvectors Rn+1 with use of Eqs. 4.18 and

4.20 and store them until the next time-step.

8.4.) Do the inverse transformation to obtain τn+1 (Eqs. 4.19 and 4.8).

9.) (optionally) Repeat from step 1. until final convergence is achieved (therefore, set

pn = pn+1, Un = Un+1 and Ψn = Ψn+1 as the new initial guesses).

In contrast to the common PISO technique, we omit the initial step of obtaining a velocity

guess by solving the momentum equation in case of creeping flow conditions (Re→ 0). The

reason is that this step was found to impair the iterative convergence of the subsequent

solution of the pressure equation under that conditions. We note that this is not a necessary

step for obtaining final convergence of pressure and velocity.

The difference between the two diffusion terms on the l.h.s. and r.h.s. of Eq. 4.25 is that the

term on the l.h.s. is evaluated implicitly, while the term on the r.h.s. is calculated explicitly

with the latest velocity guess. In particular, this means: in the first solution of the pressure

equation (step 3), the explicit BSD term is calculated with the velocity guess U∗, while the

term on the l.h.s. of Eq. 4.25 is treated implicitly. If one would stop after the first pressure

iteration, this would result in a large portion of transient diffusion. Instead, after the first

pressure solution the term HU
P (U), which comprises the explicit terms and in particular the

BSD term on the r.h.s., is updated (step 5) by use of the newer velocity guess U∗∗. Due to

that, the negative side-effect of a transient diffusion caused by the BSD is severely diminished

after having solved the pressure equation for the second time. Nevertheless, in order to obtain

full convergence within a time-step and to completely avoid the side-effects of BSD additional

outer iterations can be performed (step 9). Only if full convergence is achieved both diffusion

terms on the l.h.s. and r.h.s. cancel out and only then the solutions with and without BSD

are identical. Unfortunately, the number of outer iterations to obtain full convergence is

considerably larger when using BSD, which is undesirable due to the associated increase of

simulation time. Due to that, our numerical algorithm only uses BSD if flows without a solvent

contribution (ηS → 0 or β → 0) and creeping flow conditions (Re → 0) are considered, in

which a solution without BSD is impossible due to the pressure equation becoming singular.
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In view of obtaining an efficient numerical algorithm it is emphasized here that the eigenvalues

and eigenvectors are calculated only once per time-step (once per outer-iteration in case of

using step 9) due to its computational costs, rather than doing the calculation twice as for

example being explained in Tomé et al. [4]. After having solved Eq. 4.30, the eigenvalues ΛΨ

are calculated with the characteristic equation det (Ψ− λΨI), for which the coefficients a, b

and c of the equation λ3
Ψ + aλ2

Ψ + bλΨ + c = 0 are defined by

a = −Ψxx −Ψyy −Ψzz

b = ΨxxΨyy + ΨxxΨzz + ΨyyΨzz −ΨxyΨyx −ΨxzΨzx −ΨyzΨzy

c = −ΨxxΨyyΨzz −ΨxyΨyzΨzx −ΨxzΨyxΨzy + ΨxzΨyyΨzx + ΨxyΨyxΨzz + ΨxxΨyzΨzy

The cubic equation is solved with Cardano’s method to obtain the three eigenvalues λΨ,1,

λΨ,2 and λΨ,3. Subsequently the corresponding eigenvectors are determined by calculating

the 3 sub-determinants sdi,jk of the matrix Ai = Ψ − λΨ,iI (sdi,jk = Ai,jjAi,kk − Ai,jkAi,kj
with j, k = x, y, z; j 6= k and i = 1, 2, 3). The eigenvectors are calculated based on

the largest sub-determinant, e.g. if sdi,yz > sdi,xy and sdi,yz > sdi,xz, then the eigenvector

EV (λΨ,i) is

EV (λΨ,i) =


1

(Ai,yzAi,xy −Ai,zzAi,yx)/ |sdi,yz|

(Ai,zyAi,yx −Ai,yyAi,zx)/ |sdi,yz|

 (4.31)

Subsequently the eigenvectors are scaled to length 1 by division with the magnitude. This

procedure is done on a per-cell basis. Finally, after taking the exponential of the eigenvalues

and thereby obtaining Λ, the eigenvalue and eigenvector matrices Λ and R, respectively, are

stored for the next time-step (or outer-iteration in case of using step 9), in which they are

needed to decompose the velocity gradient (Eq. 4.12).

Initial conditions are a quiescent (U = 0) and relaxed fluid (Ψ = 0). In the first time-step,

we set Λ = I and R = I.

A biconjugate gradient stabilized (BiCGstab) solver is used to solve the logarithmized consti-

tutive equation (Eq. 4.17) and the momentum balance (Eq. 4.24 or Eq. 4.25) in conjunction

with a Cholesky preconditioner at a tolerance of 10−7. The pressure equation is solved with

a conjugate gradient (CG) solver with an Algebraic Multigrid (AMG) preconditioner. The

iteration of the first solution of the pressure equation is stopped, if either the residual falls

below a tolerance of 10−7 or if the ratio of current to initial residual falls below 0.05. The

second pressure solution is stopped only if the residual is below a value of 10−8.
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4.4 Results and Discussion

4.4.1 Startup Poiseuille flow

Figure 4.1: Sketch of the geometry for the startup of a viscoelastic Poiseuille flow.

First we will validate our numerical algorithm and show the order of convergence with respect

to the time-step size and the grid size. Therefore, we consider the startup of a Poiseuille flow

of a viscoelastic fluid, for which there is an analytical solution. [28] The sketch of this problem

is shown in Fig. 4.1. We impose periodic boundary conditions on the left and right boundary

and discretize the domain with only one cell in x-direction. The length Lx can then be chosen

arbitrarily (we use Lx = 0.1) according to D’Avino and Hulsen [29]. We set Ly = 0.5 and use

a normalized cell size of ∆y = Ly/Ny = 0.005 resulting in Ny = 200 cells in y-direction. On

the top wall we use a no-slip condition for velocity, a zero gradient condition for pressure and

the second-order extrapolation boundary condition for τP as described in Habla et al. [27].

At the bottom we make use of a symmetry boundary condition for all variables.

The flow is created by instantaneously imposing a pressure gradient dp
dx as an additional body

source in the momentum balance at time T = t/λ = 0. The elasticity number, which is the

only dimensionless number for this problem, is defined as E = λη0

ρL2
y
. The retardation ratio is

set to β = 0.01. Ux denotes the average velocity over the cross section Ux = −L2
y
dp
dx/(3η0) for

T →∞ and is used to make velocities dimensionless. U0 denotes the dimensionless centerline

velocity and Q is the flow rate over the cross section.

The momentum balance (step 1, cf. section 4.3.5) is solved. In order to check the rate of

convergence with respect to the time-step size, the convergence within a time-step must

strictly be ensured. Thus, we assume that full convergence within a time-step is reached

if the initial residuals of all three sets of linear equations (i.e. momentum balance, the first
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pressure equation and the Ψ evolution equation) fell below a value of 10−5. If not, additional

outer iterations are performed (step 9).

In Fig. 4.2 we present the predicted centerline velocity as a function of time for three distinct

elasticity numbers in comparison with the analytical solution. One can clearly see that our

numerical algorithm is capable of accurately predicting the analytical solution in the transient

region and also the final steady-state value. To ensure stability the time-step size for the case

with E = 100 had to be decreased to ∆t = 0.000625. We note that simulations at even higher

elasticity numbers are possible, however, the dimensionless time-step size would have to be

further decreased. In Fig. 4.3 we present the absolute value of the relative error of the flow rate

|Qnum −Qexact| as a function of the dimensionless time-step size ∆t for the case of E = 1. One

can clearly see that our numerical algorithm is second-order convergent with respect to the

time-step size, which was to be expected due to the use of second-order Gear discretization

of the time-derivatives. In Fig. 4.4 we report the same relative error as a function of the

normalized cell size ∆y. One can verify the second-order convergence with respect to the

grid size of our numerical algorithm. However, we note that in this problem the convection

terms are zero, which is why the choice of the discretization scheme does not have an effect on

the convergence rate and even the upwind scheme would result in second-order behavior. For

other problems, in which the convection terms are dominant, second-order accuracy will only

be preserved when using the algorithm in conjunction with an adequate high-order convection

scheme, such as the CUBISTA. In Fig. 4.5 we plot the centerline velocity and the error in

the Euclidean norm over the whole vertical velocity profile [30]

eUx(T ) =

√
1

Ny

∑
i

(Ux,num(Yi, T )− Ux,exact(Yi, T ))2

against time in the vicinity of the first peak at E = 1. Simulations are done with and without

BSD as well as with and without outer-iterations (step 9) to underline the statements of

section 3.3. If considering the global velocity plot (0 ≤ T ≤ 15) differences between the four

simulations are barely visible. In the vicinity of the first peak one can confirm that both the

velocity and the errors are identical for the simulations with and without use of BSD if full

convergence within a time-step is achieved. The simulated centerline velocity exactly predicts

the analytical solution with the choice of ∆t = 0.000625 and ∆y = 0.005. However, if no

outer-iterations are performed (if step 9 is omitted) the predicted centerline velocity with and

without BSD deviates perceivably from the analytical solution. Noticeably, the simulation

with BSD gives a different response than the simulation without BSD. Furthermore, the error

of the simulation with BSD is larger throughout the whole time-interval plotted in Fig. 4.5

than the error of the simulation without BSD, which confirms the lesser accuracy of BSD in

time-dependent flows if no outer-iterations are performed.
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Figure 4.2: Centerline velocity as a function of time during the start-up of a Poiseuille
flow of an Oldroyd-B fluid (β = 0.01) for different elasticity numbers: E = 1
(∆t/λ = 0.0025), E = 10 (∆t/λ = 0.0025) and E = 100 (∆t/λ = 0.000625).
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Figure 4.3: |Qnum −Qexact| as a function of the time-step size ∆t at T = t/λ = 0.1
using a mesh with ∆y = 0.005 and an elasticity number of E = 1.

4.4.2 Cavity flow

In this section we apply our numerical algorithm to simulate the flow inside a three-

dimensional cavity, where the flow is created by the top wall moving in axial direction.

Fig. 4.6 shows a sketch of the cubic geometry and the xy-plane at z = L/2, in which most

results are presented in the following.

Case setup

The simulations are performed under creeping flow conditions, which are defined by a

Reynolds number Re =
LUx,maxρ

η0
= 0. This is done by setting the time-derivative term

and the convection term of the momentum balance to zero. L denotes the edge length of the

cube and we define Ux,max as the velocity of the top wall in the center (i.e. for x = z = L/2)

since we will use a normalized velocity profile in the following. The retardation ratio is set

to β = 0.5, while the relaxation time λ is varied such as to obtain the respective Weissenberg

number We =
λUx,max

L = 0.0.

No-slip boundary conditions are used for the velocity at all walls except the top wall,

which is moving in x-direction with the following normalized velocity profile (cf. Fattal and

Kupferman [7])

Ux,lid(x, z, t) = 128

[
1 + tanh 8

(
t− 1

2

)]
x2 (1− x)2 z2 (1− z)2 (4.32)
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Figure 4.4: |Qnum −Qexact| as a function of the cell size ∆y at T = t/λ = 50 with an
elasticity number of E = 1.

The velocity is smoothly increased with time and reaches its maximum of Ux,max = 1 at

the center of the lid (i.e. x = z = 0.5) for times t & 1. Moreover, the velocity at the

boundaries is zero, i.e. Ux,lid = 0 for x, z = 0 or x, z = 1. Presented results for velocities

are made dimensionless by division with Ux,max, stresses by division with
η0Ux,max

L and the

dimensionless time is defined by T =
tUx,max

L .

For pressure and τP we assign zero gradient boundary conditions at all boundaries. We refrain

from using the second-order extrapolation boundary condition for τP due to the presence of

stability problems at high Weissenberg numbers associated with it. We examined the effect of

using the zero gradient boundary condition on the simulation results by computing a 2D lid-

driven cavity flow with the two different boundary conditions and comparing the simulation

results with Fattal and Kupferman [7] at a Weissenberg number of We = 1.0. In Fig. 4.7 we

plot the profiles for Ψxx and Ψxy at time T = 8 computed with a mesh of 128x128 hexahedral

cells without grading. We find that our simulation results are in very good agreement with

the results of Fattal and Kupferman [7]. Furthermore, we hardly find any difference between

our simulations performed with the zero gradient boundary condition and the second-order

extrapolation method confirming that the zero gradient method is in fact a valid choice for this

flow problem as it produces proper results, which moreover appear to be of similar accuracy

as the results obtained with the second-order extrapolation method. Eventually, we believe

that the better stability of the zero gradient method more than outweighs the (slightly) less

accuracy associated with it for the lid-driven cavity problem.
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Figure 4.5: Centerline velocity and error as a function of time during the start-up of
a Poiseuille flow of an Oldroyd-B fluid (β = 0.01) for different implementations
(∆t/λ = 0.000625 and ∆y = 0.005).
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Figure 4.6: Sketch of the geometry with primary and secondary vortices.

The first step of solving the momentum balance (step 1, cf. section 4.3.5) is omitted in this

case due to the creeping flow conditions. A fixed number of three outer-iterations (step 9,

cf. Section 4.3.5) is used.

In order to check mesh convergence of the results four hexahedral meshes with different

resolutions were created (M1 - M4). Another tetrahedral mesh (M5) with a cell count

comparable to mesh M2 was created to show the ability of our numerical algorithm to handle

unstructured meshes. All five meshes have non-uniform cell sizes with the size of the cells

being smaller in wall-near regions, where the largest gradients are present. The properties of

the five meshes are listed in Table 4.1, while Fig. 4.8 provides a view of the five meshes.

Table 4.1: Properties of the meshes.

Meshes Number of cells per
edge

Total cell count ∆xmin/L

M1 20 8,000 0.0198

M2 40 64,000 0.0103

M3 60 216,000 0.0069

M4 80 512,000 0.0056

M5 - 72,159 -
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Figure 4.7: Vertical Ψxx profile and horizontal Ψxy profile for a 2D cavity simulation
at We = 1 and T = 8 simulated on a mesh with 128x128 hexahedral cells with
two different boundary conditions for τP .
( ): Zero gradient boundary condition, ( ): Second-order extrapolation
boundary condition [27], ( ): Results of Fattal and Kupferman [7].
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M1 M2

M3 M4

M5

Figure 4.8: View of the meshes.
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Fig. 4.9 shows the maximum value of τP,xx in the domain as a function of different time-steps.

The temporal evolution of max(τP,xx) is very sensitive to the time-step and thus allows to

check for temporal convergence of the results. All time-steps qualitatively predict the same

trend. However, already in the beginning (T ≤ 40.2) the result with the largest time-step

(∆T = 0.01) slightly deviates from the results with finer time-steps, while the simulation

time when using the very small time-steps is already quite large. This is why we decided to

use ∆T = 0.005 for all simulations in the remaining work.
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248.5

249

249.5
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∆T = 0.00125
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Figure 4.9: max(τP,xx) over time T as a function of different time-steps for We = 1.0
using mesh M3 with the CUBISTA scheme.

The time duration of each simulation was initially set to T = 40, which was sufficient to

obtain converged results for small Weissenberg numbers and particularly when using the

upwind differencing scheme. However, for the simulations at higher Weissenberg numbers

(We & 1.0) in conjunction with the CUBISTA scheme T = 40 was insufficient to result in

convergence and we thus extended the time duration on a case by case basis. This is illustrated

in Figs. 4.10 and 4.11. Fig. 4.10 shows the decay of the initial residuals of the linear equations

for Ψxx and p for upwind, CUBISTA and the QUICK scheme at We = 1.0. When using

upwind differencing, the residuals decay below 10−5 within T < 10 and are converging for

all three meshes M1-M3 within the time duration. On the other hand, simulations with the

CUBISTA and the QUICK scheme are not converging with the residuals oscillating around

a constant value for T > 10 for all three meshes. The CUBISTA scheme shows slightly

better iterative convergence than the QUICK scheme, although both schemes behave quite

similar. We assume that this is because the CUBISTA obeys the Convection Boundedness

Criterion (CBC), but the QUICK does not. We conclude that the piecewise variation of the
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CUBISTA scheme is not the reason for the residuals not decaying below some critical value,

but remaining constant from about T = 10. Fig. 4.11 shows that the maximum normal stress

value in x-direction in the domain remains constant for the upwind scheme from T > 10, while

for the CUBISTA scheme this variable oscillates around a mean value. Finally, we believe

that the non-convergence and non-steadiness of max(τP,xx) with the CUBISTA scheme is

due to this scheme predicting an oscillatory vortex flow and thus the overall flow remains in

a transient state. We find that a time duration of T = 40 is not sufficient for We = 1.4.

The time had to be increased to T = 80 in order to have max(τP,xx) oscillating around a

constant value, which is the case from T > 60 onwards, see Fig. 4.11. Besides, we note

that the absolute value of max(τP,xx) deviates perceivably between upwind and CUBISTA at

We = 1.0 owing to the low accuracy of the upwind scheme.
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Figure 4.10: Decay of the initial residuals of the linear equations for Ψxx and p using
the upwind and the CUBISTA scheme at We = 1.0 with mesh M3.
( ): CUBISTA, ( ): QUICK, ( ): Upwind.

Primary vortex center

Table 4.2 presents the x− and y−coordinates of the primary vortex center in the xy-plane

at z = 0.5 and gives an overview of all cases simulated in this work. The vortex center
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Figure 4.11: max(τP,xx) over time T for mesh M3 and ∆T = 0.005 as a function of
different Weissenberg numbers and convection schemes.

of a simulation was determined with an accuracy of three-decimal places. Simulations

with meshes M1-M3 were carried out with the two convection schemes until We = 2.0.

Simulations at larger Weissenberg numbers were not considered due to the loss of spatial

convergence. For mesh M3 and CUBISTA, however, the Weissenberg number was further

increased beyond We = 2.0 in order to check for numerical stability. This is discussed in

Section 4.4.2. Additionally, simulations for the Weissenberg numbers of We = 0.0, 1.0 and

2.0 were performed with mesh M4 and the CUBISTA scheme to check the spatial convergence

of the results in more detail. Another simulation was performed for mesh M5 at We = 1.0

to show that the use of a tetrahedral mesh in conjunction with the CUBISTA scheme can

give similar results to a comparable hexahedral mesh (mesh M2). Values in brackets indicate

cases, which did not converge in the sense that the residuals of at least one out of all linear

equations did not decrease below 10−5. Converged simulation were obtained only with the

upwind differencing scheme for the whole range of Weissenberg numbers and all meshes. For

the CUBISTA scheme, converged results could not be obtained for any Weissenberg number

and mesh under consideration. We note that in the Newtonian limit We = 0.0 there is

no convection contribution in the constitutive equation and thus upwind and CUBISTA are

identical. Values with the superscript 1 denote that the primary vortex center oscillated

with respect to the x- and y- coordinates at the third decimal place. Boxes with the n.a.

abbreviation denote that simulations were not performed.

A comparison of the log-conformation reformulation (’log’) with the standard (’std’) method-

ology (i.e. solving Eq. 4.5 directly) is shown in Table 4.3. We were able to perform stable
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simulations until We = 0.6 with the standard method. From We = 0.8 the solution

diverged with the standard method, while with the log-conformation method we were able to

perform simulations far beyond this Weissenberg number as explained in the remainder. This

underlines the large improvement in stability. We find that the results for the primary vortex

center are similar with only minor differences, from which we can conclude that both methods

produce results of similar accuracy. However, we are aware of the fact that this result holds

only for very small Weissenberg numbers and this finding might not be the same for other

flow problems, in which one is able to obtain results at higher Weissenberg numbers with the

standard method. In terms of CPU time, we find that the log-conformation method is slower

by only 6.3 % for the case with the largest Weissenberg number at which a comparison was

possible (We = 0.6, mesh M3). The computation time is 57.4 h for the standard method

and 61.0 h for the log-conformation method on one core of an Intel Xeon 2.4 Ghz. The small

increase in computational time when using the log-conformation is both due to the efficient

implementation of the eigenvalue/eigenvector routine, but also because the solution of the

pressure equation (steps 3 and 6, cf. section 4.3.5) is taking very long and is the bottleneck

in the algorithm. Parallelization was pursued in this work for up to 8 cores and the scaling

is almost linear.

Table 4.3: Comparison of the predicted location of the primary vortex center with the
log-conformation reformulation (’log’) and the standard formulation (’std’) with
mesh M3 and CUBISTA.

std log

We x y x y

0.2 0.495 0.767 0.495 0.767

0.4 0.481 0.774 0.482 0.773

0.6 0.466 0.780 0.468 0.780

0.8 -1 0.453 0.785

1diverged

In Table 4.4 we additionally compare the predicted primary vortex center at We = 1.0 with

simulation results obtained with the QUICK scheme and find that QUICK and CUBISTA

give very similar results for the position of the vortex center and behave similar in terms of

mesh convergence, however, with the QUICK scheme appearing to be slightly more accurate

than the CUBISTA scheme.

Fig. 4.12 shows the x−shift of the location of the primary vortex center in negative

x−direction with increasing Weissenberg number as a function of the mesh and convection

scheme. The six plots show convergence in the x−shift at low Weissenberg number until

We ≈ 0.4, from which the plots starts to split showing distinction in the different schemes

and meshes used. Comparing both convection schemes, the CUBISTA scheme shows better
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Table 4.4: Comparison of the predicted location of the primary vortex center with
the upwind, CUBISTA and QUICK scheme with mesh M3 and CUBISTA at
We = 1.0.

M1 M2 M3

x y x y x y

Upwind 0.467 0.781 0.458 0.788 0.454 0.789

QUICK 0.447 0.782 0.441 0.789 0.441 0.790

CUBISTA 0.453 0.783 0.442 0.788 0.441 0.790

mesh convergence within the range of Weissenberg number simulated. As the Weissenberg

number increases to We = 2.0, the graphs begin to flatten. Meshes M2 and M3 in conjunction

with CUBISTA are close showing good spatial convergence of these results.

Fig. 4.13 depicts the y−shift of the location of the primary vortex center in positive y-direction

with increasing Weissenberg number. Independent of the convection schemes used the results

of meshes M2 and M3 show good convergence with one another. However, with the coarser

mesh M1 the spatial convergence is quite poor for all Weissenberg numbers. A flattening of

the plots is again observed with increasing Weissenberg numbers, similar as in Fig. 4.12.

Fig. 4.14 shows the shift of the location of the primary vortex center in the xy−plane

with increasing Weissenberg number predicted with the most accurate simulations (M3 and

CUBISTA). The primary vortex center shifts upstream towards the upper left corner as the

Weissenberg number gets larger. An explanation for this behavior follows in the remainder.

Streamlines

In this section the streamlines in the xy−, xz− and yz−planes intersecting the primary vortex

center are analyzed. The plots in Fig. 4.15 show the streamlines for different Weissenberg

numbers using mesh M3 and CUBISTA. First we present the streamlines for the Newtonian

limit, e.g.We = 0.0, as a reference. The streamlines are symmetrical in the xz− and yz−plane

about the xy−plane. Furthermore, the streamlines in the xy−plane are also symmetrical

about the yz−plane, however, with the flow being in opposite direction for x > 0.5 and

x < 0.5, contrary to the yz− and xz−plane where the flow is aligned in the same direction.

The streamlines in the xy−plane form closed circles. The streamlines in the yz−plane are

the limiting case such that for x < 0.5 the direction is upwards, while for x > 0.5 the flow

direction is downwards.

With increasing Weissenberg number, the flow patterns of the streamlines in xy−,xz− and

yz−planes change remarkably, indicating that elastic effects are becoming dominant. Closed

circles are no longer observed in the xy−plane. Instead, a distinct asymmetrical behavior

formed. The shift of the primary vortex center in the negative x−direction and positive
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Figure 4.12: Convergence of the x−coordinate of the primary vortex with different
meshes, convection schemes and Weissenberg numbers.
( ): M1 CUBISTA, ( ): M1 UPWIND, ( ): M2 CUBISTA, ( ): M2 UPWIND,
( ): M3 CUBISTA, ( ): M3 UPWIND.
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Figure 4.13: Convergence of the y−coordinate of the primary vortex with different
meshes, convection schemes and Weissenberg numbers.
( ): M1 CUBISTA, ( ): M1 UPWIND, ( ): M2 CUBISTA, ( ): M2 UPWIND,
( ): M3 CUBISTA, ( ): M3 UPWIND.
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Figure 4.14: Shift of the location of the primary vortex predicted with mesh M3 and
CUBISTA scheme (We = 0.0→ 2.0 in steps of 0.2).
( ): M3 CUBISTA

y−direction can also be noticed from Fig. 4.15. The shift of the location of the primary

vortex can be explained by the first normal stress difference (N1 = τP,xx − τP,yy) trying to

contract the fluid in flow direction close to the lid, which causes the recirculation center of

the fluid to move away from the downstream wall and pushes it further upstream. [31, 13]

Symmetrical behavior in the xz− and yz−planes still exists for We = 1.0, however, the

symmetrical behavior in the xz− and yz−planes is lost at We = 2.0, indicating the onset

of oscillations of those streamlines. At We = 1.0, two stagnation points are observed in the

xz−plane along the centerline at z = 0.5. One is formed for x < 0.5 and the other for x > 0.5.

A similar observation is made at We = 2.0. In the yz−plane, no stagnation point is observed

at We = 1.0, but one is observed for We = 2.0.

Enlarged views of the streamlines in the secondary eddies are presented in Figs. 4.16 and

4.17. In the case of the Newtonian limit, fluid is entering the downstream secondary eddy

from z−direction and the eddy serves as an inflow to the primary vortex, while the upstream

secondary eddy serves as the corresponding outflow in z−direction and thus fluid is leaving

the primary vortex via the upstream secondary eddy. Contrary, at We = 1.0 and 2.0 both

the downstream and upstream secondary eddy serve as inflows and fluid enters the primary

vortex from both. Fig. 4.17 shows the transition of the upstream secondary eddy from outflow

to inflow, which occurs between We = 0.6 and 0.8.
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(a) We = 0.0

(b) We = 1.0

(c) We = 2.0

Figure 4.15: Streamlines in the xy−, xz− and yz−planes for different Weissenberg
numbers using mesh M3 and CUBISTA.
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(a) We = 0.0

(b) We = 1.0

(c) We = 2.0

Figure 4.16: Comparison of streamlines in the secondary eddies in the xy−plane for
different Weissenberg numbers using mesh M3 and CUBISTA.
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(a) We = 0.6

(b) We = 0.8

Figure 4.17: Change of upstream secondary eddy in the xy−plane from outflow to
inflow using mesh M3 and upwind differencing.
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Fields

The profiles of the log-conformation tensor Ψ in the xy−plane are shown in Fig 4.18, while

the corresponding stress τP fields are shown in Fig 4.19. A very thin boundary layer is

observed at the top of the moving lid for Ψxx. Also, a distinct maxima is observed at the

upper right corner for both Ψxy and Ψyy with the maxima at Ψxy further away from the

corner in negative x−direction. These results are in agreement with those found in Hao and

Pan [8] and Grillet et al. [13]. The fields of the log-conformation tensor Ψ are generally

smooth considering that the values observed at the respective Weissenberg number for the

three components develop gradually from maxima to minima. However, when considering the

τP fields as shown in Fig 4.19, sharp and distinct fields are observed with very large gradients

for the all three components. Similar to the Ψ field, the normal stress in x−direction forms a

thin boundary layer at the lid and there is a pronounced maximum at the right upper corner

for the shear stress Ψxy and normal stress Ψyy. Generally, one observes resemblance of the

Ψ and τP fields, with τP fields having sharper gradients. The reason for the sharp gradients

in τP and smoothness in Ψ is that τP is linked exponentially to Ψ as described by Eq. 4.11.

In both profiles, sharp boundary layers at the top next to the lid and singularities at the

corner of the lid cavity are a result of elasticity. With increasing Weissenberg number, one

observes from the scale that the maximum value increases, with more distinct (or higher)

stress regions within the lid-cavity for the higher Weissenberg number.

94



4 Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using
the log-conformation reformulation in OpenFOAM R©

(a
)
W
e

=
1
.0

(b
)
W
e

=
2
.0

F
ig

u
re

4
.1

8
:

Ψ
fi
el

d
in

th
e

x
y
-p

la
n
e

u
si

n
g

m
es

h
M

3
a
n
d

C
U

B
IS

T
A

.

95



4 Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using
the log-conformation reformulation in OpenFOAM R©

(a
)
W
e

=
1
.0

(b
)
W
e

=
2
.0

F
ig

u
re

4
.1

9
:
τ
P

fi
el

d
in

th
e

x
y
-p

la
n
e

u
si

n
g

m
es

h
M

3
a
n
d

C
U

B
IS

T
A

.

96



4 Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using
the log-conformation reformulation in OpenFOAM R©

The magnitude of the velocity is shown in Fig 4.20. With increasing Weissenberg number,

the boundary layer next to the lid becomes thinner and shifts in upstream direction. As

elasticity becomes important, a larger region in the xy−plane will experience low velocity

magnitude.
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To identify the regions where the fluid is sheared, elongated or moved as a rigid body we will

use the normalized flow-type classifier ξ proposed by Mompean et al. [32]

ξ =
1−X
1 +X

where X is the Astarita’s parameter. [33] The scalar ξ is ξ = 0 for simple shear flow, ξ = 1

for extensional flow and ξ = −1 if the fluid is in a rigid body motion.

The results for the flow-type classifier are shown in Fig. 4.21. Isocontours for the Newtonian

limit (We = 0.0) are presented as a reference, wherein a symmetrical field is found similar to

the velocity field. A shear flow is present close to the vertical walls and the bottom wall. Away

from those walls towards the primary vortex center, a change from shear to extensional flow

is found. The flow then goes through another transition, transforming from extensional flow

into rigid body motion at the primary vortex center. The primary vortex center is pure rigid

body motion. Extensional flows are also observed at the secondary eddies. When increasing

the Weissenberg number a similar field is observed as in the case of a Newtonian fluid. The

only visible change is that the amount of extensional flow at the downstream corner just

next to the lid becomes larger with increasing elasticity. Furthermore, the area of rigid body

motion shifts to the upper left, which is in agreement with the shift of the primary vortex

center, see Fig. 4.14.
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Velocity profiles

Two velocity profiles are investigated; the vertical profile of the velocity in x−direction Ux

at x = 0.5 and the horizontal profile of the velocity in the y−direction Uy at y = 0.5 in the

xy−plane at z = 0.5.

The velocity profiles at We = 1.0 with respect to the different meshes and the two convection

scheme are presented in Fig. 4.22. The mesh and the convection scheme have little influence

on the vertical Ux profiles and sufficiently good convergence of the plots is observed. Major

differences in Ux are present at the top of the lid-cavity. On the other hand, horizontal Uy

profiles do not show such a good convergence for 0.1 < x < 0.4 and 0.5 < x < 0.9, where the

minima and maxima are.

Fig. 4.23 shows the change in the velocity profiles with increasing Weissenberg number.

Generally, as the effect of elasticity becomes large, so is the resistance to flow resulting

in smaller velocity values. This can be observed from both Ux and Uy profiles, showing the

largest maxima and minima at We = 0.0. From the vertical Ux profiles one observes that the

boundary layer is becoming thinner with increasing Weissenberg number. This implies that

the velocity gradient close to the lid is increasing with increasing Weissenberg number. The

maximum of the horizontal Uy profiles are shifting in negative x−direction with increasing

Weissenberg number. This implies that more elastic fluids tend to move closer to the left

vertical wall of the lid cavity, with the maximum value of Uy decreasing. Furthermore, the

minimum on the right side is observed to perceivably flatten with increasing Weissenberg

number.

Simulations at higher Weissenberg number

In this section, the findings when even further increasing the Weissenberg number with M3

CUBISTA are discussed. It was observed that the results obtained were strongly unsteady

due to the presence of oscillations with respect to the primary vortex center and in some

cases even two primary vortex centers formed at higher Weissenberg numbers. As a result,

we find it purposeless to display these results. Instead, we only report on the stability of the

numerical algorithm.

The highest Weissenberg number simulated in this work was We = 160.0, however, we like to

point out that it is possible to even further increase the Weissenberg number and no critical

Weissenberg number was found in terms of stability. However, the increase was stopped due

to the unawareness of those results in terms of accuracy. Snapshots of the primary vortex

center at We = 160.0 with M3 CUBISTA are presented in Fig. 4.24. One can see that drastic

changes of the primary vortex occur. This underlines the complexity of a viscoelastic flow in

a considerably simple geometry at high Weissenberg numbers.
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Figure 4.22: Vertical and horizontal velocity profiles at We = 1.0 for different meshes
and differencing schemes.
( ): M1 Cubista, ( ): M1 Upwind, ( ): M2 Cubista, ( ): M2 Upwind, ( ): M3
Cubista, ( ): M3 Upwind.
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Figure 4.23: Vertical and horizontal velocity profiles as a function of the Weissenberg
number using mesh M3 and CUBISTA.
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( ): We = 1.6, ( ): We = 2.0
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(a) T = 20 (b) T = 40 (c) T = 60

(d) T = 80 (e) T = 100 (f) T = 120

(g) T = 140 (h) T = 160 (i) T = 180

Figure 4.24: Snapshots of streamlines in the xy−plane for We = 160.0 using mesh
M3 and CUBISTA.
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4.5 Summary
In this work, the log-conformation reformulation as proposed by Fattal and Kupferman [2]

is adopted and implemented in the finite-volume CFD-software OpenFOAM
R©

. This re-

formulation allows to extenuate the well-known high Weissenberg number problem, which is

omnipresent when pursuing numerical simulations of flows at high elasticities. The implemen-

tation is done such as to finally obtain a second-order accurate algorithm in time and space

when using an adequate convection scheme such as the CUBISTA. This behavior was shown

by simulation of a transient Poiseuille flow. The implementation is capable of performing fully

three-dimensional and transient simulations on arbitrary meshes, which was demonstrated by

simulating the transient lid-driven flow in a cubic cavity.

No upper limit in the Weissenberg number could be found in terms of stability and we

present results for a Weissenberg numbers of We = 160.0. However, questions of accuracy at

such large Weissenberg numbers remain and generally finer meshes and time-steps would be

necessary, which, however, is out of question due to the overhead in computation time.

A simulation on the tetrahedral mesh with CUBISTA was successful, showing the capability of

our numerical algorithm to handle unstructured meshes, although it should also be noted that

the tetrahedral mesh produces less accurate results than a comparable hexahedral mesh.

The spatial convergence of the results for the location of the primary vortex center and the

velocity profiles is sufficient. Furthermore, the convergence of the results with respect to the

time-step was shown. Even though the high accurate CUBISTA scheme and a second-order

time scheme is used in this work, one should note that accuracy is still an issue at high

Weissenberg numbers and the large computational times strictly preclude the use of even

finer meshes and smaller time-steps.

As the Weissenberg number gets larger, the influence of the elasticity on the flow rheology

becomes more distinct. This is demonstrated by the change in the streamlines, the change of

the velocity profiles and fields for stress, velocity and the flow classifier.
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4.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

0 Vector or matrix with only zeros

a Coefficient of characteristic equation [−]

Ai Matrix belonging to the i-th eigenvalue [−]

Ai,jk jk-th element of the matrix belonging to the i-th eigenvalue [−]

AU
P Diagonal coefficient of semi-discretized momentum equation

of cell P

b Coefficient of characteristic equation [−]

B Extensional matrix [s−1]

c Coefficient of characteristic equation [−]

c Conformation tensor [−]

d Distance between two adjoining cell centers [m]

eUx Error of the axial velocity [ms ]

HU
P Off-diagonal coefficients and source-vector of semi-

discretized momentum equation of cell P

i Index [−]

I Identity matrix [−]

j Index [−]

k Index [−]

L Cavity edge length [m]

Lx Axial length [m]

Ly Vertical length [m]

m̃ij ij-th element of rotated velocity gradient matrix [s−1]

M̃ Rotated velocity gradient matrix [s−1]

N Dummy matrix [s−1]

Ny Number of cells in vertical direction [−]

p Pressure [ kg
ms2

]

Q Flow rate over cross section [m
3

s ]
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Symbol Description Unit

r Ratio of successive gradients [−]

R Eigenvector matrix [−]

Sf Surface area normal vector at cell face f [m2]

sdi,jk jk-th element of the sub-determinant belonging to the i-th

eigenvalue

[−]

t Time [s]

U Velocity [ms ]

Ux Velocity in x-direction [ms ]

Ux,lid Axial velocity of the moving lid [ms ]

Ux,max Maximum axial velocity [ms ]

Uy Velocity in y-direction [ms ]

x Position [m]

X Astarita’s parameter [−]

y Position [m]

z Position [m]

Greek Symbols

Symbol Description Unit

∆t Time step size [s]

∆T Dimensionless time step size [−]

∆y Vertical length of computational cell [m]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

∇⊥f Face normal gradient at cell face f [m−1]

η0 Zero shear-rate viscosity [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηS Solvent viscosity [ kgms ]

λ Relaxation time [s]

λΨ Eigenvalue [−]

λΨ,i i-th eigenvalue [−]

Λ̃ii i-th eigenvalue [−]
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Symbol Description Unit

Λ Eigenvalue matrix [−]

ΛΨ Logarithmized eigenvalue matrix [−]

ξ Flow-type classifier [−]

ρ Density [ kg
m3 ]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τP,xx Polymeric normal stress in x-direction [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

φ General variable

φf General variable at cell face f

φf,CD General variable at cell face f obtained with central differ-

encing

φf,UD General variable at cell face f obtained with upwind differ-

encing

φU General variable in upwind node U

ϕ Flux limiter

Ψ Logarithmic variable [−]

Ψij ij-th element of logarithmic variable [−]

ω̃ij ij-th element of rotational matrix [s−1]

Ω Rotational matrix [s−1]

Subscripts, Superscripts and Oversymbols

Symbol Description

QC Property Q in computational cell C

QD Property Q in downwind node D

det(Q) Determinat of matrix Q

Qexact Exact value of Q

Qn−1 Time level n− 1

Qn Time level n

Qn+1 Time level n+ 1

Qnum Numerically calculated value of Q

QT Transpose of matrix Q
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Symbol Description

QU Property Q in upwind node U

Q∗ Estimate of variable Q

Q∗∗ Estimate of variable Q
O
Q Upper-convected time derivative

Q̃ Rotated matrix

Q Linear interpolation of Q onto cell-face

or average value

|Q| Magnitude of Q

Nondimensional Groups

Symbol Description Definition

β Retardation factor ηS
η0

E Elasticity number λη0

ρL2
y

Re Reynolds number ρLU
η0

or
ρLUx,max

η0

T Dimensionless time t
λ or

tUx,max
L

We Weissenberg number
λUx,max

L

Y Dimensionless y-coordinate y
Ly

Abbreviations

Abbreviation Description

AMG Algebraic multigrid

BiCGstab Bi-conjugate gradient stabilized

BSD Both-side-diffusion

CBC Convection Boundedness Criterion

CEF Criminale-Ericson-Filbey

CG Conjugate gradient

CUBISTA Convergent and universally bounded interpolation scheme for treatment of

advection

EV Eigenvector

FENE Finite extensible non-linear elastic

FENE-CR Finite extensible non-linear elastic - Chilcott and Rallison

LCR Log-conformation reformulation
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Abbreviation Description

l.h.s. Left hand side

r.h.s. Right hand side

PDE Partial differential equation

PISO Pressure implicit with splitting of operator

sd Subdeterminant

SPD Symmetric positive definite

SPTT Simplified Phan-Thien-Tanner

QUICK Quadratic upstream interpolation for convective kinematics
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4.C Summary
In this work the log-conformation reformulation for viscoelastic constitutive equations as

proposed by Fattal and Kupferman [2] is implemented in the open-source CFD-software

OpenFOAM R©, which is based on the collocated finite-volume method (FVM). The imple-

mentation includes an efficient eigenvalue and eigenvector routine and the algorithm finally is

second-order accurate both in time and space, when using it in conjunction with an adequate

convection scheme such as the CUBISTA scheme. [15] The newly developed solver is first

validated with the analytical solution for a startup Poiseuille flow of a viscoelastic fluid and

subsequently applied to the three-dimensional and transient simulation of a lid-driven cavity

flow, in which the viscoelastic fluid is modeled by the Oldroyd-B constitutive equation. The

results are presented for both the first-order upwind scheme and the CUBISTA scheme on four

hexahedral meshes of different size in order to check for mesh convergence of the results and

a tetrahedral mesh to show the applicability to unstructured meshes. The results obtained

for various values of the Weissenberg number are presented and discussed with respect

to the location of the primary vortex center, streamline patterns and velocity and stress

profiles besides others. Sufficiently mesh converged results for Weissenberg numbers, which

would have been impossible to obtain without use of the log-conformation reformulation, are

obtained. An upper limit for the Weissenberg number in terms of stability could not be

found.
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5 Development of a methodology for nu-

merical simulation of non-isothermal vis-

coelastic fluid flows with application to

axisymmetric 4:1 contraction flows

5.1 Introduction
Polymer chemistry and processing of polymers constitutes a large segment of the chemical

process industry. The production process of the polymers is mostly non-isothermal in nature,

as for example in plastification including heating and cooling sequences. Since flow properties

are strongly dependent both upon rheology and temperature, it is of major interest to

understand and predict such type of flows qualitatively and quantitatively.

In the last decades, CFD simulation evolved as an important tool to guide the engineers in

the task of developing and improving such type of processes. However, there is still a gap

between the engineers’ needs and the current state-of-the-art, especially in complex problems,

which is the case for non-isothermal viscoelastic fluids flows.

Although being quite a simple geometry, both planar and axisymmetric contraction flows are

extensively studied in the literature. [1, 2, 3] This is mainly because the contraction results in

locally complex flow profiles, which are difficult to predict numerically. In the vicinity of the

re-entrant corner, large stress gradients are present, which may cause numerical algorithms

to fail. As a result, this problem evolved as a benchmark problem in order to evaluate

the stability of numerical algorithms. In the past decade, several studies focused on the

simulation of non-isothermal contraction flows. [4, 5, 6] In doing so, one has to particularly

focus on the thermorheological modeling, since viscoelastic fluids behave in between of ideally

viscous fluids and ideally elastic solids. [7]

Although there is an ever increasing effort in research on non-isothermal flows of viscoelastic

fluids, the efforts stay limited to academic problems and purposes. On the other hand,

commercial packages are mostly limited to the analysis of non-Newtonian fluid flows, which

are purely viscous without considering the effect of elasticity. A general and freely available

solver for the simulation of non-isothermal viscoelastic flows, which is capable of handling

complex and non-orthogonal meshes as well as both transient and steady-state problems,

would therefore be of major importance.

Hence, this work deals with the development of a solver for computing non-isothermal flows of

viscoelastic fluids as an extension to the isothermal viscoelastic fluid solver, which was recently

116



5 Development of a methodology for numerical simulation of non-isothermal viscoelastic
fluid flows with application to axisymmetric 4:1 contraction flows

released within the open-source software OpenFOAM
R©

. [8] The technique of handling non-

isothermal flows therein strongly relies on the works of Peters [9, 10].

This work is organized as follows: In Section 5.2, the governing equations, the thermorheo-

logical modeling and the numerical algorithm are explained. A new generalized method for

extrapolating stresses on solid walls in order to determine the stress divergence is proposed.

In the subsequent Section 5.3, the extrapolation method is validated and its merits regard-

ing accuracy and stability compared to the currently employed zero gradient method are

shown. Next, the results for isothermal and non-isothermal 4:1 axisymmetric contractions

are presented. In Section 5.4, the paper ends with a summary of the main conclusions.

5.2 Methodology
In this section, the governing equations are described and the thermorheological modeling is

addressed. Subsequently, the numerical algorithm is shortly outlined.

5.2.1 Conservation and constitutive equation

The governing equations for incompressible, non-isothermal viscoelastic flows are the mass

balance

∇ ·U = 0 (5.1)

the momentum balance

∂ (ρU)

∂t
+∇ · (ρUU) = −∇p+∇ · τ (5.2)

the energy balance

∂ (ρu)

∂t
+∇ · (ρUu) = −∇ · q +Q (5.3)

together with a constitutive equation describing the polymer’s stress behavior. In the above

equations, U denotes the velocity vector, ρ the density, t the time, p the pressure, τ the

total stress tensor, u the specific internal energy, q the heat flux and Q the internal energy

source term taking into account both entropic and energetic effects. Note that the density

may depend on the temperature within our approach, although this dependency is neglected

in this work for simplicity.

In this work, the Oldroyd-B equation is used. [11] The total stress τ is thereby divided into

a solvent (Newtonian) and a polymer (viscoelastic) contribution

τ = τS + τP (5.4)
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τS is the solvent stress contribution defined by

τS = ηS(T )
[
∇U + (∇U)T

]
(5.5)

wherein ηS(T ) is the temperature-dependent solvent viscosity.

For the viscoelastic contribution τP the upper-convected Maxwell equation holds

τP + λ(T )
O
τP= ηP (T )

[
∇U + (∇U)T

]
(5.6)

wherein λ(T ) denotes the relaxation time and ηP (T ) the polymer viscosity, both being a

function of the temperature T .
O
τP denotes the upper-convected time derivative defined as

O
τP=

∂τP
∂t

+∇ · (UτP )− (∇U)T · τP − τP · ∇U (5.7)

Note, that multi-mode capability, in which the polymeric stress is the sum of m modes

(τP =
∑m

k=1 τP,k), as well as more thorough constitutive equations such as PTT and Pom-

Pom models are forthcoming within this framework. [8]

The retardation ratio β is defined as

β =
ηP
η0

=
ηP

ηS + ηP
(5.8)

wherein η0 is the total viscosity. Note, that β is independent of the temperature T in this

work as will be shown later.

5.2.2 Thermodynamical modeling

Using the heat capacity cP at constant pressure one obtains an equation for temperature

when introducing into the energy balance Eq. 5.3

∂ (ρcPT)

∂t
+∇ · (ρcPUT) = −∇ · q +Q (5.9)

wherein cP may be a function of temperature, although this is being neglected herein.

The dependency of cP on the macromolecule orientation is negligibly small as shown by

Wapperom and Hulsen [12] and thus no modeling is needed here. The term Q due to internal

heat production comprises two contributions, which are an irreversible part due to viscous

dissipation and a reversible part due to entropy changes caused by the orientation of the

macromolecule chains. [4] Considering this, the total source term for an Oldroyd-B fluid can

then be written as [10]

Q = τS : D + ατP : D + (1− α)
tr (τP )

2λ(T )
(5.10)
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where D is the deformation rate tensor being D = 1/2
[
∇U + (∇U)T

]
and α is an energy

partitioning coefficient. The case of α = 1 is referred to as pure entropy elasticity, in which all

mechanical energy is dissipated as heat corresponding to pure viscous material behavior. On

the other hand, if α = 0, all mechanical energy is stored as elastic energy corresponding to

pure elastic material behavior. This mechanism is called pure energy elasticity. In this work,

we follow the ideas of using an a-priori defined energy partitioning coefficient α. [12, 6, 7]

The commonly employed constitutive equations model the stresses only using the end-to-end

vector of the macromolecules. Since energetic effects are caused by structural features being

much smaller than the end-to-end vector, an additional structural variable would be needed

for modeling these effects (i.e. without a-priori definition of α) as being discussed by Hütter

et al. [13]. However, this is out of the scope of this study.

The temperature dependence of the relaxation time λ(T ), solvent and polymer viscosi-

ties ηS(T ), ηP (T ) are described as follows

λ(T ) = aT λ(T0) (5.11)

ηS(T ) = aT ηS(T0) (5.12)

ηP (T ) = aT ηP (T0) (5.13)

where T0 is a reference temperature and aT is a shift factor obeying the Williams-Landel-Ferry

(WLF) relation [14]

aT = exp

(
−C1(T − T0)

C2 + T − T0

)
(5.14)

in which C1 and C2 are the WLF parameters. Since both viscosities ηS(T ) and ηP (T ) vary

with the same shift factor aT , the retardation ratio β as defined in Eq. 5.8 is constant over

T .

The heat flux q in Eq. 5.9 is calculated with Fourier’s law

q = −k∇T (5.15)

where k is the thermal conductivity of the fluid, which is assumed to be no function of the

temperature T and the polymer orientation in this work. However, modeling the temperature

dependency of the thermal conductivity is straightforward. For an approach to model the

dependency of k on the macromolecule orientation, the reader is referred to Wapperom et

al. [4], in which the thermal conductivity is a linear function of the conformation tensor

c = λ/ηPτP + I.
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5.2.3 Discretization and numerical algorithm

The package OpenFOAM
R©

is used for implementation. This package is based on the

collocated finite volume method storing all variables in cell centers, i.e. U, p, τP and T .

A general two-point scheme is used for temporal discretization using two values in time to

approximate the time-derivative, while the convective terms are discretized using the first-

order upwind scheme. For a thorough discussion and validation of this scheme we refer the

reader to Favero et al. [8]. Cell face values are obtained by second-order linear interpolation

where needed, while volume integrals are obtained from second-order Gaussian integration.

In order to enhance numerical stability the DEVSS technique is used Guénette and Fortin [15],

which introduces an additional elliptic operator into the momentum equation Eq. 5.2, result-

ing in

∂ρU

∂t
+∇ · (ρUU)−∇ · (ηP (T ) + ηS(T ))∇U =

−∇p+∇ · τP −∇ · ηP (T )∇U−∇U · ∇ηS(T ) (5.16)

The elliptic term on the l.h.s. is evaluated implicitly, while the elliptic term on the r.h.s. is

evaluated explicitly. The last term on the r.h.s. is a correction term due to the non-constant,

but locally varying solvent viscosity ηS(T ), which arises when using Eq. 5.5 in conjunction

with Eq. 5.2.

The SIMPLE algorithm is adopted to handle the strongly coupled set of equations Eqs. 5.1,

5.6, 5.9 and 5.16. [16] The algorithm can be summarized as follows

1.) Solve the momentum balance Eq. 5.16 (optionally).

2.) Construct and solve a Poisson-type equation for pressure from the continuity equation

Eq. 5.1.

3.) Correct the fluxes and velocities from the updated pressure field.

4.) Solve the constitutive equation Eq. 5.6.

5.) Solve the temperature equation Eq. 5.9 by using the expression Eq. 5.10.

6.) Update the physical properties, i.e. Eqs. 5.11, 5.12 and 5.13.

7.) Repeat from 1. for a given number of times (n = 1) in this work).

Solving the momentum balance is an optional step and not necessary for convergence in the

SIMPLE loop. We found that especially in flows with low values of the Reynolds number

this step may even impair convergence in the subsequent pressure correction equation and
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is therefore left out in this study. The Poisson-type equation for pressure is solved with a

conjugate gradient method using an AMG preconditioner. A BiCGStab solver is used for

stress and temperature in conjunction with a Cholesky preconditioner. The tolerances of

the linear solvers are set to 10−8 for pressure and 10−6 for temperature and stress. Under-

relaxation is applied with a value of 0.5 for pressure, temperature and stress and 0.8 for

velocity, which was necessary for stable simulations at higher Deborah numbers. Simulations

are stopped if the initial residual of the momentum equation for Ux and Uy falls below a

value of 10−6, the constitutive equation for τP,xx, τP,xy and τP,yy below 10−6, the temperature

equation below 10−6 and the pressure correction equation below 10−5. In the axisymmetric

simulations the same tolerance are used for Uz, Ur, τP,zz, τP,rz, τP,rr and τP,ΘΘ.

Zero initial conditions are specified for all variables except for temperature. At the inlet

Neumann boundary conditions with a zero gradient are specified for pressure and stress,

while for temperature and velocity a Dirichlet boundary condition is used. At the outlet

a reference pressure is set using a Dirichlet boundary condition, while Neumann boundary

conditions are used for stress, velocity and temperature. At solid walls, a Neumann boundary

condition is used for pressure, while a no-slip Dirichlet boundary condition is employed for

velocity and a Dirichlet boundary condition for temperature. Since the constitutive equation

is of hyperbolic type, there is no need of assigning a wall boundary condition for stress.

However, the divergence of the stress in the momentum balance Eq. 5.2 or 5.16 is numerically

evaluated as follows ∫
∂V
∇ · τPdV ≈

∑
i

τP,fi · Sfi (5.17)

where V is the volume of the cell, τP,fi is the stress value at face i and Sfi is the cell face

area vector of face i. For cell faces in the interior, the value τP,fi is determined using linear

interpolation of the cell centered values of the two adjoining cells. In case of a boundary cell

face, this value needs to be specified. It should be noted here that this is only the case for the

collocated finite volume method, since in the staggered arrangement, stresses are commonly

solved for at cell-faces. [6] A zero gradient assumption is often used in literature, see for

example Favero et al. [8] and Trebotich et al. [17], however, this can only be thought as a rough

simplification as a zero gradient condition is not valid in almost any flow situation. This led to

the development of analytically based boundary conditions, see for example Oliveira [18] and

Tomé et al. [19]. In this case the constitutive equation is additionally solved on the boundary,

i.e. on the cell face, by using the local velocity profile. This, however, is severely complicated

when using arbitrary curved boundaries not aligned with the coordinate axes, nonorthogonal

meshes and more complex constitutive equations. In view of industrial applications, for which

complex geometries and nonorthogonal meshes are required, this approach is not justifiable.

Our new approach therefore linearly extrapolates the stress value from interior cells in wall-

normal direction onto the wall. This is illustrated in Fig. 5.1 for an arbitrarily shaped cell

and a curved boundary. A local coordinate system ζ normal to the centroid of the wall is
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being used and the distances ζi are determined by taking dot products. The unknown stress

value τP,fe at the boundary face is obtained by second-order linear regression according to

τP,fe = τP − ζ
∑n

i (ζi − ζ)(τP,fi − τP )∑n
i (ζi − ζ)2

(5.18)

where ζ and τP are the arithmetic mean values of the n known ζi and τP,fi / τP,P values.

This approach is thus valid for arbitrary cell shapes, curved boundaries and any type of

constitutive equation. A validation of this method and discussion regarding accuracy and

stability will be pursued in the following chapter.

Figure 5.1: Local coordinate system ζ for determining the stress value at the wall τP,fe.

5.3 Results and discussion

5.3.1 Validation of the extrapolation method

In this section the afore introduced extrapolation method for stress is evaluated using a simple

stationary planar Poiseuille flow. Isothermal conditions are assumed here for simplicity.

The geometry is shown in Fig. 5.2. A pressure difference is set between inlet (left) and outlet

(right). Simulations will be performed on three different meshes shown in Fig. 5.3.

The fluid properties are taken from the work of Quinzani et al. [20]. The density of the fluid

is ρ = 803.9 kg/m3, the polymer viscosity is ηP = 1.424 kg/ms and the solvent viscosity is

here taken as ηS = 0 kg/ms, thus recovering the UCM model (β = 1). The relaxation time is

λ = 0.06 s.
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Figure 5.2: Geometry of the planar Poiseuille flow.

Figure 5.3: Meshes used for the validation of the extrapolation method.
Left (M1): 25 cells (5 cells in each direction), middle (M2): 100 cells (10), right
(M3): 400 (20).
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The analytical velocity and shear stress profiles are as follows

Ux(y) = − h2

2ηp
· ∂p
∂x

(
1− y

h

)
· y
h

τP,xy(y) = −h
2
· ∂p
∂x

(
1− 2

y

h

)
Using these expressions, the relative error in the L1-norm for variable φ is calculated

εφ =
N∑
i

∣∣φexacti − φi
∣∣

|φexacti |

where the N values are evaluated in the cell centers and at the solid walls.

Results are presented in terms of dimensionless variables according to Ũx = Ux/Ux and

τ̃P,xy = τP,xy/τP,xy,max, where Ux denotes the average velocity and τP,xy,max the maximum

shear stress. The Deborah number is De = λUx/h = 0.351 and the Reynolds number is

Re = ρUxh/ηP = 33 for this case.

The predicted shear stress and velocity profiles together with the analytical solution are

shown in Fig. 5.4. Simulations were performed both with the zero gradient method and the

extrapolation method. For all of the three meshes, one finds that the zero gradient condition

at the wall is reproduced for the shear stress as being forced. This results in a step profile

of the shear stress throughout the height of the channel with all of the three meshes. It is

noteworthy that for the middle and fine mesh (M2 and M3) two adjoining cells have the same

shear stress value, which would be similar to halving the mesh resolution. An unphysical

velocity profile is predicted for the coarse mesh (M1), while for meshes M2 and M3 the

velocity profile is now physically correct, however, also being a step profile, which again is

similar to halving the mesh resolution. Nevertheless, convergence to the analytical solution is

achieved with mesh refinement. In contrast, when using the extrapolation method, the shear

stress profile is predicted correctly on any of the three meshes and the values coincidence with

the analytical solution. Even on the coarsest mesh M1 a physical velocity profile is predicted

(however this is not visible due to the scaling of the axis), on which the zero gradient method

predicted an unphysical solution. The predicted velocity values for mesh M2 and M3 almost

coincide with the analytical solution. In Fig. 5.5 an error estimation was performed. One

finds, that the shear stress profile is predicted at the linear solver tolerance, i.e. 10−6 with

the extrapolation method, while the error for the zero gradient method is approximately five

orders of magnitude higher for all of the three meshes. The error for the velocity monotonically

decreases for both methods, however, the error with the extrapolation method is at least one

order of magnitude below the error when using the zero gradient method. This validation

supports the major advantage of using the extrapolation method with respect to accuracy, in

contrast to the commonly employed zero gradient method. [8, 17] This is in particular relevant

since wall-near regions are the particularly troublesome regions when simulating viscoelastic
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Figure 5.4: Predicted shear stress and velocity y profiles for the planar Poiseuille flow
on three different meshes.
M1, M2 and M3 from top to bottom. ( ): analytical solution, ( ): zero gradient
method, ( ): extrapolation method.
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Figure 5.5: Relative L1-error of the shear stress and velocity as a function of the
dimensionless cell size for the planar Poiseuille flow.
( ): zero gradient method, ( ): extrapolation method.

fluid flows. [21] However, this validation case does not pose a problem regarding stability,

as simulations can be performed for arbitrary values of the Deborah numbers. The effect of

using the extrapolation method on the stability will be discussed in the next section for the

axisymmetric 4:1 contraction.

5.3.2 Results for the axisymmetric 4:1 contraction flow

Figure 5.6: Geometry of the axisymmetric 4:1 contraction flow.

The geometry for the axisymmetric 4:1 contraction is shown in Fig. 5.6. The ratio of the

radii is R1/R2 = 4. The upstream length is l1 = 80 · R2 and the downstream length is

l2 = 50 ·R2. The downstream channel height is chosen to be R2 = 0.0020604 m. Simulations

are performed on four different meshes. The specifications are listed in Table 5.1. A detailed

view of the contraction area is shown in Fig. 5.7.
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Table 5.1: Details of the meshes used for the axisymmetric 4:1 contraction.

NCV s ∆xmin/R2 ∆ymin/R2

M1 5100 0.024 0.035

M2 8133 0.019 0.028

M3 12796 0.015 0.022

M4 19692 0.012 0.018

(a) M1 (b) M2

(c) M3 (d) M4

Figure 5.7: Detailed view of the contraction area from z = −R1 to z = +R1 for the
various meshes.

The boundary conditions are similar to the Poiseuille flow, except that a rotational symmetry

is used normal to the rz-plane. The Reynolds number Re for this case is in terms of the

downstream section variables

Re =
ρR2Uz,2

η0

where Uz,2 is the mean velocity in axial direction in the downstream channel. A parabolic

velocity profile is assigned at the inlet at Uz,1 = 0.00129 m/s. The density is ρ = 921 kg/m3

and the total viscosity is η0 = 104 kg/ms. This results in a Re = 3.9 · 10−6 corresponding to

creeping flow conditions. The retardation ratio is set to β = 19/20, thus assuming the solvent

contribution to be negligibly small, which approximately recovers an UCM model. This is in

agreement with Baaijens [22], who concluded that a small portion of solvent viscosity does not
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affect the asymptotical behavior near the re-entrant corner, in which we are also interested

in this study.

The Deborah number De

De =
λUz,2

R2

will be varied by varying the relaxation time λ to give De = 0, 1, 2, 3, 5, 10. The

temperature at the upstream wall (z < l1) is Tw,1 = 462 K, while for the downstream

wall (z ≥ l1) the temperature Tw,2 is chosen such as to give temperature jumps of ∆T =

−30 K, −10 K, 0 K, 10 K, 30 K. The Peclet number Pe

Pe =
ρR2Uz,2cP

k

is kept constant in the non-isothermal simulations at Pe = 345 by setting cP = 1500 J/kgK

and k = 0.17 W/mK. The WLF parameters are C1 = 4.54 and C2 = 150.36 K. The split

coefficient is varied between pure energy elasticity and entropy elasticity α = 0, 1.

Results are presented in terms of dimensionless variables. The velocities are normalized with

Uz,2 and the stresses with η0Uz,2/R2

Ũk =
Uk

Uz,2

τ̃P,kl =
τP,klR2

η0Uz,2

were k and l denote the directions, respectively. The energy source-term in its dimensionless

form is

Q̃ =
QR2

2

η0U
2
z,2

and the dimensionless vortex length is

χ =
LR
2R1

Stability of the extrapolation method

Simulations were performed for both the extrapolation method and the zero gradient method

for stress. It was found that the zero gradient method was stable and convergent for all

Deborah numbers considered in this work (up to De = 10). When using the extrapolation

method, stable and convergent simulations could be performed only up to a Deborah number

of De = 5. From De > 6 no convergence could be achieved up to the specified tolerances

128



5 Development of a methodology for numerical simulation of non-isothermal viscoelastic
fluid flows with application to axisymmetric 4:1 contraction flows

and the flow became unsteady. It is worth noting that from this point on, the positive-

definiteness of the conformation tensor c was also violated. This property was examined by

checking det(c) ≥ 1. [23] Since the positive-definiteness is necessary in view of a well-posed

constitutive equation, this violation is supposedly the reason for the loss of convergence. In

critical regions (here the re-entrant corner) the stress shows exponential profiles and using the

extrapolation method, the exponential profiles are linearly extrapolated onto the wall. We

suppose that the extrapolation sharpens these profiles leading to more pronounced profiles,

which in turn cause the loss of positive-definiteness. The isolines of det(c) at De = 6 shown

in Fig. 5.8 support this assumption. It can be seen that the minimum of det(c) occurs

few cells downstream of the re-entrant corner. In this region, there is also the maximum

of τP,xx and the minimum of τP,yy as well as the largest gradients of them. On the other

hand, it was found that with the zero gradient method the positive-definiteness was ensured

for all Deborah numbers. The zero gradient method even does not seem to be limited by

De = 10 and higher Deborah number can be attained, similar as with the code of Wachs and

Clermont. [6] It can be concluded that although having a higher accuracy, the extrapolation

method is less stable at higher Deborah numbers. In view of that, we performed subsequent

simulations up to De = 5 with the extrapolation method due to its higher accuracy and from

De = 6 on with the zero gradient method.

Figure 5.8: Isolines of det(c) at De = 6 using mesh M1.
20 isolines are equally distributed between det(c)min = −340 and det(c)min =
0.999.

Isothermal analysis

In Fig. 5.9 the profiles of the axial velocity and the axial normal stress at the line of symmetry

are shown. For Newtonian flow (De = 0), there is no overshoot in the velocity. The axial

normal stress has its maximum at the contraction and rapidly decreases downstream. Mesh

independent results are already obtained for M1. When adding elasticity, an overshoot in the

129



5 Development of a methodology for numerical simulation of non-isothermal viscoelastic
fluid flows with application to axisymmetric 4:1 contraction flows

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

z/R1

Ũ
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Figure 5.9: Axial velocity Ũz and normal stress τ̃P,zz as a function of the axial position
at the centerline r/R2 = 0 for the isothermal case for different Deborah numbers
and meshes.
De = 0, 1, 5, 10 from top to bottom. ( ): M1, ( ): M2, ( ): M3,( ): M4,
( ): results of Wachs and Clermont [6] at De = 5.
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velocity is found shortly after the contraction (De = 1). The maximum axial normal stress

is higher and does not decrease as rapidly as in the Newtonian case. Mesh convergence is

again achieved with mesh M1. For De = 5 and De = 10, these effects become more distinct.

The velocity overshoot increases and decreases much slower in the downstream channel for

increasing Deborah numbers. The maximum of the normal stress is increasing and shifted

downstream. The decrease of the normal stress is much slower and almost becomes linear for

De = 10. The results for De = 5 are in agreement with the results of Wachs and Clermont [6],

however, our maximum of the normal stress is somewhat smaller, while the velocity in the

downstream channel is slightly larger. At De = 10, the normal stress becomes severely mesh

dependent with the maximum decreasing with increasing mesh refinement. The velocity,

although being not as mesh dependent as the normal stress, slightly decreases with mesh

refinement.

0 2 4 6 8 10

0.2

0.4

De

χ

Figure 5.10: Dimensionless vortex length χ as a function of the Deborah number De
for the isothermal case for various meshes.
( ): M1, ( ): M2, ( ): M3, ( ): M4, ( ): results of Wachs and Cler-
mont [6] using their finest mesh.

The influence of the Deborah number on the dimensionless vortex length χ is shown in

Fig. 5.10. For Newtonian flow, we closely resemble a value of χDe=0 ≈ 0.17. The vortex

length is monotonically increasing with the Deborah number. However, at higher Deborah

numbers the vortex length grows slower and the increase becomes almost linear from De = 8

on. When comparing our results with the results of Wachs and Clermont [6], we find that the

vortex length predicted with mesh M1 closely resembles the results of Wachs and Clermont

using their finest mesh. However, with increasing mesh refinement, we find the dimensionless

vortex length to still decrease slightly. This effect is more pronounced at higher Deborah

numbers.

Fig. 5.9 and 5.10 indicate that with increasing Deborah numbers the results become more

mesh dependent. The main reason is that with increasing elasticity, the convected derivative

term in the constitutive equation becomes increasingly dominant in the proximity of the re-

entrant corner. Since the convection term therein is discretized with the first-order upwind

scheme the accuracy decreases with increasing elasticity and thus higher-order schemes have
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to be considered in order to avoid the use of too refined meshes, which would result in very

high computational costs. The effect of the high-order CUBISTA scheme [24] will be discussed

in a subsequent work.

(a) De = 0 (b) De = 1

(c) De = 5 (d) De = 10

Figure 5.11: Streamlines for De = 0, 1, 5, 10 for the isothermal case using mesh M4.

Fig. 5.11 shows the streamlines for four different Deborah numbers. Initially for De = 0,

the vortex is solely at the salient corner. From De = 1 on, the vortex connects with the

re-entrant corner. A lip vortex cannot be observed. From De = 1 on, the convexity and the

length of the vortex is considerably increasing.

Dean and Montagnon [25] and Moffatt [26] provide the asymptotical flow behavior near the

re-entrant corner for Newtonian fluids as

Ũk ∝ ξ0.545

τ̃P,kl ∝ ξ−0.455

Considering an Oldroyd-B fluid, Hinch [27] found different slopes than for Newtonian flows

Ũk ∝ ξ5/9

τ̃P,kl ∝ ξ−2/3
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Figure 5.12: Normalized velocities and stresses as a function of the distance ξ for
isothermal viscoelastic flow at De = 0 using various meshes.
( ): M1, ( ): M2, ( ): M3,( ): M4, ( ): results of Wachs and Cler-
mont [6], ( ): Newtonian asymptotes [25, 26].
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Figure 5.13: Normalized velocities and stresses as a function of the distance ξ for
isothermal viscoelastic flow at De = 1 using various meshes.
( ): M1, ( ): M2, ( ): M3,( ): M4, ( ): results of Wachs and Cler-
mont [6], ( ): Newtonian asymptotes [25, 26], ( ): viscoelastic asymp-
totes [27].
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Figure 5.14: Normalized velocities and stresses as a function of the distance ξ for
isothermal viscoelastic flow at De = 5 using various meshes.
( ): M1, ( ): M2, ( ): M3,( ): M4, ( ): Newtonian asymptotes [25,
26], ( ): viscoelastic asymptotes [27].
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In Fig. 5.12 the results are shown for De = 0 together with the asymptotes outlined above

and the numerical results of Wachs and Clermont [6] using their finest mesh. In general an

acceptable agreement is found for velocities and stresses with both the asymptotes outlined

above and the results of Wachs and Clermont [6], except for the shear stress τ̃P,rz. However,

the results of Wachs and Clermont [6] indicate, that for the shear stress the slope is obtained

with their two cells next to the re-entrant corner. Since our smallest cell is somewhat larger,

this slope cannot be reproduced. However, at larger distances from the re-entrant corner, our

results almost perfectly match the results of Wachs and Clermont [6]. The results for De = 1

are shown in Fig. 5.13. Our results again show an asymptotical behavior. Mesh convergence

is achieved with the four meshes used in this study. The slopes, however, more likely coincide

with the Newtonian asymptotes, rather than the viscoelastic asymptotes. Close to the re-

entrant corner, our results perceivably deviate from the results of Wachs and Clermont [6].

At higher levels of elasticity, here De = 5, we find the axial normal stress and shear stress to

almost perfectly show the behavior of the viscoelastic asymptotes of Hinch [27], see Fig. 5.14.

However, the radial normal stress still resembles the Newtonian asymptote. The axial velocity

again shows an asymptotical behavior close to the Newtonian and viscoelastic asymptotes,

while the radial velocity component severely deviates from that behavior. At De = 5, the

results at the re-entrant corner for both velocity and stress components become more mesh

dependent than for De = 1.

Non-isothermal analysis

In this section, we present the results for the non-isothermal flow simulations. Simulations

were performed for De = 1, 5 and α = 0, 1 with all four meshes.

In Fig. 5.15, the axial profiles of the temperature, axial normal stress and velocity close to the

contraction are shown. Mesh convergence is achieved for the temperature for all four meshes

and in both cases of energy elasticity (α = 0) and entropy elasticity (α = 1). Shortly before

the contraction, the temperature increases owing to the increased deformation close to the

contraction and the resulting dissipation. In the case of entropy elasticity, where all energy

is dissipated as heat, the temperature is found to be higher throughout the profile compared

to the case of entropy elasticity, where more amount of energy is stored. At the contraction,

the fluid comes close to the wall with the specified temperature of Tw,2 = 462 K and thus

the temperature rapidly decreases due to heat conduction towards the wall. The decrease

is more distinct for entropy elasticity due to its higher temperature and the thereby larger

heat conduction rate. Shortly after the re-entrant corner, the temperature again rapidly

increases since the maxima of the normal stresses are present in this area resulting in a large

amount of dissipation. The increase in temparature is not as high in the energy elasticity

case as more energy is stored. Further down in the downstream channel the temperatures

still increase, although with the rates decreasing. Also the difference in the temperatures

becomes smaller further away from the re-entrant corner as now more energy is released for

the purely energetic fluid flow (α = 0). When considering the axial normal stress profiles,
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Figure 5.15: Temperature T , axial normal stress τ̃P,zz and velocity Ũz as a function
of the axial position on the line r = 0.97R2 for different values of α at De = 5
and ∆T = 0K using various meshes.
( ): isothermal case, ( ): α = 1, ( ): α = 0.
( ): M1, ( ): M2, ( ): M3, ( ): M4.
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we find that the stresses are smaller in the non-isothermal case compared to the isothermal

case. The reason for that is the increase in temperature and the resulting smaller viscosity

due to the temperature-dependent viscosity (WLF-relation). Further, the relaxation time

also decreases with increasing temperature resulting in a smaller local Deborah number when

comparing to the isothermal case. We find that the normal stresses are very dependent upon

mesh resolution with the maxima perceivably decreasing with mesh refinement. The effect is

more pronounced in the isothermal case, which can be attributed to the higher local Deborah

number. We find the normal stresses of the case of α = 0 are more close to the isothermal

case, since the temperatures in the purely energetic case are generally lower and thus the

local viscosities and relaxation times come closer to the isothermal case. When considering

the axial velocity, we find that there is almost no influence of the temperature on the local

velocity profile and both cases of entropy elasticity and energy elasticity closely resemble

the axial velocity of the isothermal case. However, differences are to be expected at higher

Deborah numbers. When comparing the axial normal stress to the results of Wachs and

Clermont [6], we find that the profile is qualitatively the same, however, the maxima in our

simulations are smaller by approximately a factor of three.

In Fig. 5.16 the axial profiles of the dimensionless energy source term and the temperature on

a line further away from the re-entrant corner are shown. The energy source term upstream

of the re-entrant corner is larger for the purely entropic case (α = 1). At the contraction, the

source term rapidly decreases and shortly after that increases again due to the local stress

profile for α = 1. These two distinct peaks are not present in the purely energetic case

(α = 0), for which the energy source term monotonically increases. The energy source term

is larger for z/R1 ≤ 1.5 for the case of α = 1 showing that more energy is dissipated as

heat in this region compared to the case of α = 0. Further downstream, the energy sources

approach a same level, although the energy source in the purely elastic case being slightly

larger since more energy is released here. Mesh convergence is again achieved for all four

meshes. When comparing to the results of Wachs and Clermont [6], we find that although

qualitatively showing similar effects, their profile for α = 1 shows more pronounced peaks and

the energy source terms are larger throughout the profile considered. This difference may be

attributed to the use of the UCM model (β = 1) in the studies of Wachs and Clermont [6].

When considering the corresponding temperature profiles, we again find the temperature to

rapidly increase close to the re-entrant corner due to the high amount of dissipation owing to

the high stresses in this region. The temperatures in the purely entropic case are again larger

than the temperatures in the purely elastic case. However, the differences tend to decrease

further downstream, since more energy is released as heat in this region for the purely elastic

flow. Mesh convergence is again achieved for all meshes. The temperature profiles of Wachs

and Clermont [6] show a steeper increase close to the contraction, although the temperature

increase in the downstream channel being smaller and the value of the temperatures being

smaller from z/R1 ≤ 2.
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Figure 5.16: Dimensionless energy source term Q̃ and temperature T as a function of
the axial position on the line r = 0.87R2 for different values of α at De = 5 and
∆T = 0K using various meshes.
( ): α = 1, ( ): α = 0.
( ): M1, ( ): M2, ( ): M3, ( ): M4, ( ): results of Wachs and Clermont [6].
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Temperature differences are found to not result in a change of the kinematics at the considered

level of elasticity. Therefore, simulations were also performed for temperature jumps at the

contraction walls of ∆T = −30 K, −10 K, 0 K, 10 K and 30 K. This is done also in view of

considering the effect of external cooling and heating on the kinematics.
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Figure 5.17: Dimensionless vortex length χ as a function of the temperature jump ∆T
at De = 1 and α = 0 for various meshes.
( ): M1, ( ): M2, ( ): M3, ( ): M4,( ): results of Wachs and Clermont [6] for α = 1.

In Fig. 5.17 and 5.18 we present the dimensionless vortex length as a function of the

temperature jump at De = 1 and De = 5. In both cases we find the vortex length to

almost linearly increase with increasing temperature jump. The results are still dependent

upon the mesh, although the absolute values vary in the same range as in the isothermal

case (c.f. Fig. 5.10). Although still mesh dependent, the tendency of increasing vortex length

with increasing temperature jump is clearly present for all four meshes. The increase may be

attributed to the increase in the viscosity. [6] We find that forDe = 1 our results quantitatively

match the results of Wachs and Clermont [6], however, at De = 5, they obtained a decreasing

vortex length with increasing temperature jumps (although only considering external cooling),

which was attributed to the increasing elastic effects, which become stronger than the

influence of the increasing viscosity. However, this effect is not present in our study, which

may partly be attributed to the use of the Oldroyd-B model. Almost no differences for

the vortex length are found when comparing the isothermal case (c.f. Fig. 5.10) and the

non-isothermal case (∆T = 0 K, c.f. Fig. 5.17 and 5.18) for both De = 1 and De = 5, which

again shows that temperature effects (without considering external heating or cooling) have

no influence on the kinematics of the flow at this level of elasticity. Furthermore, for De = 5

it is shown that the energy conversion mechanism (α = 0 or α = 1) has no influence on the

140



5 Development of a methodology for numerical simulation of non-isothermal viscoelastic
fluid flows with application to axisymmetric 4:1 contraction flows

−30 −20 −10 0 10 20 30

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

∆T [K]

χ

Figure 5.18: Dimensionless vortex length χ as a function of the temperature jump ∆T
and α at De = 5 for various meshes.
( ): α = 1, ( ): α = 0.
( ): M1, ( ): M2, ( ): M3, ( ): M4, ( ): results of Wachs and Clermont [6] for
α = 1.

dimensionless vortex length even when considering temperature jumps. Again, differences

are expected only for higher Deborah numbers.
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(a) ∆T = −30 K with Tmax = 467.8 K (b) ∆T = −10 K with Tmax = 469.6 K

(c) ∆T = 0 K with Tmax = 472.6 K (d) ∆T = 10 K with Tmax = 477.5 K

(e) ∆T = 30 K with Tmax = 492.4 K

Figure 5.19: Temperature isolines for different temperature jumps ∆T at De = 5 and
α = 0 using mesh M4.
20 isolines are equally distributed between ∆Tmin = 462K + ∆T and Tmax.

In Fig. 5.19 we present the temperature isolines for the five temperature jumps considered

using the finest mesh at De = 5. The isolines for ∆T = 0 K show that the upstream region is

not affected in the non-isothermal case, which is why no differences are found when comparing

to the isothermal cases. Further, one finds that the isolines are shifted further away from

the contraction wall for ∆T = −30 K and ∆T = 30 K when comparing to ∆T = −10 K

and ∆T = 10 K thus affecting a larger region. The corresponding streamlines are shown in

Fig. 5.20. It can be seen that the overall shape of the vortex is retained for the different

temperature jumps and only the vortex length varies for different temperature jumps.

The energy source term, temperature and axial velocity profiles at the outlet of the down-

stream section are shown in Fig. 5.21 for De = 5 and α = 0, 1 using the finest mesh M4.
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(a) ∆T = −30 K (b) ∆T = −10 K

(c) ∆T = 0 K (d) ∆T = 10 K

(e) ∆T = 30 K

Figure 5.20: Streamlines for different temperature jumps ∆T at De = 5 and α = 0
using mesh M4.
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Figure 5.21: Axial velocity Ũz, temperature T and dimensionless energy source term
Q̃ as a function of the radial distance at the outlet for different temperature jumps
and values of α for De = 5 using mesh M4.
( ): α = 1, ( ): α = 0, ( ): results of Wachs and Clermont [6] for α = 1.
( ): ∆T = 30K, ( ): ∆T = 10K, ( ): ∆T = 0K, ( ): ∆T = −10K,
( ): ∆T = −30K.
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The energy source term is large for external cooling and increasing towards the wall due to

the decrease of the temperature in that direction, which results in a larger viscosity in the

wall-near region. With increasing temperature jumps the energy source term decreases due

to the smaller viscosities, which are caused by the higher temperatures of the walls. When

comparing to the results of Wachs and Clermont [6] we find the energy sources to agree

with their results. Deviations are most distinct at ∆T = 0 K. However, in their studies a

downstream channel of 200 ·R1 is used in order to obtain a steady state. As can be seen from

the temperatures, no steady state is obtained in our simulation (80 ·R1) and the differences

in the energy source term may be caused by the differing temperature profiles. Although the

wall temperature varying over 60 K at the wall, we find the temperatures at the centerline to

only vary by 3.45 K from ∆T = −30 K to ∆T = 30 K, which also supports the difficulty in

thermal control of the flow by external heating or cooling, which only has limited effect on

the bulk of the flow. The velocity profiles show that with decreasing temperature jump the

velocity at the centerline is increasing owing to the smaller viscosity in the wall near-region

due to the lower temperature. Again we find that there is no difference between pure entropy

elasticity and energy elasticity at the outlet of the downstream section for all temperature

jumps considered (cf. Fig. 5.21).

5.4 Conclusion
In this work a new solution algorithm to solve non-isothermal viscoelastic fluid flows with a

collocated finite volume method is developed and implemented in the freely available software

OpenFOAM
R©

. The thermorheological modeling technique employed in this work is based

on the ideas of Peters and Baaijens [10], in which an a-priori defined split factor is used to

determine the amounts of energy elasticity and entropy elasticity.

A new method for extrapolating stresses on solid walls is introduced for evaluating the stress

divergence. The method is designed such as to be applicable to any nonorthogonal mesh,

boundary shape and constitutive equation. A thorough validation proved its superiority

regarding accuracy, however, we find the method to be less stable compared to the commonly

employed zero gradient method at higher Deborah numbers.

The solution algorithm is applied to a 4:1 axisymmetric contraction for both isothermal and

non-isothermal cases. Mesh convergence is attained and proved throughout the study as well

as stable and convergent simulations can be performed up to a Deborah number of De = 10,

although this does not seem to be the limiting value.

In the isothermal simulations the vortex is found to increase in size and is becoming more

convex with increasing Deborah number. The asymptotical behavior at the re-entrant corner

is compared to the asymptotical analyses of Dean and Montagnon [25], Moffatt [26] and

Hinch [27] showing a generally acceptable agreement. Good agreement with the numerical
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results of Wachs and Clermont [6] is mostly obtained. For non-isothermal simulations we

find the temperature changes to be generally too small to result in a significant change in the

kinematics at the considered level of elasticity. It is shown that the vortex length is increasing

with increasing temperature jumps showing the effect of external heating or cooling on the

upstream kinematics. This behavior is found for all Deborah number considered, contrary to

the previous work of Wachs and Clermont [6]. The energy conversion mechanism is found to

only influence local profiles of the temperature (and energy source term) close to regions of

high stresses without affecting global kinematics, even for the simulations with temperature

jumps.
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5.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

aT Horizontal shift factor [−]

c Conformation tensor [−]

C1 Constant of Williams-Landel-Ferry model [−]

C2 Constant of Williams-Landel-Ferry model [K]

cP Heat capacity [ m
2

s2K
]

D Rate of deformation tensor [s−1]

eφ Error of variable φ [−]

h Channel height [m]

i Index [−]

I Identity matrix [−]

k Thermal conductivity [kgm
s3K

]

or index [−]

l Channel length [m]

l1 Upstream channel length [m]

l2 Downstream channel length [m]

LR Vortex length [m]

m Number of modes [−]

n Number of cell faces [−]

or index [−]

p Pressure [ kg
ms2

]

q Heat flux [kgm
2

s3
]

Q Internal energy source or sink [kgm
2

s3
]

R1 Upstream channel radius [m]

R2 Downstream channel radius [m]

Sfi Surface area normal vector at the i-th cell face [m2]

t Time [s]

T Temperature [K]
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Symbol Description Unit

T0 Reference temperature [K]

Tw,1 Upstream wall temperature [K]

Tw,2 Downstream wall temperature [K]

u Specific internal energy [kgm
2

s2
]

U Velocity [ms ]

Ur Velocity component in radial direction [ms ]

UΘ Velocity component in Θ-direction [ms ]

Ux Velocity component in x-direction [ms ]

Uy Velocity component in y-direction [ms ]

Uz Velocity component in axial direction [ms ]

V Volume [m3]

x Position [m]

y Position [m]

z Position [m]

Greek Symbols

Symbol Description Unit

α Energy partitioning coefficient [−]

∆xcell Edge length of computational cell [m]

∆T Temperature difference [K]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

ζ Local coordinate [m]

η0 Zero shear-rate viscosity [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηS Solvent viscosity [ kgms ]

λ Relaxation time [s]

ξ Local coordinate [m]

ρ Density [ kg
m3 ]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τP,fi Polymeric stress tensor at the i-th cell face [ kg
ms2

]
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Symbol Description Unit

τP,i Polymeric stress tensor of the i-th mode [ kg
ms2

]

τP,ij ij-th element of polymeric stress tensor [ kg
ms2

]

τP,P Polymeric stress tensor of computational cell P [ kg
ms2

]

τP,xy Polymeric shear stress [ kg
ms2

]

τP,xy,max Maximum polymeric shear stress [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

φ General property

Subscripts, Superscripts and Oversymbols

Symbol Description

Q1 Upstream value of Q

Q2 Downstream value of Q

det(Q) Determinat of matrix Q

Qexact Exact value of Q

Qmax Maximum value of Q

tr(Q) Trace of matrix Q

QT Transpose of matrix Q
O
Q Upper-convected time derivative

Q Arithmetic mean value of Q

or average value of Q

Q̃ Dimensionless value of Q

Nondimensional Groups

Symbol Description Definition

De Deborah number
λUz,2
R2

Pe Peclet number
λR2Uz,2cP

k

Re Reynolds number
ρR2Uz,2

η0

β Retardation factor ηP
η0

χ Dimensionless vortex length LR
2R1
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Abbreviations

Abbreviation Description

AMG Algebraic multigrid

BiCGstab Bi-conjugate gradient stabilized

CFD Computational fluid dynamics

CUBISTA Convergent and universally bounded interpolation scheme for treatment of

advection

DEVSS Discrete elastic-viscous stress splitting

UCM Upper-convected Maxwell

WLF Williams-Landel-Ferry
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5.C Summary

In this chapter a methodology for the free-to-use software OpenFOAM
R©

, which is gen-

erally applicable to any mesh type and geometry, is developed to simulate non-isothermal

viscoelastic flows. The methodology is validated by simulating non-isothermal viscoelastic

flows in 4:1 axisymmetric contractions, in which the viscoelastic fluid is governed by the

Oldroyd-B constitutive equation. The thermorheological modeling may vary between pure

energy elasticity and entropy elasticity depending on a pre-determined split coefficient. The

temperature-dependent viscosity and relaxation time are modeled using the WLF (Williams-

Landel-Ferry) relation. The governing equations are discretized in OpenFOAM
R©

using a

collocated finite volume method. The DEVSS technique is employed for stabilization of the

numerical algorithm at high Deborah numbers. An extrapolation method is proposed for the

viscoelastic stress on solid walls, which is subsequently being evaluated regarding accuracy

and stability. Next, flows in axisymmetric 4:1 contractions with a temperature jump at the

contraction are simulated, similar to the studies of Wachs and Clermont [6]. The influence

of the Deborah number and the temperature jump on the flow behavior, such as the vortex

length, are examined. Furthermore, the asymptotic behavior at the singularity is examined

for different Deborah numbers.
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6 Modeling and Simulation of Conditionally

Volume Averaged Viscoelastic Two-Phase

Flows

6.1 Introduction
Viscoelastic two-phase flows can be found in a broad range of industrial applications such as

injection molding [1], polymer blending [2] and coextrusion [3]. Understanding and predicting

the fluid’s behavior is a major research challenge. The key issue is dealing with both complex

fluid behavior, including viscous and elastic effects, as well as multi-phase flows. These types

of flows comprise a variety of spatial and temporal scales. The spatial scales are ranging from

microscale of the molecular conformation to the mesoscale of the interfacial morphology, and

up to the macroscale of the hydrodynamics of the flow. On the other hand, the temporal

scales range from the time-scale of molecular conformation changes up to the duration of the

experiment. These aspects complicate the requirements of the numerical treatment.

Over the years, many techniques have evolved to address the multiphase-treatment, which

can be subdivided into sharp interface and diffuse interface methods.

A conceptual straightforward approach for sharp interface methods is to use a moving mesh

with the nodes deforming according to the boundary motion. This approach is used for

example in Cristini et al. [4]. However, the necessity of remeshing leads to huge amounts of

additional computational costs and interpolation errors. Moreover, changes in the interfacial

topology when facing breakup or coalescence are intractable using such a methodology.

In contrast, in diffuse interface methods, the interface possesses a finite width with the

physical properties, such as density and viscosity, smoothly varying across the interface. [5]

The Volume-of-Fluid (VoF) originally proposed by Hirt and Nichols [6] is one of these

methods. The volume-fraction is used as an order parameter to determine, which phase

is present in a particular volume. This order parameter is convected as an invariant of

the flow field. However, one of the major disadvantages of the Volume-of-Fluid method

is the difficulty to accurately reconstruct the interfacial morphology such as curvature and

interface normal vector from the order parameter. Kim et al. [7] applied a volume-of-fluid

method to viscoelastic free-surface flows in order to simulate three-dimensional jet buckling.

More recently, Habla et al. [8] applied a finite-volume based Volume-of-Fluid method to a

variety of complex multi-phase problems, including die extrusion, rod-climbing and droplet

deformations in shear and elongational flows. The Level-Set method was also successfully

applied to two-phase flows [9, 10] and more recently to viscoelastic two-phase flows [11]. In

the Level-Set method the interface is defined as the zero Level-Set of a smooth auxiliary

157



6 Modeling and Simulation of Conditionally Volume Averaged Viscoelastic Two-Phase Flows

function. Interfacial forces such as surface tension are smoothed across the interface. [9]

Although the interface remains sharp in this treatment, the conservation of mass cannot be

guaranteed. Some authors developed a hybrid approach making use of the advantages of both

the Volume-of-Fluid and Level-Set methods. [12, 13] This approach is called coupled Level-Set

Volume-of-Fluid (CLSVOF) method and was more recently applied to simulating bubble and

drop motion of a FENE-CR fluid. [14] Another diffuse-interface approach was developed

by Unverdi and Tryggvason [15, 16] called front-tracking. In front-tracking, an interface

indicator function is artificially spread over a few computational cells from the known sharp

interface position. Subsequently, this indicator function is used to convect the interface.

Being thermodynamically derived, the phase-field method is another type of diffuse-interface

methods, which was recently adapted by Yue et al. [17, 18] to simulate deformation and

head-on collision of droplets with either phase being an Oldroyd-B type fluid.

A common aspect of the aforementioned diffuse-interface methods is that they consist of only

one set of conservation equations, i.e., mass and momentum, wherein the fluid properties

vary across the interface smoothly using a phase indicator function. Advantages of diffuse

interface methods are, that a fixed grid can be used in an Eulerian treatment, and that large

distortions of the interface, occurring for example in breakup and coalescence, are handled

in a straightforward manner and will not affect the numerical simulation. However, due to

the numerical necessity of artificially smearing the interface, problems may arise if the width

of the smeared interface is on the order of the considered phenomena, which is the case, for

example, in breakup and coalescence of droplets. Furthermore, due to the artificial smearing

of the interface, the results obtained strongly depend upon the way the indicator function

varies across the interface. This is particularly distinct if the fluids possess large property

differences. As a result, a model, in which the results are independent of the interface width,

such that the interface width can be chosen arbitrarily large, is highly needed.

The technique of averaging is commonly employed for deriving two-phase models for large-

scale two-phase flows such as bubbly and particulate flows. The averaging is done on a larger-

scale compared to the dispersed phase elements. Consequently, the interfacial scale is not

resolved and coupling between the phases is accounted for only in an average sense. However,

Beckermann recently applied ensemble-averaging on an atomic scale to the local single-phase

equations to arrive at a model suitable for direct simulation of two-phase flows. [19, 20, 21]

Herein, the averaging is applied on a much smaller scale compared to the interfacial averaging

methods, so as to partly resolve the interfacial morphology and the flows inside the interface.

In contrast to commonly used diffuse interface methods, wherein only a single velocity and

pressure is present even in the interfacial region, the ensemble averaged two-phase model

by Beckermann and co-workers treats both phases separately with each phase having its

own velocity and pressure. As a consequence separate conservation equations for mass

and momentum have to be solved, which is common for the interfacial averaged two-phase

models. These equations are explicitly coupled using closure relations to account for the phase

158



6 Modeling and Simulation of Conditionally Volume Averaged Viscoelastic Two-Phase Flows

interaction. Beckermann showed that the resulting model possesses the important property

of being independent of the chosen interface width; however, this is only the case with zero

surface tension. [20]

In this work, we will apply the technique of conditional volume averaging to the mass and

momentum equations, but on a larger scale compared to Sun and Beckermann [20]. Our model

is motivated by the desire to predict meso- and macroscale flows by underresolving microscale

structures, rather than a need to resolve the scale of the fluctuating atomic structures inside

the diffuse interface to allow direct numerical simulation. That is, the mean interfacial

curvature is resolved and large compared to the interfacial width. The resulting model

will be based on local instantaneous conservation equations, which are transformed using

the mathematically well-grounded conditional volume-averaging technique. The resulting

coupling terms are then physically interpreted by splitting them into resolved and unresolved

portions. A drawback of treating both phases separately is that they require a model for

the coupling terms, which is usually based on simple concepts. [20] In this work, we will

present closure relations to couple our derived set of equations based on the above mentioned

ideas. In doing so, the stress terms are treated using the well-known Oldroyd-B constitutive

equation, see for example Bird et al. [22], in order to allow for either phase being viscoelastic.

By solving each phase separately, no a-priori defined variation of variables across the interface

has to be postulated. Moreover, both phases coexist inside the interfacial region thus avoiding

rapid changes in the properties across the interface.

This work is organized as follows: In Section 6.2, we will introduce the concept of conditional

volume averaging and then derive the conditionally volume averaged mass and momentum

equations. Closure laws are subsequently presented for the viscoelastic stresses, interfacial

morphology, interfacial force density and momentum source due to surface tension. The

numerical implementation is outlined in Section 6.3. The derived equations are rearranged in

view of the numerics and a numerical procedure to solve the strongly coupled set of equations

is presented. In Section 6.4, we present the results for a single-phase Poiseuille flow and two

basic two-phase test cases to demonstrate the correctness of the viscoelasticity treatment and

the closures for momentum source and phase coupling. Finally, we pursue an error analysis

using a viscoelastic two-phase Poiseuille flow.

6.2 Mathematical formulation

6.2.1 Conditional Averaging

First, we will shortly outline the concept of conditional volume averaging. For further reading,

we would like to refer the reader to the literature. [23, 24, 25, 26, 27]
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In order to distinguish between multiple phases, the phase indicator function Iϕ (x, t) is

introduced, which equals one, if phase ϕ is present and is zero elsewhere

Iϕ (x, t) =

1 if point (x, t) is in phase ϕ

0 otherwise.
(6.1)

As a result of Eq. 6.1, the following must hold for N phases

N∑
i=1

Iϕ (x, t) = 1 (6.2)

Let Q be any local instantaneous physical property, e.g., a scalar, vector or tensor. Multi-

plication of the phase indicator function Iϕ (x, t) with Q gives Qϕ ≡ Iϕ (x, t) Q, where Qϕ

denotes the conditioned quantity.

Volume averaging of a local instantaneous physical property Q using an arbitrary averaging

volume element δV is defined as

Q
∂V ≡ 1

δV

∫
δV

Q (x, t) dy (6.3)

where δV is the averaging volume and the vector y is a relative position vector pointing inside

the volume δV. In the remainder, the index δV will be dropped due to brevity.

Now consider the volume average of the phase indicator function Iϕ (x, t)

αϕ (x, t) = Iϕ (x, t) (6.4)

then αϕ (x, t) is the phase volume fraction, which in the case of ensemble averaging can be

thought of the probability of a point (x, t) pertaining to phase ϕ. Note, that (x, t) will be

dropped for Iϕ (x, t) and αϕ (x, t) and will solely be denoted as Iϕ and αϕ in the remainder.

The conditional volume average of a local instantaneous physical property Q is then defined

as follows [23]

IϕQ = αϕQϕ (6.5)

The conditional fluctuation is the difference between the local instantaneous and conditional

volume average of the property [27]

Q′ϕ = Q−Qϕ (6.6)

The conditional volume averaged product of Q and another property P is

IϕPQ = αϕPϕQϕ + αϕP′ϕQ′ϕ (6.7)
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In order to apply conditional volume averaging to the mass and momentum equation, we

additionally need to consider conditional volume averaged differential operations. It is worth

noting here that differential operators and the averaging operation commute

∇ (IϕQ) = ∇(IϕQ) = ∇
(
αϕQϕ

)
(6.8)

and

∂IϕQ

∂t
=
∂IϕQ

∂t
=
∂
(
αϕQϕ

)
∂t

(6.9)

Now consider the conditional volume average of Iϕ∇Q = ∇ (IϕQ)− (∇Iϕ) Q over a control

volume ∂V. ∇Iϕ is non-zero only at the interface where it has a value of infinity thus

resembling the Dirac delta function and the direction nI,ϕ normal to the interface pointing

inside of the volume ϕ. Then the conditional volume average of Iϕ∇Q is

Iϕ∇Q = ∇ (IϕQ)− (∇Iϕ) Q

= ∇
(
αϕQϕ

)
− lim
δV→0

1

δV

∫
S(x,t)

nI,ϕQdS

= ∇
(
αϕQϕ

)
−
︷ ︸︸ ︷
nI,ϕQΣ (6.10)

where S (x, t) = 0 is the equation of the interface, Σ is the interfacial area density

Σ ≡ lim
δV→0

1

δV

∫
S(x,t)

dS (6.11)

and
︷︸︸︷
Q denotes the interface average of a property Q [27]

︷︸︸︷
Q ≡

limδV→0
1
δV

∫
S(x,t) QdS

Σ
(6.12)

The conditionally volume averaged divergence of the property Q can be obtained analo-

gously

Iϕ∇ ·Q = ∇ · (IϕQ)− (∇Iϕ) ·Q

= ∇ ·
(
αϕQϕ

)
− lim
δV→0

1

δV

∫
S(x,t)

nI,ϕ ·QdS

= ∇ ·
(
αϕQϕ

)
−
︷ ︸︸ ︷
nI,ϕ ·QΣ (6.13)
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For the time derivative we obtain

Iϕ
∂Q

∂t
=

∂IϕQ

∂t
−Q

∂Iϕ
∂t

=
∂
(
αϕQϕ

)
∂t

+ Q ((∇Iϕ) ·UI)

=
∂
(
αϕQϕ

)
∂t

+ lim
δV→0

1

δV

∫
S(x,t)

Q (nI,ϕ ·UI) dS

=
∂
(
αϕQϕ

)
∂t

+
︷ ︸︸ ︷
Q (nI,ϕ ·UI)Σ (6.14)

which follows from the fact that the phase indicator function Iϕ is convected with the velocity

of the interface UI

∂Iϕ
∂t

+ (∇Iϕ) ·UI = 0 (6.15)

A useful identity can be obtained from Eq. 6.10 with Q = 1

∇αϕ =
︷︸︸︷
nI,ϕΣ (6.16)

Moreover, by using Eq. 6.14 with Q = 1, one can derive the evolution equation for the volume

fraction αϕ of phase ϕ

∂αϕ
∂t

+
︷ ︸︸ ︷
nI,ϕ ·UI Σ = 0 (6.17)

Similar to decomposing the local instantaneous quantity into a volume average and a fluctu-

ation (Eq. 6.6), an interfacial quantitiy QI (a quantity defined solely on the interface) may

also be decomposed into a surface average and surface fluctuation

QI =
︷︸︸︷
Q +Q# (6.18)

Although the general approach is valid for any number of phases (see Eq. 6.2), we restrict

the derivation in the subsequent section to the case of two phases (ϕ and ω).

6.2.2 Conservation equations

In this section, we will apply conditional volume averaging to derive a set of equations from

the local instantaneous mass and momentum conservation suitable for describing multiphase

flows, in which we seek to capture the interfacial morphologies on a mesoscale, while un-

derresolving the microscale structures. The derivation of the conditional volume averaged

continuity and momentum equations in particular follows the derivation of Weller [27].

However, in Weller [27] a model for simulating interfacial averaged bubbly multiphase flows

is derived, with one phase being dispersed in another phase. Throughout this work we will

consider transient, isothermal two-phase flows of incompressible viscoelastic fluids.
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Conditionally Volume Averaged Mass Conservation

The local instantaneous continuity equation is

∂ρ

∂t
+∇ · (ρU) = 0 (6.19)

where ρ is the density and U is the velocity.

Conditional volume averaging of the local instantaneous continuity equation for phase ϕ

gives

Iϕ
∂ρ

∂t
+ Iϕ∇ · (ρU) = 0 (6.20)

Using Eqs. 6.13 and 6.14 gives

∂
(
αϕρϕ

)
∂t

+
︷ ︸︸ ︷
ρ (nI,ϕ ·UI)Σ +∇ ·

(
αϕρϕUϕ

)
−
︷ ︸︸ ︷
ρ (nI,ϕ ·U)Σ = 0 (6.21)

Note here, that due to the assumption of incompressible fluids no density weighted averages

appear. The interface contribution terms can be grouped together

∂
(
αϕρϕ

)
∂t

+∇ ·
(
αϕρϕUϕ

)
=
︷ ︸︸ ︷
ρ (nI,ϕ · (U−UI))Σ (6.22)

Assuming no mass-transfer, i.e., U − UI = 0, and by dividing Eq. 6.22 by the constant

density ρϕ, one obtains

∂αϕ
∂t

+∇ ·
(
αϕUϕ

)
= 0 (6.23)

Note that the same equation holds for the second phase ω by simply changing the indices.

Conditionally Volume Averaged Momentum Conservation

The local instantaneous momentum equation can be written as

∂ρU

∂t
+∇ · (ρUU) = −∇p+∇ · τ + ρg (6.24)

where p is the pressure, τ is the extra-stress tensor and g is the gravitational acceleration

vector.

Conditional volume averaging of the momentum equation gives

Iϕ
∂ρU

∂t
+ Iϕ∇ · (ρUU) = −Iϕ∇p+ Iϕ∇ · τ + Iϕρg (6.25)
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By again making the a-priori assumption of incompressible fluids, as is the case for the

continuity equation, one obtains

∂αϕρϕUϕ

∂t
+
︷ ︸︸ ︷
ρU (nI,ϕ ·UI)Σ

+∇ ·
(
αϕρϕUϕUϕ

)
+∇ ·

(
αϕρϕU′ϕU′ϕ

)
−
︷ ︸︸ ︷
ρU (nI,ϕ ·U)Σ

=

−∇
(
αϕpϕ

)
+
︷ ︸︸ ︷
nI,ϕpΣ +∇ · (αϕτϕ)−

︷ ︸︸ ︷
nI,ϕ · τΣ + αϕρϕg (6.26)

In this work, the momentum dispersion term, i.e., the fourth term on the left hand side of

Eq. 6.26, is neglected by assuming that the flow is slow enough, which is similarly made in

Sun and Beckermann [20]. Furthermore, with the assumption of no mass-transfer between

the phases, the two interfacial average terms on the left hand side of Eq. 6.26 sum to zero

resulting in

∂αϕρϕUϕ

∂t
+∇ ·

(
αϕρϕUϕUϕ

)
=

−∇
(
αϕpϕ

)
+
︷ ︸︸ ︷
nI,ϕpΣ +∇ · (αϕτϕ)−

︷ ︸︸ ︷
nI,ϕ · τΣ + αϕρϕg (6.27)

Dividing Eq. 6.27 by the constant bulk density ρϕ, applying the product rule to the bulk

pressure term according to ∇
(
αϕpϕ

)
= αϕ∇pϕ + (∇αϕ) pϕ and grouping the interface

contributed terms on the right hand side into an interfacial momentum transfer term Mϕ,

one obtains [27]

∂αϕUϕ

∂t
+∇ ·

(
αϕUϕUϕ

)
= −

αϕ∇pϕ
ρϕ

+
∇ · (αϕτϕ)

ρϕ
+ αϕg +

Mϕ

ρϕ
(6.28)

where Mϕ = − (∇αϕ) pϕ +
︷ ︸︸ ︷
nI,ϕpΣ −

︷ ︸︸ ︷
nI,ϕ · τΣ. According to Eq. 6.18, we decompose the

interfacial pressure into a mean and a fluctuation [26]

︷ ︸︸ ︷
nI,ϕpΣ =

︷︸︸︷
p
︷︸︸︷
nI,ϕΣ +

︷ ︸︸ ︷
n#
I,ϕp

#Σ (6.29)

and by using Eq. 6.16 we obtain

︷ ︸︸ ︷
nI,ϕpΣ =

︷︸︸︷
p ∇αϕ +

︷ ︸︸ ︷
n#
I,ϕp

#Σ (6.30)

This results in

Mϕ =
(︷︸︸︷
p − pϕ

)
∇αϕ +

︷ ︸︸ ︷
nI,ϕp

#Σ−
︷ ︸︸ ︷
nI,ϕ · τΣ (6.31)
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The first term can be thought of as a net force normal to the interface due to a pressure

difference, whereas the last two terms can be thought of the momentum exerted due to

unbalanced pressures and stresses. In order to obtain the correct jump conditions at the

interface, the following condition must hold [20]

Mϕ + Mω = Mσ (6.32)

where Mσ denotes the averaged interfacial momentum source due to surface tension, which

is

Mσ ≡ σ
︷ ︸︸ ︷
κI,ϕnI,ϕΣ (6.33)

6.2.3 Viscoelastic Two-Phase Flow Closure

The two continuity equations (Eqs. 6.23) and momentum equations (Eqs. 6.28) (one for each

phase ϕ and ω in a two-phase flow) together with the volume fraction equations (Eq. 6.17)

constitute our two-phase model. Note here, that only one volume fraction equation is

necessary for a two-phase flow since by adding up both equations it follows that

αω = 1− αϕ (6.34)

However, the model still includes two terms τϕ and Mϕ, which need proper closure models

for the flow under consideration. In the following sections, we will derive closure relations for

an incompressible, isothermal, viscoelastic two-phase flow without mass-transfer.

Modeling of the stress terms

We will first derive closure relations for the conditional volume averaged stress tensor τϕ. We

start by stating the single phase stress equations and subsequently apply conditional volume

averaging.

The fluids are assumed to obey the Oldroyd-B constitutive equation. Herein, the stress tensor

for phase ϕ can be split into a Newtonian (solvent) contribution and a viscoelastic (polymeric)

contribution as follows

τ = τS + τP (6.35)

The Newtonian law is

τS = ηS

(
∇U + (∇U)T − 2

3
(∇ ·U) I

)
(6.36)
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where I denotes the identity matrix. Conditional volume averaging gives

IϕτS = IϕηS∇U + IϕηS (∇U)T − IϕηS
2

3
(∇ ·U) I (6.37)

Applying the previously derived relationships results in

αϕτSϕ = ∇
(
αϕηS,ϕUϕ

)
−
︷ ︸︸ ︷
nI,ϕ (ηSU)Σ

+
(
∇
(
αϕηS,ϕUϕ

))T − ︷ ︸︸ ︷
(ηSU) nI,ϕΣ

−∇ ·
(

2

3
αϕηS,ϕUϕ

)
I +

︷ ︸︸ ︷
nI,ϕ · (ηSU) IΣ

= αϕηS,ϕ∇Uϕ + ηS,ϕ (∇αϕ) Uϕ − ηS,ϕ (∇αϕ) UI

+αϕηS,ϕ
(
∇Uϕ

)T
+ ηS,ϕUϕ∇αϕ − ηS,ϕUI (∇αϕ)

−2

3
ηS,ϕ

{
αϕ
(
∇ ·Uϕ

)
I +

[
(∇αϕ) ·Uϕ

]
I− (UI · ∇αϕ) I

}
(6.38)

Regrouping of the various terms leads to the closure for the Newtonian contribution τSϕ

αϕτSϕ = αϕηS,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+ηS,ϕ

[
∇αϕ

(
Uϕ −UI

)
+
(
Uϕ −UI

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −UI

)
I

]
(6.39)

From Eq. 6.39, one can conclude that the average stress contains two contributions. The first

term on the right represents the self-interaction of the single-phase to itself. The second term

is due to the relative motion between the two phases. [20]

The polymeric contribution τP obeys an Upper-Convected-Maxwell equation

τP + λ
O
τP= ηP

(
∇U + (∇U)T − 2

3
(∇ ·U) I

)
(6.40)

where the upper-convected time derivative
O
τP is defined as

O
τP≡

∂τP
∂t

+∇ · (UτP )− (∇U)T · τP − τP · (∇U) (6.41)

Applying conditional volume averaging leads to

IϕτP + Iϕλ
∂τP
∂t

+ Iϕλ∇ · (UτP )− Iϕλ (∇U)T · τP − IϕλτP · (∇U)

=

IϕηP∇U + IϕηP (∇U)T − IϕηP
2

3
(∇ ·U) I (6.42)
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This results in

αϕτP ϕ + λϕ
∂αϕτP ϕ
∂t

+ λϕ
︷ ︸︸ ︷
τP (nI,ϕ ·UI)Σ

+λϕ∇ ·
(
αϕτP ϕUϕ

)
+∇ ·

(
αϕτ ′P,ϕU′ϕ

)
− λϕ

︷ ︸︸ ︷
τP (nI,ϕ ·U)Σ

−αϕλϕ
(
∇Uϕ

)T · τP ϕ − αϕλϕ((∇Uϕ)T
)′
· τ ′P,ϕ

−αϕλϕτP ϕ · ∇Uϕ − αϕλϕτ ′P,ϕ · (∇Uϕ)′

=

∇
(
αϕηP,ϕUϕ

)
−
︷ ︸︸ ︷
nI,ϕ (ηPU)Σ

+
(
∇
(
αϕηP,ϕUϕ

))T − ︷ ︸︸ ︷
(ηPU) nI,ϕΣ

−∇ ·
(

2

3
αϕηP,ϕUϕ

)
I +

︷ ︸︸ ︷
nI,ϕ · (ηPU) IΣ

(6.43)

The interface terms on the left hand side of Eq. 6.43 again sum up to zero, since there is no

mass transfer

λϕ
︷ ︸︸ ︷
τP [nI,ϕ · (UI −U)]Σ = 0 (6.44)

The stress dispersion term and the fluctuation terms, i.e., the fifth, eigth and tenth term on

the left hand side of Eq. 6.43, respectively, are assumed to be negligibly small, similar to

the momentum dispersion term, and thus neglected. Finally, assembling the above results

and regrouping the terms, we obtain the following form of the conditional volume averaged

upper-convected Maxwell equation

αϕτP ϕ

+λϕ

[(
∂αϕτP ϕ
∂t

)
+∇ ·

(
αϕτP ϕUϕ

)
− αϕτP ϕ · ∇Uϕ − αϕ

(
∇Uϕ

)T · τP ϕ]
=

αϕηP,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+ηP,ϕ

[
∇αϕ

(
Uϕ −UI

)
+
(
Uϕ −UI

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −UI

)
I

]
(6.45)

Once again we see two contributions to the rate of change to the polymeric stress, a term

representing the self-interaction of the phase ϕ with itself and a contribution from the relative

motion of the two phases ϕ and ω.

Modelling of the averaged velocity on the ϕ-side of the interface UI will be discussed in the

next section.
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Modeling of the interface morphology

The local interface unit normal vector nI,ϕ and curvature κI,ϕ are defined via the phase

indicator function as follows

nI,ϕ =
∇Iϕ
|∇Iϕ|

(6.46)

κI,ϕ = −∇ · nI,ϕ (6.47)

In order to obtain closure for the interfacial averaged unit normal vector
︷︸︸︷
nI,ϕ and curvature︷︸︸︷

κI,ϕ, one could simply use volume averaging of the above equations

︷︸︸︷
nI,ϕ =

nI,ϕ∇Iϕ
|∇Iϕ|

(6.48)

︷︸︸︷
κI,ϕ =

κI,ϕ∇Iϕ
|∇Iϕ|

(6.49)

However, this would require knowledge of the exact local interfacial morphology, which is

subsequently lost after using volume averaging.

In order to obtain an exploitable relationship, we use Eq. 6.16. This will be our closure for

the interfacial averaged unit normal vector

︷︸︸︷
nI,ϕ =

∇αϕ
Σ

(6.50)

By taking the absolute value of Eq. 6.50, we obtain

|∇αϕ| =
∣∣∣︷︸︸︷nI,ϕ

∣∣∣Σ =
︷ ︸︸ ︷
|nI,ϕ|Σ (6.51)

Now since
︷ ︸︸ ︷
|nI,ϕ| = 1, we obtain for the interfacial area density Σ

Σ = |∇αϕ| (6.52)

and by using Eq. 6.52 together with Eq. 6.50, we obtain the following closure

︷︸︸︷
nI,ϕ =

∇αϕ
|∇αϕ|

(6.53)

and similar

︷︸︸︷
κI,ϕ = −∇ ·

(
∇αϕ
|∇αϕ|

)
(6.54)

In a study on flame wrinkling Donbar et al. [28] suggest using an inverse relationship between

the interfacial area density Σ and the thickness of the flame brush. We will adopt this concept
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for our two-phase scenario to suppose that the thickness of the interfacial region is inversely

proportional to the interfacial area density

δI ≈
1

Σ
=

1

|∇αϕ|
(6.55)

In order to obtain a closure relation for the local interface velocity UI , we decompose the

velocity into a mean and fluctuation

UI =
︷︸︸︷
U + U# (6.56)

Sun and Beckermann [20] proposed a viscosity weighted linear function of the average total

velocities of both phases in the case of different viscosities

︷︸︸︷
U =

αωηeff,ϕUϕ + αϕηeff,ωUω

αωηeff,ϕ + αϕηeff,ω
(6.57)

This relation can be thought as an average no-slip condition at the interface. In the

case of Newtonian fluids, one may use the simple expression ηeff,ϕ = ηS,ϕ. However, in

the case of an Oldroyd-B fluid, the effective viscosity must account for elastic effects as

well. A simple, but still good approximation would be to use ηeff,ϕ = ηS,ϕ + ηP,ϕ. This

closure relation assumes the interface to behave in a viscous manner. In the course of

this study, more implicit closures to explicitly account for elastic behavior of the interface

were examined, such as ηeff,ϕ = ηS,ϕ +
∣∣∣∣τP ϕ∣∣∣∣ / ∣∣∣∣γ̇ϕ∣∣∣∣, where γ̇ is the shear-rate tensor, or

ηeff,ϕ = ηS,ϕ +
∣∣∣∣∣∣τ ∗P ϕ∣∣∣∣∣∣ / ∣∣∣∣γ̇ϕ∣∣∣∣, where τ ∗P ϕ is obtained via

τP ϕ
∂t + ∇ ·

(
UϕτP ϕ

)
=

τ∗P ϕ−τP ϕ
λϕ

.

However, none of the implicit methods proved to be justified and so the simpler the viscous

expression was chosen.

The surface fluctuation U# is assumed to be small and neglected in the following. Using this

closure for the interface velocity, one may derive for the solvent and polymeric stress

αϕτSϕ =

αϕηS,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+

αϕηS,ϕηeff,ω
αωηeff,ϕ + αϕηeff,ω

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −Uω

)
I

]
(6.58)
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αϕτP ϕ + λϕ

[(
∂αϕτP ϕ
∂t

)
+∇ ·

(
αϕτP ϕUϕ

)
− αϕ

(
∇Uϕ

)T · τP ϕ − αϕτP ϕ · ∇Uϕ

]
=

αϕηP,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+

αϕηP,ϕηeff,ω
αωηeff,ϕ + αϕηeff,ω

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −Uω

)
I

]
(6.59)

Modeling of the interfacial force density and momentum source

An important closure relation for the modeling of conditional volume averaged two-phase

flows is the interfacial force density. In the course of the derivation, we will split the term

into three parts, one stemming from surface tension, one from phase-slip and one from drag.

First consider a two-phase scenario without flow in the case of surface tension. Using Eq. 6.33,

we split the interface term into a surface average and fluctuation as follows

Mσ = σ
︷ ︸︸ ︷
κInI Σ = σ

(︷︸︸︷
κI
︷︸︸︷
nI +

︷ ︸︸ ︷
κ#
I n#

)
Σ (6.60)

The fluctuation term is assumed to be small compared to the interface average, i.e.,

︷ ︸︸ ︷
κ#
I n# �︷︸︸︷

κI
︷︸︸︷
nI . By using Eqs. 6.53 and 6.54

Mσ ≈ −σ
(
∇ · ∇αϕ
|∇αϕ|

)
∇αϕ (6.61)

This will be our final closure for surface tension. Note, that this term is in accordance to the

continuum surface force (CSF) model. [29]

Next, consider a flow parallel to a planar interface without gravity. In Eq. 6.31 the first term

accounts for the pressure difference
(︷︸︸︷
p − pϕ

)
between bulk and interface. Initially, we

followed Bestion [30], who suggested a relationship between the mean pressure difference and

the square of the slip velocity according to

︷︸︸︷
p − pϕ =

αϕαωρϕρω
αϕρω + αωρϕ

∣∣Uϕ −Uω

∣∣2 (6.62)

However, we found in this study, that this term
(︷︸︸︷
p − pϕ

)
≈ 0 for any flow under

consideration, which is why it is subsequently neglected.
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For the second part of Eq. 6.31 we have

︷ ︸︸ ︷
n#
I,ϕp

#Σ−
︷ ︸︸ ︷
nI,ϕ · τΣ, which comprises the interfacial

forces due to unbalanced pressures and stresses. We follow Sun and Beckermann [20], who

use the following expression

Md
ϕ = −h

αωηeff,ϕΣ

δI

(
Uϕ −UI

)
(6.63)

That is, the interfacial Reynolds number is assumed to be small so that the drag force between

the two phases is linearly proportional to the slip velocity. With the use of Eq. 6.52, Eq. 6.55

and Eq. 6.57 we obtain

Md
ϕ = −h

αϕαωηeff,ϕηeff,ω (|∇αϕ|)2

αωηeff,ϕ + αϕηeff,ω

(
Uϕ −Uω

)
(6.64)

Beckermann et al. [19] propose that h ≈ 2.5−2.757, being derived for an asymptotic analysis

for plane shear flow past a diffuse interface for a solid-liquid flow. The particular value depends

on the profile of variation of αϕ. The same value was used for the two-phase scenario. [20]

A variational analysis over two orders of magnitude showed, that this value indeed results in

the correct velocity profile even for two-phase flow. However, in this work, we use a value of

h = 11.028(= 4 ∗ 2.757), since after using the closure relation for UI in Eq. 6.63 the term is

proportional to αϕαω having its maximum of αϕαω = 0.25 (at αϕ = αω = 0.5), which is why

we use a factor of four. Note, that this value results also in the correct velocity profile, as

will be shown in the results, however, having beneficial stabilizing features to the solution,

as the coupling between the both phases in strengthend.

Using both Eq. 6.61 and Eq. 6.63 together with the corresponding closures results in the final

closure of Mϕ

Mϕ = −h
αϕαωηeff,ϕηeff,ω (|∇αϕ|)2

αωηeff,ϕ + αϕηeff,ω

(
Uϕ −Uω

)
− σ

(
∇ · ∇αϕ
|∇αϕ|

)
∇αϕ (6.65)

6.3 Numerical implementation
Our system of equations is described by the volume fraction equations (Eqs. 6.17), the

continuity equations (Eqs. 6.23) and momentum equations (Eqs. 6.28), the underlying closure

relations for stress (Eqs. 6.58 and 6.59) and the interfacial momentum transfer (Eq. 6.65) for

both ϕ and ω. In this section we describe the numerical procedure to solve these equations.

6.3.1 Pressure reformulation

A critical issue in solving the above system of equations is the need for two pressures being

strongly coupled at the interface. This would require a thorough coupled solution procedure.

Now, in incompressible single-phase flows, pressure is mainly used to satisfy continuity. If a
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similar technique is used for a two-phase flow, then pressure will be used to guarantee overall

continuity, whereas the phase fractions are obtained by the continuity equations. Therefore,

we will make use of a single/mixture pressure according to

p = pϕ = pω (6.66)

Since we then remove one unknown, we consequently have to remove an equation in order

to stay well-posed, which will be the first volume fraction equation Eq. 6.17. The second

equation will be used in its transformed form as given by Eq. 6.34.

Furthermore, in order to smooth out the pressure field, which is necessary in the numerical

procedure, we will make use of a modified pressure pd by separating out the hydrostatic

pressure, −ρg · x, where x is the position vector and ρ = αϕρϕ + (1 − αϕ)ρω. [31] The

momentum equation for quiescent fluids and flat interfaces is

∇p
ρϕ

= g (6.67)

In the case of constant gravitational acceleration g one may write ∇ (ρg · x) = g · x∇ρ+ ρg.

This leads to

∇p
ρϕ

=
∇pd
ρϕ

+
1

ρϕ
(ρg + g · x∇ρ) (6.68)

Substituting Eq. 6.68 into the momentum equation, Eq. 6.28, we get

∂αϕUϕ

∂t
+∇ ·

(
αϕUϕUϕ

)
=

−αϕ∇p
d

ρϕ
+ αϕ

(
1− ρ

ρϕ

)
g− αϕ

g · x∇ρ
ρϕ

+
∇ · (αϕτϕ)

ρϕ
+

Mϕ

ρϕ
(6.69)

6.3.2 Phase fraction equation reformulation

An important aspect in two-phase flows is to keep the phase fraction αϕ strictly bounded

between zero and one. In this work, we will adopt the Weller [27] scheme by reformulating

the continuity equations Eqs. 6.23. We therefore define a mixture velocity U as follows

U = αϕUϕ + αωUω (6.70)

Combining Eqs. 6.23 both for ϕ and ω together with Eq. 6.70 yields the incompressibility

constraint for the mixture velocity

∇ ·U = 0 (6.71)
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Further, a relative velocity Ur is defined according to

Ur = Uϕ −Uω (6.72)

Combining Eqs. 6.23, 6.34, 6.70, and 6.72 yields the phase fraction convection equation

∂αϕ
∂t

+∇ ·
(
αϕU

)
+∇ ·

(
Urαϕ (1− αϕ)

)
= 0 (6.73)

It follows from Eq. 6.71, that the first and second convection terms in Eq. 6.73 are both

conservative and bounded between zero and one. However, in order to guarantee this

boundedness, Eq. 6.73 has to be solved fully implicitly. Since the second convection term

is nonlinear in αϕ one has to adopt an iterative procedure.

6.3.3 Phase-intensive Momentum and Constitutive Equation

Another important aspect on solving the above set of equations is the difficulty for solving

the momentum and constitutive equations in the case when the phase fractions become zero.

We therefore derive phase intensive forms of those equations.

Considering the momentum equation (Eq. 6.69), the product rule is applied to the instationary

and convective terms on the right hand side according to

∂αϕUϕ

∂t
+∇ ·

(
αϕUϕUϕ

)
=

αϕ
∂Uϕ

∂t
+ Uϕ

∂αϕ
∂t

+ αϕUϕ · ∇Uϕ + Uϕ∇ ·
(
αϕUϕ

)
(6.74)

Next, subtracting Uϕ-times the continuity equation (Eq. 6.23) and dividing by αϕ yields

∂Uϕ

∂t
+ Uϕ · ∇Uϕ = −∇p

d

ρϕ
+

(
1− ρ

ρϕ

)
g− g · x∇ρ

ρϕ
+
∇ · (αϕτϕ)

αϕρϕ
+

Mϕ

αϕρϕ
(6.75)

Note here, that this equation is in non-conservative form for both the instationary and

convective term. The convective term can numerically be evaluated as

Uϕ · ∇Uϕ = ∇ ·
(
UϕUϕ

)
−Uϕ

(
∇ ·Uϕ

)
(6.76)

With respect to the numerical implementation of the stress terms, they are expanded into a

pure bulk and interfacial part according to

∇ · (αϕτϕ)

αϕρϕ
=

1

ρϕ
∇ · τϕ +

∇αϕ
αϕρϕ

· τϕ (6.77)
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Consequently, we will need the phase-intensive form of τSϕ and τP ϕ. In order to obtain the

phase intensive solvent stress contribution, we simply divide Eq. 6.39 by αϕ

τSϕ =

ηS,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+

ηS,ϕηeff,ω
αωηeff,ϕ + αϕηeff,ω

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −Uω

)
I

]
(6.78)

Furthermore, the solvent stress is split into a diffusive and correction term in view of the

numerical implementation

τSϕ = τSϕ|diff. + τSϕ|corr. (6.79)

where

τSϕ|diff. = ηS,ϕ∇Uϕ (6.80)

and

τSϕ|corr. =

ηS,ϕ

[(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+

ηS,ϕηeff,ω
αωηeff,ϕ + αϕηeff,ω

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −Uω

)
I

]
(6.81)

The same approach that was applied to the momentum equation is now used for the Oldroyd-B

equation. We start by applying the product rule to the instationary and convective terms of

Eq. 6.59 to obtain

∂αϕτP ϕ
∂t

+∇ ·
(
αϕτP ϕUϕ

)
=

αϕ
∂τP ϕ
∂t

+ τP ϕ
∂αϕ
∂t

+ αϕUϕ · ∇τP ϕ + τP ϕ∇ ·
(
αϕUϕ

)
(6.82)
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Next, substracting λϕτP ϕ multiplied with Eq. 6.23 and dividing by αϕ from Eq. 6.59 leads

to the phase-intensive conditionally volume averaged Oldroyd-B equation

τP ϕ + λϕ

[(
∂τP ϕ
∂t

)
+ Uϕ · ∇τP ϕ −

(
∇Uϕ

)T · τP ϕ − τP ϕ · ∇Uϕ

]
=

ηP,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+

ηP,ϕηeff,ω
αωηeff,ϕ + αϕηeff,ω

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −Uω

)
I

]
(6.83)

where the nonconservative convection term is treated numerically as

Uϕ · ∇τP ϕ = ∇ ·
(
τP ϕUϕ

)
−
(
∇ ·Uϕ

)
τP ϕ (6.84)

6.3.4 Stabilization using the Both Sides Diffusion

In order to stabilize the solution procedure due to the treatment of viscoelasticity, we use

the both sides diffusion (BSD) technique, which introduces an elliptic operator into the

momentum equation (Eq. 6.75 coupled with Eq. 6.77), see for example [32]

∂Uϕ

∂t
+ Uϕ · ∇Uϕ −∇ ·

(
ηP,ϕ
ρϕ
∇Uϕ

)
=

−∇p
d

ρϕ
+

(
1− ρ

ρϕ

)
g− g · x∇ρ

ρϕ

+
1

ρϕ
∇ · τϕ +

∇αϕ
αϕρϕ

· τϕ −∇ ·
(
ηP,ϕ
ρϕ
∇Uϕ

)
+

Mϕ

αϕρϕ
(6.85)

6.3.5 Summary of the model

Finally, assembling all of the above equations yields our final set of equations describing

viscoelastic two-phase flows for both ϕ and ω: the phase fraction convection (Eqs. 6.73 and

6.34), continuity (Eq. 6.71), momentum (Eq. 6.85 in combination with Eqs. 6.65, 6.80 and

6.81) and the Oldroyd-B equation (Eq. 6.83).

6.3.6 Numerical discretization

In this section, we will briefly outline the discretization practices adopted to solve the above

set of equations.
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The package OpenFOAM
R©

, which is based on the finite volume method, is used. This

package is capable of handling both regular orthogonal cells and non-orthogonal cells. A

collocated grid arrangement is used storing all variables at the cell centers.

For temporal discretization we use a three-point scheme giving at least second order accuracy

in time. [33]

The convective terms are discretized using the Gamma scheme with a blending factor

of 0.8. [34] A study on viscoelastic single-phase flows using this scheme can be found in

Favero et al. [35].

6.3.7 Iterative procedure

In order to solve the above strongly coupled set of equations, we use a pressure-implicit with

splitting of operators algorithm (PISO). [36] The iterative procedure can be summarized as

follows

1.) Solve the phase fraction equation Eq. 6.73 for a given number of times (nα = 2).

2.) PISO-Loop:

2.1.) Predict the cell fluxes.

2.2.) Construct and solve a Poisson-type equation for pressure using Eq. 6.71.

2.3.) Correct the fluxes and velocities.

2.4.) Repeat from a) for a given number of times (nPISO = 2).

3.) Solve the Oldroyd-B equations Eqs. 6.83.

4.) If necessary, repeat from 1.) until a given accuracy is met (in this work ntotal = 1 is

used throughout).

For pressure correction, a PCG solver with DIC preconditioning is used at a tolerance of 10−12.

For the phase fraction and polymeric stress equations, a BiCGStab is used with a Cholesky

preconditioner at a tolerance of 10−10 for phase fraction and 10−6 for stress, respectively.
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Figure 6.1: Domain and boundary conditions for a single phase Poiseuille flow.

6.4 Results and Discussion

6.4.1 Single Phase Flow

In the case of only one fluid being present, a model for multiphase-flows must behave as a

single-phase model. This is, we have αϕ = 1 throughout the domain. The phase fraction

equation (Eq. 6.73) reduces to αϕ = const., whereas the second modified continuity equation

(Eq. 6.71) reduces to the single phase incompressibility constraint ∇ ·Uϕ = 0. No coupling

interfacial terms are present, and the momentum equation for phase ϕ (Eq. 6.85) reduces to

the single-phase momentum equation. The same applies to the stress models (Eqs. 6.81 and

6.83), in which the interfacial terms dissappear. In this section, we will prove this behavior

numerically.

Therefore, consider a single-phase flow between two parallel plates due to a pressure gradient

(Poiseuille-flow), see Fig. 6.1. The retardation ratio is set to β = ηS/η0 = 0.5 and the

local Weissenberg number at the wall is chosen to be Wiwall = λγ̇wall = 1. The domain is

discretized with regular hexahedra with ∆x/∆y = 1 with 40 cells in y-direction and 20 cells

in x/flow-direction.

The results for the normalized velocity, polymeric normal and shear stress are shown in

Fig. 6.2. The excellent agreement with the single-phase analytical solution proves that the

above condition is satisfied and the single phase model is recovered. Defining a maximum

error for the quantity Φ according to

eΦ
L∞ := maxNj (|Φana,j − Φnum,j |) (6.86)
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Figure 6.2: Single-phase flow between two parallel plates. Solid line is the analytical
solution, crosses are numerical predictions.
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for N values, which correspond to the cell centered values, we obtain the error for velocity of

eux∞ = 1.25 ·10−3, for the polymeric normal stress of e
τP,xx
∞ = 5.23 ·10−5 and for the polymeric

shear stress of e
τP,xy
∞ = 1.14 · 10−5.

6.4.2 Shear-flow parallel to a planar interface

Figure 6.3: Domain and boundary conditions for a shear flow parallel to a flat interface
at different viscosities.

In this section, a two-phase shear flow parallel to a planar interface is considered in order to

examine the coupling between the two phases and the choice of h = 11.028. Furthermore, the

behavior of the model with mesh refinement and varying diffuse interface width is examined.

In Fig. 6.3 the domain is shown. The fluids have a viscosity ratio of ηr = η2/η1 = 10. We set

the retardation ratio to β = 0.5 and choose a very small relaxation time, i.e., λ1 = λ2 → 0.

The upper wall moves in positive x-direction and the lower wall remains stationary, such that

the interface moves in x-direction with a velocity of (UI,x/Uwall,x = (ηr + 1)−1). The domain

is discretized with regular hexahedra with ∆x/∆y = 1. The diffuse interface is assigned with

a tangent hyperbolic profile according to

αϕ = 0.5

(
1− tanh

(
y − 0.5 m

2δ

))
where y is the height and δ is the diffuse interface width, such that αϕ varies between 0.05

and 0.95 over 6δ. [20] The ratio of δ/∆x is the interfacial resolution and is proportional to

the number of interface containing cells in the interface-normal direction.

The results are shown in Fig. 6.4. In the first column, we vary the interface resolution

between δ/∆x = 0.25...4 (corresponding to H/δ = 640...40) at a constant cell count number

of H/∆x = 160 distributed over the height. We find that the velocities match the analytical

profile almost perfectly, except for the case of the smallest interface width considered. In this

case, the interface width compared to cell size is δ/∆x = 0.25 corresponding to approximately
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two interface containing cells in the interface-normal direction. It is our understanding that

in this case the coupling between the two-phases is too small resulting in an unphysical

velocity profile. Provided that the interface resolution is sufficient, which in this case is

δ/∆x ≥ 0.5, the velocity profiles match the analytical profile regardless of the interface

width. In the middle column of Fig. 6.4, we keep the interface resolution constant at

δ/∆x = 1 (corresponding to approximately nine interface containing cells in the interface-

normal direction), which was found to be a sufficient resolution, and vary the cell number

from H/∆x = 10...160 in the y-direction. Here we find that the velocities vary smoothly

inside of the diffuse interface, whereas outside of the diffuse interface they are found to

exactly match the analytical velocity profile. This is in accordance with the results of Sun

and Beckermann [20]. It has to be pointed out that for the smallest cell size, the interface is

distributed over the entire height of the domain, while still having nearly the correct slope at

the walls. In the results shown in the third column of Fig. 6.4, we have a constant interface

width compared to the height of the domain of H/δ = 40 corresponding to an interface height

of approximately 0.2 m. Herein, we vary the cell count number in y-direction from 10 to 160,

which corresponds to interfacial resolutions of δ/∆x = 0.25...4.For δ/∆x = 0.25 the profile

deviates from the analytical solution. However, for finer interface resolutions, we again find

that the velocities match the analytical solution very well, while smoothly varying inside of

the diffuse interface.

Overall, we find that a value of h = 11.028 is a reasonable choice, since the above results

show that the analytical profile is reproduced almost perfectly. Furthermore, as a result of the

above examined behavior of the model, one may in fact choose an arbitrary interface width,

which, if being sufficiently resolved, does not bias the velocity outside of it. Considering a

flow of interest, the upper limit of the interface width is solely determined by the length scales

of interest, i.e., the characteristic curvature of the interface. This is a remarkable advantage

compared to common diffuse interface methods.

6.4.3 Pressure jump across a cylindrical interface due to surface tension

In this section, the behavior of the surface tension closure is examined by considering a case

without flow having a two-dimensional cylindrical interface with surface tension.

Consider a quadrant of length and height L = H, in which a cylindrical interface of

D = 2R = L is imposed with its center on the left bottom. Symmetry boundary conditions

are imposed at the bottom and left hand side.

The far-field pressure is set to p∞ = 0 kg/ms2 Again, regular hexahedra, i.e., ∆x/∆y = 1,

are used for discretization. The diffuse interface is set up using a tangent hyperbolic profile

similar to the last case.
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Figure 6.5: Domain and boundary conditions for a pressure difference due to a
cylindrical interface with surface tension.

At first, we set a constant discretization of D/∆x(= L/∆x = H/∆x) = 160 and vary

the interface width such as to obtain resolutions of δ/∆x = 0.25...4, which is shown in

the left column of Fig. 6.6. Here we find, that for the coarsest interface resolution, i.e.,

δ/∆x = 0.25, the pressure profile possesses overshoots and undershoots resulting in a profile

with two kinks. Furthermore, the Young-Laplace equation is not satisfied, as can be seen

from the total pressure difference. This effect attenuates with finer interface resolution, i.e.,

δ/∆x = 0.5, and totally disappears when δ/∆x = 1. Furthermore, we find that for δ/∆x ≥ 1

the Young-Laplace relation is sufficiently reproduced. In the middle column of Fig. 6.6, the

interface resolution is kept at a constant δ/∆x = 1, which, as can seen in the left column,

is a sufficient resolution. We vary the cell count number in y-direction from D/∆x = 10

to H/∆x = 160. For the coarsest resolution D/∆x = 10, the interface is distributed over

the total radius of the cylindrical interface resulting in a smoothed pressure profile over the

whole cylinder. Furthermore, the Young-Laplace relation is not satisfied. By doubling the

resolution to D/∆x = 20, the pressure profile almost matches the analytical pressure profile

outside of the diffuse interface while smoothly varying inside of the diffuse interface. From

H/∆x ≥ 40, we find, that the pressure profile is almost perfectly reproduced outside of

the diffuse interface. Further, the volume fraction and pressure profile sharpen with further

mesh refinement due to the constant interface resolution of δ/∆x = 1. In the third column

of Fig. 6.6, we impose a constant diffuse interface width of D/δ = 40 corresponding to an

interface width of approximately 0.2 m (with the diameter of the cylindrical interface being

1 m), while successively refining the mesh from D/∆x = 10 to D/∆x = 160 corresponding to

interface resolutions from δ/∆x = 0.25 to δ/∆x = 4, respectively. Again, we find, that the

Young-Laplace relation is satisfactorily reproduced from δ/∆x ≥ 1.
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To summarize, we find that in order to numerically model two-phase flows with surface tension

using the closure relation in Eq. 6.61 one needs a sufficient resolution of the diffuse interface

width, i.e., δ/∆x ≥ 1 corresponding to the interface being distributed over approximately

nine cells. Furthermore, using an interface resolution of δ/∆x = 1, the characteristic radius

must be at least R/δ = 20 (see the results of the middle column of Fig. 6.6). However, due

to the model behavior shown in the last case, one can in fact provide a sufficiently resolved

interface distributed over an arbitrary number of cells, without biasing the flow outside of

the interface. These results prove the capability of the model to predict large scale flows by

numerically motivated diffusion of the interfacial region without falsifying the results, which

is an exceptional behavior.

Table 6.1: Fluid properties.

ηr β1 β2 Wi1 Wi2

27.03 0.5 0.5 0.2059 0.2059

6.4.4 Mesh convergence study: Poiseuille Two-Phase Flow

In this section, we will examine the convergence properties of the model with respect to the

spatial discretization using a stratified two-phase flow due to a pressure gradient (two-phase

Poiseuille flow). Note here, that this is not a convection dominated flow.

Figure 6.7: Domain and boundary conditions for a stratified two-phase Poiseuille flow
between two parallel plates.

The domain and boundary conditions are shown in Fig. 6.7 with L = 2H and the interface

being located at d = H/2. The fluid properties are tabulated in Table 6.1 with the
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Weissenberg number defined as Wi = λUx,max/H. The meshes used for mesh convergence

analysis are listed in Table 6.2.

Table 6.2: Meshes used for mesh convergence analysis.

Mesh Nx Ny H/∆x Number of control volumes

M1 10 10 0.1 100

M2 20 20 0.05 400

M3 40 40 0.025 1600

M4 80 80 0.0125 6400

The analytical expressions for the velocity, normal and shear stresses are given as follows

Ux(y) =


1

2η1

∂p
∂x

(
y2 − H2+d2(η2/η1−1)

H+d(η2/η1−1) y
)
, for 0 ≤ y < h

1
2η2

∂p
∂x

(
y2 − H2+d2(η2/η0,1−1)

H+d(η2/η1−1) y + (η2/η1−1)(Hd2−H2d)
H+d(η2/η1−1)

)
, for h < y ≤ H

τP,xx(y) =

2ηP,1λ1

[
1
η1

∂p
∂x

(
y − 1

2
H2+d2(η2/η1−1)
H+d(η2/η1−1)

)]2
, for 0 ≤ y < h

2ηP,2λ2

[
1
η2

∂p
∂x

(
y − 1

2
H2+d2(η2/η1−1)
H+d(η2/η1−1)

)]2
, for h < y ≤ H

τP,xy(y) =


ηP,1
η1

∂p
∂x

(
y − 1

2
H2+d2(η2/η1−1)
H+d(η2/η1−1)

)
, for 0 ≤ y < h

ηP,2
η2

∂p
∂x

(
y − 1

2
H2+d2(η2/η1−1)
H+d(η2/η1−1)

)
, for h < y ≤ H

Using these expressions, we calculate the error using the L1- and L2-norms of the quantity

Φ according to

eΦ
L1

:=
1

N

N∑
j

|Φana,j − Φnum,j |

eΦ
L2

:=

√√√√ 1

N

N∑
j

(Φana,j − Φnum,j)
2

as well as the L∞-error (see Eq. 6.86).
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The rate of convergence p is calculated using the errors of two successive meshes e1 and e2

(with the characteristic cell length being halved).

p = log2

(
e1

e2

)
The diffuse interface is assigned with a tangent hyperbolic profile. For the convergence

analysis, we use the approach of having a constant δ/∆x = 1, when refining the mesh. Note,

that this was shown to give good results both for flows at different viscosities and flows

involving surface tension, as shown in the above two cases.

The resulting volume fraction, velocity, normal and shear stress profiles are shown in Fig. 6.8

for the four different meshes. The diffuse interface is sharpened with mesh refinement due to

the condition δ/∆x = 1. The velocity profile is reproduced quite well, except for the coarsest

mesh, in which the interface is distributed over almost the total height of the channel. With

mesh refinement, we again find that the velocity smoothly varies inside of the diffuse interface,

while not falsifying the solution outside of the diffuse interface. However, for the coarse mesh

we find the velocity to perceivably deviate from the analytical solution, which is due to the

small spatial resolution. When considering the normal stress, we find the same behavior as

we saw for the velocity, i.e. the deviation reduces with mesh refinement and the profiles match

the analytical solution outside of the diffuse interface, except for the coarse mesh. The jump

in the normal stress is smoothed over the diffuse interface. The transition region is becoming

smaller and the smoothed profile becoming steeper with mesh refinement. The necessary

condition, that the jump is reproduced for δ → 0, is met. The linear shear stress profile is

almost exactly predicted for all meshes.

In Table 6.3, the errors for velocity, normal and shear stress are tabulated according to the

above error definitions and analytical solutions. In Table 6.4, the rate of convergence using

the errrors of Table 6.3 are listed. No monotonic convergence can be found for the meshes

under consideration, with the rates varying from approximately p = 0.5...1.8. Two rates are

negative, indicating that the error increases with mesh refinement. For the mesh transition

M1−M2, the L∞-error for the normal stress increases. Both maxima can be found in the cell

next to the interface in the less viscous phase. The negativeness in p is due to the center of the

cell of mesh M2 being closer to the interface and thus being compared to a larger value of the

normal stress resulting in a larger error. The reason for the negativeness in p calculated from

186



6 Modeling and Simulation of Conditionally Volume Averaged Viscoelastic Two-Phase Flows

T
a
b
le

6
.3

:
E

rr
o
r

ca
lc

u
la

ti
o
n

fo
r

P
o
is

eu
il
le

tw
o
-p

h
a
se

fl
ow

si
m

u
la

ti
o
n
.

M
es

h
L

1
-N

or
m

L
2
-N

or
m

L
∞

-N
or

m

U
τ
x
x

τ
x
y

U
τ
x
x

τ
x
y

U
τ
x
x

τ
x
y

[m
/s

]
[N
/m

2
]

[N
/
m

2
]

[m
/s

]
[N
/m

2
]

[N
/m

2
]

[m
/s

]
[N
/m

2
]

[N
/m

2
]

1
2.

8
49
e−

3
3
.5

6
8
e−

5
7
.7

1
9
e−

6
3
.8

84
e−

3
6.

13
4e
−

5
8.

44
3e
−

6
8.

90
4
e−

3
1
.8

19
e−

4
1
.7

01
e−

5

2
8.

55
1
e−

4
2
.4

1
2
e−

5
1
.9

7
2
e−

6
1
.3

79
e−

3
4.

94
4e
−

5
2.

36
4e
−

6
3.

94
3e
−

3
1.

95
3
e−

4
4
.9

45
e−

6

3
3.

73
6
e−

4
1
.3

3
3
e−

5
1
.5

2
2
e−

6
6
.2

34
e−

4
3
.6

42
e−

5
1.

69
9e
−

6
2.

30
6e
−

3
1.

91
0
e−

4
3
.9

54
e−

6

4
2.

45
3
e−

4
7
.3

7
8
e−

6
1
.2

3
4
e−

6
3
.5

38
e−

4
2
.4

32
e−

5
8.

79
4e
−

7
1.

07
5e
−

3
1.

73
7e
−

4
6.

30
7
e−

6

187



6 Modeling and Simulation of Conditionally Volume Averaged Viscoelastic Two-Phase Flows

T
a
b
le

6
.4

:
R

at
e

o
f

co
n
ve

rg
en

ce
fo

r
P

o
is

eu
il
le

tw
o
-p

h
a
se

fl
ow

si
m

u
la

ti
o
n

.

M
es

h
es

L
1
-N

o
rm

L
2
-N

or
m

L
∞

-N
or

m

U
τ
x
x

τ
x
y

U
τ
x
x

τ
x
y

U
τ
x
x

τ
x
y

M
1-

M
2

1.
73

6
0.

5
65

1.
96

9
1.

49
4

0.
31

1
1.

83
6

1.
17

5
-0

.1
02

1.
78

2

M
2-

M
3

1.
19

5
0.

8
56

0.
37

4
1.

14
5

0.
44

1
0.

47
7

0.
77

4
0.

03
2

0.
32

3

M
3-

M
4

0.
60

7
0.

8
54

0.
30

3
0.

81
7

0.
58

3
0.

95
0

1.
10

1
0.

13
7

-0
.6

73

188



6 Modeling and Simulation of Conditionally Volume Averaged Viscoelastic Two-Phase Flows

the L∞-error of the shear stress for mesh transition M3−M4 is that the solution tolerance

for the constitutive equation is of the same order as the errors of the stress.

6.5 Conclusions
In this work we developed a model for simulating viscoelastic two-phase flows derived from

conditional volume averaging of the single-phase conservation equations. This procedure

results in a set of conservation equations, one for each phase, having unclosed term. Subse-

quently, closure modeling is done. For the first time, we apply the aforementioned technique

to a viscoelastic constitutive equation - the Oldroyd-B model - in order to obtain a closure for

the stress. Furthermore, closures for the interfacial morphology, the momentum source due to

surface tension and interfacial force density, which accounts for the viscous coupling between

the two phases, are presented. This is done by splitting averaged terms into a mean part

and a fluctuation part. Next, a numerical methodology was presented to solve the strongly

coupled system of equations. Due to numerical issues, the equations are first reformulated.

We showed, that the developed model is capable of predicting several basic test cases.

Moreover, the model posseses outstanding properties. That is, the interface width may

be chosen arbitrary large without falsifying the solution outside of the diffuse interface, as

long as it is sufficiently resolved. This is especially necessary, if surface tension is present,

for which a certain width is needed to numerically evaluate the curvature of the interface.

Having that in mind, we pursued a convergence analysis for a viscoelastic two-phase Poiseuille

flow by keeping the interface resolution constant while refining the mesh. Consistency and

convergence were proved.
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Figure 6.8: Volume fraction, velocity and stress profiles of the Poiseuille two-phase
flow simulation at a constant δ/∆x = 1.
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6.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

d Interface height [m]

D Cylinder diameter [m]

e1 Error on mesh 1

e2 Error on mesh 2

eΦ
L1

Absolute error of quantity Φ in the L1-norm

eΦ
L2

Absolute error of quantity Φ in the L2-norm

eΦ
L∞

Absolute error of quantity Φ in the L∞-norm

g Gravitational acceleration vector [m
s2

]

h Drag coefficient [−]

H Channel height [m]

or domain height [m]

i Index [−]

I Identity matrix [−]

Iϕ Indicator function of phase ϕ [−]

j Index [−]

L Channel length [m]

or domain length [m]

Mϕ Interfacial momentum transfer of phase ϕ [ kg
m2s2

]

Md
ϕ Interfacial momentum transfer of phase ϕ stemming from

drag

[ kg
m2s2

]

Mσ Interfacial momentum source [ kg
m2s2

]

Mω Interfacial momentum transfer of phase ω [ kg
m2s2

]

nI,ϕ Interface normal vector pointing inside volume of phase ϕ [−]

N Number of phases [−]

p Pressure [ kg
ms2

]

or rate of convergence [−]

p Mixture pressure [ kg
ms2

]
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Symbol Description Unit

pd Modified mixture pressure [ kg
ms2

]

pϕ Conditional volume averaged pressure of phase ϕ [ kg
ms2

]

pω Conditional volume averaged pressure of phase ω [ kg
ms2

]

p∞ Far-field pressure [ kg
ms2

]

P Arbitrary local instantaneous physical property

Q Arbitrary local instantaneous physical property

Qϕ Conditioned arbitrary local instantaneous physical property

R Cylinder radius [m]

S Surface area [m2]

t Time [s]

U Local instantaneous velocity [ms ]

U Mixture velocity [ms ]

UI Interface velocity [ms ]

UI,x Interface velocity in x-direction [ms ]

Ur Relative velocity [ms ]

Uwall,x Wall velocity in x-direction [ms ]

Ux Velocity in x-direction [ms ]

Uϕ Conditional volume averaged velocity of phase ϕ [ms ]

Uω Conditional volume averaged velocity of phase ω [ms ]

U# Surface fluctuation of velocity [ms ]

x Position [m]

x Position vector [m]

y Position [m]

y Relative position vector [m]

Greek Symbols

Symbol Description Unit

αϕ Volume fraction of phase ϕ [−]

αω Volume fraction of phase ω [−]

γ̇wall Shear-rate at the wall [s−1]

γ̇ϕ Conditioned volume-averaged shear-rate tensor of phase ϕ [s−1]

δ Interface thickness [m]
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Symbol Description Unit

δI Interface thickness [m]

δV Volume element [m3]

∆x Horizontal edge length of computational cell [m]

∆y Vertical edge length of computational cell [m]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

η1 Viscosity of phase 1 [ kgms ]

η2 Viscosity of phase 2 [ kgms ]

ηeff,ϕ Effective viscosity of phase ϕ [ kgms ]

ηeff,ω Effective viscosity of phase ω [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηP,ϕ Polymeric viscosity of phase ϕ [ kgms ]

ηr Viscosity ratio [−]

ηS Solvent viscosity [ kgms ]

ηS,ϕ Solvent viscosity of phase ϕ [ kgms ]

κI,ϕ Curvature of interface with respect to phase ϕ [m−1]

λ Relaxation time [s]

λϕ Relaxation time of phase ϕ [s]

ρ Local instantaneous density [ kg
m3 ]

ρϕ Conditional volume averaged density [ kg
m3 ]

Σ Interfacial area density [m2]

σ Surface tension [kg
s2

]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

τP ϕ Conditional volume averaged polymeric stress tensor [ kg
ms2

]

τP,xx Polymeric normal stress in x-direction [ kg
ms2

]

τP,xy Polymeric shear stress [ kg
ms2

]

τ ∗P ϕ Conditional volume averaged polymeric equilibrium stress

tensor

[ kg
ms2

]

τSϕ Conditional volume averaged solvent stress tensor [ kg
ms2

]

Φ Arbitrary quantity

Φana,j Analytical value of quantity Φ at position j

Φnum,j Numerically calculated value of quantity Φ at position j
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Subscripts, Superscripts and Oversymbols

Symbol Description

Q1 Property Q of phase 1

Q2 Property Q of phase 2

Qd Drag

or modified

Qeff Effective

QI Q at the interface

Qmax Maximum value of Q

Qr Relative

QT Transpose of matrix Q

Qwall Value of Q at the wall

Qϕ Conditioned Q, belonging to phase ϕ

Qω Conditioned Q, belonging to phase ω

Q′ϕ Conditional fluctuation of Q in phase ϕ

Q# Surface fluctuation of Q

Q Volume averaged Q

or mixture value of Q

Qϕ Conditional volume averaged Q, belonging to phase ϕ︷︸︸︷
Q Interface average of Q
O
Q Upper-convected time derivative

|Q| Magnitude of vector Q

||Q|| Magnitude of tensor Q

Q|corr. Correction to Q

Q|diff. Diffusion contribution of Q
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Nondimensional Groups

Symbol Description Definition

Wi Weissenberg number
λUx,max

H

Wiwall Weissenberg number at the wall λγ̇wall

β Retardation ratio ηS
η0

ηr Viscosity ratio η1

η2

Abbreviations

Abbreviation Description

BiCGstab Bi-conjugate gradient stabilized

BSD Both-side-diffusion

CLSVOF Coupled Level-Set Volume-of-Fluid

CSF Continuum surface force

DIC Discrete incomplete Cholesky

FENE-CR Finite extensible non-linear elastic - Chilcott and Rallison

PCG Preconditioned conjugate gradient

PISO Pressure implicit with splitting of operator

VoF Volume-of-Fluid
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6.C Summary
In this chapter conditional volume averaging is applied to develop a model capable for

simulation of two-phase flows of viscoelastic fluids with surface tension effects.

The chapter starts with the single-phase mass and momentum balances, which are subse-

quently conditionally volume averaged. In doing so, a set of equations having unclosed

interfacial terms is obtained, for which closure relations for viscoelastic fluids are presented.

The resulting equations possess a structure similar to the single-phase equations; however,

separate conservation equations are solved for each phase. As a result, each phase has its own

pressure and velocity over the entire domain. Next, the numerical implementation is briefly

outlined.

It is found that a Poiseuille single-phase flow is predicted correctly with this model. The

closure terms are examined and successfully validated by considering a two-phase shearing

flow and a quiescent cylinder with surface tension. A convergence analysis is performed for

a steady stratified two-phase flow with both phases being viscoelastic.

6.D Author contribution
The author of this thesis contributed to this publication by doing the whole derivation to

finally obtain the conditionally volume-averaged viscoelastic two-phase model, by finding a

reformulation to make the model numerically solvable, by implementing this model in the
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7 An Improved Conditionally Volume Aver-

aged Viscoelastic Two-Phase Model for

Simulation of Transient Droplet Deforma-

tions under Simple Shear

7.1 Introduction
Predicting droplet deformations under defined flow conditions is demanding if either or both

phases are viscoelastic. The main issue is that one has to deal both with moving interfaces

as well as the complex viscoelastic flow behavior.

There are several approaches to the moving interface problem, such as front-tracking, Volume-

of-Fluid (VoF) and Level-Set methods. In front-tracking the position of the interface is

determined by markers located on the interface, which are advected with the flow. The

accuracy of the interface morphology is directly linked to the number of markers. If the

interface stretches or contracts a redistribution of the markers is necessary. Special care has

to be taken when considering topological changes of the interface. [1] The volume-of-fluid

method is used widespread as it is comparatively easy to implement and shows good mass

conservation properties. Besides that, topological changes are treated inherently and no

special care has to be taken. The interface position is geometrically reconstructed from

a color function, which describes the volume fraction in a cell. A known drawback is

that higher-order accuracy is hard to achieve due to the step-like color function. Level-Set

methods are becoming more popular recently. In Level-Set the interface is generally described

by the zero level-set of a smooth signed distance function. To keep the color function a

signed distance function, reinitialization steps are necessary when advecting the interface.

Topological changes are also treated inherently and higher order schemes such as essentially

non-oscillatory (ENO) methods are commonly in use. A drawback of Level-Set methods is

the poor mass conservation. However, Olsson and Kreiss [1] recently proposed the so-called

’conservative Level-Set method’, which shows superior mass conservation properties compared

to other level-set methods. In this method the interface is described by the 0.5 level-set of

a color function Φ with 0 ≤ Φ ≤ 1. The method is conservative and more specifically also

preserves the thickness and the profile of the transition region from 0 to 1.

In a recent work we derived a new model for viscoelastic two-phase flows, which is up to

second-order accurate. [2] The model was derived by conditional volume averaging of the

standard single-phase mass and momentum balance equations. Subsequent closure modeling

for viscoelastic fluids governed by the Oldroyd-B constitutive equation [3] led to a closed set

of equations, which was afterwards reformulated in order to become numerically solvable.
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The interface position in this model can be described by the 0.5 level-set of a color function

αϕ (0 ≤ αϕ ≤ 1), which describes the volume fraction. It was shown that the thickness of

the transition region from 0 to 1 can be chosen arbitrarily without falsifying the flow outside

of this transition region as long as the transition region is sufficiently spatially resolved.

δ/∆x ≥ 1, where δ is the characteristic length parameter of a specific tangent hyperbolic

function, was shown to be a proper condition for several basic validation cases including the

pressure jump across a circular interface with surface tension as well as a pressure-driven

and a shear-induced two-phase flow. [2] However, the model described in Habla et al. [2] uses

standard volume-of-fluid advection methods to propagate αϕ. Thus, we could not guarantee

to preserve the condition δ/∆x = 1 for problems involving moving interfaces, which is why

we restricted our validation to very basic cases with steady interfaces.

Fortunately, the ’conservative level-set method’ of Olsson and Kreiss [1] exactly suits our

needs: the area/volume within the Φ = 0.5 contour is conserved for divergence free velocity

fields; the method is second-order accurate; and above all the thickness of the transition

region is preserved. The aim of this work is to adapt our model to the interface model of

Olsson and Kreiss [1] for the advection of our color function αϕ.

This paper is organized as follows: in Section 7.2 the model derived in Habla et al. [2] as

well as the numerically motivated reformulation is shortly revisited. The intermediate step

proposed by Olsson and Kreiss [1] is outlined and our final numerical algorithm is presented.

In Section 7.3 the interface model is first validated using a test case depicted from Olsson

and Kreiss [1]. Next, simulations of a Newtonian droplet deforming in a viscoelastic matrix

under simple shear as it was experimentally analyzed by Sibillo et al. [4] are presented in 2D

and 3D. Finally, in Section 7.4 the main results are summarized.

7.2 Theory

7.2.1 Conditional volume averaged viscoelastic two-phase model

In Habla et al. [2] we derive a conditional volume-averaged viscoelastic two-phase model. With

the assumption of no mass-transfer and a constant density in each phase the conditionally

volume averaged mass balance for phase ϕ is

∂αϕ
∂t

+∇ ·
(
αϕUϕ

)
= 0 (7.1)

The equation is applicable to both phases by simply changing the index ϕ to ω. Similarly,

one obtains the conditional volume averaged momentum balance

∂αϕUϕ

∂t
+∇ ·

(
αϕUϕUϕ

)
= −

αϕ∇pϕ
ρϕ

+
∇ · (αϕτϕ)

ρϕ
+ αϕg +

Mϕ

ρϕ
(7.2)
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where αϕτϕ represents the phasic stress and Mϕ is a term to describe the interfacial

momentum transfer. Considering a generalized Maxwell fluid the phasic stress can be written

as the sum of a solvent and a polymeric contribution according to αϕτϕ = αϕ
(
τSϕ + τP ϕ

)
.

Applying conditional volume averaging to the Newtonian law leads to the following expression

for the solvent contribution

αϕτSϕ = αϕηS,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+ ηS,ϕ

[
∇αϕ

(
Uϕ −UI

)
+
(
Uϕ −UI

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −UI

)
I

]
(7.3)

while the same procedure applied to the Oldroyd-B constitutive equation leads to the closure

expression for the polymeric contribution

αϕτP ϕ

+ λϕ

[(
∂αϕτP ϕ
∂t

)
+∇ ·

(
αϕτP ϕUϕ

)
− αϕτP ϕ · ∇Uϕ − αϕ

(
∇Uϕ

)T · τP ϕ]
=

αϕηP,ϕ

[
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

]
+ ηP,ϕ

[
∇αϕ

(
Uϕ −UI

)
+
(
Uϕ −UI

)
∇αϕ −

2

3
∇αϕ ·

(
Uϕ −UI

)
I

]
(7.4)

The local interface velocity UI appearing in the above equations can be modeled by a viscosity

weighted linear function of the average total velocities, similar as it was proposed by Sun and

Beckermann [5]

UI =
αωηeff,ϕUϕ + αϕηeff,ωUω

αωηeff,ϕ + αϕηeff,ω
(7.5)

where the sum of ηS,ϕ and ηP,ϕ is denoted as the effective viscosity ηeff,ϕ. Eq. 7.5 obeys the

condition of phase symmetry and can be considered as an average no-slip condition at the

interface. The interfacial momentum transfer term Mϕ in the presence of surface tension σ

is modeled as

Mϕ = −h
αϕαωηeff,ϕηeff,ω (|∇αϕ|)2

αωηeff,ϕ + αϕηeff,ω

(
Uϕ −Uω

)
− σ

(
∇ · ∇αϕ
|∇αϕ|

)
∇αϕ (7.6)

where h is an empirical coupling coefficient. Specifically, h = 11.028 was found to be a proper

choice in Habla et al. [2]. The interface morphology is expressed by the unit normal vector︷︸︸︷
nI,ϕ and the curvature

︷︸︸︷
κI,ϕ, for which closure modeling resulted in

︷︸︸︷
nI,ϕ =

∇αϕ
|∇αϕ|

(7.7)
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︷︸︸︷
κI,ϕ = −∇ ·

(
∇αϕ
|∇αϕ|

)
(7.8)

7.2.2 Numerical reformulation

To be able to use the above model in a numerical algorithm, the equations have to be reformu-

lated for some reasons. [2] The detailed procedure of the reformulation can be found in that

article. The reformulations include the assumption of a modified mixture pressure pd, which is

equal in both phases. The pressure is further modified by extracting the hydrostatic pressure

to smooth out the pressure field. Furthermore, phase-intensive equations are formulated for

the momentum and constitutive equation because this removes the difficulty for solving these

equations in the case when αϕ becomes zero. Additionally, the both sides diffusion is used

in the momentum equation to stabilize the algorithm for flows, which behave highly elastic.

For convenience, we summarize the final set of equations here

∂αϕ
∂t

+∇ ·
(
αϕU

)
+∇ ·

(
Urαϕ (1− αϕ)

)
= 0 (7.9)

αω = 1− αϕ (7.10)

∇ ·U = 0 (7.11)

∂Uϕ

∂t
+∇ ·

(
UϕUϕ

)
−Uϕ

(
∇ ·Uϕ

)
−∇ ·

(
ηS,ϕ + ηP,ϕ

ρϕ
∇Uϕ

)
=

− ∇p
d

ρϕ
+

(
1− ρ

ρϕ

)
g− g · x

ρϕ
+

1

ρϕ
(ρg + g · x∇ρ) +

1

ρϕ
∇ · τSϕ|corr.

+
∇αϕ
αϕρϕ

· τSϕ +
1

ρϕ
∇ · τP ϕ +

∇αϕ
αϕρϕ

· τP ϕ −∇ ·
(
ηP,ϕ∇Uϕ

)
+ αϕg− 11.028

1

ρϕ

ηϕηω (|∇αϕ|)2

ηϕαω + ηωαϕ

(
Uϕ −Uω

)
− σ

ρϕ

(
∇ · ∇αϕ
|∇αϕ|

)
∇αϕ
αϕ

(7.12)

τS
ϕ = ηS,ϕ

(
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

)
+
ηS,ϕ (ηS,ω + ηP,ω)

ηϕαω + ηωαϕ

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ

− 2

3
∇αϕ ·

(
Uϕ −Uω

)
I
]

(7.13)
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τS
ϕ|corr. = ηS,ϕ

((
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

)
+
ηS,ϕ (ηS,ω + ηP,ω)

ηϕαω + ηωαϕ

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ

− 2

3
∇αϕ ·

(
Uϕ −Uω

)
I
]

(7.14)

τP
ϕ + λϕ

[(
∂τP

ϕ

∂t

)
+∇ ·

(
τP

ϕUϕ

)
− τP ϕ

(
∇ ·Uϕ

)
− τP ϕ · ∇Uϕ

−
(
∇Uϕ

)T · τP ϕ] =

ηP,ϕ

(
∇Uϕ +

(
∇Uϕ

)T − 2

3

(
∇ ·Uϕ

)
I

)
+
ηP,ϕ (ηS,ω + ηP,ω)

ηϕαω + ηωαϕ

[
∇αϕ

(
Uϕ −Uω

)
+
(
Uϕ −Uω

)
∇αϕ

− 2

3
∇αϕ ·

(
Uϕ −Uω

)
I
]

(7.15)

where Ur is the relative velocity, Ur = Uϕ −Uω.

In the basic validation study performed in Habla et al. [2] it was found that the interface

transition region of αϕ from 0 to 1 can be chosen arbitrarily without falsifying the flow outside

of this transition region, however, a minimum spatial resolution is required. δ/∆x ≥ 1, where

δ is the characteristic length parameter of a specific tangent hyperbolic function, was found

a proper choice. [2] Unfortunately, when solving the interface advection equation Eq. 7.9

numerically using standard methods, none of the methods available - not even TVD (total

variation diminishing) methods in conjunction with specific limiters such as the van Leer

or Superbee limiter - can guarantee to preserve the thickness and profile of the interface

transition region, but will diffuse and smear the interface to a certain degree. [1] Thus, a

special technique is required, which will be outlined in the following.

7.2.3 Intermediate Step

Based on the idea of Harten [6] to add artificial compression to Eq. 7.9 in order to maintain

the resolution of contact discontinuities, Olsson and Kreiss [1] suggest to additionally add an

artificial diffusion term in order to avoid an unsteadiness at the interface. Thus, the basic

idea is to solve the following equation in an intermediate step

∂αϕ
∂τ

+∇ · f(αϕ) = ∇ · ε∇αϕ (7.16)
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where f is the compressive flux and ε is the artificial diffusion coefficient. The time variable

is designated as τ to clarify that this is an artificial time and not the actual time t. The

requirements for f(αϕ) are to act in the area of the interface (0 < αϕ < 1) and in normal

direction to the interface. Therefore, f is chosen to be f(αϕ) = αϕ(1− αϕ)
︷︸︸︷
nI,ϕ. [1]

Solving Eq. 7.16 in an intermediate step until convergence is reached ensures that the thickness

and the profile of the interface is kept constant even if the interface is moving. The thickness

of the interfacial region is proportional to the artificial diffusion coefficient ε. We find that

this diffusion coefficient is identical to the characteristic length parameter δ of the tangent

hyperbolic function used in Habla et al. [2]

αϕ (x) = 0.5
(

1− tanh
( x

2δ

))
(7.17)

such that ε ≡ δ. Since our model behaves best with δ/∆x = 1 an adequate choice for ε would

be ε = ∆x. This is illustrated in Fig. 7.1.

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

x/∆x

α
ϕ

tanh-profile (δ/∆x = 1)

Eq. 7.16 profile (ε = ∆x)

Figure 7.1: Comparison of the hyperbolic tangent profile (Eq. 7.17) and the converged
solution of Eq. 7.16.

Similar to Olsson and Kreiss [1] we solve Eq. 7.16 with an explicit Euler scheme in conservative

form

α∗∗ϕ = α∗ϕ + ∆τ
{
∇ ·
[
−α∗ϕ

(
1− α∗ϕ

) ︷︸︸︷
nI,ϕ

∗ + ε∇α∗ϕ
]}

(7.18)

where α∗∗ϕ and α∗ϕ denote the new guess and the current guess of alpha αϕ, respectively.

Eq. 7.18 is solved after the solution of Eq. 7.9 for multiple times until convergence is reached.

After each solution of Eq. 7.16, the interface normal vector
︷︸︸︷
nI,ϕ needs to be updated by use

of Eq. 7.7 with the most recent guess of αϕ, i.e. α∗ϕ.

7.2.4 Numerical Discretization and Algorithm

The time derivatives are discretized with a three-point Gear scheme, which is second-order

accurate. [7] The convective terms of the momentum balance Eq. 7.12 and of the constitutive
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equation Eq. 7.15 are discretized with the Gamma scheme with a blending factor of 0.8

for the 2D droplet deformation simulations [8], while the upwind scheme is used for the

3D simulations for stability reasons. The impact of this choice on simulation results will

be evaluated in the next section. The convection term of the interface equation Eq. 7.9

is discretized with a standard second-order linear scheme. Diffusive terms are discretized

with second-order linear interpolation and the source terms with a second-order volume

integration scheme. Pressure-velocity coupling is addressed with the PISO algorithm. [9]

The final numerical algorithm can be summarized as follows:

1.) Solve the phase fraction equation Eq. 7.9 for a given number of times (nα = 2).

2.) Solve the intermediate step Eq. 7.18 for a given number of times (ninterm. = 2).

3.) PISO-Loop:

3.1.) Predict the cell fluxes.

3.2.) Construct and solve a Poisson-type equation for pressure using Eq. 7.11.

3.3.) Correct the fluxes and velocities.

3.4.) Repeat from a) for a given number of times (nPISO = 2).

4.) Solve the Oldroyd-B equation Eq. 7.15 for each phase.

The first pressure equation is solved with a GAMG solver in conjunction with a GAMG

preconditioner until either the absolute tolerance is below 10-8 or the relative tolerance is

below 0.01, while a PCG solver is used for solution of the second pressure equation, wherein

solely the absolute tolerance of 10-8 is used as convergence criteria. The reason for using

the GAMG solver in the first pressure equation is because it is fast in initially decreasing

the residual, while the PCG solver is faster when a strict absolute tolerance is used. The

constitutive equations and the phase fraction equation are solved with a PBiCG solver in

conjunction with a DILU preconditioner at a tolerance of 10-9 for αϕ and a tolerance of 10-7

for τP ϕ.

Eq. 7.9 is solved twice (nα = 2), because, although the transient and first convection term in

Eq. 7.9 are fully implicit in αϕ, the second convection term is not fully implicit in αϕ. This is

because the flux Ur (1− αϕ) is not independent of αϕ. Eq. 7.9 is thus solved twice because

after the first solution the new guess α∗∗ϕ is then used to update the flux Ur

(
1− α∗∗ϕ

)
and

with this updated flux the equation is solved another time resulting in a much better guess

α∗∗∗ϕ compared to if Eq. 7.9 is only solved once. Furthermore, boundedness of αϕ between 0

and 1 is better guaranteed by iteratively solving Eq. 7.9. The choice of ninterm. = 2 is because
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of the explicit time-stepping in conjunction with the viscous term in Eq. 7.18, which results

in a stability restriction in the sense that there is an upper limit for the value of ∆τ . [1]

In order to guarantee a sufficient reinitialization of the αϕ-field Eq. 7.18 has to be solved

multiple times. In this work ninterm. = 2 was found to be a proper choice.

7.3 Results and Discussion

7.3.1 Validation of Advection Scheme

To validate the interface model a test case depicted from Olsson and Kreiss [1] is used. A

cylinder is rotated in a constant velocity field (u, v) = (y, −x) about the center of the domain

for one full revolution as illustrated in Fig. 7.2. The cylinder has a diameter of D = 0.5 and

is initialized with δ/∆x = 1 (c.f. Eq. 7.17). The cylinder is initially located at (x, y) = (0.3,

0.3). Five different grids having normalized cell sizes of ∆x = 0.08, 0.04, 0.02, 0.01 and 0.005

are used. The simulation parameters are set to ∆t = ∆x/2, ε = ∆x and ∆τ = 1/4∆x. The

results are compared after t = 2π, which is equivalent to one full rotation. At t = 2π the

interface profile should be congruent with that of the initial state.

Figure 7.2: Domain of the validation case.

In Fig. 7.3 the αϕ = 0.5 isolines for the five grids as well as the initial state are pictured. It can

be seen that the resolution ∆x = 0.08 is not sufficient and the interface profile is not smooth,

while the second coarsest grid already gives comparatively good results. The isolines of the

different grids clearly converge to that of the initial state with decreasing cell size. Fig. 7.4

shows the results for the isolines of αϕ = 0.05, 0.5 and 0.95 for the simulation with the grid ∆x

= 0.01 if the intermediate step is solved twice (nα = 2) and without the intermediate step
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x
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initial state

∆x=0.005

∆x=0.01

∆x=0.02

∆x=0.04

∆x=0.08

Figure 7.3: Isolines of αϕ = 0.5 at t = 2π for different grids compared to the initial
state.

(nα = 0). Even if the cylinder seems to be a bit displaced in the top left direction, as can

also be seen in Fig. 7.3, one can clearly deduce that the interface thickness remains constant

during the rotation for the case of nα = 2, since the isolines of α = 0.05 and α = 0.95 also

coincide with the initial state. However, this is not the case without the intermediate step.

The isoline α = 0.5 is further displaced in top left direction compared to if the intermediate

step is used. Furthermore, the isolines of α = 0.05 and α = 0.95 differ perceivably from the

initial state. In particular, the distance of the isolines of α = 0.05 and α = 0.95 increases and

thus the interface gets diffused resulting in an increase of the interface thickness throughout

simulation. In Tab. 7.1 the initial area within the αϕ = 0.5 isoline and the respective area at

t = 2π is listed. The relative difference referring to the initial area of the αϕ = 0.5 isoline on

the respective grid, ∆num, and referring to the area of a perfect circle with D = 0.5, ∆real,

become smaller with finer grids, while even on the second coarsest grid the deviation ∆num

is below 0.1 %. Overall, the model shows sufficient mass conservation within the αϕ = 0.5

isoline and the interface thickness is kept constant even for moving interfaces.
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x
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initial state

t = 2π

x

y

initial state

t = 2π

Figure 7.4: Isolines of αϕ = 0.05, 0.5 and 0.95 at t = 2π for ∆x = 0.01 compared
to the initial state. Top: Conservative level-set method (nα = 2); bottom: No
reinitialization (nα = 0).
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Table 7.1: Area within the 0.5 isoline before and after the rotation and the relative
deviation referred to the initial state’s area and the area of a perfect circle.

∆x At=0 At=2π ∆num = |At=0−At=2π |
At=0

∆real = |Areal−At=2π |
Areal

0.08 0.188310 0.185127 1.691E-02 4.095E-02

0.04 0.192980 0.192768 1.098E-03 1.716E-02

0.02 0.194022 0.193973 2.530E-04 1.186E-02

0.01 0.194298 0.194282 8.042E-05 1.045E-02

0.005 0.194365 0.194360 2.901E-05 1.011E-02

Areal = 0.19635

In Fig. 7.5 the relative deviation of the area ∆num is plotted against the normalized cell

size ∆x. If the coarsest grid is neglected, which is done due to the strong deviations pictured

in Figs. 7.3 and 7.5, the order of the error decrease is found to be 1.74. Thus, the method is

up to second-order accurate.

10−2 10−1

10−4

10−3

10−2

1.74

∆x

∆
n
u
m

Figure 7.5: Determination of the order of the error decrease for the area conservation.

7.3.2 Droplet deformation

The adapted viscoelastic two-phase model is now applied to the simulation of transient droplet

deformations of a Newtonian droplet in a viscoelastic matrix subjected to a steady planar

shear-flow as depicted in Fig. 7.6. Simulations will be performed for different Capillary

numbers Ca = ηmγ̇R0

σ both in 2D and 3D with adaptive mesh refinement of the interface

region.
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Figure 7.6: Domain of the droplet deformation simulations, see Habla et al. [2].

The rheology of the experimental system D4 at a viscosity ratio ηr = ηd/ηm = 2 of Sibillo et

al. [4] is used, whose results also serve as reference values. ηr is the viscosity ratio and ηd and

ηm are the droplet and matrix viscosities, respectively. Boger fluids are used as matrix phase

in the experiments of Sibillo et al. [4], although the matrix viscosity is not perfectly constant

and varies from ηm = 43.1 ... 34.8 Pa s in the measured range (γ̇ ≈ 0.1 ... 10 s−1). We therefore

use the mean value (ηm = 38.95 Pa s). Since simulations without a solvent contribution in the

matrix phase were not stable, we use a small amount of solvent contribution. The retardation

parameter in our simulations is βm =
ηS,m
ηm

=
ηS,m

ηS,m+ηP,m
= 1/9. The relaxation time of the

matrix then is λm =
Ψ1,m

2ηP,m
= 1.34 s, where Ψ1,m is the first normal stress coefficient of

the matrix phase. The weight coefficient of matrix elasticity is p = λ/τem = 1.5, where

τem = ηmR0/σ is the emulsion time. The numerical results of Yue et al. [10] determined with

a phase-field model and our simulations with a VoF-model [11, 12] give additional indications

for the verification of the simulation. It is noted here that the study of Yue et al. [10] uses

a retardation parameter of βm = 0.5, which is why we will additionally perform simulation

results at βm = 0.5 for comparison.

The Newtonian droplet having a diameter of D = 100µm and initialized with a tangent

hyperbolic profile with δ/∆x = 1 is placed in the center of a rectangular box with H = 5D

and L = 7.5D. At t = 0 s a fully developed shear flow is imposed. The meshes used for

the 2D and 3D simulations are summarized in Tab. 7.2. ε is set to ∆x in order to preserve

δ/∆x = 1. The following restrictions apply for the choice of ∆τ : if ∆τ is chosen too small

the reinitialization is too weak and the interface thickness cannot be guaranteed to be kept

constant anymore; on the other hand, if ∆τ is chosen too large the simulation aborts due to

stability issues related to the explicit time-stepping. [1] The shear rate γ̇ is varied to obtain
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Table 7.2: Meshes used for the transient droplet deformation simulations.

Meshes Nx Ny Nz D/∆x Cell count

M1 150 100 - 20 15000

M2 225 150 - 30 33750

M3 300 200 - 40 60000

M4 375 250 - 50 93750

M5-3D 60 40 40 8 960001

M6-3D 75 50 50 10 1875001

1Initial cell number without refinement.

Capillary numbers of Ca = 0.06, 0.43 and 0.47. Ca = 0.47 is the experimentally found critical

Capillary number above which no steady state can be reached. [4] To have a dimensionless

time, t is divided by the emulsion time τem. The droplet deformation is determined via the

Taylor deformation parameter, D∗ = (L−W )/(L+W ), where L is the length of the major

axis and W is the length of the minor axis of the droplet in the xy−plane (in z−normal view,

vorticity direction). [13, 14] Furthermore, in the three-dimensional simulations another Taylor

deformation parameter D′ = (L′−W ′)/(L′+W ′) is considered, where L′ is the length of the

major axis and W ′ is the length of the minor axis of the droplet in the xz−plane (in y−normal

view, velocity gradient direction). The value is then normalized with the steady-state value

D′ss according to D′/D′ss.

2D Simulations

0 5 10 15 20 25 30
0

0.2

0.4

t/τem

D
∗

∆t = 0.01 s

∆t = 0.005 s

∆t = 0.0025 s

∆t = 0.00125 s

∆t = 0.000625 s

Figure 7.7: Deformation parameter D∗ against the dimensionless time t/τem for
different time-steps at Ca = 0.43 for M3.

First, the convergence with respect to the time-step size is analyzed. In Fig. 7.7 the

deformation parameter D∗ is plotted against the dimensionless time t/τem for different time-

steps ∆t (0.01 s, 0.005 s, 0.0025 s, 0.00125 s and 0.000625 s) for mesh M3 and Ca = 0.43. After

an almost linear increase of the deformation parameter in the beginning an overshoot occurs
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between t/τem = 5 to 10. Finally, the deformation reaches a steady-state for large t/τem.

While there are deviations between the different time-steps in the initial transient region, the

steady-state values are equal for all time-steps as was to be expected. It can be clearly seen

that the results converge. For the remaining simulations we find that a time-step of 0.00125 s

gives sufficiently time-step independent results.

Next, the convergence of the deformation parameter with respect to the mesh size is analyzed.

The results for the different grids listed in Tab. 7.2 are illustrated in Fig. 7.8 for the three

Capillary numbers considered. For the lowest Capillary number, Ca = 0.06, there is no

overshoot before reaching a steady-state deformation. The plots for the other two Capillary

numbers hardly show differences, except the slightly larger overshoot and generally larger

values of D∗ for Ca = 0.47 compared to Ca = 0.43. The results for the different grids clearly

converge, which is the case for all three Capillary numbers. Another simulation using mesh

M3 in conjunction with the upwind scheme is performed for the case Ca = 0.43. In Fig. 7.8

one can see that the result with the upwind scheme is almost as good as the simulation on

the same grid with the higher accurate Gamma scheme and thus one can expect that the

choice of using the upwind scheme in the 3D simulations in the next subsection hardly has

an impact.

To evaluate the ability of the new model to keep a constant interface thickness, the isolines

for αϕ = 0.05, 0.5 and 0.95 are pictured in Fig. 7.9. Obviously, the distance between the

three isolines remains the same throughout the simulation. Thus, the new model is capable

of keeping the interface thickness constant even in the droplet deformation simulations.

As the choice of ∆τ seems arbitrary in a certain range and is more or less assigned by trial

and error, a comparison of simulations conducted with halve and double the value of the

chosen ∆τ∗ is plotted in Fig. 7.10. The results are equal, indicating that this parameter can

in fact be chosen almost arbitrarily in a certain range as explained above. The particular

choice does not affect the results.

Fig. 7.11 shows the result at Ca = 0.43 with mesh M3 and ∆t = 0.00125 s performed at

a retardation ratio of βm = 1/9 together with two additional simulations with βm = 1/2

and βm = 1. The latter of which corresponds to pure Newtonian behavior of the matrix.

Comparison is made with the simulation results of Yue et al. [10] (βm = 1/2) and our earlier

simulations conducted with a VoF-model [11, 12] (βm = 1/9). It is found that with increasing

matrix retardation parameter the initial slope decreases and thus the droplet deforms slower.

Furthermore, the final steady-state deformation is larger if the matrix is Newtonian (βm = 1)

compared to if a viscoelastic matrix is considered (βm = 1/2 and βm = 1/9). This supports

the conclusion of Sibillo et al. [4] that droplet breakup is hindered by matrix elasticity.

Differences between the two simulations with βm = 1/2 and βm = 1/9 are small indicating

that results are hardly influenced by the choice of retardation parameter as long as the value
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Figure 7.8: Deformation parameter D∗ against the dimensionless time t/τem for the
different meshes and Capillary numbers at ∆t = 0.00125 s.
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Figure 7.9: Isolines of αϕ = 0.05, 0.5 and 0.95 for t/τem = 0 and t/τem = 30 for
mesh M3.

216



7 An Improved Conditionally Volume Averaged Viscoelastic Two-Phase Model for
Simulation of Transient Droplet Deformations under Simple Shear

0 5 10 15 20 25 30
0

0.2

0.4

t/τem

D
∗

∆τ∗/2

∆τ∗

∆τ∗ · 2

Figure 7.10: D∗ against t/τem for different values of ∆τ for mesh M3 and Ca = 0.43.
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Figure 7.11: D∗ against t/τem compared to the simulations of Yue et al. [10] and
Habla et al. [11, 12] for different values of βm for mesh M3 and Ca = 0.43.
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is not chosen too large. Nevertheless, the simulation result with βm = 1/2 corresponding to

the simulation of Yue et al. [10] and the simulation result with βm = 1/9 corresponding to the

simulation of Habla et al. [11, 12] show perceivable differences from the two literature results.

A well-grounded explanation for these differences cannot be made at this point. Since our

simulation results are clearly converged in time and space and thus non-convergence can be

excluded, we believe that the various closure assumptions made in the derivation of our model

might be the reason. Particularly, we believe that the modeling of the interfacial momentum

transfer term Mϕ (cf. Eq. 7.6) influences the simulation results. The interfacial momentum

transfer term was solely tested with basic scenarios involving only steady interfaces and flows

parallel to the interface. The current modeling of this term might be less appropriate for

more complex flows, such as is the case in droplet deformations. This will be the subject of

further research.

3D Simulations

In this section the results of the 3D simulations are presented. The depth of the domain is

chosen to 5D.

Figure 7.12: Illustration of the adaptive mesh refinement on mesh M6-3D for
Ca = 0.43.
Top is the initial mesh and bottom is the final steady-state mesh. In the right
picture the isolines of αϕ = 0.05, 0.5 and 0.95 are shown.

An adaptive mesh refinement technique is used in order to achieve a sufficient resolution of

the interfacial region while keeping the overall cell count in the domain and consequently the

computational costs small. Cells neighboring cells of 0.01 ≤ αϕ ≤ 0.99 are split up to a level
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of two. This is illustrated in Fig. 7.12, in which the initial and the final mesh is shown for

Ca = 0.43. This way the initial resolution of the droplet of D/∆x = 10 for mesh M6-3D is

increased to D/∆x = 40 around the interface, which is equivalent to the resolution of the 2D

mesh M3, for which we already obtained proper mesh converged results.

Table 7.3: Steady-state values of D∗ for meshes M4 and M6-3D, the simulations of
Yue et al. [10] and Habla et al. [11] as well as the measurements of Sibillo et al. [4].

Ca M4 M6-3D Yue et al. Habla et al. Sibillo et al.

0.06 0.0647 0.0725 0.0660 0.0652 0.0716

0.43 0.323 0.431 0.317 0.327 0.359

0.47 0.340 0.460 0.336 -2 -3

2Not simulated.

3No steady-state reached.

In Fig. 7.13 the deformation parameter D∗ of the three-dimensional simulations is plotted and

compared to the two-dimensional simulations as well as the numerical predictions of Yue et

al. [10] and Habla et al. [11, 12] and the measurements of Sibillo et al. [4]. It can be seen that

the two three-dimensional grids give similar results, indicating a proper mesh convergence of

our 3D simulations.

The initial slope of D∗ against time t/τem is almost the same in the 2D and 3D simulations

with the slope being slightly larger in the 2D simulations in the beginning for all three

Capillary numbers. From t/τem > 5 the 3D simulations predict larger deformations than the

2D simulations. An overshoot of D∗ around t/τem ≈ 5 predicted with the 2D simulations

for the two larger Capillary numbers Ca = 0.43 and 0.47 is not visible in the 3D simulations

confirming that these overshoots are artifacts of the 2D simplification. The reason for

that is the treatment of the droplet as a cylinder in the two-dimensional approximation.

Deformations are not predicted to full extent this way. This aspect was already addressed

in Verhulst et al. [15]. For the lowest Capillary number Ca = 0.06 our 3D results are in

good agreement with the measurements of Sibillo et al. [4]. The steady-state values of D∗

predicted with mesh M4 and M6-3D are compared with those of Sibillo et al. [4], Yue et

al. [10] and Habla et al. [11, 12] in Tab. 7.3. Here it can also be seen that for Ca = 0.06

our 2D simulation is in better agreement with the simulations of Yue et al. [10] and Habla

et al. [11, 12], while our 3D simulations predict the experimentally measured steady-state

deformation parameter quite well. For the two larger Capillary numbers of 0.43 and 0.47 it

219



7 An Improved Conditionally Volume Averaged Viscoelastic Two-Phase Model for
Simulation of Transient Droplet Deformations under Simple Shear

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

t/τem

D
∗

Ca = 0.06

Measurements

Yue et al.

Habla et al.

M6-3D

M5-3D

M4

0 5 10 15 20 25 30
0

0.2

0.4

t/τem

D
∗

Ca = 0.43

Measurements

Yue et al.

Habla et al.

M6-3D

M5-3D

M4

0 5 10 15 20 25 30
0

0.2

0.4

t/τem

D
∗

Ca = 0.47

Measurements

Yue et al.

M6-3D

M5-3D

M4

Figure 7.13: Deformation parameter D∗ against the dimensionless time t/τem com-
pared to the measurements of Sibillo et al. [4] and the simulations of Yue et al. [10]
and Habla et al. [11, 12].
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Figure 7.14: D′/D′ss against t/τem compared to the measurements of Sibillo et al. [4]
for the highest subcritical Capillary number Cainf explored. Images are steady-
state droplet shapes of the experiments (top) and the simulation (bottom) in
y-normal view.

can be seen that for t/τem > 5 both the 2D and 3D simulations deviate perceivably from

the measurements. It is emphasized here that the experimentally measured deformation

parameter exceed the y-axis for both Capillary numbers. For Ca = 0.43 the experimentally

measured deformation parameter shows a pronounced overshoot around t/τem ≈ 35 and

ends up in a steady-state around t/τem ≈ 140. The approximate value is listed in Tab. 7.3.

Contrary to that, the experimentally measured deformation parameter ever increases for

Ca = 0.47 and the droplet ends up in break-up around t/τem ≈ 120. [4] The following aspects

have to be taken into account as possible reasons for the deviations of our simulation results

from the measurements: the Oldroyd-B model is used to fit the rheological data, which is

not the most elaborate one to describe viscoelastic flows: the Oldroyd-B model predicts an

infinite extensional viscosity at finite extensional rates, which is unphysical, and no second

normal stress difference in steady shear flow. Furthermore, the range of viscosities given by

Sibillo et al. [4] indicates that the fluids are in fact not ideal Boger fluids, but there is a

shear-thinning behavior, which is not captured by this rheological modeling. However, fitting

the rheological data given in Sibillo et al. [4] with a more sophisticated viscoelastic model is

hardly possible. Besides that, only one relaxation time is used to describe the fluid, however,

as for example stated in Verhulst et al. [15], the agreement with experimental data generally

gets better if more relaxation times are considered.

In order to examine and clarify whether the rheological modeling is the reason for the differ-

ences found the deformation of a Newtonian droplet in a Newtonian matrix is simulated, for

which the rheological modeling is straightforward and Sibillo et al. [4] also provide experimen-

tal measurements. This is shown in Fig. 7.14, in which D′/D′ss is plotted against time t/τem

at the maximum Capillary number at which steady-state deformation was achieved (Cainf ).

In our simulations we increased the Capillary number in steps of 0.025 and found break-up
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at Cacr = 0.6. In the experiments the largest value found was Cainf = 0.53, which is

smaller compared to our prediction of Cainf = 0.575, although we find this difference to be

comparatively small. The predicted transient behavior is in acceptable agreement with the

measurements with deviations particularly in the range 5 < t/τem < 20, see Fig. 7.14. The

photograph of the droplet at steady-state, which is the upper picture in Fig. 7.14, is well

resembled by the numerically predicted steady-state droplet shape. Thus, although there are

slight differences in the pure Newtonian case, we conclude that the large differences in the

viscoelastic simulations are presumably caused by the rheological modeling.

Figure 7.15: Z-normal plane colored by the local flow-type parameter ξ at t/τem =
30 using mesh M6-3D.

Figure 7.16: Z-normal plane colored by the pressure at t/τem = 30 using mesh M6-3D.

Finally, we present the local flow-type parameter ξ [16], the pressure and the stress compo-

nents in and around the droplet in the z-normal plane in Figs. 7.15, 7.16 and 7.17 for our

3D simulations. The local flow-type parameter ξ has a value between 1 and -1. A value of

-1 represents solid-like rotation, 0 is pure shear flow and 1 corresponds to pure extensional

flow. For all three Capillary numbers considered the local flow-type parameter is between

0 and -1 within the droplet. For Ca = 0.06 the droplet is almost solely rotated. With

increasing Capillary number the flow inside the droplet changes from rotation and to getting

sheared. At the tips of the droplet there is an area of strong extensional flow in the matrix

phase. However, the center of extensional flow is not exactly aligned with the major axis

of the droplet, but shifted slightly in y-direction to the x-axis. The area of extensional flow

decreases with increasing Capillary number. At some distance away from the droplet the flow

of the matrix is dominated by pure shear flow, as was to be expected due to the imposed flow

type. The pressure inside the droplet is higher than in the matrix phase due to surface tension,

see Fig. 7.16. The maxima are located at the tip of the drop on the inside and the minima

are located on the outside of the tip with the values increasing with increasing Capillary

numbers and the area of the extrema shrinking. The components of the stress τ are pictured
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Figure 7.17: Z-normal plane colored by the respective stress components at t/τem =
30 using mesh M6-3D.

in Fig. 7.17. Again we find the maxima to increase and the minima to decrease as well as the

areas of the extrema to shrink with increasing Ca, which is also found by Verhulst et al. [17].

An important aspect is that the stress field is not symmetric about the major axis of the

droplet. Consequently, the deformation is asymmetric and the droplet is not exactly shaped

like an ellipse. [18] Experiments of Liu et al. [19] showed that the shape of deformed droplets

in viscoelastic matrices can only be symmetric if the flow is symmetric. But even if the flow

is symmetric the deformation may be asymmetric, which implies that a three-dimensional

approach is necessary to analyze the deformation. [18] In all three Figs. 7.15, 7.16 and 7.17

the differences between Ca = 0.43 and Ca = 0.47 are hardly visible. Apparently, this is

caused by the fact that the critical Capillary number found by Sibillo et al. [4] doesn’t accord

with that of the simulations.
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7.4 Summary
This work has been concerned with the adaption and validation of a conditionally volume

averaged viscoelastic two-phase model and its application to the transient simulation of a

Newtonian droplet deforming in a viscoelastic matrix under shear flow.

As the former model presented in Habla et al. [2] was not capable of keeping the interface

thickness constant for moving interface problems, which, however, was a necessary condition

in order to give proper results, an intermediate step proposed by Olsson and Kreiss [1], which

preserves the width and profile of the interfacial transition region, was adopted.

A validation case proved that this intermediate step can in fact fix this issue for moving

interface problems in our code. The adapted model was then applied to the two- and three-

dimensional simulation of the deformation of a Newtonian droplet in a viscoelastic matrix

under steady planar shear flow. The convergence with respect to the time-step and grid size

was demonstrated. Furthermore, it was shown that the interface thickness is kept constant

even in such a complex flow problem and the results are in reasonable agreement with the

experiments of Sibillo et al. [4] and in good agreement with the phase-field simulations of Yue

et al. [10] and our VoF simulations [11, 12].
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7.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

A Area [m2]

D Cylinder or droplet diameter [m]

f Compressive flux [ms ]

g Gravitational acceleration vector [m
s2

]

h Drag coefficient [−]

H Domain height [m]

I Identity matrix [−]

L Domain length [m]

or length of major axis in the xy-plane [m]

L′ Length of major axis in the xz-plane [m]

Mϕ Interfacial momentum transfer of phase ϕ [ kg
m2s2

]

nI,ϕ Interface normal vector pointing inside volume of phase ϕ [−]

Nx Cell number in x-direction [−]

Ny Cell number in y-direction [−]

Nz Cell number in z-direction [−]

p Pressure [ kg
ms2

]

pd Modified mixture pressure [ kg
ms2

]

pϕ Conditional volume averaged pressure of phase ϕ [ kg
ms2

]

R Droplet radius [m]

t Time [s]

U Local instantaneous velocity [ms ]

U Mixture velocity [ms ]

UI Interface velocity [ms ]

Ur Relative velocity [ms ]

Uϕ Conditional volume averaged velocity of phase ϕ [ms ]

Uω Conditional volume averaged velocity of phase ω [ms ]

W Length of minor axis in the xy-plane [m]
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Symbol Description Unit

W ′ Length of minor axis in the xz-plane [m]

x Position [m]

x Position vector [m]

y Position [m]

Greek Symbols

Symbol Description Unit

αϕ Volume fraction of phase ϕ [−]

αω Volume fraction of phase ω [−]

γ̇ Shear-rate [s−1]

δ Interface thickness [m]

∆ Relative deviation [−]

∆t Time-step size [s]

∆x Horizontal edge length of computational cell [m]

∆τ Artificial time-step size [s]

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

ε Artificial diffusion coefficient [m
2

s ]

ηd Droplet viscosity [ kgms ]

ηeff,ϕ Effective viscosity of phase ϕ [ kgms ]

ηeff,ω Effective viscosity of phase ω [ kgms ]

ηm Matrix viscosity [ kgms ]

ηP Polymeric viscosity [ kgms ]

ηP,m Polymeric viscosity of matrix phase [ kgms ]

ηP,ϕ Polymeric viscosity of phase ϕ [ kgms ]

ηr Viscosity ratio [−]

ηS Solvent viscosity [ kgms ]

ηS,m Solvent viscosity of matrix phase [ kgms ]

ηS,ϕ Solvent viscosity of phase ϕ [ kgms ]

ηϕ Viscosity of phase ϕ [ kgms ]

ηω Viscosity of phase ω [ kgms ]

κI,ϕ Curvature of interface with respect to phase ϕ [m−1]
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Symbol Description Unit

λ Relaxation time [s]

λm Relaxation time of matrix phase [s]

λϕ Relaxation time of phase ϕ [s]

ξ Flow-type parameter [−]

ρ Local instantaneous density [ kg
m3 ]

ρϕ Conditional volume averaged density [ kg
m3 ]

σ Surface tension [kg
s2

]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

τP Polymeric stress tensor [ kg
ms2

]

τS Solvent stress tensor [ kg
ms2

]

τP ϕ Conditional volume averaged polymeric stress tensor [ kg
ms2

]

τSϕ Conditional volume averaged solvent stress tensor [ kg
ms2

]

τ Artificial time [s]

τem Emulsion time [s]

Φ Arbitrary quantity

Ψ1,m First normal stress coefficient of matrix phase [ kgms ]

Subscripts, Superscripts and Oversymbols

Symbol Description

Q0 Initial value of Q

Qd Droplet

Qd Modified

Qeff Effective

Qem Emulsion

QI Q at the interface

Qinf Maximum attainable number of Q under steady-state conditions

Qm Matrix

Qnum Numerical

Qr Relative

Qreal Real

Qss Steady-state value of Q

QT Transpose of matrix Q
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Symbol Description

Qϕ Conditioned Q, belonging to phase ϕ

Q∗ Estimate of variable Q

Q∗∗ Estimate of variable Q

Q Volume averaged Q

or mixture value of Q

Qϕ Conditional volume averaged Q, belonging to phase ϕ︷︸︸︷
Q Interface average of Q

|Q| Magnitude of Q

Q|corr. Correction to Q

Q|diff. Diffusion contribution of Q

Nondimensional Groups

Symbol Description Definition

Ca Capillary number ηmγ̇R0

σ

D∗ Taylor deformation parameter in the xy-plane L−W
L+W

D′ Taylor deformation parameter in the xz-plane L′−W ′
L′+W ′

p Weight coefficient of elasticity λ
τem

βm Retardation ratio of matrix phase
ηS,m
ηm

ηr Viscosity ratio ηd
ηm

Abbreviations

Abbreviation Description

DILU Discrete incomplete lower-upper

GAMG Generic algebraic multigrid

PCG Preconditioned conjugate gradient

PISO Pressure implicit with splitting of operator

TVD Total variation diminishing

VOF Volume-of-Fluid
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7.C Summary
In this chapter the transient deformation of a Newtonian droplet in a viscoelastic matrix

subject to a simple shear flow is simulated. The viscoelastic two-phase model was derived in

a former work by applying the technique of conditionally volume averaging and subsequent

closure modeling. [2] It was shown that the model requires a sufficient spatial resolution of

the interfacial transition region in order to give proper results. As the original model was

not capable of keeping the interface thickness constant when simulating problems involving

moving interfaces, an intermediate step originally proposed by Olsson and Kreiss [1] is adopted

in order to remedy this shortcoming. The intermediate step is validated by the simulation

of a rotating cylinder and it is shown that this step can in fact fix this issue. The adapted

model is then used to simulate transient droplet deformations carried out in 2D and 3D. In

the 3D simulations an adaptive mesh refinement technique is used in order to guarantee a

sufficient interface resolution while keeping the computational costs low. It is shown that the

intermediate step keeps the interface thickness constant even in such a complex flow. The

evolution of the Taylor deformation parameter is compared to the measurements of Sibillo et

al. [4] and the simulations of Yue et al. [10] and Habla et al. [11] for three different Capillary

numbers and finally the steady-state stress and pressure fields as well as the local flow-type

parameter ξ are presented.
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8 CFD Analysis of the Frame Invariance of

the Melt Temperature Rise in a Single-

Screw Extruder

8.1 Introduction
The metering channel of single-screw extruders (SSE) is the subject of many studies, both

theoretical and experimental. [1, 2] In analytical approaches two different ways of creating the

screw-motion are used: either by rotating the screw and keeping the barrel stationary or by

fixing the screw and rotating the barrel. The latter uses a rotating coordinate system and is

usually preferred in theoretical approaches due to its simplified analysis, although the former

approach having a fixed coordinate system corresponds to the physical extrusion process used

in practice. In the 90’s the implicit assumption that both approaches result in the same flow

field and throughput was disputed (see Campbell et al. [3, 4]); however, the question of frame

independence of the flow field was sufficiently proved both experimentally and theoretically,

with the theoretical differences being attributed to the neglect of the curvature in the unwound

channel, see for example Rauwendaal et al. [5].

More recently, the group of Campbell (see Campbell et al. [6, 7]) claims that screw- and

barrel-rotation result in different melt temperature rises. Their conclusion was underlined

both theoretically by an analysis for an unwound channel and experimentally by using a

device in which the barrel and the screw can be rotated independently of each other. The

melt temperature rise was found to be perceivably higher in case of barrel rotation with

the effect being more pronounced for Newtonian-like fluids than for shear-thinning fluids.

Differences were attributed to the frame difference of the viscous dissipation term.

In this work we aim at examining this issue by first giving a simple proof for frame indifference

of the viscous dissipation function and subsequently using a CFD analysis to further support

this fact with simulation results. The simulations are performed for screw-rotation, barrel-

rotation and a setup which we name real-barrel-rotation corresponding to the experimen-

tal setup, in which the centrifugal and Coriolis forces are obviously not considered. The

results obtained are subsequently compared to each other. The analysis includes a two-

dimensional cross-section and a three-dimensional model of the single-screw extruder. The

two-dimensional simulations are performed both with and without the presence of a flight

clearance. The fluid considered is a Newtonian-like polymer with a temperature-dependent

viscosity. This work is organized as follows: In Section 8.2 a straightforward proof for

objectivity of the viscous dissipation term is given and subsequently the theory of our model to

describe the temperature rise in a screw pump is developed, which will help to further clarify

this fact. The model is based on the conservation equations for mass, momentum and energy.
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Differences between screw-rotation, barrel-rotation and real-barrel-rotation in our modeling

approach are clarified. The numerical method is shortly outlined and the fluid rheology is

described. In Section 8.3 the results are presented for a two-dimensional cross-section of a

single-screw extruder and a fully three-dimensional extruder with two full turns. Finally, in

Section 8.4 the main conclusions are drawn.

8.2 Theory

8.2.1 Viscous dissipation

The viscous dissipation or so-called dissipation function Q is

Q = τ : D or Q = τ : L (8.1)

where τ is the (symmetric) stress tensor and D is the rate of deformation tensor

D =
1

2

[
L + LT

]
(8.2)

which is the symmetrical part of the velocity gradient L = ∇U, i.e. D = (L)symm.. The

two formulations in Eq. 8.1 are essentially equal due to the fact that τ : W = 0 (W is per

definition antisymmetric according to L = (L)symm. + (L)antisymm. = D + W).

The viscous stress τ for a Newtonian-like fluid with a temperature-dependent viscosity η (T )

can be written as

τ = 2η (T ) D (8.3)

The following proof for frame indifference of the viscous dissipation of a Newtonian-like fluid

described by Eq. 8.1 in combination with Eq. 8.3 is straightforward and the procedure can

be found in any standard textbook, see for example Holzapfel [8].

Let R (t) (denoted as R in the remainder) be a rotation matrix corresponding to a time-

dependent rotational speed vector ω (t) and let A be a second order tensor field. A is

objective if it transforms like A∗ = RART . With use of the deformation gradient F, for

which F∗ = RF holds, the rate of deformation tensor can be rewritten as D =
(
ḞF−1

)
symm.

.

Objectivity of the rate of deformation tensor can be shown by D∗ =
(
Ḟ∗F∗−1

)
symm.

=(
ṘRT + RḞF−1RT

)
symm.

= RDRT .

Frame indifference of the viscous dissipation term, Eq. 8.1, with use of the Newtonian Law,

Eq. 8.3, is shown by Q∗ = 2η (T ) D∗ : D∗ = 2η (T ) RDRT : RDRT = 2η (T ) D : D = Q.
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In consequence of the viscous dissipation being frame invariant, Q is identical when calculating

it in different reference frames (here in particular when calculating Q with the velocities

or similarly deformation gradients obtained in the stationary and the rotating reference

frames).

8.2.2 Conservation laws

The frame invariance of viscous dissipation will be underlined by showing simulation results.

Therefore, we will develop a CFD model, which is capable of calculating the kinematics and

temperature rise in the two reference frames. Finally, by comparison of the temperature rise

we will show that the results for screw- and barrel-rotation are indeed equal.

When deriving conservation laws one generally starts by using control masses (CM) over

which the conservation of a general intensive property φ must hold. However, the treatment

of control masses is difficult in fluid mechanical analyses due to the need to track the CM ’s.

Thus, conservation laws are commonly reformulated in terms of

d

dt

∫
VCM

ρφdV =
d

dt

∫
VCV

ρφdV +

∫
SCV

ρφ(U−Ub) · ndS (8.4)

U is the velocity at which the fluid enters the control volume at a particular point of the

surface S, Ub is the velocity of the control surface itself and n denotes the unit normal vector

to the control surface at that point. U is referred to as the absolute velocity and the difference

(U−Ub) as the relative velocity, i.e. the relative velocity of the fluid to the control volume

motion. Mass, momentum and energy conservation can now be formulated

∂

∂t

∫
VCV

ρdV +

∫
SCV

ρ(U−Ub) · ndS = 0 (8.5)

∂

∂t

∫
VCV

ρUdV +

∫
SCV

ρU(U−Ub) · ndS =

∫
SCV

T · ndS +

∫
VCV

ρfdV (8.6)

∂

∂t

∫
VCV

ρUdV +

∫
SCV

ρU(U−Ub) · ndS =

∫
SCV

q · ndS +

∫
VCV

QdV (8.7)

In Eq. 8.6 f represent the body forces, which in our case are the fictitious forces due to the

rotating reference frame; and T is the extra stress tensor T = −pI + τ , where p is pressure

and I is the identity tensor. In Eq. 8.7 U , is the internal energy, which may be written in

terms of the heat capacity at constant pressure cP according to U = cPT ; q is the heat flux

obeying Fourier’s Law q = −λ∇T , where λ is the heat conductivity; and Q is the energy

source term due to viscous dissipation as described above (see Eq. 8.7).
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8.2.3 Single-screw extruder modeling

When considering single-screw extruders, one may either make use of a stationary reference

frame, in which the barrel is stationary and the screw is rotated. This is commonly referred

to as screw-rotation. On the other hand, one can also make use of a rotating reference frame,

in which the screw is stationary while the barrel rotates. This is called barrel-rotation, see

Fig. 8.1.

barrel-rotation

screw-rotation

Figure 8.1: Screw- and barrel-rotation.

In case of barrel-rotation the fluid cavity is stationary and we may consider stationary (non-

moving) control volumes. In this case Ub = 0. Centrifugal and Coriolis acceleration arises

due to the rotating coordinate system: f = −ω × (ω × r) + 2 (ω ×U), where the rotational

speed ω is a vector normal to the plane shown in Fig. 8.1 with its origin located in the

center. r is the radial distance from the center. If the rotational speed is varying with time,

the Euler acceleration has to also be considered: f = −ω × (ω × r) + 2 (ω ×U) + δω
δt × r.

In case of screw-rotation the fluid cavity rotates about the center and control volumes are

rotated with the cavity about the center. In this case, we have f = 0 due to the fixed

coordinate system, however, Ub = ω × r due to the motion of the control volumes. In this

study we are also interested in finding out what the differences are if one would indeed rotate

the barrel as is being done in the experiments of Campbell et al. [6]. In this case again

Ub = 0, but the centrifugal, Coriolis and Euler acceleration is obviously neglected: f = 0.

This simplifying assumption is often used in theoretical approaches. We will refer to this

setup as real-barrel-rotation. Differences between barrel-rotation and real-barrel-rotation can

be attributed to the influence of the centrifugal and Coriolis forces. However, it should be

noted that these forces are expected to be negligible. [9] In order to compare the velocity fields

between barrel-rotation, real-barrel-rotation and screw-rotation, the velocity fields obtained

for barrel-rotation and real-barrel-rotation are transformed to a stationary reference frame -

as is the case in screw-rotation - according to

Uscrew−rot. = Ubarrel−rot. − ω × r (8.8)
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8.2.4 Fluid rheology

The fluid considered in this work is a Newtonian-like polycarbonate. Its temperature depen-

dence can be modeled with the Vogel equation [10]

ln (η (T )) =
A+B

T − T0
(8.9)

where A, B and T0 are the model constants. In this work A + B = 1300K and T0 = 365 K.

The thermal conductivity is k = λ
ρcP

= 9.80 · 10−7 m2

s , the heat capacity at constant pressure

is cP = 1941.7 J
kgK and the density is ρ = 1070 kg

m3 , which are assumed to be independent of

the temperature.

8.2.5 Numerical methodology

The above set of equations is discretized using the finite-volume method (FVM). A collocated

arrangement is used storing all variables in cell centers. Linear interpolation is used to obtain

values on cell faces, except for the convective term, where the Gamma-scheme [11] is used

for the 2D simulations and the first-order upwind scheme is applied to the 3D simulations.

A first-order two-point scheme is used to approximate time derivatives. The PISO-loop is

used to handle pressure-velocity coupling. After the PISO-loop, the viscous dissipation term

is calculated from the velocities and subsequently the energy equation is solved. Once the

new temperature field has been determined, the viscosity is updated for the next time step.

Time step independence was ensured for all simulations by varying the time-step size and

comparing the results. Tolerances of the linear solvers are set very small (10−12) to avoid

errors from the iterative solution process. In order to avoid a singularity at the first time

step, the angular velocity is not immediately assigned at time t = 0 s, but a smooth linear

startup of the angular velocity over the first half rotation is used.

In case of screw-rotation the position of each node is updated according to the current angular

velocity. The velocity of each cell face Ub is subsequently computed and the relative velocity

needed for the convective terms is then calculated.

Body forces appearing in barrel-rotation are explicitly included using second-order Gaussian

integration.

8.3 Results and discussion

8.3.1 Two-dimensional cross-section

In Fig. 8.2 the geometry, which is based on the extruder used in Campbell et al. [7], is shown

(Fig. 8.2 (a)) together with the two sample lines A − B and C − D (Fig. 8.2 (b)) used for

comparison of the results. The rotational speed is ωmax = 100 rpm. The influence of the
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(a) (b) (c)

Figure 8.2: Geometry of the extruder (a), sample lines (b), mesh M1 (c), length are
in mm.

leakage flow was initially assumed to be small and thus neglected. A discussion concerning

this influence will be given at the end of this section.

Three meshes of different size are used to analyze the mesh independence of the results. Mesh

M1 is shown in Fig. 8.2 (c). Mesh M1 has a cell count of 2,938, M2 has 11,150 and M3 has

44,600 cells. All meshes are graded towards the screw- and barrel-wall, where the largest

gradients in the velocity are expected, see Fig. 8.2 (c).
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Figure 8.3: Tmin (solid lines), Tmax (dotted lines) and Tav (dashed lines) as a function
of the dimensionless time for the three different meshes using screw-rotation.
( ): M1, ( ): M2 and ( ): M3.
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In Fig. 8.3 we present the minimum temperature Tmin and the maximum temperature Tmax

in the cross-section as well as the area-averaged temperature Tav for screw-rotation using the

three different meshes. The three temperature measures are subsequently used for comparison

of the results. It can be seen that the results for Tmin and Tav are spatially converged and

mesh-independent, however, this is not the case for Tmax. This lets us conclude that still finer

meshes are needed to accurately predict Tmax and the sharp temperature gradients, which

are largest at the right hand side of the flight.

Table 8.1: Minimum, maximum and area-averaged temperature for the two-
dimensional cross-section simulations at ωmaxt = 150.

Tmin [K] Tmax [K] Tav [K]

screw 543.32 562.29 549.12

M1 barrel 543.32 562.41 549.10

real-barrel 543.32 562.41 549.10

screw 543.30 566.23 549.21

M2 barrel 543.29 566.34 549.20

real-barrel 543.29 566.34 549.20

screw 543.30 571.76 549.26

M3 barrel 543.29 571.82 549.26

real-barrel 543.29 571.82 549.26

In Table 8.1 the final values of the three temperature measures at the end of the simulation

time ωmaxt = 150 are shown for the three meshes. We find that the results obtained for

barrel-rotation and real-barrel-rotation are identical proving that the fictitious forces are so

small that they have absolutely no influence on the temperature rise. When comparing

screw-rotation and barrel-rotation, we find all three temperature measures to only differ on

the second decimal for the finest mesh, which we assume is caused by remaining discretization

errors. This is in particular interesting for Tmax, which is not yet spatially converged. Despite

that, the final value of Tmax is still independent of the reference frame.

Comparison between screw-rotation and barrel-rotation is shown in Fig. 8.4 for mesh M3

(real-barrel-rotation is omitted since there is no difference from barrel-rotation). We find all

three temperature measures to be in accordance with only small deviations. Even if the

rotational speed is not constant, which is the case in the linear startup of the rotational

speed (ωmaxt ≤ 60), we find the temperature measures to be equal suggesting that frame

independence must also hold for non-constant rotational speeds.

In Fig. 8.5 the local velocity and temperature profiles at the sample lines A−B and C −D
are shown. Velocity profiles for barrel-rotation are shown together with the transformed
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Figure 8.4: Tmin (solid lines), Tmax (dotted lines) and Tav (dashed lines) as a function
of the dimensionless time for screw- and barrel-rotation using mesh M3; ( ): screw-
rotation and ( ): barrel-rotation.

velocity according to Eq. 8.8 (real-barrel-rotation is again omitted since there is no difference

from barrel-rotation, which is in agreement with the findings in Spalding et al. [9]). The

transformed velocity and the velocity obtained for screw-rotation are identical for both

velocity components Ux and Uy. The temperature profiles are also identical for both reference

frames showing that not only are the three global temperature measures Tmin, Tmax and Tav

frame independent, but local profiles are also frame independent.

Next, the influence of the presence of a flight clearance was examined. The flight clearance

was assumed to be 1/1000 of the barrel diameter. To account for a sufficient resolution of

the steep gradients appearing in the clearance, a very fine mesh of 193,979 cells is used.

Again, frame invariance of the kinematics and the temperature rise as well as negligible

centrifugal, Coriolis and Euler forces were initially verified by comparing the results of

screw-, barrel- and real-barrel-rotation. This proves that these properties are not affected

by the presence of a clearance. In Fig. 8.6, a comparison of the three temperature measures

between the simulations with and without a flight clearance is shown. There is almost no

difference in Tmin and the difference in Tav is also very small with a relative deviation

of ε = Twith fl.−Twithout fl.
Twithout fl.−T0

< 0.05 between the two simulations at final dimensionless time

ωmaxt = 150. This owes to the fact that although high temperatures are present inside

the clearance, the effect on the average temperature is small due to the small ratio of the

area of the clearance to the overall area of the cross-section. This is supported by Figs. 8.7 (a)

and 8.7 (b), in which it can be seen that only in a small area on the right side of the flight
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Figure 8.5: Local velocity ((a) and (b)) and temperature profiles ((c) and (d)) at the
sampling lines A−B ((a) and (c)) and C −D ((b) and (d)) at ωmaxt = 150 using
mesh M1.
Solid lines are Ux and dashed lines are Uy; ( ): screw-rotation, ( ): barrel-rotation
and ( ): the transformed velocity according to Eq. 8.8.
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(Fig. 8.7 (b)) can a larger temperature be found, as compared to the simulation without the

flight (Fig. 8.7 (a)). However, there is a significant deviation in Tmax, which is due to the very

high temperatures appearing in the clearing, see Fig. 8.6. A detailed view of the clearance

is shown in Fig. 8.7 (c). The largest temperatures can be found in the left part of the flight

(with the screw rotating in clockwise direction).
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Figure 8.6: Tmin (solid lines), Tmax (dotted lines) and Tav (dashed lines) as a function
of the dimensionless time for barrel-rotation.
( ): simulation without flight clearance (mesh M3) ( ): simulation with flight
clearance.
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(a) (b)

(c)

Figure 8.7: Temperature field for the two-dimensional cross-section at ωmaxt = 150
using screw-rotation. (a) simulation without flight clearance (mesh M3), (b):
simulation with flight clearance (temperature field scaled to the legend on the
right), (c) enlarged view of the flight clearance (temperature field scaled to the
maximum temperature of the simulation).
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8.3.2 Three-dimensional simulations

In this section we present the results for a three-dimensional single-screw extruder with two

full turns. The geometry is a three-dimensional extension to the two-dimensional cross-section

used in the preceding section. No flight clearance is considered due to the findings in the

previous section. Results and comparisons are presented in the cross-sectional plane after one

turn of the screw in order to avoid end-effects. A tetrahedral mesh is used with a cell count

of 141,389. The cross-sectional cell density is such as to reflect mesh M1, which was shown

to give sufficiently converged results. Simulations are performed for 10 %, 60 % and 90 % of

the maximum pumping capacity of the screw (drag rates Fr = 0.9, 0.4, 0.1, respectively),

similar to the work of Campbell et al. [7]. This is done as follows: initially, a simulation was

performed with an open boundary condition at the inlet. The averaged inlet velocity was

then determined at steady-state and the corresponding fraction of that maximum velocity is

assigned as a plug flow at the inlet.
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Figure 8.8: Area-averaged temperature in the cross-sectional plane after one full turn
of the screw as a function of the dimensionless time for different discharge rates.
Solid lines are Fr = 0.1, dashed lines are Fr = 0.4 and dotted lines are Fr = 0.9;
( ): screw-rotation and ( ): barrel-rotation.

The results for the area-averaged temperature over the cross-section after one turn are shown

in Fig. 8.8 for the three drag rates. Temperatures for screw-rotation and barrel-rotation

coincide (real-barrel-rotation also coincides and is omitted here for clarity). At smaller

pumping rates the temperature is larger, as expected. Local profiles are shown in Fig. 8.9 for

velocity and Fig. 8.10 for temperature. Velocities are in perfect agreement for screw-rotation

and barrel-rotation. Temperature profiles are also in agreement, although showing small
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differences, which may be attributed to discretization errors caused by the use of tetrahedral

cells in conjunction with a diffusive first-order convection scheme. Again, no differences are

perceivable between barrel-rotation and real-barrel-rotation, showing the negligible influence

of the fictitious forces (results are omitted due to readability).

8.4 Conclusions
In this paper, a numerical analysis of a single-screw extruder filled with a Newtonian-like fluid

was performed. Three different operating setups were considered, namely a screw-rotation,

a barrel-rotation and a real-barrel-rotation setup. The numerical simulations include a two-

dimensional cross-section and a fully three-dimensional single-screw extruder. The real-barrel-

rotation setup was introduced to prove the irrelevance of inertial forces acting on the fluid, an

assumption which is widely used in analytical extrusion modeling (see e.g. Spalding et al. [9]).

By comparing the numerical results between the screw-rotation and the barrel-rotation setup,

the frame indifference of a mechanical system with respect to a relative motion can be proved.

No difference in the melt temperature rise between screw-rotation and barrel-rotation could

be observed, which is in contradiction with some important statements made in literature (see

e.g. Campbell et al. [6]). In our view, the experimentally found difference in the temperature

rise cannot be caused by kinematical effects, a conclusion which can be drawn from our

numerical computations. In contrast, in literature, frame difference of the dissipation function

was proposed as a possible reason for the different outcomes observed in experiments (see e.g.

Campbell et al. [6]). To underline our point of view, an analytical proof of frame indifference

of the dissipation function was given in the beginning of our paper. A comparison between

numerical simulations with and without a flight clearance suggests that the temperature

rise is only minorly influenced by the presence of the flight clearance. This finding is also in

disagreement with Campbell et al. [6], who suggests that a large amount of viscous dissipation

arises from the clearance flow. Hence, the reason for this peculiar behavior seems not to be

settled yet and should be subject of further experimental research.
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Figure 8.9: Local velocity profiles at the sampling lines A − B (a) Fr = 0.1, (c)
Fr = 0.4, (e) Fr = 0.9 and C −D (a) Fr = 0.1, (d) Fr = 0.4, (f) Fr = 0.9 in the
cross-sectional plane after one full turn of the screw at ωmaxt = 150.
Solid lines are Ux, dashed lines are Uy and dotted lines are Uz; ( ): screw-rotation,
( ): barrel-rotation and ( ): transformed velocity according to Eq. 8.8.
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Figure 8.10: Local temperature profiles at the sampling lines A − B (a) and C −D
(b) in the cross-sectional plane after one full turn of the screw at ωmaxt = 150.
Solid lines are Fr = 0.1, dashed lines are Fr = 0.4 and dotted lines are Fr = 0.9;
( ): screw-rotation and ( ): barrel-rotation.
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8.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

0 Vector with only zeros

A Constant of Vogel model [K]

A Second order tensor field

A∗ Transformed second order tensor field

B Constant of Vogel model [K]

cP Heat capacity [ m
2

s2K
]

D Rate of deformation tensor [s−1]

D∗ Rotated rate of deformation tensor [s−1]

f Acceleration vector [m
s2

]

F Deformation gradient [−]

F∗ Rotated deformation gradient [−]

Fr Drag rate [−]

I Identity matrix [−]

L Velocity gradient [s−1]

n Unit normal vector to control surface [−]

p Pressure [ kg
ms2

]

q Heat flux [kgm
2

s3
]

Q Energy source due to dissipation [kgm
2

s3
]

r Radial position vector [m]

R Rotation matrix [s−1]

S Surface area [m2]

SCV Surface area of control volume [m2]

t Time [s]

T Temperature [K]

T Cauchy stress tensor [ kg
ms2

]

T0 Reference temperature [K]

U Specific internal energy [kgm
2

s2
]
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Symbol Description Unit

U Velocity [ms ]

Ub Velocity of control surface [ms ]

Ux Velocity component in x-direction [ms ]

Uy Velocity component in y-direction [ms ]

Ubarrel−rot. Velocity obtained with barrel-rotation [ms ]

Uscrew−rot. Velocity obtained with screw-rotation [ms ]

V Volume [m3]

VCM Volume of control mass [m3]

VCV Volume of control volume [m3]

W Antisymmetric component of velocity gradient [s−1]

Greek Symbols

Symbol Description Unit

∇ Nabla (gradient) operator [m−1]

η Dynamic viscosity [ kgms ]

λ Thermal conductivity [kgm
s3K

]

ρ Density [ kg
m3 ]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

ω Rotational speed [s−1]

ω Rotational speed vector [s−1]

φ General intensive variable

Subscripts, Superscripts and Oversymbols

Symbol Description

Q0 Value of Q at the beginning of simulation

Q−1 Inverse of matrix Q

Qantisymm. Antisymmetric part of matrix Q

Qav Average value of Q

Qwithfl. Value of Q obtained with flight clearance

Qwithoutfl. Value of Q obtained without flight clearance

Qmax Maximum value of Q

Qmin Minimum value of Q

Qsymm. Symmetric part of matrix Q
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Symbol Description

QT Transpose of matrix Q

Q∗ Rotated matrix Q

Q̇ Time-derivative of matrix Q

Nondimensional Groups

Symbol Description Definition

ε Relative deviation
Twithfl.−Twithoutfl.
Twithoutfl.−T0

Abbreviations

Abbreviation Description

CFD Computational fluid dynamics

CM Control mass

CV Control volume

FVM Finite volume method

PISO Pressure implicit with splitting of operator

SSE Single-screw extruder
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8.C Summary
In analytical analyses for single-screw extruders the simplified approach of rotating the barrel

and keeping the screw fixed is often used instead of rotating the screw and fixing the barrel.

Although the flow field is independent of the reference frame, as has already been shown to

a satisfactory degree [5], the question of the dependence of the melt temperature rise on the

reference frame is still being challenged, e.g. Campbell et al. [6, 7]. In this chapter a finite-

volume CFD code is developed allowing for the three-dimensional simulation of the flow and

temperature rise in both reference frames. The question of frame invariance is addressed by

simulating the flow of a Newtonian-like polycarbonate both in a two-dimensional cross-section

of a single-screw extruder and in a three-dimensional model with two full turns of the screw.

The results show that the kinematics and the melt temperature rise are equal for screw- and

barrel-rotation and thus independent of the reference frame. Furthermore, it is found that

the presence of a clearance flow has a negligible influence on the temperature rise.

8.D Author contribution
The author of this thesis contributed to this publication by proposing the idea to do simula-

tions for screw-rotation, barrel-rotation and real-barrel-rotation to show the frame invariance

and the irrelevance of inertial forces, by doing the implementation in the software package

OpenFOAM
R©

, by proposing the idea to do simulations such as to have the results be

most general, which is by doing transient and three-dimensional simulations, by generating

the mesh and doing the simulations for the single-screw extruder with a flight clearance

and by writing all parts of this manuscript except the conclusions (Section 8.4) and minor

amendments from Olaf Kintzel to Section 8.2.1.

8.E Copyright permission
This chapter is originated from the following publication:

F. Habla, S. Obermeier, L. Dietsche, O. Kintzel, O. Hinrichsen, CFD Analysis of the frame

invariance of the melt temperature rise in a single-screw extruder, International Polymer

Processing (2013) 463-469.

Reprinted with permission from Carl Hanser Verlag GmbH & Co KG.
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9.1 Summary
In this work numerical modeling of polymeric flows is studied with focus on model devel-

opment, implementation in the open-source CFD software OpenFOAM
R©

, improvement

of the underlying numerical techniques for solution of the partial differential equations as

well as validation and verification of the developed solvers by comparison with analytical

solutions, simulation of benchmark problems and comparison with other numerical studies

and experimental measurements.

Numerical simulation of viscoelastic flows with a collocated finite-volume method can lead to

checkerboarding effects of velocity due to a decoupling of velocity and stress. To overcome

this issue, a new formulation for the divergence of the viscoelastic stress is developed, which

even allows for a semi-implicit handling of the viscoelastic constitutive equation. The latter

promotes numerical stability. The method is tested by simulation of three-dimensional steady

contraction flows in a 4:1 planar contraction and a 4:1 square-square contraction with a

simplified Phan-Thien-Tanner model. Mesh convergence and time-step independence of the

results are shown and accurate and stable simulations can be performed over a wide range of

Deborah numbers. Results are generally in good agreement with experimental results with

deviations only found for large Deborah number flows in the square-square contraction, which

were attributed to a deficiency of the viscoelastic model to describe such type of flow.

All numerical methods break down if the Weissenberg or Deborah number is increased

beyond a critical value. This fundamental instability is called the High Weissenberg Num-

ber Problem (HWNP). The reason is a failure in balancing exponential growth in close to

singular points with polynomial-based convection schemes. A remedy to this problem is the

log-conformation reformulation, in which the viscoelastic constitutive equation is logarith-

mized. [1] This technique is implemented in OpenFOAM
R©

in this thesis together with the

CUBISTA convection scheme, which is formally of order three on uniform meshes and smooth

flows. [2] The developed solver is first thoroughly validated by comparing simulation results

with the analytical solution for the startup of a viscoelastic Poiseuille flow and subsequently

used to simulate transient and three-dimensional viscoelastic flows in a lid-driven cavity, in

which the material is governed by the Oldroyd-B constitutive equation. Mesh and time-step

convergence is analyzed and the applicability of the code to unstructured meshes is shown.

The effect of elasticity is investigated by comparing flows at different Weissenberg numbers.

Simulations can be performed at arbitrary large values of the Weissenberg number as no

upper-limit can be identified, although accuracy of such simulations is questionable as one

would need very fine meshes and small time-steps for convergence.
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In this thesis a module for handling non-isothermal viscoelastic flows is implemented in

the software OpenFOAM
R©

. This is relevant since in industrial polymer processing tem-

peratures commonly vary over a wide range and temperature effects become important.

Thus, dependency of physical properties on temperature must be considered for obtaining

accurate simulation results. Additionally, a new boundary condition for stress on solid walls

is developed and implemented. Although a boundary condition for stress on solid walls is

not needed for solution of the constitutive equation due to the hyperbolic nature, a boundary

value must be specified to calculate the divergence of stress with use of the Gauss theorem.

Commonly, a zero gradient is assumed, which is only first-order accurate. The boundary

condition developed in this work is second-order accurate by linear extrapolation of interior

values to the walls which is done with a linear regression technique in order to be applicable

even to unstructured meshes. Simulation of a steady viscoelastic Poiseuille flow verifies

the higher accuracy of the extrapolation boundary condition. The code is then applied

to the simulation of non-isothermal axisymmetric 4:1 contraction flows. The influence of the

elasticity and the temperature jump at the wall is investigated and compared to a similar

numerical study.

A new model to describe segregated two-phase flows of viscoelastic fluids is derived with use of

conditional volume-averaging and subsequent closure modeling, in which the two phases are

described with the Oldroyd-B equation. The resulting set of partial differential equations is

then reformulated in order to be solvable numerically. The reformulated model is implemented

in OpenFOAM
R©

. Basic validation of the model is performed to investigate the behavior of

the model. This is done with a single-phase viscoelastic Poiseuille flow and three two-phase

flows with steady interfaces. The two-phase flows include a shear-flow parallel to a planar

interface to test the interfacial momentum transfer term, a cylindrical interface for testing the

surface tension closure and a stratified Poiseuille flow for analyzing convergence properties of

the model.

As in the latter study it was found that this viscoelastic two-phase model requires a sufficient

spatial resolution of the interface, the conservative level-set method [3] is employed since this

method is able to remedy this shortcoming. This is done by an additional intermediate step

subsequent to the advection of the interface by compressing and diffusing the interface, which,

when solved until convergence, leads to an interface indicator field with defined interface

thickness. The method is first validated by simulation of a rotating cylinder and it is found

that this intermediate step can in fact fix this issue. Subsequently, the model is used to

simulate transient droplet deformations subject to a steady planar shear flow, in which the

droplet is Newtonian and the matrix is governed by the Oldroyd-B equation. Simulations

are performed in two and three dimensions. Convergence with cell size and time-step size

is verified. The simulation results compare generally well to other numerical studies and

experimental results, except for Capillary numbers close to break-up. It is assumed that this

deficiency is caused by the poor rheological modeling of the matrix phase.
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When analyzing single-screw extruder analytically the problem is often simplified by rotating

the barrel and keeping the screw fixed. Although long being a controversial subject, it was

yet been shown that the kinematics are not influenced by this simplification. However, there

is still doubt whether this simplification is valid when analyzing the temperature rise. The

reason is attributed to the viscous dissipation not being frame indifferent. This issue is

investigated in this thesis by simulation of the temperature rise in screw-rotation and barrel-

rotation mode. This is done in the most general way by considering the transient startup of

rotation and a three-dimensional single-screw extruder. Comparison of the results obtained

in both reference frames suggests that both kinematics and temperature rise are identical in

both approaches and thus viscous dissipation is frame indifferent.

9.2 Outlook
The work presented in this thesis underlines the vast possibilities of numerical modeling of

polymer processing and specifically also the advantages of using the software OpenFOAM
R©

for this field of research. Further research in this regard may be directed towards the

following:

• Simulation of integral viscoelastic constitutive equations

Viscoelastic constitutive equations can be sub-divided into differential and integral equations.

Differential equations are comparatively easy to handle numerically and are widely used.

Equations derived from molecular theory are usually of integral type and are often more

sophisticated than differential equations, which can mostly be used only for polymeric solu-

tions and mildly elastic materials. However, numerical simulation of integral type equations

is very challenging and demanding. Preliminary work has been done during completion of

this thesis by developing a module for handling integral viscoelastic constitutive equations in

OpenFOAM
R©

. The model is based on the deformation fields method as described in Hulsen

et al. [4], in which the integral equation is of time-separable Rivlin-Sawyers type

τ (t) =

∞∫
τ=0

M(τ) f [Fτ (t)] dτ (9.1)

τ is an age-coordinate, M(τ) is the memory function and Fτ (t) is the Finger tensor at age τ .

The interval τ ∈ [0,∞[ is split into two sub-intervals τ ∈ [0, τc] and τ ∈ ]τc,∞[. The Finger

tensor is assumed to be constant within the interval τ ∈ ]τc,∞[. As a result, this integral

can be solved analytically. The first interval, on the other hand, is solved numerically by

discretizing τ ∈ [0, τc] into a finite number of integration nodes. For each integration node a

partial differential equation for the Finger tensor has to be solved

∂F

∂t
+
∂F

∂τ
+∇ · (UF)− (∇U)T · F− F · ∇U = 0 (9.2)
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Both time-derivatives are calculated with a second-order Gear scheme. Subsequent inte-

gration is done with a Simpson technique for non-constant node spacing. Further research

in this regard should be directed towards an optimization of the integration node spacing

and proper choice of the cut-off time τc since the overall accuracy of simulation results is

very sensitive to this. A thorough validation is needed by comparison of the simulation

results with appropriate analytical solutions such as the startup viscoelastic Poiseuille flow.

Furthermore, the developed code should be tested with more complex flow types such as

cavity or contraction flows.

• Logarithmic transformation of integral viscoelastic constitutive equations

It is known that use of a logarithmic transformation can overcome the High Weissenberg

Number Problem for differential viscoelastic constitutive equations. Interestingly, such a

logarithmic transformation can also be done for integral viscoelastic constitutive equations.

The logarithmized variable is Ψ = log(F). The evolution equation for the Finger tensor then

becomes

∂Ψ

∂t
+
∂Ψ

∂τ
+∇ · (UΨ)− (Ω ·Ψ−Ψ ·Ω)− 2B = 0 (9.3)

In this work it was found that this transformation can indeed give acceptable simulation

results. However, at integration nodes close to present time (τ → 0) it holds that lim
τ→0

F = I

⇔ lim
τ→0

Ψ = 0. In this case the logarithmic transformation becomes inaccurate. Resulting

errors in the calculation affect all other Finger tensors due to the time-derivative in τ . This

issue must be further examined. A possible remedy is to do a logarithmic transformation

only for Finger tensors F at integration nodes τ > τcrit., where τcrit. is a sufficiently large

time such that the eigenvalue and eigenvector computation is accurate enough.

(a) Background mesh and stl-geometry of the barrel
(blue) and the screws (red).

(b) Solid cells (blue) and IB cells (red).

Figure 9.1: Immersed Boundary Method (IBM) for twin-screw extruder simulation.
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• Twin-screw extruder modeling

Twin-screw extruder are widely used in polymer processing due to their good mixing capa-

bilities, high flexibility and high productivity. Unfortunately, numerical modeling of twin-

screw extruder is extremely difficult due to the complex screw movement. This is further

complicated by the presence of viscoelastic material behavior and two-phase flow in case of

partially filled twin-screw extruder. Based on the developments in this work an effort was

made to capture the screw movement with the Immersed Boundary Method (IBM). In the

Immersed Boundary Method a background mesh is used, which does not need to conform

with the geometry considered. The geometry is described by a surface-file, see Fig. 9.1a.

Cells overlapping with the geometry are identified (cf. the Immersed Boundary cells in red in

Fig. 9.1b) and subsequently source terms are introduced into the governing equations in order

to enforce either the Dirichlet or Neumann boundary condition of the dependent variable at

the geometry surface. This is done with the discrete forcing approach in OpenFOAM
R©

.

(a) t0 (b) t1

(c) t2 (d) t3

Figure 9.2: Simulation of the flow of a viscoelastic fluid in a partially filled twin-screw
extruder (t0 < t1 < t2 < t3).

A first step towards simulation of a partially filled twin-screw extruder with consideration of

viscoelastic effects in the polymeric phase was done during this thesis, see Fig. 9.2, in which

a Volume-Of-Fluid (VOF) method is used to describe the two-phase flow, while the polymer

is governed by the Oldroyd-B equation. In order to finalize this study further research must

be directed towards guaranteeing mass conservation, particularly over the screw boundaries.
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Furthermore, for reasons of stability the log-conformation reformulation should be considered

and the conservative level-set method may be a more appropriate choice over VOF due to

the higher accuracy. Dynamic remeshing of the interface and wall-near regions would also

be helpful to decrease computation time. Finally, a thorough validation of this method is

necessary.
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9.B Nomenclature
Normal symbols represent scalar quantities and boldface symbols represent vector and tensor

quantities in general.

Roman Symbols

Symbol Description Unit

0 Matrix with only zeros

B Extensional matrix [s−1]

F Finger tensor [−]

I Identity matrix [−]

M Memory function [−]

t Time [s]

U Velocity [ms ]

Greek Symbols

Symbol Description Unit

∇ Nabla (gradient) operator [m−1]

∇· Divergence operator [m−1]

τ Age-coordinate [s]

τc Cut-off time [s]

τcrit. Critical time [s]

τ Deviatoric or extra-stress tensor [ kg
ms2

]

Ψ Logarithmic variable [−]

Ω Rotational matrix [s−1]

Subscripts, Superscripts and Oversymbols

Symbol Description

QT Transpose of matrix Q
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Abbreviations

Abbreviation Description

CFD Computational fluid dynamics

CUBISTA Convergent and universally bounded interpolation scheme for treatment of

advection

HWNP High Weissenberg Number Problem

IBM Immersed boundary method

VOF Volume-Of-Fluid
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