I

Technische Universitat Munchen
Fakultat fur Informatik

Lehrstuhl fiir Sensorbasierte Robotersysteme
und Intelligente Assistenzsysteme

Whole-Body Impedance Control of
Wheeled Humanoid Robots

Dipl.-Ing. (Univ.) Alexander Markus Dietrich

Vollstandiger Abdruck der von der Fakultat fiir Informatik der
Technischen Universitat Miinchen zur Erlangung des akademischen
Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation.

Vorsitzende(r): Univ.-Prof. Dr.-Ing. habil. Alois Knoll

Priifer der Dissertation:
1. Univ.-Prof. Dr.-Ing. Alin Albu-Schaffer
2. Univ.-Prof. Dr.-Ing. habil. Boris Lohmann

Diese Dissertation wurde am 28.1.2015 bei der Technischen Univer-
sitat Miinchen eingereicht und durch die Fakultat fiir Informatik am
11.8.2015 angenommen.






Preface

This dissertation is based on research undertaken at the Institute of Robotics and Mecha-
tronics of the German Aerospace Center (DLR) in Oberpfaffenhofen, Germany. It took five
years (2010-2015) to accumulate the results which are reported this thesis. Nevertheless,
it would have been impossible to finish the work without the help of others. Fortunately,
I was blessed along the way.

I would like to express my deep gratitude to my supervisor and mentor Prof. Alin Albu-
Schaffer for his guidance and the inspiring discussions we had throughout the course of
this work. Furthermore, my special thanks go to Dr. Christian Ott, who supported me
and introduced me to the exciting field of stability theory in robotics. Moreover, I wish
to thank Daniel Leidner and Dr. Thomas Wimbock, with whom I collaborated in a very
productive way resulting in several valuable publications in the field of whole-body control.
Without the excellent and continuous maintenance of the robot software and hardware
by Florian Schmidt, Robert Burger, and Werner Friedl, the numerous experiments in this
thesis would not have been possible at all. Moreover, I would like to thank my colleagues
Dr. Florian Petit, Dominic Lakatos, Andreas Stemmer, and my former students Melanie
Kimmel and Kristin Bussmann for the fruitful discussions and their support.

My gratitude also goes to Prof. Gerd Hirzinger, who gave me the opportunity to work
at the DLR and use the remarkable robotic systems for my research. Furthermore, I
would like to thank Dr. Paul Kotyczka and Prof. Boris Lohmann for the great cooperation
between DLR and TUM, which I am very glad to continue in the future.

Special thanks go to my colleagues Jens Reinecke and Dr. Maxime Chalon, who sup-
ported me in so many ways and proofread this thesis.

Thanks and love to my parents Christine and Rainer, and my sister Kerstin, who have
always encouraged me and helped me to find my way to become a scientist. Last, I thank
my beloved wife Ann-Kristin. Without her patience and love, this work would have never
been completed.

Munich, November 2015 Alexander Markus Dietrich






Abstract

The robotics research of the last years has created an increasing number of mobile hu-
manoid robots. They can be employed in a great diversity of applications such as service
robotics, the cooperation with humans in industry, or the autonomous operation in haz-
ardous places where humans would be in danger. All of these use cases involve dynamic,
unpredictable, and partially unstructured environments, where physical contacts are in-
evitable and actually necessary for the task completion. The high requirements on the
humanoid robots urge the designers to develop suitable whole-body control techniques in
order to properly operate the systems.

This thesis contributes to the field of whole-body control of mobile humanoid robots,
focusing on the skills for soft contact interactions. New reactive methods in several crucial
subdomains of this active research field are developed such as self-collision avoidance,
singularity-free control of wheeled mobile platforms, or the efficient use of the robotic torso
to increase the overall workspace of the system. The work addresses the interconnection
of all these stand-alone methods. For this purpose, a hierarchy is established, so that
the robot will execute the most important tasks with higher priority than the minor
ones. The concept of hierarchy-based control is thoroughly investigated, and the classical
state-of-the-art method for the task prioritization is extended by new features such as
dynamic task hierarchies and the treatment of conflicting objectives. A fundamental
requirement in robotics is stability, both theoretically proven and experimentally verified.
The formal stability analysis for multi-task hierarchies developed in this thesis is the
first one that demonstrates overall stability on the complete robot taking the various
simultaneous control goals into account. The proof of stability is valid for a generic
torque-controlled robot and it is furthermore extended to the particular case of systems
with velocity-controlled wheeled platforms. All algorithms reported in this thesis are
experimentally validated on a mobile humanoid robot. The work gives an outlook to
the prospective use of the proposed controller as an essential component in an integrated
framework. By interconnecting the low-level whole-body controller with a higher-level
artificial intelligence, the high potential of the proposed approach for complex real-world
applications becomes obvious. Several typical service robot tasks, such as autonomously
wiping a window or sweeping the floor with a broom, are successfully performed on the
robot.
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List of Used Symbols and Abbreviations

In this thesis, all scalar quantities are described by plain letters (e.g. n, A, ¢1). Matrices
and vectors are printed in bold (e.g. @, g(q), M(q)). Total derivatives with respect to
time t are abbreviated by dots (e.g. & = %m, &= j—;m).

Several variables in the following list appear with different subscripts, superscripts, ad-
ditional symbols, and various dimensions in this thesis. Here, the quantities are listed
and generally described without further specification. The specific meaning becomes clear
when the respective variable is introduced in the text. Note that this list of variables is
not complete, but it only contains quantities which appear at several places in the thesis

or are of prominent importance.

List of Symbols

A Set

c Constant

d Distance

i, J Indices (for numbering)

Kinematic parameter

Number or mass

Number (e.g. joints, collision pairs)

Storage function

Time

Potential function

Leg length of wheeled platform or damping parameter
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Coriolis/centrifugal matrix

Damping matrix

Vector function describing a task with task coordinates «
Vector of (generalized) Cartesian forces

Vector of gravity torques

Jacobian matrix

Stiffness matrix

Inertia matrix

Null space projection matrix
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CHAPTER 1

Introduction

1.1. Motivation

The idea of humanoid robots has inspired researchers, artists, and authors for a long time.
The most popular novelist is Isaac Asimov who wrote futuristic science fiction literature
about the coexistence of robots and humans. In his story Runaround from 1942, Asimov
introduced the famous Three Laws of Robotics:

1. “A robot may not injure a human being or, through inaction, allow a human being
come to harm.”

2. “A robot must obey the orders given to it by human beings, except where such orders
would conflict with the First Law.”

3. “A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.”

Although the above laws originate from science fiction, rules of that kind are also concluded
by engineers during the process of developing humanoid robots. In other words, the core
requirements from a developer’s perspective are also expressed by Asimov’s Laws: safety is
a key issue; protecting the human is more important than self-protection of the robot; the
main purpose of the robot is to obey and perform tasks to support the human; priorities
among the objectives are essential; proper operation is only possible if the hierarchy is
strictly satisfied. All these conclusions will play an essential role throughout this thesis.
The tremendous technological progress in the last decades has made it possible to build
the first humanoid robots. Famous legged systems are ASIMO [SWA™102] and its suc-
cessors, HRP-4 [KKM™11], or LOLA [LBU(9], to mention just a few. Another class of
humanoid robots is characterized by anthropomorphic upper bodies mounted on wheeled
mobile platforms: ARMAR-III [ARST06], PR2 [BRJ"11], TWENDY-ONE [IS09], Robo-
naut 2 [DMA'11], or Rollin’ Justin [BWS'09]. These systems are predestined to be
employed in human environments such as households. Legged humanoid robots are po-
tentially more versatile than their wheeled counterparts when considering mobility in
domestic environments with stairs or doorsteps, for example. Yet, most complex service
tasks have been executed by wheeled robots only. The advantage of a wheeled mobile
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1. Introduction

Figure 1.1.: Wheeled humanoid lightweight robot Rollin” Justin developed at the Institute
of Robotics and Mechatronics at the German Aerospace Center (DLR)

platform is to focus on sophisticated manipulation skills without the necessity of balanc-
ing and stabilizing the gait. Therefore, one may expect wheeled robots to occupy an
important place in the future of service robotics. A start has already been made by the
first commercially available robotic vacuum cleaners and lawn mowers.

The versatility and dexterity of the human body can be partially attributed to its
large number of actuated degrees of freedom (DOF). Envision a service task such as
cleaning a window with a wiper. To execute it, one needs at least six DOF because the
wiper trajectory requires a complete definition in space (position and orientation). The
kinematic redundancy w.r.t. this task allows to simultaneously accomplish further goals,
for example avoiding collisions with the wall, optimizing the posture to minimize the stress
on the spinal discs, or looking around to observe the environment. All these subtasks can
be performed without suspending the main cleaning task by using the redundant DOF.
This thesis will present a whole-body controller for humanoid robots with appropriate
redundancy resolution by considering the structure in its entirety instead of treating the
subsystems (e.g. arms, torso, locomotion system) separately.

As mentioned above, safety is a key issue. Especially when considering households
or crowded places, the environment is often unknown, unstructured, dynamic, and unpre-
dictable due to the presence of human beings. The requirements clearly differ from classical
industrial applications in factories where robots are usually caged and physically separated
from the user. In human environments the robot has to feature a certain degree of com-
pliance to be able to instantaneously react in case of contacts and physical interactions.
While this can be achieved by passive elements such as mechanical springs, the concept of
active compliance is dominating the field. The most popular method is impedance control
[Hog85], where a desired mass-spring-damper behavior is specified. The implementation
of an impedance requires commanding forces or torques, respectively. One possible real-
ization is to utilize joint torque sensing to implement torque control like in Rollin’ Justin
[ASOHO07], see Fig. 1.1. Compared to many classical techniques in control theory such
as pole placement [FW67] or backstepping [KKK95], an impedance controller is easy and
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1.2. Related Work

intuitive to parameterize because the design parameters (stiffness, inertia) have a direct
relation to the physical world. Furthermore, active impedance control is known to be very
robust, which is an important aspect for robots in dynamic, unpredictable, and unknown
environments. The methods have already found their way into industrial applications
[ASEG™08] where compliance and robustness are needed such as in assembly tasks. Their
success in physical interaction scenarios predestines them for the next evolutionary step,
that is, to enter the field of service robotics and the installation in households and domestic
environments.

1.2. Related Work

In the 1980s, an innovative idea revolutionized robot motion planning and control: the
task space or operational space concept [Kha87]. Instead of defining objectives in the
abstract joint space of the robot, task coordinates with intuitive interpretation were intro-
duced. The most common example is certainly the Cartesian space of the end-effector of a
manipulator. This simplification inevitably led to the question of an adequate redundancy
resolution since most robotic systems have more actuated DOF than the dimension of the
task space. The invention of the so-called null space projection [BHB84, NHY87, HS87]
partially enabled to deal with this issue and resolve the redundancy by performing ad-
ditional tasks in the null space of the end-effector task, that is, without disturbing the
end-effector task execution. Since then, a wide range of sophisticated frameworks have
been developed based on these essential techniques and have extended them by useful
improvements in computational aspects [BB98], singularity-robustness [NH86], motion
generation [BKO02], or the extension to more complex multi-priority hierarchies [SS91], for
example.

In the context of whole-body control, attractive and repulsive artificial potential fields
[Kha86] are the most frequently employed robot control methods to accomplish tasks.
Numerous solutions to specific control problems exist such as in the fields of collision
avoidance [SGJG10, DSASO107], manipulator singularity avoidance [Ott08], singularity
avoidance for wheeled platforms [CPHV09], dual-arm manipulation [WOHO7], or joint
limit avoidance [MCR96]. Particularly since the early 2000s, more and more whole-body
controllers that implement several of these objectives simultaneously have been released
thanks to the availability of suitable simulation models and hardware. Seminal results
in multi-task hierarchies were obtained by Sentis et al. [SK05, SPK10] and Khatib et al.
[KSPW04, KSP08] in concept and simulation. Hammam et al. [HOD10] simulated such
a framework on ASIMO, Sadeghian et al. [SVKS13] applied a multi-priority controller to
the model of a torque-controlled lightweight robot.

The number of implementations on real robots is also steadily increasing. Nevertheless,
one will only find a small number in the literature so far. Yoshikawa and Khatib [YK09]
implemented an inverse model to transform commanded torques into velocity signals so
that soft contact behavior can be realized on a position-controlled robot. An open-source
software package for whole-body compliance has been released by Philippsen et al. [PSK11]
and has already been utilized on the robots PR2 and Dreamer. An attractor-based multi-
task method has been implemented on the legged COMAN robot by Moro et al. MGG™13].
Nagasaka et al. implemented a whole-body algorithm for diverse motion objectives on a
21-DOF wheeled system [NKS*10], but several crucial aspects have not been considered
such as singularity treatment or collision avoidance. A whole-body compliance controller
for kinesthetic teaching of torque-controlled robots has been recently proposed by Ott et
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al. [OHL13]. The implementation was carried out on TORO, a legged humanoid based on
the DLR lightweight robot technology which is also used in Rollin’ Justin.

This list of whole-body control concepts could be easily continued. So what is the point
of further research in the field and the justification for another approach? The following
section will reveal fundamental lacks of the existing techniques, which hinder their wide
use and their employment in commercial service robotics so far.

1.3. Problem Statement

As mentioned above, humanoid robots are available for a few years. However, if one de-
mands a joint torque interface for compliant physical interaction, the quantity of readily
available systems reduces to a small number. Consequently, only little research and exper-
imental validation on these systems have been done so far. Although new developments
from research in humanoid robotics appear more and more frequently in the mass media,
for example in movies, television, or newspapers, it is actually only the beginning of a long-
term process that involves iterations between theoretical advances, improved hardware,
and the experimental validation.

A central issue of most whole-body control concepts is the lack of valid stability anal-
yses and proofs. The overwhelming majority of approaches is based on the classical Op-
erational Space Formulation (OSF) [Kha87], which leads to the dynamic decoupling of
the prioritized tasks through feedback linearization. However, the OSF does not provide
overall stability. Only exponential stability on the main task level (highest priority) can
be shown so far. Nakanishi et al. [NCM108] compared eight of the most commonly used
OSF controllers from a theoretical and empirical perspective and concluded that “null
space dynamics so far resist insightful general analytical investigations (...) If stability
could be proven for this family of operational space controllers, operational space control
would be lifted to a more solid foundation”. The problem is related to the dynamics of
all subordinated (null space) tasks. The authors state that “the exact behavior of the null
space dynamics cannot be determined easily (...) This difficulty of understanding the null
space stability properties is, however, a problem that is shared by all operational space con-
trollers. So far, only empirical evaluations can help to assess the null space robustness”.
In safety-critical environments such as households or crowded places, the application of
techniques without knowledge of the overall stability properties can pose a significant
obstacle. Of course, one might argue that even without a theoretical stability analysis,
many methods in robot control have proven successful. But a lack of proof of stability can
have severe, practical consequences concerning stability and robustness, even if only under
particular circumstances or in extreme situations. In Chapter 5, such an example is given
where the robot operates properly in most cases, but a slight change in the impedance
controller parameters suddenly destabilizes the system. The subsequent, formal stability
analysis identifies the reasons, solves the problem by an additional control action and
guarantees stability for all controller parameterizations. As Kurt Lewin (1890-1947), one
of the pioneers of modern psychology, once said, “There is nothing so practical as a good
theory”. This statement is also valid in robotics, especially when the consequences affect
human lives: Who would actually buy a robot for his own home, if the manufacturer is
not able to guarantee safe and reliable operation in any case?

Another problem with whole-body controllers based on the OSF concerns the external
forces and torques. Either they are not considered in the control law and the system does
not feature a specified compliant behavior w.r. t. its environment in consequence, or com-
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pliance has to be paid for by their measurement /estimation and feedback. While external
loads applied at the end-effector can be measured if a force-torque sensor is mounted at
the tip, external forces and torques exerted on other parts of the robot structure cannot
be easily identified.

Whole-body control is a complex challenge and most existing frameworks cover subdo-
mains only. A proper approach should fulfill a large number of requirements simultane-
ously:

e Many different objectives must be considered such as safety features, task execution,
optimization criteria, and so on.

e The order of priority has to be satisfied and the task hierarchy must be flexible to
manage unilateral constraints, dynamic modifications, and singularities.

e Stability of the closed loop must be ensured.

e The robot has to physically interact with its environment in a compliant way so that
no human in its workspace may come to harm.

e The approach must be validated experimentally.

A solution for all of these issues in one unified framework is desirable.

Once a control framework is available, it is possible to merge it with a higher-level arti-
ficial intelligence (AI) instance. State-of-the-art whole-body concepts do not yet consider
the integration of the controller into such a higher-level framework. The key is to establish
a two-way communication channel between the controller and the Al module. Then the Al
can properly parameterize the controller, choose reasonable control objectives, determine
application-specific task hierarchies, and command the respective trajectories. On the
other hand, the whole-body controller (hard real-time) can feedback useful information
about the task execution so that the (non-deterministic) Al instance can replan in order
to find global solutions, e. g. when the controller is stuck in a local minimum due to altered
environmental conditions.

1.4. Concept of Whole-Body Impedance

The title of this thesis is “Whole-Body Impedance Control of Wheeled Humanoid Robots”.
While the term “wheeled humanoid robot” is self-explanatory, the term “whole-body
impedance control” may be less obvious. In the course of this work, various impedance
control tasks are established in a hierarchical order. A representative setup is an opera-
tional space impedance controller which is applied to the complete, multi-DOF body of a
humanoid robot as illustrated in Fig. 1.2. A desired, compliant contact behavior of the
end-effector is assigned in its operational space, e. g. the six-dimensional Cartesian space of
the hand. The impedance can be intuitively interpreted as a mass-spring-damper system
with actively controlled virtual spring and virtual damper.! Although these elements are
only virtually applied, the human will actually feel the specified physical compliance while
interacting with the robot. The approach enables complex task execution by planning

!One may also shape the perceived inertia, but the case of active spring and damper control (compliance
control) is emphasized in this thesis because it does not require the problematic feedback of external
forces and torques. Moreover, the interaction behavior is more natural when keeping the natural inertia.
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Virtual system
realized by active control

Redundant n-6 actuated DOF
— Execution of additional tasks

Current end-effector reference

Desired end-effector trajectory
(Cartesian space, 6 DOF)

Figure 1.2.: Example of whole-body impedance control illustrated on a wheeled humanoid
robot with n actuated DOF

Importance of objective

"minor" "indispensable"

Optimization criteria Task execution Physical constraints Safety

- Energy efficiency - Arm motion - Joint limits - Collision avoidance

- Head pose for wide range of vision - Locomotion - Actuator limits - Self-collision avoidance
- High manipulability index - Desired contact behavior - Workspace limits - Collision detection

- Natural arm configuration - Grasping strategy - Balancing - Physical compliance

Figure 1.3.: A wide variety of possible objectives that can be assigned to the robot within
the whole-body impedance framework

in low-dimensional, intuitive spaces instead of considering the complete, bulky configura-
tion space. The remaining DOF, which can be controlled without affecting the operational
space impedance, can be utilized to accomplish additional tasks such as collision avoidance
or the optimization of various criteria. Fig. 1.3 shows a wide range of possible objectives.
Since there are usually “more important” and “less important” goals, the whole-body
impedance framework is developed in a way such that a desired control task hierarchy can
be realized.
The major advantages of the approach can be summarized as:

e Active compliance allows robust task execution and safe physical interaction with
the environment.

e Task planning can be reduced to the intuitive, low-dimensional operational spaces
instead of considering the complete joint space.

e The numerous DOF can be exploited to execute additional tasks simultaneously.

e A task hierarchy among all involved tasks establishes a strict order of priority from
“minor” up to “indispensable” objectives.
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e The theoretical proofs of stability and the experimentally verified performance pre-
destine for the use in future commercial applications such as service robotics or
industrial use cases.

1.5. Contributions and Overview

All problems outlined in Section 1.3 are addressed within the whole-body impedance frame-
work developed here. The thesis contributes to both theory and experimental validation
in this research field.

A set of robot tasks belong to the standard repertoire in multi-priority control. Among
them one can find objectives such as end-effector control in the operational space, joint
limit avoidance, or singularity avoidance of manipulators. In this thesis, the set of avail-
able tasks will be augmented by new, essential elements that are particularly related to
safety and physical constraints: A proprioceptive self-collision avoidance is presented in
Section 3.1. The approach improves both the self-protection of the robot and the human
safety by avoiding self-collisions and clamping situations. Damping is injected by assigning
damping ratios to realize a desired mass-spring-damper behavior in each potential collision
direction. In Section 3.2, singularities in wheeled mobile platforms are treated. Critical
situations usually occur when the instantaneous center of rotation approaches one of the
wheels and causes an unpredictable and dangerous platform behavior. The proposed
method reactively avoids these critical configurations. Section 3.3 addresses workspace
limitations of tendon-coupled torso structures such as the one in Rollin’ Justin. The con-
straints due to the coupling restrict both the kinematic and the dynamic workspace of the
robot. A repulsion from these boundaries is proposed. The three reactive control methods
in Chapter 3 are experimentally validated on Rollin’ Justin.

The concept of null space projections is addressed in Chapter 4. Beside a survey of
all relevant implementations in torque control, the popular dynamically consistent redun-
dancy resolution [Kha87] is generalized. Moreover, a new type of null space projection
is introduced, namely the stiffness-consistent approach. This new method allows to ex-
ploit the mechanical springs in parallel elastic actuators (PEA) within the task hierarchy.
A further contribution in Chapter 4 is the incorporation of unilateral constraints. That
makes it possible to deal with singular Jacobian matrices and allows flexible and dynamic
hierarchies. All proposed concepts are validated on the real robot.

The stability analysis is treated in Chapter 5. The first contribution is the analysis
of a generic humanoid robot with wheeled platform and torque-controlled upper body in
Section 5.1. Since a mobile base is normally kinematically controlled due to the rolling
constraints, the integration into an overall impedance control framework is not straight-
forward. Via admittance couplings this issue is solved and by smart adaptation of the
control law, asymptotic stability of the equilibrium and passivity properties are shown.
The second contribution in Section 5.2 is a proof of stability for arbitrarily complex multi-
task hierarchies, which can also be applied to legged systems or other classes of robots.
A novel, priority-based dynamics representation is derived such that asymptotic stability
can be concluded due to the beneficial properties of the formulation of the equations of
motion and the particular control law. As mentioned in Section 1.3 and by Nakanishi
et al. [NCMT08], such a feature has not been provided elsewhere yet. Again, all results
are experimentally validated on Rollin’ Justin. The stability analyses in Chapter 5 can
be combined such that the proofs are universally valid for torque-controlled robots with
wheeled mobile platforms and a stack of hierarchically arranged whole-body control tasks.
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Introduction I Chapter 1 ‘ Fundamentals I Chapter 2 ‘

Control Tasks based on I Chapter 3 Redundancy Resolution I Chapter 4

Artificial Potential Fields by Null Space Projections
‘ Self-Collision Avoidance [DWT11] ‘ ‘ Null Space Projectors [DOAS15] ‘
‘ Platform Singularity Avoidance [DWASH11] ‘ Unilateral Constraints

[DASH12] [DWASH12a]

‘ Torso Posture Control [DKW+14] ‘

Stability Analysis | Chapter 5 Whole-Body Coordination | Chapter 6

Stability of Admittance and Implementation on Rollin' Justin
Impedance Couplings [DBP*15] [DBOAS14] [DWAS11] [DWASH12b]

Stability of Multi-Task Hierarchies
[DOAS13] [ODAS15]

Integration of the Whole-Body I Chapter 7
Controller into a Higher-Level Framework

Interconnection of Whole-Body Controller
and Artificial Intelligence [LDST14]

Real-World Applications [LDBAS15] ‘

Summary I Chapter 8 ‘

Figure 1.4.: Graphical overview of the chapters, the main topics, and the relation to the
publications

The contributions in Chapter 6 are mainly of experimental nature. The whole-body
controller is implemented on Rollin” Justin involving the theoretical results of this thesis. A
detailed analysis is conducted and the performance of the proposed approach is confirmed.

Chapter 7 contributes to the combination of local methods (control) and global methods
(planning). This is actually a new field of research that has not been treated thoroughly in
the robotics community so far. In this respect, Chapter 7 represents the first steps on the
way towards the integration of whole-body control into higher-level frameworks involving
artificial intelligence, so that the ideal of an autonomous and intelligent humanoid robot
will be realized one day.

The research findings reported in this thesis resulted in six journal articles, seven con-
ference papers on the main robotics congresses, and a patent that is currently under
review. These main publications on which the thesis is based are summarized in Table 1.1
and related to the respective chapters of this thesis in Fig. 1.4. Furthermore, two jour-
nal articles [PDAS15, CDG14] and six conference papers [BSW'11, BBW'11, LGP'13,
RDC14, LGDAS14, ODR14] have been co-authored, which are related to the topic but
not integrated in the thesis.
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Table 1.1.: Main publications on which this thesis is based

Reference

Description
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CHAPTER 2

Fundamentals

Chapter 2 briefly reviews the basics that are required for the theoretical investigations and
the practical implementations in this thesis. That comprises fundamentals in kinematics
and dynamics (Section 2.1), active control for compliant interaction behavior (Section 2.2),
and details on the hardware and modeling assumption on the wheeled humanoid robot
Rollin’ Justin, which has been chosen as the platform for the experimental validations
(Section 2.3).

2.1. Robot Kinematics and Dynamics

The following sections introduce some basic kinematic and dynamic matters of special
importance in the context of this work. For a complete and more detailed version the
reader is referred to the standard literature [Pau83, Cra89, Yos90, MLS94, KD02, SKO08|.

Most robotic designs are based on revolute joints rather than prismatic joints. Thus,
one has to deal with torques instead of forces on joint level. In this thesis the term joint
torque is mostly used, but the extension to generalized joint forces (including forces and
torques) can be made. By default, external loads are referred to as external forces since
physical contact usually occurs from contact surface to contact surface, hence a force is
more common. However, the extension to generalized external forces (including forces and
torques) can be made without loss of generality. The simplified notations are used for the
sake of brevity.

2.1.1. Forward Kinematics, Jacobian Matrices, and Power Ports

A typical robotic system is described by g € R™ joint coordinates, where n is the number of
degrees of freedom (DOF). The operational space, e.g. the workspace of the end-effector,
is usually described by m < n coordinates denoted (g, £) € R™. The kinematic param-
eterization L is usually constant and disregarded in the notations. The robot is assumed
to be rigid, the only relative motion is along/about the n joint axes.

The most common representation of (q) is in Cartesian coordinates. If m = n, then
the robot is called non-redundant w.r.t. the operational space with dimension m. If
m < n, then the manipulator is kinematically redundant and can execute additional tasks
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Configuration Space Operational Space

Effort

Flow

Figure 2.1.: Relations between &, F', ¢, and 7 for a redundant manipulator m < n

by utilizing the (n — m)-dimensional null space while not disturbing the operational space
task.! The forward kinematics of the considered robot are described by the mapping
q — «, while the inverse kinematics * — ¢q in a redundant robot is ambiguous and
requires additional constraints to be resolved.

The differential and velocity relation between the joint space and the operational space

AwM)Zé?g”quuﬂmAq, (2.1)
x(q,q9) = J(9)q , (2.2)

necessitates a further quantity J(q) € R™*", the Jacobian matrix. The total time deriva-
tive d{}/dt of a function {} is abbreviated as {} in this thesis. Based on the geometric
point of view (2.1) and (2.2), one can find a simple relation between operational space
forces F € R™ and joint torques 7 € R™: 2

r=J(@'F (2.3)

The application of joint torques with (2.3) is called a Jacobian transposed approach. This
concept is adopted here and constitutes a basic prerequisite for the methods developed in
the later chapters. The variables in (2.2) and (2.3) describe either a flow (g or &) or an
effort (7 or F'). The associated terms build power ports, since they define a power through
g'7 and @7 F, respectively. Via such a port, the system can exchange energy with its
environment. All relations are illustrated in Fig. 2.1.

2.1.2. Derivation of the Equations of Motion

Two basic formalisms are briefly reviewed that yield the dynamic equations of a robot.
These sections explain the derivation in a nutshell only. A more detailed version can be
found in the standard literature listed in Section 2.1.

Lagrange Formalism

The Lagrange formalism is an energy-based technique to obtain the dynamic equations.
An n-DOF system with joint values ¢ € R™ and joint velocities g € R™ is described by

"Motions in the null space are also denoted internal motions.

2Note that F' may also contain torques, e.g. in the case of a full operational space wrench F' € R® with
three forces and three torques. Furthermore, T may also contain force elements in case of prismatic
joints.
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the so-called Lagrangian
L(g,q4) =T(q,9) - V(a), (2.4)

which is given by the kinetic energy T'(q, ¢) of the system minus its potential energy V (q).
Then the dynamic equations can be obtained by evaluating

() () e

The vector Q € R™ contains the generalized joint forces T € R™, the external loads
Toxt € R™, and non-conservative generalized forces such as friction. The main advantage
of the method is the simple analytical determination of the kinetic and potential energy.
But the computational burden of the method makes it unsuitable for large systems with
many DOF. The computational effort for an n-link robot is of order O(n*) while it is
only O(n) with the iterative Newton-Euler formalism. See [Yos90] for a more detailed
comparison.

Iterative Newton-Euler Formalism

The iterative Newton-Euler algorithm requires the evaluation of Euler’s first and second
law for each link of the robot. All constraining forces have to be calculated explicitly.
Finally, the equations of all links are combined and the constraining forces are eliminated
again. The exact procedure will not be detailed here. Fore more information refer to the
elementary literature listed in the beginning of Section 2.1.

2.1.3. Rigid Body Dynamics

The dynamic equations of a rigid robot with n DOF can be written as

M(q)g+C(q,4)g+9(q) =T + Text - (2.6)

The symmetric and positive definite inertia matrix M (q) € R™*™ depends on the joint
configuration® g € R". Gravity effects are contained in g(q) = (0Vy(q)/0q)T € R", where
Ve (q) denotes the gravity potential. Coriolis/centrifugal forces and torques are represented
by C(q, q)q € R™. The generalized forces* T € R™ describe the control inputs. Generalized
external forces are denoted by Texy € R"™. The matrix C(q, q) is not unique in general,
but it can be chosen according to the Christoffel symbols [MLS94] such that it complies
with the relation .

M(q,q) = C(q,q) + C(q,q)" (2.7)

which is in turn equivalent to the skew symmetry of M(q,q) — 2C(q, ). This property
is crucial for showing passivity of (2.6) w.r.t. input 7 and output ¢ and the total energy
a7 M (q)q+Vy(q) as the storage function. This representation of the Coriolis/centrifugal
matrix will be used by default in this thesis.

2.2. Compliant Motion Control of Robotic Systems

Featuring compliant behavior is an important requirement in many robotic applications.
Consider task execution in unknown, dynamic, and unstructured environments such as

3positions for prismatic joints and angles for revolute joints
“forces for prismatic joints and torques for revolute joints
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Figure 2.2.: Impedance control in the operational space € R™ with m < n

households, or the cooperation of humans and robots in the same workspace. Whenever a
physical contact between the robot and its environment occurs, the interaction behavior
should be compliant or at least properly specified in terms of forces and torques. Two
fundamental approaches exist to realize compliance: active control and the use of passive
elements such as mechanical springs. Only the controlled compliance will be addressed in
this thesis, whereas passive compliance is a matter of construction and mechanical design
of the robot.

In the seminal work of Hogan [Hog85], the nature of physical systems is described from
the environment point of view. They appear either as admittances accepting effort input
(force) and yielding flow output (motion) or impedances accepting flow input (motion)
and yielding effort output (force). His second fundamental statement is that dynamic
interaction between physical systems cannot be controlled by exclusively commanding
the position or the force. A controller has to incorporate the relation between these
port variables as well. In this section the two classical approaches of impedance and
admittance control for active compliance are briefly recapitulated. Especially impedance
control [ASOHO07, OASKHO08] is of major importance in this thesis since the theory and
the implementation of various impedance-based methods are addressed.

2.2.1. Impedance Control

The goal of impedance control is to alter the mechanical impedance of the robot, that
is, the mapping from (generalized) velocities to (generalized) forces [Ott08]. Since the
environment can be physically described as an admittance [Hog85] that maps forces to
velocities, impressing an impedance behavior on the manipulator is a proper choice to
define the interaction behavior in contact.

Fig. 2.2 depicts the impedance control regulation case with setpoint @4es (des: desired)
in the operational space € R with m < n, for example in the Cartesian coordinates of
the end-effector. This desired value is sometimes also called the virtual equilibrium. It is
reached in the case of free motion, i.e. in the absence of external forces. By feeding the
robot motion back, one computes the necessary force F.q (cmd: command) to implement
the prescribed impedance. A kinematic mapping via the transpose of the Jacobian matrix
J(q) = 0x/0q yields the required torque T¢mq. The inner control loop realizes this torque
by feedback of 7 under the influence of an external force Fey € R™.> The impedance
causality is & — Flext, S0 repositioning the robot in the operational space results in forces
acting on the environment.

5In general, an external torque Tox, € R™ acts on the robot. If the contact with the environment is closed
in the operational space, e.g. at the end-effector with coordinates @, the force Foxt € R™ with m < n
is sufficient to describe the external load.
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Figure 2.3.: Admittance control in the operational space x € R™ with m < n

When considering the overall structure of the impedance control in Fig. 2.2, one can
conclude that the inner torque control loop is compliant while the outer loop increases the
stiffness of the complete system. The torque feedback in the inner loop allows for good
contact behavior for small and medium stiffness in the impedance law. However, further
increasing the stiffness will ultimately destabilize the system. Another characteristic of
the impedance is the absence of an integrator. The controller has basically a PD structure.
The inevitable steady-state error xqes — @ for ¢ — oo in the presence of model uncertainties
or external loads can be reduced by increasing the stiffness. While the regulation case is
depicted here, the tracking performance in case of a desired trajectory xqes(t) can be
improved by adding a feed-forward term taking &qes(t) and the corresponding reflected
inertia into account.

Compliance control is a special case of impedance regulation control, where the focus
is put on the realization of a desired contact stiffness and damping [Ott08]. Compared
to approaches based on the classical OSF [Kha87], where the perceived inertia is actively
modified, the natural inertia of the robot is preserved in compliance control. The main
advantage of the method is that the feedback of the generalized external forces is not
required, which is beneficial in terms of robustness, availability of measurements, and the
complexity of the implementation [OKNOS].

2.2.2. Admittance Control

A mechanical admittance is the inverse of a mechanical impedance, that is, the mapping
from (generalized) forces to (generalized) velocities. In compliant admittance control of
robots, one employs a position or velocity controller in combination with explicit mea-
surement and feedback of the generalized external forces. Fig. 2.3 illustrates the imple-
mentation of such an admittance with joint position control interface. A typical example
is Cartesian admittance control, where the external forces Fly are measured at the tip
of the end-effector by a six-axis force-torque sensor. As a result, compliance will only be
achieved at the end-effector after this sensor, whereas the structure of the robot will react
stiff in case of physical interaction.’

The admittance subsystem yields a position @.y,q or velocity &.ng to be commanded.
Then an inverse kinematics algorithm has to be employed to resolve the kinematic re-
dundancy for m < n. The computed reference commands q.,,4 Or §.,q, respectively, are
realized in the inner position or velocity control loop. Since the admittance causality is
Foyt — Tomg, external forces result in a repositioning of the manipulator.

When considering the overall structure of the admittance control in Fig. 2.3, one can
conclude that the inner position control loop is stiff, while the outer loop is responsible for

50ne can also implement a compliant admittance controller on joint level via joint torque sensing, which
would then lead to compliance along the entire manipulator.
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© Active joint (pitch)
: Passive joint (pitch)
< Active joint (roll)
_—=— Passive joint (prismatic)

Two active joints
(steering, propulsion)

Figure 2.4.: Schematic (left) and picture (right) of the humanoid robot Rollin’ Justin. The
hands (12 actuated DOF each) are not specified in the sketch.

the compliance. The inner-loop controller allows for high positioning accuracy, especially
for medium and high stiffness. However, decreasing the stiffness will ultimately destabilize
the system, which is a direct result of the admittance causality. Another restriction on its
compliant contact behavior is the non-collocated feedback of the external forces in cases
such as the Cartesian admittance control discussed above. The admittance-controlled
system may involve substantial dynamics between actuator and sensor, which can lead to
contact instability [CH89]. Admittance control is frequently used in robots which do not
provide joint torque sensing or direct motor current interfaces [Ott08].

2.3. Humanoid Robot Rollin’ Justin

The experiments in this thesis are mainly carried out on the wheeled humanoid robot
Rollin’ Justin” [OEFT06, BOW*07, BWS*09], see Fig. 2.4 (right). In Section 2.3.1, its
hardware is presented as well as the underlying design principles. Section 2.3.2 summarizes
several modeling assumptions that have to be made with regard to the implementation of
the methods developed in this thesis.

2.3.1. Design and Hardware

The concept of Rollin’ Justin is based on the principles of modularity and integrated
design. In order to pass standard doorways, the overall width of the robot can be reduced
to about 0.9 m by adjusting the upper body configuration and retracting the wheels. In
terms of workspace, the robot is able to reach the floor as well as objects up to a height of
about 2.7m. The robot has an anthropomorphic structure which facilitates the operation
in human environment where furniture, tools, and objects are optimized for the human

"The upper body of Justin was finished just in time for its first public presentation at the AUTOMATICA
trade fair 2006 in Munich [OEF*06].
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2.3. Humanoid Robot Rollin’ Justin

Table 2.1.: Actuated degrees of freedom and available control interfaces on Rollin’ Justin

Subsystem H DOF ‘Control interface

torso 3 torque, position
arms 2x7 torque, position
hands 2 x 12 torque, position
neck 2 position
platform & legs 8 position, velocity
total sum H 51 ‘

anatomy. Another key feature of Rollin’ Justin is that the robot can be operated without
any cables that would restrict the mobility. It is equipped with a battery and all electronic
components and computers are located onboard. Via WLAN and sensor feedback (speech
recognition, visual information, force feedback), the robot has a permanent interface to
the user and the environment during autonomous operation.

The arms are slightly modified versions of the DLR lightweight robots (LWR) of gen-
eration ITI [HSAS'02] with a total weight of 14kg each. All electronic components are
integrated in the arms. As with the human archetype, the arm has seven DOF. They
are arranged in a roll-pitch-roll-pitch-roll-pitch-pitch order as it can be seen in the sketch
in Fig. 2.4 (left). A payload of 15kg can be lifted during slow motions and about 7kg
can be handled at maximum velocity. The hands of Rollin” Justin are the DLR Hands II
[BGLHO1] with four fingers and three actuated DOF per finger. An additional actuator
has been integrated in the palm to reconfigure the alignment of the thumb, dependent on
the application (power grasp, precision grasp). The head of Rollin’ Justin is a pan-tilt unit
that is equipped with several sensors, e. g. cameras for stereo vision and scene analysis or
an inertial measurement unit for equilibrioception. The torso of Rollin’ Justin has three
actuated DOF and a kinematically coupled fourth one. The whole upper body weighs
about 45kg. Except for the two neck joints, all actuated upper body joints are equipped
with link-side torque sensors as well as position sensors. This full state feedback makes it
possible to implement various control techniques. The joint torque controller operates at
a sampling rate of 3kHz and the main control loop® runs at 1kHz.

The mobile base with about 150kg contains computers, battery, electronics and so
forth [BWST09]. Rollin’ Justin has a variable footprint thanks to its extendable legs. A
parallel mechanism ensures that the height of the platform remains unchanged. The leg
extension DOF are not individually actuated, a reconfiguration is subject to steering and
motion of the respective wheel. The leg lengths can also be locked mechanically. Due
to the nonholonomy a dynamic feedback linearization is applied to move the platform
[GFASHO09]. This kinematic control method allows to realize arbitrary motions in the
two translational directions forward/backward and left/right, and the rotation about the
vertical axis. All actuated DOF of Rollin’ Justin are summarized in Table 2.1.

8The main control loop contains all algorithms above the joint level such as Cartesian impedance control,
self-collision avoidance, or online inverse kinematics.

35



2. Fundamentals

2.3.2. Modeling Assumptions

Several assumptions concerning Rollin’ Justin have to be made so that the approaches in
this thesis can be applied to the robot.

Assumption 2.1. The motors can be considered as ideal torque sources.

The electrical time constants of the motors are sufficiently smaller than the mechanical
ones. Therefore, one can neglect the electrical dynamics and assume ideal torque sources
[Wim12, Ott08].

Assumption 2.2. The reduced apparent motor inertia of the torque-controlled manipula-
tor appears rigidly connected to the link inertia.

The assumption is based on a singular perturbation argumentation applied to the flex-
ible joint model with large joint stiffness [Ott08, WO12, Wim12] and includes the so-
called “inertia shaping” (downscaling of the apparent motor inertia via torque feedback)
[OASK™04, ASOHO04]. A fast time-scale inner torque controller is embedded in rigid body
dynamics of slow time-scale. The apparent link inertia is modified by active control and
the singular perturbation argumentation allows to neglect the dynamics between motor
and link, resulting in a direct torque input available in the link dynamics as in (2.6).

Assumption 2.3. The robot structure is rigid. Motions are restricted to the joints.

The robot has a lightweight structure and is flexible in the links. Nevertheless, this link
flexibility is negligible compared to the joint flexibility which originates from the Harmonic
Drive gears and the strain-gauge-based torque sensors. Therefore, a flexible joint model
with concentrated elasticity in the joints can be assumed instead of an infinite-dimensional
elastic link robot model [Ott08].

Assumption 2.4. The joint stiffness originating from the Harmonic Drive gears and the
torque sensors in the joints is sufficiently high, such that the use of the motor positions
instead of link positions for the kinematics does not lead to any noteworthy errors. The
only exception concerns graviational effects.

Although the joint stiffness is high, gravity leads to deflections between motor and
link. In order to compensate for gravity forces and torques properly, one has to take
that flexibility into account. That can be realized by employing a static equivalent of the
link position in the gravity model, which only depends on the motor position [OASK™04,
ASOHO07]. In order to remain in a passivity-based framework with collocated feedback,
the motor position is used in the feedback controller. Once gravity is compensated as
described, the dynamics between motor and link are neglected so that the motor positions
(instead of the link positions) can be used for any link-side dependent task definition or
control task.

Assumption 2.5. The rigid body dynamics (2.6) approximate the equations of motion of
the flexible joint model of Rollin’ Justin, where the motor positions and the motor torques
can be used instead of q and T, respectively.

The assumption of a direct torque input on link side is made possible by Assumption 2.1
and Assumption 2.2, the assumption of rigid bodies is validated by Assumption 2.3, and
the use of motor positions as a substitute for link positions is covered by Assumption 2.4.
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CHAPTER 3

Control Tasks based on Artificial Potential Fields

Robots with a large number of actuated DOF are able to perform several control tasks
simultaneously. Holding a glass of water in a particular position and orientation in space,
for example, requires six DOF. If there are more DOF available, this remaining kinematic
redundancy can be used to pursue further important objectives such as collision avoidance,
observation of the environment, or pose optimization for increased energy efficiency. In
general, these control tasks have a reactive nature, i.e. the robot is able to locally react on
disturbances, unmodeled dynamics, and unpredictable environments to achieve the goals
in real time [DWASH12b]. Certainly the most frequently used method to define a reactive
control task is to apply artificial attractive or repulsive potential fields [Kel29, Kha86] and
to use their gradients as control inputs 7 € R™. In the general case, one can formulate

r= v = (M) .1

where VV(q) is the gradient of the artificial potential V(gq) € Ry and 7 follows the
gradient descent. Artificial potentials are intuitive and simple to parameterize because the
controller gains have a direct relation to the physical world, e.g. the potential stiffness,
which can be interpreted as the stiffness of a virtual spring as in Fig. 1.2.

In the last decades, numerous methods have been developed based on these princi-
ples, ranging from control tasks to usage within planning algorithms [SK05, LCCF11,
DWASH12b, BK02, BHG10]. In the context of dexterous manipulation, especially Carte-
sian end-effector control [Kha87, ASOHO7], manipulator singularity avoidance [Ott08],
and avoidance of mechanical end stops [MCR96] are of high importance, since they are
essential components in almost every whole-body control framework.

In this chapter, the set of standard control tasks, as outlined above, is extended by
particular applications which are not satisfactorily covered by the state of the art: In Sec-
tion 3.1, a reactive self-collision avoidance algorithm is proposed, that generates repulsive
forces between potentially colliding links of the robot. Especially when a robot has many
DOF, the problem of self-collisions becomes a crucial issue in whole-body control. The
singularity-free control of wheeled mobile platforms is addressed in Section 3.2. When
the instantaneous center of rotation approaches the steering axis of a wheel, then the
required steering velocity goes to infinity. This critical situation is avoided by repelling
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3. Control Tasks based on Artificial Potential Fields

-~ - - .

(a) Before potential self-collision (b) Active repulsion to avoid self- (c) After successful self-collision
collision avoidance

Figure 3.1.: Public presentation of the self-collision avoidance at the AUTOMATICA trade
fair 2010 in Munich (Germany)

the instantaneous center of rotation from the steering axes by means of artificial potential
fields. In Section 3.3, the kinematic and dynamic workspace of tendon-coupled torsos is
treated using the example of Rollin’ Justin. Repulsive forces are generated to fully exploit
the workspace of its torso. Section 3.4 closes the chapter with a brief recapitulation of
classical objectives in reactive, potential-field-based control, which will also be applied in
the context of whole-body control later. There, the controllers of Chapter 3 will be given
priorities and applied to the robot simultaneously. Redundancy resolutions (Chapter 4)
will be exploited to realize this hierarchical stack of whole-body control tasks.

3.1. Self-Collision Avoidance

The large number of DOF of humanoid robots increases the complexity in terms of self-
collisions. Using only planning algorithms to prevent collisions is not sufficient if compliant
physical interaction is considered, where the configuration of the robot may change signif-
icantly. Then the robot must be able to detect critical situations and react in real time
[KNK*02, HASHO08]. The classical approach is to apply repulsive potential fields [Kha86],
both for the treatment of self-collisions and collisions with external objects. In [SGJG10],
Sugiura et al. generate repulsive forces between potentially colliding body links of ASIMO
and transform them into the corresponding joint motions via an admittance in order to
access the velocity control interface. An alternative approach has been implemented on
the HRP-2 humanoid robot by Stasse et al. [SEM™T08]. Based on cost functions, collisions
are avoided by kinematic control.

Compared to the majority of the state-of-the-art approaches, the controller presented
here (Fig. 3.1) does not work on a kinematic level but it commands joint torques. Thus,
it is better suited for physical interaction and typical environments of service robots. The
approach is generic and can be applied to any robotic system. Beside the generation of
repulsive forces between close links, it also includes a configuration-dependent damping de-
sign for systematic dissipation of kinetic energy in a well-directed manner. The algorithm
deals with a large number of potentially colliding body segments simultaneously while be-
ing real-time capable. Preliminary work has been done by De Santis et al. [DSASOT07].
They have already utilized the torque control interface, but damping has not been consid-
ered yet. Moreover, the available collision models were insufficient to describe the complex
robot geometry. The following sections are based on [DWT*11, DWASH12a].
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3.1. Self-Collision Avoidance

Figure 3.2.: Geometric collision model of Rollin’ Justin consisting of 28 bounding volumes
(left arm: 8, right arm: 8, mobile base: 5, torso: 4, head: 2, floor: 1).
The volumes are spheres, rounded cylinders, and bodies obtained by unrolling
spheres on triangles.

3.1.1. Geometric Collision Model

The self-collision avoidance (sca) generates forces between potentially colliding links. In
the first step, the respective links and points on the surface have to be determined. Since
multiple collisions are possible at the same time, one has to consider a sufficiently large
number of collision pairs ns., € N. Each pair consists of two contact points x;, x; € R3
on potentially colliding links. Such a contact point pair is unambiguously identified by its
indices (i, 7).

The algorithm combines a compact, numerically efficient volume representation and a
standard distance computation algorithm for convex hulls [GJKS88]. In each control cycle,
the geometric collision model is updated: All volumes are transformed into the world
frame and the distances as well as the contact points are determined. Collision pairs
which cannot collide are excluded to reduce the computation time of the algorithm. An
example of such a geometric model is given in Fig. 3.2. The bounding volumes (right)
are designed to be as tight as possible while being represented by simple geometric bodies
such as spheres or rounded cylinders. The volumes are spherically extended convex hulls,
so-called swept sphere volumes. The model in Fig. 3.2 uses 78 points and 28 radii. For a
more detailed description, the reader may refer to [TBF11]. The design of the bounding
volumes is a compromise between accuracy (tight hulls) and numerical efficiency (simple
geometries).
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3. Control Tasks based on Artificial Potential Fields

c(i)

Figure 3.3.: Relations between two arbitrary contact points ;" and ch-(i) and repulsive
forces Fsca(d(i,j))- The figure illustrates a 3-dimensional example.

3.1.2. Repulsive Potential

The control action T4, € R™ for self-collision avoidance can be expressed by

S <8V8q(q)>T — D(9)q . (3.2)

where the positive definite damping matrix D(q) € R™*" provides the means to specifically
dissipate kinetic energy. The derivation of this configuration-dependent matrix will be
presented in Section 3.1.3. The term Vica(q) € R(')F denotes the total potential energy of
all ng., potential fields applied to the geometric model according to

Nsca

Vsca(q) = Z ‘/sca,(i,h(i))(q) : (3'3)
=1

Therein, each potential Vic, (i n(i))(q) € Rg refers to the contact point pair defined by
point ¢ and corresponding point j with the assignment h : ¢ — j for ¢ = 1...ng,. The
distance d; j) € Rg between two contact points x;, z; is defined as

di ) = |l — -2V (3.4)

/L?J) =

The superscript describes the coordinate frame of the link on which the indicated contact
clt) (i)
i 0L
of Fig. 3.3. The repulsive forces Fyca(d(; ;) € Rar are perpendicular to the surfaces of the
links and point in the directions +e; with

point lies. Such a point pair (x ) is illustrated in the three-dimensional example

e;, = 2 ' . (35)
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3.1. Self-Collision Avoidance

As of now, the superscript C(i) will be omitted in the notations for the sake of readability.
The term Fica(d(; ;)) is contained in the gradient of the potential (3.2):

8st:au,(i,j)(‘]) aVsca,(i,j) ad(z,]) a(sz7 mf)T

8(] Gd(w) 8(sz, a:]T)T aq
Oz; Oz
_ aVsca,(i,j) ad(@j) ad(iaj) 8qi an (3 6)
N—— 8qi aq i
_Fsca(d(i,j)) ’

Herein, the vectors g; and q; denote the joint values which directly! affect the location of
x; and xj, respectively. In the example in Fig. 3.3, g, and q; describe the joint values of
the left and the right manipulator, respectively. Notice that in general the contact points
may have the same base of the kinematic chain so that g; and g; have an intersection.
Nonetheless, just the joints after the branch-off point are relevant. It follows from the mul-
tiplication of ddy; ;y/ o(xT, acJT)T and d(x?, :BJT)T /0q that just the principal block diagonal
of d(z?, w]T)T /0q has influence on the result. The other multiplications are zero because
the factors are always orthogonal. As an example, let us consider ddy; j)/9x; and dzx;/0q,
in the context of Fig. 3.3. The direction of dd; ;/0x; is orthogonal to the surface of the
link on which «; is lying, whereas g; is only able to let &; move on this surface (indirect
influence). Hence, (3.6) can be simplified to

6Vsca,(i,j)(‘]) - _F (d N ) 8d(i,j) ox; 8d(i,j) %
dq sal%@))\ ox; 0q;  Ox; dq; ) -

(Ji(q) , Jj(q))

(3.7)

The right part in (3.7) describes the mapping from joint space to collision space, i.e. the
Jacobian matrices J;(q) and J;(g), respectively. These mappings will be used in the
damping design in Section 3.1.3.

The repulsive potentials Vi, ; j)(q) are zero at a specified distance d; j) = do. That is
due to the requirement of the self-collision avoidance being a unilateral constraint. At a
distance larger than dy, no torque will be applied. In the implementations at the end of
this section, the following choice has been made for the artificial potential definition:

Fmax

- 2
Viea (i) (diijy) = ¢ 3o
0 for d(m) > dy

3
(d(i ) — do) g <do (3.8)

A new design parameter, namely the maximum force Fj.x € RT, must be specified. It
represents the force that is reached in case of collision contact, i.e. d(; ;) = 0. Naturally,
arbitrary potential functions can be used instead of (3.8) as long as they are of type C?
w.T.t. d(; j). If the piecewise defined function (3.8) is employed, one obtains the repulsive

!Indirect influence implies the motion of the point on the surface of the link due to the motion of the
corresponding contact point partner.
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3. Control Tasks based on Artificial Potential Fields

Collision
Space

Figure 3.4.: Illustration of the projected motions of x; and x; in the direction of the
collision. Positive directions are defined from @; to ;. The new coordinates
in the collision space are denoted by z; and z;.

force
OWViea,(i,5) (d(i )
Frealdii)) = = 9d;,j) .
Fmax 2
_ d% (d(%J) - do) for d(i:j) S do (3 10)
0 fOI' d(l,]) > d()

The reason behind the requirement of C? for Vica,(ij)(d(i,7)) is that the damping force in
Section 3.1.3 will directly depend on the local potential stiffness 821/8(:37(2-,]-)(d(i,j))/ﬁd%i’j),
and that force is required to be continuous in order to guarantee a continuous control law
on torque level.

The two parameters dg and F,,x have to be set in order to uniquely define the potentials
in (3.8). The following list shows a selection of possible design criteria:

e The maximum local stiffness (8Fica(d(; j))/0d(; ;) ‘d<_ =0 Can be limited to a feasible
v,7)

value dependent on the hardware, sample time, and bandwidth of the torque control.

e A rough estimation for the worst case Fiax oOr joint torque can be made, i.e. one
contact point pair is supposed to avoid a self-collision in a critical situation.

e A rough estimation of the maximum kinetic energy in the robot links can be utilized
to design the total energy storage of the artificial potentials.

However, since multiple contact point pairs and configuration-dependent relations between
repulsive forces and joint torques are considered, such a design is not trivial in general.

3.1.3. Damping Design

The repulsion as described above will avoid collisions, but it will not dissipate the energy
which is stored in the virtual elastic springs. As a result, the links will oscillate back
and forth, alternately converting elastic energy to kinetic energy and converting it back
to elastic energy. Active damping for energy dissipation has to be introduced to prevent
such a situation.

The following damping design facilitates a systematic energy dissipation by specification
of damping ratios £ € RT for the contact point pairs. The first step consists of a coordinate
transformation of the dynamic equations to the relevant operational space [Kha87], which
is defined by the collision directions. That procedure is required for each contact point
pair. The new coordinates are given by the projections z; and z; of x; and x; in the
collision space (direction of the possible collision), see Fig. 3.4. Positive directions for
both values are defined from «; to x;. Following that, a desired, standard rigid body
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3.1. Self-Collision Avoidance

robot differential equation [MLS94] can be set up:
M.;(q) (ZJ) +Cup(a.a)a+gi;(a) = Fuy (3.11)
Zi 1
F(i:j) = _D(i,j) (Q) Zj - Fsca(d(i,j)) -1 . (312)

Coriolis and centrifugal effects are represented by C’(m)(q, q) € R?*2_ and gravity torques
are expressed by g; ;(q) € R?. The inertia matrix M; ;(q) € R**? contains the reflected
inertias at the contact points (7, j) in the direction of the collision and has the form

M 5(q) = (miéQ) mjo(q)> _ (3.13)

The configuration-dependent damping matrix D, j)(q) € R2*%2 is derived in the following.
Since the damping ratios depend on the dynamics (3.11), the inertia (3.13) has to be
determined first.

Reflected Inertia m;(q)

In the following derivation, the known joint inertia matrix M (q) is to be transformed into
m;i(q). The scalar m;(q) can be obtained analogously. The general relation between joint
torque T and joint acceleration q is

M(q)g+C(q,q4)qa+g(q) =T . (3.14)

The transformation from joint space to Cartesian space is denoted by the Jacobian ma-
trix J g, q(q) € R3*", where the Cartesian coordinates are defined by an arbitrary point

2% (g) e R3:

7

30

2:,q(4)q ; (3.15)

=J
= J:ci,q(Q)TFaci : (3.16)

The term Fy, € R3 describes an external force applied at :cic(i). In the next step, the
projection in the direction of the collision e; has to be considered. The mapping

Jozi(ei) = €] (3.17)

relates motions in the Cartesian directions of the respective contact point to motions along
e;. The combination of (3.15) and (3.17) delivers

b= T (€)= g (€) T 2g() @ (3.18)

Ji(q)

with the row vector Jacobian J;(q) € R*" relating the joint space to the collision space
as introduced in (3.7). The velocity Z; of contact point x; in the collision space can
be derived analogously with e; being oriented in the same direction as e; according to
Fig. 3.4. The total time derivative of (3.18) delivers the acceleration constraint

5 =Ji@)a+ Ji(g, a)a , (3.19)
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3. Control Tasks based on Artificial Potential Fields

and, taking account of (3.14) and (3.16),

% =Ji(q,4)q — Ji(@M(q) *(C(q,9)q +g(q)) + Ji(q)M(q) ' I (q) F., .  (3.20)

mi(q)~"

The scalar force F}, € R acts at z; and accelerates the mass m;(q) in the collision space.
From a computational point of view, the evaluation of m;(q) and m;(q) is not expensive
because the last inversion refers to scalar. Inverting the joint inertia matrix M (q) has to
be done only once per sample time, independent of the number of contact point pairs.

Damping Matrix D; ;(q)

Since damping ratios are defined for linear dynamics and (3.11) is nonlinear, that issue has
to be treated first. The linearization around the working point (denoted by superscript *)
with d>(kz',j) = f(g*) under the assumption of a quasi-static analysis, i.e. 2} = z';-‘ = 0,
delivers

M ; ;(q") (52]‘) + D ;)(q") (52-,],) + K ;(q") ((52) =0, (3.21)
The local stiffness matrix K ; ;)(g*) € R**? is

Kij(qa") = < 1> OFsea(d; ) ad;. ;)

) —1 ad(l}j) d(iyj):dz‘ij) a(zz Zj)
’ (3.22)

_ 0 Veea,(i.5) (i 5)) (1 -1

od?; . -1 1)
(4,9) dgi jy=d:

(4,9)

Gravity effects are omitted in the linearized version of the dynamics (3.21) because a
separate gravity compensation is applied in the overall control law. The local damping
behavior is specified by D; ;(q*) € R2%2, Knowledge of the inertia and stiffness parame-
ters in (3.21) facilitates various methods from linear algebra theory in order to implement
the desired damping ratios?. Here, the Double Diagonalization approach by Albu-Schiffer
et al. [ASOFHO03] is applied. The damping matrix can be formally written as

D (q") =D (M(i,j)(q*)v K (q*)af) ) (3.23)

where the damping ratio £ is implemented for both directions. The algorithm will be
computed and applied in each control cycle.

3.1.4. Control Design

If all ngey contact point pairs are considered and equally weighted, the self-collision avoid-
ance torques are

Teca = :Z G;E‘;)))T <<_F1:::?£lc(lfl];3 )> — D j(q") (5;%) <'J> : (3.24)

This superposition can generate local minima. In Chapter 4, it will be shown how a
hierarchy among the individual repulsive potentials can be realized.
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Figure 3.5.: Experiment on self-collision avoidance: repulsion between left hand and right
hand/wrist for an undamped (¢ = 0), underdamped (§ = 0.7), critically
damped (¢ = 1.0), and overdamped (£ = 1.3) system. The two contact point
pair combinations are a selection of a total number of 14 active pairs.

3.1.5. Experiments

The performance of the self-collision avoidance is evaluated on Rollin’ Justin using the
parameters provided in Table 3.1. In the experiments, the geometric collision model from
Fig. 3.2 (right) is used. The distance computation algorithm is based on the formulation
in [GJK88] and has been adapted to the system, see [TBF11] for more details. In order
to facilitate real-time applicability, the collision model is calculated once per control cycle
(1 ms) incorporating 302 pairs of links. The computing time lies between 0.3 ms and 0.4 ms
on a standard Intel Core2Duo Processor T7400 (2.16 GHz).

2 Although the damping design is done for the linear system, it is still valid for the analysis of the nonlinear
system as the dissipation term only appears in the time derivative of the Lyapunov function.

Table 3.1.: Parameterization for the experiment on self-collision avoidance

’Fmax‘ do ‘nsca‘ §=6 =8 ‘

| 25N | 0.15m | 35 [0,0.7, 1.0, 1.3 |
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3. Control Tasks based on Artificial Potential Fields

Figure 3.6.: Initial configuration (left) and snapshot during the experiment (right) on self-
collision avoidance. Except for the left arm (seven DOF), all other joints are
locked in order to facilitate repeatability of the experiment.

In each run, a different damping ratio is applied. Throughout, the robot is controlled
in gravity compensation mode. Except for the left arm (seven DOF), all other joints
are locked. Fig. 3.6 (left) shows the initial configuration. The user feeds kinetic energy
into the system, throwing the left forearm onto the right arm (right). A total number of
14 potential fields are activated during the measurements including the arms, the torso,
the mobile base, and the head. The most critical ones are shown in Fig. 3.5. They
refer to the sets “left hand - right hand” (left column diagrams) and “left hand - right
wrist” (right column diagrams). In all scenarios the user injects about the same amount of
kinetic energy®. As expected, the penetration depths of the potential fields are significantly
smaller while damping is active. Naturally, the returning velocities of the links are affected
by the choice of £ as it can be seen in the upper plots in Fig. 3.5.

3.2. Singularity Avoidance for Nonholonomic, Wheeled
Platforms

Controlling nonholonomic, mobile robots requires precise orientation of the wheels at
each instant. Otherwise, high internal forces are generated, which stress the mechanical
structure. One of the most common methods is based on the explicit use/command
of the instantaneous center of rotation (ICR) [LNLT06, CPHV08, LQXX09]. However,
singularities in the steering velocities of the wheels occur when the ICR crosses or comes
close to one of the steering axes. One way to circumvent that problem is to use special
wheels [WA99] or to apply constraints to the accessible velocity space in order to avoid
singular regions [TDNM96]. Another method to avoid these problematic configurations
is to consider them as obstacles and design repulsive potentials. This approach has been
applied by Connette et al. in [CPHV09] and has proven successful. The method proposed
here [DWASH11] is an extension of the latter kind in case of mobile platforms with variable
footprint. Moreover, the concept does not permanently use the explicit representation
of the ICR in contrast to [CPHV09]. That way, additional singularities based on the
mathematical description of the ICR itself are avoided.

3The energies which are absorbed by the most relevant potential field, i.e., “left hand - right hand”, have
a maximum difference of <12%.
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Vo,

YV,

Figure 3.7.: The wheels align to the instantaneous center of rotation, which is located
at pi.,- The rotation between body frame (superscript b) and world frame
(superscript w) is 6. The leg lengths \; (for i = 1...4) are constant.

3.2.1. Instantaneous Center of Rotation

The instantaneous center of rotation (ICR) is the unique point p;., € R? (expressed here
in platform body frame) around which the vehicle rotates at each instant. The ICR in
Cartesian body coordinates can be expressed as

Ticr v cos(7)>
icr = - — . 5 325
pe= () = i (o) 329
~—
Ticr
v=E2+ 2. (3.26)

The graphical interpretation is given in Fig. 3.7. The numerator in (3.25) characterizes
the absolute translational velocity and the denominator the absolute angular velocity of
the platform center. The quotient defines the radius of curvature ri., (distance from origin
to ICR), whereas v indicates the corresponding direction. The latter derives straightfor-
wardly from the direction of motion (which is determined by & and y) and the direction
of rotation.*
~ = arctang (sgn(é)a’c, —sgn(é)g)) . (3.27)
The angle p in Fig. 3.7 determines the direction of motion in the body frame. An offset
of £7/2 to  exists, where the sign depends on the direction of rotation of the platform.
The spinning velocities of the four wheels are expressed by vy 1 to vy 4. A consistent
motion requires each wheel to orient such that its direction of motion is perpendicular to
the connection line to the ICR, see Fig. 3.7. This assumption is limited to the case of
rigid body motions. This is not the case if a leg length ); is varying, i.e. i # 0. However,
the only difference is that the wheel gets an additional velocity component in leg motion
direction. The velocity component resulting from the ICR constraint remains unaffected.
It follows from (3.25) and (3.27) that the mapping (Zicr, Yier) — (£, ,0) is not unique.
That is, several motion states of the platform lead to the same ICR. For example, dou-
bling v and 6 simultaneously does not shift p;... As a consequence, just setting a specific

4Concerning the order of arguments, the form arctans (v,x) is used here.
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3. Control Tasks based on Artificial Potential Fields

location of the ICR is not sufficient to control the whole system uniquely. Furthermore, it
can be seen that a mathematical singularity arises when the angular velocity 6 approaches
zero, see (3.25). In terms of practical interpretation, this case implies that the radius of
curvature tends to infinity inducing a pure translational motion. Hence, these mathemat-
ical problems have to be dealt with when controlling a wheeled mobile robot solely via
the ICR [CPHVO08]. In the approach considered here, a dynamic feedback linearization
is used for kinematic control of the mobile base [GFASH09]. Hence, the explicit use of
the ICR representation (3.25) is restricted to the problematic regions around the wheel
steering axes.

Nonetheless, another type of singularity might emerge during motion. If the ICR passes
the wheel very closely, the steering rate increases rapidly to follow the desired steering
angle, which is forced by the ICR constraint. Crossing a wheel contact point would
require an infinite steering velocity. Hardware limits are reached, and a deviation from
the desired steering angle causes high internal forces which stress the mechanical structure
of the system.

3.2.2. Controllability and Repulsion

If one has a direct access to the accelerations in the z-, y- and 6-directions, e.g. via
dynamic feedback linearization control [GFASH09], the location and behavior of the ICR
is implicitly affected. Differentiating (3.25) w.r.t. time yields

o apicr;y + 8pif:ré + 8picr®

picr - 87 89 8U
) cos(y
~Y sin(7) _sgn‘(H)v cos(7) . 0( )
d 6%, SA TP R (3.28)
icos( ) _ sgn(f)v sin(7) 0 sin(7)
6] < 62 ! 0]
Jsap

as the ICR velocity in the plane, where Jga, € R?*? is a Jacobian matrix used for the
singularity avoidance of the platform (sap). This velocity can be directly controlled via ¥
and 6 as long as Jg,p has full rank, i.e. det(Jsap) # 0. It results from

2

v
det(Jsap) = 973

(3.29)
that a loss of controllability occurs in case of a pure rotational motion (8 # 0, v = 0) or
when the angular velocity 6 tends to +oo for v # 0. Both conditions imply that the ICR
is lying in the platform center. There is no need to control the ICR in that zone, since no
singular configuration of the platform is reached.

An intuitive interpretation of the controllability via 4 and 6 can be given when con-
sidering Fig. 3.7 and (3.25): A variation in 4 makes the ICR turn around the platform
center (tangentially) while 6 induces a radial motion. In summary, the two variables 4 and
6 have orthogonal effect on the ICR behavior, which provides a proper control input to
push away the ICR in any direction, if necessary. In the approach, the total translational
platform velocity is kept constant (0 = 0). Hence, the second part in (3.28) vanishes. Of
course, this is only one particular choice.
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potentials in the body frame

In the area where the repulsion is required, i.e. around the steering axes, a potential
analogous to (3.8) can be applied. The repulsive force Fyap(dsap) is a function of the dis-
tance between the location of the ICR and the nearest wheel p;.; (in body coordinates):

dsap = [|Picr = Paneall - (3.30)

Fig. 3.8 illustrates the placement of the potential fields in the body frame for the case of
fixed leg lengths. In case of leg motions, it is useful to restrict the potential field extension
depending on the position of the wheel in order to avoid overlaps. Fig. 3.9 illustrates such
a relation between leg length and field extension.

3.2.3. Effect on the Instantaneous Center of Rotation

The force Fyap(dsap) cannot be applied to the ICR directly, because the ICR does not
possess an inertia. Thus the conversion via m/(Ns) is introduced. It has been shown in
(3.28) that the platform accelerations have a direct effect on the ICR velocity. Thereby,
discontinuities in p;., are possible. This is in fact beneficial because the ICR does not have
to be decelerated before repelling it. The repulsive effect on the ICR, can be derived as

bi Pwheel m
plCI’ ,sap lchapwee Fsap(dsap) : @ ) (331)
n

where Pj., ¢op is the required ICR velocity and n expresses the normalized direction from
wheel contact point to ICR. Additional damping in (3.31) is not necessary because no
kinetic energy is stored in the motion of the ICR. Combining (3.28) and (3.31) and setting
Picr = Picrsap 1€ads to the required values

Vsa m
(ésa;)> = Jsap’?Fsap(dsap) "Ns (3.32)

Notice that the second summand in (3.28) is omitted due to the constraint v = 0. The
acceleration 0g,, can be applied by the motion controller, whereas ¥sap has to be trans-
formed into the corresponding translational accelerations Zs.p and ¥sap. The mathematical
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derivation of the transformation is straightforward and based on simple geometrical con-
siderations. Based on (3.27), the ICR velocity around the platform center is
== 3.33
V=G (3.33)
Notice that sgn(f) from (3.27) is omitted here because § # 0 holds in case of active
repulsion. Rearranging (3.33) with (3.26) delivers the instantaneous linear relation
: 2
. .o U7,
= gm + —5 (3.34)
z x
between §j and & for satisfying an arbitrary velocity 4. To keep the translational velocity v
constant, the time derivative of the velocity vector and the vector itself must be orthogonal,
solely allowing a vector rotation. The condition is met by

j=—"@. 3.35
i (3.35)

Applying the required value 4sap, the solution of the linear system of equations (3.34) and

(3.35) is
()-(3).

A kinematic controller such as the dynamic feedback linearization [GFASHO09] is able to
command the accelerations Zsap, ¥sap, and Ogap.

3.2.4. Effect on the Wheel

In vehicles with variable footprint, it is also possible to repel the wheel from the ICR.
In contrast to the control of the ICR (Section 3.2.3), a leg motion does not result in a
deviation from the nominal trajectory in the plane. To apply a repulsive force to the
wheel, an admittance-based mass-spring-damper equation

mw)\i,sap + dwxi,sap + kw ()\i,sap - )\i,O) = Fw (337)

can be used, where my, dy, and ky describe the virtual mass, damper, and spring of
wheel i. The parameter \; ¢ describes the user-defined equilibrium position for the wheel
location along the leg direction, and Fy denotes the control input resulting from the
repulsive force to be applied. The reason for imposing the feedback gains dy, and ky, is the
limitation of the leg length. For high performance around the equilibrium configuration,
a nonlinear, increasing stiffness kyw = kw (Aisap) can be used, e. g.

ko ()\i,sap) = ()\z’,sap - )\i,0)2 (338)
with ¢; € RT. The repulsive force Fiap(dsap) from Section 3.2.3 has to be projected via
Iy = _nTlFsap(dsap) s (3.39)

wherein the first part describes the projection in the normalized fixed leg direction I of
the nearest wheel p,..;- By inserting (3.38) and (3.39) into (3.37), an expression for the
required leg acceleration can be developed:

TlFS d dw \ c
1 Waplluap) _ s O (= Ao (3.40)

>\i,sap = -
My w w
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Figure 3.10.: Control loop to eliminate deviations induced by the platform singularity
avoidance (Tyef, Tref, Tref: NOmMinal trajectory, #sap: singularity avoidance ac-
celeration, e: position error, é: velocity error).

3.2.5. Control Design

So far, seven singularity avoidance accelerations have been calculated: Zgap, ¥saps ésap,
and S\i,sap for + = 1...4. If directly applied, a deviation from the nominal trajectory
of the platform results. An additional control loop can be employed to lead back to
the nominal trajectory as soon as the ICR has left the potential field. Fig. 3.10 de-
picts the approach. The feedback gains k1 = ki(dsap) and kg = ko(dsap) are active
once the potential field is left. Their values are dependent on the desired closed-loop
poles of the second-order system. The platform singularity avoidance acceleration is

Tsap = [xsap Ysap esap )\l,sap A2,sap /\3,sap )\4,sap] .

3.2.6. Simulations and Experiments

The control algorithm has been validated for the mobile platform kinematics of Rollin’
Justin in simulation and has been implemented on the real system. The trajectory (in
x, y and 0) consists of quintic Bézier splines, the platform achieves a rotational speed of
2.1rad/s, which requires the maximum spinning rates of the wheels (13.9rad/s). Initially,
the leg lengths are kept constant.

In Fig. 3.11 (top), the ICR location is plotted within the time range (fo,t1). The
potential fields (shaded circles) are crossed in case of deactivated control (blue/solid) and
avoided while the repulsion is active (red/dashed or green/dotted). The corresponding
steering velocities are provided in Fig. 3.11 (bottom). The steering rates stay reasonably
small while ICR control is active, but they display high peaks in the non-controlled case.
Critical situations occur at t = 9s, t = 15s and ¢t = 18s. At this point it shall be
mentioned that the deviation induced by the ICR control may lead to a different behavior
after leaving a potential field. At ¢ = 9s the ICR is repelled from wheel 3 (lower left corner
in Fig. 3.11, top). Before coming back onto the nominal trajectory, the ICR approaches
wheel 1 (upper right corner), while the path of the ICR does not cross the potential field
if the controller is deactivated. Therefore, the steering rate of wheel 1 increases slightly at
t = 10.5s. Fig. 3.12 shows the commanded accelerations. The bottom diagram indicates
whether ICR repulsion is active or not (measurement case). The position errors stay
within a range of £7cm (translation) and £15deg (rotation) during the whole motion.
They can be reduced by using weaker potential fields. A trade-off between low steering
rate and high tracking performance has to be found.
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Figure 3.11.: ICR location in body frame and corresponding steering velocities of the
wheels. The artificial potential fields of three wheels are penetrated.
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3.3. Posture Control for Kinematically Coupled Torso Structures

Activating the additional leg DOF reduces the required accelerations in translational
and rotational direction because repelling a wheel from the ICR alleviates the need for the
ICR to be pushed away. To support that idea, a simulated leg motion maneuver is shown
in Fig. 3.13 (top). Starting position for the wheel contact point is @ In case of pure ICR
repulsion, the wheel stays there. The deflected ICR path is depicted by the brown/solid
line. On the contrary, the wheel moves to @ if leg motions are enabled. The distance

f amounts to about 5.5cm. Evidently, a smaller deflection from the original ICR
path is generated (purple/dot-dashed). That directly affects the necessary accelerations in
x-, y-, and O-direction, which are required to push away the ICR, see Fig. 3.13 (bottom).
At first, the accelerations in both cases are identical since the wheel stands still within
the body frame as the ICR enters the potential field at t2. The ICR slows down and gets
stuck before it starts to pass the wheel clockwise. Meanwhile, the wheel starts to move
towards in case of activated leg motions. Eventually, that reduces the effort to push
away the ICR and results in the less deformed path. The leg deviation plot (bottom /right)
shows the simulated leg length deviation of wheel 2 from the equilibrium position Ag .
The reduction of the accelerations leads to smaller maximum deviations from the reference
motion trajectory (here: 32% less translational error, 24% less rotational error).

3.3. Posture Control for Kinematically Coupled Torso Structures

In lifting tasks, the human spine is exposed to high strain, especially when manipulating
far from the torso. In order to avoid high torso joint torques and energy consumption, the
torso of Rollin’ Justin is realized via coupled tendons [OEFT06, Wim12]. This design has
two major advantages: First, load torques, which appear at the chest, can be redirected to
the robot base without any control action. Second, the chest is always kept in an upright
position. However, the fixed tendon lengths lead to kinematic couplings and constraints
of the torso workspace. That includes kinematic limitations (Fig. 3.14 displays regions
which can and cannot be kinematically reached) and dynamic limitations (regions which
can and cannot be dynamically reached due to joint torque limits). Knowledge about these
restrictions can be used in motion planning and control. In the following, the constraints
are derived (Section 3.3.1, Section 3.3.3) and a reactive control algorithm is implemented
to repel from the boundaries of the workspace (Section 3.3.4, Section 3.3.5). The approach
is based on [DKW™14, Kim13].

3.3.1. Model of the Torso of Rollin’ Justin

The torso of Rollin’ Justin contains one passive and three actuated joints, cf. Section 2.3.
Tendons are used to kinematically couple the torso joints two, three, and four. Therefore,
only these joints gt 2, ¢t 3, and ¢ 4 are considered in the following (t for “torso”).® Fig. 3.15a
depicts the tendon routing. Motors are placed at gr2 and ¢r3. The upper joint g4
is passive and ensures that the chest is always kept in an upright configuration. Of
course, elasticities in the tendons exist, so that the kinematic constraint of an upright torso
is an assumption that only holds for infinite tendon stiffnesses. However, experimental
evaluations revealed that the joint angle deflections are very small [Raul3]. More detailed
information on the mechanics of the torso can be found in [OEF*06, Wim12].

5The vertical axis with joint value g;,1 can be treated separately because it is not kinematically coupled.

95



3. Control Tasks based on Artificial Potential Fields
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Figure 3.14.: The kinematic workspace of the torso center point (shaded area) is a result
of the restricted motion of the passive joint due to the tendon coupling in
the torso.

3.3.2. Kinematic Constraints

Assuming that the tendons are inelastic, the kinematic joint constraint
Gt,2 + qt,3 + gr,4 = const. (3.41)

holds. The constant value is determined by the tendon lengths and the radii of the pulleys.
In the following, this constant is zero, i.e. the assumption of an upright chest is made.5
According to Fig. 3.15a, the torso center point lies at

p(q) = (pt,z(Q)> _ (lt,2 sin(ge,2) + le,3 sin(qe2 + %,3)) (3.42)

Ds,2(q) ly,2 cos(gs,2) + le,3 cos(ge,2 + qt,3)

in the X-Z-plane, and the Jacobian matrix

Ji(q) = op(q) <lt,2 cos(qr,2) + lezcos(aez + qe,3) Loz cos(qr2 + i) ) (3.43)
(g2, q,3)7 —ly2sin(qt2) — le3sin(ge2 + qr3) —lezsin(ge2 + g 3) '

relates the joint velocities to the Cartesian velocities. In Table 3.2, the mechanical ranges
of the joints are listed. Along with (3.42), one yields the kinematic workspace of the torso
center point (3.15b), cf. [OEFT06]. More details on the mathematical derivations and the
analytical expressions of the workspace boundaries are provided in Appendix A.

3.3.3. Dynamic Constraints

Depending on the configuration of the torso, the load

= () rom (721).

5Tn the zero configuration, all torso links are aligned with the vertical axis.
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from [Kim13].

Figure 3.15.: Tendon routing and workspace of the torso of Rollin’ Justin. The first torso
joint (vertical axis) is not considered here.

Table 3.2.: Joint ranges for the actuated torso joints of Rollin’ Justin [OEF*06]

’ Joint ‘ Minimum value ‘ Maximum value ‘
Gt,1 -140° 200°
Gt,2 -90° 90°
.3 max(0°, —¢q¢,2) | min(135°,135° — gy 2)

which acts in the X-Z-plane at the torso center point, requires specific motor torques to
counteract:

lg3cos (g2 + g3 — ) +lgacos (g2 — @)
_ T _ t,3 4t,2 T Gt,3 t,2 qt,2
Tt = Jt(q) Ft Ft,load ( lt,3 205 (Qt,2 + 3 — Od) . (345)

The magnitude of the force is given by Fj jpaq and its direction is defined by the angle
a about the Y-axis. Using the range of the feasible motor torques (“min” for minimum,
“max” for maximum)

Tt,2,min <Tt,2 < T¢,2,max s (3'46)

Tt,3,min STt,S < Tt,3,max » (3'47)

additional workspace boundaries can be derived to comply with the actuator limits. These
restrictions are called dynamic constraints because the load force F'y can be directly linked
to the dynamic equations of the torso, i. e. the constraints incorporate gravitational effects
(weight of the upper body, tools), inertial effects, external forces (contact between upper
body and the environment), and Coriolis/centrifugal effects.

The boundary concerning 7t 2 can be obtained from the first line of (3.45) by inserting
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the forward kinematics (3.42). The result

Tt,2
Ft,load

= —zsin () — z cos («) (3.48)

represents straight lines in the X-Z-plane. Inserting the boundaries 7¢ 2 min and 7¢ 2 max
from (3.46) delivers the new, dynamic workspace constraints. Their geometric interpreta-
tion is very intuitive: The ratios 7% 2 min/Ft load and Tt,2 max/Ft load determine the distance
between the boundaries while « describes the decline of the belt for feasible torques in the
second torso joint, see Fig. 3.16.

The boundary concerning 7 3 can be calculated by solving the second line of (3.45) for
¢s,2 + q1,3, which delivers

¢t,2 + Gt,3 = a = arccos <_Tt3> : (3.49)
Fi 1oaalt,3

Once again, one can apply the limits on the motor torque, i.e. 73 min and 7 3 max from
(3.47). If 73, o, and Fj jaq are constant, geo + ¢¢,3 is obviously constant too. Moreover,
(3.49) states that there only exists a configuration if —1 < —7¢ 3/(F; j0aalt,3) < 1. If this
inequality is not fulfilled, no constraints on the workspace are imposed by 7 3. That effect
can be interpreted as the minimum/maximum torque being large enough to counteract
the given load force in any part of the workspace [Kim13]. Analogous to (3.48), one
can express the workspace boundaries in the X-Z-representation (Fig. 3.15) by using the
forward kinematics (3.42):

(z —lgsin (g2 + ¢i,3))° + (2 — Lz cos (g2 + qr3))’ = 12y (3.50)

Hence, the general constraint is geometrically described by a circle with radius It 2 and its
center at

x =l 3sin (a + arccos <_Tt3>> , (3.51)

Ft,loadlt,S

z = li 3 cos (a + arccos <_Tt3>> . (3.52)
F} 10aalt,3

Due to the cases in (3.49) and the torque limits 74 3 min and 7y 3 max, four boundaries
of type (3.51) and (3.52) exist. Details (center locations, workspace specifications) are
provided in Appendix A. The four circle centers span a rectangle. According to (3.51)
and (3.52), their locations depend on the load as well as the torque limits. In case of
Tt,2,min = Tt,3,min = —7Tt,2,max = —7Tt,3,max, the centers even lie on the straight ¢ 2 min and
Tt,2,max boundaries. That can easily be proven by inserting (3.51) and (3.52) into (3.48).
Fig. 3.16 illustrates the overall workspace resulting from intersecting the kinematic and the
dynamic workspace of the torso. The four scenarios depict the workspace for different loads
with different effective directions for the case of £230 Nm minimum/maximum torque
for each actuated joint. The torque constraints on torso joint two are parallel to the
direction of F', cf. (3.48). The dynamic constraints for joint three are actually defined
by semicircles instead of full circles. This is due to the fact that g;3 > 0 always holds
according to Table 3.2. Only one half of each circle ensures a constant angle sum g 2 + ¢t 3
that complies with (3.41). Invalid workspace areas exist between two circular dynamic
constraint boundaries resulting from the same minimum torque (or maximum torque,
respectively) of the joint. There, the joint torque would exceed the maximum torque or
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3.3. Posture Control for Kinematically Coupled Torso Structures

(c) Fi loaa = 1200N, o = 90° (d) Fi jloaa = 550N, a = 90°
% Feasible torso ————-- Tto2min - — — — Tt3.min
N Workspace T Tt2max T T,3,max

Figure 3.16.: Kinematic/dynamic constraints on the torso workspace of Rollin’ Justin
[Klml?)] (Tt,Q,min = Tt,3,min = —230 Nm, Tt,2,max — Tt,3,max — 230 Nm)

go below the minimum torque. If F} jpaq gets smaller, the semicircles approach each other
(Fig. 3.16c — Fig. 3.16a), hence the workspace grows. At the point of overlapping, the
constraints vanish, see Fig. 3.16d. The load specification in Fig. 3.16d with F} j0aq = 550 N
and «a = 90° represents a typical (static) lifting task of an object of about 10 kg.

3.3.4. Control Design

A repulsive potential Viys(q) related to the torso workspace (tws) can be applied to repel
the torso from its kinematic and dynamic boundaries:

oV, T .
e = (25D D@+ ata) (3.53)
Kinetic energy dissipation is implemented by the positive definite damping matrix Diys(q)
analogous to Section 3.1.3, where the Hessian matrix 0?V;ys(q)/dq? of the potential and
the reflected mass in constraint direction are utilized. More details on the control design
can be found in [DKW*14].
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3. Control Tasks based on Artificial Potential Fields
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Figure 3.17.: The torso is manually moved in gravity compensation mode in the X-Z-plane
without consideration of any constraints by the user himself. The instants
0 to (6 in the path plot (left) correspond to the ones in the measurements
(right).

3.3.5. Experiments

This experiment on Rollin’ Justin shows how the controller forces the torso to stay in the
admissible workspace. The user interacts with the robot in gravity compensation mode
and moves the torso in the X-Z-plane. The path of the torso center point is illustrated
in Fig. 3.17 (left). The damping ratio is set to £ = 0.3, the load force is specified by
F}10aa = 470N and o = 90°. The minimum and maximum torques are set to 2140 Nm, the
maximum stiffness in the potential is 1000 N /m, and the starting distance is dg = 0.1 m. An
additional singularity avoidance is applied to avoid the outstretched torso configuration.
The repulsive and damping forces along the path, the repulsion state of the controller,
and the relevant joint torques are depicted in Fig. 3.17 (right). Although the torso center
point stays in the admissible workspace, the torque in joint three violates the dynamic
constraints between 40s and 50s by about 6 Nm. This is due to the fact that inertial and
Coriolis/centrifugal effects are not taken into account in the control law. Sufficiently large
safety margins have been used, i.e. 2140 Nm as maximum torque instead of the actual
limit of 4230 Nm, in order to circumvent the need to compute a dynamic model online
while providing a safe and simple mechanism.

3.4. Classical Objectives in Reactive Control

A wide variety of different task descriptions based on potential fields has been applied to
robotic systems, and the number is steadily increasing. Three state-of-the-art methods are
recapitulated briefly in the following, since they are employed in the whole-body control
framework later in Chapter 6.
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3.4. Classical Objectives in Reactive Control

3.4.1. Cartesian Impedance

A controller in the Cartesian coordinates of the end-effector is a powerful tool to perform
various tasks. Since the trajectories and the contact behavior can be defined in the Carte-
sian space of the tool itself, this method is ideally suited for end-effector tasks within a
whole-body control framework. While the idea of impedance control has already been
developed decades ago [Hog85], the availability of modern force-torque-controlled robots
has given a new impetus to research in Cartesian impedance [OASKHO08, ASOHO07]. The
control torque in the general case is given by

. (8VCart(m(Q)y mdes(t))
TCart — — aq

T
)—D%Mmm (3.54)

where the artificial potential Viare(€(q), Tges(t)) is defined in the Cartesian operational
space coordinates x(q) of the end-effector, realizing the trajectory xqes(t). Additional
damping can be implemented via the positive definite matrix Dcart(q).

3.4.2. Manipulator Singularity Avoidance

The kinematic manipulability measure [Yos90]

mian(@) = \/det(T (@) T (@)T) = 0102 - o (3.55)

w.r.t. the Jacobian matrix J(q) € R™*" for m < n describes the kinematic ability to
move the end-effector in its m directions (m = 6 for full Cartesian control). If one or
more singular values of the Jacobian matrix, denoted by o; to o,,, approach zero, the
manipulability goes to zero as well. The feasible motion of the end-effector gets restricted
in the singularity. Based on (3.55), one can design a potential to keep the measure at a
reasonably high value for manipulator singularity avoidance (msa) [Ott08]:

kmsa in - in 2 fi in < in
mam—{ (m13n(@) = maano)® for mian(@) < mino(@) g oo

o for miyin(q) > Min0(q)
The artificial potential is non-zero when my,(q) is smaller than a specified threshold

Miin0(g) € RT. One can parameterize the controller through the gain kmsa € RT. The
control torque is

T
Tmsa = — <(WH§;(q)> - Dmsa(q)q ) (3'57)

where additional damping can be implemented via the positive definite matrix Dy (q).
The controller structure of (3.57) with (3.56) is taken from [Ott08].

3.4.3. Avoidance of Mechanical End Stops

Repulsive potentials to avoid the mechanical end stops of joints are applied to robotic
systems frequently [MCR96, SK05]. Consider a mechanically feasible joint range given by
¢imin < ¢i < ¢imax for joint 7. To avoid reaching the minimum or maximum joint values
¢i,min and ¢; max, @ repulsive potential can be set up:

ki,mes(Qi - (]i,lower)2 for qi < qi,lower
Vji,mes(%) =40 for Qi lower < ¢i < Qi upper (358)

ki,mes(% - Qi,upper)2 for ¢; > qi,upper
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3. Control Tasks based on Artificial Potential Fields

The stiffness is determined by ki mes € RT and the potential starts at ¢; jower and g; upper,
respectively. The control action is calculated following

n - ) T
Ties = — (a (Zil(;i;meS(QZ))> _ Dmes(Q)q ’ (359)

where damping can be applied by means of the positive definite matrix Dyes(q). Usually,
one would specify a diagonal shape for Dp,es(q) since the joints are not coupled, except
for mechanical designs like the kinematically coupled torso of Rollin’ Justin as described
in Section 3.3.

3.5. Summary

In Chapter 3, several reactive methods have been developed based on artificial potential
fields. The definition of tasks through attractive and repulsive potentials is advantageous
thanks to the simple and intuitive controller parameterization. The controller gains have
a direct relation to the physical world, e. g. the potential stiffness which can be interpreted
as the stiffness of a virtual spring.

The goal of the task in Section 3.1 was to avoid self-collisions in a reactive way. By
means of a geometric collision model, the distances between potentially colliding parts of
the body were computed, and these links were repelled from each other. Additionally,
a configuration-dependent damping has been introduced to assign damping ratios in the
collision directions to dissipate kinetic energy and prevent oscillations. The second reactive
task in Section 3.2 extended the kinematic control of wheeled platforms by a singularity
avoidance. When the instantaneous center of rotation approaches the steering axis of a
wheel, then the required steering velocity for consistent locomotion goes to infinity. The
proposed algorithm repels the instantaneous center of rotation from the axis to avoid
this critical situation. In Section 3.3, repulsive forces were generated to fully exploit the
kinematic and dynamic workspaces of the tendon-coupled torso of Rollin’ Justin. All
reactive controllers in this chapter have been validated in experiments.

The developed methods extend the set of classical tasks in robotics. A characteristic of
the controllers in Chapter 3 is that they do not access all actuated joints of the robot at the
same time. Therefore, they are particularly suitable to be combined in a multi-objective
whole-body control framework, where the tasks are realized simultaneously. The outcomes
of Chapter 3 will be directly applied within the hierarchical redundancy resolution treated
in the next chapter.
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CHAPTER 4

Redundancy Resolution by Null Space Projections

Robots with many DOF and several simultaneous objectives necessarily require a redun-
dancy resolution. In most state-of-the-art approaches, one solves optimization problems
for a hierarchical arrangement of the involved tasks. The highest-priority task is executed
employing all capabilities of the robotic system. The second-priority task is then per-
formed in the null space of this highest-priority task. In other words, the task on the
second level is executed as well as possible without disturbing the first level. The task on
level three is then executed without disturbing the two higher-priority tasks, and so forth.

The literature distinguishes two basic approaches: An optimization problem is for-
mulated and solved via dedicated solvers such as in [DSBDS09, KLW11, EMW14]. An
advantage of these concepts is that both equality and inequality constraints can be in-
tegrated in the task hierarchy. However, the numerical costs of the methods strongly
depend on the used solver and the optimization problem formulation. The second kind of
approach is more frequently used and solves the optimization problem by means of pseu-
doinverses [DMB93] and projection matrices. These so-called null space projections have
been mainly developed in the 1980s [Lie77, Kha87, NHY®87, SS91]. Today they are stan-
dard tools in kinematic control [BB04, NCM™08, AIC09, SGJG10, LMP11] and dynamic
control [ASOFH03, KSPW04, SK05, NCM*08, MKK09, SVKS13]. In torque-controlled
robots, a control input is processed by the null space projector related to all higher-priority
tasks and the resulting torque then executes the desired task as well as possible without
interfering with the higher-level objectives. However, the structure of these null space
projectors only allows direct implementation of equality constraints. Nevertheless, even
inequality constraints can be integrated by modifying the projectors as will be shown later.

In the Sections 4.1, 4.2, and 4.3, different null space projections are investigated and
compared in simulations and experiments [DOAS15]. The property of strictness is treated
in Section 4.1 by analyzing the successive and the augmented null space projection. In
Section 4.2, three different types of projection consistencies are compared, namely the
statically consistent one, the dynamically consistent one, and the new concept of stiffness-
consistent projections. The direct comparison in simulations and experiments is performed
in Section 4.3. In addition to the extensive survey of different techniques, these sections
contribute to a deeper understanding of dynamic consistency in general, i.e. when the
redundancy resolution dynamically decouples the priority levels. Moreover, it is shown
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4. Redundancy Resolution by Null Space Projections

that on hardware, the theoretically inferior, statically consistent null space projections
feature an equal performance as the dynamically consistent resolutions. Since statically
consistent null space projections do not require a (numerically expensive) estimate of the
joint inertia matrix, these findings are of high relevance for robotics. In Section 4.4, the
null space projectors are modified and enhanced to deal with inequality (or unilateral)
constraints, singularities, and dynamic task hierarchies. Experiments on Rollin’ Justin
confirm the benefits of the approach.

4.1. Strictness of the Hierarchy

Consider a manipulator with n DOF and r tasks, which are defined by
xi=fi(q eR™ Vi, 1<i<r. (4.1)

The dimension of the i-th task is m; < n. The differential mappings from joint velocities
to task velocities are determined by the Jacobian matrices J;(g) € R™*" via

_afz‘(Q)
= ~9q

& =Ji(q)q, Jilq) (4.2)

In the following, J;(q) is assumed be non-singular, hence of full row rank!. The main
task (¢ = 1) has dimension m; < n such that a kinematic redundancy of n — m; DOF
remains to execute subtasks in its null space. The hierarchy is defined such that ¢ = 1 is
top priority and ¢, < %, implies that i, has higher priority than ip.

4.1.1. Successive Projections

A task torque 79 € R™ on the second priority level can be projected onto the null space
of the main task via
5 = N3"“(q)T2 , (4.3)

where 75 € R" is the projected torque that does not interfere with the main task. The
successive null space projector N5"(q) is obtained by evaluating

N3*“(q) =I - Ji(9)" (J1()")", (4.4)

wherein {}# represents the generalized inverse? and I is the identity matrix. Analogous
to (4.3), the subtasks in the hierarchy (2 < ¢ < r) can be implemented by

P = Ni™(q)r; (4.5)
with the null space projectors obtained via the successive formula
N3 (q) = N3 () (T = Jia(@)" (Jia (@F)7) - (4.6)

One obtains the control torque by summing the main task torque and all projected torques

T
T:Tl—i-z'r? . (4.7)
=2

'Dealing with singular matrices or changing rank requires additional treatment, both in kinematic and
torque control [DW95, Chi97, DASH12, DWASH12a]. This aspect will be addressed in Section 4.4.
2Since {}# is not unique, the particular choice for the inverse has an influence on the projected torques.

That aspect will be addressed in Section 4.2.

64



4.2. Consistency of the Projections

This technique has been analyzed for inverse kinematics in [Ant09]. Note that N3"(q)
is strictly speaking not a mathematical projector because it is not idempotent in general.
However, in robotics the term null space projector is commonly used in this context
though, since (4.6) is based on the fundamental idea of null space projections, and the
single matrix (4.4) for the second level is idempotent.

4.1.2. Augmented Projections

The augmented approach [SS91] is identical to the successive projection on the first null
space level (4.3), (4.4). From the third level on, the projected torque is determined via

T =N (@)Ti (4.8)
where the null space projector IN;"#(q) is given by
N(q) =1 - I (@) (%5 (@)7)" . (4.9)
The augmented Jacobian matrix J:"(g) contains all higher-priority Jacobian matrices:
J1(q)
J2(q)
I @) =] . : (4.10)
Ji—1(q)

The control torque is obtained via (4.7) again by using (4.8) instead of (4.5). The direct
implementation of (4.9) is computationally expensive due to the large number of rows in
J:"%(q) and the resulting complexity in the pseudoinversion. Usually, recursive algorithms
[SS91, BB98, SK05] are applied to reduce the numerical effort:

N3 =T, (4.11)
Ji1(g) = Jia(@ N ()", (4.12)
N1"(g) = N"(a) (I - Ji1()" (Fior(@)®)") (4.13)

for 2 < ¢ <r. The term JA,(q) € R™i*™ describes the Jacobian matrix of level ¢ projected
onto the null space of all higher-priority tasks. In fact, the additional intermediate step
(4.12) is the only difference between the successive and the augmented approach.

4.2. Consistency of the Projections

While Section 4.1 investigated the overall structure of the hierarchy, the projector con-
sistency determines how the null space itself is defined in terms of properties and shape.
Prior to that analysis, the pseudoinverse of a matrix is briefly introduced [DMB93]. In
Section 4.1.1 the generalized inverse {}# was applied but it was not specified. A gener-
alized inverse A% of a full-row-rank matrix A € R™ ™ with m < n has to satisfy the
criterion

AAT =T (4.14)

of right inverses. One can find an infinite number of generalized inverses that meet (4.14).
As of now, the notation {}"* is used instead of {}# to disambiguate the inverse by the
weighting matrix W € R™*". One can formulate

AV —wAT (AW AT (4.15)
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4. Redundancy Resolution by Null Space Projections

which fulfills (4.14) as long as the inversion on the right is feasible.> The use of such
generalized inverses is very common in robotics, especially in inverse kinematics. In the
following, the effects of the weighting matrix are clarified and classified into three different
types of torque control projection consistencies. The analysis is performed on a two-level
system for the sake of simplicity, yet all statements can be transferred to more complex
hierarchies without loss of generality. The distinction between successive and augmented
projection does not have to be made here since Na(q) = N3'°(q) = N5"(q). The
dynamic equations (2.6) of a robot with n DOF are used in the following.

4.2.1. Static Consistency

Definition 4.1. A null space projector N j(q) € R™*™ is said to be “statically consistent”
if a subtask does mot generate interfering forces in the operational spaces of all higher-
priority tasks in any static equilibrium. The condition

Nj(q)Ji(g@)" =0 (4.16)
for i < j must hold in any steady state with g = q = 0.

To explain Definition 4.1, the following example can be considered. The control action
T=g(q) + J1(@) F1+ Na(q)72 (4.17)

is applied, which includes a gravity compensation, the execution of a main task via the
operational space force F'1 € R™, and a null space action 79 processed by the null space
projector Na(q). A static equilibrium is considered, i. e. the control action (4.17) does not
generate any motions. Inserting (4.17) into the quasi-static version of (2.6) withg=¢ =0
and reorganizing the terms yields

— Text = JI(Q)TFI + N2(Q)72 ) (418)
where 75 can be decomposed into
7o = J1(Q)" Fa.5, + N(J1(2)) Fonay) - (4.19)

Herein, the condition J;(q)N(J1(q))T = 0 is fulfilled, where N (J1(q)) € Rr—m)xn
describes the directions orthogonal to J1(q). Thus F5 j, € R™! is the contribution of the
null space action 73 in the main task space, and Fy pr(y,) € R"™™ refers to the remaining
space. Inserting (4.19) into (4.18) yields

— Text = J1(@) " F1 + N2(q)J1(q)" Fa 5, + No(@)N (J1(a)) Fanr,) - (4.20)
N———
=0
Due to Na(q)J1(q)" = (I - J1(@)" (J1(@)")T) J1(q)" = 0, the force F5 5, has no
influence in (4.20) [ASOFHO3] as described in Definition 4.1. This result can also be
interpreted as the confirmation of the considered equilibrium. Although 75 # 0 in general,

the contribution of the null space action in main task direction is filtered.
One choice for the weighting matrix is

W=I, (4.21)

3The term AW ~1 AT has to be of rank m, and W must be invertible.
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4.2. Consistency of the Projections

so that for A = J1(q) one can write (4.15) as

-1

Ji(@)' = Ji(@)" = Ji(a)" (J1(a)T1(a)") (4.22)

In the notation of this so-called Moore-Penrose pseudoinverse, the identity in the super-
script is often omitted. Compared to other weighting matrices, this choice is computa-
tionally very cheap. Moreover, the null space can be interpreted from a geometric point
of view [DWASH12b], and damped least-squares techniques can be applied easily [DW95].

4.2.2. Dynamic Consistency

The property of static consistency is shared by all null space projectors, independent of
the weighting matrix. But apart from static consistency, specific weighting matrices have
additional advantages such as the so-called dynamic consistency treated in this section.
The main difference is that static consistency only guarantees that the hierarchy levels do
not interfere in a steady state, while dynamic consistency guarantees that they also do
not interfere during the transient into this steady state.

Definition 4.2. A null space projector N j(q) € R™*" is said to be “dynamically consis-
tent” [Kha95] if a subtask does not generate accelerations in the operational spaces of all
higher-priority tasks. The condition

Ji(q)M(q)"'Nj(q) =0 (4.23)
for i < j must always hold.

The operational space dynamics based on (2.6) can be written as

i1 =—J1(q)M(q) " (C(a,q)a + 9(q) — Text) + J1(q,@)q + J1(g)M(q)'7  (4.24)

after transformation in the main task directions «;.* For the sake of simplicity the term

P1(2:4, Text) = ~J1(@)M (@) (C(q. 4)q + 9(@) — Text) + J1(4,4)4 (4.25)
is introduced. The implementation of the control input
7 =J1(q)"F1 + Na(q)T2 (4.26)
with the main task force F'; € R™ modifies (4.24) to

&1 = p1(q,q, Text) + A1(q) ' F1+ J1(q)M(q) "'N2(q)T2 , (4.27)

where the reflected main task inertia Aj(q) € R™*™ is defined as

Ai(g) = (Ji(@M(q) " Ti(@") " . (4.28)

The direct effect of the subtask torque 7o € R™ on the main task acceleration &q is
determined by the coefficient of 79, i.e. (4.23) must be fulfilled for ¢ = 1 and j = 2 to
eliminate any effects of the lower-priority task on the main task acceleration. An intuitive
interpretation of (4.23) is that the projector decouples the inertias on all priority levels.
This beneficial decoupling property will be used in the stability analysis of Chapter 5.

“Notice that &; = Ji(q, q)q + Ji(q)g due to the dependencies in the Jacobian matrices (4.2).
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4. Redundancy Resolution by Null Space Projections

Configuration-Dependent Weighting Matrix W (q) using the Inertia Matrix M (q)
Khatib [Kha87] has shown that the weighting matrix

W = M(q) (4.29)

fulfills (4.23) and the corresponding pseudoinverse minimizes the instantaneous kinetic
energy of the manipulator. Another weighting matrix proposed by Park [Par99] is

W =J1(q)"J1(q) + M(q)Y1(q)"Y1(q)M(q) , (4.30)

where Y(q) € R(®»™™1)X" js a matrix which spans the null space of Ji(q). In fact,
an infinite number of configuration-dependent weighting matrices W (q) exist that feature
dynamic consistency. For a general formulation, the Jacobian matrix J1(q) is decomposed
via singular value decomposition [MK89] such that

Ji(q) =U1(q)S1(aq)Vi(q)" | (4.31)

where U1(g) € R™*™ and Vi(q) € R™*" are orthonormal matrices, and Si(g) € R *"
is a rectangular diagonal matrix containing the singular values o1 to o,,,. The null space
can be geometrically interpreted when considering

Vilg) = (X1(@)". Y1(9)") . (4.32)

The m; rows in X 1(g) € R"™*™ gpan the range space of J1(q), while the n — m; rows
in Yi(q) € R®=™UX" span its null space. The orthogonality X1(q)Y 1(g)” = 0 holds.
Inspired by (4.30) one can formulate a general rule for the weighting matrix W (q) that
always fulfills the requirements of dynamic consistency:

W =X1(q)" X1(¢)Bx + ByY1(q) Y1(a)M(q) . (4.33)

The proof is provided in the Appendix B.2. Note that W(q) has to be nonsingular to
apply the pseudoinversion (4.15) where W (q)~! is used. The matrices Bx, By € R™*"
must fulfill

rank(Bx) > my , (4.34)
rank(By) >n —my . (4.35)

These rank conditions are necessary but not sufficient to guarantee invertibility of W (q).
Nevertheless, in Appendix B.2 it is shown that the condition on the rank of B x can even
be dropped when using another formulation than the one based on the pseudoinversion
(4.15). With the knowledge of the general formulation, the weighting matrices of Khatib
(4.29) and Park (4.30) can be regarded as special cases of (4.33) in fact.

“Khatib” (4.29) : Bx = M(q), By =1 .
“Park” (4.30) : Bx = J1(q)"J1(q), By = M(q) .
Khatib [Kha87] found out that only one pseudoinverse satisfies (4.23). From that and the
proof in Appendix B.2 one can conclude that any weighting matrix (4.33) leads to the

identical pseudoinverse and null space projector. Thus a generalized inverse with (4.33)
minimizes the instantaneous kinetic energy of the manipulator and the corresponding null
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4.2. Consistency of the Projections

space projector dynamically decouples the priority levels by block-diagonalizing the inertia
matrix.

The respective null space projector has been shown to be load-independent [FK97].
Changing the load inertia on the higher-priority level does not result in a different null
space projector indeed. When considering such an additional load or modified reflected
inertia L1 € R™*™1 and the altered joint inertia matrix

Mg (q) = M(q) + J1(q)"L1J1(q) , (4.36)
then the equality
Na(q) =TI - Ji(q)"(J1 (@MD" =T - Ji(q)"(J1(q)Me@DH)T (4.37)

holds. Load independence allows to ignore loads in the controller. Their estimation or
measurement can be avoided and using such a null space projector decouples internal
motions from load-dependent influences [FK97]. The invariance of the load can also be
seen in the fact that (4.33) only requires the inertia matrix applied to the null space Y'1(q)
and not necessarily to the range space X1(q).

Arbitrary Weighting Matrix W

Another interesting type of dynamically consistent null space projector can be formulated
which is acceleration-based originally:

Ns(q) = M(q) (I - J1(@)" " J1(a)) M(q)~". (4.38)

The premultiplication of M (q) is required for (4.23) and the multiplication by M (q)~*
from the right is necessary for the idempotence No(q) = N2(q)N2(q). The major differ-
ence of (4.38) compared to the previous dynamically consistent approach is that the null
space projection is performed on acceleration level. If one considers 75 = Na(g)72 with
(4.38), the secondary task torque is initially transformed into a joint acceleration through
the multiplication by M (q)~!. Then, a null space projection on acceleration level is ap-
plied as in standard kinematic robot control. Afterwards, this solution on acceleration
level is transformed back into joint torques via M (q). The general idea of the procedure
torque — acceleration — projected acceleration — projected torque is intuitive and has been
frequently implemented and analyzed [HS87, PMU108]. The proof for dynamic consis-
tency of (4.38) and the equivalence to the standard projector for the general weighting
matrix (4.33) is provided in Appendix B.3.

One choice for the weighting matrix in (4.38) is W = I. Moreover, due to the standard
Moore-Penrose pseudoinversion, singularity-robust techniques such as [DASH12] can be
applied easier to preserve continuity in the control law. This projector can also be com-
puted in a recursive way to reduce the numerical effort. The adaptation of (4.11), (4.12),
and (4.13) is

NS (4.39)
Ji-1(q) = Ji1 (@) N8%(q)" | (4.40)
N{"%(q) = N{"$*(q) (I = Jis(@)* Jim1(9)) (4.41)
N;"*(q) = M(q)N;"**()M(q)™" - (4.42)
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4. Redundancy Resolution by Null Space Projections

The matrices N;"°(q) € R™™ are auxiliary null space projectors on acceleration level,
which are upgraded to dynamic consistency in (4.42). This solution has similar properties
as the dynamically consistent solutions from before: Dynamic consistency and the idem-
potence criterion N "¢(q) = N"8(q)N:"8(q) are fulfilled. However, load independence
[FK97] is not featured. In the experiments conducted later, further differences will be
demonstrated concerning the implementation on a real robot.

4.2.3. Stiffness Consistency

An increasing number of parallel elastic actuators (PEA) is encountered in the fields of
prostheses, exoskeletons, and rehabilitation [DH08, WSA11, HTSG12, GEGS12]. Mount-
ing mechanical springs in parallel to the motors allows to downsize the actuators because
gravitational loads can be counterbalanced by the passive elements. Energy efficiency can
be drastically improved that way, both from a static point of view (gravity compensa-
tion) and from a dynamic perspective (energy-efficient cyclic motions such as walking or
jumping). The research group of Herr [AH09] has recently achieved impressive results
in the field of active prostheses with additional passive elements where the principles of
biomechanics and neural control are combined to design new devices.

Consider a scenario where a main task is statically accomplished by such a set of parallel
mechanical springs, e. g. to keep the end-effector at a location by pre-adjusting the joints
and springs such that no motor power is required to maintain the main task position
and orientation. The so-called stiffness-consistent null space projector can then be used
to simultaneously accomplish a secondary task while minimizing active regulation on the
main task level by exploiting the springs. The dynamics (2.6) for constant external forces
are extended by an additional joint spring k(q, g;) € R™ such that

M(q)q+C(q,4)q+9g(q) + k(q,q)) = T + Text (4.43)

holds, and g, € R" is the equilibrium configuration where the spring counterbalances the
graviational load and the external forces.

Definition 4.3. A null space projector N j(qy) € R™*" is said to be “stiffness-consistent”
if it is “statically consistent” and if a subtask does mot cause static deviations in the
operational spaces of all higher-priority tasks. These tasks with higher priority are partially
or completely executed by springs k(q, q,) € R™ with equilibrium configuration q = qq. The
condition

Ji(q0)K(q9) ' Nj(qp) =0 (4.44)

for i < j must hold locally around the steady state q = g with g = g = 0, where the local
stiffness matriz is

ak(q7 q(])
K(qy) = —2 2% . 4.45
(a0) = =g (4.45)
In this equilibrium g, the linearizations

ok(q,

kin(g. q0) = k(qo) + (g %) ( (g —ao) = k(qy) + K(q9)Aq , (4.46)
q 9=q

dg(q

9in(2:90) = 9(q0) + a(q ) ‘qfq (@ —q0) = 9(q0) + G(q9)Aq (4.47)
—40

can be evaluated where K (q,) € R™"™ is the local, positive definite stiffness matrix in the
equilibrium, G(q,) € R™*" describes the local, linear gravity behavior, and Ag = q — q.
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At g = g, the counterbalance k(q,) = —g(qy) + Text holds for constant external forces.
Then the quasi-static version of the dynamics (4.43) with

T = Na(qy)T2 (4.48)

yields
K(go)Aq = —G(q9)Aq + Na(qo)T2 - (4.49)

Locally around the equilibrium the differential mapping (4.2) can be used to obtain

Azy = J1(q0)K(q0) ' (~G(g9)Aq + N2(go)T2) , (4.50)

which has clear similarities to (4.27). If the weighting matrix
W = K(qy) (451)

is chosen, the main task does not experience a direct disturbance by the lower-priority
task control action 79. In other words, the contribution of the springs to the main task
can be preserved this way. Note that a null space action usually leads to Aq # 0, so that
a small error will be indirectly generated due to the altered gravity torques. Nevertheless,
the simulations in Section 4.3.1 will demonstrate that this effect is very limited. Any
spring can be used for stiffness-consistent null space projections, for example an adaptive
one with k(gq,qq, o) € R", where o € R" is the stiffness adjuster of a variable stiffness
mechanism [PDAS15].

4.3. Comparison of Null Space Projectors

This section will provide simulations (Section 4.3.1) and experiments (Section 4.3.2) to
demonstrate the properties of the null space projectors in action. In the first simulation,
comparisons between successive and augmented null space projections as well as between
statically consistent and dynamically consistent redundancy resolutions are made. The
second simulation shows the properties of the stiffness-consistent null space projector in
comparison with common statically consistent and dynamically consistent redundancy
resolutions. In the experimental part the null space projectors are applied to one of the
lightweight arms of Rollin’ Justin. A discussion of all approaches is provided in Sec-
tion 4.3.3.

4.3.1. Simulations

Simulation #1 demonstrates the theoretical properties of the presented null space projec-
tions on a planar n = 4 DOF manipulator as depicted in Fig. 4.1. The task hierarchy is
designed according to the priority levels specified in Table 4.1.

Since Z?Zl m; =7 > n and the tasks partially conflict with each other, not all of them
can be accomplished to the full extent. The controller gains are specified in Table 4.2. In
the following, the regulation case and the transient responses are investigated. Fig. 4.2
depicts the step responses for five different implementations. Additionally, the solution
without any null space projection is plotted. That means that the control torques are
directly applied without being processed by any projectors at all, i.e. they are simply
added such that all tasks compete with each other without a proper hierarchy.
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Level 2

Level 4

Level 3

VAV AV AV AV

Figure 4.1.: Simulation #1 model of the planar, four-DOF system. The links are connected
via revolute joints. Each link is modeled by a point mass of 1 kg that is placed
in the center of a bar with length 0.5m. The dynamics are simulated using
g=9.81m/s%

Table 4.1.: Hierarchy for the comparative simulation #1 of different null space projectors

Priority ‘

i ‘ Description

m
1=1 1 | Cartesian impedance for the TCP translation in x-direction
=2 1 | Cartesian impedance for the TCP translation in y-direction
1=3 1 | Cartesian impedance for the TCP orientation about the z-axis
1=4 4 | full joint impedance

0.1 0.16

& Level 1| £ Level 2

E C =zo012

= E s E

= = 0 g =

o g

£ S E S 008

5501 £ 500

=R 52 S

= £ z = 0

= <

£ s

=~ _ I ~ | |

. ] 1 L5 0.045 05 1 L5
Time [s] Time [s]
=1l
2, 02 Level 3- e Level 4
£z z
= =]

s g 8

5] § E

gL 0 g

s 3 =

g o <

2 %01 =

o Il 1 T:) Il Il
0 0.5 1 L5 @ 0 0.5 1 1.5

Time [s] Time [s]

-------- Successive, statically cons., W=I
------------------ Successive, dynamically cons., W=M ————— Augmented, dynamically cons., W=M

Augmented, statically cons.,, W=I  —.—.—

Augmented, dynamically cons., W=I
No null space projection

Figure 4.2.: Simulation #1 of different torque control null space projections on a four-DOF

72

manip

ulator with four individual hierarchy levels.



4.3. Comparison of Null Space Projectors

grator due to steady-state error)

Table 4.2.: Controller gains for the simulations and experiments; (* plus additional inte-

| Gain || Sim. #1 | Sim. #2 |

Experiment #1

|

K, 800 X 0 diag(1200, 1200, 1200) &
D, 60 % 0 damping ratios set to 0.9
K, 8002 | 200 5m * diag(60, 60, 60) N2
D, 60 % 10 Ij;lf damping ratios set to 0.9
K; || 1500m - diag(20, . .., 20) X
D; s - diag(3,...,3) s
K, 10(1)\1 Nm - -

ms
D, rad - "

All augmented methods reach zero steady-state errors on the first three levels because
these tasks can be achieved simultaneously. The condition of feasibility can be mathemat-
ically written as the existence of a set

A={q,q4=0|z;4es = f;(q) for i =1,2,3} , (4.52)

where &; qes is the corresponding desired task value of the task vector x; defined in (4.1).
The fourth task, however, cannot be accomplished completely because no set exists which
additionally fulfills x4 4. = f4(g). But it is executed as well as possible in a locally
optimal way according to the remaining null space. It is noticeable that the steady state
is reached considerably later in case of the static null space projections. Due to the
dynamic coupling of the tasks, disturbing accelerations are generated across the priority
levels and slow down the transient behavior. Dynamically consistent null space projectors
fulfilling Definition 4.2 implicitly annihilate these inertia couplings so that the tasks can
converge undisturbed. The successive, dynamically consistent solution shows excellent
performance on the first priority level, but on the lower levels, the priority order is not
strictly ensured, neither dynamically nor statically. On the third level, the steady-state
error is even larger than the one in case of simply adding up all control torques without
applying any null space projections at all. Considering the two dynamically consistent,
augmented projections one can say that they both feature the best performance, but the
results are not identical. The final configuration is different which can be clearly seen in
the different level four Euclidean error norms in the steady state.

The simulation study #2 illustrates the benefits of the stiffness-consistent null space
projection. The slightly modified model in Fig. 4.3 is used. Four adaptive mechanical
springs are placed in between the links. That way, a desired TCP position (in x and y
direction) on priority level one can be statically maintained without any power consump-
tion. Hence the main task active control can be deactivated (73 = 0). In the following
scenario, the TCP starts at its desired position and an obstacle is approaching the first link
of the manipulator as shown in Fig. 4.3. At t = 0.5s, the virtual repulsion of the first link
is activated (level two task) with a stiffness of 200 Nm/rad and damping of 10 Nms/rad.
Moreover, an additional integral term is used in the control law on level two with a gain
of 10Nm/(rads) so that no steady-state error results. That way one can better compare
the behavior of all projectors for the same null space control quality, i.e. no steady-state
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Level 1

Approaching obstacle 'l

(repulsion on level 2)
N
’ 10003

Figure 4.3.: Simulation #2 model of the planar, four-DOF system. The links are connected
via revolute joints. Each link is modeled by a point mass of 1 kg that is placed
in the middle of a bar with length 0.5 m. The dynamics are simulated using
g = 9.81m/s®. Four mechanical springs are placed in between the links.
These allow to maintain a TCP position without active control and power
consumption. Additional joint damping is introduced with d; = 15 Nms/rad
for : = 1,2,3,4 so that no DOF are undamped.

errors remain on level two after the transient. In the upper two diagrams in Fig. 4.4, the
Cartesian errors at the TCP are depicted. As shown in Section 4.2.3, a stiffness-consistent
null space projection minimizes the main task level error in a static sense. The plots reflect
these theoretical results. Using W = K(q,), a small noteworthy error can be observed
during the transient, which was expected since the null space projector is of static nature
only. Although featuring the best performance by far, the stiffness-consistent approach
also shows a small steady-state error. This is due to the change in the gravity torques
because of the large motion in the null space, cf. (4.50). However, this small error could
be easily treated by slight active control w.r.t. the Cartesian space of the TCP. On a real
robot, one would certainly activate such an additional control on the first priority level to
compensate for inevitable disturbances and model uncertainties but still let the springs do
most of the work. It is striking that the dynamically consistent projectors perform very
poorly during the transient although they use knowledge of the dynamic capabilities of the
system by applying the inertia matrix for the null space determination. But the missing
knowledge about the additional springs even leads to worse results than the pure stati-
cally consistent projector with W = I. Summarized, the comparison with the other null
space projectors clearly reveals the advantages of the new concept of stiffness-consistent
projectors for this subclass of robots. Note that due to the use of only two priority levels,
there is no difference between successive and augmented null space projections. In the
bottom chart in Fig. 4.4, the joint position of the first joint is depicted as well as the
reference value for the respective secondary task collision avoidance. To get an insight
into the applied joint torques, Fig. 4.5 illustrates the control inputs in all joints. One
can easily see that the information contained in K(q) leads to completely different joint
torques, and the final steady state is reached considerably faster compared to most of the
other approaches. The control inputs in Fig. 4.5 explain why the dynamically consistent
solutions lead to oscillations during the transient, cf. Fig. 4.4. The dynamically consistent
redundancy resolutions compensate for the error on level two faster. However, the me-
chanical springs act like disturbances in these cases because the null space projectors do
not take their influence into account. Therefore, the subtask control and the springs com-
pete with each other and lead to a completely different overall stiffness, which alters the
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transient behavior in turn. The stiffness-consistent null space projector takes the springs
into account and avoids such a competition between controller and mechanical springs.
Solely the statically consistent null space projector with W = I has a comparably high
convergence speed. This is due to the fact that the stiffness matrix in this simulation
example is of diagonal shape and thus closer to the identity matrix than the weighting
matrices in the other approaches.

4.3.2. Experiments

In the following experiments, the null space projectors are evaluated and compared on the
right arm of Rollin’ Justin. The task hierarchy is designed as follows:

1. Level (m; = 3): translational Cartesian impedance at the TCP in -, y-, z-direction
to keep the initial Cartesian position in space (x: forward/backward, y: left/right,
z: up/down),

2. Level (mg = 3): Cartesian impedance for the orientation of the TCP about the
three axes with commanded trajectory,

3.Level (mg = 7): complete joint impedance to maintain the initial joint configura-
tion.

The controller gains are given in Table 4.2. A fast trajectory on the second priority level
is applied. Within less than 0.7s, the TCP orientation is commanded to an intermediate
state. After a short rest, it is commanded back to the initial state. The trajectory for
the rotation is specified such that its realization requires large motions in the joints of the
manipulator. That allows different fundamental aspects to be evaluated in one experiment:

e To what extent is the main task on level one disturbed by control actions on level
two and three?

e How good is the task performance on level two due to the restrictions imposed by
the task on level one?

e How good is the task performance on level three due to the conflicts with the task
on level two?

The performance of the null space projectors can be compared on the basis of Fig. 4.6.
The first issue to notice is the clear instability of the augmented, dynamically consistent
null space projector with W = I from Section 4.2.2. At t ~ 1.2s, the emergency stop is
used. Although this null space projector has the theoretical advantages shown before, it
destabilizes the system. Indeed, that is caused by the procedure

M(q)~* . -5 (@Y I (@) . M(q)
torque ——— acceleration acceleration —= torque

null space projection

described in Section 4.2.2. If M(q) has a very small eigenvalue, then M (q)~! will have
a very large one, i.e. its inverse. If the current torque to be projected has a contri-
bution in the direction of the corresponding eigenvector, the acceleration vector will be
“aggressively” scaled. In the second step, the null space projection is performed in the ac-
celeration domain. The projector does not use any information about M (q) since W = I.
In other words, the acceleration vector is projected and the resulting acceleration points
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Figure 4.4.: Simulation #2: benefits of a stiffness-consistent null space projection
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into another direction while still suffering from the scaling performed in the first step. In
the third step, one goes back to joint torques, but the previous scaling is not reversed.
Summarized, one can say that this null space projector “aggressively” scales a torque,
depending on the current joint configuration and the eigenvalues of M (q), respectively.
The infeasibility of the obtained, projected joint torques then destabilizes the system due
to actuator limitations, saturation, and the limited torque control bandwidth. This aspect
of instability will be picked up and analyzed further in the discussion in Section 4.3.3.

The upper three diagrams on the left side in Fig. 4.6 depict the Cartesian position of the
TCP and its reference value. Except for the unstable solution and the summed up control
actions (“no null space projection”), the main task is statically achieved. Nevertheless,
deviations of several centimeters occur during the transient. Against the expectation of
superiority based on the theoretical properties, the projectors using the inertia matrix
(W = M(q)) do not perform better than the projectors without use of it (W = I). On
the contrary, they generate larger errors in fact. That can be seen in the - and z-direction
at t =~ 2s.

As one would expect, the performance on the second level (right column diagrams in
Fig. 4.6) is restricted due to the projection onto the null space of the main task. That can
be seen in the transient behavior of all three control variables when the desired orientation
of the TCP is changed. If the rotational Cartesian impedance was placed on the first pri-
ority level instead, the control errors and the overshootings would be smaller for the given
parameterization. Furthermore, the plots on the right confirm the theoretical properties
of successive null space projections. As in the simulations, they perform worse than the
augmented ones due to the non-strict hierarchy they generate. Therefore, the third level
task interferes with the second level task and leads to large control errors on level two.
That effect can be clearly seen in the rotation about the z-axis and z-axis. But the most
remarkable result is that a strict hierarchy (i.e. augmented) does not necessarily require
dynamic consistency for high performance during the transient. The comparable perfor-
mance of the “augmented, statically consistent, W = I” solution and the “augmented,
dynamically consistent, W = M(q)” solution in all three directions (right column dia-
grams in Fig. 4.6) is not in accordance with the theory. Yet it confirms the results from
[ASOFHO03|, where the conclusion was also drawn that the differences between static and
dynamic consistency are significantly smaller than expected when the implementation on
real hardware is considered. That effect can be traced back to modeling uncertainties
(inertia matrix, kinematics, friction) and disturbances, among others. Nakanishi et al.
[NCMT08] came to similar conclusions while comparing inertia-weighted redundancy res-
olutions among each other. The authors stated that the requirement of a highly accurate,
estimated inertia matrix is difficult to realize.

On the third level, the successive null space projections perform better than the aug-
mented ones because they do not implement a strict hierarchy. Therefore, the task on the
lowest priority level three can be executed using a larger accessible workspace. The stable,
augmented solutions (W = I, W = M(q)) show a comparable behavior. They establish
a strict hierarchy implying that the task performance on level three will suffer from the
limited available workspace. Therefore, it is proper that the largest error norms will be
generated with augmented null space projections. Thanks to the different weighting ma-
trices, the steady-state joint configurations are slightly differing as it can be observed at
t = 1.5s. Nevertheless, since the inertia has no effect in any static configuration, one can-
not generalize superiority or inferiority of inertia-based null space projections compared
to non-inertia-based solutions in these states.
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Figure 4.6.: Experimental comparison between different torque control null space projec-
tions on a seven-DOF robot with three priority levels

78



4.3. Comparison of Null Space Projectors
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Figure 4.7.: Absolute errors on the first and second priority level during the experiments
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Table 4.3.: Comparison of different torque control null space projections
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continuous (no algorith. sing.) || yes yes no no no yes
inertia matrix model-free yes no yes no no yes
idempotent (NN = N) no no yes yes yes no
load independence no level 1 no yes no no
stable in experiments yes yes yes yes no yes

The total errors in the TCP position and the TCP orientation are plotted in Fig. 4.7.
The implemented torque-based tasks realize mechanical impedances. In order to provide
the desired physical compliance, the controllers have been implemented following the clas-
sical concepts of impedance control via PD-controllers as reported in Section 2.2.1. For
that reason, small steady-state errors occur. By adding an integral component to the con-
trol law, one would erase that error. However, the desired mass-spring-damper behavior,
which is beneficial for compliant physical contacts and interaction of the robot with its
environment, would be lost then.

4.3.3. Discussion

A direct comparison of the null space projectors in terms of their basic properties is given
in Table 4.3. The detailed analysis and investigation of the features is presented in the

following.

Comparison of Successive and Augmented Null Space Projections

The successive null space projection is computationally efficient due to the decoupled cal-
culations of N3"(q). However, a projection onto the null spaces of all higher-priority tasks
via (4.6) does not imply strict compliance with the priority order because the tasks are
not orthogonal. The matrix IN3"“(q) V i > 2 is not idempotent in general, i.e. the mathe-
matical projection property is not fulfilled due to N3"°(q) # N3"“(q)IN3"°(q), which is a
well-known drawback. The effect on the implementation results can be interpreted easily:
A task torque originating from level ¢ is successively multiplied by ¢ — 1 matrices obtained
by the recursion (4.6). Each multiplication ensures orthogonality to the corresponding
higher-level task but it also corrupts all preceding projections at the same time, thus the
task hierarchy is not strict in its entirety. Yet, the less complex structure of (4.6) makes
it easier to implement dynamic hierarchies such as [DWASH12a], where the priority order
can be modified online or tasks get activated and deactivated during operation. The main
advantage of the successive projection is that algorithmic singularities are avoided. In
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the augmented projection such a singularity arises when a rank loss occurs in (4.10), i.e.
the tasks on different priority levels completely® conflict with each other. Singularities in
J"%(q) have to be avoided by smart task definitions or treated by applying singularity-
robust techniques such as damped least-squares methods [DW95]. Hence the use of the
method complicates the hierarchy design. Nonetheless, the augmented projection enforces
orthogonality of all involved tasks, the projection matrix IN; "#(q) always fulfills the idem-
potence criterion N;"#(q) = N;"8(q)IN;"#(q), thus a strict hierarchy is ensured. In fact,
a proof of stability for a generic hierarchy is only known with augmented projections so
far [NCM 108, DOAS13].

In successive projections the choice of the weighting matrix cannot solve the problem
of a non-strict hierarchy. One has to keep in mind that the type of strictness (successive,
augmented) and the kind of consistency (static, dynamic, stiffness) are two independent
aspects of the hierarchy design. Thus, a drawback through the choice in the strictness
or the consistency cannot be compensated by the choice in the other category. The
strictness of the hierarchy determines whether the tasks are properly decoupled or not,
and the consistency determines in which way this decoupling is performed, e. g. statically,
dynamically, or stiffness-related.

Comparison of Static, Dynamic, and Stiffness Consistency

Although dynamically consistent projections have a clear theoretical advantage due to the
dynamical decoupling of the priority levels, the final steady state is also achieved with
static consistency. Former comparative simulations [CK95] and the ones in Section 4.3.1
have shown that the performance of dynamically consistent projections is superior to the
statically consistent ones. However, a precise model of the inertia matrix is needed. Exper-
iments on real hardware in Section 4.3.2 and [DOAS15] have shown that the differences
between the results are significantly smaller than expected. The experimental results
given here confirm previous works in the field such as [ASOFH03, NCM*08, PMU*08].
The difference between theoretical superiority and practice can be traced back to mod-
eling uncertainties (inertia matrix, kinematics, friction) and disturbances, for example.
In [NCM™08] the authors say that all approaches using the inertia matrix “significantly
degrade, especially in the tasks with fast movements. This implies that these algorithms
require highly accurate inertia matriz estimation to be successful” and they also trace the
problems back to inaccuracies in the estimated inertia matrix. In [PMUT08] different
redundancy resolution techniques are compared but all of them exploit the inertia matrix
either more or less. The authors draw the conclusion that the more influence the inertia
matrix has in the control law, the worse the experimental results are. They also report that
the results of simulations are significantly better due to the perfectly known inertia ma-
trix. In [ASOFHO03], the first experimental comparison between statically consistent and
dynamically consistent null space projections has been made. The results are consistent
with the more extensive experiments presented here.

Formal proofs of stability for task hierarchies are intricate [NCM™08] and they are
limited to dynamically consistent resolutions so far. In case of two-level hierarchies, see
[OKNO08, PAW11] for example. A formal proof of stability for a hierarchy with an arbitrary
number of priority levels can be found in [DOAS13] or Section 5.2, respectively.

5In this context, completely means that the Jacobian matrix w.r.t. a low-priority task is a linear combi-
nation of all higher-level Jacobian matrices. Then this lower-priority task is dropped completely, i.e.
there is not even a null space left in which it could be partially executed.
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In Section 4.2.2, two different kinds of dynamically consistent hierarchies have been
detailed. The first one is a generalized version of the well-known projector by Khatib
[Kha87], which uses the inertia matrix as weighting matrix in the pseudoinversion. In-
deed, an infinite number of weighting matrices (4.33) fulfill the same criteria. The second
dynamically consistent projector (4.38) refers to a null space projection on acceleration
level. The solution was then extended to dynamic consistency by taking the inertia matrix
into account in a second step. These two different projectors have very similar theoretical
properties as reported in Table 4.3. However, the beneficial property of load independence
cannot be concluded for (4.38). Furthermore, severe stability problems have been encoun-
tered during the experiments with (4.38). An explanation for the instability has been
given in Section 4.3.2. The effect is of structural nature and arises from a configuration-
dependent scaling from input torque to projected output torque. In configurations where
the inertia matrix has one or more small eigenvalues, the null space projection may lead
to infeasible joint torques, which exceed the actuator limitations and the torque control
bandwidth. Nevertheless, one has to remark that this “aggressive” scaling does not nec-
essarily have to happen, since it depends on the condition of the inertia matrix and the
torque to be projected. The simulations in Section 4.3.1 have depicted two scenarios in
which the closed loop behaved properly when applying the acceleration-based null space
projector. The conclusion is that (4.38) is risky to be applied, and since other null space
projectors have additional beneficial properties while not suffering from stability issues,
there is no convincing reason for the use of (4.38).

It shall also be noted that one can easily obtain a dynamically consistent null space
projector without resorting to expensive numerical computations such as singular value
decompositions. The only adaptation is to further subdivide all levels from (4.1) and (4.2)
such that m; = 1 Vi, which does not pose any problems in general. If a set of equally
prioritized tasks is feasible, a strict hierarchy among these subtasks is also feasible. Then
the inversion in (4.13) simplifies to the inversion of a scalar. Such a formulation with
reduced computational complexity is particularly suitable for real-time applications of
dynamic hierarchies where subtasks are activated and deactivated online and the priority
order is modified during operation, e.g. by utilizing physically interpretable measures as
done in [DWASH]12a] and Section 4.4.

Stiffness consistency can be interpreted as a subclass of static consistency with particular
properties for specific scenarios. Section 4.3.1 demonstrated the advantages of this new null
space projector in simulation. In case of mechanical springs placed in parallel to the joints
(PEA), a main task can be statically achieved by these passive elements without any power
consumption or active control. By applying the stiffness-consistent null space projector,
the main task execution through the springs remains undisturbed while a secondary task is
executed in its null space. In such a scenario, the stiffness-consistent redundancy resolution
is superior to other null space projections.

The aspect of consistency in torque-based null space projections is directly related to
the weighting matrix in the pseudoinversion. Except for special cases such as PEA with
additional mechanical springs, the weighting matrix primarily has an influence on the
transient behavior as the comparison between statically and dynamically consistent null
space projections in this chapter has clearly demonstrated. In the equilibrium it is irrel-
evant which weighting matrix has been chosen because all of them fulfill the definition of
static consistency (Definition 4.1). Nevertheless, one has to keep in mind that different
transients may lead to different local minima to be reached, so the weighting matrix can
also affect the steady-state configuration.
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4.4. Unilateral Constraints in the Task Hierarchy

In unstructured and unpredictable environments, robots are compulsorily faced with dy-
namic hierarchies. Imagine a service robot executing tasks in a kitchen. As soon as a
human being enters the room, additional tasks and constraints have to be considered:
Collisions with the human have to be avoided, for example. The robot has to observe
the person to be able to react to commands. And if necessary, task execution has to be
interrupted. All of these subtasks are usually located on different levels in the hierarchy,
depending on their importance. In classical null space projections, one would either acti-
vate/deactivate the tasks and obtain a discontinuous control law, or redundancy would be
“wasted”. The latter is due to the fact that these discontinuities can be circumvented by
permanently “locking” DOF for momentarily deactivated tasks. But this reservation is at
the expense of valuable kinematic redundancy. Hence, a way has to be found to properly
deal with these transitions by extending the classical approaches.

In [EC09], Ellekilde and Christensen use the so-called dynamical systems approach
to scale task contributions online in case of such a (de)activation. Sugiura et al. blend
self-collision avoidance with whole-body motion control to shift the priorities in real time
[SGJGOT7]. Brock et al. propose a dynamic hierarchy, wherein obstacle avoidance is applied
in the null space of a primary task [BKV02]. However, it is given a higher priority if that
null space reveals not to be sufficient to avoid the collision. A suitable coefficient is
calculated online to induce such a transition. In [LMP11], Lee et al. smooth the transition
instead of modifying the control law. The proposed framework acts on the kinematic level,
joint velocities are the inputs to the robot. Another elaborate, kinematic approach has
been proposed by Mansard et al. [MRCO09]. They introduce a new inversion operator to
ensure continuity and apply it to a visual servoing scenario. An extension for a hierarchy
of tasks and unilateral constraints® is made in [MKKO09]. The extension to the dynamic
case is provided in [MKO08]. However, it leads to very complex formulations, which are
difficult to parameterize. Probably the most common method to deal with discontinuous
inverses is to utilize damped least-squares techniques. These singularity-robust inverses
(SRI) are widely used in the field of inverse kinematics. A thorough overview is provided
by Deo and Walker [DW95]. However, in damped least-squares approaches the proper
parameterization of the damping terms is not trivial at all. A simple and intuitive solution,
which provides full control over the critical directions and the transition, was still missing
so far.

In this section a framework for dynamic hierarchies is presented, which is based on a
new and very intuitive formulation of the null space projection [DASH12, DWASH12a]. In
contrast to most of the state-of-the-art approaches, the dynamic domain with joint torque
interface is considered instead of the kinematic case. The approach manages singular Ja-
cobian matrices, dynamic hierarchies and unilateral constraints. In the latter case, the
aforementioned, undesired ”locking” can be completely avoided. The method allows to
selectively regulate the torque gradient during the transition process, independent of the
singular values of the Jacobian matrix. That way, the gap between the abstract math-
ematical structure of a task hierarchy and the directed influence on real physical values
in the robotic system is closed. Discontinuities can be “stretched” and distributed over a
well-defined range to comply with any physical constraints. While controlling and fully
specifying the exact transition behavior, it is ensured that no deviations from the nominal

SA unilateral constraint describes a task that is is not permanently active, but it can be activated and
deactivated at run time. An example is given in Fig. 4.8.
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Repulsive
potential field

Distance left before self-collision
avoidance gets activated

Repulsive
potential field

Figure 4.8.: Repulsive potential fields are used to avoid self-collisions. This example shows
the contact point pair “left wrist” - “right hand” on Rollin’ Justin. The
avoidance gets activated as soon as the potential fields overlap. For that
reason, it is named a unilateral constraint.

behavior occur outside the transient phase. The approach is based on a very intuitive
interpretation of null space projections and poses no numerical problems when approach-
ing singularities. Only the behavior in the critical directions is altered by the transition
shaping while the other directions remain unaffected. Simulations and experimental re-
sults show the performance of the redundancy resolution concept. Amongst others, the
self-collision avoidance (Section 3.1) has been chosen as an example for unilateral con-
straints, see Fig. 4.8. The approach is equally applicable for a velocity interface in terms
of well-directed limiting of joint accelerations.

4.4.1. Basics

Assume a high-priority task with dimension m which is described by a virtual constraint
f(g@) = 0. The Jacobian matrix is J(q) = 0f(q)/0q € R™*™. Initially, J(q) is supposed
to be non-singular. In the redundant case (m < n), a torque from a lower-priority level
can be projected onto the null space of J(q) with

N(g)=I-J(@)"(J(@")" (4.53)

in a statically consistent way (cf. Section 4.2.1). Herein, J(q)" denotes the Moore-Penrose
pseudoinverse of J(q), cf. (4.22). From a numerical perspective, the inversion is mostly
done by applying a singular value decomposition (SVD) to the Jacobian matrix:

J(q)=U(q)S(q)V(q)" . (4.54)

The matrices U(q) € R™*™ and V' (q) € R™*™ are orthonormal. The rectangular diagonal
matrix S € R™*" contains the singular values o1(q) to o,,,(q). The pseudoinverse J(g)*
can be expressed in SVD components:

J(@)t =V(g)S(q)"U(q)" . (4.55)

The inversion of S(q) in (4.55) is commonly realized by inverting the diagonal elements
and cancelling the singular values below a specified threshold ¢ € RT. At this point, the
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occurrence of discontinuities becomes evident: If the rank of the Jacobian matrix changes,
the threshold ¢ of one or more singular values will be crossed. That effect propagates back
to (4.53) and leads to discontinuities in the control law.

Cancelling the singular values smaller than ¢ is an arbitrary choice to deal with the
singularity while inverting the diagonal elements of S(q). Another way to handle that
problem is to set a lower bound for the singular values before inverting them. An estab-
lished method in inverse kinematics is to utilize damped least-squares techniques [DW95]
such as

J(q)' = J(@)"(J(@)T(q)" + )" . (4.56)

The damped inversion operator is denoted by {}. The damping parameter A € R is
introduced to smooth the transition by avoiding the division by zero:

J@)' = V(e [S(@) (S(@S@" + )" |U@)” (4.57)
o1(q)

o-l(q)Q Y 0 e 0

0 o2(q) 0
=Vl(a) 02(q)? + A . Uaq)" (4.58)

Om\q
om(q)? + A
0 0 0

So far, various different approaches concerning damped least-squares methods have been
proposed. First solutions [Wam86] suggested a constant A but they quickly revealed a
crucial problem: Accuracy of the inverse away from the singularity while simultaneously
ensuring a smooth transition is hardly feasible. Other solutions used variable damping
factors, e.g. dependent on the distance to the singularity [NH86] or its time derivative
[KK88]. However, several problems remain. Beside the fact that J(q)' is not a correct
inverse of J(q) VA # 0, the choice of the damping parameter is not intuitive and the direct
consequence on the projected torques is not obvious.

4.4.2. Ensuring Continuity

While activating/deactivating a unilateral constraint or when a singularity is reached, the
respective Jacobian matrix changes rank and leads to a discontinuous control law if this
issue is not handled properly. The following systematic approach allows to smooth that
transition and provides the means to close the gap between the abstract mathematical
mechanisms of the projector calculation and the intuitive physics of the robotic system.

Intuitive Interpretation of the Null Space Projector

Expressing (4.53) in SVD component notations ((4.54), (4.55)) leads to the formulation

N(q)=I-V(q)S(q)"U(q)"(V(g)S(q)"U(q)")" (4.59)
=I-V(g)S(@)"S@" V(g . (4.60)
R ——
A(q)
Herein
A(q) = diag (CLl (Q), (J,Q(Q), s 7am(q)7 le(nfm)) (461)
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Repulsive potential

Wall

Figure 4.9.: n = 1 DOF example of a unilateral constraint: The virtual repulsive potential
prevents collisions of the mass with the wall.

denotes the so-called activation matriz with its diagonal elements

M@:{)ﬁ”@%% Vi, 1<i<m. (4.62)
1 otherwise

An inspection of (4.60) reveals that only the right-singular vectors in V'(g) have influence
on the null space projector’, whereas the left-singular vectors in U(q) and the exact values
o1 to oy, in S(q) do not have any influence on the result. The latter can be shown when
considering A(q) € R™". That matrix contains diagonal elements with value 1 (active)
or 0 (inactive). The i-th diagonal element a;(q) refers to the i-th column vector in V' (q)
and either activates that direction or locks it.

Note that (4.60) describes a statically consistent null space projector. Using other
weighting matrices in the pseudoinversion, e.g. the joint inertia matrix, would lead to
more complex terms that could not be handled as easily. As shown in Section 4.3, stat-
ically consistent redundancy resolutions feature comparable performance as dynamically
consistent ones on real robots.

Considering a (1 x 1) Constraint

A n =1 DOF system is illustrated in Fig. 4.9. The depicted mass moves horizontally on
the chain-dotted line, the location is described by 9. At ¥ = ¥y, a repulsive potential field
is penetrated whose purpose it is to prevent a collision with the wall. The potential is
the highest-priority task, whereas an arbitrary task defines the mass behavior in the null
space of the collision avoidance. Here, the Jacobian matrix of the primary task is

J=01J1x1 (4.63)

where the direction J1x1 = 1 is invariant and the singular value o is extracted from J.
A SVD of (4.63) leads to (4.54) with U =1, S = 01, V = 1. Applying (4.60) delivers

N=1-88T=1-4 (4.64)
with all matrices degenerated to scalars.

Transition for the (1 x 1) Constraint

The discontinuity stated in (4.62) raises the question: Which behavior of the null space
projector is actually desired? Evidently, a continuous transition between 0 and 1 is the

" Actually, only the first m column vectors in V(q), which span the subspace of J(q), are relevant here.
Thus, a reduced SVD suffices to compute the required elements of V' (q).
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minimum requirement. Moreover, it is beneficial to limit the projected forces or torques

as well as their time derivatives. In the given example, that can be achieved by shaping

the projector such that N = Nges(#). The variable 9 does not only determine the position

of the mass, but it also indicates whether the unilateral constraint is active or not.
Following (4.64), the activation is defined by

al,des(ﬁ) =1- Ndes(ﬁ) ; (465)

where aj qes is the “desired”, continuous activation parameter in contrast to the discon-
tinuous one in (4.62). One way to parameterize the transition is to limit dNges(1)/dt.
By projecting a secondary task 7o in the null space of the primary task, one obtains the
control input

75 = Naes(9)72 (4.66)
b ONaw(0) d9 |
ip = e | N (467)

In order to get a continuous law with (4.66) and (4.67), Nges(d) must be of type C! at
least. In the further analysis, the following assumptions are made:

1. The torque derivative 7o is neglected. The transition is considerably faster than the
variation in the torque 7o.

2. A maximum or worst case 1o can be specified. If that is not possible, an online
calculation or measurement is provided.

3. An estimation of the maximum or worst case ¥ is available. If that is not the case,
an online calculation or measurement of ¥ is provided.

An analytical expression which allows to specify the transition as described above is the
piecewise defined function

0 if 9<%
Ndes(ﬁ) = 63193 + 62192 +ec1¥+c if 9 <Y<Yy (468)
1 otherwise

with [, J2] defining the interval from full locking to unconstrained null space projection.
Limiting N/, = max (0Nges(?)/00) allows to “stretch” the torque variation over a well-
defined range. More precisely, a maximum torque derivative 7"5 max Call be specified, e. g.
by referring to the bandwidth of the torque control loop:

Nr/nax = 7'_2pi1nax|?§l7-2|_1 : (469)
The requirements imposed on the analytical transition function are summarized in Ta-
ble 4.4. The over-determined system of equations can be solved by adding the range
{2 — 91} to the set of unknown parameters {co, c1,c2,c3} in (4.68).
Notice that limiting N/, for (4.68) is a conservative way to limit 7} because the maxi-
mum slope of Nges(19) is only reached once within the transition interval. In the following
simulation it will be shown that a third-order polynomial is only marginally more conser-
vative than the fastest continuous transition (affine function), but it has the advantage of

a significantly smoother behavior. Fig. 4.10 shows results for N} .. = 2, 5, 20. The left
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Table 4.4.: Constraints for the analytical transition function (4.68), (4.69)

W | o (191+192)/2
Naes(9) | 0 | 1

/ !
Ni(@) | 0 | 0 N o«
1 1 7
-\
sl = \\ \ N =2 os| & '
. < . [~
06f S 2| \ —— N, =20 06 & 2
a1 des =5 |] \\ Nies = ©
04r 5 S| 04t 5 ©
< <
=] | \ =
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Figure 4.10.: Examples of transition shaping in case of a n = 1 DOF system as depicted
in Fig. 4.9. The plots illustrate the compromise between smoothness of the
transition and the interval size.

diagram depicts the activator element aq ges. At ¥ = 91 = 0.2, the unilateral constraint is
fully activated and the DOF is locked for all low-priority tasks. The parameterization of
N/ .. can be identified in the right diagram when regarding the maximum slope of Nges.

A first-order polynomial has the advantage of a constant dN (¢) /0¢ within the transition
phase instead of the quadratic ones shown in Fig. 4.10. Thus, the user-defined N, is
applied within the whole transition. And it can be shown that the interval size reduces
to 2/3. However, a lack of smoothness results at the beginning of the interval and at
¥ = 0.2. Notice also that ¥#; does not have to be set equal to ¥y from Fig. 4.9. In the
implementations presented subsequently, 1 is defined as the point of full activation of the
primary task. That is a design choice in the hierarchy concept. By specifying N/ .., the
location of 99 becomes uniquely determined.

Considering a (1 x n) Constraint

The (1 x 1) case is basically a fade-in and fade-out of the secondary task torque at the
activation point of the constraint. Now, an extension to the (1 x n) case is made with

J(q) = 01(@)J1xn(q@) €ERV" | T1sn(@)]l, =1 . (4.70)

The original equation (4.60) is modified in a way such that the desired diagonal activation
matrix Ages(?) is used instead of A(q):

N(q) =1I-V(q)Aas(")V(q)" (4.71)
=TI - J1:n(q)" a1,4es(9) T 1xn(q) - (4.72)

Only the first diagonal element of Ages is important in (4.72). As J(q) is only a row
vector, the first column vector in V' (q) equals J%,,. That turns the method into a
computationally efficient technique because only multiplications have to be performed in
(4.72) instead of costly decompositions. As reported in Section 4.3.3, one can convert any
task hierarchy into a stack of one-dimensional tasks so that (4.72) applies.
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Tool center point (TCP) D/Goal TCP location
[

Joint 3

Initial configuration Singular configuration

Figure 4.11.: Schematic representation of the planar three-DOF system used for the sim-
ulations.

Variable weights and activators are used in many redundancy resolutions such as [CD95,
BKV02, MKK09, LMP11]. However, the purposes and conditions of the activation strongly
differ from each other. Chan and Dubey propose a weighted least-norm solution which
avoids joint limits [CD95] by means of a configuration-dependent weighting matrix to scale
between the different joint contributions. In that approach, the joint limit avoidance is
applied on the lowest level where discontinuities never occur. A time-based parameteriza-
tion for blending and fading out of tasks is proposed by Brock et al. [BKV02]. In contrast
to these techniques, the approach proposed here provides direct control over the critical
directions via Ages- The concept allows to design the transition behavior according to
physical limitations of the actuators or the underlying control loops.

Transition for the (1 x n) and (m x n) Constraint

One way to handle the complexity in the (m x n) case is to decompose the lower-level
torques T2 by projecting them in the critical directions of V(g). The contributions in
these critical directions can be used as a basis for the methods from above. Notice that an
online decomposition and a feedback into the generation process of Ages(¥) (with several
activation states 1) closes an additional loop. However, as stated in assumption 1), the
transition is supposed to be significantly faster than the variation in the torques from the
lower levels. Thus, the effect is expected to be small. An offline consideration is more
conservative but does not close a further loop.

The design in the (1 x n) case is straightforward when applying such an online decom-
position because the critical direction is simply J1xp,.

4.4.3. Simulations

Simulations have been performed on a planar robot as depicted in Fig. 4.11 (left). It
consists of three links and three revolute joints. Viscous joint friction is modeled and the
masses are decoupled. A Cartesian impedance is chosen as low-priority task. Its goal is
to lead the TCP to the goal configuration (gray dot). The primary task is defined by a
singularity avoidance which is designed via a repulsive potential field based on the kine-
matic manipulability measure (3.55). That singularity avoidance is a unilateral constraint
which gets activated if the manipulability measure myn(q) falls below a specified value
mo = 0.23. The Cartesian reference trajectory of the TCP (Fig. 4.11, left) is designed
such that the singularity indicated in Fig. 4.11 (right) is approached. A conflict between
the tasks is provoked. Recall that the singular configuration will never be reached by
the Cartesian impedance in a steady state. The primary task will outplay the Cartesian
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impedance because it has a higher priority in the hierarchy. Fig. 4.12 depicts the results
for the first six seconds of the simulation.

Starting from the initial configuration (Fig. 4.11, left), the TCP moves towards the
singular configuration (right). The primary task gets activated at ¢ = 1.8s for the first
time. One can observe the transition with N/ = 30 in the upper plot of Fig. 4.12. The
second chart shows Nges(t). The primary task (third graph) is active from J9 = 0.23 on.
The bottom diagrams show the Cartesian impedance torques 72 and their projections 75
onto the null space of the primary task.

When the unilateral constraint is fully activated, no Cartesian impedance torque remains
in primary task direction in a static sense, see Fig. 4.13. Within the time interval of full
activation (shaded rectangle) no torque comes through. Hence, the requirement of an
undisturbed priority order is achieved. The control input 7 = 71 + 75 is depicted in
Fig. 4.14 (top). For comparison, a discontinuous null space projection based on a classical
matrix inversion is depicted in the bottom chart. Discontinuities can be observed at
t=1.8s,t=3.6sand t = 5.4s. Applying such commands to a real robotic system would
result in unstable behavior as will be shown in one of the following experiments. In this
simulation, a steady state in the continuous case is reached after ¢ = 6s asymptotically.
In the final configuration, 9 is a little lower than . No further full transition occurs
after t = 6s since the intervention during 1.8 s < t < 3.6 s induced an internal motion that
reconfigured the manipulator to comply with the singularity avoidance constraint.

4.4.4. Experiments

In the first two experiments, the self-collision avoidance (Section 3.1) is used to validate
the continuous null space projections on a real robot. The third experiment applies a
collision avoidance with externals objects to demonstrate the problems of instability.

Implementation of the Self-Collision Avoidance within the Task Hierarchy

The null space of one specific self-collision avoidance direction of (3.24), defined by contact
point pair (¢, j) and distance d(; ;), can be expressed as

Niy@) =T1-V (@) Ades(di )V (@) (4.73)
with the activator
a1des(dgi ) 0 0
Ades(di ) = 0 a1,des(d(iz)) O (4.74)
0 0 0

of size (n x n) and

(i((z))) Vi) = (i ) 3) ) (4.75)

where x denotes non-zero elements. Eq. (4.75) states that the two Jacobian row vectors
are linear combinations of the first two column vectors in V'(; j)(q). The projector (4.73)
allows many different specifications of the task hierarchy such as

T =14+ Nt(q) <Tsca + (H N(i,h(i))(Q)) ”'L) : (4.76)

i=1
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Table 4.5.: Parameterization for the experiments on self-collision avoidance within the task
hierarchy

’Experiment H #1 ‘ #2 ‘

Fonax [N] 30 | 30

13 0.5 | 0.5
do [m] 0.10 | 0.10
91 [m] 0.05 | 0.02
Vg [m] 0.13 | 0.18
N (/m] 188 9.4
Etra [N/m] 500 | 500
Erot [Nm/rad] || 100 | 100

The subscript 1 describes a set of hierarchy levels above the self-collision avoidance, and
the subscript | represents lower-priority levels. Moreover, the projection onto the null
space of all higher levels, described by IN+(q), may be defined alternatively as for example
by the classical approach [SS91].

Instead of (4.76), one can also use recursive algorithms for augmented null space pro-
jections as in (4.11), (4.12), and (4.13). But one has to keep in mind that this requires
dealing with algorithmic singularities then.

Experiments on Self-Collision Avoidance within the Task Hierarchy

Only the right arm is active, all other joints are locked, and the priority levels are defined
as follows:

Level 1: Self-collision avoidance Tsc, for the whole upper body of the manipulator
and gravity compensation.

Level 2: Six-DOF Cartesian impedance applied to the right TCP.

Experiment #1: The parameterization is given in Table 4.5. The parameters ki,
(translational) and ko (rotational) define the Cartesian stiffnesses which are applied in
the three translational and rotational directions. The Cartesian impedance is projected
onto the null space of the self-collision avoidance between the left and the right hand.
That contact point pair is the most critical one here. Thus, 1 is chosen to be the distance
d(; j) between these links. The brakes of the left arm are engaged. The initial configuration
of the robot is shown in Fig. 4.15a. The snapshots depict the motion of the robot up to
the goal location of the right TCP in Fig. 4.15e. The right hand is repelled from the left
one during the motion. After reaching the goal location, the right TCP is commanded to
move to the initial location again.

The self-collision avoidance commands during the motion can be observed in Fig. 4.16
(top). Below, the distance between left and right hand is plotted. Since the avoidance
“disturbs” and filters the Cartesian impedance, a deviation between commanded and real
TCP location results. The respective translational error is also depicted in this diagram. A
higher Cartesian stiffness would reduce the translational error but at the point of complete
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activation of the high-priority collision avoidance task, a further increase of the stiffness
would not have an effect anymore. The direct relation between translational Cartesian
error and the penetration of the potential field (d(; ;) hand-hand plot) can be identified
easily. In the third chart the transition is depicted . The measured right arm joint torques
Tmeas (bottom) indicate no discontinuities during the transition phase.

The original Cartesian impedance torques of the right arm are provided in Fig. 4.17
(top). The maximum torques in the shoulder and upper arm joints are higher than the
ones in the lower arm and wrist joints. That is due to the longer lever arm w.r.t. the
right TCP. The second diagram shows the secondary task torques filtered by the null
space projector. Notice that the ordinates of the 72 plot and the 75 plot have the same
scaling for better comparison. Below, the time derivatives are depicted and feature the
desired boundedness. Ignoring the expected noise due to the numerical differentiation,
peak values lower than 60 Nm/s can be identified, mainly generated in the first arm joints.
The curves from elbow to wrist are omitted here and represented by the shaded rectangle
instead. The ratio ro = ||75]| / ||72| at the bottom indicates the instantaneous capability
to accomplish the secondary task. While the Cartesian impedance is disturbed in the
direction “right hand — left hand”, the torques resulting in other directions are unaffected
by the null space projection. Notice that the peak at t = 2.3s is only a representation
artifact resulting from the normalization because the torque norms are close to zero.

Experiment #2: A more complex priority order is utilized, based on (4.76). The
right TCP is commanded into the left hand as illustrated in Fig. 4.18. After t = 3s, a
continuous trajectory, which starts from that intermediate TCP location, leads back to
the initial pose. The parameterization is reported in Table 4.5.

The intermediate position is not reached due to the possible hand-hand-collision. There-
fore, the Cartesian impedance has to be suspended to comply with the hierarchy. It is
projected onto the null space of the most critical self-collision avoidance potentials succes-
sively. The priority levels are defined by the contact point pairs of the combinations “right
hand — left hand” (cpp 1), followed by “right wrist — left hand” (cpp 2), and “right hand
— left wrist” (cpp 3). The top plots in Fig. 4.19 show the activator elements of the three
projectors. Although no self-collision avoidance task is completely activated, all of the
repulsive potentials partially disturb the secondary task. Notice that they all “work” in
different directions, and therefore, they interfere with the impedance multidimensionally.
The distances d; ;) from the collision model are depicted in the second chart. Due to
the parameterization of the self-collision avoidance with dg = 0.1m, repulsive forces are
only generated by the field “right hand — left hand”. In this experiment, the repulsion
is designed to start in the middle of the transition interval. Thus, the transition begins
without a simultaneous self-collision avoidance intervention. That “overlap” is illustrated
in Fig. 4.18. The third diagram in Fig. 4.19 shows the Euclidean norms of the Carte-
sian impedance, its projection via the three null space projectors, and the measured joint
torques of the right arm. Most of the secondary task commands are filtered after ¢t = 1s.
As expected, the measured torques have a significant offset compared to [|75| due to
the gravity compensation. The bottom plots in Fig. 4.19 give insight into the motion of
the active, right TCP. According to the infeasibility of the impedance task, a significant
steady-state error remains in the intermediate configuration between t = 1.5s and ¢t = 3s,
which follows from respecting the priority order. The deviation from the reference loca-
tion is also the reason for the slightly increasing ||75| after ¢ = 1.3s since the Cartesian
impedance is not completely deactivated.

92



4.4. Unilateral Constraints in the Task Hierarchy

Experiment #3: The self-collision avoidance is now replaced by a collision avoidance
with the table, see Fig. 4.20. The continuous TCP trajectory for the Cartesian impedance
describes a motion of 0.3 m downward along the vertical axis. After 0.25m, the primary
task gets activated which is defined by a unilateral constraint, i.e. a repulsive potential.
In the left diagrams of Fig. 4.21, the behavior of the continuous null space is shown.
The upper plot depicts a1 ges, the bottom plots show the measured torques. Except for
some measurement noise, the signals are smooth. The right diagrams illustrate the results
for a classical null space projection based on singular value cancellation as described in
(4.62). The two tasks compete at the activation border. Particularly within the time
interval 7s <t < 8s, several transitions are triggered, which result in peaks in the torque
measurements. Amplitudes up to 50 Nm can be identified. Notice that the plots display
the real torques that appear at the joints. The commanded torques attain values of almost
90 Nm but they are not feasible due to the high frequency of the transitions.

4.4.5. Discussion

Compared to scaling and blending techniques such as [EC09], wherein secondary tasks
are completely disabled when higher-priority constraints get activated, the invariance of
the remaining directions is provided here. In other words, only the contributions in the
critical directions are influenced. This is due to the property

1—a;4es) Vi T qf1<i<
vil@TN = {1 " el vilg) i1 <i<m (4.77)
vi(q)” ifm<i<n

with v;(q) expressing the i-th column vector in V' (q). The property is a direct consequence
of (4.60). The invariance of the remaining n — m uncritical directions is shown in the
bottom line of (4.77).

A significant advantage of the concept is the intuitive parameterization and interpreta-
tion of the transition. The specification of the transient behavior is the main difference
w.T.t. existing approaches that mainly work on a very abstract level [MKK09, LMP11,
DSDLR'07]. Adapting to the torque loops allows to exploit the full performance of the
hardware. Another major benefit of the approach is its computational efficiency, which
is due to the successive null space projection as explained in Section 4.1.1. Costly com-
putations such as the SVD can be reduced to a minimum® as in (4.73), or they can be
completely avoided as in (4.72).

The procedure for unilateral constraints and dynamic task hierarchies is quite similar.
In unilateral constraints, tasks are activated or deactivated, respectively. In dynamic task
hierarchies, tasks are basically deactivated on one priority level and reactivated on another
level. In other words, a dynamic task hierarchy means dealing with unilateral constraints
to deliberately alter the order of priority. In both cases, the elements in the activation
matrix Ages(q) can be chosen as task-dependent, physical values, e.g. the distance to a
collision as exemplified in Fig. 4.9. For the treatment of singularities, one usually does
not have such intuitive values. The parameterization of the transition, e.g. via (4.68),
can then be specified by employing the actual singular values or the manipulability index
(3.55).

8 As stated in [BB04], a trimmed-down or reduced SVD is sufficient to compute the projector.
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4. Redundancy Resolution by Null Space Projections

4.5. Summary

Chapter 4 addressed the redundancy resolution for robots with multiple simultaneous
objectives and a large number of actuated degrees of freedom. It was demonstrated how
the reactive methods from Chapter 3 can be arranged in a hierarchy to yield a unified
framework for the control of the complete robot.

In Section 4.1 and Section 4.2, the concept of null space projections for priority-based
control was surveyed. Different types of implementation were compared from a theoretical
and experimental point of view. In the course of this analysis, the classical and widely
used dynamically consistent hierarchy was generalized. The solution allows to implement
a strict task hierarchy which ensures static and dynamic decoupling of all priority levels.
Furthermore, a new kind of null space projector was introduced, namely the so-called
stiffness-consistent projection. If the robot is designed with mechanical springs placed in
parallel to the joints, this new technique makes it possible to perform secondary tasks
without disturbing the main task which is executed by these mechanical springs.

The null space projectors were experimentally compared in Section 4.3. It turned out
that, once implemented on robots, the theoretically superior dynamically consistent re-
dundancy resolutions yield similar results as the theoretically inferior statically consistent
redundancy resolutions. Indeed, statically consistent null space projectors are numerically
less expensive and do not require an accurate model of the inertia matrix. Consequently,
these findings are of high relevance for robotics.

In Section 4.4, the concept of null space projections was enhanced by new features such
that the requirements of real-world applications are met, e. g. dynamic environments and
conflicting control goals. The proposed solution is able to deal with singular Jacobian
matrices, dynamic task hierarchies with online adaptation of the order of priority, and
unilateral constraints, which are activated and deactivated on the fly.

The outcome of Chapter 4 is a powerful whole-body control framework to realize various
control tasks in a hierarchical order. While the redundancy resolution is able deal with
various conditions and requirements, the aspect of stability has not been investigated yet.
That point will be addressed in Chapter 5.
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Figure 4.12.: Activation of a unilateral constraint with N/ .. = 30 in case of a n = 3 DOF
system simulation. The dynamics are designed with low damping to provoke
several penetrations of the transition area. The state of activation of the

primary task is given by 9 = myin(q), and the threshold is ¥9 = mg = 0.23.
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Figure 4.13.: Projection of the lower-priority task torques in the constraint space
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(b) t=1.2s

Figure 4.15.: Snapshots during experiment #1: Primary task is the self-collision avoidance
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between the hands. Secondary task is a six-DOF Cartesian impedance of the
right TCP. The trajectory (yellow line) with a total length of 0.8 m and a
maximum translational velocity of 0.6 m/s is realized within 2s.
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Figure 4.16.: Experiment #1: The secondary task is feasible at the goal location of the
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charts. The transition behavior is illustrated in the third graph. The mea-
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Figure 4.17.: Experiment #1: Comparison between original and filtered secondary task
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torques. For the differentiation, a low-pass filter with 20 Hz cut-off frequency

was applied. The ratio ro = || 75| /||72| indicates the ability to execute the
secondary task.
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Figure 4.18.: Experiment #2: The green circles represent the self-collision avoidance po-
tential fields of all considered contact point pairs (cppl, cpp2, and cpp3)
qualitatively. In the control, each contact point pair has its own field. The
transition interval and the potential field overlap.
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Figure 4.19.: Experiment #2: The secondary task (Cartesian impedance) is not executed
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completely due to the activation of the primary task (self-collision avoidance).
The contact point pairs (cpp) are defined as follows: cpp 1 (“right hand — left
hand”), cpp 2 (“right hand — left wrist”), cpp 3 (“right wrist — left hand”).
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collisions with the table 77%%7

Figure 4.20.: The robot avoids a collision with the table
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Figure 4.21.: Experiment #3: Different null space projections implemented on the hu-
manoid robot Rollin’ Justin. The primary task is a unilateral constraint
(collision avoidance), a Cartesian impedance serves as the secondary task.
Classical approaches (right) destabilize the system.

101






CHAPTER b

Stability Analysis

This chapter covers the aspect of stability in multi-objective whole-body impedance con-
trol. That involves both theoretical stability analyses and the experimental validation of
the developed concepts. The chapter is divided into two parts.

In Section 5.1, a humanoid robot with torque-controlled upper body and kinematically
controlled mobile base is considered. A whole-body impedance is structurally not imple-
mentable in a straightforward way due to the kinematically controlled platform. Therefore,
an admittance interface is utilized to provide a force-torque input. The objective in Sec-
tion 5.1 is to show stability of the solutions of the dynamic equations of the complete robot
[DBP*15, DBOAS14, Busl4]. In Section 5.2, the topic of multi-objective control is ad-
dressed for robots with force-torque interface. By means of null space projections, a strict
task hierarchy can be realized. The proof of asymptotic stability is the first of its kind for
a complex task hierarchy in torque control. Section 5.2 is based on [DOAS13, ODAS15].

The results of these two parts are complementary. The outcome of Section 5.1 is a stable,
wheeled manipulator which can be regarded as a robot with full force-torque interface,
where the null space of the main task is not defined yet and can be used for the execution
of additional tasks. Omne can resolve this kinematic redundancy by application of the
methods from Section 5.2. Asymptotic stability of the desired equilibrium is ensured.

5.1. Whole-Body Impedance with Kinematically Controlled
Platform

Mobile humanoid robots with torque-controlled upper body are predestined to be em-
ployed in service robotic environments since households (rooms, tools, geometries) are
optimized for humans, i.e. two-handed manipulation, human dimensions, and so forth.
Unsurprisingly, many complex service tasks have only been executed by wheeled robots
so far. Compared to legged humanoid robots, the advantage of most wheeled systems is
to focus on sophisticated manipulation skills without the necessity of making large efforts
for balancing and stabilizing the gait!. Based on these considerations, wheeled robots

!excluding mobile systems with less than three wheels such as Golem Krang [SOG10] or platforms based
on the Seqway technology.
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5. Stability Analysis

will probably occupy an important role in future service robotics and industrial applica-
tions. But a robotics control engineer who wants to implement a whole-body impedance
framework as sketched in Section 1.4 will face a structural problem: The nonholonomy
of the mobile platform requires handling the kinematic rolling constraints for consistent
locomotion. These constraints are usually treated by kinematic control of the mobile base
on position or velocity level. This is why the control engineer cannot directly access the
robot via the force or torque interface needed for impedance control. A solution to that
problem is to utilize an admittance interface (cf. Section 2.2.2) for the mobile platform.

However, experiments on Rollin’ Justin revealed that the whole-body impedance pa-
rameters and the platform admittance parameters have to be chosen very conservatively.
Instability results otherwise. This conservative parameterization significantly degrades the
performance of the method in turn. In Section 5.1, these stability issues are analyzed and a
control law is presented which leads to a passive closed loop. The convergence of the state
to an invariant set is shown with the help of the invariance principle. To prove asymptotic
stability in the case of redundancy, priority-based approaches can be employed. Experi-
ments on the humanoid robot Rollin’ Justin validate the approach. Section 5.1 is based
on [DBP*15, DBOAS14, Busl4] and the outcome can be used for complex manipulation
tasks with low-dimensional planning in the task space.

5.1.1. Subsystems

The velocity controller of the mobile base of Rollin’ Justin is briefly reviewed, followed by
a presentation of the admittance interface. These two subsystems are interconnected such
that their combination has a virtual force-torque input. Then the resulting equations of
motion are derived including the wheeled platform and the upper body dynamics. Finally,
the task space impedance controller is presented and the stability properties are discussed.
It is shown that, without modifications, the whole-body impedance results in an unstable
system.

Mobile Base Velocity Control

The dynamics (2.6) can also be formulated for robots with nonholonomic, wheeled mo-
bile platforms under kinematic rolling constraints. An undercarriage like the platform of
Rollin’ Justin is called “of type (1,2)” with a maneuverability of dimension d,, = 1, and a
steerability of dimension §; = 2 [CBDN96, SK08]. Analyzing such systems is a standard
issue in robotics and will not be covered here. The essence of an investigation of a type
(1,2) platform can be summarized as follows:

1. Although the base cannot change its direction of motion instantaneously, it is able
to move freely in the plane by adjusting the wheels (steering and propulsion) appro-
priately.

2. The mobile platform (of Rollin’ Justin) has three DOF for the overall motion, which
are: two translations in the plane, and the rotation about the vertical axis. The
respective coordinates are denoted r € R3. The variable leg lengths of the Rollin’
Justin platform (Section 3.2) are not considered here.

3. The platform is dynamically feedback linearizable. Giordano et al. [GFASH09] have
developed a motion controller which allows to command a desired trajectory 7qes(t).
An underlying high-gain wheel velocity controller is then employed to realize the
necessary wheel behavior (steering and propulsion).
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Disturbances (upper body dynamics,
platform dynamics, external forces)
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» Controller o Base
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Figure 5.1.: Control loop of the velocity controller for the mobile platform. The control
gains are very high in order to compensate for any disturbances.

In combination with such an underlying wheel velocity controller, one is able to realize
arbitrary desired trajectories in the coordinates r, while the kinematic rolling constraints
(Pfaffian constraints [SK08]) are complied with automatically. The corresponding control
structure is illustrated in Fig. 5.1. Herein, the block Velocity Controller includes both the
dynamic feedback linearization [GFASH09] and the underlying high-gain wheel velocity
controller. The signals w and w denote the wheel positions (steering and propulsion) and
wheel velocities, respectively. A major feature of the controller is that it compensates for
any disturbances thanks to the high gains in the wheel velocity loop. These disturbances
are primarily due to dynamic couplings between the upper body of the robot and the
mobile base. Moreover, external forces and torques as well as dynamic effects of the
platform itself (e.g. inertial forces) are compensated for.

Summarized, the sketched platform velocity control framework leads to the assumption
T & ges, While the desired trajectory r4es may be arbitrary, provided that it is sufficiently
smooth (twice differentiable).

Admittance Interface to the Mobile Base

The presented velocity control framework enables to command desired virtual base dynam-
ics which the platform is expected to realize. However, since the main goal is to implement
a whole-body impedance control law, a force-torque interface is required. Therefore, an
admittance is simulated with virtual platform inertia and virtual damping following

Madm'f'des + Dadmli'des = Trvir + Trext » (51)

where T, vir € R3 are the virtual forces and torques which can be used as the control input
employed by the whole-body impedance to generate the simulated velocity profile 7 ges.
The external forces and torques Ty ext € R3 can only be used in the admittance if the
platform is equipped with sensors such that 7, ¢y can be measured and fed back. If no
sensors are available, T, ox¢ has to be set to zero in (5.1) although external loads may exist
physically such that 7, # 0 actually holds. Note again that the underlying velocity
controller compensates for any disturbances, and the physically exerted T, ex; belongs to
this category. The parameters M 4., and D4, represent the virtual inertia and damping
in the admittance, respectively. A reasonable choice for these values is

Madm = diag(ml,adm7 M2 adm; m3,adm) ) (52)

Dadm = diag(dl,adma d2,adma d3,adm) ’

where M1 adm, M2 adm € R* describe the virtual platform mass, and M3 adm € RT is
the virtual moment of inertia. Usually one would choose m1 adm = M2 adm S0 that the
perceived mass is direction-independent. It seems natural to specify a decoupled damping
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to determine the positive definite matrix via d; aqm for 7 = 1...3, where di aqm = d2,adm-
A possible approach to select suitable gains is to consider the Laplace transform of (5.1),
which is a first-order low-pass filter:

KA
SRi,des<3> = Ts _7;_ 1 (Tr,i,vir(s) + Tr,i,ext) 5 (54)
7
1 MG adm
K, — T = e 5.9
‘ di,adm ‘ di,adm ( )

Here, R;des(s) is the Laplace transform of the i-th element in 7ges, v vir(s) and 7y ext
are the Laplace transforms of the i-th elements in 7 iy and T, ext, respectively. Based on
(5.5) the admittance simulation can be parameterized in a very intuitive way. First, one
chooses the inertia parameters m; sqm for i = 1...3, i. e. the inertia of the platform which is
supposed to be perceived. The second intuitive choice is the gain K; for¢ = 1...3, because
the whole-body impedance control framework will deliver maximum desired forces and
torques (down to the platform), and via K; the respective maximum admittance velocity
can be directly computed. This procedure allows to restrict the base velocities, e.g. for
safety purposes. Limiting the forces and torques in the whole-body impedance controller
ensures that the error between the actual and the desired TCP position/orientation does
not lead to infeasible control inputs due to saturation of the actuators.

Note again that the admittance (5.1) does not represent a real physical system but it is
only a simulated, desired dynamic behavior the platform is supposed to realize. In other
words, if the admittance mass m1 adm, M2,adm is set to 10kg, the platform of Rollin’ Justin
will behave like it only weighs 10 kg although its real mass amounts to about 150kg. The
active rescaling can be used advantageously to redistribute the apparent inertias so that
all body parts of the robot have comparable inertias in order to yield a more natural
whole-body behavior.

Overall Dynamics

Under the assumption 7 & 74¢s from above the dynamics can be formulated as

M ,qm 0 T D, qm 0 ) (T) ( 0 > <Tr Vir) <Tr ext>
.+ .+ = ’ + ’ . 5.6
< M, M qq) <q> < Co Cqo) \4 9q Tq Tq,ext (5:6)

The first line represents (5.1), while the second line describes the upper body dynamics
with joint configuration g € R"a for nq upper body joint variables. Herein, M is the
respective upper body joint inertia matrix, and M, is the inertia coupling to the mobile
base. Accordingly, Cy and Cgq denote the corresponding Coriolis/centrifugal terms. The
upper body gravity torques are contained in g, the torques 74 are considered as the
control inputs to the upper body, and T4 are the external forces related to the upper
body. Dependencies on the states are omitted in the notations of (5.6) for the sake of
simplicity. For later use, the vector
r
v=(7) 67)

is defined that describes the configuration of the robot. The mobile platform is only
represented by its Cartesian position 7, while the wheel positions and steering angles w
do not appear in (5.7), because they are states of the underlying platform control and
not relevant in terms of whole-body motions. Therefore, (5.7) is a reduced configuration
description, but it defines the actuated DOF which the whole-body impedance controller
will access. Before introducing the impedance law, the properties of (5.6) are summarized:
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5.1. Whole-Body Impedance with Kinematically Controlled Platform

1. A high-gain velocity controller is used to fulfill the rolling constraints and to realize
a desired admittance dynamics (5.1) for the mobile base. All disturbances, including
the dynamic couplings from the upper body, are assumed to be compensated properly
by this controller (cf. Fig. 5.1).

2. The term 7T, yir can be used as the control input for the mobile platform.
3. The term 74 can be used as the control input for the upper body joints.

4. The properties of the dynamics (5.1) do not comply with the standard rigid body
dynamics (2.6) any longer, e. g. the inertia matrix is not symmetric and the property
(2.7) cannot be concluded from (5.1) anymore.

Impedance Control in the Operational Space

A spatial impedance is designed in the operational space, e.g. the Cartesian space of
the TCP. The desired TCP behavior is implemented by applying the impedance to the
complete system so that overall compliance is achieved. The spatial error & € R™* in the
operational space is given by

z(y) = z(y) — Tdes , (5.8)
where ny is the dimension of the operational space (for Cartesian impedance: ny = 6),
x(y) describes the forward kinematics in world coordinates, and x4es is the desired TCP

position in world coordinates. The positive definite, virtual potential Vim,(Z(y)) represents
the spatial spring, which may be of the form

z(y) Ki(y) , (5.9)

N =

Vimp (®(y)) =

for example, with the positive definite stiffness matrix K € R™*"=, The gradient of the
spring potential and the upper body damping torques are:

N (aumgf@)))f’ | (5.10)

0
Tdamp — — <quq> . (511)

That yields the control input

Tr vir
< v t) = Timp + Tdamp - (5.12)
Tq

The damping matrix Dyq € R™ ™ must be positive definite. Damping is not applied
to the platform subsystem in (5.11) because an energy-dissipating term has already been
used in the admittance (5.1). The impedance torque Tinyp consists of nq elements related
to the upper body and n, = 3 elements related to the mobile base. The upper body
torques can be applied directly and commanded to the torque controllers in the respective
joints via 74. The elements in Tin, related to the platform are commanded as 7. iy in
the admittance (5.1).
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Table 5.1.: Parameters for the simulation of the mobile robot with three DOF

Parameter H Value ‘ Unit ‘

miy,ma,ms 1 kg

K 1 N/m

D diag(1,1) | kg/s
Virtual spring

Desired TCP

Actual TCP

OO
[SS S

Figure 5.2.: Linear simulation model with three DOF

Interaction between Torque-Controlled Upper Body and Admittance-Controlled
Platform at the Example of a Linear Three-DOF System

In the following, a mobile, linear system with three DOF is analyzed to demonstrate
the stability problems of (5.6) in combination with the whole-body impedance controller
(5.12). The manipulator is sketched in Fig. 5.2. The system parameters and the controller
gains are given in Table 5.1. The admittance parameterization varies.

Due to the linearity, the system stability can be analyzed based on the closed-loop poles.
For different parameterizations of the virtual platform mass m,qm, and damping d,qm, the
maximum real part of all eigenvalues is computed. The areas in Fig. 5.3 show when the
system is stable and when it is unstable. The reason behind the differences is the inertia
coupling M, from (5.6) between upper body and mobile base. When compensating for
M, stability is ensured for all reasonable parameterizations (madm > 0, daam > 0). In
such a case the dynamic parameters fulfill M > 0, D > 0 and all properties of (2.6).
In contrast, the resulting inertia matrix is not positive definite anymore in the case of
uncompensated M. Note that, although no Coriolis/centrifugal couplings between the
subsystems “upper body” and “platform” exist due to the use of prismatic joints, the
subsystems are always coupled via the spatial spring from the whole-body impedance.
That applies to both scenarios, i.e. Fig. 5.3a and Fig. 5.3b.

Albeit only analyzed for a simple linear system here, similar effects can be observed
on Rollin’ Justin during experiments. Note that on Rollin” Justin, one has Coriolis and
centrifugal couplings additionally, thus Cg; # 0.

5.1.2. Control Design

The inertia and Coriolis/centrifugal couplings between admittance-controlled mobile base
and torque-controlled upper body can destabilize the system. The compensation of these
couplings is proposed in combination with the impedance controller in the operational
space. Based on the insights from the analysis of the linear system, the inertia matrix
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Figure 5.3.: Stable and unstable closed-loop eigenvalues of the linear, mobile robot with
three DOF, depending on the admittance parameterization and the inertia
couplings. In all cases, no Coriolis/centrifugal terms exist due to the use of
prismatic joints (Cgr = 0).

ought to be decoupled such that it becomes symmetric again. Therefore, the impedance
control law (5.12) is extended by an additional compensation term:

Trvir
< v ) = Timp T Tdamp + Tcomp ; (5'13)
Tq
0
Toomp = (Mqr% + Cy + gq> ' (5:14)

The compensation action Tcomp is used to bring the dynamics into the standard form (2.6)
of the rigid robot dynamics such that the resulting inertia matrix is symmetric and positive
definite while (2.7) holds. The accelerations # do not have to be measured but they can
be directly taken from the admittance simulation (5.1) due to 7 ~ 74es. Therefore, one
can adopt

= M;dlm (Tr,vir + Trext — Dadm";des) . (5-15)

The controller implementation on the humanoid robot Rollin’ Justin is illustrated in
Fig. 5.4.

5.1.3. Proof of Stability

Now the dynamic equations take the form

M7+ CY+ DY = Timp + Trqext (5.16)
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Figure 5.4.: Whole-body impedance control with the humanoid robot Rollin” Justin. The
closed loop is passive w.r.t. the input 7,4 ext and the output ¢. The measured
upper body joint torques are denoted by Tmeas-

with
M = <M3dm N?qq) , (5.17)
- 8)
D= <ngm Dqu> , (5.19)
Trqext = qujt) . (5.20)

Storage Function
In the following, the stability of (5.16) is investigated. The continuously differentiable,

energy-like storage function

. 1., -

is used to conclude passivity and asymptotic stability. Its time derivative yields
V(ia y) = yTTrq,ext - yTDy . (522)

The beneficial result (5.22) is due to the control law (5.13). Sparing the compensation term
(5.14) yields a more complex term from which one cannot conclude stability properties
easily. Another reason behind the simple result (5.22) is the structure of (5.16). The
only configuration-dependent submatrix in M is M. Therefore, one can establish the

passivity property M = C + C" like in standard rigid body dynamics (2.7).
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5.1. Whole-Body Impedance with Kinematically Controlled Platform

Passivity of the Closed Loop

Using the storage function V (&, ) one can show strict output passivity of the closed loop
w.r.t. the input T.qcxt and the output 4. That can be concluded from (5.22) for positive
definite damping matrices D.

LaSalle’s Invariance Principle

LaSalle’s invariance principle can be applied for an undisturbed system (5.1‘6), i.e. for
Trqext = 0. Since V' (Z,y) is only negative semi-definite, the states satisfying V(z,9) =0
have to be investigated. For y = ¢ = 0 and Trq.ext = 0, (5.16) delivers

(W)T o, (5.23)

which only holds for (&,¥) = (0,0). Therefore, convergence to this equilibrium set can be
concluded.

Robot Setup and Control Task Integration

With the insights from above, different robot setups and task integrations have to be
distinguished: non-redundant robots, redundant robots where only damping is applied in
the null space of the operational space task according to (5.19), and redundant systems
where further tasks are applied in the null space of the operational space task.

Non-Redundant Robot: If ny = n, 4+ nq, the robot is non-redundant w.r.t. the opera-
tional space task and no null space exists. Asymptotic stability of the equilibrium can be
shown in the configuration space for the equilibrium (y*,y) with £(y*) = 0 and y = 0.

Redundant Robot with Null Space Damping: If ny < n, + ng, the robot is redundant
w.r.t. the operational space task and a null space exists. If the control law (5.13) is
applied, the overall damping matrix (5.19) is positive definite, i. e. the damping also covers
the null space of the operational space task. Passivity and convergence to the equilibrium
set (Z(y*),y) = (0,0) can be shown. The joint configuration y* cannot be determined
because the null space configuration is not unique.

Redundant Robot with Further Null Space Tasks: If ny < n.+nq, the robot is redundant
w.r.t. the operational space task and a null space exists. In order to properly define the
null space behavior on position level, priority-based control concepts can be applied. The
complete stability analysis of this case will be treated in Section 5.2. Asymptotic stability
of the equilibrium (y*,¥y) can be shown that way, and y* can be determined.

5.1.4. Experiments

The controller (5.13) is implemented and validated on Rollin’ Justin as sketched in Fig. 5.4.
The control gains are set according to Table 5.2, where the Cartesian stiffness matrix K
is split up into its translational part K., and rotational part K,,.. The upper body
damping matrix D is configuration-dependent and realizes damping ratios § = 0.7 w.r. t.
the Cartesian impedance via the Double Diagonalization approach [ASOFHO3]. The serial
kinematic chain “platform? - torso - right arm” is considered in the following. Furthermore,

2In the following experiments, only the forward/backward motion of the platform is allowed in order to
simplify the experimental evaluation.
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Table 5.2.: Controller parameters for the experiments on mobile impedance on Rollin’

Justin
’ Gain H Value ‘
M aam diag(7.5kg, 7.5kg, 2.5kgm?)
D.qm diag(24 kg/s, 24kg/s, 8kgm?/s)
K diag(1000 N /m, 1000 N /m, 1000 N /m)
Kot diag(100 Nm/rad, 100 Nm/rad, 100 Nm/rad)
Dyq D (M(q), Kira, Ko, £ = 0.7)

——Reference
— Compensation ON
—— Compensation OFF

TCP z-coordinate (forward) [m]

Time [s]

Figure 5.5.: Comparison of the TCP behavior in forward direction

an impedance in the torso is used to keep it within feasible regions in the body frame,
the self-collision avoidance from Section 3.1 is applied, and a singularity avoidance for the
arm is activated in the null space of the Cartesian impedance of the TCP to maximize the
manipulability.

In the first experiment, a continuous forward-rest-backward trajectory of length 0.3 m
is commanded to the right TCP. The transient spatial behavior of the TCP is shown in
Fig. 5.5. With compensation, a nice impedance behavior is achieved with small over-
shooting. The overshoot is due to two reasons: First, the damping ratio for the Cartesian
impedance is set to 0.7, cf. Table 5.2, which is a standard parameterization for this kind of
lightweight robot [ASOFHO03], that leads to fast response at the cost of small overshoots.
Second, the kinematic velocity controller of the mobile base is not ideal. The introduced
phase delay inevitably leads to slight uncertainties in the model such that the formulation
(5.6) does not perfectly match the real dynamics anymore. Without compensation, the
system oscillates significantly and takes a relatively long time to reach a steady state.
However, by applying the chosen parameterization, the system still remains stable, even
without compensation. If the admittance mass and damping is reduced, instability results
without compensation of the inertia and Coriolis/centrifugal couplings. Such a scenario
will be shown later.

In terms of the stability properties, the energy (5.21) is of high interest.> The top plot
in Fig. 5.6 depicts the kinetic energies based on the admittance inertia, which shows strong
oscillations without compensation of the inertia and Coriolis/centrifugal couplings. The

3The storage function (5.21) does not match the real physical energy due to the use of the admittance
inertia instead of the real one. An overall potential energy including the other subtasks is not meaningful
due to the null space projections as described in [DOAS13].
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Figure 5.6.: Kinetic energy, potential energy, and the sum of both for scenarios with and
without compensation. The kinetic energy is given by %yTM vy while the
potential energy is defined by Vimp(Z).

large extent cannot be observed in the TCP deviation because Fig. 5.5 does not cover
the null space motions. In contrast to that, the kinetic energy in Fig. 5.6 is influenced
by the null space behavior. The potential energy in (5.21) is depicted in the center chart
of Fig. 5.6. The sum of the kinetic energy and the potential energy is plotted in the
bottom diagram. The stability problems without compensation are distinct. In the case of
compensated inertia and Coriolis/centrifugal couplings, the total energy decreases quickly.
The behavior on joint level is depicted in Fig. 5.7 at the example of the second torso joint. It
shows the measured joint position, the joint velocity, the joint torque and the commanded
compensation torque. One can observe large differences in the motions depending on the
compensation term. That effect becomes even more relevant if one bears in mind that this
second torso axis is responsible for pitch motions and located directly above the mobile
base. Thus, only small motions in this joint have a massive impact on the TCP pose
due to the long lever arm. On joint torque level also large oscillations can be observed
in the case of uncompensated inertia and Coriolis/centrifugal couplings. On the contrary,
when these terms are compensated, only the inevitable peaks during the acceleration and
deceleration phase are noteworthy in the plot. The bottom right chart in Fig. 5.7 shows
the compensation torque in this specific joint.
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Figure 5.7.: Joint values and torques in the second torso joint. The axis of this joint lies
in the horizontal plane and is responsible for motions about the pitch axis.

In the next experiment, the compliance behavior is investigated for the same controller
parameters as before, cf. Table 5.2. A human disturbs the robot by moving the TCP
away from the desired equilibrium about 4cm, see Fig. 5.8 (top). During that time,
the mobile base starts to accelerate to compensate for the error, see Fig. 5.8 (center).
When abruptly releasing the end-effector again, the TCP error converges properly in
case of active compensation. If deactivated, massive oscillations can be observed in the
error plots. When comparing the base position, one can clearly see that the platform
changes its moving direction repeatedly, while it shows a proper behavior in case of active
compensation. With compensation, the coordination between upper body and mobile base
is reasonable: While the platform is still moving backwards (3s < ¢ < 8s) from about
r1 ~ 0.3m, the TCP error is already very small with less than 1 cm. Hence, the null space
is properly used to reconfigure the robot. Although the amplitude in the r;-coordinate
is smaller without compensation, one has to bear in mind that the platform alone weighs
about 150 kg and changing the direction of motion twice per second demands a lot from the
actuators and the power supply. The total energy (5.21) is plotted in Fig. 5.8 (bottom).
The short-time increase in the energy with compensation (1s < t < 1.5s) can be traced
back to the performance of the kinematic platform controller and the resulting model
uncertainties in (5.16).

In the last experiment, a critical set of admittance parameters is applied such that
instability occurs:

M .4 = diag(3kg, 3kg, lkng) , Daam = diag(21kg/s, 21 kg/s, 7kgm2/s) .

Keeping in mind the nominal platform mass of about 150kg, the velocity controller is
instructed to reduce the perceived inertia to only 2% of the original value. Moreover,
the platform has to accelerate and decelerate the upper body of about 45kg addition-
ally. Fig. 5.9 shows the experiment with active compensation of the inertia and Corio-
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Figure 5.8.: Physical human-robot interaction: The robot is disturbed during the marked
time period.

lis/centrifugal couplings. While the user is pulling the robot at the right end-effector, the
reactive whole-body controller is compensating for the introduced Cartesian TCP devia-
tion by moving backwards. After releasing the end-effector again, the virtual equilibrium
of the TCP is reached fast by exploiting the kinematic redundancy in the upper body.
The whole transient takes about 1.5s only.

Fig. 5.10 shows the same scenario without compensation of the dynamic couplings. Only
slightly touching the end-effector immediately destabilizes the system. Notice that within
only 1.5s, i.e. between Fig. 5.10 (a) and (d), the platform moves a great distance forward
(b) and backward (c), (d). At t = 1.5s, the operator uses the emergency stop device. Due
to the highly dynamic motion, the maximum permissible torque in the first horizontal
torso axis (pitch motion) of 230 Nm is reached.

5.1.5. Discussion

The controller shapes the overall dynamics by modifying the inertia matrix and the Cori-
olis/centrifugal terms. Does such an extensive intervention cause problems in terms of
robustness and availability of measurements? The control law requires model-based cal-
culations to cancel elements in the Coriolis/centrifugal matrix but only positions and ve-
locities are used in the feedback law. These signals are usually measured or the velocities
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X *X
.
(a) t=0s (b) t=0.5s
X X
»
(c)t=1s (d) t=1.5s

Figure 5.9.: Experiments with compensation of the dynamic couplings (5.14) for M yqm =
diag(3kg, 3kg, 1kgm?), D.gm = diag(21kg/s,21kg/s, Tkgm?/s). (green
cross: desired TCP position, red cross: actual TCP position, blue arrow:
qualitative platform velocity)

(a) t=0s

(c)t=1s (d)t=1.5s

Figure 5.10.: Experiments without compensation of the dynamic couplings (5.14) for
M g = diag(3kg, 3kg, 1kgm?), Daqn = diag(21kg/s,21kg/s, 7Tkgm?/s).
(green cross: desired TCP position, red cross: actual TCP position, blue
arrow: qualitative platform velocity)
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are derived by differentiating the positions w.r.t. time without jeopardizing the robust-
ness. The same applies to active damping (5.11). Modifying the inertia matrix requires
the availability of acceleration measurements. Here it is advantageous that the respective
term in (5.14) only requires the Cartesian base accelerations which can be directly taken
from the admittance simulation (5.1) without referring to additional measurements be-
cause of the assumption 7 ~ 7qes. If My was not cancelled and M qTr was inserted in the
upper right element of M, one would also obtain a symmetric inertia matrix and stability
can be shown. However, then the admittance would not feature the desired behavior (5.1),
and feedback of the upper body joint accelerations would be required in the control law.

In the stability analysis, it has been assumed that the platform velocity controller com-
pensates for any disturbances (cf. Fig. 5.1). The experiments on Rollin’ Justin revealed
that the velocity control [GFASH09] of the platform does not perform as desired due to
phase delays and amplitude errors. This inaccuracy leads to differences between the com-
puted dynamic model and the actual system dynamics. However, no stability problems
have been encountered during the experiments related to these model uncertainties. From
that perspective, the assumption is valid on Rollin’ Justin.

Another aspect of the implementation is the knowledge of the dynamic parameters
which are used in the feedback. The terms in (5.6) can be computed straightforwardly
by standard symbolic algebra programs and integrated in the real-time code. For the
evaluation of (5.6), the wheel dynamics are disregarded and the platform admittance
(achieved via the kinematic control) is assumed to be part of the actual dynamics.

The last aspect addresses the external forces and torques exerted on the mobile base. In
(5.1), they are used in the admittance simulation. To provide interaction compliance also
w.r.t. external forces and torques exerted on the platform, measurements are required. If
no sensors are available, this feedback is set to zero and exerted external loads will not
lead to compliant behavior in the platform. The velocity controller of the mobile base will
compensate for these disturbances as indicated in Fig. 5.1. Currently, Rollin’ Justin is not
equipped with such sensors in the platform.
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5.2. Multi-Objective Compliance Control

The Operational Space Formulation (OSF) by Khatib [Kha87] is probably the most popu-
lar technique for task space control. In the OSF, one can specify decoupled linear dynamics
on the main task level, which is similar to the feedback linearization approach in nonlinear
control theory. That enables to separately handle different simultaneous objectives. A dy-
namically consistent hierarchy among these tasks can be arranged by utilizing null space
projections as described in Chapter 4. However, a proof of stability for the complete robot
using the OSF is not known [NCM™108]. Early works on redundancy resolution involved
the augmentation of additional task coordinates [Bai85], but that led to new algorithmic
singularities® and inertial couplings. The extended task space approach was generalized
to compliant motion control by Peng and Adachi in [PA93].

If external forces act on the robot, it is necessary to consider them in the controller to get
a decoupled behavior also w.r. t. these loads. While forces and torques exerted on the end-
effector can usually be measured by a six-axis force-torque sensor, external loads acting in
the null space are more problematic and require observers or additional instrumentation.
Compliance controllers can be implemented without measurement of external forces if
the desired impedance is characterized by a desired compliance in terms of stiffness and
damping. In this case the desired inertia corresponds to the natural inertia of the robot.
Natale et al. [NSV99] extended a spatial Cartesian impedance controller by an additional
null space control action and showed asymptotic convergence of a null space velocity
error term. In the context of impedance control, the minimization of the quadratic norm
of a lower-priority impedance error in a two-level hierarchy has been treated in [PAW10].
Multi-objective whole-body compliance control concepts utilizing joint torque sensing have
recently been developed [DWASH12b, DWASH12a]. Several works in the literature also
address prioritized multi-task control at the kinematic level. Chiaverini [Chi97] proposed a
singularity-robust inverse kinematics for a simple hierarchy of two tasks. Antonelli [Ant09]
provided a proof of stability for prioritized closed-loop inverse kinematics. However, it
was limited to the kinematic case. Another issue in the context of hierarchy-based control
is the occurrence of discontinuities in the control law due to a change in the rank of
the Jacobian matrices or in the inequality constraints. Mansard et al. addressed these
issues in [MKKO09]. In [OKNO8], a stability analysis for a null space compliance controller
with a simple hierarchy of two priority levels has been presented. A primary Cartesian
task is inertially decoupled from a null space task by proper choice of coordinates, and
asymptotic stability is shown utilizing semi-definite Lyapunov functions. The dynamics
formulation is based on [Par99], where the primary task coordinates are augmented by
appropriate dynamically consistent null space velocities. As a result, the inertia matrix
of the error dynamics becomes block-diagonal which corresponds to the decoupling of
the kinetic energies on the involved priority levels. A similar dynamics relation was also
utilized by Oh [OCY98] for the implementation of an impedance controller. The stability
analysis, however, was limited to null space damping. The non-integrability of the null
space velocities represents a major obstacle for such a stability analysis [OKNOS].

Recently, Nakanishi et al. compared eight established OSF controllers from a theoretical
and empirical perspective [NCM™108]. Although exponential stability can be shown for
the main task, the authors state that “null space dynamics so far resist insightful general
analytical investigations (...) If stability could be proven for this family of operational space

4 Algorithmic singularities arise when lower-priority tasks and higher-priority tasks conflict with each
other, i. e. stacking their Jacobian matrices results in a matrix that does not have full row-rank.
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Figure 5.11.: Example of a task hierarchy with several objectives (left). A priority list
(right) weighs the importance of the involved tasks.

controllers, operational space control would be lifted to a more solid foundation”. Control
approaches for the tracking problem of redundant manipulators have been proposed lately,
which also enable a stability analysis of the null space error. The subtask convergence is
handled by a kinematic approach and the resulting joint velocity is utilized within a task
space controller such as [ZDWS04, SKVS12]. An extended OSF approach with stable
null space posture control was presented in [SPP13]. However, the limitation to posture
optimization in the null space limits the potential of that approach.

In this section, the work initiated in [OKNO08] is extended to hierarchies with an arbitrary
number of priority levels [DOAS13, ODAS15] as illustrated in Fig. 5.11. In [OKNO08], a null
space compliance controller was developed to decouple a high-priority task from a single
null space task. The first contribution of the concept presented here is the derivation of
a dynamics formulation which features a hierarchical decoupling between all tasks. Based
on this formulation, a compliance controller for all priority levels is implemented which
does not require feedback of external forces or inertia shaping. The second contribution is
the stability analysis of the closed-loop system via semi-definite Lyapunov functions. The
analysis is based on passivity theory and is made possible thanks to the specific dynamics
representation. It is the first proof of stability for a generic task hierarchy with an arbitrary
number of priority levels.

After a short introduction to the problem, the basic features of the approach by Ott et
al. [OKNO8]| are recapitulated in Section 5.2.2. Afterwards, the concept is extended to the
general case of a hierarchy with an arbitrary number of priority levels [DOAS13, ODAS15]
in Section 5.2.2. The control design is presented in Section 5.2.3. The stability analysis is
given in Section 5.2.4. The chapter closes with a validation by simulations and experiments
in Section 5.2.5 and the discussion on the stability properties in Section 5.2.6.

5.2.1. Problem Formulation
Definition of Multi-Objective Compliance Control

Based on the rigid body dynamics (2.6) for a generic n-DOF robot, a hierarchical dynamics
representation is derived. The total number of r task coordinate vectors is defined by the
mappings

zi=fi(q eR™ Vi, 1<i<r (5.24)
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These r tasks with the respective dimensions m; are arranged in a hierarchical order. The
priority levels are defined such that ¢ = 1 is top priority and i, < 4, implies that i, is
located higher in the priority list than ¢;. The mappings from joint velocities to task
velocities are given by the Jacobian matrices J;(q) € R™*" Vi, 1 <i<r:

&, =Ji(q)qg, Jilg) = a];i(q) : (5.25)

q

In the following analysis, all Jacobian matrices are assumed to be non-singular and con-
sequently of full row rank. The primary task ¢ = 1 has the dimension m; < n so that a
kinematic redundancy of n — m; DOF remains to accomplish subtasks in its null space.
The goal is a prioritized compliance control with a task hierarchy that complies with the
following conditions:

1. A task with lower priority ¢; may not disturb any task with higher priority i,, where
iq < ip. A low-priority task is executed in the null space of all higher-priority tasks.

2. A compliance control task can be described by a positive definite potential function
Vi(xi(q)) related to the task coordinate &;(q) = xi(q) — ®;des With the virtual
equilibrium «; 4es. The damping is specified by a positive definite damping matrix®
D; € RMixmi,

3. The dimension m,. of the lowest-level task may be larger than n — Z::_ll m; such that

the dimension n of the joint space is exceeded by the total dimension )., m; of all
tasks. A typical example of the lowest-level task is a joint level compliance.

Relation to the Operational Space Formulation

Prior to the presentation of the approach, several important properties of the OSF [Kha87]
are reviewed for which an extension to multiple prioritized tasks exists [SK05]. The dis-
cussion is mainly limited to the issue of inertia shaping related to the main task. A more
detailed analysis of different operational space concepts in kinematically redundant ma-
nipulators is provided in [NCM'08]. The control goal in the OSF is to obtain decoupled
dynamics in the main task space x1. In case of interaction control, i.e. in the presence of
external loads, the desired dynamics takes the form

A1 des®i + D1y + K1Z1 = Fyext (5.26)

where K1 € R"™>™ and Dy € R™*™ are the stiffness and damping matrices, re-
spectively, and Aj ges € R™*™ denotes the inertia matrix. Note that all of the three
matrices can be specified as desired, but A ges gets the additional subscript “des” because
A1(q) = (J1(q@)M(q)~'J1(g)") ! is already reserved for the unmodified (natural) opera-
tional space inertia in this chapter. The external force F' ext € R™! in (5.26) is related to
the main task and collocated to @1. For positioning tasks one usually chooses Aj ges = I
and removes the external force from the right hand side. It can easily be verified that the
desired dynamics (5.26) can be exactly achieved by the feedback linearization

T=C(q,0)q+9(q) + J1(q)" F1 + N2(q)72 (5.27)
Fi=—Ai(Q)A] L (D11 + K121) — A1(q)J1(q,§)q + (A1 (@A 3oy — D F 1 et
(5.28)

SDepending on the application, the damping matrix can be chosen constant or configuration-dependent
as long as it stays a positive definite matrix, see e.g. [ASOFHO03].
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where No(q)T2 is a dynamically consistent null space torque according to Section 4.2.2
which does not affect the main task dynamics (5.26). The control law uses feedback
of external forces. However, in the special case where Aj4es = A1(q), no feedback of
F o is required. In consequence of this compliance control using the natural inertia,
the closed-loop dynamics becomes nonlinear. The same issue related to force feedback
appears in the lower-priority tasks, which are implemented in the null space of J1(q) via
Ny(q)T2. If Ay ges # Ai1(q), the generalized external forces related to the subtasks need
to be measured as well, which implies that a measurement of the whole term T4yt becomes
necessary. While external forces and torques exerted on the end-effector can usually be
measured by a force-torque sensor at the tip, the measurement of all joint torques in a
redundant robot is often not directly available and must be implemented via additional
observers. Moreover, as highlighted in [NCM™08], due to the projection in the respective
null spaces, the task dynamics of the lower tasks cannot be analyzed independently from
each other which poses an obstacle for the stability analysis that has not been overcome
yet.

5.2.2. Hierarchical Dynamics Representation

The control approach to be presented later does not require the measurement of the
generalized external forces due to avoidance of inertia shaping by Ajges = A1(qg). It
utilizes a dynamics formulation in a new set of velocity coordinates, where the dynamics
of each hierarchy level are largely decoupled from all other levels. While a separation
of the inertial terms can be achieved by a pure change of coordinates, the decoupling
of centrifugal and Coriolis effects has to be performed by active control (Section 5.2.3).
First, the special case of only one null space task [OKNO8| is recapitulated. Second, the
generalization to multiple null space subtasks is presented as in [DOAS13]. Dynamic
consistency is preserved in both cases.

Hierarchy with Two Priority Levels

One can reformulate the rigid body dynamics (2.6) to decouple the main task dynamics
from the null space dynamics [OKNO08]. In [Bai85], Baillieul proposed additional task
coordinates to describe the complete dynamics. However, that choice leads to new algo-
rithmic singularities [Chi97]. Park et al. introduced n —m; null space velocity coordinates
vy = Ja(q)q in [PCY99]. This approach is followed and adapted here. The matrix Jo(q)
has to be chosen in a way such that the so-called extended Jacobian matrix J(q) € R™*",

defined by
(5;) = J@a= <§;EZD q, (5.29)

is non-singular. For consistency in the notations, v; € R™ and Ji(q) € R™*" have
been introduced with v; = &1 and J1(q) = J1(q). In general, the null space velocity vy
is non-integrable. In other words, compatible null space coordinates no(q) do not exist
such that Ja(q) = Ona(q)/0q holds. That fact is an obstacle for designing null space
compliance controllers [OKNO8]. In the analysis in Section 5.2.4, it will be shown that
the issue can be overcome by means of a theorem on semi-definite Lyapunov functions. A
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5. Stability Analysis

dynamically consistent null space projection according to Definition 4.2 is achieved by

T2(q) = (Z2(0)M(9) Z2(a)") ™ Z2(a)M(q) (5.30)

= (22(0™ ). (5.31)

where Z5(q) € R™2*" is a full-row-rank base of the null space of J1(q) that complies with
the condition J1(q)Z2(q)” = 0. For more details on the derivation, see [OKNOS8]. The
singular value decomposition (SVD) is one numerical method to compute such a matrix
Z5(q). But there also exist several analytical approaches such as [HV91, CW93]. Since,
by assumption, J1(q) also has full row rank, J(q) is invertible® and its inverse is given by

J(q) ' = (Ju@™M*, Z2(g)") = (Ju(@™MT, T2(@)™T) | (5.32)

where J1(q)™7 is the dynamically consistent inverse (cf. Section 4.2.2) given by

-1

Ji(@)Mt = M(q) ' J1(g)" (J1(@)M(q) *T1(a)7) (5.33)

With (5.29) and (5.32), the joint velocity ¢ can be expressed as a function of v; and va:

q = Jl(q)M+v1 + j2(q)M+v2 . (534)

By applying that coordinate transformation (on the basis of (2.6)), the dynamics can be
reformulated as

v N A = =
M) (31) +ut@a) (20) + Jl@) "o@ = T@ T (r ) . (539
The decoupled (i. e. block-diagonal) inertia matrix A(q) € R™*™ and the Coriolis/centrifugal
matrix pu(g,q) € R™™ are given by

A(q) = J(q) "M(q)J(q)~" = diag(A1(q), A2(q)) (5.36)
w(q,q) = A(q) (J_(q)M(q)‘lC?(q,Q) ~J(g.q)) J(@)", (5.37)
with
Ai(q) = (J1(@M(q) " T1(g)T) ", (5.38)
Ax(q) = Z2(q)M(q)Z2(q)" . (5.39)

Notice that the block-diagonal structure of A(q) is a result of utilizing the inertia matrix
when computing J2(q) in (5.31) [PCY99]. This specific form of the dynamics formulation
for a redundant manipulator using inertially decoupled null space velocity coordinates
is useful for the design of feedback controllers. While such a decoupling can also be
achieved by feedback linearization, e.g. in the OSF in Section 5.2.1, the controller design
in Section 5.2.3 aims at a passivity-based compliance controller which deliberately avoids
inertia shaping so that it can be implemented without measurement of external forces
acting on the robot.

5The proof can be found in [Ott08].
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5.2. Multi-Objective Compliance Control

Hierarchy with an Arbitrary Number of Priority Levels

In the preceding section, the whole null space of the primary task has been exploited
for the definition of the null space velocities vo. That procedure from [OKNO0S8] is now
extended to an arbitrary number of priority levels according to

vi=Ji(q)q Vi, 1<i<r (5.40)
with the invertible” extended Jacobian matrix
Cli J1(q)
]l =J(q)a= : q. (5.41)
Uy Jr(q)

The question arises how to partition the null space of J1(q) for the remaining subtasks.
In order to get a similar structure as (5.35) with a block-diagonal inertia matrix A(q), the
respective null space base matrices Z;(q) € R™*" Vi, 2 < ¢ < r and their related null
space Jacobian matrices have to be found such that the (equivalent) identities

Ji(@)M(q)" J;(e)" =0, (5.42)
Zi(q)M(q)Z;(q)" =0 (5.43)
hold for i # j. Eq. (5.42) states that J;(q) and J;(q) are orthogonal w.r.t. the metric
M(q)~* for i # j, while (5.43) says that Z;(q) and Z,(q) are orthogonal w. . t. the metric
M (q) for i # j. These conditions for dynamic decoupling are achieved by
Ji(q) = (Zi(@M(9)Zi(a)")  Zi(q)M(q)
—1
= (Zi(@™ )" (5.44)

-1

fori =1...r. In the following, an expression for Z;(q) is derived which generates the same
control action for each task force as the dynamically consistent projector IN;(q) € R"*"
from Section 4.2.2; which fulfills Definition 4.2 thanks to the generalized weighting matrix
(4.33).8 On each hierarchy level, the classical projector is given by

Nila) = I = T%a)" (<J?B%<q>)M+)T
=M(q)Y—1(q)" (Yi—1(@)M (@)Y i—1(q) )—1 Yii(a) (5.45)

)Y
with the augmented Jacobian matrix introduced in (4.10) that takes all tasks “down” to
level i — 1 into account. The null space base Y;_1(q) is obtained via SVD of J$"$(q):

J"(q) =Ui1(q)Si—1(@)Vi-1(q)" | (5.46)
Viilg) = (Xic1(@)", Yica(@)") (5.47)
Si—1(q) = (Zi-1(q),0) . (5.48)

All dimensions are listed in Table 5.3. The matrices U;_1(q) and V;_1(q) are orthonormal,
the rectangular diagonal matrix S;_1(g) contains the 3" _! m; singular values of J2"¢(q)
in its submatrix 3;_1(q). The range space of the augmented Jacobian matrix is defined
by X;—1(q) while its null space is determined by Y;_;(g). The null space base matrices

7A further discussion on this requirement will be given in Section 5.2.6. The proof of invertibility of J is
provided in Appendix C.2.

8To simplify the notations, the corresponding matrices are chosen according to the solution (4.29), i.e
Bx = M(q) and By = I, without loss of generality.
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5. Stability Analysis

Table 5.3.: Matrix dimensions in the SVD

’ Matrix ‘ Dimensions ‘
i—1 i—1
Ui 1(q) 23:1 mj X 23:1 m;

Null space task force space N/ NF; Joint torque space N

Figure 5.12.: Graphical interpretation of the dynamically consistent null space projection
(5.50) from operational space task force F; € Ng, C R™i to projected joint
torque 77 € N C R™ via the null space task force space Nyp, C R

Zi(q) and the null space Jacobian matrices J;(q) must fulfill
T (q)Zi(q)" =0, (5.49)

but they should only span the subspace of IN;(q) which can actually be used to execute
the subtask on level 7. Since the null space decomposition is not unique, an additional
condition must be imposed: A task force F; from level i mapped via J;(q)T Z;(q)J;(q)”
has to generate the same control action 7} as if mapped via Ni(q)Ji(q)T, i.e.

Ji(@)" Zi(q)Ji(@)" = Ni(q)Ji(q)" . (5.50)

Equation (5.50) closes the gap to the classical approach [Kha87]. An interpretation of
the left side is the successive mapping of a task force starting in the original space (5.25),
see Fig. 5.12. The task force is initially mapped onto the joint torque space via J;(q)”
as in a standard impedance control framework (Section 2.2.1). Afterwards, the resultant
joint torque is mapped onto a (dynamically consistent) null space task force space, which
is defined by the new, local null space directions Z;(q). In the third step, the obtained
dynamically consistent task force is mapped back in the joint torque space by the corre-
sponding transpose Jacobian matrix J;(q)7.

The solution for Z;(q) is

(J1(g)MH)T ifi=1
Zi(q) = Ji(q)M(q) 'Ni(q) ifl<i<r . (5.51)
erl(q) ifi=r
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T,
LYy

T . Jy(q)"
J3(q)”
Joint torque
SpaceNT\ o0 00000
down to
level r =6

Description:

---------------------------------

Figure 5.13.: Graphical interpretation of the null spaces for a hierarchy with » = 6 priority
levels. Note that IN1(g) = I, since the main task is not restricted.

The proof of (5.50) for (5.51) with (5.44) can be found in Appendix C.1. The presence of
Ji(q) (for 1 < i < r) is justified by the necessity of reducing the available null space to the
subspace which is really used on the considered level. That reduction is actually given by
Ji(q) itself. On the last level (i = r), such a reduction via J,(q) is not required anymore.
The complete, remaining null space Y,_1(q) can be directly applied as in the two-level
case [OKNO8]|. Although the main task ¢ = 1 is not constrained by any null spaces, Z1(q)
is introduced to unify the notations.

Fig. 5.13 depicts the null spaces obtained via (5.44) and (5.51). The figure illustrates the
results of the mappings in Fig. 5.12. The main task force F'; is mapped to the joint torque
space via J1(q)” as shown in the first picture in Fig. 5.13. The task torque Jo(q) F3
from level two (second picture), however, partially intersects the control torque of level
one. This area is prohibited to comply with the order of priority, that is, the main task
may not be disturbed. The null space projectors take that into account. One can see
that the dynamically consistent null space projector No(q) describes the complete null
space of the main task. The subspace defined by the projector jg(q)TZg(q) leads to the
same control input as INa(q), cf. (5.50), but it uses the additional information contained
in Ja(q) for a reduction to the subspace that can actually be used by the second-level
task. The third picture describes the analogous relations for the third-level task, and the
fourth picture illustrates the resulting, hierarchy-consistent distribution in the joint torque
space. Both N;(g) and J;(g)” Z;(q) lead to identical projected torques ¥ fori=1...r
(fourth picture), but J;(q) and Z;(q) additionally define the corresponding task velocities
v;, which describe the decoupled dynamics and are required for the proof of stability.

Similar to (5.32), the inverse of J(q) in the multi-level case is given by

J(q)t = (Zl(q)T, ,Zr(q)T) = (jl(q)M+, R _r(q)MJr) ) (5.52)

The proof of (5.52) can be found in Appendix C.2. The joint velocities can be expressed
as the sum of the task velocities and the null space velocities:

<

qg=>_ Ji(@™" v, . (5.53)
=1
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Robot
Dynamics

Task Execution
|-' Compensation
\; Cor./Centrifugal

Gravity Comp.

Figure 5.14.: Signal flow chart of the closed loop with controller (5.58).

A

Applying the coordinate transformation leads to the reformulated dynamic equations

A(q)v + p(g. q)v + J(q) "gla) = J(@) " (T + Text) (5.54)

of the general case with an arbitrary number of priority levels. The velocity vector v € R"
is defined as v = (v7,...,v1)T. The block-diagonal inertia matrix A(q) and the fully

T

coupled Coriolis/centrifugal matrix p(q, q) are given by

A(q) =J(q) "M(q)J(q)"" = diag (A1(q),...,Ar(q)) , (5.55)
Ai(q) = Z,MZ] (5.56)
n(q,q) = A(q) (J_(Q)M(q)*lC(q, q) — j(q,Q)) J(g)~". (5.57)

The proof of the block-diagonality of A(qg) can be found in Appendix C.3. Summarized,
the dynamics representation in the particular form (5.54) is a generalization of (5.35) to
a prioritized stack of tasks.

5.2.3. Control Design

The design aims at a compliance control on all hierarchy levels, where the measurement
of the external forces is not required. However, keeping the natural inertia leads to a
nonlinear closed-loop behavior. In the following, the control actions for the subtasks will
be projected in the respective null spaces according to the partially decoupled system
dynamics (5.54). To prove stability, an additional feedback term is needed which brings
the Coriolis/centrifugal matrix into a block-diagonal form. The control law is given by

=Y P +7,+9(q) (5.58)
=1

and contains the projected control actions 7] to 7F for the compliance control on all
hierarchy levels?, a compensation of Coriolis and centrifugal couplings T, and a gravity
compensation term g(q). The components of the control action will be specified in the
following. The signal flow chart in Fig. 5.14 depicts the closed loop.

9Note that the superscript “p” is also used for the main task with 70 = 71 to unify the notations.
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5.2. Multi-Objective Compliance Control

Task Execution

The control input for task execution on all hierarchy levels (1 <i <r) is

(2 )\ L
TP = —ji(q)TZi(q)Ji(q)T< (%;Z)) + Di:bz) . (5.59)

F;

Note that for i = 1, (5.59) simplifies due to J1(q)T Z1(q)J1(q)" = J1(q)T. The op-
erational space force F; € N, is depicted in Fig. 5.12. The damping matrices D; are
positive definite and optionally configuration-dependent. The stability of this intuitive
null space control law alone is not evident indeed. As a result of the null space projections
via J;(q)T Z;(q), the projected control torque does not represent a passive feedback action
in general. This disadvantageous property is shared by all redundancy resolutions based
on null space projections.

Power-Conserving Cancellation of Coriolis and Centrifugal Couplings

While the inertia matrix A(q) is already in block-diagonal form in (5.54), (g, q) is still
fully occupied. Therefore, Coriolis and centrifugal couplings have to be compensated for,
i.e. the off-blockdiagonal entries in p(q,q). That is achieved by the feedback term

r i—1 T
7j=1

i=1 j=i+1

Herein p, ;(q,q) € R™*™i denotes the submatrix of u(q,q) which is located in row
block ¢ and column block j. The reason for introducing (5.60) instead of cancelling the
complete term p(g,q) is that any Lyapunov-based stability analysis incorporating the
kinetic energy will inevitably produce A(q, q) in the time derivative of the energy storage
function. The cancellation of this term A(q,(j) is usually conducted by the respective
Coriolis/centrifugal term due to A(q, q) = u(q,q) + u(q,q)", cf. (2.7). For decoupled
dynamics, the off-blockdiagonal task couplings in p(q, ) have to be annihilated in (5.54),
but while preserving this passivity property related to the individual tasks, i.e. the can-
cellation Ay(q, q) — i i(a,q) — i ;(q,q)" = 0 must be ensured in the time derivative of
the storage function. Both can be achieved simultaneously by (5.60).

The feedback action T, is power-conserving because the transmitted power P, = qu is
always zero. That is due to the skew symmetry ,um(q7 q) = —,um'(q, ('J)T. This feature is
very useful from a robustness point of view, since it is independent of parameter uncertain-
ties in the model. While the dynamic effects related to p(q, q) are of minor importance
in practice for small to medium velocities, the feedback compensation (5.60) is required
for the proof of stability in Section 5.2.4.

Closed-Loop Dynamics

In compliance control, the effect of the external forces and torques is of high interest.
Since the augmented Jacobian matrix is non-singular, the term 7oy can be replaced by
the components F'; oxy € R™ for ¢ = 1...r related to the individual priority levels such
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5. Stability Analysis

that the following relation holds:

T =J(@7 [ 1 |- (5.61)
Fr,ext

Applying (5.58) finally yields the closed-loop dynamics

2\ L
Ai(a)¥i + puis(a Q)i + Zila)Ti(a)" (@gy) " Dm> “Fiw (66

for 1 < i < r with Z1(q)J1(q)T = I. The change of the kinetic energy associated
with each priority level only depends on the dynamics on this level. This is a direct
consequence of (5.60). Note that the intuitive choice S = FvTAv + Y7, Vi(&;) does
not represent a storage function of the closed-loop system due to consequences of the null
space projections.

5.2.4. Proof of Stability

The dependencies on g are omitted in the notations for the sake of simplicity.

Proposition 5.1. Consider the system (5.54) with the control law (5.58). The potential
functions Vi(x;) for i = 1...r are positive definite w.r.t. &; and positive semi-definite
w. . t. q. The damping matrices D; for i =1...r are positive definite. Then the closed-
loop system is strictly output passive w.r.t. the input F'1cx and the output 1. Suppose
also that the Jacobian matrices J; for i = 1...r are of full row rank in the considered
workspace, and J is non-singular. The equilibrium (q*,0), with q* being the hierarchy-
consistent, constrained local minimum of all V;, is asymptotically stable for the case of free
motion Text = 0.

The proof is based on semi-definite Lyapunov functions [IKO96] and conditional stability
(see Appendix D.2). Additionally, the following theorem will be applied iteratively in the
proof of stability.

Theorem 5.1. [vdS00] Let the system

z2=g,(2) +9:(2)u ,

y =h(z)
with state z € R™, input uw € R™, and output y € R™ be strictly output passive for
the output y = h(z). Let further A be the largest positively invariant set contained in

{z € R"|h(z) = 0}. If the equilibrium z* is asymptotically stable conditionally to A, then
it is asymptotically stable for u = 0.

In the proof of Proposition 5.1, several nested sets are used that represent the priority-
consistent accomplishment of all involved tasks in the hierarchy. For the case of free motion
(F1ext = 0), the largest positively invariant set contained in (g, v1 = 0,v2,...,v,) is

Ay = {(q,v1 =0,vo,... ,Ur)\f1(¢I) = w1,des} .
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5.2. Multi-Objective Compliance Control

Figure 5.15.: Graphical interpretation of the sets used in the proof of stability. The largest
set Ay represents the complete state space (g, q). Each overlying set A; is a
subset of A;_1 forall 1 <¢<pr—1.

This set contains all system states where the first priority task has already been com-
pleted successfully. Now one can recursively define more sets to represent the additional
accomplishment of the lower-priority tasks:

~ T
Ai = Aiq ﬂ {'vi =0, Z;J7 <3‘g:(;81)> = 0} (5.63)

fori=2...r—1. All sets are illustrated in Fig. 5.15 and describe the successive restriction
to smaller subsets. The proof of asymptotic stability of the equilibrium (¢ = ¢*,v = 0) is
based on the positive semi-definite storage functions

1
S; = §U;TFAW¢ + Vi(x;) (5.64)

for all priority levels ¢ = 1...r. Using the property A; = M+ u;fl one can show that the
time derivative of S; along the solutions of the closed-loop system yields

: oVi@)\" | [OVi(@) , .
S5 = 0T Fy o — 0 Z,d T Didig — o7 2,07 (5@ (V@)Y 7 565
’ 6:101 8$Z
Within the set A;_1, the simplification
Jig=J,Z 'v; Y(q,v) € Ay (5.66)

holds thanks to (5.52) and (5.53) and the following two arguments: First, all contribu-
tions v; from higher-priority tasks (j < 4) vanish due to the restriction to the set A;_;.
Second, all contributions in ¢ that refer to lower-priority tasks (k > i) vanish due to the
orthogonality J;Z} = 0. Hence, (5.65) yields

i = 0! Fioxy —v! Z;:JI DI, ZTv; Y(g,v) € Ai . (5.67)
<0

Proof. The line of argumentation starts in the set A,_1, i.e. all tasks but the lowest-
priority task are assumed to be accomplished already as illustrated in Fig. 5.15. Now
consider (5.64) and (5.67) for ¢ = r. From (5.67) one can conclude conditional stability
w.r.t. the set A,_; for the case of free motion F', oyt = 0. According to LaSalle’s invariance
principle, the state converges to the largest positively invariant set contained in A,_1 where
v, = 0. By investigating (5.62) one can see that this set requires
r (OVi(@:)\"
Z;J; < 0z, ) =0 (5.68)
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0.2
— Cartesian error in x (level 1) 0.2 — Rotational error (level 2)
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Figure 5.16.: Simulation #1: The errors in the operational spaces of the hierarchy levels
converge to zero. Initial and goal values are summarized in Table 5.4.

for all levels ¢ = 1...r. If the tasks partially conflict with each other, a constrained
local minimum g¢* is reached which complies with the order of priority.!® Although
OVi(x;)/0x; # 0 on at least one level ¢, (5.68) is fulfilled due to the annihilation via Z;.
The interpretation of (5.68) is that it constitutes the condition for static consistency as
defined in Definition 4.1. One can conclude asymptotic stability of (g*,0) conditionally
to the set A,_1.

Now Theorem 5.1 can be applied within the set A,_ for A = A,_1, u = F;_] ext, and
y = v,_1. Strict output passivity is given by (5.67) for i = r — 1, and asymptotic stability
conditionally to A,_; has already been shown. That allows to conclude asymptotic sta-
bility of (g*,0) for F,_j cxt = 0. Note again that this conclusion is only valid within the
set A,_o, thus is it also of conditional stability nature only.

As of now, Theorem 5.1 can be iteratively applied, beginning within the set A,_3 for
A=A _9,u=F,_9ex,and y = v,_2,1.e. i =r—21n (5.67). In each iteration step, one
can conclude strict output passivity with (5.67). Together with the conditional asymptotic
stability obtained in the previous iteration step, Theorem 5.1 allows to conclude asymptotic
stability of (g*,0) conditionally to A,_3 for the case of free motion F',_3 ¢ = 0. This
iterative application of Theorem 5.1 can be performed straightforwardly up to the main
task level. There, the conditional stability w.r.t. the set A;, together with the passivity
property of the main task, proves asymptotic stability of (g*, 0) for the case of free motion.
The strict output passivity claimed in Proposition 5.1 has been used in this last step of
the proof and can be verified by evaluating (5.67) for ¢ = 1. O

5.2.5. Simulations and Experiments

Three simulations on a planar n = 4 DOF system and two experiments on Rollin’ Justin
are conducted to validate the decoupling, the stability properties, the performance in case
of model uncertainties, and the practical influence of 7.

A schematic representation of the simulated dynamic system is given in Fig. 4.1. The
task hierarchy in Table 5.4 is applied, and the controller gains are specified in Table 5.5.
The approach is evaluated for step responses on all hierarchy levels.

Simulation #1: Decoupling

In simulation #1, the damping is set very high and the task execution as well as the
decoupling quality are analyzed. The errors in the operational space are provided in
Fig. 5.16. They all converge to zero within less than 0.5s. The corresponding control

107f the tasks do not even statically conflict with each other at all, then g* is actually the global minimum
of all V;. In that case, (5.68) is fulfilled because OV;(&;)/dx; = 0 Vi.
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Figure 5.17.: Simulation #1: Contributions of the control input (left) and disturbing ac-
celerations on the levels induced by the control inputs of the other levels
(right). The hierarchy is dynamically consistent.
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Figure 5.18.: Simulation #2: errors (left) and energies (right) on the three priority levels.
The successive convergence concluded in the proof of stability can be seen.
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Table 5.4.: Initial conditions and desired values for the simulations

Priority Description ‘ Task var. ‘ Initial val. | Goal val.
Level 1 | translational compliance TCP v of TCP 0.84m 0.90m
y of TCP 0.96 m 0.80m

Level 2 | rotational compliance TCP Z?Zl q; -1.37rad -1.57rad
Level 3 | joint compliance first joint q, 0.40rad 0.35rad

Table 5.5.: Controller parameterization for the simulations

Priority ‘ Gain ‘ Unit H Simulation #1 ‘ Simulation #2 ‘ Simulation #3 ‘

tevel 1 | E1 | X[l diag(1000,1000) | diag(500,500) | diag(500,500)

D, | diag(40, 40) diag(30, 30) diag(30, 30)
Level 2 K 1\1;%11 800 600 600

D, | Nms 5 15 1.5
Level 3 |13 I\%ﬂl‘ 2400 600 600

D; | Nms 15 15 1.5

torques on the three levels are depicted in Fig. 5.17 (left). After solving the dynamics
(5.62) for the accelerations, one can evaluate the undesired effects induced by active control
on the other priority levels as plotted in Fig. 5.17 (right). Dynamic consistency is achieved
due to the decoupling, a strict hierarchy realized.

Simulation #2: Stability Properties

In simulation #2, the damping is set very low in order to demonstrate the stability prop-
erties without eliminating undesired (velocity-dependent) effects by energy dissipation
through damping injection. Fig. 5.18 (left) shows the errors on all three levels. The main
task is undisturbed and converges. At about ¢ = 0.4s, the primary task error is almost
zero (top) and it is not affected by the remaining null space motions (bottom). The latter
require a longer time to get into a steady state at zero. The corresponding energies are
plotted in Fig. 5.18 (right). In accordance to the primary task error, the total energy
related to the main task tends to zero before convergence on the lower-priority levels can
be observed. The center chart and the bottom chart illustrate the energy contributions on
the two null space levels. The total energies on level two and level three do not monoton-
ically decrease. That complies with the stability properties due to conditional stability.
In consideration of the fact that the total energy of the highest-priority task requires 0.2s
to reach “almost” zero, the behavior on level two is as expected. After t = 0.2, the total
energy on level two monotonically decreases. The same applies to the third level w.r.t.
the second level after about t = 0.4s. The stability analysis implies a monotonically
decreasing energy as soon as the second level is converged.
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Figure 5.19.: Simulation #3: Instantaneous acceleration errors in the operational space
induced by the level three torques. These undesired couplings occur because
the inertia matrix used in the controller does not match the real one.
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Figure 5.20.: Simulation #3: Errors on the three priority levels. Although the inertia
matrix used in the controller significantly differs from the actual one, the
transient behavior resembles the undisturbed case in Fig. 5.18.

Simulation #3: Model Uncertainties

Decoupled dynamics as formulated in (5.62) can only be preserved if the null space projec-
tors J;(q)” Z;(q) are dynamically consistent according to Definition 4.2, i.e. the model-
based inertia matrix used in the control design perfectly matches the one of the actual
dynamics. Simulation #3 addresses the robustness of the proposed controller under mod-
eling uncertainties. The parameters are taken from Table 5.4 and Table 5.5 again, but
the assumed inertia in the controller differs in a way such that the first two link masses
have been reduced by 10 %, and the last two link masses have been increased by 10 %.
Additionally, each point mass has been shifted by 5cm (closer to the TCP). Due to the
error in the inertia matrix, a full decoupling cannot be achieved, and the control torques
from each level lead to acceleration errors on the remaining hierarchy levels. Fig. 5.19
demonstrates the influence of the level three task onto the other tasks. The acceleration
errors in the operational spaces of the respective task levels are plotted. Note that there
also exists an effect from the level two control input onto level one and level three as well as
an effect from the main task control input onto the two lower-priority levels. However, the
closed-loop system is still robust with respect to disturbances in the model. To emphasize
that statement, the control errors for simulation #3 are depicted in Fig. 5.20. Despite the
large interferences, the transient behavior coincides well with the case study with undis-
turbed inertia matrix before. It goes without saying that this simulation cannot assess
the robustness of the approach in general. But the behavior indicates a certain degree of
robustness. The following experiments on Rollin” Justin confirm that conclusion.
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Table 5.6.: Controller parameterization for the experiments

Priority | Gain | Value [ Unit |

i N

Level 1 |1 diag(1200, 1200, 1200) m
3 (0.9, 0.9, 0.9) _

i Nim

Level 2 Ky diag(30, 30, 30) s
& (0.9, 0.9, 0.9) _

I Nm

Lovel 3 | K3 | diag(10, 10, 10, 10, 10, 10, 10) |

Ds diag(3, 3, 3, 3, 3, 3, 3) {in.5

Experiment #1: Performance on Rollin’ Justin

The controller is implemented on the arm of Rollin” Justin with seven actuated DOF and
a task hierarchy with three priority levels. The main task is a translational Cartesian
compliance at the TCP. On level two, the orientation of the TCP is assigned with a spec-
ified impedance behavior. Lowest priority is given to a joint compliance of the whole arm
with fixed equilibrium configuration. The parameterization of the controller is provided
in Table 5.6. Note that the damping factors &; and &, determine the positive definite
damping matrices D;(q) and D2(q). The damping matrices are computed via the Double
Diagonalization approach by assigning a desired mass-spring-damper relation taking into
account the reflected inertias and the stiffness matrices [ASOFHO3]. The step responses
are analyzed in the following. Both the desired equilibria of the first and the second level
task are switched at ¢ = 0.1s. The desired equilibrium of the third level task is kept
constant. Hence, the final steady state is not compatible with all tasks simultaneously.
There exists a joint configuration g* that fulfills @; ges = f;(q*) for ¢ = 1,2, but there is
no configuration g* that complies with @;ges = f;(g*) for i = 1,2,3. The configuration
converges to a constrained local minimum of the level three task. Intuitively, the controller
approaches an overall equilibrium that complies with the order of priority and completes
the tasks on level one and two, and it will execute the task on level three in the best
possible way.

The storage functions (5.64) for all levels are plotted in Fig. 5.21 (left). The main task
can be completed undisturbed. In Fig. 5.21 (right) one can see that the time derivative of
S1 is always lower than or equal to zero after the step. The energy on level two asymptoti-
cally converges to zero but it temporarily increases during 0.3s < ¢t < 0.4s. This behavior
is consistent with the stability properties established before. The subordinate task on the
third level cannot be accomplished at all. However, the remaining one-dimensional null
space of the Cartesian TCP impedances allows to reach a constrained local minimum,
which can be observed in the steady state behavior for ¢ — oo. The operational space
errors are depicted in Fig. 5.22. For the sake of simplicity, the three translational errors are
summarized in the total Euclidean error. Likewise, the error on level two represents the
absolute angle between actual and desired TCP frame. The error on level three describes
the unitless Euclidean norm of the vector of the joint errors. The steady-state errors on
the first two levels result from uncompensated friction and model uncertainties. Bear in
mind that the fundamental structure of the compliance controller basically constitutes a
PD controller, cf. Section 2.2.1.
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Figure 5.21.: Experiment #1: storage functions and their time derivatives on the three
priority levels
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Figure 5.22.: Experiment #1: errors on the three priority levels

Experiment #2: Practical Influence of the Coriolis/Centrifugal Couplings

The previous experiment is repeated without the compensation of the Coriolis/centrifugal
couplings in order to investigate the practical influence of (5.60). Fig. 5.23 depicts the
storage functions for active (7, # 0, identical to Fig. 5.21) and inactive (7, = 0) cancel-
lation. The behaviors are very similar. Numerous runs revealed that the deviations can
be hardly traced back to the term 7,. To support that statement, the control torques can
be consulted. The torque on level one, for example, attains a maximum value of about
28.4Nm. In contrast, the maximum torque in 7, is less than 1.8 Nm. Although essential
for the proof of stability, the practical influence of the compensation is very limited.

5.2.6. Discussion

The iterative application of Theorem 5.1 in the proof of stability can be interpreted as
a sequential convergence of the different tasks according to their priority levels. Against
intuition, Theorem 5.1 does mot require finite time for reaching A in order to conclude
asymptotic stability. Therefore, concluding asymptotic stability by iteratively applying it
does not involve any successive finite time convergence.

In addition to asymptotic stability, the line of argumentation allows a hierarchical pas-
sivity statement:

Proposition 5.2. Consider the closed-loop system (5.62) with positive definite potential
functions Vj(x;) ¥j = 1...r. Under the assumption that all external forces F exy Vk < i
are zero, then the system is strictly output passive conditionally to A;_1 w.r.t. the input
F; ot and the output v;.

The definition of strict output passivity conditionally to a set is given in Appendix D.1.
One can even state that the higher-priority tasks do not necessarily need to reach the de-
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Figure 5.23.: Experiment #2: Direct comparison between active (7, # 0) and inactive
(T, = 0) cancellation of Coriolis and centrifugal couplings. The influence of
the compensation is very small in the considered setup.

Table 5.7.: Stability properties and comparison with OSF

| Attribute | Operational Space Formulation | Current approach

Controller type || tracking (feedback linearization) compliance

Stability exponential stability on first level, asymptotic stability,
null space behavior unclear successive convergence,
[INCMT08] passivity-based

Advantages (+), || - external force measurements +no external force measurements

drawbacks (-) -null space dynamics unclear +stability includes null space
+tracking performance -no tracking

Limitations external forces in null space difficult | proof of stability only valid for reg-

in application to acquire ulation case, not for tracking

Qualification trajectory tracking interaction tasks

sired, hierarchy-consistent equilibrium positions; any steady-state configuration (reached
for a given static disturbance) is sufficient to conclude conditional strict output passivity.

The matrix J in (5.41) is assumed to be non-singular. Although many techniques exist
to deal with singularities [CK95, MRC09, DWASH12a], the integration of these concepts
in a closed-loop stability analysis has not been conducted yet and is topic of current
research efforts. Nevertheless, a specific case of singularity can be dealt with here: If two
or more tasks are always in conflict, e.g. their task directions are identical but they are
placed on different levels in the hierarchy, that issue can be solved by eliminating these
task directions from the lower-priority levels via appropriate preprocessing.

A detailed comparison between classical force-based operational space controllers (based
on the OSF [Kha87]) and the approach presented here is drawn in Table 5.7. Concern-
ing stability, the classical approaches provide exponential convergence on the first level.
However, as stated by Nakanishi et al. [NCM108], a formal stability statement for all
lower levels is not known so far. The authors summarize “the exact behavior of the null
space dynamics cannot be determined easily (...) This difficulty of understanding the null
space stability properties is, however, a problem that is shared by all operational space con-
trollers. So far, only empirical evaluations can help to assess the null space robustness”.
Here, asymptotic stability is shown by means of passivity theory and a conditional sta-
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bility theorem. Moreover, the approach does not require feedback of the external forces
and torques. The major restriction of the feedback of external forces and torques in the
classical approaches has already been analyzed [PAW10, OKNO08], and it poses problems
in terms of robustness and availability of measurements. In conclusion, one can say that
the classical feedback linearization is well suited for trajectory execution without contacts,
i.e. external forces and torques do not have to be taken into account. The approach pro-
posed here is better suited for contacts and interaction tasks where physical compliance is
needed. Stability statements can be given for the overall system and the passivity features
qualify for interactions in dynamic and unknown environments.

Another class of hierarchy-based approaches are the concepts by Mansard et al. [Man12,
MKKO09]. Compared to the approach presented here, they formulate an explicit QP
(quadratic programming) problem with kinematic tasks to be solved numerically. The
major advantages are that inequality constraints can be directly incorporated in the op-
timization problem and singularities can also be dealt with. But one has to compute the
complete inverse dynamics, external interaction forces and torques are not considered, and
a stability analysis has not been conducted yet.

5.3. Summary

The stability of the whole-body controller for wheeled humanoid robots was investigated
in Chapter 5. To this end, two self-contained stability analyses had to be performed, which
were then combined to one unified framework.

The first stability analysis referred to the case of a torque-controlled upper body which
is mounted on a kinematically controlled mobile base. Since the mobile platform is only
able to realize motions instead of forces and torques, the goal of Section 5.1 was to provide
the means for an overall force-torque-based impedance controller. An admittance interface
to the mobile base was utilized, and by modification of the dynamic couplings between
the subsystems, the overall dynamics could be altered such that asymptotic stability of
the desired equilibrium could be shown. The results of Section 5.1 can be interpreted as
a fully torque-controlled wheeled robot with proven stability and undefined null space.

The second stability analysis in Section 5.2 referred to a generic torque-controlled robot
with multiple simultaneous objectives. In this respect, it addressed the priority-based
redundancy resolution from Chapter 4. The main result of Section 5.2 is the proof of
stability for a task hierarchy with an arbitrary number of priority levels. A new repre-
sentation of the equations of motion considering the hierarchical dynamics was presented.
This formulation in combination with the theory of conditional stability made it possible
to conclude asymptotic stability of the equilibrium and passivity properties.

The outcome of Section 5.1, that is a wheeled humanoid robot with overall force-torque
interface, proven stability, but undefined null space behavior, can be used in combination
with the generic multi-objective control in Section 5.2 to define this null space. Then the
stability analysis in Section 5.2 applies to the complete mobile humanoid robot.
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CHAPTER O

Whole-Body Coordination

As aresult of intensive research over the last decades, several robotic systems are approach-
ing a level of maturity that allows robust task execution and safe interaction with humans
and the environment. Beside humanoid robots such as ASIMO [SWA'02], Robonaut 2
[DMA*11], or HRP-4 [KKM™11], a variety of wheeled systems has been developed, e. g.
Rollin’ Justin [BWST09], ARMAR-IIT [ARST06], TWENDY-ONE [IS09], PR2 [BRJ"11].
Regardless of the specific structure of the system, the requirement of handling several
objectives simultaneously is a common property for robotic applications in these dynamic
and often unstructured environments. The features range from precise task execution,
collision avoidance, and the compliance with physical constraints, to objectives such as
maintaining the manipulability or the realization of desired postures.

Based on Khatib’s Operational Space Formulation [Kha87], many different methods
have been developed for planning and reactive control of such systems [BKV02, KSPW04,
SK05, SGJG10, NKS*10, BHG10, HOD10, DWAS11, DWASH12b, SRK*13, LVYK13].
Due to the large number of approaches, details of the individual concepts are not pre-
sented here. Nevertheless, some basic tendencies can be pointed out: The majority of the
approaches rest upon the design of artificial repulsive/attractive potential fields [Kha86].
Furthermore, the Flastic Strips framework by Brock and Khatib is frequently implemented
in whole-body controllers in order to execute previously planned motions in a dynamic
environment [BK02]. The authors reactively adapt to changes in the environment, e.g.
when an obstacle is approaching the manipulator. Here, the whole-body control frame-
work [DWAS11, DWASH12b], which is based on the results of the previous chapters, is
implemented and validated on Rollin’ Justin. The major differences to the state of the
art are: The considered robotic system is torque-controlled, whereas most state-of-the-
art approaches still apply pure kinematic controllers. The experimental validation is the
focus in Chapter 6. Although several other approaches seem promising in terms of real
applications, by now they have been tested in simulations only.

Section 6.1 treats the installation of a priority list that contains aspects of safety, physical
constraints, task execution, and optimization criteria. In Section 6.2, the generic case of
whole-body coordination (Fig. 6.1) is specified to yield a controller for the evaluation on
Rollin’ Justin. The experiments do not incorporate the feedback from controller to planner
yet. That topic is deferred to Chapter 7.
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Figure 6.1.: Generic control flow for whole-body coordination

6.1. Order of Tasks in the Hierarchy

In Chapter 4, a redundancy resolution has been proposed which establishes a priority-
based hierarchy among a variety of tasks such as the ones in Chapter 3. But which
criteria are relevant for the choice and prioritization of the involved tasks?

No matter how many subtasks are defined, safety aspects are of top priority. That
comprises the safety of humans in the workspace of the robot as well as the environment
itself. If that requirement is met, hard physical constraints should be addressed and
the execution of the tasks can be considered. If sufficient structural redundancy is left,
further subtasks can be carried out, e. g. desired postures or the optimization of the energy
efficiency. In summary, one can establish the overall hierarchy:

1. Safety

2. Physical constraints
3. Task execution

4. Optimization criteria

Considering such a guideline for the priority list is the intuitive basis of many whole-
body control approaches such as [SK05]. Fig. 6.2 illustrates the different domains. In the
following, they will be detailed.

Safety

As Isaac Asimov stated in his 1st law in 1942 [Asi42]: “A robot may not injure a human
being or, through inaction, allow a human being to come to harm”. Beside applying
planning strategies to prevent dangerous situations in advance, the robot must be capable
of feeling contact forces so as to react properly if a situation with physical human-robot
interaction occurs [HASHO09).

Among others, the following tasks can be enumerated: Collision avoidance with the
environment, self-collision avoidance (Section 3.1), collision detection and softening, and
triggered emergency stops.

Physical Constraints

This aspect refers to physical limitations and restrictions of the robotic system. That
includes hardware-related issues such as the avoidance of mechanical end stops of joints
(Section 3.4.3), the compliance with actuator limits (saturations, maximum joint torques,
maximum joint velocities (Section 3.2)), kinematic constraints (Section 3.3), or balancing
of legged robots on bumpy or flexible ground. It should be remarked that the distinction

140



6.1. Order of Tasks in the Hierarchy

- Collision avoidance
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Figure 6.2.: Order of tasks in the hierarchy. Four basic domains with different priori-
ties are distinguished here: safety, physical constraints, task execution, and
optimization criteria.

between safety aspects and physical constraints is ambiguous in some cases. For example,
keeping the balance in a legged humanoid robot is a physical constraint, but it may lead
to a safety risk if not executed properly.

Task Execution

Among others, this category includes the TCP behavior, e.g. physical contacts or the
realization of TCP trajectories. Other important aspects are the locomotion or grasping
of objects and dexterous manipulation using the available hardware such as hands or
grippers. While task execution may comprise a large number of concepts, the ones based
on impedances (Section 2.2.1) and admittances (Section 2.2.2) are to be mentioned here
in particular due to their special role in the implementation on Rollin’ Justin.

Optimization Criteria

If sufficient structural redundancy is left, additional tasks can be executed. Examples
are the preservation of a high manipulability index for the TCP control in the Cartesian
directions, the realization of desired torso postures and head alignments, the imitation of
human-like motions, the optimization of the energy efficiency, or the minimization of joint
torques and other criteria.
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6.2. Implementation on Rollin’ Justin

The experimental validation on Rollin” Justin fuses results of all chapters of this thesis.
In particular, that includes reactive, local methods taken from Chapter 3 as well as the
redundancy resolution in Chapter 4.

Control Design

The adaptation of the generic case of Fig. 6.1 is illustrated in Fig. 6.3. Both upper body and
self-collision avoidance and platform collision avoidance are to be designed twice. In the
first case, tight and very strong repulsion fields are given top priority, together with the task
execution. The second case, which includes weaker and largely extended fields, is used on
a lower-priority level. The kinematic redundancy of the Cartesian impedance is exploited
to keep the robot in a “good” configuration. The task execution is not disturbed by the
strong collision avoidances except for critical configurations. Then, the strong collision
avoidance gets activated, it outplays the Cartesian impedance on the same hierarchy level
and ensures safety. The arm singularity avoidance, the platform singularity avoidance,
the avoidance of mechanical end stops, the torso impedance, and the joint damping, have
lower priority.

In this redundancy resolution, some physical constraints are given a lower priority than
the task execution. This is due to the fact that the robot has a very large number of
actuated DOF. Therefore, sufficient kinematic redundancy is left for these lower-priority
tasks without disturbing the main task. As a result of the design of the subtasks and the
hierarchy, local minima can be largely avoided [DWASH12b]. Nevertheless, one has to
keep in mind that this redundancy resolution implemented on Rollin’ Justin is not generic
but it is optimized for the particular characteristics of the robot.
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Figure 6.4.: Experiment #1: The step response is evaluated for whole-body control with
activated platform. The reference TCP location jumps Az = 0.2 m forward.

Step Response

In experiment #1, the step response of the right TCP in the case of a forward motion
(Az = 0.2m) is evaluated. All subtasks are activated and the translational stiffnesses of
the Cartesian impedance are set to ko = H00N/m. As it can be seen in Fig. 6.4, the
actual settling time is less than 0.5s. Besides, an overshooting is mentionable, which can
be traced back to the delayed behavior of the platform due to the admittance coupling, see
Fig. 6.4 (bottom), and a damping ratio of £ = 0.7 in the impedance. As the impedance is
basically a PD-controller and does not possess an integrating component, a steady-state
error may remain (upper plots). The excitation in z-direction also affects the other two
translational directions marginally. The steady-state errors can be reduced by applying a
higher translational stiffness.

Subtask Contributions

In experiment #2, a continuous trajectory of the TCP is applied according to the upper
chart in Fig. 6.5. The initial configuration of the robot is depicted in Fig. 6.6a. The
right TCP frame is commanded to move forward 1m (Fig. 6.6b) and then back to the
initial frame (Fig. 6.6¢). The controller leads to a completely different joint configura-
tion when approaching the initial frame again. The second chart in Fig. 6.5 depicts a
quadratic norm of selected null space subtask torques to allow direct comparison of the
contributions. The return motion does not lead to the same subtask participation. For
example, the upper body singularity avoidance is more crucial while moving forward to
prevent the outstretched arm than it is while moving backward. In contrast, the avoid-
ance of mechanical end stops only has a noteworthy effect during the backward motion
(after 11s). That complies well with the intuition of the observer when looking at the
configurations of the robot in Fig. 6.6. Rollin’ Justin is closer to its workspace boundaries
in Fig. 6.6¢ than it is in Fig. 6.6a. The third chart in Fig. 6.5 depicts the Euclidean norms
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of the top priority tasks and the null space projection (projected subtasks from the second
chart). It is noticeable that the collision avoidance only affects the behavior while mov-
ing backward. That is plausible: Since the arm is faster than the (inert) mobile base, a
self-collision between the right hand and the torso has to be avoided while the platform is
still accelerating. The last plot illustrates the base velocities which are the outputs of the
platform admittance simulation. The significantly different configuration in Fig. 6.6¢ in
comparison to the initial pose Fig. 6.6a is primarily caused by the asymmetrical commands
for the mobile platform.

Physical Human-Robot Interaction

In experiment #3, the performance of physical human-robot interaction is analyzed. The
user pushes the right TCP away from its desired position and orientation at about t = 1s
and t = 5s, see Fig. 6.7 (top chart). Thereupon, the mobile base tries to compensate
for that error (bottom chart). This, in turn, leads to a null space motion w.r.t. the
Cartesian impedance task. When releasing the TCP, the remaining platform velocity
and the impedance induce a small overshoot before a steady state is reached again. That
effect can be reduced by applying a higher stiffness to the TCP. An alternative would be to
consider the platform velocity within the damping design of the Cartesian impedance. A
deviation in the TCP orientation of almost 1 degree remains (middle chart). Two possible
origins can be identified: On the one hand, the missing integrating component in the
impedance controller (PD controller) prevents a zero steady-state error. On the other
hand, the mobile base is designed to move only if a force threshold is exceeded. That
avoids a permanent reorientation of the wheels in the goal configuration of the robot.
Hence, even a very small intervention of the collision avoidance may cause the Cartesian
impedance to slightly miss the target.

Autonomously Reaching and Grasping of an Object

In experiment #4, an object is approached and grasped by Rollin’ Justin. An external
camera tracking system is utilized to localize the robot and the object. Snapshots during
the motion are provided in Fig. 6.8. The planning is done by interpolating between the
initial TCP frame and the identified object frame. The geometric, six-DOF trajectory
consists of simple third-order polynomials. The robot is approaching the object on the
table and the platform is repelled from it when the distance is small. A naturally looking
whole-body motion is achieved. Finally, Rollin’ Justin grasps the object and reaches the
same position and orientation at the left TCP as in the beginning of the experiment.

6.3. Summary

In Section 6.1, the importance of the control tasks in a hierarchy was investigated to find
a suitable order of priority. The whole-body impedance controller has been implemented
in Section 6.2 on the basis of these considerations. The applied hierarchy utilized the
results from the preceding chapters, e.g. the reactive control tasks from Chapter 3 as
subgoals of the whole-body control, the null space projections for redundancy resolutions
from Chapter 4, and the admittance coupling from Chapter 5 to provide the force-torque
interface to the kinematically controlled mobile platform.

The experimental results have confirmed the theoretical findings and demonstrated the
performance on a real system. The reactive nature of the approach could be observed in the
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experiments when the redundancy was to resolved online according to the prescribed task
hierarchy. Moreover, the evaluation of the physical human-robot interaction capabilities
has clearly shown that the concept is particularly suitable for the operation in human
environments due to the safe and soft contact behavior. Furthermore, the successful
execution of an autonomous reaching-and-grasping-task has emphasized the advantage of
the task definition in intuitive operational spaces: The complete robot with 51 actuated
DOF was assigned to move to an object, grasp it, and move back by only defining a
six-dimensional Cartesian trajectory for the end-effector.
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Figure 6.5.: Experiment #2: A continuous trajectory for the right TCP is applied. The
impedance stiffnesses are set to ki;a = 500N/m and kot = 100 Nm/rad. All
damping ratios in the impedance law are set to & = 0.7.
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(c) t=16s

Figure 6.6.: Experiment #2: While the right TCP is in the same configuration at t = 0s
(red circle: initial location) and ¢ = 16 s (red circle: final location), the reactive
whole-body control leads to a completely different joint configuration after
reaching the intermediate TCP location at ¢t = 8s (green triangle).

147



6. Whole-Body Coordination

0.1
) — z-direction
= --—- y-direction
S 005 --- z-direction
=
2]
2 R
g oF
g
8
£ -005F User interaction
A User interaction
[L_') _0.1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Time [s]
6
e N — About z-axis
g 4} TN ---- About y-axis
= [N --- About z-axis
-~ 1
8 2 /
s
=
5
o 2T
@]
&= _4 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Time [s]
02F — Base command in z
-.--Base command in y
0.1k --- Base command in 6

Platform velocity [m/s, rad/s]

Time [s]
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The translational and rotational deviations of the right TCP are shown as
well as the platform commands of the whole-body controller.
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(e) t:‘lls (f)ixt’:?)s

Figure 6.8.: Experiment #4: The robot is grasping an object with the left hand. The
TCP trajectory is realized while multiple objectives are reached reactively and
simultaneously. The applied controller is depicted in Fig. 6.3. An external
camera tracking system facilitates the localization of the robot and the object.
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CHAPTER [

Integration of the Whole-Body Controller into a Higher-Level Framework

This chapter serves as an outlook to prospective challenges in robotics, where compliant
whole-body control will act jointly with an Artificial Intelligence (AI). The field of service
robotics, for example, puts high requirements on the systems due to the complexity of
household chores: The environment is usually dynamic and unstructured, and a wide
variety of tools with different contact properties exists. These aspects require an elaborate
task planning, both from a logical and a geometric perspective. Moreover, the close
cooperation of all modules in a robotic system is necessitated: A whole-body controller for
soft physical contacts requires a proper parameterization, i. e. controller gains, a specified
control task hierarchy, trajectories and goals, to perform the tasks. A non-deterministic,
Al-based planner can provide these data while not necessarily being hard-real-time-capable
itself. In case of local minima on the control level, the planner is able to reschedule to
find feasible, global solutions. Other modules such as the vision system or the speech
recognition may also be triggered. Fig. 7.1 sketches how such a unified framework can
combine and integrate different domains and how the subsystems are interconnected.

The successful execution of complex tasks requires the cooperation of two fundamen-
tally different planning domains: symbolic planning and geometric planning. The symbolic
planner can be described as the unit to generate logical schedules. Cleaning a window with
a wiper could be symbolically described as: “locate the wiper”, “grasp the wiper”, “move
to the window”, “clean the window”. The geometric planner is responsible for navigation,
dynamics simulation, motion planning, and trajectory generation. The symbolic action
“move to the window”, for example, is geometrically interpreted to obtain a feasible plat-
form trajectory to the window involving navigation within the world map of the robot.
In the last years, there has been a steady progress in this new research field of hybrid
reasoning, which combines symbolic planning and geometric planning.

In [WMRI10], a hierarchical planning system was proposed which finds kinematic so-
lutions for robotic manipulation. Results on discrete problems and pick-and-place tasks
were implemented on PR2. In [KLP13], a combined approach for planning, perception,
state estimation, and action for mobile manipulation tasks is presented. Simulations and
experiments on PR2 show that robustness and flexibility is given, even under modeling
uncertainties. Reasoning methods were applied by Mosenlechner and Beetz [MB11] to
enable the robot to find solutions such as where to place objects in a robust and flexible
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Figure 7.1.: Integrated framework for whole-body task execution. This sketch is an aug-
mented version of Fig. 6.1 and based on the flow chart in [LDBAS15].

way. Dornhege et al. applied hybrid reasoning in [DGTNO09]. While the symbolic planner
was implemented via state-of-the-art methods, the geometric part was realized by means
of a probabilistic roadmap algorithm. The focus of this work was to generate collision-free
trajectories.

A unified framework utilizing hybrid reasoning on Rollin’ Justin has been presented in
[LDS*14, LDBAS15|, which implements the structure in Fig. 7.1, yet missing the com-
munication channel from controller to Al-based planner. The central point is the pa-
rameterization of the controller by the planner, i.e. the communication channel from the
planner to the whole-body controller. Section 7.1 addresses this part from a control point
of view. The other interconnection, i.e. the feedback from the controller to the Al-based
planner, is treated in Section 7.2 and serves as an outlook to ongoing research activities on
integrated frameworks. Three realistic service robot tasks performed by Rollin’ Justin are
shown in Section 7.3. The summary in Section 7.4 concludes this chapter and highlights
the potential of an integrated framework as the one depicted in Fig. 7.1.

7.1. Intelligent Parameterization of the Whole-Body Controller

The AT module selects the required control tasks and establishes a hierarchy among them,
depending on the requirements of the considered application. Moreover, it parameterizes
the control tasks and commands trajectories and goals. A concept for the automated
parameterization will be described in the following.

Relying on an object database makes it possible for the symbolic and the geometric
planner to parameterize all control tasks w.r.t. the requirements of the environment and
the involved objects. An example is given in Table 7.1, where three different tools are
specified in terms of their handling. At the example of a window wiper (center column),
one can see that specific Cartesian force limits along the x-axis of the tool are defined, and
the stiffness for the rotation about the z-axis is set very high. These exemplary values
represent the typical use of such tools, i.e. how a human would actually perform the
respective force-sensitive household chore [UASvdS04]. Note that Table 7.1 only shows a
small subset of all possible parameters. In many cases, default values are used, e. g. for the
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7.2. Communication Channel between Controller and Planner

Table 7.1.: Controller parameterization for the service tasks performed by Rollin’ Justin.
The stiffnesses and force limits refer to the Cartesian coordinates of the tools

(in the order: x,y, z) as depicted in the respective photographs.

Z
X
y
Robot Task “Clean the mug!” “Wipe the window!” “Sweep the floor!”
Actuators both arms, torso one arm, torso, base both arms, torso, base

Task Hierarchy

Cartesian impedance
joint impedance
end stop avoidance
singularity avoidance

Cartesian impedance
self-collision avoidance
singularity avoidance
joint impedance
end stop avoidance

Cartesian impedance
self-collision avoidance
joint impedance
end stop avoidance
singularity avoidance

Transl. Stiffness

(400, 400, 800)N /m

(100, 500, 1000)N /m

(1000, 500, 300)N /m

Rot. Stiffness

(30,30, 60)Nm/rad

(500, 10, 10)Nm/rad

(200, 10, 500)Nm /rad

Force Limits

(£20, £20, £20) N

(—00/+10, £00,+00) N

(f00, 00, —10/+00) N

parameterization of the self-collision avoidance or the thresholds for the arm singularity
avoidance. The geometric planner requires information from the object database. The
window, which is also contained in the database, has specific dimensions and properties
and has therefore a direct influence on the trajectories to be computed and the proper use
of the corresponding tool.

The parameterizations of the three tools in Table 7.1 are experimentally validated in
Section 7.3.

7.2. Communication Channel between Controller and Planner

The communication channel from the controller to the AI module in Fig. 7.1 has been
introduced to account for a high-level supervision and reaction, which is required when
the controller faces problems that it cannot solve itself (e.g. undesired local minima or
inconsistent trajectories due to altered environmental conditions). This aspect is currently
topic of intensive research on Rollin’ Justin.

The basic idea is to feedback preprocessed data from the control level to the AI module,
which contains valuable information about the task execution. Beside obvious choices
such as the Cartesian error at the TCP, this might also include physical values such as the
momentum (to detect contacts), frequency information (to assess the performance in cyclic
cleaning motions), or the energy consumption (to evaluate the efficiency of the applied
method). Moreover, it is reasonable to define storage functions of the subtask controllers
at different hierarchy levels to identify local minima and conflicting tasks.

By means of various techniques such as learning algorithms, the collected information
can then be interpreted (e.g. stop task, adapt symbolic plan, replan trajectory), and an
appropriate response is generated and given back to the whole-body controller.
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7. Integration of the Whole-Body Controller into a Higher-Level Framework

7.3. Real-World Applications for a Service Robot

Three different household chores have been experimentally validated based on the objects
in Table 7.1. The Cartesian trajectories of the left and the right TCP are provided by
the higher-level instance and are depicted in the left diagrams in Fig. 7.2, Fig. 7.3, and
Fig. 7.4. The reference values of the tools are deliberately placed behind the surface to be
cleaned (light green areas in the snapshots) to account for modeling and vision errors in
the surface location estimation. Accordingly, there results a large but deliberate difference
between the commanded TCP positions and the measured ones as can be seen in the plots
on the left.

7.4. Summary

The experimental results on Rollin’ Justin demonstrate the high potential of an integrated
framework that combines the whole-body control with an artificial intelligence instance.

From the control point of view, the experiments clearly show that a controller for the
whole body of the robot is very useful to manage complex tasks. The treatment of the
robot in its entirety allows to exploit the complete kinematic structure to solve the given
problems. Instead of the individual control of all subsystems and their synchronization, the
subtasks refer to the complete body of the robot. The self-collision avoidance exemplifies
this characteristic: It is not implementable without instantaneous access to all actuated
joints in the whole body. This property also applies to the other tasks in the control
hierarchy.

Dexterous physical interaction capabilities are necessary for the successful task com-
pletion, since typical service robot use cases such as cleaning tasks require soft contacts
between the robot and its environment. Not only is a physical compliance essential in dy-
namic and partially unstructured environments, but the task explicitly demands a partic-
ular parameterization of the contact behavior depending on the task-specific requirements.
The applications in Section 7.3 clearly show that the stiffness and maximum contact forces
in each Cartesian direction have to be adapted for the proper use of the respective tool,
cf. Table 7.1. Similarly, the other impedance-based control tasks require a proper param-
eterization in terms of contact behavior as well. The theory of repulsive and attractive
artificial potential fields applied in this thesis facilitates such a selection of parameters.

The task hierarchy realized within the whole-body controller has also proven successful
in the experiments. Higher-level goals from the Al-based planner claim a control task pri-
oritization, since the robot usually has “more important” and “less important” objectives
during the task execution. The order of priority may even change online, depending on
the current task requirements or the environment, respectively. This prioritization issue
cannot be managed by a non-deterministic instance such as the Al in an appropriate way.
Instantaneous reactions can only be realized on the control level.

In this sense, the assignment of responsibilities in the operation of a humanoid robot is
clear: The higher-level modules are powerless without the realization of their goals by a
controller with skills for soft contact interaction, and the controller alone is blind without
the proper parameterization and the control goals provided by a higher-level planner which
is, in turn, able to decide on the application from a global perspective.
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CHAPTER 8

Summary

The steady progress in humanoid robotics has recently generated impressive systems with
a large number of actuated degrees of freedom. Consequently, that gave a strong impetus
to research activities related to the whole-body control of this newly available class of
mobile robots. The demand arises from various fields of application as sketched in Fig. 8.1.
Industrial use cases are very relevant since robotic systems can be employed to perform
dangerous and harmful tasks, or they could assist factory workers and cooperate with
them. Another field concerns hazardous environments such as in space missions, deep
see exploration, or disasters in nuclear reactors, e.g. Chernobyl or Fukushima Daiichi.
Further applications are encountered in the emerging field of service robotics. Even simple
household chores such as washing the dishes require a lot from the robotic systems because
the considered environment is often dynamic, unstructured, and difficult to predict due to
the presence of human beings.

In order to efficiently and robustly execute tasks without endangering the humans in the
workspace, sophisticated whole-body controllers must be employed. Compliant physical
interaction with the environment of the robot is one of the key aspects here. Not only is this
feature important for safety reasons, but also for the effective task execution. Examples
are cleaning tasks, where the contact behavior is predefined, or physical human-robot
interaction, where the robotic system is required to be soft in contact with the human.
The goal of this thesis was to present solutions for compliant whole-body control. The
extensions of the well-established concept of impedance control particularly addressed the
aspect of whole-body control for a hierarchically arranged set of tasks and objectives.
While most of the presented techniques were implementable on generic robots, several
methods have been particularly developed for the use on wheeled systems. In the following
paragraphs, an overview of the content and the contributions in the chapters is given.

Multi-objective control only makes sense if a wide range of useful objectives is avail-
able for the parameterization of the task hierarchy. Depending on the requirements of
the envisioned application, a suitable set of tasks must be chosen to satisfy them. Chap-
ter 3 addressed this topic and extended the standard repertoire of commonly available
control objectives by three valuable tasks. That included a reactive self-collision avoid-
ance algorithm, which uses artificial potential fields to repel body parts from each other.
Multi-DOF structures of modern humanoid robots necessitate the integration of such a
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Figure 8.1.: Real-world applications for mobile whole-body control

safety feature because of the large number of potentially colliding links. Apart from the
self-protection of the robot, also humans in its workspace are safer due to the avoidance
of harmful clamping. Furthermore, the algorithm comprises a configuration-dependent
damping design, which realizes a desired mass-spring-damper behavior in the collision di-
rections. The second reactive task introduced in Chapter 3 was a singularity avoidance
technique for nonholonomic, wheeled platforms. During motions, the instantaneous center
of rotation may come close to the steering axis of a wheel, requiring an infinite steering
rate to comply with the nonholonomic rolling constraints. The proposed algorithm avoids
these critical situations by repelling the instantaneous center of rotation from the steering
axis. The purpose of the third reactive task in Chapter 3 was to exploit the full torso
workspace of a robot with kinematically coupled torso joints. Both kinematic constraints
(joint limits) and dynamic constraints (torque limits) restrict the reachable workspace.
The method allows to use the maximum feasible range of the torso by online adaption of
repulsive forces to avoid prohibited configurations and motions.

Chapter 4 addressed the concept of null space projections to realize a task hierarchy
among the chosen objectives for the current application. The first contribution of this
chapter was the review of all relevant null space projectors for the redundancy resolution
in torque control. That included the analysis of different types of hierarchy structures,
namely the successive and the augmented approaches. Moreover, different hierarchy con-
sistencies were investigated, e. g. the popular dynamically consistent solution and the stati-
cally consistent one. The theory of dynamic consistency was extended and yielded a deeper
understanding of the dynamic decoupling of priority levels in general. Additionally, a new
kind of null space projection was introduced, which was named the stiffness-consistent
method. If parallel elastic actuators are used in a robot, e.g. when mechanical springs
are mounted in parallel to the motors to counterbalance the gravitational loads, this new
null space projector makes it possible to still realize the desired task hierarchy by tak-
ing these additional passive elements into account. Without knowledge of the stiffness of
the mechanical springs in the projector calculation, the springs and the controller would
inevitably compete with each other. All projectors have been compared in simulations
and experiments. Among others, it was shown that the theoretically superior, classical
approaches lose their dominating position on real hardware. The second contribution of
Chapter 4 was a solution to the problems of unilateral constraints in the task hierar-
chy, task singularities, and dynamic modifications in the order of priority. The approach
has been theoretically and experimentally validated and has proven a powerful tool in
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whole-body control to deal with these major issues.

A thorough study of the literature on whole-body control quickly reveals a key problem
of the state of the art: Many approaches are proposed and partially implemented on real
hardware, but stability analyses are extremely rare. Nevertheless, the operation of robots
in human environments requires a maximum level of safety. Therefore, it is essential to
understand the stability properties and verify that safety is actually given. Chapter 5
addressed that issue and provided the stability analyses. The first part contributed to
the field of mobility. As the concept of impedance cannot be straightforwardly applied
to a kinematically controlled mobile base with torque-controlled upper body, an admit-
tance interface to the platform was proposed to integrate it into the overall whole-body
impedance framework. But this interconnection also resulted in modified dynamic equa-
tions and closed-loop instability. For that reason, a model-based compensation term was
designed to stabilize the system. Asymptotic stability of the equilibrium and passivity
features were demonstrated. The obtained stabilizing controller finally yielded a whole-
body impedance behavior for wheeled robots with position- or velocity-controlled mobile
platform. The second part in Chapter 5 contributed to multi-objective control. The ma-
jority of the state-of-the-art methods uses the so-called Operational Space Formulation.
However, it is well known that this classical controller only gives a proof of stability for the
main task, while the complete null space stability is unclear. Here, a stability analysis for
the complete robot with an arbitrary number of priority levels has been performed that
finally led to the conclusion of asymptotic stability of the desired, hierarchy-consistent
equilibrium. A new formulation of the dynamic equations was proposed that takes the
strict task hierarchy into account. This new representation and the theory of conditional
stability were the key aspects for the stability analysis. Furthermore, compared to the
classical approaches, the control law does not require the problematic feedback of external
forces and torques because it preserves the natural inertia of the robot. The considered
system is generic so that the results can be applied to any robotic system with force or
torque input such as a legged humanoid or an aerial vehicle with a manipulator attached
to it. Therefore, it is also possible to combine the two proofs of stability of Chapter 5 in
one system: a wheeled mobile manipulator with impedance-based task hierarchy for any
given number of priority levels.

The experiments conducted in Chapter 5 emphasized the practical importance of the
theoretical proofs of stability. A demonstrative example was given in Section 5.1: With-
out the compensation term, which resulted from the formal stability analysis, the robot
operated properly in most cases. However, slightly modifying the controller gains sud-
denly led to instability. When using the compensation term in the controller, stability
could be shown for all parameterizations, both theoretically and experimentally. In a
nutshell, Chapter 5 confirmed Kurt Lewin’s (1890-1947) famous quote “There is nothing
so practical as a good theory” and highlighted its relevance for robotics.

Beside the theoretical contributions in this thesis, the experimental evaluations occupied
an important role. Chapter 6 was put in place to investigate the reactive whole-body
coordination using the results from the preceding chapters. Here, the focus was to evaluate
how a reactive whole-body controller with multiple objectives resolves the redundancy from
a priority-based perspective.

The proposed whole-body impedance control framework is the main result of this thesis,
and it contributes to the state of the art in various fields such as control design, stability
theory, and the experimental validation of concepts. In order to make the approach widely
usable in the future, it is necessary to consider it also as an integrated component in a
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framework of larger scale. The operation of a mobile humanoid robot in a domestic
environment, for example, requires the close cooperation of different domains. Among
others, that includes the interpretation of an abstract, user-given task from a logical
point of view, image processing based on camera data, geometric planning of reasonable
trajectories, task-specific parameterization of the whole-body controller, and the control
itself. In this respect, the final Chapter 7 served two purposes: First, it sketched the
integration into such an overall framework. Three complex household chores have been
selected for the evaluation on the humanoid robot Rollin’ Justin which required both an
artificial intelligence module and a whole-body controller for compliant physical interaction
and task execution: cleaning a mug, wiping a window, and sweeping the floor with a broom.
The experimental results have confirmed the great potential of the approach in terms of
real-world applications. The integration of all necessary components including a whole-
body controller to solve such complex household chores clearly distinguishes the proposed
approach from state-of-the-art solutions.

The second purpose of Chapter 7 was to serve as an outlook for future research activities
in this field, because the investigation of several aspects of integrated frameworks is still
in its early stages in the robotics community. It is of high relevance to stay tuned to
the fusion of all involved research areas in robotics, so that the goal of an autonomous
humanoid robot solving relevant everyday tasks can be reached one day.
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APPENDIX A

Workspace of the Torso of Rollin" Justin

A.1. Kinematic Constraints

The kinematic workspace boundaries in Fig. 3.15b can be determined by substituting the
joint values in (3.42) by the mechanical limits in Table 3.2. The obtained analytical ex-
pressions represent circles in the X-Z-plane. Their centers and radii are listed in Table A.1.
The arc numbers correspond to the ones in Fig. 3.15b.

Table A.1.: Centers and radii of the arcs defining the kinematic workspace boundaries of
the torso of Rollin” Justin

’ Arc ‘ Constraint ‘ Center ‘ Radius ‘
1 dt,2 = —90° (—lt,z, 0) lt,S
2 g3 = 135° (0,0) VB2t By — V2alis
3 | a3 =135 —quo | (lus/V2 —li3/V2) li 2
4 g2 = 90° (lg,2,0) le,3
5 g3 =0° (0,0) leo+1li3
6 qt,3 = —Gqt,2 (0, lt,s) ly 2
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A. Workspace of the Torso of Rollin’ Justin

A.2. Dynamic Constraints

The dynamic constraints due to limitations of the third torso joint torque can be described
by circles in the X-Z-plane. These boundaries can be derived by combining (3.47), (3.49),
(3.51), and (3.52). They are illustrated in Fig. 3.16.

Table A.2.: Centers and types of the circular, dynamic workspace constraints of the torso
of Rollin’ Justin due to torque limitations of the third torso joint

Tt,3 ‘ x-value of center ‘ z-value of center ‘ Workspace
t,3,min t,3,min . .
Te,3,min | lt,38in (a + arccos (F ; >) ly 3 cos (a + arccos (F ; >> inside
t,Joad't,3 t,Joad't,3
. - t 3,min - t 3,min .
Tt,3,min | lt,38in | o — arccos lg 3 cos | o — arccos outside
Ft loadlt 3 Ft loadlt 3
Tt,3, Tt,3, .
Tt,3,max | 4,380 ( oo + arccos max ly,3 cos | o + arccos max outside
Ft lo’xdlt 3 Ft lo’xdlt 3
—Tt,3,max Tt,3,max .
t,3,max t - t -
T4,3, li 38in | @ — arccos ly,3 cos | o — arccos inside
] Ft loadlt 3 Ft loadlt 3
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APPENDIX B

Null Space Definitions and Proofs

For the sake of simplicity, the dependencies on g are omitted in the following notations.

B.1. Representations of Null Space Projectors

The generic, non-singular Jacobian matrix J € R™*™ for m < n with its singular value
decomposition

J=USvT (B.1)
v=(xTy", (B.2)
S=(,0) , (B.3)

is used. The matrices U € R™*™ and V € R™"™ are orthonormal and the rectangular
diagonal matrix S € R™*™ contains the singular values o1 to o,, in its submatrix ¥ €
R™>™_ The range space of J is defined by X € R™*" and its null space is determined by
Y € R(=m)*n The projector onto the null space of J is denoted IN € R™*™.

Theorem B.1. A null space projection onto the null space of a full-row-rank Jacobian
matriz J € R™*™ for m < n is invariant to the singular values of J. The range space
X € R™*™ of J is sufficient to compute the projector. The null space projector definition

N=I-J5gwHt (B.4)
=7-XT(xWHT (B.5)
holds for any non-singular weighting matric W € R"*™,

Proof. Equation (B.4) is the standard definition of the null space projector [Kha87, SS91]
and (B.5) refers to a representation which is independent of the singular values of J.
Expanding both formulas according to the weighted pseudoinversion (4.15) and cancelling
the identity matrix yields

JT (W LIn T gw T = xT (xw X)) T xwT (B.6)
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B. Null Space Definitions and Proofs

Now W =T can be eliminated, and the multiplication by VT (from the left) and V' (from
the right) delivers

vIvsTuT [usvIwvsTuT] T usvTV = vIXT [xw X" XV

-T r
[ETOUT] [[UZ,O] R [ETOUTH Us,0] - _é_ (xwx7)""[I,0]
TV wsaw xnetun) T ws.o - [} aowoxn)
[ETOUT] (BTUT) XWX UD) T [US,0] = é (XwWTXT) [T, 0]
xwTxT) " o] _[(xwTxT) " o
0 o | 0 0|’
which finally proves Theorem B.1. H

Theorem B.2. A projector onto the null space of a full-row-rank Jacobian matriz J €
R™*™ for m < m can be computed by sparing the range space X € R™*™ of J and only
utilizing its null space Y € R=")X" " The jdentity

N=I-XT(xWHT (B.7)
=wiyT(ywTyT)"ly
holds for any non-singular weighting matriz W € R™*™,

Proof. Equation (B.7) is the (already proven) null space projector according to Theo-
rem B.2, (B.8) is a projector representation without utilization of the range space of J.
Equating and reorganizing both formulas delivers

I=x"(xw'x0) " xw T+ wTYT (ywTyT) 'y . (B.9)

The multiplication by V7T (from the left) and V' (from the right) leads to

I _ —1 _ _ XwTyT —1
I— |:0:| (XW TxT) [XW TXT,XW TYT] + |:YWTYT:| (YWTYT) [OyI]
_ -1 _ -1
I lé (XW TXT)O (Xxw-TyT) n 8 (XwWTyT) (IYWTYT) ] . (B.10)

Equation (B.10) is true if the upper right element is zero. Therefore, one has to verify

xw X)) (xwTYT) + (xwWTYT) (ywTyT) ' —o0. (B.11)

That can be achieved by multiplying XW 7 X (from the left) and YWZY 7 (from the
right).
XWIYyTywly? + xwIxT'xwlyl =0
xXw Ty +x"xX)w'y’ =0
Xyl =0
0=0

Note that YTY + XTX = I and XY = 0 due to the orthonormality property of V.
That finally proves Theorem B.2. O
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B.2. Generic Weighting Matrix for Dynamically Consistent Pseudoinverses

B.2. Generic Weighting Matrix for Dynamically Consistent
Pseudoinverses

The proof for dynamic consistency of the pseudoinverse with the weighting matrix (4.33)
is provided in the following. The Theorems B.1 and B.2 from Section B.1 are employed.

Theorem B.3. A redundant n-DOF manipulator with symmetric and positive definite
inertia matrix M € R™™™ and non-singular, primary task Jacobian matriz J € R™*™ (for
m < n) with singular value decomposition (B.1)—~(B.3) is considered. Using the weighting
matric

W =X"XBx + ByY'YM with rank(Bx) > m A rank(By) >n —m

in the pseudoinversion (4.15) of J leads to a dynamically consistent solution (cf. (4.23)),
thus the following identity must hold for the null space projector N € R™™ in the null
space of J:

JM™'N=0.

Proof. The definition (B.8) is used in this proof, i.e. N = WIYT(YWTYT)~lY. Due
to XYT = 0, the simplification

wlyT = (BYXTX + MYTYBL)Y”T
=MYTYBLYT (B.12)

can be made. Dynamic consistency can then be shown:

JMIN=JM 'MYTYBLYT(vywlyT)"ly
=USviyTyBLyT(ywly?)"ly
=U(%,0) Gf) Y'YyBLYT(ywTyT)"ly

=U (%,0) (?) YBLyT(ywTyT)~ly

=0.
O

If (B.8) is utilized for the projector computation instead of (B.4) or (B.7), then the
restrictions on the rank of Bx can even be loosened. Since (B.8) does not require W1,
having rank(By) > n — m is necessary only. Again, this condition is necessary but not
sufficient.

The conclusions obtained in the context of this analysis allow a better understanding
of the null space projectors in general. Actually, knowledge of the inertia matrix in the
pseudoinversion is only required applied to the null space as it can be seen in the gen-
eral formulation of the weighting matrix if Bx = 0. Note that the presented proofs of
Theorem B.1 and Theorem B.2 do not cover the loosened rank conditions on B x since
inversion of W' is assumed there. However, it is evident from (B.8) that the inversion is
feasible as long as rank(Y WY 7T) = rank(Y’). Due to (B.12), this inversion simplifies to
(YMYTYB{,YT)_I7 where B x does not appear at all.
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B.3. Dynamic Consistency for an Arbitrary, Invertible Weighting
Matrix W

In this section, dynamic consistency of the projection (4.38) according to Definition 4.2 is
shown.
JMIN=JM*M(T - TV )M~
=J-—Jgwrgraw-tghH-t M
= I for rank(W) =n
=0. (B.13)

Moreover, one can show that any weighting matrix W fulfilling (4.33) can be used in the
acceleration-based approach (4.38) and still yields the classical dynamically consistent null
space projector [Kha87].

(4.38) with W from (4.33)

MI-JMY )M =1-J7 (M IT) gM T =1 - JT(IMHT | (B.14)
[Kha87]
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APPENDIX C

Proofs for the Stability Analysis

The following sections present a proof for the validity of Z; in Section C.1, the invertibility
of the extended Jacobian matrix J in Section C.2, and the block-diagonal structure of the
inertia matrix A in Section C.3. For the sake of simplicity, the dependencies on q are
omitted in the notations.

C.1. Derivation of Z;(q)

In this section the validity of (5.51) is shown via the following Lemma:
Lemma 1. If J; and Z; for all levels (1 <i < 1) are chosen following (5.44) and (5.51)
Ji=(2:M2Z" " Z,M = (zM )T
(JMHT  f =1
Z;i =L JM'N; if 2<i<r,
Y, if i=r
then the identity
Jrz,JT =nN,JT . (C.1)

holds, where the dynamically consistent null space projector N; is defined in (5.45) for
2<i<r, and N1 =1 since no restriction is set on the main task.

Proof. Three cases have to be considered to cover all levels required in Lemma 1. That
contains the main task ¢ = 1, the range 2 < i < r, and the bottom priority level ¢ = r.

Case i = 1 with Z, = (JM)T:

L2007 = MM (M M) (Mt
—JT (M) ((JIM—lJlT)’1 JMLJT (JlM—lJlT)*y1

=N Jb.
(C.2)
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C. Proofs for the Stability Analysis

Case 2<i<r with Z, = J,M 'N;:

I z,Jg7 =mzT (z,M2zT) " 2,07
= MN'MJ7 (,M'N,MN" M~ 30 M N JT
—MY?L, (Y, MY )y, a7

-1 1

—1 -
(JiYZ-T_l (YiaMY? ) 'y MYT (Yo MYT ) Yi,lJiT)

LY (v oMyl )™

Y, 1 JF

MY, (YiaMY L) Yo d] (0¥ (VMY L) Yi,lJiT)il
LY (vioaMmyD )y, g7

- MY, (Y, MY )y, a7

= N;JI . (C.3)

Casei=rwith Z, =Y ,_;:

J'z,J" =Mmz" (z,MZ")" Z,J7
=MY? (Y, MYT )y, g7
=N, JI. (C.4)
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C.2. Extended Jacobian Matrix J and its Inverse

C.2. Extended Jacobian Matrix J and its Inverse

In this section, the invertibility of the extended Jacobian matrix J € R™ " is shown
through the existence of its inverse J -1 According to Chapter 5, the extended Jacobian
matrix has the form

jl Jl )

_ J ZoMZ" " ZoM

N I (2: 2,) ? (C.5)
g, (z,M2zZ7)"' z,M

with the following properties:

e The matrices J ...J, have full row rank. They are used in the computation of the
full-row-rank matrices Z; Vi, 1 <1i¢ <.

e The matrices J ...J, and consequently the augmented Jacobian matrices J:"® for
t=1...r —1 have full row rank. No algorithmic singularities are encountered.

e The inertia matrix M is symmetric and positive definite.

e The row vectors of Z; span the (right) null space of all higher-level Jacobian matrices
J1 .. ~Ji71 and jl . --ji—l, thus

Jiz' =0, (C.6)
JiZ] =0, (C.7)

for i < j. The argumentation to (C.15) in Section C.3 will implicitly comprise the
proof of (C.7).

Lemma 2. If the extended Jacobian matriz (C.5) has the properties listed above, then it
. . . . . Lo =1
18 non-singular and invertible due to the existence of its inverse J .

Proof. Suppose that J ! has the form

j—l _ (Cl C2 - C’I‘) ,
where C; € R"™*™i for ¢ = 1...r is not known so far. The identity
JICI ch2 chr
-1 -1 -1
Fi! (ZoMZ3)  Z,MCy (Z:MZ3)  Z;MC, (Z2.MZ%)  Z;MC,
L - | -
(z,mz]) z.MCy, (Z,MZ]) Z,MC, --- (Z,MZ]) Z,MC,

=1

must hold for an invertible matrix J. The matrix C; = J {VHF fulfills the first column
requirements

I=J,JgMr, (C.8)

0= (z:MZz)" ZMIM* (C.9)

= (zMz?) " zgT (M ah) (C.10)
=0
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for 1 < ¢ < r. The matrices C; = Z? Vi, 1 < j < r fulfill the remaining first row
requirements

0=J.,Z] . (C.11)
What remains is to show that
1= (zMmz!)" z,MZT (C.12)
0=(z,M2zI)™ Z,MZT (C.13)
0

is valid for the remaining elements with ¢  j. While (C.12) is obvious, proving the identity
(C.13) is rather complex. The annihilation Z; M Z;F = 0 will be shown in Appendix C.3
in the context of inertia decoupling (C.15). O
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C.3. Decoupling in the Inertia Matrix A

The proof of the analogous statements (5.42), (5.43)
JM ', =0, (C.14)
Z:MZ' =0 (C.15)
for i # j is provided in the following. Their physical interpretation is the decoupling of

the inertias A; on different priority levels. Thus, the inertia matrix is of block-diagonal
structure. According to Section 5, the null space base matrices Z; are

(JMHT fori=1
Z; = JJMN; forl<i<r (C.16)
Y, 1 fori=r

For all null space levels, the standard dynamically consistent projector [Kha87] has the

form )
N;i=MY] (Yi.iMY!L,) Y, (C.17)

as shown in Theorem B.2. Now the condition (C.15) is verified for all possible values of
and j.

Case i =1, 1 < j < r and the transposed element:

(LM I Yy (VoMY ) Ty g =0
~0

Case i = 1, j = r and the transposed element:

(M-I ny? =0,
=0

Case 1l <i<r, 1 <j<rwithi#j:

— -1 -1
JM MY (Yo MY ) Yo MY (Y, MY ) Y;.J] =0,

which can then be rephrased and simplified to
JiM ™' Ny d; =0 (C.18)

Note that N ax(i,j) = INiIV; can be concluded from the idempotence of the null space
projectors. Based on that, there are two different cases to be considered: ¢ < j and ¢ > j.
For i < j, (C.18) becomes
JIM'N;J} =0 (C.19)
=0
and fulfills the criterion due to the dynamic consistency of the null space projector IV,
cf. Definition 4.2. For i > j, (C.18) becomes

JM'NJ] =0, (C.20)
N——
=0

which is a direct consequence of Yi,lJ]T = 0 for ¢ > j or the fact that J; was actually
used to determine its null space Y;_; and the projector IN;, respectively.
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Case i =7, 1 < j <r and the transposed element:

-1

Yr—lMYjT—l (Yj—lMY}ll) Yj_lJ? =0

Y, 1N;J] =0.

(C.21)
(C.22)

The multiplication by the identity (Y, MY |)(Y,.{MY? |)~' = I from the left

yields

erlMYZ’—l(erlMYZ—ﬂ_erlejJJT =0
Y,_1N.N;JI =0

Y,_1N,J] =0.

——
=0

(C.23)
(C.24)
(C.25)

The cancellation of N; in (C.24) is due to the idempotence of the null space projector, cf.
(C.18). The annihilation in (C.25) can be justified in a similar way as the one in (C.20).
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APPENDIX D

Stability Definitions

The following definitions are extracted from [SJTK97, vdS00, OKN08, ODAS15] and explain
the notions of strict output passivity and conditional stability.

D.1. Passivity

Definition D.1. A system 2 = f(z,u) with input w and output y is said to be strictly
output passive if there exists a non-negative function S(z) and an € > 0 such that

S(z(t)) = 5(2(0)) < /0 ((s) uls) — e lly(s)]*)ds. (D.1)

holds [vdS00] for all t > 0.

Definition D.2. A system z = f(z,u) with input w and output y is said to be strictly
output passive conditionally to A C R™, if it is strictly output passive for any initial
condition zg = z(0) € A.

D.2. Conditional Stability
A time-invariant system with state vector z € R™ has the form

z=f(z). (D.2)

The state zg is a stationary point of (D.2) so that f(zs) = 0. Assume that there exists
a solution z(t) for (D.2) for an initial state zy = z(0) for all times ¢ > 0. For conditional
stability all requirements of the stability definitions must only hold for those initial con-
ditions which lie in a particular set A C R™. Thus conditional stability is weaker than the
usual Lyapunov stability.

Definition D.3. A stationary point zs of (D.2) is said to be stable conditionally to the
set A C R"™, if zg € A and for each € > 0 there exists a 0(€) > 0 such that the following
implication holds for any initial condition zg € A:

lzo — zs|| < d(e) = ||z(t) —=zs]| <€, VE>0. (D.3)
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D. Stability Definitions

Definition D.4. A stationary point zs of (D.2) is said to be attractive conditionally to
A CR"™ if zg € A and there exists a n(zs) > 0 such that the following implication holds
for any initial condition zg € A:

|lzo — zs|| < n(zs) = 1tli}m z(t) = zs . (D.4)

Definition D.5. A stationary point zs of (D.2) is said to be asymptotically stable condi-
tionally to A C R™, if it is both stable and attractive conditionally to A.

Definition D.6. A stationary point zs of (D.2) is said to be globally asymptotically stable
conditionally to A C R™, if it is asymptotically stable conditionally to A with n(zs) = +00.
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