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Abstract

Thiswork deals with the design and implementation of feasible quasi-time-optimal con-
trol algorithms in the context of drives. A consistent approach, based on ad hoc simpli-
fications and adaptations of more general optimal control methods, was used to produce
torque, speed and position controllers for conventional drives, and a torsional torque con-
troller for a drive with a flexible shaft: a two-mass-system. These controllers take the form
of non-linear state feedback rules, which require no offline computations and, for themost
part, no tunning.

Kurzfassung

Diese Arbeit beschäftigt sich mit dem Design und Implementierung von praktikabel
quasizeitoptimalen Regelalgorithmen im Rahmen der Antriebssysteme. Ein gleichartig
Konzept, basierend auf Ad-hoc-Vereinfachungen undAnpassungen vonmehr allgemeineren
Methoden optimaler Regelungwurde verwendet, umDrehmoment-, Drehzahl- und Position-
Regler für konventionelle Antriebe und ein Torsionsdrehmoment-Regler für eine Antrieb
mit einer flexibel Welle (ein Zweimassen-System) zu schaffen. Diese Regler nehmen die
Form von nichtlinearen Zustandsrückfuhrungsregeln an, die keine offline Berechnungen
und kaum Tuning erfordern.
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1. Introduction
The work presented in this thesis deals with the design and implementation of approxi-
mate time-optimal controllers in the context of electrical drives.
The broad interest on the particular subject of electrical drives is very easily understood,

when one considers that the electrical motor has become the corner stone of industrial
production, where its uses range from giant grinding mills for metals extraction and re-
finement, to miniature laser pointing. Their presence is also fundamental in other aspects
of modern societies, such as energy generation, transportation, data management and
war. Recent developments in 3D printing, for example, rely on drives and sophisticated
control systems. In this kind of applications, the trade-off between speed and precision
poses great challenges on the control system design. In this direction, the development
of advanced, but feasible control systems might be critical for the descentralization and
demonopolization of production means.
All applications have in common the unstopping refinement of their requirements,

in particular: efficiency and reliability. Two complementary approaches can be distin-
guished in this situation, on one hand the improvement of motor designs and on the
other, the improvement of the control methods. The work presented in this thesis deals
with the later and, although the models used for the drive dynamics are very general and
thus, it might be possible to apply the developed control methods to a broad family of mo-
tors and motion systems, their performance has been validated using standard industrial
equipment (rotating motors and voltage source power converters).
Control theory has been developed hand in hand with the aforementioned applications.

In 1867, arguably on the aftermath of the industrial revolution, Maxwell published On
Governors [1], one of the first analysis on feedback and stability, in the context of cen-
trifugal governors for steam engines. But it was not until after the second world war, that
the engineering practices in control, mostly based on trial and error up to that point, be-
gan to be formaly defined [2]. The most important results in modern and optimal control
theory: the linear quadratic regulator [3], the Kalman filter [4], the dynamic programing
principle [5] and the Pontryagin Maximum Principle [6], were developed during the cold
war. Before the introduction of fast computers allowed it, however, the application of the
later remained constrained to a very narrow scope of problems. Particularly problematic,
in the context of these theories, are still the imposition of constraints for the actuation
and the states and non-linearities in the system dynamics.
Model predictive control [7] was developed during the eighties for the oil industry, as a

simplification of the optimal control problem, in particular, the optimization time frame,
or prediction horizon, which in the linear quadratic regulator is assumed to be infinite, is
truncated. This allows to approach the optimization problem taking non-linearities and
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1. Introduction

constraints into account, using numerical optimization methods. These schemes usually
involve off-line calculations and yield to complex feedback rules, which can be approxi-
mated with piecewise affine controllers. Despite the advancements in computing power,
however, its application remained still constrained to relatively slow systems, such as
chemical plants.
In the context of drives, optimal control and particularly time-optimal control, has been

developed for positioning in hard drives [8] and mechatronics, in the form of off-line
motion planning [9]. These approaches, generally do not integrate the power converter,
and assume very fast torque dynamics.
The application of model predictive control has been rather limited in in the context

of drives, mostly due to the high computation requirements imposed by these schemes
and the fast dynamics involved, which render them unfeasible. As computers become
faster and more reliable, these kind of approaches will be more massively adopted. At the
current state of real time computers, however, compromises and ad-hoc adaptations must
still be made to, for example, avoid large number of spurious iterations.
The particular area of rotating, variable speed drives has been dominated, practically

since its conception, by field oriented control (FOC) [10]. The analysis introduced by
Blaschke is nowadays fundamental for the understanding of the internal workings of elec-
trical motors. The core idea in FOC is a change of variables (or rotation), which enables to
write the dynamic equations of the motor in a rotating frame of reference, where flux and
torque production are proportional to the stator currents. From an historical perspective,
this allows to control alternating currents motors as if they were direct current motors,
this is, classical proportional-integral controllers can be used at arbitrary speeds and zero
steady state error will be obtained for step flux and torque references. In principle, any
kind of controller can be used instead of the PI controllers and the system will inherit its
properties.
A second very popular control scheme for variable-speed drives is direct torque control

(DTC) [11, 12]. In this scheme, the torque and flux magnitudes are directly controlled
with hysteresis controllers. The output of the later are combined with the position of
the flux in a look-up table, which determines the switching state to be applied by the
power converter. In this scheme there is no explicit rotation of variables, but its implicit
in the look-up table. This scheme achieves great dynamic behaviour, but generates stator
currents with a distributed energy spectrum. This is usually not desirable, since spurious
dynamics might be excited.
A more recent development, which achieves similar dynamics as DTC, when applied in

drives , is finite-set model predictive control (FS-MPC) [13, 14, 15] The basic assumption
behind this method is that the actuation belongs to a finite-set. This assumption has, in
the context of power converters, a physical meaning, since the power transistors used in
power converters are normally used as switches. On the other hand, in the context of
time optimal control, this assumption has a theoretical meaning: the bang-bang princi-
ple, introduced by Pontryagin, states that for a linear system with real eigenvalues, the
minimum time controller will be bang-bang with at most n − 1 switchings, where n is
the dimension of the state space. The FS-MPC scheme makes a practical use of this as-
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sumption: the scheme works as a receding horizon controller, where the optimal control
problem is solved explicitly: the system state is predicted for all the feasible actuation se-
quences and the optimal control is the first component from the sequence that generates
the lowest cost. Naturally, this approach suffers from the curse of dimensionality: the
number of feasible actuation sequences grows exponentially with the prediction horizon.
Latest research around this method has shown that it can be successfully applied in

power converters, particularly multilevel converters [16, 17], where many states must be
controlled at the same time. FS-MPC is effective in finding the best trade-off between
all the control goals. The dynamics involved are generally of first order and thus, a pre-
diction horizon of one sampling period is enough to account for the desired dynamics.
In this way the control decision is reduced to a single dimension and the algorithm can
be implemented in conventional hardware, to solve the control problem online, reaching
high sampling frequencies.
The control formultilevel converters is an example of amulti-variable andmulti-objective

control system. Trade off between them is achieved aggregating the performance index
for each control goal, for example, through a weighted sum of the squared errors, be-
tween the predicted states and their desired states. No closed form for the weights exists
and they must be adjusted for each application and set of parameters. In this situation,
the imposition of particular closed-loop dynamics is very difficult. For this, numerical
schemes have been proposed, to search for weighting factors that optimize more general
performance indexes, this is, introducing an optimization problem in an additional level
of abstraction, This is further complicated, when one considers systems where there is
causal relationships of higher order. We illustrate this with a brief example.
Consider the dynamic equations of the mechanical system in Fig. 1.1

y(0)

m
F

y

T

Figure 1.1.: Free body with massm.

dx

dt
= f(x, u) , (1.1)

with

x =

ñ
v
y

ô
, u = F (1.2)

and

f(x, u) =

Ç
F/m
v

å
. (1.3)
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1. Introduction

We can try to apply a receding horizon controller for this systemwith a prediction horizon
N , to steer this system from an arbitrary initial condition towards the origin, using the
cost function:

J =
N∑
k=1

¶
y[n+ k]2 + λvv[n+ k]2 + λuu[n+ k]2

©
(1.4)

where the λ factors are constant non-zero weights. The state of the system is predicted
using a discrete-time model

x[n+ 1] = g(x[n], u[n]) . (1.5)

If we assume that u can only take one of it extreme values or zero

u ∈
¶
−F̂, 0, F̂

©
, (1.6)

the controller will not react for arbitrarily small initial conditions: the cost of action:
increasing u and v, outweighs the cost of steady state error. The effect is aggravated with
shorter prediction horizons and more complex dynamics.
This is the starting point of the work developed in this thesis.
Time-optimality is adopted as the control goal and the finite-set algorithm is used to

implement quasi-time-optimal controllers for systems with higher order dynamics. The
later is understood in this work as the order of the time derivative of the system state
being controlled, where the control first appears.
The control systems, or drives considered are:

• torque of the induction motor,

• speed of a synchronous motor,

• speed of the induction motor,

• position of the synchronous motor,

• torsional torque of a two-mass-system.

In each case, the same methodology is applied: a simplified abstract model is introduced
to approximate the system transient behaviour, namely, for the first three control sys-
tems systems a double integrator and for the later two a triple integrator and a simple
oscillator. The time-optimal control problem is solved for these abstract system using nu-
merical methods. The later are then modified (simplified) using the finite-set assumption,
to devise feasible control algorithms. One of the driving ideas being the integration of the
different abstraction levels involved: stator voltage synthesis, torque production and the
higher order dynamics. With this, the proposed control algorithms take the form of state
feedback controllers. This approach draws a clear contrast with respect to the traditional
approach in drives, where cascaded control structures are used and the inner dynamics
are abstracted, imposing bandwidth limits on the outer controllers.
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1.1. On simulations and experimental results

Time-optimal controllers have generally (and particularly, for the aforementioned ab-
stract systems) bang-bang outputs. This generates chattering around the steady state and
the switching curve, under real-world conditions (noise, delay, unmodeled dynamics, fi-
nite numerical precision). In order to tackle this issue, which is particularly critical for the
two last systems, a modification of the finite-set algorithm is introduced, based on space
vector modulation, to enable the use of a continuous actuation set.
In each case, the performance of the proposed controllers is validated in an experimental

setup and the measured behaviour is checked against the expected behaviour, calculated
using general numerical methods to solve the time-optimal control problem for the afore-
mentioned simplified models.
In the reminder of this part, the models of the drives at hand are developed and the

relevant control concepts, which make up the context for this work, are introduced. Af-
terwards, in the second part of this work, the torque controller for the permanent magnet
motor is revised and a continuous-set algorithm is introduced.
The third and fourth parts of this work deal with the development of quasi-time optimal

controllers for systems with second and third order dynamics, respectively.

1.1. On simulations and experimental results

Throughout this theses, the proposed control methods are validated using simulations and
experimental tests.
The simulations were carried out in the Python environment [18], using the Numpy

[19] and Scipy [20] packages. The system derivatives and the control algorithms were
written in C language, so that the same code could be used in both simulations and ex-
perimental tests. For the integration with Python the special purpose library SClib [21]
was developed.
All the plots presented in this thesis were produced using the Matplotlib package [22].
The test bench used for the experimental tests consists of a standard 2.2 kW induction

motor and a 2 kW PMSM, both driven by a commercial 5 kW two-level voltage source
inverters, modified for direct access to the switching state of the power transistors. Cur-
rents and dc-link voltage measurements are provided by the inverters. The rotor position
is measured using standard incremental encoders with 1024 lines for the induction motor
and 5000 lines for the permanent magnet synchronous motor.
The control strategy is run in an industrial PC equipped with a 1.4 GHz Intel proces-

sor. The computer runs the Linux operating system, modified with the RTAI package for
real-time operation. The measurements and the control signals are managed with special
purpose cards connected to the computer through a PC-104 bus.
For studying the two-mass system, the motors are coupled through a specially designed

piece, which enables to change the frequency response of the system, by using steel stabs
of different diameters as the shaft and by changing the inertias of both, the driving ma-
chine and the load, by adding weights at each side.

7



1. Introduction

Technical limitations of the test bench forced the reduction of the voltage range to pro-
duce the experimental results presented here: when modulating relatively high voltages,
the zero voltage vector is applied for very short time and the noise introduced by the
switching elements is very noticeable in the currents measurements, which are synchro-
nized to occur while the zero vector is applied. To tackle this, the value for the maximum
actuation was set

û = 0.9 ·
√
3

3
vdc . (1.7)

The sampling period h used was 46.088 µs for the scheme using space vector modulation
and 30.725 µs for the direct methods.
The measurements presented in this work correspond to the measurements available to

the controller. Variables not being measured were estimated using a state observer (see
Sec. A).
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2. System Models

In this chapter we develop models for the systems we wish to control: the permanent
magnet synchronous motor drive and the induction motor drive, suitable for control pur-
poses. These models include the actuator: the voltage source inverter, and the relevant
dynamics of both motors. The model for the two-mass-system is introduced in chapter
10, since is only relevant for the work developed there.
The models in this chapter are developed in continuous-time, but, since the control

methods proposed latter are formulated to be implemented in digital computers, discrete-
time models are required. The last section in this chapter presents the method used
thought this work to produce them.
From the control perspective, the aim of this chapter is to be able to write an ordinary

differential equation of the form:

dx

dt
= f(x, u, d), (2.1)

that effectively describe the relevant dynamics of the systems at hand. In eq. 2.1 x pertains
to the system state, u to the actuation and d to a non-measurable disturbance. Notwith-
standing this, we would also like to understand the internal workings of the motor, this is
why the models are developed starting from the motor’s physics; we are interested in the
electromagnetic dynamics of the motor: the relationships between voltages, currents and
magnetic fields, the mechanical dynamics: the relationship between torque, speed, posi-
tion of the rotor and in the particular case of the two-mass-system, torsional torque and
speed and position of the load, and finally, the energy conversion aspects of the motor, i.e.,
the mechanism that turns electrical energy into mechanical energy. In this sense, no spe-
cific details regarding the construction of the motor are presented, only those necessary
to account for these effects.
The models introduced in this chapter are simple representations of complex physical

phenomena. Consequently, the parameters introduced to develop this models, which are
assumed to be constant, seem to vary, depending on the operation point, for example,
and even its past values. The effect produced by the dead-time used to safely switch
the transistors in the power converter is an example of the first case. When synthesiz-
ing relatively small voltages using pulse-width modulation schemes, the power converter
generates short-duration voltage pulses, comparable to the duration of the dead-time. In
this scenario, the stator windings seem to have higher resistance. An example of the later
case, where past values of the system variables seem to change the parameters of the sys-
tem, is magnetic hysteresis, which characterizes the iron used to build the motors. In this
case, the inductance of the stator windings seem to change.

9



2. System Models

These and other effects are disregarded in this work, in order to keep the proposed
control strategies as simple as possible. In this sense, the control strategies developed in
this work show the extent to which this simple models are useful. Nevertheless, special
care has to be taken when fitting the parameters of the models, so that their dynamics
match the real dynamics, under the conditions imposed by the controller. This is addressed
at the end of each section in this chapter.

10



2.1. Voltage Source Inverter

2.1. Voltage Source Inverter

In its lowest abstraction level, the task of the control algorithm of a drive is to synthesize
the voltages to be applied to the motor. From the control perspective this is usually not
an issue and the power converter is regarded as a gain or a simple delay. In this work,
however, one of the driving ideas is the integration of all the abstraction levels up to the
extent where they become relevant to the control goals. In this sense, the actuator: the
voltage source inverter, determines the actuation set U .
The control algorithms presented in this work were developed assuming that the mo-

tors are driven by a two-level voltage source inverter (VSI), generalization for using other
converters should be, however, straight forward. A simplified scheme of this power con-
verter is presented in Fig. 2.1. It consists of a power source and three legs connected
to the three terminals of the motor. Different switching configurations produce differ-
ent voltages in the motor terminals. In each leg only one switch should be connected
at a time: the commutation process includes a relatively short dead-time, during which,
both switches of the corresponding leg are turned off, this to avoid short circuiting the
power source. The switches are implemented using different transistors, depending on
the power rate and requirements of the application, however, Insulated-gate bipolar tran-
sistors (IGBT) are the most popular Further details regarding the operation of the VSI
such as control of the dc-link (vdc), are disregarded in this work. Note, however, that the
value of vdc might change drastically, for example, when breaking the motor. In this case
energy is taken out of the rotor and transfered to the dc-link. This has a critical effect on
the rate of change of the stator currents. To account for this in the experimental tests, vdc
is continually monitored and its value is feed to the control algorithm.
The VSI depicted in fig. 2.1, and all the drives we wish to model are triphasic systems,

nevertheless, the information required to describe the energy transformation process in
the motors can be synthesized in two components. For this, we introduce the Clarke
transformation (also known as αβ transform), which gives the projection of three phase
quantities in two orthogonal components αβ [23]:

Tαβ =
2

3

ñ
1 −1/2 −1/2
0

√
3/2 −

√
3/2

ô
. (2.2)

The more complete αβγ transform includes a third component, which would account for
the common mode. We disregard it, since it plays no role in our analysis.
A pseudo-inverse for Tαβ (which will be used later), is given by:

T−1
αβ =

 1 0
−1/2

√
3/2

−1/2 −
√
3/2

 . (2.3)

With this, we can write the voltage applied to the motor in αβ coordinates, in terms of
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2. System Models

vdc

Motor

v⃗s

s̄a

sa

va

s̄b

sb

vb

s̄c

sc

vc

N

α

β

v1

v2 v3

v4 v5

v6
v0, v7

Figure 2.1.: Voltage source inverter (left) and synthesized voltages in the αβ plane (right).
va, vb and vc are defined with respect to nodeN . The binary representation of
the subscripts in v0, . . . , v7 encode the switching state that generates them
in the order scsbsa. These voltage vectors constitute the actuation set U with
the definition in eq. (2.4). The gray area constitutes the actuation set with the
definition in eq. (2.7).

the state of the switches and the magnitude of the dc-link:

v⃗s = vdcTαβ

 sa
sb
sc

 , with sa, sb, sc ∈ {0, 1} . (2.4)

The different combinations of switching states generate six active and two zero voltage-
vectors (see fig. 2.1 for a representation in the αβ plane). Some of the schemes presented
in this work take these voltage vectors as the actuation set:

u ∈ U = {v0, v1, . . . , v7} . (2.5)

These are called direct or finite-set schemes and the underlaying assumption, the finite-set
assumption.
Another way to define v⃗s is in terms of duty cycles: given the sampling period h, the

duty cycle defines the portion of h in which the corresponding switch remains on:

sx(t) =

®
1 if (t/h mod 1) ≤ dx
0 if (t/h mod 1) > dx

. (2.6)

In this way the mean value of the corresponding voltage vi in one sampling period h can
take any value in [0, vdc].
If h is small compared to the system dynamics, we can assume that the voltage feed to

12



2.1. Voltage Source Inverter

the motor is equal to the mean output voltage of the VSI in one sampling period:

v⃗s = vdcTαβ

 da
db
dc

 , with da, db, dc ∈ [0, 1] . (2.7)

With this, the actuation set is now given by the gray area represented in the αβ plane in
fig. 2.1.
The next section presents a method to obtain the duty cycles in eq. (2.7).

2.1.1. Space vector modulation

Space vector modulation (SVM) [24] is a technique to calculate the duty cycles in eq. (2.7),
to approximate a given voltage vector (the reference voltage vector v⃗∗) inside the gray area
in Fig. 2.1.
The basic idea is to regard the problem as a linear algebra problem. The hexagon in

figure 2.1 is divided in six triangles or sectors, the first step to calculate the duty cycles is
to find in which of these sectors v⃗∗ lies, this can be done calculating its angle with respect
to to the α axis, for example. Then, the following linear problem needs to be solved for
da and db: î

va vb
ó ñ da

db

ô
= v⃗∗ , (2.8)

where va and vb represent the two voltage vectors at the sides of the sector. If v⃗∗ lies inside
the hexagon then da + db ≤ 1.
At the sides of every sector there is one vector which is is generated by turning one

switch on (v1, v2 or v4) and another, which is generated by turning two switches on (v3,
v5 or v6), we call them single and combined vectors. At a given sector, the one delimited
by v2 and v6, for example, we call the single vector at its side vx (v2 in the example) and
the vector which summed with vx generates the combined vector vy (v4 in the example).
With this, the duty cycle for the single vector is given by

dx = d1 + d2 (2.9)

and for vy

dy =

®
d1 if vx = v2
d2 if vx = v1

, (2.10)

During the remaining time

d0 = 1.0− dx− dy , (2.11)

a zero vector is applied.
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2. System Models

The SVM technique comprehends further details, such as the order for turning the
switches on and off, which has a consequence in the harmonic content of the synthesized
voltage, and implementations for more complex power converters. [25].
In the work developed later in this thesis, the ideas behind space vector modulation are

integrated within the controllers to approximate vectors, not on a voltage plane anymore,
but on a plane representing the error in the electrical torque and the satisfaction of the
necessary conditions for maximum torque per ampere operation, in the case of the PMSM,
and the error in the current necessary to sustain the rotor flux, in the case of of the IM.

14



2.2. Permanent Magnet Synchronous Motor

2.2. Permanent Magnet Synchronous Motor

The permanent magnet synchronous motor is generally characterized by a high power
density and dynamics and is usually employed in servo applications.
Fig. 2.2 presents a simplified scheme of the motor with the relevant variables. Basically,

the motor consists of three static windings (the stator) and a rotating magnet (the rotor).
A common characteristic, and usually undesired effect, in this kind of motors is that the
magnet’s field saturates the iron in the stator in the direction where the magnet’s poles
point [26], this is, in those directions, it lowers the permeability of the iron µ: the ability
of the iron to support the formation of magnetic flux density B out of the magnetic field
H (B = µH). As a consequence the inductance of the stator windings, which is pro-
portional to µ diminishes in those directions also. This is relevant to operate the motor
efficiently: since in determines the conditions where maximum torque with minimum
losses is produced.
The basic workings of the motor can be phrased in this way: by manipulating the input

voltages va, vb and vc, the stator currents ia, ib and ic can be controlled to produce a net
magnetic field pointing at an arbitrary direction (orthogonal to the rotation axis). In this
way, torque is applied to the rotor, since its own magnetic field tends to align with the
magnetic field generated by the stator currents.

d
q

α

β

θr

N

S

θr

va

vbvc

ia

ic

ib
ic

ia

ib

ψm

ψa

Figure 2.2.: Diagram of the permanent magnet synchronous motor. The rotation axis is
depicted with a dotted line. ψa represents the magnetic flux passing through
winding a and ψm the magnetic flux produced by the rotor magnet, θr is the
angle between them. αβ and dq represent a stationary and a rotatory frame
of reference. The later is aligned with the rotor magnet.
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2. System Models

In the following sections the model of the PMSM is developed in two distinct frames
of reference or coordinate systems: αβ and dq. The first one is fixed with respect to the
positions of the stator windings and is the most natural to develop. The second frame of
reference is a rotatory one and is aligned with the direction of the magnet. In this frame
of reference, the currents that generate constant torque are also constant. This makes it
specially suitable for control purposes and it is the basis for field oriented control (see Sec.
3.1).

2.2.1. Model of the permanent magnet synchronous motor in a
stationary frame

Applying the Kirchhoff’s and Faraday’s laws to each stator winding, their electrical dy-
namics can be written in the following form: va

vb
vc

 = rs

 ia
ib
ic

+ d

dt

 ψa
ψb
ψc

 . (2.12)

ψ represents the flux passing through the respective winding, this is, the surface integral
of the normal component of magnetic flux density passing through the winding:

ψ =
∫∫

S
BdS (2.13)

rs represents the stator windings resistance and accounts for the Joule losses in the wind-
ings.
Assuming that the magnetic field produced by the rotor magnet is distributed sinu-

soidally, the flux can be expressed as: ψa
ψb
ψc

 = L{abc}
s is + ψm

 cos(θr)
cos(θr − 2π/3)
cos(θr − 4π/3)

 , (2.14)

ψm is the magnitude of the rotor magnet flux, the vector multiplying it gives its projection
on the directions normal to the plane of each winding. Labcs is the inductance matrix of the
stator (the superscript denotes that the stator inductance Ls is defined in abc variables)
and is given by:

L{abc}
s =

 La Mab Mac

Mab Lb Mbc

Mac Mbc Lc



+ L∆

 cos(2θr) cos(2θr + 2π/3) cos(2θr + 4π/3)
cos(2θr + 4π/3) cos(2θr) cos(2θr + 2π/3)
cos(2θr + 2π/3) cos(2θr + 4π/3) cos(2θr)

 .
(2.15)
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2.2. Permanent Magnet Synchronous Motor

In this equation, the first term accounts for the geometry of thewindings and thematerials
used to construct motor. In this term Li and Mij with i, j ∈ {a, b, c} are called the self
and mutual inductances of each winding and between two windings. The second term
accounts for the effect produced by the magnetic field of the rotor on the iron in the stator,
which is to lower its permeability µ, thus lowering the net inductance of the windings.
Most electrical motors designed to generate constant torque with sinusoidal currents

and voltages. One design consideration to achieve this is to distribute the stator windings
sinusoidally and to construct them symmetrically. This allows to assume [26]:

La = Lb = Lc = Ll + Lm (2.16)

and
Mab =Mac =Mbc = −Lm

2
. (2.17)

Ll and Lm are called leakage and magnetizing inductances. Along this assumptions and
the definition:

LΣ = Ll +
3

2
Lm, (2.18)

the stator inductance, defined now in the αβ frame, can be written in the more compact
form (for the definition of Tαβ see Sec. 2.1):

Ls = TαβL
{abc}
s T−1

αβ (2.19)

= LΣ

ñ
1 0
0 1

ô
+ L∆

ñ
cos(2θr) sin(2θr)

− sin(2θr) cos(2θr)

ô
(2.20)

here the effect of the magnet is more clearly understood: the variation in the total induc-
tance peaks at the directions pointed by the north and the sound poles of the magnet.
Furthermore, with the following definitions:

LΣ =
Ld + Lq

2
(2.21)

L∆ =
Ld − Lq

2
(2.22)

T =

ñ
cos(θr) − sin(θr)
sin(θr) cos(θr)

ô
(2.23)

Ls can be rewritten:

Ls = T

ñ
Ld 0
0 Lq

ô
T−1. (2.24)

Ld and Lq represent the equivalent stator inductances in the directions of the north pole
of the rotor magnet (the d axis) and in a direction orthogonal to it (the q axis).

17



2. System Models

Matrix T , known as the inverse Park transform [27], gives the projection of a magnitude
defined in the dq axes onto the αβ axes: the matrix

î
Ld 0
0 Lq

ó
corresponds to the stator

inductance defined in the dq axes. In the next section the Park transform T−1 is used to
derive the model of the PMSM in the rotatory frame dq.
With all this we are in place to write the model of the electrical dynamics of the PMSM

in the stationary frame αβ in terms of the relevant variables, namely: the input voltages
v⃗s = [vα vβ]

T , the stator currents i⃗s = [iα iβ]
T (⃗ denotes a vector in the αβ frame), the

rotor position θr and rotor speed ωr = dθr
dt

:

Ls
d⃗is
dt

+ rs⃗is = v⃗s − ωr

Ç
∂Ls
∂θr

i⃗s + Jψ⃗m

å
. (2.25)

In this equation

J =

ñ
0 −1
1 0

ô
and ψ⃗m = Tαβψm

 cos(θr)
cos(θr − 2π/3)
cos(θr − 4π/3)

 = T

ñ
ψm
0

ô
.

In eq. (2.25) the first order dynamics between the stator voltages and currents become
evident. The second term on the right side of eq. (2.25) account for the interactions
with the rotor, this is, the development of torque. An expression for the latter is the
only missing part to link the electrical with the mechanic dynamics in the motor. This
is further developed in section 2.2.3, after introducing the rotatory frame of reference dq,
which makes the necessary manipulations easier, but the form of this term already gives
us hints about the workings of the energy conversion process. This term has voltage
units and the dot product with the stator currents has power units. On the other hand,
the kinetic power transferred to the rotor is proportional to ωr and the electrical torque
Te, so the latter must be proportional to a product of the stator currents and the terms
between the parenthesis. The latter has two components, the second one accounts for the
interactions between the stator currents and the rotor magnet, whereas the second is only
different from zero if Ld ̸= Lq (see eq (2.20)), the torque generated through this process
is called reluctance torque. Motors designs based only on the latter process are called
reluctance motors. In these motors, the difference between Ld and Lq is not produced by
saturation of the iron, but by anisotropies introduced in the design of the rotor [28].

2.2.2. Model of the permanent magnet synchronous motor in a
rotatory frame

The Park transform:

T−1 =

ñ
cos(θr) sin(θr)

− sin(θr) cos(θr)

ô
, (2.26)

gives the projection of magnitudes defined in a stationary frame onto the axes of a frame
rotated by θr. This is the core idea behind field oriented control: the sinusoidal currents
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2.2. Permanent Magnet Synchronous Motor

that make the motor produce constant torque look constant, when projected on a frame
of reference aligned with the magnetic field of the rotor. These rotated currents can be
then controlled with normal proportional-integral controllers at arbitrary rotor speeds.
To completely understand this we first develop the model of the PMSM in the rotatory

dq frame, which is aligned with the rotor magnet (see fig. 2.2). This model can be obtained
by first applying the Clarke transform to eq. (2.12) by right multiplying each term with
Tαβ :

v⃗s = rs⃗is +
dψ⃗

dt
, (2.27)

then, by applying the park transform we obtain (⟲ and {dq} denote vectors and matrices
defined in the dq frame):

L{dq}
s

d
⟲
ıs
dt

+ rs
⟲
ıs =

⟲
vs + Jωr

Å
L{dq}
s

⟲
ı+

⟲
ψm

ã
, (2.28)

with

⟲
vs =

ñ
vd
vq

ô
= T−1v⃗s,

⟲
ıs =

ñ
id
iq

ô
= T−1⃗is, L{dq}

s =

ñ
Ld 0
0 Lq

ô
and

⟲
ψm =

ñ
ψm
0

ô
.

Note that ωk is the frequency of the stator currents and voltages and is also proportional
to the mechanical rotor speed. Hence the synchronous in the name of the motor.

2.2.3. Electromechanical conversion

An expression for the torque developed by the PMSM can be derived by a power balance:
the last term in eq. (2.28) is known as the back electro motive force (back-emf E ) and can be
understood as a voltage source, if eq. (2.28) is understood as describing the dynamics of an
inductive-resistive circuit. The active power transfered to it is transformed to mechanical
energy. If Pk is the kinetic energy of the rotor:

Pk = Te
ωr
p

=
3

2
E · ⟲

ı , (2.29)

where p is the magnetic pole pair number, which works as a gear box between the me-
chanical and electrical variables, this means ω{m}

r = ωr

p
and θ{m}

r = θr
p

({m} stands for
mechanical), if θ{m}

r and θr are aligned at θr = 0. The factor 3
2
on the right side of (2.29)

accounts for the scaling introduced by the Clarke transform.
From eq. (2.29) the following expression for the torque developed by the PMSM can be

derived:

Te =
3

2
p(ψmiq + (Ld − Lq)idiq). (2.30)
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2. System Models

As stated before, the electrical torque has two components: one is due to the interac-
tions between the stator current and the rotor magnet, the second one is produced by the
difference between Ld and Lq .
With this, the model for the drive can be completed with the equation for the rotor

speed derivative:
dωr
dt

=
p

Jm
(Te − Tl) . (2.31)

As stated before, Tl accounts for the torque developed by the load. Jm is the total moment
of inertia of the drive.

Maximum torque per ampere

The PMSM is operated with optimal efficiency when for stator currents of a given mag-
nitude, the developed torque is maximum. This is referred to as maximum torque per
ampere operation (MTPA).
The conditions required to operate at MTPA can be derived by solving the following

problem:

min
id, iq

||⟲ı|| (2.32)

subject to:

Te =
3

2
p(ψmiq + (Ld − Lq)idiq) (2.33)

= T ∗
e , (2.34)

where T ∗
e is an arbitrary value: the torque reference. The solution of this problem (which

can be easily achieved using Lagrange multipliers), leads to the following condition for id
and iq:

id +
Ld − Lq
ψm

Ä
i2d − i2q

ä
= 0. (2.35)

With this, for a given reference for Te, the optimal values for id and iq can be solved
from eqs. (2.30) and (2.35).

2.2.4. State space representation

The model developed in the last sections can be synthesized in the following set of ordi-
nary differential equations (ODEs) [29]:

d

dt

 i⃗s
ωr
θr

 =

à
L−1
s

Ç
v⃗s − rs⃗is −

∂Ls
∂θ

ωr⃗is − Jωrψ⃗

å
p

Jm
(Te − Tl)

ωr

í
. (2.36)
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2.2. Permanent Magnet Synchronous Motor

Eq. 2.36 is to be regarded as the state space representation of the PMSM, with its state
being x = [iα iβ ωr θr]

T , the input u = v⃗s and the disturbance d = Tl.

2.2.5. Model parameters

The model in eq (2.36) is characterized by a set of parameters. With very few exceptions
[30], control systems require certain degree of knowledge on their values controllers.
This is true for the controllers developed in this work, since they are all based on system
models.
The following are the procedures used in this work to fit the model parameters.

• Stator winding resistance rs: measured directly using an Ohmmeter on the termi-
nals of the motor.

• Stator windings inductances Ld and Lq: with the rotor braked sinusoidal and bal-
anced voltages with phases shifts 0, 2π/3 and 4π/3 rad of amplitude vV and frequency
ωrrad s−1 are applied to the motor terminals. This is equivalent to applying π/2rad
phase shifted voltages in vα and vβ and forcing ωr = 0 in (2.25). The resulting
currents should be unbalanced and sinusoidal and, when plotted in the αβ plane,
should generate an ellipse. The major and minor radii of the ellipse correspond to
the amplitudes of id and iq respectively. Ld and Lq can be then solved from:»

(ωrLd)2 + r2s =
||id||
v

and
»
(ωrLq)2 + r2s =

||iq||
v

Note that, due to magnetic hysteresis and Eddie currents, the value of the induc-
tances depends strongly on the frequency of the input voltages [31]. The control
methods developed in this work are based on predictions of the stator currents for
the time-frame of one sampling period, therefore, the value of the stator winding in-
ductance is estimated applying voltages of the highest frequency the control system
can produce, this is, half of the sampling frequency.

• Rotor magnet flux ψm: with the terminals of the PMSM open, the rotor is forced to
rotate at a fix angular frequency ωrrade s−1 (electrical), the voltage measured in the
motor terminals is given by eq. (2.25) with i⃗s = 0:

v⃗s = JωrT

ñ
ψm
0

ô
ψm can be then solved from this equation.

• Rotor moment of inertia Jm: using a simple torque controller a torque step is ap-
plied, the rate of change in the rotor speed is inversely proportional to Jm, as es-
tablished by (2.31).

The parameters of the motor used for experimental tests are given in table 2.1.
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2. System Models

Table 2.1.: Parameters of the Permanent Magnet Synchronous Motor
p= 3
rs= 2.2 Ω
ψm= 0.226Wb
Ld= 8.4mH
Lq = 11.1mH
Jm= 8.56× 10−3 kgm2
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2.3. Induction Motor

2.3. Induction Motor

The induction motor is the by far the most popular electrical motor. This is due to its
simplicity of operation: it can be directly connected to the mains, and also of construction,
which makes it extremely robust.
Fig. 2.3 presents a simplified diagram of the motor and the relevant variables. The

motor consists of three static windings a, b and c, which constitute the stator, and three
windingsA,B andC attached to the rotor. In practice the rotor windings are constructed
as shown in the picture: with conducting bars parallel to the rotation axis connected at
their ends with a conducting ring. This kind of rotor is called squirrel cage. Despite the
simplicity of its contraction, the workings of the induction motor are a little bit more
complex than those of the PMSM: by manipulating the stator voltages va, vb and vc the
stator currents ia, ib and ic can be controlled to produce a magnetic field. The currents
can then be manipulated to make the magnetic field rotate, as this happens the rotor
windings observe a net change in the flux passing through them, inducing currents in the
rotor windings, which oppose to the variation of flux (Lenz law). The interaction between
the induced rotor currents and the field generated by the stator currents generate torque
on the rotor.

iA

ic

iB

vc

ia

ia

ib

iC
iA

iB

iC

ψA

ψa

θm

vb

ib

ic

va

Figure 2.3.: Diagram of the induction motor. The rotation axis is depicted with a dotted
line. ψa represents the magnetic flux passing through the stator winding a
and ψA the magnetic flux passing through the rotor winding A.

Just as in the previous section, the model of the induction motor is developed in two
distinct frames of reference, αβ and dq. The first is fixed to the stator windings and the
second is aligned with the rotor flux. Note that in this sense the induction and the syn-
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chronous motors are different, since the rotor flux is not fixed with to the rotor position:
in the induction motor the total rotor flux also rotates with respect to the rotor windings.
The model developed in this section assumes that no saturation of the iron occurs, and

that all the rotor quantities are referred to the stator side, through the rotor to stator turns
ratio.

2.3.1. Model of the induction motor in a stationary frame

Applying Kirchhoff’s and Faraday’s laws to each winding in the stator we can write [32]: va
vb
vc

 = rs

 ia
ib
ic

+ d

dt

 ψa
ψb
ψc

 (2.37)

Assuming that the construction of the windings is symmetrical and that they are sinu-
soidally distributed, the flux passing through them is given by: ψa

ψb
ψc

 =

 Lls + Lm −Lm

2
−Lm

2

−Lm

2
Lls + Lm −Lm

2

−Lm

2
−Lm

2
Lls + Lm


 ia
ib
ic



+Lm

 cos(θr) cos(θr + 2π/3) cos(θr + 4π/3)
cos(θr + 4π/3) cos(θr) cos(θr + 2π/3)
cos(θr + 2π/3) cos(θr + 4π/3) cos(θr)


 iA
iB
iC

 ,
(2.38)

Lls and Lm are the leakage inductance of the stator windings and the mutual inductance
between them. Similar equations hold for the rotor windings.
We now define the equivalent rotor and stator inductances Ll and Lr as:

Ls = Lls + Lm Lr = Llr + Lm

whereLlr pertains to the rotor leakage inductance, and then apply the Clarke transforma-
tions to eqs. (2.37) and (2.38) (and to the corresponding rotor equations) to obtain biphasic
versions of them. Up to now each variable is still defined in their own frame of reference:
the stator variables in the axes αβ, aligned with the stator windings, and the rotor vari-
ables in a biphasic frame of reference aligned with the rotor windings. We use the Park
transform (see eq. (2.26)) to get the projections of the rotor variables in the αβ frame to
get:

v⃗s = rs⃗is +
dψ⃗s
dt

(2.39)

v⃗r = rr⃗ir +
dψ⃗r
dt

− Jωrψ⃗r (2.40)

ψ⃗s = Ls⃗is + Lm⃗ir (2.41)
ψ⃗r = Lr⃗ir + Lm⃗is, (2.42)

24



2.3. Induction Motor

These equations can be solved for two variables (out of the four: i⃗s, i⃗r, ψ⃗s and ψ⃗r) to
be taken as the motor’s electromagnetic state. An usual convention is to choose i⃗s and
ψ⃗r [33]. In this way, and noting that v⃗r = 0 for the squirrel cage motor, the following
equations are obtained:

τσ
d⃗is
dt

+ i⃗s =
1

rσ
v⃗s −

kr
rστr

(Jωrτr − 1)ψ⃗r (2.43)

τr
dψ⃗r
dt

+ ψ⃗r = Lm⃗is + Jωrτrψ⃗r, (2.44)

with

τσ = σLs/rσ rσ = rs + k2rrr

τr = Lr/rr kr = Lm/Lr

σ = 1− L2
m/LsLr.

Equations (2.43) and (2.44) describe the electromagnetic dynamics of the motor. In this
form, the model of the asynchronous motor, should look familiar from a control theory
perspective: they describe first order dynamics, plus a couple of exotic non-linear terms,
which account for the interactions between stator and rotor windings states, and of these
with the relevantmechanical variables: rotor speed and position. To complete the descrip-
tions of this interactions, however, we still need to find an expression for the electrical
torque developed by the machine.

2.3.2. Electromechanical conversion

In order to find an expression for the torque developed by the induction motor we make
a power balance: considering the effects we took into account for the electromagnetic
modeling of the machine, we know that the energy flowing to it will either be burnt as
Joule losses (rs), stored as magnetic fields (Ls, Lr and Lm), or transformed into kinetic
energy. Using eqs. (2.39), (2.40), (2.41) and (2.42), we can calculate the total power being
consumed by the motor as:

Ptotal =
3

2

Ä
v⃗s · i⃗s + v⃗r · i⃗r

ä
(2.45)

=
3

2

Ä
rs|⃗is|2 + rr |⃗ir|2

ä
+

3

2

d

dt

Ç
Lls
2
|⃗is|2 +

Llr
2
|⃗ir|2 +

Lm
2

|⃗is + i⃗r|2
å

+
3

2
ωrLm

Ä⃗
ir × i⃗s

ä
(2.46)

The factor 3
2
accounts for the scaling done by the Clarke transformation.

Just by inspecting (2.46) it becomes clear that the first and second terms of its right side
pertain to the Joule losses and the power being stored in the leakage and magnetizing
inductances. The third term must pertain to the energy being transformed to kinetic
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2. System Models

energy. An expression for the torque Te can be now found by equating the third term
in the right side of (2.46) to the rate of change of the kinetic energy in the rotor:

Pk = Te
ωr
p
,

p is the pole pair number of the stator windings. With this we obtain:

Te =
3

2
pLm

Ä⃗
ir × i⃗s

ä
(2.47)

=
3

2
p
Lm
Lr

(
ψ⃗r × i⃗s

)
(2.48)

=
3

2
p
Lm

σLsLr

(
ψ⃗r × ψ⃗s

)
. (2.49)

The description of the motor dynamics can be now completed with the equation for the
rotor speed:

dωr
dt

=
p

Jm
(Te − Tl) , (2.50)

where Jm represents the rotor inertia and Tl the torque developed by the load.

2.3.3. Model of the induction motor in a rotatory frame

Equations (2.43) and (2.44) can be defined in an arbitrary rotatory frame of reference, using
the Park transformation with an angle θk, T−1(θk) =

[
cos(θk) sin(θk)

− sin(θk) cos(θk)

]

τσ
d
⟲
ıs
dt

+
⟲
ıs =

1

rσ

⟲
vs − Jωkτσ

⟲
ıs −

kr
rστr

(Jωrτr − 1)
⟲
ψr (2.51)

τr
d

⟲
ψr
dt

+
⟲
ψr = Lm

⟲
ıs − J(ωk − ωr)τr

⟲
ψr, (2.52)

with

⟲
vs =

ñ
vd
vq

ô
= T−1(θk)v⃗s,

⟲
ıs =

ñ
id
iq

ô
= T−1(θk )⃗is,

⟲
ψr =

ñ
ψd
ψrq

ô
= T−1(θk)ψ⃗r, ωk =

dθk
dt
.

A very useful rotatory frame is one aligned with the magnetic field of the rotor, the dq
frame. Here, the quadrature component of the rotor flux is null ψrq = 0, which means
that the d component of the eq. (2.52) is reduced to:

τr
dψd
dt

+ ψd = Lmid (2.53)
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and ωk can be solved from the q component of eq. (2.52) ¹

ωk = ωr +
Lm
τr

iq
ψd
. (2.54)

Finally the expression for the torque in (2.48) can be written:

Te =
3pkr
2

ψdiq (2.55)

Equations (2.51), (2.52), (2.53) and (2.53) lead to the core ideas behind field oriented con-
trol (FOC), which is the classic control scheme for asynchronous motors: the magnitude
of the rotor flux |

⟲
ψr| = |ψd| can be controlled manipulating the d component of the stator

current id and, if it is controlled to be approximately constant, the electrical torque Te
can be controlled independently by manipulating the q component of the stator current
iq. Moreover, both components of the stator currents can be controlled with null station-
ary state error using simple proportional-integral controllers, for constant flux and torque
reference values.

2.3.4. State space representation

Incorporating eq. (2.50) to (2.43) and (2.44) the following state space representation of the
dynamic behaviour of the induction motor can be written:

d

dt

 i⃗s
ψ⃗r
ωr

 =


1
τσ

(
1
rσ
v⃗s − i⃗s − kr

rστr
(Jωrτr − 1)ψ⃗r

)
1
τr

(
Jωrτrψ⃗r − ψ⃗r + Lm⃗is

)
p
Jm

(Te − Tl)

 (2.56)

The state being x = [isα isβ ψrα ψrβ ωr]
T , the input u = v⃗s = [vα vβ]

T and the disturbance
d = Tl. The torque developed by the motor is given by:

Te =
3

2
p
Lm
Lr

(
ψ⃗r × i⃗s

)
(2.57)

2.3.5. Model parameters

As mentioned earlier, the models introduced in this chapter are simple representations
of very complex physical phenomena. This is particularly true in the case at hand. The
construction of the induction motor, which does not include magnetic materials imposing
a magnetic flux, but relies on induction of the rotor flux, makes it extremely reliable, but
very sensitive to iron effects: saturation, magnetic hysteresis, Eddie currents.

¹Note that ωk is the frequency of the stator currents if the αβ plane. From here one of the names of the
induction motor, asynchronous machine: the speed of the rotor does not match frequency of the stator
voltages and currents and the difference is proportional to the load, or the torque being developed by
the motor. This becomes clear with eq. (2.55).
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Just as in the case of the synchronous motor in last section, the parameters of our model
of the induction motor need to fitted, so the dynamics of the model match the real dy-
namics under the conditions imposed by the control system.
The following is the procedure used in this work to fit the model parameters.

• A first approximation for these parameters is obtained with the well known no-load
and locked rotor tests [32]. These test are used to estimate the ratio between Lm
and Ls.

• The stator winding resistance rs is measured directly, using an Ohmmeter on the
terminals of the motor.

• The composite parameter σLs is estimated out of the measured rate of change in the
stator currents, applying voltage pulses to the motor terminals, on top of a constant
voltage. The latter is used to magnetize the motor and avoid hysteresis effects.

• With this estimates, a rudimentary torque controller, based on field-oriented control
is implemented, using the currents model as rotor flux observer (see Appendix B).
A step torque reference is feed to it and the value for the composite parameter τr is
adjusted until the speed is measured to change at a constant rate. When the value
of τr is not correctly fitted, the observed flux tends to lag behind or overtake the
actual induced flux and pulsating torque is produced.

These estimations, together with the assumption Ls = Lr and eq. (2.44) are used to
solve the electrical parameters.
The rudimentary torque controller, adjusted with the parameters estimated so far, is

used to apply a step torque. The rotor inertia Jm is estimated out of rate of change obtained
for the speed (see Sec. 2.2.5).
The fitted parameters, which are used for the experimental tests are given in table 2.2.

Table 2.2.: Parameters of the Induction Motor
p= 1
rs= 2.5 Ω
rr= 1.57Ω
Ls= 324.8mH
Lr= 324.8mH
Lm= 318.0mH
Jm= 7.53× 10−3 kgm2
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2.4. Discrete-time Models

2.4. Discrete-time Models
The control schemes presented in this work were developed to be implemented on digital
computers and they all make use, as a central element, of predictions of the states to be
controlled. In this sense, discrete-time models are required in each case.
The only particular requirement imposed on thesemodels is that the effect of the input u

must be patent in the prediction of all relevant states at the end of the prediction horizon,
we call this direct feed-through [34, 35]. The reason for this lies in the fact that the control
decision: the actuation u to be applied in the next sampling instant, is calculated upon the
effects of the actuation on the predictions. In all the applications presented in this work
the prediction horizon is one sampling period, Although, this is not completely true for
the control systems presented in part IV, where control of higher order dynamics force
the use of longer predictions horizons. The techniques used in those cases are presented
in the corresponding chapters.
In each case, the discrete model of the system is synthesized by using the Taylor series

expansion of the solution of the continuous time state space representation of the system
[36]. With this, each component i of the discrete-time state space representation for the
system is given by:

xi[n+ 1] = xi[n] +
Ni∑
l=1

hl

l!

dlxi
dtl

∣∣∣∣∣∣
t=hn

(2.58)

Parameters h andNi represent the sampling period and the order of the Taylor expansion,
respectively. The later is adjusted for each state component to get direct feed-through
from the input to every state in one sampling period: it corresponds to the lowest l for
which u appears in dlx

dtl
. This is also regarded as the order of the dynamics being controlled.

The discrete-time space representation of the system can be now written as:

x[n+ 1] = f(x[n], u[n], d[n]). (2.59)

In this form, the system model is used in the control algorithms developed in this work,
to predict the future state of the system.
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In the last chapter, models for the PMSM and IM drives were developed and put in a
compact form, the steady state representation, to describe all the relevant dynamics. In
this chapter we develop the three major control concepts, which constitute the context
where the main contributions of this theses are located:

Field oriented control, the classical control method for variable speed drives. From the
control’s perspective, a change of variables that allows to write a simple expression
for the torque as a function of the system state, and more importantly, separates the
flux and torque control problems in the induction machine.

Finite-set model predictive control, a relatively new control strategy, proposed orig-
inally for the control of power electronics. It constitutes an ad-hoc implementation
of the model predictive control method in power converters. The method exploits
certain properties of these systems to enable vast simplification of a relatively com-
plex control problem: control of a switched, multivariable system with constraints
in the inputs and the states, themethod solves this problem online and implemented,
in commercial digital signal processors, reaches sampling rates in the kHz range.

Time optimal control. In general, the idea behind model predictive control is to solve
an optimal control problem, this is, derive control policies out of an optimization
problem on the system variables, which takes the system dynamics as constraints.
The criteria to optimize might be diverse: steady state error, fuel consumption, etc.
The particularity of the model predictive control method is that it solves this prob-
lem in a finite time horizon. Time optimal control refers to a specific criteria: the
time to reach the control goal.

In the following sections we introduce and develop these subjects in the ways that they
are relevant for the control methods proposed in this work.
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3.1. Field Oriented Control
Felix Blashcke presented field oriented control (FOC) during the seventies [10] and is still
the de facto standard control scheme for high performance variable speed drives.
The main idea behind FOC is the description of the electrical dynamics of the motor in

a rotating frame of reference, aligned with the rotor flux, hence the name field oriented
control. With this, in both machines, the PMSM and the IM, the problem of controlling
the torque developed by the motor is reduced to the control of a composite variable: the
quadrature component of the stator current in the dq frame isq, which on the one hand is
proportional to the torque, and on the other is characterized by first order dynamics and
can be controlled bymanipulating the corresponding voltage component vsq. Moreover, in
the induction motor, the problems of controlling the rotor flux and torque are separated in
two practically orthogonal problems: the flux’s magnitude is controlled by manipulating
the isd current component, which in turn is controlled by manipulating vsd. Once the
magnitude of the flux is stable, the torque can be controlled by manipulating isq.
In more specific terms and with a little bit of notation abuse: field control reduces the

problem of controlling the torque in the PMSM to the control of two plants with the form:

id ≈
1

rs

1
Ld

rs
s+ 1

vd (3.1)

Te ∝ iq ≈
1

rs

1
Lq

rs
s+ 1

vq (3.2)

and the problem of controlling the torque in the IM to controlling:

iq ≈
1

rσ

1

τσs+ 1
vq (3.3)

id ≈
1

rσ

1

τσs+ 1
vd (3.4)

ψr ≈
Lm

τrs+ 1
id (3.5)

Te ∝ ψriq. (3.6)

If we consider that usually τr ≫ τσ , the electrical torque Te and rotor flux ψr can be
controlled independently.
The classic speed control schemes based on FOC are depicted in fig. 3.1 for the PMSM

and fig. 3.2 for the IM. In these diagrams, all the variables on the left side of the Park
transforms T and T−1 are defined in the dq frame. Both schemes clearly define two par-
allel control structures, one for each component of the stator currents, i.e., one for the
torque and another for the flux magnitude. The scheme for the IM also includes a block
to estimate ψ⃗r, since it is not usual that drives include direct measurements for it. This
block is described in the appendix B.
These control schemes crystallize the aforementioned ideas in the simplest way possi-

ble and, consequently, suffer from many deficiencies. In the scheme for the PMSM, for
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PMSM

v⃗sSVM d⃗
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Figure 3.1.: Field oriented control scheme for speed control of the permanent magnet
synchronous motor. All the controllers, for id, iq and ωr are implemented
using proportional-integral controllers. The drive is assumed to consider only
currents, and rotor angle measurements. The rotor speed is estimated using
a derivator. The duty cycles for the transistors in the voltage source inverter
are calculated by a space vector modulation block (SVM).

example, the reference for id is set to zero i∗d = 0, but, as discussed before in section 2.2.3,
maximum efficiency is achieved when id and iq satisfy eq. 2.35. This can be accounted
for in the scheme, calculating references for id and iq using eqs. (2.30) and (2.35). Fur-
thermore, the scheme will naturally inherit the deficiencies and strengths of the control
structure chosen. A general comparison between different control structures is beyond
the scope of this work¹, but still some generalities can be enunciated:

• Proportional integral (PI) controllers, such as those used in the schemes in figures
3.1 and 3.2 will achieve steady state error zero for constant references and load
torque, but their efficacy compensating all the terms after the first on the right
side of eqs. 2.28, 2.51 and 2.52, regarded as disturbance, is limited by their band-
width. This can be however improved, by introducing feed-forward structures to
compensate for the terms−Lqiqωr and (Ldid+ψm)ωr in the id and the iq equations
respectively.

• The cascaded control structure imposes restrictions on the relationship between the
bandwidths of the inner and the outer controllers.

• PI controllers can be tuned using classical frequency domain tools. This is a very im-
portant strength of linear controllers in general, since electrical engineers are very
familiar with these tools: just as good auto mechanics can diagnose their patients
listening to the sounds theymake, electrical engineers characterize their systems by
listening his measurements, i.e., looking at their frequency spectra, and thus tune

¹For a thorough study on fundamental limitations in classical control theory, please refer to the chapters
in part III and chapter 24 in [37]. For a comparison between field oriented control and predictive torque
control (to be introduced in the next section) for the induction motor, refer to [38].
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Figure 3.2.: Field oriented control scheme for speed control of the inductionmotor. All the
controllers, for id, iq, |ψ⃗r| and ωr are implemented using proportional-integral
controllers. The drive is assumed to consider only currents, and rotor angle
measurements. The rotor speed is estimated using a derivator and the flux is
estimated using the currents model (CM).The duty cycles for the transistors in
the voltage source inverter are calculated by a space vector modulation block
(SVM).

their controllers. Dealing with constraints, however, is not a speciality of linear
controllers.

Numerous attempts to circumvent some of these issues and also patent enforcement,
have been made.
A very popular alternative to field oriented control is called direct torque control (DTC)

[11, 12]. In this scheme the variables rotations, the PI controllers and the space vector
modulation are replaced with hysteresis controllers, a look up table and a function that
classifies the position of the rotor flux in the αβ plane. The hysteresis controllers deal
with the flux magnitude and torque directly (hence the name), the look up table takes
the outputs of these controllers and picks the switching state to be applied based on the
position of the rotor flux vector in the αβ plane: for each point in this plane there is one
particular voltage vector that will increase, decrease or maintain the magnitude of the flux
and at the same time increase, decrease or maintain the torque. It should be noted that,
although implicitly, the principles of field oriented control permeate the workings of the
DTC scheme: the position of the flux is fundamental.
The high popularity of this scheme resides in its simplicity (and consequent robustness)

and fast dynamics, but it suffers from high torque distortion, and an inherent property
of hysteresis controllers: distributed spectrum, which may excite non-modeled resonant
modes. Moreover, the frequency domain tunning tools are no longer available. As in
many other disciplines, in drives control there is neither such thing as a free lunch [39].
The control scheme presented in the following section: finite set model predictive con-

trol, constitutes the main basis for all the work presented in this thesis and bears a lot
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of resemblance with DTC in the sense that the control policy amounts to chose a single
switching state and, as a consequence, their performances are very similar. Nevertheless,
the way in which the switching state is chosen is completely different and in the partic-
ular method described, which is designed for drive control, its based on the ideas behind
field oriented control.

35



3. Control

3.2. Finite-Set Model Predictive Control

Finite-set model predictive control (FS-MPC) is an implementation of themodel predictive
control (MPC) method, in the context of power converters.
TheMPCmethod works by iteratively solving a finite-horizon optimal control problem:

let

x[n+ 1] = f(x[n], u[n]) (3.7)

be a discrete-time model of the system, describing all the relevant system dynamics (for
the sake of simplicity we asume that the system dynamics are time-invariant), where x
and u represent the internal state of the system and the actuation, both defined in their
particular respective domains: x ∈ X , u ∈ U . We call the model represented by eq.
(3.7) the predictive model.
The receding horizon optimal control problem is formulated by first defining a sequence

for the actuation of length N (the prediction horizon):

u = {u[n], . . . , u[n+N − 1]} ∈ UN . (3.8)

which, when applied to the system in eq. (3.7) for a particular initial condition x[n],
generates a sequence for the state:

xu = {x[n+ 1], . . . , x[n+N ]}. (3.9)

The control goals are crystallized in a scalar cost function:

Fc(x,u, k). (3.10)

The optimal control policy is found by solving:

u∗ = π(x) = argmin
π∈U

{F (x,u, k)} (3.11)

constrained to xu∗ ∈ X N . The optimal actuation for the point in the state space x (the
initial condition x[n]) is then the first component of the sequence π(x).
The dependence from π(·) of x stresses that the result is a state feedback policy and the

fact that the solution must fulfil xu∗ ∈ X N and u ∈ U N accounts for state and actuation
constraints.
In this context, all the available synthesis methods are based on the dynamic program-

ming principle (DPP) [5]. For instance, for the particular case, when X = Rm, U = Rn,
the cost function is quadratic, the systems dynamics are linear and N tends to infinity,
this is the well-known linear quadratic regulator problem [3], where the application of
the DPP leads to a Riccati equation for the computation of the optimal feedback policy.
Different algorithms and approaches exist to solve this problem for different families and
parametrizations of the system model, the constraints and cost functions. [7, 40]
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In particular the FS-MPC method, which was proposed in the context of power elec-
tronics [13], exploits the fact that the actuation set U is finite and rather small (it cor-
responds to the valid switching states in the power converter) and that the dynamics
to be controlled are simple enough, so that good quality control can be achieved with
a short prediction horizon. The algorithm solves the optimal control problem online at
each sampling instant, by evaluating the cost function for each member of the U set;
the one producing the lowest cost is the optimal control. This is a major particularity of
the FS-MPC method, compared to the linear quadratic regulator, for example, and other
solvers that do include state constraints: the solver proposed in [41], for example, solves
the optimal control offline, and the solution takes the form of a set of piecewise linear
controllers, which are valid for specific regions of the state space. Recent research around
FS-MPC has shown that its implementation can be practical, even for complicated power
converters, involving many states and bigger actuation sets [14, 42]. The algorithm be
implemented in commercial DSPs and even in FPGAs [17]. As hinted before, the systems
treated so far involve relatively simple, or low order dynamics, where the actuation has
direct impact on the states, hence, short predictions horizons can be used. If this were not
the case, the complexity of the control algorithm would render it impractical: the number
of possible actuation sequences grows exponentially with the prediction horizon. In the
context of dynamic programming this is known as the curse of dimensionality.
The next section shows how FS-MPC is implemented in an example, which is funda-

mental for the rest of the work developed in this thesis.

3.2.1. Finite-set model predictive current control for the permanent
magnet synchronous motor

In a first approach, we can use the FS-MPC algorithm, to replace the inner current control
loops in the FOC scheme, described in last section, as depicted in Fig. 3.3

Load
Te

Tl

PMSM

v⃗s

i⃗s

FS-MPC s⃗

θr

x

ωr

i∗d = 0
+

−
i∗q ∝ T ∗

e

ω∗
r

Figure 3.3.: Control scheme: speed control for the permanent magnet synchronous motor
using finite-set model predictive current control. The feedback x represents
the whole state of the motor: x = [iα iβ ωr θr]

T : although the task of the
FS-MPC is only to control the stator currents, the whole state is required to
evaluate the system model.
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The dynamics of the system to be controlled are described by the ODE (see Sec. 2.2):

d⃗is
dt

= L−1
s

Ç
v⃗s − rs⃗is −

∂Ls
∂θ

ωr⃗is − Jωrψ⃗

å
(3.12)

A discrete version of this equation is synthesized with the method described in Sec. 2.4,
with N = 1 for both components of i⃗s (which amounts to using the forwards Euler
method). With this, we get a description for the system dynamics, the predictive model:

x[n+ 1] = f(x[n], u[n]) (3.13)

with x = [iα iβ]
T and u = [vα vβ]

T . When evaluating f(·) in (3.13), ωr and θr are
regarded as constants, their value is nevertheless updated each sampling instant with
new measurements.
FS-MPC requires the actuation set to be finite and discrete, for this we assume that the

motor is driven by a two-level voltage source inverter and that during the whole of a
sampling period h, a single switching state is applied (see sec. 2.1):

u ∈ U = {v⃗0, . . . , v⃗7} (3.14)

The control goal for this scheme is to minimize the error of the two current components
with respect to their references. In the scheme depicted in Fig. 3.3 the later are given in
the dq frame of reference: i∗d = 0 and i∗q ∝ T ∗

e , and our model in eq. (3.12) is defined in
the αβ frame, however we can still write the cost function for our problem as:

Fc(x) = i2d + (iq − i∗q)
2, (3.15)

with ñ
id
iq

ô
=

ñ
cos(θr) sin(θr)

− sin(θr) cos(θr)

ô ñ
iα
iβ

ô
(3.16)

⟲
ıs = T−1⃗is. (3.17)

A flowchart for the control algorithm is depicted in Fig. 3.4 and simulation results are
shown in Fig. 3.5. The latter also include results with the FOC scheme, these are not
included to draw a thorough comparison between both methods, but to highlight the
general properties of FS-MPC with respect to a more familiar scheme.
The dynamics obtained with the FS-MPC controller is very similar to what would be

obtained by using DTC or hysteresis controllers in general: the response is very fast dur-
ing the transient and in steady state the frequency spectrum of the currents show energy
at all frequencies, since the switchings occur with no particular periodicity.
The difference with FOC is evident during the transient, where FS-MPC is much faster,

and also in the frequency spectrum of the stator current. In the one obtained with the FOC
scheme the high frequency components are concentrated around the switching frequency
10kHz.
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Sampling x[n]

i = 0

V ∗ = ∞

xi[n+ 1] = f(x[n], ui)

Vi = Fc(xi[n+ 1])

Vi < V ∗?

i++

i < |U |?

V ∗ = Vi

u∗ = ui

Apply u[n] = u∗

yes

no

yes

no

Figure 3.4.: Flow chart for the finite-set model predictive algorithm.

One aspect that renders the comparison between FOC and FS-MPC complex is the
switching frequency (times per second a switch is turned on and off). This is critical in
solid state power converters, since it determines their thermal design. In FOC the switch-
ing frequency is fixed by the modulator (pulse width or space vector modulator), whereas
in FS-MPC, switching occurs only at the sampling instants and only when it results in
a decrease of the cost, thus, switching patterns in FS-MPC have no fixed periodicity and
depend heavily on the operating point. Hence, in general only an bound for the switching
frequency in FS-MPC can be given: two times the sampling frequency fs = 1

2h
. More-

over, when using modulators, how short the time interval between two switching events
can be is only limited by the implementation of the modulators (the clock frequency of
its internal counters, in digital implementations). This allows for very fine mean value
control. In FS-MPC the control is very coarse and finer control can only be achieved with
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Figure 3.5.: Simulation results for speed control using FOC (top) and FS-MPC (bottom),
the later replacing the inner currents controllers in the FOC scheme. In this
test, the rotor speed starts at ωr = 2π · 30rade and its reference is set at ω∗

r =
2π · 50rade. The motor is the whole time being loaded with Tl = 5.0Nm. The
sampling periods used are h = 50µs and h = 25µs for the FOC and the FS-
MPC schemes respectively. The frequency spectrum for iα was in both cases
calculated in steady state. To obtain these results, the FOC scheme in Fig. 3.1
was modified to compensate for the crossed couplings between id and iq.

shorter sampling periods, which increases the switching frequency.
As stated before, the FS-MPC algorithm solves the optimal control problem online, tak-

ing the sampled state as initial condition. This is practical as long as the prediction horizon
is short. By looking at the chart in Fig. 3.4 the exponential growth of complexity with an
increasing prediction horizon becomes evident: as it is, the algorithm considers a predic-
tion horizon of one sampling period; increasing the prediction horizon by one step would
require a nested loop with a second subscript for u[n]. Further increases in the prediction
horizon add more subscripts: the number of iterations for a prediction horizon N is then
given by:

nit = |U |N . (3.18)

Methods to estimate a minimal length for the prediction horizon to ensure stability do
exist for specific settings [43], but no general assessments can be done, when state con-
straints need to be considered or the goal is to fix specific dynamics. It natural to intuit,
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3.2. Finite-Set Model Predictive Control

however, that more complex dynamics, subject to state constraints will require longer
prediction horizons.
In FOC the gains of the PI controllers are tuned using frequency domain tools, such as

pole placement. This particular FS-MPC scheme does not require tunning: themagnitudes
in the cost function have the same units and can be compared without introducing scaling
factors. This scheme uses the system model to calculate the actuation, so no gains need
to be calculated. This has also as consequence, that all the effects in the model are taken
into account: the feed-forward structures included to compensate for the cross couplings
between id and iq in the FOC scheme are inherent in the FS-MPC scheme.
As hinted before in section 3.1, the lack of tunning can also be a drawback for FS-MPC:

no tunning simplifies the implementation, but puts away a degree of freedom, which is
usually useful for tackling problems such asmeasurement noise and unmodeled dynamics,
but then again, these can also be treated as separate problems.
The work developed for this thesis takes the FS-MPC method as starting point and de-

velops it further for more complex dynamics: flux and currents control in the induction
motor, speed control for the synchronous and the induction motor, position control for
the synchronous motor and torsional torque control in a two-mass-system. In each case,
the aforementioned strengths and drawbacks of the FS-MPC method are leveraged and
tackled to lead these control systems closer to their physical limits.

3.2.2. Computation delay

One aspect that should be taken into consideration, when implementing the FS-MPC
method, is the time required to compute the control. Even if implemented in hardware
allowing high parallelization, such as FPGAs, the computation delay can usually not be
neglected.
A standard approach to deal with this delay is to shift the control problem one sampling

period into the future, this is, if n is the current sample, calculate the control for n + 1.
The initial condition for this problem x[n+ 1] is estimated using the system model:

x[n+ 1] = f(x[n], u[n]) (3.19)

where x[n] is the state measured at instant n and the control u[n] is calculated during the
last sampling period: between t = (n− 1)h and t = nh.
In the following chapters, the proposed control methods are designed assuming that

there is no computation delay and the actuation u[n] is instantly available after measuring
the state x[n]. The implementations used for experimental verification, however, use this
scheme to compensate the delay.
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3.3. Time-Optimal Control

In this section, we review some classical results concerning the existence and synthesis
of minimum time controllers which are relevant for the proposed design.
For motivation let us consider one issue that arises, when implementing model predic-

tive controllers for more complex dynamics and more precisely: in the design of the cost
function, is the lack of a consistent method to weight all the involved variables together.
TheMPC framework is formulated for dimensionless variables or variables with arbitrary
units, this is not problematic when all the variables of interest represent the equivalent
physical quantities, such as in the current controller introduced in the last section.
Quadratic functionals, as the one used in the formulation of the linear quadratic regu-

lator, weight all states together using scaling factors. Physical meaning is given to these
functions relating them to measures of energy in the system. This is convenient for stabil-
ity analysis, since energy tends to deplete in real physical systems, and the cost function
can be considered to be a Lyapunov function of the closed loop [43]. This is however
not very useful, when the goal is to fix more specific dynamics to achieve a centralized
control of variables with clear causal relationships. In the drives context, we could wish
to control the speed and torque/currents of the motor together (and not separately using
cascaded structures), for instance, to improve performance. It is clear, from the causal re-
lationships between stator currents, torque and speed, that a cost function composed only
of a sum of quadratic errors in the states, with respect to their steady state values, will
only achieve a good performance with a relatively long prediction horizon: long enough
for the controller to be able to realize that an early increase in the torque error will cause a
decrease in the speed error and of the whole cost in the long run. The situation is further
complicated by the introduction of constraints.
In this sense, a valid and appealing approach is to put the drive control problem in terms

of a time-optimal control problem, i.e., to set the performance index to the time needed
to steer the system from its current state to a prescribed target.
Let us consider a continuous time dynamical system given by

dx(t)

dt
= f(x(t), u(t)) , x(0) = y, (3.20)

where x(·) ∈ X ⊆ Rn denotes the state of the system and u(·) ∈ U ⊆ Rm is an
admissible control signal. Our control goal is to steer the system to a target T ⊂ X as
for instance, to a ball around the origin. If for a control signal u(t) we define the arrival
time from y to the target as

ty(u) = inf
s
{s ∈ R+ : x(s;u(s)) ∈ T } , (3.21)

the value function of the minimum time problem is given by

T (y) := inf
u(·)∈U

ty(u) . (3.22)
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3.3. Time-Optimal Control

To obtain the optimal controller two approaches are possible. On the one hand, it is
possible to derive optimality conditions characterizing an open-loop controller via the
application of the Pontryagin Maximum Principle [6]. Such an approach is relatively
simple to implement, and can yield accurate trajectories at low cost. A different solution
method relies on the application of the Dynamic Programming Principle (DPP) [5], and
characterizes the value function as the viscosity solution of the following Hamilton-Jacobi
equation over X ,

sup
u∈U

{−∇T (x) · f(x, u)} = 1 . (3.23)

Since the value function is obtained for the whole state space (which can be computation-
ally costly for high-dimensional dynamics), the optimal controller is expressed in feedback
form

u∗(x) = argmin
π∈U

{∇T (x) · f(x, π)} , (3.24)

which can be implemented for online control once the value function has been com-
puted. However, since an approximation of the state space must be introduced in or-
der to solve eq. (3.23), the value function is defined over a finite grid of points, producing
grid-dependent trajectories, which can exhibit an spurious chattering along the switching
curves. Therefore, it is relevant to achieve a balance between the robustness of a feedback
control and an accurate approximation of the switching structure of the system in order
to yield adequate trajectories.
In the research conducted for this work, the minimum time optimal control problem is

not explicitly solved for the whole dynamics described in chapter 2, but for simplified sys-
tems, which fairly describe the relevant dynamics in each case and, more importantly, the
dynamics we wish to fix. This, in an effort to achieve a good trade-off between practicality
of the algorithms and performance.
These simplified systems are the simple integrator:

dx

dt
=

1

τ
u , (3.25)

the double integrator:
d

dt

ñ
x0
x1

ô
=

(
1
τ0
u

1
τ1
(x0 − d)

)
, (3.26)

the triple integrator:

d

dt

 x0
x1
x2

 =

Ö 1
τ0
u

1
τ1
(x0 − d)

1
τ2
x1

è
, (3.27)

and an harmonic oscillator:

d

dt


x0
x1
x2
x3

 =

á
u/τ0
−ωcx2 + kuu
ωcx1 + kdd

x2/τ3

ë
, (3.28)
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Two approacheswere used to solve theminimum time optimal control problem for these
systems, both based in the well-known fact that the solution of this kind of problems often
lead to bang-bang type of controllers, where the limit value of the actuation is always
applied, with its sign depending on the position of the state with respect to a curve in the
state space: the switching curve.

3.3.1. Backward induction

The first approach, based on the backward induction method, is used to solve the minimal
control problem for discrete-time version of the double integrator.
The time optimal control problem for the discrete-time case in the same fashion as for

the continuous-time case, this time for a dynamic system with the form:

x[n+ 1] = f(x[n], u[n]) , y = x[0] (3.29)

The value function in eq. (3.22) is solved in this case using a numerical implementation of
the backward induction principle, which consists of thinking backwards in time: we start
from the end of the problem, where the state x has already reached its target T , and apply
all the feasible values for u ∈ U to the system, with the time running backwards. The
points reached are stored and the same procedure is repeated starting from each of these
point, one step at a time. The steps required to reach a point starting from T equates to
T (x). The development of a particular trajectory stops when it reaches a point, which
was already reached before: this means that another trajectory reaches this point in less
time.
This approach is applied in section 5.1 find a solution for the time-optimal control prob-

lem for the double integrator, leveraging the fact that both the time and the actuation are
quantized.

3.3.2. Switching time parametrization method

It is well-known that minimum time optimal control often leads to bang-bang type of
controllers. More precisely, the classical results asserts that for a linear system with real
eigenvalues, theminimum time controllerwill be bang-bangwith atmostn−1 switchings,
where n is the dimension of the state space; there are different extensions of this result
for the nonlinear case, but no general assertion can be made regarding the number of
switchings in the presence of constraints in the state. Assuming that this number is finite,
the computation of the optimal controller, in the continuous-time case is reduced to the
identification of the switching times. A simple solution method is then given in the scalar
control case [44], by prescribing a switching sequence

u = {−û, û,−û, . . . , û} , (3.30)

of sizem ≥ n, with corresponding times

∆t = {∆t1, . . . ,∆tm} , (3.31)
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As a result, the minimum time problem can be cast as

min
∆t

T :=
m∑
i=1

∆ti (3.32)

subject to

dx

dt
= f(x,u) , (3.33)

x(0) = y , (3.34)
x(T ) ∈ T , (3.35)
∆ti ≥ 0 , ∀i . (3.36)

If a bang-bang structure is assumed, this idea can be computationally implemented with
a redundant amount of switchings, which shall be shrunk to zero if the optimal solution
is achieved.
Such a scheme was implemented using a general purpose numerical optimization al-

gorithm, in this case the Constrained Optimization BY Linear Approximation algorithm
(COBYLA) [45]. to investigate the properties of the state behaviour under a time-optimal
control, for the triple-integrator and the two-mass system, and to hold the solutions as
reference. In this form the STPMworks as a shootingmethod: in each iteration the system
dynamics are solved (simulated/predicted) using a different actuation signal u for the i.c.
y, the optimization algorithm searches for the solution in the space for∆t, Rm, checking
(3.35) and evaluating T , defined in (3.32). Constraints are taking into account checking if

x(T ) ∈ X . (3.37)

The number of iterations required to find a solution with this scheme varies depending
on the initial condition and the precision required. The design of controllers described in
the last part of this thesis are based on a simplification of this scheme.
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First Order System
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4. Torque control for the permanent
magnet synchronous motor

In section 3.2, the current controllers in the FOC scheme for the PMSM, were replaced
with finite-set model predictive controllers. In this chapter this scheme is further devel-
oped in two directions: first, the scheme is modified to get a torque controller accounting
for the maximum torque per ampere operation of the PMSM, and second, voltage modula-
tion is integrated in the scheme, to obtain fixed switching frequency an and allow longer
sampling periods.
In section 3.2 a simple property of the MPC scheme was highlighted: regardless of the

predictive model being defined in αβ variables, we could write the cost function using dq
variables. We can extend this idea to write the cost functions in terms of the electrical
torque, being developed by the motor, and the compliance of the conditions for MTPA
operation.
One disputable drawback of the FS-MPC scheme is the reduction of the actuation set to

the set of voltage vectors produced by the valid switching states of the power converter.
It is clear that this can be leveraged to design a very simple algorithm to solve a relatively
complex optimal control problem. The drawback of this is also clear: applying one of these
voltage vectors for a whole sampling period results in a very coarse control or a very hard
trade-off between sampling time, computation complexity and switching frequency. This
issue is addressed here, by integrating the idea of space vector modulation with the FS-
MPC scheme. With this, the form taken by the ripple is completely predictable and is
given by the pulse width modulation scheme applied. To achieve this, the pursued ideas
are first analyzed in the context of a very simple system that, nevertheless, represents the
dynamics at hand: a simple integrator. This analysis, although not strictly necessary for
the introduced modifications, helps to understand the simplifications introduced in the
following chapters, to develop control algorithms for higher-order dynamics.

4.1. Implementation using the finite-set model predictive
control algorithm

The first modification for the FS-MPC current control scheme is to transform it into a
torque controller with maximum torque per ampere operation and get a control scheme
as in Fig. 4.1.
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Load
Te

Tl

PMSM

v⃗s

i⃗s

FS-MPC s⃗

θr

x

ωr

+

−

T ∗
eω∗

r

Figure 4.1.: Control scheme: speed control for the permanent magnet synchronous motor
with finite-set model predictive torque control considering maximum torque
per ampere operation. The feedback x represents the whole state of the motor:
x = [iα iβ ωr θr]

T : although the task of the FS-MPC is only to control the
stator currents, the whole state is required to evaluate the system model. Still,
only the stator currents are predicted.

In the FOC context this is achieved by taking the MTPA condition into account:

id +
Ld − Lq
ψm

Ä
i2d − i2q

ä
= 0. (4.1)

In [46], for example, this is introduced by adjusting the speed PI controller to give the
reference for a magnitude in, regarded as the magnitude of the stator current. With this,
the references for id and iq are calculated as:

i∗d = −1

2

Ñ
ψm

2(Ld − Lq)
+

Ã
ψ2
m

4(Ld − Lq)2
+ 2i∗2n

é
(4.2)

i∗q = sgn(i∗n)
»
i∗2n − i∗2d . (4.3)

Although, in is not exactly proportional toTe, MTPAoperation is achieved and the integral
action of the PI controller corrects this discrepancy.
In the FS-MPC scheme, integration of the MTPA curve is straight forward: we adjust

the speed controller to give a reference for Te and then defining:

e = g(x)

=

ñ
eTe
ed

ô
=

Ö
3
2
p(ψmiq + (Ld − Lq)idiq)− T ∗

e

id +
Ld−Lq

ψm

Ä
i2d − i2q

ä è
, (4.4)

we can write a cost function:

Fc(x) = e2Te + λ2e2d , (4.5)

With this, the electrical torque developed by the PMSM is controlled directly, ensuring
maximum efficiency, with the control algorithm depicted in Fig. 3.4. The scaling factor
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4.1. Implementation using the finite-set model predictive control algorithm

λ for the second term is calculated so that the leading terms of e2Te and e2d, which are
proportional to i2q and i2d respectively, weight equivalently in Fc, for equivalent values of
id and iq:

λ =
3pψm
2

(4.6)

Simulations results for the FOC scheme, with the aforementioned modifications, to-
gether with simulation results with the torque FS-MPC scheme, are presented in Fig. 4.2.
In the rightmost plot the dashed gray line represents the reference for the electrical

torque T ∗
e = 10.235Nm, which is the maximum the motor used for experimental verifi-

cation can produce with |⃗is| ≤ 10A. In the leftmost plots the dashed and dotted gray lines
represent the MTPA curve and the constraint on the magnitude of the currents.
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Figure 4.2.: Simulation results: torque control using the FOC (top) and FS-MPC (bottom)
schemes, modified to consider MTPA operation. During this test, the rotor
speed at t = 0s is ωr = 2π · 30rade. The sampling periods used are h = 50µs
and h = 25µs for the FOC and the FS-MPC schemes respectively. The FOC
scheme for this test was modified to compensate for the crossed couplings
between id and iq and to consider MTPA operation.

Fig. 4.3 presents experimental results using the FS-MPC torque control scheme.
The control system behaves as expected and, in steady state, the torque reference is

tracked respecting the current constraint and the MTPA operation.
A noteworthy aspect of the behavior displayed by the FS-MPC algorithm, which is very

noticeable in Fig. 4.3, is the irregular switching pattern it generates. Switching occurs
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Figure 4.3.: Experimental results: FS-MPC for torque control, considering MTPA opera-
tion. During this test, the rotor speed is very near zero and sampling period
is h = 30.725µs.

when it will result in a decrease in the cost: consider the switch that occurs at t ≈ 0.25ms,
which is very noticeable in the rightmost plot near iq ≈ 8A. Before this point, the weight
of the torque error dominates the cost. At t ≈ 0.25ms, the term weighting the distance
to the MPTA curve is more important and the controller reacts accordingly. This fact,
combined with the constraint that confines actuation switches to the sampling instants,
yields to the fact, that switches occur for a quantized subset of the state space: when the
state lays near the reference, no switches occur, since that would bring about an increase
in the cost. Consequently, the form of the ripple is dependant on the operating point and,
more importantly, the stator currents, and consequently all the system states, display a
distributed frequency spectrum. In some applications this could be critical, since non-
modeled dynamics could be excited, compromising the system performance and stability.
In the following sections, these effects are reduced introducing a modulation scheme

based on space vector modulation (see Sec. 2.1.1): note that, in the results presented in
Fig. 4.3, if the controller was allowed to use a linear combination of the voltages produced
by two switching states, the MTPA curve could be approached from the beginning and,
in steady state, the reference could be tracked with arbitrary precision.

4.2. Discrete-time minimum time control for the simple
integrator with a continuous actuation set

Consider a simple integrator:
dx

dt
=

1

τ
u (4.7)

with x ∈ R and u ∈ [−û, û]. τ is a parameter of the system.
As noted in section 3.3, a continuous-time time-optimal controller for this linear system

will take the form of a bang-bang controller. In a regulation problem: u will be either −û
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4.3. Implementation using a continuous-set model predictive control algorithm

or û depending on the sign of x, or 0 if x = 0. With this, we can write this very simple
feedback rule for the continuous-time case:

π(x) = −sgn(x)û . (4.8)

In this very simple case we can identify x = 0 as the switching curve.
Lets consider now the discrete-time version of this problem. A model for the simple

integrator in the discrete-time domain is given by:

x[n+ 1] = x[n] +
h

τ
u , (4.9)

where and h is the sampling period. Note that for:

x[n] ∈
®
x : |x| < h

τ
û

´
, (4.10)

the state feedback rule π(·) in eq. (4.8) will make the system in eq. (4.9) oscillate (chatter)
around x = 0. In this very simple case it is easy to understand how, as the authors of [47]
remark, time-optimal controllers are not bang-bang in nature over the whole state space
for discrete-time systems.
We can correct π(·) to eliminate the chattering in the discrete-time case with:

π(x) =

 − τ
h
x if |x| ≤ h

τ
u

−sgn(x)û if |x| > h
τ
u

(4.11)

The new rule in π(·) resembles a dead-beat controller [48], a very simple form of a predic-
tive controller. This feedback rule considers a literal inversion of the system dynamics,
which in this case is only possible because of the simplicity of the model.

4.3. Implementation using a continuous-set model
predictive control algorithm

The model of the PMSM, in particular, can not be inverted as easily, as the discrete-time
model for the simple integrator in the last section, mainly due to the non-linearities in its
model. If we forget about these non-linearities for a moment and consider that in the FS-
MPC scheme the predictions of the state, with u ∈ U = {v0, . . . , v7} (the voltage vectors
generated by the VSI), draw an hexagon in the eTe , ed plane (see eq. 4.4 and Fig. 4.4). The
vertices of the hexagon correspond to the voltage vectors produced by the switching states
the VSI allows (see Fig. 2.1 in section 2.1). The hexagon in the eTe , ed plane is, however,
rotated by the rotor magnet position and deformed by the system dynamics.
We can assume that any point inside this hexagon can be generated by a linear combina-

tion of the predictions and that the same linear combination of the corresponding voltage
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Figure 4.4.: The predictions ei = g(xi[n+1]) = (g ◦ f)(x[n], vi[n]) (see eq. (4.4)) form an
hexagon in the eTe ed plane. The target is the origin of this plane (eTe , ed) =
(0, 0). On the left, the target is achieved by linear combination of predictions
e0, e2 and e3. On the right, the target lies outside the hexagon, but it can be
approached with a linear combination laying on the intersection between the
boundary of the hexagon and the ray between e0 and the target.

vectors, when applied to the model, will generate this point. The underlying assumption
for this, is linearity of the system dynamics during a sampling period. In the case of the
drives considered in this work this is not problematic, since the sampling period is small
compared to the time constants involved.
The problem of finding the correct linear combination can be solved as in space vec-

tor modulation: first we identify the triangle where the point we wish to approximate
((eTe , ed) = (0, 0)) lies, and then we solve a linear algebra problem with the correspond-
ing vectors. The result is an arbitrary voltage vector inside the hexagon described by
{v0, . . . , v7} in the αβ plane , which can then be modulated through SVM.
To find the pair of vectors to be combined the following is considered: if ea − e0 and

eb − e0 are two adjacent vectors, they can be used to approximate the target −e0 if:

m(ea, eb) = ((ea − e0)× (−e0)) · ((eb − e0)× (−e0)) ≤ 0

∧ (ea − e0) · (−e0) > 0

∧ (eb − e0) · (−e0) > 0 . (4.12)

Once ea and eb are identified, the linear combination can be found solving d′ = [d′a d
′
b]
T

from:

[(ea − e0) (eb − e0)]d
′ = −e0 (4.13)

and the voltage vector to be applied is given by:

v⃗∗s = dav⃗a + dbv⃗b (4.14)

54



4.3. Implementation using a continuous-set model predictive control algorithm

where v⃗a and v⃗b are the voltage vectors that generated ea and eb respectively and:ñ
da
db

ô
=


d′ if d′a + d′b ≤ 1

1
d′a+d

′
b
d′ if d′a + d′b > 1

. (4.15)

The latter accounts for situations where the target lies outside the hexagon.
Fig. 4.5 presents a flow-chart of the algorithm. This is applied in all the drives presented

in this work, since they all involve, at their lowest abstraction level, the control of two
stator current and stator voltage components.
Fig. 4.6 presents the control scheme for the FS-MPC considering a continuous-actuation

set, henceforth referred to as continuous-set model predictive control, applied to control
the torque in the PMSM, taking MTPA operation into account.
Fig. 4.7 presents simulation and experimental results using this scheme. The results are

in both situations very similar, and the control system behaves as expected. The experi-
mental results do now show the inter-sample current and torque ripple, but their form is
very predictable and is given by the SVM technique used.
Fig. 4.8 presents experimental results for the speed control of the PMSM, using the

scheme described in this section as inner torque controller. The torque control achieved
with this scheme is characterized by a rapid response during the transients, comparable
to that produced by FS-MPC, and good quality steady-state control, comparable to that
produced by field-oriented control and SVM.
The dynamic for the speed control is very familiar and matches that of an integrator

being controlled by a PI controller. In the following part, the schemes presented up to
now are further developed to consider second order dynamics to, for example, replace the
PI speed controller in 4.6 with a quasi-time-optimal controller.
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Sampling x[n]

i = 0

U = {v⃗0, v⃗1, v⃗3, v⃗2, v⃗6, v⃗4, v⃗5, v⃗1}

ei = (g ◦ f)(x[n], ui)

i > 1?i++

m(ei, ei−1)?

ea = ei

eb = ei−1

v⃗∗s = dav⃗a + dbv⃗b

Apply u[n] = v⃗∗s

yes

no

yes

no

Figure 4.5.: Flow chart for the finite-set model predictive control algorithm, with
continuous-set output. This control algorithm is specified with the predictive
model f()̇, and function g(·), which amounts to a change of variables. The ac-
tuation set in this formulation is constituted by the voltage vectors generated
by the two-level VSI andm(·) is a boolean function that is true when e = 0⃗ is
inside the triangle formed by e0, ei and ei−1 in the plane of the components of
e, in this case, ed eTe .
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Figure 4.6.: Control scheme: speed control for the permanent magnet synchronous motor
with model predictive torque control with continuous actuation set.
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Figure 4.7.: Simulation (top) and experimental (bottom) results for the torque control of
the PMSM with CS-MPC scheme and the MTPA operation. For the simula-
tions, the rotor speed and angle at t = 0s are ωr = 2π · 30rade and θr = 0rade.
The sampling period for the controller is h = 50µs. The ripple observed in
the current is produced by the space vector modulation: with θr = 0rade the
q axis is aligned with the β axis and the controller alternates between v3 and
v2 to make the stator current grow along the MTPA curve (dashed gray line).
The SVM is implemented using a pulse width modulation scheme with trian-
gular carriers. Sampling occurs at the extreme values of the carrier, so that the
current measurements (marked with points) correspond to their mean value.
With this, the controller does not see the ripple. For the experimental test, the
sampling period for the controller is h = 46.1µs and at t = 0 the rotor is at
rest.
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4. Torque control for the permanent magnet synchronous motor
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Figure 4.8.: Experimental results: speed control for the PMSM with outer PI speed con-
troller and inner CS-MPC torque controller. The PI speed controller consid-
ered anti-windup and was adjusted using pole placement, assuming a plant
with the form G(s) = 1

Jms
, to obtain closed loop pools at s = ωn(−ξ ±√

1− ξ2) with ωn = 2π · 10 and ξ = 1√
2
. Slightly before t = 0.4s, the motor

is loaded with a step shaped load torque.
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Second Order Systems
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5. The double integrator

The control of double integrator is a very well known and extensively studied problem
[49]. The interest is justified, despite the apparent simplicity of the problem, because
the double integrator model can represent, at least approximately, an immensity of real
physical systems (let us think very naively of the very fundamental physical quantities
force, speed and position).
The double integrator is used in this work as a very simple approximation to account

for the motor dynamics, concerning the speed and flux control in both, the synchronous
and the asynchronous motors. The input of the double integrator represents the voltage
applied to both the IM and the PMSM. The output of the first integrator represents stator
currents and torque. The output of the second integrator represents the flux in the IM and
the speed in both motors. These are obviously very rough approximations, but as we will
show in the following chapters, they are good enough to account for the desired behavior.
In this chapter we develop a time-optimal control scheme for the double integrator,

based in the FS-MPC algorithm presented in section 3.2. The scheme is first developed as-
suming that the actuation belongs to a finite-set and then it ismodified to use a continuous-
set.
In the context of optimal control-theory and its application to the double integrator, the

methods developed here make little practical sense, we should keep in mind though, that
what we actually want is to apply this methods for the control of the synchronous and
asynchronous motors.

5.1. Time optimal control with finite actuation set

The double integrator is described by the following dynamics:

d

dt

ñ
x0
x1

ô
=

(
1
τ0
u

1
τ1
x0

)
, (5.1)

A discrete-time state space model is obtained by using a Taylor series expansion of the
solution of this equation. The expansion is truncated conveniently for each component of
the state to get direct feed-through from the actuation to both states after one sampling
period (see section 2.4 and [35]). The resulting model is given by:

x[n+ 1] = f(x[n], u[n]) (5.2)
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5. The double integrator

with

f(x, u) =

(
x0 +

h
τ0
u

x1 +
h
τ1
x0 +

h2

2τ1τ0
u

)
(5.3)

where h is the sampling period. The actuation u is assumed to belong to the set: u ∈ U =
{−û, 0, û}, and the state x0 is subjected to the restriction x0 ∈ X = [−x̂0, x̂0]. This is a
representation of the current/torque limit in the motors. The constants τ0 and τ1 are the
parameters of the system.
We want to synthesize a feedback rule u = π(x), that steers the system from a given

initial condition to the origin as quickly as possible. This is a very well known and ex-
tensively studied problem in optimal control [47, 49]. Here we will adapt these results to
use them within the scope of the FS-MPC algorithm for the control of electrical drives.
Note that our target, the origin, is fixed: our goal is to develop controllers for relatively
slow-changing references.
The time-optimal control problem is solved in this case using the backward induction

method (see section 3.3.1), leveraging the fact that both the time and the actuation are
quantized.
Fig. 5.1 shows the time optimal trajectories reaching the origin, this is, the trajectories

that minimize the time needed for the state to reach the origin, starting from a given initial
condition. Note that these trajectories do not cover every point in the state space. This
is because both the time and the actuation are quantized; this has as a consequence, that
only a subset of the state space can exactly reach the origin. The solution of the optimal
control problem calculated using the DPP is actually defined only for this subset.
These trajectories are better understood by studying the step response of the double

integrator, given by

x0(t) =
û

τ0
t+ x0(0) (5.4)

x1(t) =
û

τ0τ1

t2

2
+ x1(0) (5.5)

for

u(t) = ûµ(t), (5.6)

where µ(·) is the Heaviside step function.
When u = ±û is applied to the system, the state describes parabolas in the state space.

Quantization in time and actuation makes that only the points belonging to the parabolas

x1 ± τx20 +
h2

τ0τ1
i = 0 i ∈ Z (5.7)

with τ = τ0
2τ1û

, are able to exactly reach the origin. Before reaching it, they must first be
lead to the curve

x1 = −sgn(x0)τx20. (5.8)
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Figure 5.1.: Time optimal trajectories for the double integrator, considering quantized
time and actuation. The marked points are the only points in the state space
that exactly reach the origin. The trajectories start at one of these points and
then develop going first towards the switching curve (see eq. 5.8) and then
towards the origin.

When the state reaches this curve, the sign of the actuation changes and the state is driven
directly to the origin, following it, thus it is called called the switching curve.
Fig. 5.2 shows the value function (optimal cost or cost-to-go), it represents the remain-

ing time before the state reaches the origin, when it follows an optimal trajectory. It is
important to note how the cost grows for points away from the origin and the switching
curve. This is the key to understand the behaviour that a time-optimal controller should
generate.
Fig. 5.3 shows the optimal actuation. This is a very familiar plot in the context of

minimum-time control for the double integrator. The classical solution for this problem is
a bang-bang controller, which applies maximum, minimum and actuation (û, −û and 0),
depending on the position of the state, relative to the switching curve. The solution in this
case looks slightly different, because of the quantized time: at points near the switching
curve it is necessary to apply u = 0 so that the state is able to reach it without crossing
it, which would result in overshoot, and suboptimal behaviour. Looking at this plot it is
clear how the switching curve separates the state space in different regions.
The behaviour generated by the optimal feedback can easily be put in simple terms by

observing this plots. The controller applies the minimum (black) or maximum (white)
actuation when the error in the state x1 is significant. The sign is the inverse of the sign
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Figure 5.2.: Optimal value function for the time-optimal-control of the double integrator.
At each point, understood as the initial condition, the optimal value function
represents the minimum time required to steer the state from its initial condi-
tion to the origin.

of the error. This behaviour goes on until the state x0 has reached its maximum value,
here the controller applies u = 0 (grey) so x0 stays at its maximum value. Then, when
the state is near the switching curve, the controller applies u = 0 so the state reaches one
point on the switching curve. From then on, the sign of the actuation is the same as the
error, so the state trajectory continues to develop on the switching curve until it reaches
the origin.
Using these results for controlling electrical drives is not a trivial task, mainly because

of the nature of the motor model: the actuation (stator voltage) has two components and
how they contribute to build up electrical torque, or magnetizing current, depends on
the rotor flux position. The situation is even more complex, when we consider maximum
torque per ampere operation and further effects in the stator windings (resistance, back-
emf and mutual inductances). The approach proposed in this work consists in using the
FS-MPC algorithm: state predictions are mapped into points in the x0 x1 plane and the
value function, depicted in Fig. 5.2, is used as cost function. In each step the controller
will search for the actuation that minimizes this function, so it will naturally follow the
trajectories depicted in Fig. 5.1, since for each point in the state space, the optimal trajec-
tory to follow is given by point with the lowest cost-to-go out of the points the model can
reach.
Still, some issues remain: the cost-to-go for the double integrator was calculated and is
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Figure 5.3.: Time-optimal actuation for the double integrator, calculated using the back-
ward induction method. The actuation is only defined for the represented
points. Crossing the plot, in gray, is the switching curve in eq. (5.8). Note
that the change in the actuation does not exactly match this curve. If it did,
the state would not exactly reach it, but cross it, producing overshoot.

defined only for a discrete set of points in the state space, calculation for a more complex
system would require harder computations and complete recalculation for different sets
of parameters. However, in the FS-MPC algorithm the state predictions are carried out
using the whole system model, which includes all its parameters and effects, therefore,
the exact cost-to-go is not necessary, but only a rough approximation encompassing its
main features: location of the switching curve and direction towards it. In this sense the
following approximation is introduced:

Fc(x) =
∣∣∣x̃1 + sgn(x0)τx20

∣∣∣ (5.9)

with

x̃1 =

 x1 if |x1| ≤ τ x̂20

τ x̂20 if |x1| > τx̂20

(5.10)

Function Fc(·) in (5.9), depicted in Fig. 5.4, is zero along the switching curve and grows
as the state gets away from it, when the error in x1 is smaller than the point where the
switching curve intercepts the lines describing the constraint for x0. Otherwise, if the
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5. The double integrator

error of x1 is bigger than this value, the function grows for points away from the limits
set for x0. The latter effect is achieved by introducing x̃1.
By using this Fc(·) in a FS-MPC scheme with a prediction horizon of one step, exactly

the same behaviour as Fig 5.1 is achieved.
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Figure 5.4.: Approximation for the value function: Fc(x).

In drives applications, the electrical torque should usually compensate for a load torque,
this can be included in the double integrator model with:

dx1
dt

=
1

τ1
(x0 − d) , (5.11)

where the disturbance d represents the load torque. It is also a common requirement for
the controller to be able to track references. We can include this in the described scheme,
offsetting the state by its steady state value:

e =

ñ
e0
e1

ô
=

ñ
x0 − d
x1 − x∗1

ô
(5.12)

and fixing the operation limits accordingly:

ê1 = τ(x̂0 − d)2 (5.13)
ě1 = −τ(x̂0 + d)2 (5.14)
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Figure 5.5.: Simulation results for quasi-time-optimal control of the double integrator as-
suming finite-set actuation. Three different initial conditions are considered.
The simulation plotted is black exactly reaches the switching curve (dashed
gray line) and is then driven towards the origin. The other two simulations
in dark and light gray, can not reach the switching curve and present steady
state error or chattering. The dot marks in each plot represent the sampling
instants.

where ê1 and ě1 are the upper and lower values for e1, where x0 reaches its limit. With
this, the cost function can be then evaluated as Fc(e):

Fc(e) =
∣∣∣ẽ1 + sgn(e0)τe20

∣∣∣ , (5.15)

with

ẽ1 =


ê1 if ê1 < e1

e1 if ě1 ≤ e1 ≤ ê1

ě1 if e1 < ě1

. (5.16)

Figure 5.5 presents simulation results using this scheme. In these plots the problem of
chattering and steady state error are evident. Their origin lays on the fact that both time
and actuation u are quantized [47, 50]. Extensive simulations were run to quantify the
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5. The double integrator

magnitude of the error and the following boundaries were found:

∆x1 ≤
h

τ0
û (5.17)

∆x2 ≤
h2

τ0τ1
û (5.18)

If such errors of this magnitude are unacceptable in a given application, the situation can
be addressed allowing the use of a continuous set for the actuation. Such an approach is
presented in the next section.

5.2. Quasi-time-optimal control with continuous actuation
set

Under certain circumstances it might be desirable to address the issues mentioned earlier:
steady state error and chattering, caused by the assumption of a finite actuation set, for
example, when the error introduced by them (see eq. 5.18) is significantly bigger than the
precision of the state measurements or estimations.
Two different approaches are proposed for the vicinities of the switching curve and of

the steady state. These situations are depicted if Fig. 5.6.

5.2.1. Vicinity of the switching curve

For this case, we start by acknowledging that, for a fixed sampling period h and an initial
state x[n], the predictions x[n + 1] with u ∈ [−û, û] are mapped to the ray between
f(x[n],−û) and f(x[n], û) in the x0 x1 plane, described by:

x1 =
h

2τ1
x0 +

Ç
x1[n] +

h

2τ1
x0[n]

å
with x0 ∈

ñ
x0[n]−

h

τ0
û, x0[n] +

h

τ0
û

ô
(5.19)

This is obtained manipulating (5.3). The ray is depicted in Fig. 5.6 with dotted lines.
When the x[n] lies in the vicinity of the switching curve, the value of the actuation that

leads the state exactly to the switching curve can be found by solving the point where
the ray and the switching curve (eq. (5.8)) intersect. We are only interested in its x0
component, given by:

x∗0 =


hû
2τ0

(
1−

√
1 + 8τ0τ1

h2û

Ä
x1[n] +

h
2τ1
x0[n]

ä)
if x1[n] + h

2τ1
x0[n] ≥ 0

hû
2τ0

(
−1 +

√
1− 8τ0τ1

h2û

Ä
x1[n] +

h
2τ1
x0[n]

ä)
if x1[n] + h

2τ1
x0[n] < 0

(5.20)

we can now find u∗ replacing x0[k+1]with x∗0 in (5.3). For the drive controllers presented
in the next chapters we feed x∗0 to an internal control loop for Te (x0) that considers a
continuous actuation set, such as the one introduced in 4 for the torque control of the
PMSM.
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Figure 5.6.: In this plot the points x[n] are the initial conditions and x[n+1] the predicted
state with u = −û, 0 and +û respectively. The dashed gray line is the switch-
ing curve x1 = −sgn(x0)τx20 and the dotted lines represent all the points that
can be reach with u = [−û, û]. For most of the state space u ∈ {−û, 0, û}will
not lead the state to the origin, nor to points belonging to the switching curve.
Note that, when x[n] lays near the target (marked with a black dot), the state
will not reach it with any value in [−û, û]. In this situation the aim should not
be to reach the switching curve and a smoother controller should take over.

To effectively implement this, first x∗0 is calculated regardless of the position of initial
condition and then u∗ is calculated from x∗∗0 or, for the drive controllers, x∗∗0 is feed as
reference for x0:

x∗∗0 =


x0[n] +

h
τ0
û if x0[n] + h

τ0
û < x∗0

x∗0 if |x∗0 − x0[n]| ≤ h
τ0
û

x0[n]− h
τ0
û if x∗0 < x0[n]− h

τ0
û

, (5.21)

5.2.2. Vicinity of the steady state

In the vicinity of the origin, the later approach would make the state oscillate around it
(see Fig. 5.6). A natural solution for this case is use of a linear feedback.
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5. The double integrator

If we assume that near the steady state u can be manipulated to obtain:

x0[n+ 1] = x0[n] +
h

τ0
u (5.22)

= x∗0[n] (5.23)

= −k2τ1
h

(x1[n]− x∗1[n]) , (5.24)

where k is a tunning parameter and x∗0 and x∗1 are reference values for the state, we can
characterize the closed loop response with the transfer function:

X1(z)

X∗
1 (z)

=
kz−1(1 + z−1)

1 + (k − 1)z−1 + kz−2
(5.25)

and use k to fix the dynamics. In the following examples k = 0.24498 is used to fix the
damping ratio ξ = 1√

2
.

This strategy is imposed when state lays inside the region:

|x0 − d| ≤ h

τ0
û (5.26)

|x1 − x∗1| ≤
h2

τ0τ1
û . (5.27)

These limits were identified before as upper bounds for the steady state error, when using a
finite actuation set, through extensive simulations, i.e. empirically. In this sense, it would
be convenient to have tools to identify this region unequivocally, to restrict its size, to
match the behaviour generated by both strategies in the boundary and to guarantee that
the controller inside this region will not make the state leave it, which would generate
chattering around the boundary.
Figures 5.7 and 5.8 present a plot of the resulting actuation and simulations using this

scheme.
What this scheme effectively does is calculating the actuation (or a reference for the

state being directly affected by it, in this case x0) to generate approximately time optimal
behaviour, when the state is away from its target or the switching curve and a smooth
behaviour, when the state is close to them. In the following chapters this scheme will be
referred to as smoothened quasi-time-optimal control (SQTOC).
In the following chapters, these schemes are applied for the control of electrical drives,

characterized by second order dynamics.
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Figure 5.7.: Optimal actuation for the double integrator, with the smoothening scheme.
When the initial state is near the switching curve, u adopts exactly the value
that would steer the state towards it. Around the steady state the linear feed-
back controller (5.24) takes over.
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Figure 5.8.: Simulation results for the double integrator using the proposed CS-MPC con-
troller. The initial conditions are the same as in Fig. 5.5, but no chattering or
steady state error is observable. The simulation plotted in black reaches the
origin in minimum state, as if it did in the previews simulation with FS-MPC
scheme.
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6. Torque control for the induction
motor

The main idea put forward by the field oriented control scheme (see Fig. 3.2) is that the
problem of controlling the torque produced by the induction motor can be divided in two
subproblems, by means of a transformation that separates the stator currents in two com-
ponents, in terms of the convention adopted in section 3.1: one related to the rotor flux
magnitude, and the second to the electrical torque itself. All these variables are bound
by causal relationships: the stator current induces the rotor flux and the electrical torque
is proportional to the cross product the flux and currents, however, the time constants
characterizing their dynamics are different: the rotor flux being much slower. This suits
perfectly to order these variables hierarchically and use a cascaded structure to control
them. This is an appropriate and simple solution, but it imposes restrictions on the achiev-
able closed loop dynamics. A way to push them towards their physical limits is to control
the whole system dynamics in a centralized fashion.
One approach is to attempt to introduce a finite-horizon model predictive controller for

the relevant dynamics, using the well known setting: discrete-time state space model and
quadratic cost function, weighting the distance between the actual state and its desired
steady state or target. Not very slowly we come to the realisation that first, some kind of
scaling will be necessary (input voltage, flux and currents have different dimensions) and
second, that in the presence of constraints in the actuation and the states (currents have
a top boundary) and given the causal relationships between the states, the optimization
should be carried out over a relatively long prediction horizon: long enough for the accu-
mulated error in the flux, for example, to surpass the error in the stator currents, which
must be different from zero at some point, if the flux error ought to be minimized.
In this chapter we develop a centralized controller for the flux and torque in the in-

duction motor, based on the framework given by FOC and the model predictive control
methods introduced before. The goals are to track a step reference for the flux and an
arbitrary reference for the torque and to push the closed loop dynamics towards their
physical limits, taking the constraints for the magnitude of the stator currents into ac-
count. This is achieved adapting the controllers introduced in the later chapter for the
double integrator, to be used in the context of the motor. The controller is formulated to
be implemented with both the finite-set and the continuous-set algorithms, depicted in
figures 3.4 and 4.5. In both cases a discrete-time version of the state space representation
for the IM in eq. (2.56) is used as the predictive model. The cost function Fc(·) for the
finite-set algorithm and the change of variables g(·) for the continuous-set algorithm are
defined in terms of flux oriented magnitudes: the closed loop dynamics for the flux are
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6. Torque control for the induction motor

fixed using the double integrator as an approximation for the dynamics between vd, id
(stator voltage and current in the direction of the flux) and the rotor flux ψ⃗r, the electrical
torque is assumed to be proportional to the iq current component.

6.1. Rotor flux dynamics approximation using the double
integrator

The dynamic behavior of the rotor flux is given by equations (2.51) and (2.52):

d

dt

 id

ψd

 =

Ö
1
σLs

vd − 1
τσ
id +

kr
τrσLs

ψd + ωkiq

Lm

τr
id − 1

τr
ψd

è
(6.1)

and we wish to fix the dynamics of the closed loop using an approximation of these equa-
tions, given by the double integrator

d

dt

 x0

x1

 =

Ö
1
τ0
u

1
τ1
x0

è
, (6.2)

with u ∈ [−û, û] for the continuous-set actuation algorithm and u ∈ {−û, 0, û} for the
finite-set actuation algorithm.
Fixing the dynamics in this context means that the controller will steer id to go towards

its extreme value to correct the error in ψd, so that both follow the switching curve

x1 = −sgn(x0)τx20, (6.3)

with τ = τ0
2τ1û

, towards the target.
At a first glimpse, the use of such an approximation seems too rough: the real system

dynamics pay little resemblance to the dynamics of the double integrator. First of all,
the bounds for vd are not constant, since vd is generated by the two-level VSI, their real
value depend on the value of the dc-link and the angle of the rotor flux with respect to
the stator windings θk. Moreover, even if we assume the term ωkiq to be constant over
the prediction horizon, it effectively changes the ability of the controller to manipulate
id. Fig. 6.1 depicts these issues: the plots represent the actual boundaries for u = vd
depending on θk and the term ωkiq. Despite these issues, and in order to keep the control
algorithm simple, the boundaries for u are assumed to be constant. Note that the decision
for the value of û has an impact on the closed loop dynamics, which is analogue to the
effect of the gain in a classical proportional-integral controller: a low value will make the
controller fix more conservative dynamics, i.e., the control will be slower and the state
will chatter around the switching curve, as the value for û is set higher, the controller will
take the system closer towards its physical limits and less chatter around the switching
curve will occur If the value of û is much higher than the real boundaries for u, the desired
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Figure 6.1.: Actuation upper boundaries using the two-level VSI to generate the stator
voltage. The solid black line represents the maximum voltage the VSI can
synthesize in the d direction, as a function of the flux angle ωk. The displaced
boundary, plotted with a dashed line, represents the maximum voltage the VSI
can synthesize with the motor operating at nominal speed ωr = 2π50 with
Te = 10Nm. In this situation there is a 24% error between the maximum
voltage available at zero speed and load. The dotted lines represent the value
assumed for û in eq. (6.4) and the value used in the experimental test that
make use of space vector modulation (see eq. (6.5)).

dynamics are faster than the system can deliver. In this case overshoot and oscillations
around the target will occur. For the rest of this work, the boundary for the actuation is
assumed to be

û =

√
3

3
vdc , (6.4)

which is the radius of the circle inscribed in the hexagon generated by the voltage vectors
the two-level VSI can produce, in the αβ plane (see Fig. 2.1). This is also the maximum
amplitude the two-level VSI can achieve, when synthesizing perfectly sinusoidal output
voltages.
For the schemes developed in the following chapters and sections, which use space

vector modulation, the boundary for u is assumed to take the value:

û = 0.9 ·
√
3

3
vdc . (6.5)

This, because of limitations on the test bench used for experimental validation, which
only allows measurements at the sampling instants, at the peaks of the triangular carriers
of the pulse width modulation: switching introduces noise in the measurements and they
occur very near or at the sampling instant, when modulating relatively high voltages.
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6. Torque control for the induction motor

The controllers developed in the following sections use the whole system model as pre-
dictive model, this means that the controllers will have the information required to com-
pensate the effect of the term ωkiq, so that id and ψd follow the fixed dynamics. This also
means that the effects relevant in steady state: stator and rotor resistance, will also be
compensated setting an appropriate target id

ψd

 =

 1
Lm
ψ∗
d

ψ∗
d

 , (6.6)

which will represent the origin in the state space of the double integrator.
In this sense, we are interested in the approximation, only insofar as it can model the

system dynamics during the transients, whichwe can characterize using the step response
of the system, which assuming ωkiq = 0, neglecting the effect of the stator resistance and
applying a step voltage vd of magnitude û in eq. (6.1) at t = 0, is given by:

id(t) =
û

σLs
t+

1

σ2L2
s

Lm
τr
û

1

p1 − p0

Ç
1

p20

Ä
p0 − 1 + e−p0t

ä
− 1

p21

Ä
p0 − 1 + e−p1t

äå
(6.7)

ψd(t) =
1

σLs

Lm
τr
û

1

p1 − p0

Ç
1

p0

Ä
1− e−p0t

ä
− 1

p1

Ä
1− e−p1t

äå
(6.8)

with

p0, p1 = −1

2

Ñ
1

τr
∓

Ã
1

τ 2r
+ 4

L2
m

σLrLsτ 2r

é
. (6.9)

The leading terms of the Taylor series expansion of (6.7) and (6.8):

id(t) =
1

σLs
ût+ O(t3) (6.10)

ψd(t) =
1

σLs

Lm
τr

ût2

2
+ O(t3) (6.11)

match the step response of the double integrator:

x0(t) =
1

τ0
ût (6.12)

x1(t) =
1

τ0τ1

ût2

2
(6.13)

In this sense, using the double integrator to fix the closed loop dynamics is, in this case, a
valid first approximation for the transients. From these step responses we can identify:

u = vd

x0 = id τ0 = σLs

x1 = ψd τ1 =
τr
Lm

.

(6.14)
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6.1. Rotor flux dynamics approximation using the double integrator

Note that in both equations, (6.7) and (6.8), the initial conditions (not included in the
analysis for the sake of simplicity) decay. This does not change the dynamics of the system
with a proper translation of the origin (see eq. (6.6)), since the dynamics defined in (6.1)
are linear neglecting the effect of ωkiq = 0.
The degree of influence of the higher order terms is a matter of scale: the longer the

time being accounted for, the bigger it becomes. What a long time is, is defined by the
motor parameters.
Figure 6.2 presents simulations of the step response of the double integrator and the

system dynamics using the real parameters of the motor used in experimental tests. These
simulations were carried out with the time running backwards, this is

u(t) = ûµ(−t) (6.15)

is applied to the system. With this, the simulated step response of the double integrator
matches the switching curve described in the last chapter.
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Figure 6.2.: Step response, with time running backwards, of the double integrator (dashed
black line) and the real rotor flux dynamics, described in eq. (6.1), with ωkiq =
0 (solid black line). In the simulation of the double integrator response, u = 0
is applied once id reaches its constraint î = 10A.

As expected, the error is very small, when t is still near zero, an tends to null at t = 0.
Note that the error is not dramatically bigwhen x0 reaches 10A, which is the constraint for
the stator current magnitude, and that the real system is faster than the double integrator
when it comes to get away from the origin. Consequently, using the double integrator
model to fix the dynamics will always lead to conservative closed loop dynamics: slightly
slower than the limits put by the real model. Thismeans that, when the system parameters
are perfectly known, the approximation will not cause overshoot nor instability.
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6. Torque control for the induction motor

6.2. Torque control for the induction motor with finite
actuation set

In the last section we saw how the dynamics of the rotor flux can be approximated by the
dynamics of a double integrator. In this section we use the methods developed in chapter
5 for controlling the double integrator, to achieve quasi time-optimal control of the rotor
flux and torque in the induction motor.
A scheme for the control system is presented in Fig. 6.3.

Load
Te

Tl

IM

v⃗s

i⃗s

FS-MPC s⃗

SO
θr

x|ψ⃗r|∗
+

−

T ∗
eω∗

r

ωr

Figure 6.3.: Control scheme: speed control for the induction motor with centralized finite-
set model predictive torque and flux control. Block SO represents a state
observer and feedback x represents the whole state of the motor: x =
[iα iβ ψrα ψrβ ωr]

T . In this scheme the state observer needs only to esti-
mate the rotor speed ωr and flux ψ⃗r. The rotor speed is estimated using a
simple derivation of the rotor angle: ωr[k] ≈ θr[k]−θr[k−1]

h
and the rotor flux

is estimated integrating the dynamic equations of the flux (see appendix B).
Note that the task of the FS-MPC is to control the torque and rotor flux, thus
only these are predicted, nevertheless, the whole state of the motor is required
to evaluate the system model.

In section 4 we developed a torque controller for the PMSM, which considered two con-
trol goals: torque reference tracking and maximum torque per ampere operation. They
were put together by means of a cost function (see equation (4.5)), that measured the de-
gree at which a prediction of the state satisfied the control goals, i.e., the distance between
the predicted state and the desired state. In the same direction, we can develop a central-
ized controller for the torque and flux of the induction motor defining a cost function that
weights both control goals together.

Fc(x) = e2Te + λ2
∣∣∣ẽψd

+ sgn(eid)τe2id
∣∣∣ , (6.16)

The first component of Fc(·) pertains to the electrical torque error

eTe =
3pkr
2

|ψ⃗r|∗iq − T ∗
e , (6.17)

the second component corresponds to the cost function developed for the double integra-
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6.2. Torque control for the induction motor with finite actuation set

tor with the definitions in (6.14) and (6.4), which lead to

eψd
= ψd − |ψ⃗r|∗ (6.18)

eid = id −
1

Lm
|ψ⃗r|∗ (6.19)

the term ẽψd
is defined as x̃1 in (5.16) with the constraint for id is set

x̂0 = îd = 10A. (6.20)

Parameter τ is given by:

τ =
τ0

2τ1û
=

σLs

2 τr
Lm

√
3
3
vdc

. (6.21)

The scaling factor λ is calculated so that the weight of iq in the first term is equivalent to
the weight of id in the second term

λ =
3pkr
2

|ψ⃗r|∗
1

τ
. (6.22)

The reference for the rotor flux magnitude |ψ⃗r|∗ is used in (6.17) and (6.22) instead of
the actual flux magnitude to avoid numerical instability when the flux is very small.
The controller is implemented using the finite-set control algorithm, depicted in Fig.

3.4 with the cost function in eq. (6.16) and a discrete version of the system dynamics,
described in eq. (2.56).
Fig. 6.4 presents experimental results using this control scheme, considering a step

reference for the rotor flux. These results show how the scheme effectively fixes the closed
loop dynamics to follow the switching curve and the system behaves as a double integrator
being time-optimally controlled: both the stator current id and the flux ψd reach their
references at the same time and as fast as the physical constraints of the system allow.
The scheme works as a very high gain controller, however, the steady state performance
is not compromised, i.e., measurement noise is not particularly amplified once steady state
is achieved.
Fig. 6.5 presents experimental results using a PI controller for the rotor speed and the

proposed controller as subordinated torque controller. Note that the flux control is precise
and effective, even when the speed in not zero and a step command change command is
given to the torque, for example, near t ≈ 0.75s.
Note that these results display considerable ripple in the stator currents. This is caused

by the fact that a single switching state is applied by the voltage source inverter, for
the whole of a sampling period, which is the basic assumption for finite-set MPC. This
situation is ameliorated in the next section, introducing a controller which makes use of
a continuous actuation set, in the same fashion as the controller introduced in section 4.
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6. Torque control for the induction motor
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Figure 6.4.: Experimental results: transient for a step flux reference using the FS-MPC
algorithm and the cost function defined in eq. (6.16). The plots on the right
side present the id stator current and the ψd rotor flux components in time.
The plot on the right presents these states in the id ψd plane. The dashed line
in this plot represents the switching curve, defined using the double integrator
approximation. The reference for the flux magnitude is |ψ|∗ = 0.6Wb and for
the id current i∗d = |ψ|∗

Lm
= 1.89A. The constraint for the current is î = 10A.

During this test the rotor is at rest and the sampling time used is h = 30.725µs.

6.3. Torque control for the induction motor with
continuous actuation set

A model predictive controller, assuming a continuous actuation set, can be implemented
for the centralized control of flux and torque in the induction motor, putting together
the double integrator approximation for the flux dynamics, the smoothened quasi-time-
optimal controller (developed for the double integrator in section 5.2) and the continuous
set model predictive control algorithm (developed for the PMSM in section 4.3).

The control scheme is depicted in Fig. 6.6.

The application of the SQTOC is straight forward: the dynamics of the rotor flux are
approximated using the double integrator model and the SQTOC is applied, as in section
5.2, using the definition in (6.14).

The CS-MPC algorithm is completely defined to be applied in this situation with the
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6.3. Torque control for the induction motor with continuous actuation set

definition of the transformation g(x) (see Fig. 4.5)

e = g(x)

=

ñ
eTe
ed

ô
=

Ö
3pkr
2
|ψ⃗r|∗iq − T ∗

e

id − i∗d

è
. (6.23)

Figures 6.7 and 6.8 present experimental results using this control scheme. The test
presented in these figures are exactly the same as in figures 6.4 and 6.5 in the last section,
but the sampling period used is h = 61.5µs.
The dynamic behaviour produced by this scheme is equivalent to that generated by the

control system presented in the last section, which makes use of the FS-MPC algorithm:
both the stator current id and the flux ψd reach their references at the same time and as
fast as the physical constraints of the system allow, without compromising the steady
state performance, i.e., measurement noise is not particularly amplified once steady state
is achieved. In comparison with the scheme presented in last section, the steady state
behaviour produced by this scheme ismore stable and, although it is not displayed in these
results, the inter-sample ripple is the expected, when using PWM and the stator currents
have a concentrated frequency spectrum. The diminishing in the overall ripple also allows
to see more clearly the effect of the interactions between both current components. These
effects are, nonetheless, effectively compensated.
In the next chapter, the same approach presented here is used to produce a centralized

torque and speed controller for the PMSM.
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Figure 6.5.: Experimental results: speed control for the IM, with the proposed controller
acting as subordinated torque controller. The speed controller is adjusted
using pole placement, considering only the dynamics between the electrical
torque and the rotor speed, to obtain closed-loop poles with natural frequency
ωn = 2π10rad s−1 and damping ratio ξ =

√
2
2
. The test considers magnetiza-

tion, startup to nominal speed and speed reversal. At t ≈ 1.7 a step load
torque is applied. The ripple magnitude is slightly bigger, when the rotor
is being braked. This effect is caused by the increase of the dc-link voltage,
which is storing the kinetic energy being extracted from the rotor. In this test
î = 10A and T̂e = 6Nm.
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6.3. Torque control for the induction motor with continuous actuation set
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Figure 6.6.: Control scheme: speed control for the induction motor with centralized
continuous-set model predictive torque and flux control. Block SO represents
a state observer, which estimates the state feedback x. The block SQTOC is
the smoothened quasi-time-optimal controller developed for the double inte-
grator in section 5.2.
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Figure 6.7.: Experimental results: transient for a step flux reference using the CS-MPC
algorithm and the SQTOC scheme for centralized control of the torque, stator
flux and id current in the IM. In this test the reference for the flux is set |ψ|∗ =
0.6Wb and the constraint for the stator current î = 10A.
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−î

0

î
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Figure 6.8.: Experimental results: speed control for the IM using the proposed
continuous-set model predictive control algorithm for the centralized control
of the torque, stator flux and id current. In this test î = 10A and T̂e = 6Nm.
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7. Speed control for the permanent
magnet synchronous motor

In this chapter we follow the procedure introduced in the last chapter: use the double
integrator moder to fix the dynamics of the motor, as understood in the framework of
field oriented control, to devise centralized controllers, in this case, for the speed of the
PMSM.
The dynamics to be approximated using the double integrator are those between the

stator voltages, the torque devised by the motor and the speed of the rotor. The stator
currents are controlled to obtain maximum torque per ampere operation.
The result are quasi-time-optimal controllers implemented using the finite-set and the

continuous-set algorithms described in chapters 3.2 and 4.3.

7.1. Rotor speed dynamics approximation using the double
integrator

The dynamics between the stator voltage v⃗s and the electrical torque Te in the PMSM are
non-linear (see eqs. (2.25), (2.28) and (2.30)), specially if MTPA operation is required. Still,
some approximations can be done in order to distill them into a form more convenient to
our end: approximate them using a simple integrator, so that the dynamics between the
stator voltages and the speed can be approximated using a double integrator.
In the PMSM the difference between Ld and Lq should by design be small. In the motor

used in this work for experimental tests Ld−Lq ≈ 2.7mH, whereas ψm = 0.226Wb. This
means that in the electrical torque

Te =
3

2
p(ψmiq + (Ld − Lq)idiq) , (7.1)

the most important component is the first: due to the interaction between the rotor mag-
net and the stator currents. With this, we can assume that the motor is more efficiently
operated with id = 0 and the relevant mechanical dynamics of the PMSM can be written
as

d

dt

 Te

ωr

 =

Ö
3pψm

2Lq
(vq − ψmωr)− rs

Lq
Te

p
Jm

(Te − Tl)

è
. (7.2)
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7. Speed control for the permanent magnet synchronous motor

We wish to fix the dynamics of the closed loop using double integrator model

d

dt

 x0

x1

 =

Ö
1
τ0
u

1
τ1
x0

è
, (7.3)

with u ∈ [−û, û] for the continuous-set actuation algorithm and u ∈ {−û, 0, û} for the
finite-set actuation algorithm. This is, we want to devise a controller assuming that the
dynamics in eq. (7.2) behave as a double integrator, so that it steers x0 (Te) to correct
errors in x1 (ωr) in minimum time, following the switching curve

x1 = −sgn(x0)τx20, (7.4)

where τ = τ0
2τ1û

, towards the origin or the target, in this case: Te

ωr

 =

 Tl

ω∗
r

 . (7.5)

Just as in the last chapter, the approximation with the double integrator seems very
rough and neglecting the effect of the stator resistance is not enough to make it better:
the coupling between both equations, with the termψωr, can not be easily disregarded. Its
effect and the validity of the approximation can be quantified studying the step response
of the system (7.2). Neglecting the effect of the stator resistance a with u(t) = ûµ(t):

Te(t) =
û
2Lq

3pψm

Ñ
t− ψm

2Lq

3pψm

Jm
p

Ç
t

ω2
− sin(ωt)

ω3

åé
(7.6)

ωr(t) =
û

2Lq

3pψm

Jm
p

1

ω2
(1− cos(ωt)) (7.7)

with

ω =

Ã
3p2ψ2

m

2LqJm
. (7.8)

In the motor used for the experimental tests ω = 2π · 11.389rad s−1. One period of this
resonance is about 233 times longer than the time needed to steer Te from zero to its
constraint T̂e = 9.58Nm, which is the maximum torque this motor can produce with
|⃗is| ≤ 10A. This means that its influence can be disregarded during the transients. This
becomes more clear looking at the leading terms of the Taylor series for eqs. (7.6) and
(7.7)

Te(t) =
û
2Lq

3pψm

t+ O(t3) (7.9)

ωr(t) =
û

2Lq

3pψm

Jm
p

t2

2
+ O(t4) , (7.10)
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7.1. Rotor speed dynamics approximation using the double integrator

which match the step response of the double integrator:

x0(t) =
1

τ0
ût (7.11)

x1(t) =
1

τ0τ1

ût2

2
(7.12)

In this sense, using the double integrator to approximate the dynamics in eq (7.2) is valid,
at least for the transients, with:

u = vq

x0 = Te τ0 =
2Lq
3pψm

x1 = ωr τ1 =
Jm
p
,

(7.13)

Figure 7.1 presents simulations of the step response of the system dynamics and the
double integrator using the real parameters of the motor. These simulations were carried
out with the time running backwards, this is

u(t) = ûµ(−t) (7.14)
is applied to the system. With this, the simulated step response of the double integrator
matches the switching curve described in the chapter 5.1.
These simulations help grasp the scale of the influence the higher order terms in eqs.

(7.9) and (7.10) have on the system dynamics. The error introduced by the double integra-
tor approximation, which disregards these higher order terms, is relatively small when
x0 reaches its constraint and tends to null at t = 0. The real system is also faster than
the double integrator when it comes to get away from the origin, consequently, using the
double integrator model to fix the dynamics will always lead to conservative closed loop
dynamics: slightly slower than the limits put by the real model. This means that, when
the system parameters are perfectly known, the approximation will not cause overshoot
nor system instability.
The coupling term in eqs. (7.6) and (7.7) pertains to the back-emf and its value does

change the ability of u to manipulate the state: the step response of the system with the
maximum values for u and, consequently, the optimal switching curve are affected. In the
experimental setup, the back-emf is equivalent to 50% of the maximum voltage the VSI
can produce, with the rotor running at maximum speed ωr = 2π · 150rade s−1. Moreover,
as hinted in the last chapter, the maximum voltage the VSI can generate in the q axis (or
an axis aligned with the MTPA curve) also depends on the rotor angle (see Fig. 6.1) and,
when operating with MTPA, also on the working point in the state space.
In an attempt to solve the trade-off between a good approximation of the dynamics at

hand and algorithm simplicity, the control methods in the following sections are devel-
oped assuming

û =

√
3

3
vdc and û = 0.9 ·

√
3

3
vdc . (7.15)
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Figure 7.1.: Step response (with time running backwards), of the double integrator
(dashed) and the rotor speed dynamics (solid), described in eq. (7.2). In the re-
sponse for the double integrator, the actuation is set to zero once the electrical
torque reaches its constraint T̂e = 9.58Nm.

for the finite-set and the continuous-set algorithms respectively.
Effects relevant in steady state: back-emf, stator resistance, load torque, as well as the

cross couplings between the stator currents components, are accounted for by these con-
trollers using the whole model of the motor as predictive model.
The effect of neglecting these terms in the closed loop dynamics is very small, as is

verified by the experimental results presented in next section.

7.2. Speed control for the synchronous motor with finite
actuation set

Using the double integrator approximation, a quasi-time-optimal controller for the rotor
speed of the PMSM is devised, in this case, assuming a finite-set actuation: the two-level
VSI applies a single switching configuration for the whole of a sampling period. The
controller is implemented using the finite-set algorithm introduced in section 3.2 and
depicted in Fig. 3.4.
A scheme of the control system is presented in Fig. 7.2.
The two control goals: speed reference tracking and maximum torque per ampere op-

eration are put together using the cost function:

Fc(x) =
∣∣∣ẽωr + sgn(eTe)τe2Te

∣∣∣+ λ2e2d . (7.16)
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Figure 7.2.: Control scheme: centralized finite-set model predictive speed control for the
PMSM. Block KF represents a state observer: a reduced order extendedKalman
filter. It is introduced in this scheme to separate the control problem, form the
observation problem: the Kalman filter is about the best solution for the later.
Its function is to reconstruct the system state x out of the measurements i⃗s and
θr. For more details on the Kalman filter refer to appendix A. The controller
(FS-MPC) takes the state feedback x and the speed reference ω∗

r and calculates
the configuration for the VSI switches s⃗ to obtain speed reference tracking
and maximum torque per ampere operation.

The first component of Fc(·) corresponds to the cost function developed for the double
integrator with the definitions in (7.13) and (7.15), which lead to

eωr = ωr − ωr∗ (7.17)
eTe = Te − Tl , (7.18)

and

τ =
τ0

2τ1û
=

Lq

ψmJm
√
3vdc

. (7.19)

Term ẽωr is defined as x̃1 in (5.16) with the constraint for Te set to

x̂0 = T̂e = 9.58Nm , (7.20)

which is the maximum torque the motor can produce considering MTPA operation and a
constraint for the magnitude of the stator currents:

|̂⃗is| = 10A . (7.21)

The second term in Fc(·) imposes the MTPA operation

ed = id +
Ld − Lq
ψm

Ä
i2d − i2q

ä
(7.22)

and the λ scaling factor is set, so that the weight of the leading i2d term, produced by e2d in
Fc(·), equates the weight of the leading i2q term produced by e2Te in Fc(·):

λ = τ
3

2
pψm . (7.23)
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7. Speed control for the permanent magnet synchronous motor

The controller is implemented using the finite-set control algorithm, depicted in Fig.
3.4 with the cost function in eq. (7.16) and a discrete version of the system dynamics,
described in eq. (2.36).
Figures 7.3 and 7.4 present experimental results using this control scheme. For this test

the sampling time is given by h = 30.725µs.
These results show how the scheme effectively fixes the closed loop dynamics follow

the switching curve: the system behaves as a double integrator being time-optimally con-
trolled and the electrical torque is bounded by its constraint. Note that both variables
reach their steady state values virtually at the same time, this is, as fast as the physical
constraints of the system allow. This is not detrimental for the steady state performance
of the system and measurement noise, once steady state is achieved, not particullarly
amplified.
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Figure 7.3.: Experimental results: transient for step speed reference using the FS-MPC
algorithm and the cost function defined in eq. (7.16). The plots on the right
side present the electrical torque Te and the rotor speed ωr in time. The plot on
the left side presents these variables in the Teωr plane. In this plot, the dashed
grey line represents the switching curve, defined using the double integrator
approximation. The reference for the speed is ω∗

r = 2π · 150rade s−1 and the
constraint for the torque is T̂e = 9.58Nm. In steady state the electrical torque
chatters around 0.8Nm, to compensate for the friction, which is regarded by
the control system as a load torque. The later is estimated by the Kalman filter
(see appendix A).

Note that in these tests the electrical torque is steered towards its constraint at the
beginning and the end of the speed transients, when the rotor speed reaches its reference,
this means that maximum actuation is applied in both situations. The dynamics of the
response to the step torque impact, however, is limited by the convergence speed of the
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7.2. Speed control for the synchronous motor with finite actuation set

Kalman filter.

In Fig. 7.4 it is possible to notice how the controller commands both current components
id and iq to achieve MTPA operation.
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Figure 7.4.: Experimental results: speed control for the PMSM using the FS-MPC algo-
rithm and the cost function defined in eq. (7.16). The test considers startup
to nominal speed, step load torque impact and speed reversal. In this test the
constraints for the stator currents and electrical torque are given by î = 10A
and T̂e = 9.58Nm.

As in the last chapter, the ripple in the stator currents, produced by the finite-set algo-
rithm, is ameliorated introducing a control algorithm, which makes use of a continuous-
set algorithm.
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7. Speed control for the permanent magnet synchronous motor

7.3. Speed control for the synchronous motor with
continuous actuation set

A centralized speed controller for the PMSM, assuming a continuous actuation set, is de-
vised using the double integrator approximation of the rotor speed dynamics, the smoothened-
quasi-time-optimal controller, developed for the double integrator in section 5.2 and the
continuous-set model predictive torque controller for the PMSM, developed in section 4.2.
Fig. 7.5 presents a scheme of the control system.

Load
Te

Tl

PMSM

v⃗sSVM d⃗CS-MPCSQTOC
T ∗
e v⃗∗s

KF

i⃗s

θr

x

ω∗
r

Figure 7.5.: Control scheme: centralized continuous-set model predictive speed control
for the PMSM. The controller is divided in two parts, the smoothened-quasi-
time-optimal controller takes the reference for the speed ω∗

r and calculates a
reference for the torque T ∗

e , the continuous-set model predictive torque con-
troller (CS-MPC) takes this reference and calculates a reference for the stator
voltage v⃗∗s , which is then transformed to duty cycles by the SVM block. The
whole controller uses the state feedback x, synthesized by the Kalman filter,
out of the measurements of the rotor angle θr and the stator currents i⃗s.

Figures 7.6 and 7.7 present experimental results using this control scheme. The tests pre-
sented in these plots are the same as in figures 7.3 and 7.4 with a sampling time h = 46.1µs.
The dynamic behaviour produced by it is equivalent to that generated by the scheme pre-
sented in the last section, considering the FS-MPC algorithm: both the electrical torque
Te and the rotor speed ωr reach their references at the same time and as fast as the physi-
cal constraints of the system allow, without compromising the steady state performance,
i.e., measurement noise is not particularly amplified once steady state is reachedj. In
comparison with the scheme presented in last section, less ripple is observed during the
steady state and, although it is not displayed in these results, the inter-sample ripple is
the expected, when using PWM and the stator currents have a concentrated frequency
spectrum.
In the next chapter, the schemes presented in this and the last chapters, are combined

to produce a centralized speed, torque and flux controller for the induction motor.
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7.3. Speed control for the synchronous motor with continuous actuation set
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Figure 7.6.: Experimental results: speed step reference using the CS-MPC algorithm and
the SQTOC scheme for centralized speed and torque control of the PMSM. In
this test the constraint for the electrical torque is given by T̂e = 9.58Nm and
the reference for the rotor speed is ω∗ = 2π · 150rade s−1.
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î

i α
,
i β

A

−î
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Figure 7.7.: Experimental results: speed control for the PMSM using the CS-MPC and the
SQTOC scheme for centralized speed and torque control of the PMSM. In this
test the constraints for the stator currents and electrical torque are given by
î = 10A and T̂e = 9.58Nm.
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8. Speed Control for the Induction Motor

In this chapter the developments presented in the last two chapters: the quasi-time-
optimal controllers for the torque and flux of the induction motor and for the speed in
the PMSM, are combined to produce a centralized quasi-time-optimal controller for the
rotor speed in the induction motor.
The design follows the ideas set by field oriented control and the problem is separated

in two, one part relating to the flux control, and the other to the speed and torque control.
The closed loop dynamics are fixed using the double integrator approximation, in this case,
in two separate or parallel branches: one branch corresponds to the dynamics between
stator voltage, the id stator current component and the rotor flux magnitude. The second
branch pertains to the dynamics between stator voltage, the electrical torque and the rotor
speed.
The control system is designed to be implemented using the finite-set and the continuous-

set algorithms described in chapters 3.2 and 4.3.

8.1. System dynamics approximation using double
integrators

The system dynamics at hand are separated in two branches, the first one related to the
rotor flux dynamics

d

dt

 id

ψd

 =

Ö
1
σLs

vd − 1
τσ
id +

kr
τrσLs

ψd + ωkiq

Lm

τr
id − 1

τr
ψd

è
(8.1)

and the second one to the rotor speed dynamics

d

dt

 Te

ωr

 =

Ö
3
2
pkr
Ä
dψd

dt
iq + ψd

diq
dt

ä
p
Jm

(Te − Tl)

è
(8.2)

The derivatives in 8.2 are given by

dψd
dt

=
Lm
τr
id −

1

τr
ψd (8.3)

diq
dt

=
1

σLs
vq −

1

τσ
iq −

kr
σLs

ωrψd − ωkid (8.4)
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8. Speed Control for the Induction Motor

The approximation of the flux dynamics using the double integrator, discussed in in
section 6.1, is achieved with the definitions

u = vd

x0 = id τ0 = σLs

x1 = ψd τ1 =
τr
Lm

.

(8.5)

The approximation of the rotor speed dynamics requires more analysis and assumptions,
for the approximation to make sense.
The first assumption is not rare in drives controlled with FOC: that the motor will be

operated with a constant flux reference. We also assume that the controller will be able
to sustain this condition and that changes in the speed reference will occur only once the
flux had reached its reference. With this dψd

dt
= 0, id = 1

Lm
ψd and the time derivative for

the torque is reduced to

dTe
dt

=
3pkrψd
2σLs

Ç
vq −

Ls
Lm

ψdωr

å
−
Ç
1

τσ
+

1

τr

å
Te (8.6)

This equation has the same form as the torque component in eq. (7.2). As shown in section
7.1, if the effect of the stator and rotor resistances are neglected ( 1

τs
+ 1

τr
= 0), the step

response of this system matches that of the double integrator, right after the application
of the input step and then drifts away from it displaying a resonant behaviour, in this case,
with natural frequency

ω =

√
3p2krψ2

d

2σLsJm

Ls
Lm

. (8.7)

In the motor used for the experimental tests ω = 2π · 7.558rad s−1. One period of this
resonance is about 187 times longer than the time needed to steer Te from zero up to its
constraint T̂e = 6.0Nm, which is the maximum torque this motor can sustain at ωr =

2π50rad s−1 with |⃗is| ≤ 10A and a reference for the rotor flux |ψ⃗r|∗ = 0.6Wb.
With this, the approximation using the double integrator is valid for the transients,

with:

u = vq

x0 = Te τ0 =
2σLs
3pkrψd

x1 = ωr τ1 =
Jm
p
,

(8.8)

The couplings between id and iq and effects relevant in steady state are compensated in
the controllers developed in the following sections, using the whole model of the motor
as predictive model and displacing the origin of the double integrator models with the
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8.1. System dynamics approximation using double integrators

targets

 id

ψd

 =

 1
Lm
ψ∗
d

ψ∗
d

 and

 Te

ωr

 =

 Tl

ω∗
r

 (8.9)

for the flux and speed models respectively.
A formal proof of the claim that using the whole system model as predictive model will

compensate the effects relevant in steady state and the couplings between the dynamics
of these two “separate” double integrators is outside of the scope of this work, but we can
still grasp how this works by considering standard feed-forward schemes, where knowl-
edge on disturbances: either measurements or models, is used to compensate their effect
before they affect the system. In terms of the double integrator approximation, when we
use it to fix the closed loop dynamics we consider every effect that makes the behavior
of the system drift away from the expected behavior to be a disturbance. By using the
whole model of the system as predictive model we incorporate our knowledge on these
disturbances and the controller will take it into account, when calculating the actuation.
Problems can arise, however, when the intention is to obtain time-optimal behaviour,
which makes the control system use only the extreme values of the actuation, leaving no
margin to compensate for further effects. Nonetheless, this is only an issue when driving
x0 towards its constraint and back towards the steady state. When the state is on its target
or x0 on its constraint, the controller is supposed to apply u = 0, here the controller has
enough room to compensate for all other effects.
To illustrate this, lets consider the crossed couplings between id and iq, represented by

the term−Jωk
⟲
ı in (2.51) or the terms ωkiq and −ωkid in (8.1) and (8.4). In the last section

we introduced the assumption that the machine would be operated with a constant flux
reference and that changes in the speed reference would only occur once the machine is
magnetized (the flux has reached its reference). In this situation did

dt
= dψd

dt
= 0, which

means vd = rsid. This leaves enough room for vd to compensate for ωkiq, when a change
in the speed reference occurs. On the other hand, the term −ωkid in the equation for iq
undermines the ability of uq to manipulate it, andmakes its dynamic differ from that of the
double integrator. We can think of it as changing the real value of û. However, this is only
important when Te is steered towards its constraint or its target, once they are reached
diq
dt

= 0 and, since the controller uses the whole system model as predictive model, it has
the necessary information to conclude that this is achieved with vq = rσ−krωrψd+ωkid.
Fig. 8.1 presents the simulation of the step response of the system dynamics in eq. 8.6

and the double integrator, with the parameters in 8.8 and the time running backwards.
These results show how the approximation using the double integrator is relatively accu-
rate for the transient, up to the point where the electrical torque reaches its constraint.
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Figure 8.1.: Step response (with time running backwards), of the double integrator (dashed
line) and the rotor speed (solid line) dynamics, described in eq. (7.2). In the re-
sponse for the double integrator, the actuation is set to zero once the electrical
torque reaches its constraint T̂e = 6Nm.

8.2. Implementation using the finite-actuation set
algorithm

In the later section we established that the dynamics of the induction motor (from sta-
tor voltages to rotor speed and flux through electrical torque and stator currents), can
be approximated with the dynamics of two parallel double integrators, functioning in-
dependently, at least during transients. Of course this is only achieved under a set of
assumptions, since the dynamics of all these variables are very tightly intertwined.
The control goal set for this chapter: centralized control of rotor speed, electrical torque,

rotor flux and stator currents is first implemented using the finite-set algorithm introduced
in section 3.2.
A scheme of the control system is presented in Fig. 8.2.
This implementation requires the introduction of an appropriate cost function, which is

devised combining two versions of the costs function developed for the double integrator
in section 5.1, one for the speed dynamics and the other for the flux dynamics:

Fc(x) =

Ç
1

τω
ẽωr + sgn(eTe)e2Te

å2

+ λ2
Ç

1

τψ
ẽψd

+ sgn(eid)e2id
å2

, (8.10)

In this case, squares were used instead of absolute values, to better trade-off between both
control goals: when the dynamics in each case are very different, the controller tends to
control more precisely the component that reduces the cost faster, while the other is let to
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8.2. Implementation using the finite-actuation set algorithm

Load
Te

Tl

IM

v⃗sFS-MPC s⃗

KF
i⃗s

θr

x

ω∗
r

|ψ⃗r|∗

Figure 8.2.: Control scheme: centralized finite-set model predictive speed control for the
IM. Block KF represents a state observer: a reduced order extended Kalman
filter. It is introduced in this scheme to separate the control problem, form the
observation problem: the Kalman filter is about the best solution for the later.
Its function is to reconstruct the system state x out of the measurements i⃗s and
θr. For more details on the Kalman filter refer to appendix A. The controller
(FS-MPC) takes the state feedback x and the speed reference ω∗

r and calculates
the configuration for the VSI switches s⃗ to obtain speed and flux reference
tracking.

drift away from its reference. This effect is mitigated by using the square function, since
it grows faster than the absolute value.
The first component of Fc(·) pertains to the speed control:

eωr = ωr − ω∗
r (8.11)

eTe =
3pkr
2

|ψ⃗r|∗iq − Tl , (8.12)

and the second component corresponds to the flux control:

eψd
= ψd − |ψ⃗r|∗ (8.13)

eid = id −
1

Lm
|ψ⃗r|∗ (8.14)

The parameters τ are given by

τψ =
σLs

2 τr
Lm

√
3
3
vdc

and τω =

2σLs

3pkr|ψ⃗r|∗

2Jm
p

√
3
3
vdc

(8.15)

and in each case ˜eωr and ẽψd
are defined as x̃1 in (5.16) with the constraints

T̂e = 6.0Nm and îd = 10A. (8.16)

The scaling factor λ is calculated so that the weights of iq and id in the first and the second
terms of Fc(·) are equivalent:

λ =

Ç
3pkr
2

|ψ⃗r|∗
å2

. (8.17)
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8. Speed Control for the Induction Motor

In this way, in steady state id and iq display equivalent ripple magnitudes.
Figures 8.3 and 8.4 present experimental results using the scheme described in this sec-

tion. These experiments consider a sampling time h = 30.725µs and a flux magnitude
reference |ψ|∗ = 0.6Wb.
The results in figure 8.3 show how the scheme manages to fix the system dynamics to

those of a double integrator being control in a time-optimal fashion: both the speed and
torque reach their steady state values at the same time, making maximum utilization of
the constraints of the system and following the switching curve defined by the double-
integrator approximation. Note that the dynamics of the response to the load torque
impact is constrained by the convergence speed of the Kalman filter.
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Figure 8.3.: Experimental results: transient for step speed reference using the FS-MPC
algorithm and the cost function defined in eq. (8.10). The plots on the right
side present the electrical torque Te and the rotor speed ωr in time. The plot on
the left side presents these variables in the Te ωr plane. In this plot the dashed
gray line represents the switching curve, defined using the double integrator
approximation. The reference for the speed is ω∗

r = 2π · 50rade s−1 and the
constraint for the torque is T̂e = 6.0Nm. In steady state the electrical torque
chatters around 0.8Nm, to compensate for the friction, which is regarded by
the control system as a load torque. The later is estimated by the Kalman filter
(see appendix A).

The results in 8.4 show that the controller effectively controls the speed and flux, how-
ever, the flux control is poor, compared to the performance achieved in chapter 6: the
ripple in the id current component and the rotor flux are considerable. As hinted before,
this is produced by the cost function, which can not very effectively solve the trade-off
between speed and flux control: the time constants characterizing their dynamics are very
different (τr ≈ 60τs) and the controller takes actuation that reduces the cost faster.
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8.3. Continuous actuation set

This, together with the issues produced by the FS-MPC algorithm: unstable switching
pattern, high ripple and distributed frequency spectrum, are tackled in the next section,
incorporating voltage modulation into the scheme.

8.3. Continuous actuation set
The continuous actuation set version of this controller is devised, in the same fashion as
the finite-set version, applying the control structure for the double integrator two times,
one for the rotor speed dynamics and another for the rotor flux dynamics. The control
structure in this case considers smoothened quasi-time-optimal controller, developed for
the double integrator in section 5.2, and the continuous set model predictive control al-
gorithm, developed for the PMSM in section 4.3.
A scheme of the control system is presented in Fig. 8.5.
The SQTOC is applied in each case as described in section 5.2 with the definitions in

(8.8) for speed control and (8.5) for flux control.
The CS-MPC algorithm (see section 4.3) is applied, as in section 6.3, with:

e = g(x)

=

ñ
eTe
ed

ô
=

Ö
3pkr
2
|ψ⃗r|∗iq − T ∗

e

id − i∗d

è
. (8.18)

Figures 8.6 and 8.7 present experimental results using this control scheme. These figures
present the same tests presented in the last section, this time, with a sampling period h =
46.1µs. The dynamic behaviour is equivalent to that displayed by the FS-MPC algorithm,
but the issues regarding poor flux control, at least for the steady state. Note that when
the target lays outside the region defined by the state predictions (see Fig. 4.4), the CS-
MPC scheme produces the voltage reference out of the intersection between the voltage
constraints and the ray between the prediction for the zero voltage vector and the target,
this is, the system state is steered in the direction of the target, even if this means letting
one of the variables drift away from its reference. This is noticeable in the plot for the
stator flux ψd in Fig. 8.7 at the time instants where the electrical torque Te changes. This
could be improved devising a better strategy to chose the voltage to be modulated, when
the target lays outside the area reachable in one sampling period.
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Figure 8.4.: Experimental results: centralized speed and flux control for the IM, using the
FS-MPC algorithm and the cost function defined in (8.10). The constraints for
the stator currents and electrical torque are given by î = 10A T̂e = 6.0Nm.
The test considers magnetization, startup up to nominal speed, speed reversal
and step load-torque impact.
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8.3. Continuous actuation set

Load
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θr
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Figure 8.5.: Control scheme: centralized continuous-set model predictive speed and flux
control for the IM. The controller consists in two smoothened-quasi-time-
optimal controllers (SQTOC), which take the speed and flux references and
generate references for the electrical torque and the id current component,
according to the system state x to generate the time optimal dynamics of a
double integrator. The continuous-set model predictive torque controller (CS-
MPC) takes these reference and calculates a reference for the stator voltage v⃗∗s ,
which is then transformed to duty cycles by the SVM block. The state feed-
back x is synthesized by the Kalman filter, out of the measurements of the
rotor angle θr and the stator currents i⃗s.
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Figure 8.6.: Experimental results: speed step reference using the CS-MPC algorithm and
the SQTOC scheme for centralized speed, torque, flux and stator currents in
the IM. The constraint for the torque is T̂e = 6Nm and the reference for the
speed ω∗

r = 2π · 50rade s−1.
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Figure 8.7.: Experimental results: speed step reference using the CS-MPC algorithm and
the SQTOC scheme for centralized speed, torque, flux and stator currents in
the IM. The constraints for the stator currents and electrical torque are given
by î = 10A T̂e = 6.0Nm.
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Part IV.

Third Order Systems
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9. Position control for the permanent
magnet synchronous motor

In this chapter, the control scheme developed in chapter 5: the smoothened quasi-time-
optimal control for the double integrator, is extended to devise a quasi-time-optimal con-
troller for the triple integrator (TI), considering actuation and state constraints. The result-
ing controller is used to devise a quasi-time-optimal control system for position control
of the PMSM. A scheme of this system is depicted in Fig. 9.1.
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v⃗sSVM d⃗CS-MPCSQTOC
ω∗
r v⃗∗s

KF

i⃗s

θr

x

θ∗r

Figure 9.1.: Control scheme for quasi-time-optimal control of the position in a PMSM.The
control algorithm consists of a Smoothened Quasi-Time-Optimal Controller
(SQTOC), a continuous-set model predictive speed controller, described in sec-
tion 7.3, and a Kalman Filter (KF).The latter takes applied stator voltage v⃗s and
the measurements for the stator currents i⃗s and rotor angle θr to reconstruct
the state feedback x.

The starting point for the design, as in the previous chapters, is the solution of the time-
optimal control problem of a simplified system. Unlike the methods developed before,
however, themethodology in this case does not involve the construction of a cost function,
to be used with the finite-set predictive control algorithm. The design of the controller
is instead based on a numerical implementation of the switching time parametrization
method (STPM), introduced in section 3.3.2. The proposed algorithm takes the form of
a non-linear state feedback controller, its output being a reference for an inner speed
controller. The only requirement for the later, is that it generates the same behaviour
as the STPM on the inner states. This is achieved using the quasi time-optimal speed
controller developed in section 7.
In the proposed method, the value for the speed reference is produced, as in a sliding

mode controller, according to the position of the state relative to a given curve and takes
at any instant, one of its extreme values. In order to avoid chattering around the steady
state, once the state has been steered close enough to it, a classical and smoother linear
quadratic regulator (LQR) takes over the control task and generates directly a reference
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9. Position control for the permanent magnet synchronous motor

for the electrical torque. The weights in the cost function of the LQR and the parameters
defining the region in the state space, where the it should take over, are the only tunning
parameters introduced by the scheme.
The STPM can be implemented as an iterative, numerical scheme to solve a time-optimal

control problem for a single initial condition, in a continuous-time regime. This scheme is
characterized by two basic features. The first one is the imposition of a bang-bang struc-
ture on the actuation. This is equivalent to the finite-set assumption used in the previous
chapters, in the sense that it reduces the search space for the optimal actuation. The sec-
ond feature is the use of simulations or predictions of the behaviour of the system, using
different actuation sequences. In this sense the scheme can be regarded as a shooting
method.
The proposed algorithm approximates the behaviour the STPM imposes on the system

in a discrete-time regime and in a non-iterative way. Its internals do make use of the
shooting concept: it simulates the behaviour of the system, but the iterations are avoided
using a particular control sequence, which is given at each sampling instant by the po-
sition of the state with respect to a curve in the state space, we will call Γ. The later is
a characteristic of the system dynamics and is related to its step response. In terms of
computational burden, the algorithm requires four evaluations of the system model, two
of the discrete-time model and two of a continuous-time model (its step response), besides
the calculation of the position of the actual state, with respect to the Γ curve.

9.1. System dynamics approximation using the triple
integrator

The dynamics of the TI are described by

dx

dt
= f(x, u) , (9.1)

with

f(x, u) =

Ö
u/τ0
x0/τ1
x1/τ2

è
. (9.2)

with x = [x0 x1 x2]
T .

In section 7.1 it was shown how the dynamics of a double integrator can approximate
the dynamic behaviour of the PMSM, considering stator voltages and currents, electrical
torque and speed:

d

dt

 Te

ωr

 =

Ö
3pψm

2Lq
(vq − ψmωr)− rs

Lq
Te

p
Jm

(Te − Tl)

è
. (9.3)
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9.1. System dynamics approximation using the triple integrator

The dynamics up to the rotor position are completed with the equation

dθr
dt

= ωr (9.4)

Assuming the approximation with the double integrator for 9.3 is valid, the dynamics of
the PMSM can be then approximated with the triple integrator in (9.2) with

u = vq

x0 = Te τ0 =
2Lq
3pψm

x1 = ωr τ1 =
Jm
p

x2 = θr τ2 = 1 ,

(9.5)

In the following sections and for the sake of simplicity, the target for the control system
is assumed to be the origin. To implement the controller for the PMSM, the origin is
translated to 

x∗0

x∗1

x∗2

 =


Tl

0

θ∗r

 . (9.6)

and the boundaries for x0 and x1 are adjusted accordingly. If the constraints for ωr and
Te are given by

|ωr| ≤ ω̂r |Te| ≤ T̂e. (9.7)

the constraints for x0 are then given by:

x̌0 ≤ x0 ≤ x̂0 , (9.8)

with

x̂0 = T̂e − Tl (9.9)
x̌0 = −T̂e − Tl (9.10)

In the next sections a time-optimal control algorithm for the triple integrator is devel-
oped and later, the approximation of the motor dynamics, presented in this section, is
used to apply this algorithm to the rotor position control of the PMSM.
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Figure 9.2.: Time optimal trajectory for the triple integrator for an arbitrary i.c.. The plot
on the top presents the system state in time. The plots in the bottom present
the system state trajectories in the x0x1 and x1x2 planes, respectively. The
control constraints are only represented in the first plot (x̂0). The i.c. and
target for state x2 are marked with the symbols ⃝ and ×. In this case the
constraint for state x0 is the same as the constraint for state x1, i.e. x̂0 = x̂1.
The letters e, r, c and ss stand for expansion, rollback, contraction and steady
state. These terms refer to the kinetic energy being transfered to the rotor.

9.2. Time-optimal control for the triple integrator
Our goal is to develop a time-optimal controller for the system dynamics in (9.2), consid-
ering the following constraints

|x1| ≤ x̂1 x̌0 ≤ x0 ,≤ x̂0 and |u| ≤ û. (9.11)

The first approach to achieve this consist in applying the STPM, using a general pur-
pose numerical optimization algorithm. Further details on this method and its numerical
implementation are covered in section 3.3.2.
Simulations results using this approach for this problem are presented in figure 9.2.

Inspecting this results, the behaviour the TI should display when controlled in minimum-
time, can be understood in intuitive terms, keeping in mind that the state of the TI relates
to physical variables. In order to correct an error in the position (x2), the system should
be accelerated applying maximum voltage (û), up to the point where, first the torque (x0)
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9.3. Smoothened time-optimal controller for the triple integrator

reaches its constraint and then the speed (x1) reaches its constraint. During this time,
This is called the expansion stage (e), to signify that energy is being transfered to the rotor
to take the form of kinetic energy. Then, as the error in the position decreases, the system
should be decelerated, again applying maximum voltage, so that all the variables reach
their steady state values at the same time. This process is divided in two, the rollback and
contraction stages. During the first one, state x0 is steered towards its contrary boundary
and during the second one, the whole state is steered towards its steady state.
The solution of the minimum-time control problem for this system, as the solution for

this problem for the double integrator, divides the state space in regions where the mag-
nitude of the actuation ought to be maximum or zero. This time, however, the boundaries
between these regions are surfaces. The description of these boundaries can be very cum-
bersome, specially given the constraints for the magnitude of the torque and speed (x0
and x1). In [8] these surfaces are calculated to develop the proximately time optimal ser-
vomechanism, but without considering state constraints. The approach used in this work
avoids this by means of a shooting scheme.

9.3. Smoothened time-optimal controller for the triple
integrator

The design of the proposed control method is based in two main ideas:
• Bang-bang structure for the actuation. This is, we assume that the value the actu-
ation can take at any time belongs to the set {−û, 0, û}, and that changes in the
actuation can only occur at the sampling instants, which is a common setting for
discrete-time control systems. The search space for the optimal control is then dras-
tically reduced and, it can then be solved by direct evaluation of predictions of the
system state using sequences with different combinations of the values in this set.
The sequences are configured so that the state follows the pattern described in the
last section.

• Exploitation of the geometrical properties displayed by the state trajectories, when
steered with maximum actuation û.

The later is understood in terms of the step response of the system, which can be solved
analytically assuming

u(t) = ûµ(t) , (9.12)
and an i.c. x(0), yielding to

x(t) = S(t, x(0), d̂, û) , (9.13)
with

S(t, x(0), d̂, û) =

Ü
t
τ0
u+ x0
t2

2τ1τ0
u+ t

τ1
x0 + x1

t3

3 2τ2τ1τ0
u+ t2

2τ2τ1
x0 +

t
τ2
x1 + x2

ê
(9.14)

111



9. Position control for the permanent magnet synchronous motor

The following section describes a key element of the proposed control method: the Γ
curve. After this, the control algorithm is explained alongside technical implementation
details.

9.3.1. Γ curve

The Γ curve corresponds to the trajectories described by the state of the TI, when, starting
from the origin and letting the time run backwards, maximum actuation is applied (−û
for Γ+ and+û for Γ−), up to the point where x0 reaches its constraint (points x+ and x−)
and after this u = 0. The relevance of this curve lays in the fact that, at some point, the
time-optimal trajectory from any point in the state space to the origin has to reach the
curve Γ and follow it, before reaching the origin (see Fig. 9.2). It should be noted, tough,
that since both time and actuation are considered to be discrete, not every point in this
curve can be driven exactly to the origin, not even following curve.
The projection of the curve Γ in the x1x2 plane is referred to as Γ12 and is given by:

x2 = Γ12(x1) =
κ+2 (x1 − x+1 )

2 − κ+1 (x1 − x+1 ) + x+2 if x1< x+1

−κx1
»
|x1| if x+0 ≤x1≤ x−1

−κ−2 (x1 − x−1 )
2 − κ−1 (x1 − x−1 ) + x−2 if x−1 <x1

(9.15)

with

x+0 = x̂0 x−0 = x̌0

x+1 = −τx+2
0 x−1 = τ(x−0 )

2

x+2 =
ττ0
3τ2û

x+3
0 x−2 =

ττ0
3τ2û

(x−0 )
3

κ+2 =
τ1

2τ2x
+
0

κ−2 =
τ1

2τ2x
−
0

κ+1 =
τ1τ

τ2x
+
0

κ−1 = − τ1τ

τ2x
−
0

κ =
1

3τ2

 
2τ1τ0
û

The relative position of the initial state, with respect to Γ12 gives the sign of the actuation
which accelerates the system to correct errors in x2 during the expansion stage.

ue = −sgn(x2 − Γ12(x1)) (9.16)

This curve can be understood as the result of applying the backward induction princi-
ple: it corresponds to the response of the system (with the time running backwards and
starting from steady state) to a step excitation of maximum magnitude u = ±û, up to the
point where x0 reaches its constraint, and u = 0 from then on.
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9.3. Smoothened time-optimal controller for the triple integrator

9.3.2. Control algorithm

The proposed method is an ad-hoc discrete-time adaption of the STPM, described in sec-
tion 3.3.2, with a reduced computational overhead by making use of the known properties
of the solutions. Similarly as in the STPM, the core of the proposed method is constituted
by simulations, or predictions of the state with a given actuation sequence. In the STPM,
the control sequence is defined in terms of time intervals during which u = ±û or u = 0
is applied, and which are then minimized subject to state and terminal constraints. In
the proposed method, the position of the i.c. relative to the Γ curve defines the actuation
sequence and it is divided in the three stages: expansion, rollback and contraction. The
time for the expansion stage is assumed to be one sampling period and it might or might
not occur in the following sampling period. The time for the rollback stage is calculated
exploiting the geometrical properties of (9.13). No simulation for the contraction stage is
carried out, since it is already given by the Γ curve.
The discrete-timemodel for the triple integrator is produced using themethod described

in 2.4 and takes the form

x[n+ 1] = f(x[n], u[n]) (9.17)

with

f(x, u) =

Ü
x0 +

h
τ0
u

x1 +
h
τ1
x0 +

h2

2τ1τ0
u

x2 +
h
τ2
x1 +

h2

2τ2τ1
x0 +

h3

6τ2τ1τ0
u

ê
(9.18)

The expansion stage is simulated with a prediction for the state from the i.c. xi up to
point xe with u = ue (see Fig. 9.3).
Starting from xe, a long term prediction up to point xr is carried out, to account for

the rollback stage, using th step response of the system (see eq. (9.13)). The sign of the
actuation for this stage is calculated using the position of xe relative to the Γ curve in the
x0x1 plane:

ur =

®
−sgn(x0)û if x0 > x̂0 or x0 < x̌0
−sgn(x1 + sgn(x0)τx20)û if x̌0 ≤ x0 ≤ x̂0

(9.19)

with τ = τ0
2τ1û

. The boundary in this case is the switching curve defined for the time-
optimal control problem for the double integrator (DI) (see Sec. 5), which is the same
curve as the projection of Γ in the x0x1 plane, Γ01.
The time span for the rollback stage tr is calculated exploiting the geometry of the

trajectories described by the state in the x0x1: it is given by the intersection the parabola
generated by the step response of the system with u = ur and Γ01, which is described by

x1 = −sgn(x0)τx20 (9.20)

when x̌0 ≤ x0 ≤ x̂0, and the vertical lines x0 = x̌0 and x0 = x̂0, otherwise. With this

tr = sgn(ur)
τ0
û
(x̃0 − x0) (9.21)
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9. Position control for the permanent magnet synchronous motor

where x̃0 represents the point where the state trajectory and Γ01 cross

x̃0 =


x̂0 if sgn(ur)

√
|x̃1|
2τ
< x̂0

sgn(ur)
√

|x̃1|
2τ

if x̂0 ≤ sgn(ur)
√

|x̃1|
2τ

≤ x̌0

x̌0 if x̌0 < sgn(ur)
√

|x̃1|
2τ

(9.22)

and x̃1 is the x1 component of the point where the state trajectory crosses the line x0 = 0

x̃1 = x1 − sgn(ur)τx20 . (9.23)

The control decision is taken upon the position of xr relative to Γ in the x1x2 plane,
compared to the position of the i.c.: if the state does not cross the Γ12 curve, the kinetic
energy in accumulated in the rotor can still be expanded before proceeding to the rollback
stage. On the other hand, if the state goes beyond the Γ12 curve, x2 will necessarily
have to show overshoot before reaching its reference and therefore, in this situation no
expansion stage should take place; the state should proceed to the rollback stage and be
driven towards Γ.
The control decision takes the form of a reference for an inner controller for x1: if it is

decided to proceed with the expansion, the reference for x1 takes one its boundaries: x̂1
or −x̌1. In this way, the constraint for x1 is taken into account. On the other hand, if the
decision is to rollback, the reference is set x∗1 = 0.
The constraint on the magnitude of x0 is taken into account considering that both the

expansion and rollback stages can only develop up to a point where the constraint in
x0 is upheld. To implement this, whenever the expansion stage prediction violates the
constraint with u = ±û, the prediction up to point xe is instead simulated assuming
that the actuation takes the exact value that steers the electrical torque (x0) towards its
constraint. This violates the bang-bang structure assumption, but it is necessary to ensure
the satisfaction of the constraint and, at the same time, that the whole range of x0 will be
utilized. The constraint is taken into account in the rollback stage in the calculations for
tr.
The proposed controller is implemented as a sampled system and thus is only allowed

to switch the actuation at the sampling instants. This is not enforced in the STPM, con-
sequently, the time-optimal behaviour described in the last section requires that switches
occur at arbitrary instants. In the SQTOC, when the optimal switching time falls between
the current and the next sampling time, the xr prediction crosses the Γ, but proceeding di-
rectly to the rollback stage would fall short. To solve this and approximate the behaviour
generated by the STPM, two new predictions are introduced, with u = 0 and u = −ue
for the expansion stage. Then, if the prediction assuming u = ue, x+r crosses Γ12, but the
prediction assuming u = 0, x0r does not, the actuation is calculated as a linear combina-
tion of both ue and 0: the linear combination between x+r and x0r that exactly hits Γ12.
An equivalent procedure is carried out when the current state is near the Γ12 curve and
the predictions for the expansion stage cross it. In this situation the linear combination is
calculated between the prediction that crosses Γ12 and the prediction that does not.
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9.3. Smoothened time-optimal controller for the triple integrator

Finally, there are regions in the state space where ue = ur (see eqs. (9.16) and (9.19)),
i.e., no switch of the actuation occurs between the expansion and the rollback stages. This
means that x1 is increasing the error in x2 and ue must be applied to revert this situation.

9.3.3. Smoothening near the steady state

Just as in a sliding mode controller [51], the reference for x1 (ωr) produced by the algo-
rithm described above depends on the position of the state (in proposed scheme, the pre-
dicted state) relative to a switching curve, and it is always one of it extremes values. This
naturally results in chattering around the switching curve and poor steady state perfor-
mance. To avoid this, a classical and smoother LQR is introduced to take over the control
the task, when the state is near its desired steady state. This controller is implemented
to produce a reference for x0 (Te). The tuning of the LQR and the region where it should
take over were done empirically through simulations. The main goal for the tuning was
to minimize noticeable effects during the transitions from one controller to the other.

9.3.4. Inner Controller

The design of the SQTOC for this system is independent from the inner controllers, but
requires them to generate the same behaviour as the STPM imposes on all the states, this
is, the behavior produced by a bang-bang controller. This is achieved using the speed and
torque controllers developed in sections 7.3 and 4.3.

9.3.5. Experimental results

The proposed controller was validated in the experimental setup described in 1.1, with a
sampling period h = 46.1µs.
Figures 9.4 and 9.5 present experimental results, where the proposed control system

responds to a step change in the angle reference. In both figures it is possible to observe
how the proposed controller effectively reproduces the expected time-optimal behaviour,
calculated applying the STPM on a triple integrator. Towards the end of the test, however,
between t = 0.05 and 0.06s, chattering is observed, although it is only noticeable in the
plot of the electrical torque Te and is more evident in the plot at the right side in Fig. 9.5.
During this time the SQTOC gives an alternating reference for the rotor speed, in order
to track the expected behaviour in the ωr θr plane, this is, the Γ curve, and as a result,
the inner controller must decrease the magnitude of the electrical torque, not using the
full range for the torque, given by its constraints. This means that the expected time-
optimal behaviour calculated using the triple integrator approximation is actually slower
than what the real motor can do.
These effects are even more noticeable in Fig. 9.6, which depicts the response of the

system to an step load torque impact. In the second plot the load torque Tl, estimated by
the Kalman filter, is depicted with thick gray line. Notice that this estimation is relatively
slow, compared to the response of the controller.
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9. Position control for the permanent magnet synchronous motor

These effects occur presumably due to neglected dynamics, such as friction and the
interaction between the Kalman filter and the controller.
Finally, slightly after t = 0.06s if Fig. 9.4 and slightly before t = 0.05s in 9.6, a spike can

be observed in the electrical torque. At this point the internal LQR takes over at steers
the system smoothly towards its desired steady state.
In a first approach these undesired effect could be reduced introducing an smoother

LQR controller to act not only when the state is near its target, but also when the state
lays near the switching curve. In this sense the control goal would set a hierarchy to make
the system, for example, follow the switching curve defined in the ωr θr plane, regardless
of the distance of Te and ωr of the switching curve defined in the Te ωr plane.
In the next chapter, the same ideas developed in this chapter are used to devise a quasi-

time-optimal controller for the torsional torque in a two-mass system.
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Figure 9.3.: Approximation using the SQTOCmethod. The i.c. is represented by xi. xe (□)
is the prediction for the expansion stage. Two predictions are shown: using
u = ue (see eq. (9.16)) and u = 0. Points xr (×) pertain to the outcome of the
long range predictions, with u = −ue, representing the rollback stage. The
time frame for this prediction is calculated from θr. The rays subtending θr
intersect at

Ä
− kd
ωc
d,−ku

ωc
ue
ä
. The sign for ue is calculated from the position of

xi with respect to the Γ curve (see sec. 9.3.1) in the x2x3 plane. The control
decision is taken upon the position of xr, with respect to the Γ curve in the
x2x3 plane. In first case both predictions, with u = ue and u = 0 stay on the
same side as the i.c. with respect to Γ. In this case the controller decides to
go on with the expansion stage and applies u = ue. In the second case (in the
zoom box), the prediction with u = ue crosses Γ, whereas the prediction with
u = 0 does not. In this case u = 0 is applied.
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Figure 9.4.: Experimental results: quasi-time-optimal control of the rotor position for
the PMSM. In this test the control system reacts to a step change in the ro-
tor angle reference θr: at t = 0 the rotor is at rest at θr = −3.0rade, and
the reference changes to θr = 3.0rade. The constraints for the stator cur-
rents, electrical torque and rotor speed are set at îd = 10.0A, T̂e = 9.58Nm
and ω̂r = 2π120rade s−1. The light gray dashed line represents the expected
time-optimal behaviour in a triple integrator with the parameters in 9.5, for
the aforementioned initial conditions, and it was calculated using the STPM
method.
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Figure 9.5.: Experimental results: quasi-time-optimal control of the rotor position for
the PMSM. The constraints for the stator currents, electrical torque and ro-
tor speed are set at îd = 10.0A, T̂e = 9.58Nm and ω̂r = 2π120rade s−1. These
plots represent the trajectories for the system state presented in time in Fig.
9.4, in the Te ωr and ωr θr planes. Again, the light gray dashed line represents
the expected time-optimal behaviour.
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Figure 9.6.: Experimental results: transient response of the proposed control system to a
step change in the load torque Tl. In the second plot, the value for the load
torque estimated by the Kalman filter, is depicted with a thick gray line.
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In this chapter, the control scheme developed in the last chapter is used to devise a feasible
algorithm to time-optimally control the two-mass-system (TMS). The goal is to minimize
the use of off-line computations and tunning by relying on the system model and speed
the closed loop dynamics up to its physical limits.
The system at hand is depicted in Fig. 10.1. It consists of a PMSM, driving a load through

a flexible shaft, i.e. a TMS.The voltage for the PMSM is generated by a two-level VSI (VSI).

SVM d⃗PTCSQTOC
T ∗
eT ∗

s v⃗∗s

Load
c

Te

Ts

Ts

Tl

PMSM

v⃗s

KF
x

θr
i⃗s

Figure 10.1.: The load is driven by a PMSM through a flexible shaft, with stiffness con-
stant c. The PMSM is driven by a two-level voltage source inverter. The con-
trol algorithm consists of the Smoothened Quasi-Time-Optimal Controller
(SQTOC), a continuous-set model predictive torque controller, described in
section 4.3, and a Kalman Filter (KF). The latter takes applied stator voltage
v⃗s and the measurements for the stator currents i⃗s and rotor angle θr to re-
construct the state feedback x.

The TMS is a convenient model for many mechanical systems, ranging from wind mills
to laser positioning systems. In general, any drive where mechanical design or control
specifications weaken the assumption of an infinitely stiff shaft.
The challenge posed by this system is clearly understood by looking at its frequency

response (see Fig. 10.2): exciting the resonantmode leads to oscillations that could destroy
the shaft. The plot of the experimental data shows clearly, that the actuators and sensors
are capable of exciting and identifying the resonant mode.
The control of the two-mass system has been approached from different angles, ranging

from classical techniques for non-linear systems [52], sliding mode controllers [53, 54],
adaptive control [55, 30] to even fuzzy control [56]. In [57] Thomsen makes a comparison
between classic state-feedback controllers and model predictive control and in [58, 59]
the author of this theses presented naive approaches using the finite-set model predictive
control algorithm. In all these works the twomain recurring issues are tunning and taking
constraints into account. The first one is usually tackled using frequency-domain criteria.
The second issue is either ignored or dodged with patches (anti-windup). The approach
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Figure 10.2.: Magnitude of the transfer function between the electrical torque developed
by the PMSM Te and the measured angle θr. The black curve was obtained in
the laboratory using a torque controller with a pseudo random binary signal
as reference. The dashed grey line represents the transfer function of the
model with fitted parameters (see Table 10.1). The resonant peak occurs at
fc = 52.7[Hz].

presented in here takes constraints explicitly into account and, for the most part, tunning
is not necessary: the directing criteria is time-optimality.
The goal for the scheme developed in this chapter is to control the torque transmitted

from the PMSM to the load through torsion of the shaftTs, to track a reference inminimum
time. The controller should take into consideration constraints on the actuation, this is,
the voltage synthesized by the VSI, and on the magnitude of the stator currents, which
implies a constraint on the magnitude of the torque developed by the PMSM:

||⃗is|| < îs ⇒ |Te| < T̂e (10.1)

The proposed control algorithm follows the same design as the one used in the later
chapter: It is based on a simplification of a numerical implementation of the switch-
ing time parametrization method (STPM), introduced in section 3.3.2. Time-optimal be-
haviour is imposed, when the state is away from its target and near the steady state, a
smoother LQR takes over to avoid chattering.
The resulting control scheme (see Fig. 10.1) takes the form of a state feedback (it has no

internal states) with a cascaded structure. The proposed method generates a reference for
the electrical torque, and an inner predictive torque controller generates the stator voltage
to be applied to the motor. The internal workings of both controllers are, despite the cas-
caded structure, closely interwoven: the outer controller does consider the fundamental
properties of the whole system, as well as the effect of the inner controller, whereas the
latter allows to make assumptions that simplify the way the outer controller takes into
account the dynamics of the inner loop.
As is common and desirable in normal drive applications, direct measurements for every

component of the system state are not available in the test-bench, which includes only
stator currents (LEM) and rotor angle (incremental encoder) measurements. In order to
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keep the design of the controller independent from the observation problem, a Kalman
filter is used to estimate the state.
The performance of the proposed controller is verified with experimental results. They

include tests using an outer PI controller for the load speedωl, to generate the reference for
Ts. The proposed controller enables load speed control with little bandwidth compromise.

10.1. System Model

10.1.1. Drive Model

The dynamics of the drive, including the PMSM drive and the TMS, are described by the
following dynamical system [29, 60]:
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(10.2)

Most elements of this model were introduced in section 2.2, particularly, the stator current
dynamics and the mechanism behind electrical torque production.
The new states, introduced to model the dynamics of the two-mass system, are the

torsional torque Ts and the angular speed of the load ωl.
For convenience ωl, is expressed in electrical radians per second.
The torsional torque is produced by torsion of the shaft. A first approximation to model

this phenomenon is the use of Hooke’s law, which leads to

Ts =
c

p
(θr − θl) , (10.3)

this is, the torsional torque is proportional to the deflection between the rotor of themotor
and the load, θr and θl respectively. In (10.3) both are expressed in electrical radians per
second, for convenience. Constant c is the stiffness constant of the shaft. Its value is found
with a model fitting scheme (see [60]). The parameter Jl represents the inertia of the load.
The coupling between the mechanical variables gives rise to resonant behaviour (see

Fig. 10.2) with resonant angular frequency:

ωc =

√
c
Jm + Jl
JmJl

. (10.4)

Themechanical parameters of the setup used for experimental verification are presented
in table 10.1.
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10. Two-mass system

Table 10.1.: Parameters of the two-mass-system
Jm= 3.265× 10−3 kgm2

Jl= 8.815× 10−3 kgm2

c= 260.657Nm rad−1

10.1.2. Abstract Description

In order to focus the analysis on the dynamics that are relevant to the desired behaviour,
the above presented model is distilled through a set of assumptions, which we discuss in
what follows.
The first assumption is that the dynamics between the stator voltage and the electrical

torque can be approximated using a simple integrator. In section 7.1 it was shown how
the step response of the torque matches the step response of an integrator during the
transient. That analysis in that case did not include the dynamics of the TMS, nevertheless,
these are of higher order: Ts first appears in the second derivative of Te. Moreover, one
period of the resonant behaviour is about 50 times longer than the time needed to steer
Te from 0Nm to its constraints, in this case also given by T̂e = 10.24Nm. With this, we
can assume this approximation to be precise enough and we can synthesize the relevant
information of the first two equations of the system model (10.2) as

dTe
dt

=
3pψm
2Lq

vq (10.5)

or, taking x0 = Te:

dx0
dt

=
u

τ0
. (10.6)

The state x0 is relevant for the control design insofar it stores the information regarding
the satisfaction of the constraint on the stator currents, i.e., the constraint on Te.
The next assumption is that the actuation belongs to a finite set:

u ∈ {−û, 0, û}. (10.7)

This assumption is leveraged to reduce the trajectories the state could follow to a man-
ageable set, i.e. shrink the search space for the optimal actuation. This assumption has
physical and theoretical meanings: on the one hand the actuator (the VSI) has a con-
strained nature, and on the other, the actuation synthesized by a time-optimal control
adopts a bang-bang form. This assumption stops serving its purpose near the switching
curve and the steady state: in this situation, restricting the actuation to its limit values
will produce, very naturally in a discrete-time regime, chattering. In order to avoid this,
when the predicted state falls near the Γ curve, the reference for Te is synthesized using a
linear combination of the values predicted using the extreme values of the actuation and,
near the steady state, the control is passed over to a classical LQR, which produces torque
references in the continuous range [−T̂e, T̂e].
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10.1. System Model

The maximum magnitude of the actuation, as in the latter chapters, is assumed to be

û = 0.9 ·
√
3

3
vdc, (10.8)

which is the maximum amplitude the two-level VSI can generate, when synthesising per-
fectly sinusoidal voltages, multiplied by the factor 0.9, to avoid ringing noise, produced
by switching in the VSI, when modulating relatively high voltages.
Finally, considering the following change of variables

x =


x0
x1
x2
x3

 =


Te
k1 (Te − σTs)
ωm − ωl
Ts

 , d = Tl, (10.9)

with

σ =

Ç
1 +

Jm
Jl

å
and k1 =

p

Jmωc
, (10.10)

an abstract model for the drive, including the mechanical dynamics can be written:

dx

dt
=

á
u/τ0
−ωcx2 + kuu
ωcx1 + kdd

x2/τ3

ë
, (10.11)

where

τ0 =
2Lq
3pψm

, ku =
3p2ψm

2LqJmωc
, (10.12)

τ3 =
p

c
, kd =

p

Jl
. (10.13)

Equations for states x1 and x2 correspond to the description of an harmonic oscilla-
tor with two sources, u and d, and angular frequency ωc. As it will be discussed in the
following section, this model shall convenient to understand, formulate and solve the
minimum-time control problem.
In the following we will refer to the system in (10.11) as the abstract two-mass system.
The total energy in this harmonic oscillator is related to the distance between the state

coordinates in the x1x2 plane and the steady state point. Component x1 pertains to the
potential energy stored in the shaft spring, whereas component x2 pertains to the kinetic
energy in the motor and load inertiae. In the following sections the words expansion and
contractionwill be used in relation to the kinetic energy of the oscillator, meaning that the
state is driven away from or towards the steady state point in the x2 axis, respectively.
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10. Two-mass system

Steady State

The steady state and the control target for system (10.11) are reached at point

xss =


σx∗3 − (σ − 1)d
− kd
ωc
d

0
x∗3

 , (10.14)

where x∗3 is the torsional torque reference. In terms of the drive model this means that in
steady state, it holds

T sse =

Ç
1 +

Jm
Jl

å
T ∗
s − Jm

Jl
Tl, (10.15)

i.e. in steady state Te should be proportional to the reference T ∗
s and also compensate for

the load torque Tl.

Continuous time model

The step response of the system described by eq. (10.11) can be solved analytically assum-
ing

u(t) = ûµ(t) and d(t) = d̂µ(t) (10.16)

and an i.c. x(0), yielding to
x(t) = S(t, x(0), d̂, û) , (10.17)

with

S(t, x(0), d̂, û) =

à û
τ0
t+ x0(0)

A cos(ωct) +B sin(ωct)− kd
ωc
d̂

A sin(ωct)−B cos(ωct) +
ku
ωc
û

1
σ

Ä
x0(t)− 1

k1
x1(t)

ä
í

, (10.18)

where

A =
kd
ωc
d̂+ x1(0) and B =

ku
ωc
û− x2(0) . (10.19)

In the x1x2 plane, the trajectories developed by S(·) follow circular paths with center

(x1, x2) =

Ç
−kd
ωc
d̂,
ku
ωc
û

å
(10.20)

and angular frequency ωc. This property is later exploited to invert part of the minimum
time problem in the x1x2 plane: the time required to drive the state between two arbitrary
points with u = ±û corresponds to the angle subtended by the arc between the two points
from the center of the corresponding circle. This model will also be useful to calculate the
Γ curve (see sec. 10.3.1), which is the trajectory that the state should approach and follow
in order to reach the target.
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10.2. Time-optimal control for the abstract two-mass system
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Figure 10.3.: Time optimal trajectory for system (10.11) for an arbitrary i.c.. The plot on
the top presents the system state in time. The plots in the bottom present
the system state trajectories in the x1x2 and x2x3 planes, respectively. The
control constraints are only represented in the first plot (x̂0). The i.c. and
target for state x3 are marked with the symbols ⃝ and ×. e, r, c and ss
stand for expansion, rollback, contraction and steady state.

10.2. Time-optimal control for the abstract two-mass
system

Our goal is to develop a time-optimal controller for the system dynamics in (10.11), con-
sidering a constraint on the magnitudes of state x0 and the actuation:

|x0| ≤ x̂1 |u| ≤ û . (10.21)

As in the last chapter, the first approach to achieve this goal consist in applying the
STPM, using a general purpose numerical optimization algorithm (see Sec. 3.3.2).
Simulations results using this approach for this problem are presented in Fig. 10.3.
In the context of the tow-mass-system, the control goal to drive Ts towards an arbitrary

reference in minimum time, can be paraphrased as to store an arbitrary amount of energy
in the shaft spring in minimum time; this perspective can be helpful to understand the
systems desired behavior. First, the rotor of the PMSM should be accelerated, so energy
is transferred into kinetic energy. As the gap between θr and θl grows, energy is trans-
ferred to the shaft spring, where it takes the form of potential energy. The energy is then
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10. Two-mass system

transformed back to kinetic energy in the load. At some point the kinetic energy in the
rotor of the PMSM is more than enough to drive the potential energy in the rotor spring
towards its desired level. Then, the surplus should be drawn by decelerating the rotor of
the PMSM down to the point where the speeds and accelerations of both the rotor of the
PMSM and the load match.
Fig. 10.3 presents plots of the trajectory developed by the state of system (10.11), when

controlled to achieve this behavior, against time and in the x1x2 and x2x3 planes. Labels
e, r and c account for three stages characterizing this trajectory. In terms of the model
presented in 10.1.2 and the description in the last paragraph, they refer to stages of expan-
sion (e) and contraction (c) of the kinetic energy in the harmonic oscillator x1x2, whereas
r constitutes a rollback to a point in the state space where the contraction of the kinetic
energy can be achieved as fast as the control constraints allow. For the development of
the proposed method it is assumed that the system state must follow this pattern. This
allows to reduce the optimal control problem to the evaluation of predictions of the sys-
tem state, using only the set of sequences or configurations of the actuation that make
the state follow this pattern.

10.3. Smoothened quasi-time-optimal control for the
abstract two-mass system

The control algorithm developed in this section is equivalent to the algorithm developed
for the smoothened quasi-time-optimal control of the triple integrator in last chapter. In
this sense it is based on the same ideas:

• The actuation sequence has a bang-bang structure and changes can only occur at
the sampling instants. With this the search space for the optimal control is reduced.
The control sequences are configured so that the state follows the pattern described
in the last section.

• Exploitation of the geometrical properties displayed by the state trajectories, when
steered with maximum actuation û.

The following section describes the Γ curve for the case at hand. After this, the control
algorithm is explained alongside technical implementation details.

10.3.1. Γ curve

The Γ curve corresponds to the contraction stage, described in last section (stage c in
Fig. 10.3). If the current state of the system is located at any point along the Γ curve,
it will follow it and reach the target in minimum time by applying maximum actuation.
Consequently, and according to the DPP, for any i.c. not in this curve, the state should be
first taken towards it (the rollback stage: r in Fig. 10.3), before it can be driven towards
the target.
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10.3. Smoothened quasi-time-optimal control for the abstract two-mass system

The position of the i.c. with respect to Γ determines the sign of the actuation for the
expansion stage:

ue = −sgn (Γ23(x2)− x3) û, (10.22)

where Γ23 is the projection in the x2x3 plane of the Γ curve.
In order to better understand the form that Γ23 takes, some magnitudes relative to it are

first introduced, in terms of the parameters of the system model (10.11). The quantity

r =
ku
ωc
û , (10.23)

is the radius of the circular trajectory followed by the state in the x1x2 plane, starting from
the equilibrium point (10.14), with center at (x1, x2) =

Ä
− kd
ωc
d,∓ku

ωc
û
ä
, when maximum

actuation (u = ±û) is applied, and the time is let to run backwards. Under these conditions
and in the same plane, the trajectory will develop an arch of length rθ±, before x0 reaches
its constraint x0 = ±x̂0, with

θ± = 2π
τ0
û
(±x̂0 − σx∗3) . (10.24)

Once x0 reaches its constraint, the state would have reached one of these two points:

x± =

à
±x̂0
k1
Ä
±x̂0 − σx±3

ä
±r (cos(θ±)− 1)
± r
τ3ωc

(θ± − sin(θ±)) + x∗3

í
. (10.25)

If, from then on, u = 0 is applied, x0 will remain on its constraint, and the state will follow
a circular trajectory in the x1x2 plane, centered at (x1, x2) =

Ä
− kd
ωc
d, 0
ä
with radius given

by:

(r±)2 = (x±1 )
2 + (x±2 )

2 . (10.26)

With this, and using an inverse time version of (10.17), the projection of the Γ curve in
the x2x3 plane (see Fig. 10.4) can be written as a function of x2:

Γ23(x2) =

x∗3 if x2 = 0

−sgn(x2) r
τ3ωc

(θΓ − sin(θΓ)) + x∗3
if x+2 ≤ x2 ≤ x−2 ∧ x2 ̸= 0

−sgn(x2)
(
x̂0
σ
− 1

τ3ωc

»
(r{sgn(x2)})2 − x22

)
+ σ−1

σ
d

if x2 < x+2 ∨ x−2 > x2

, (10.27)

where

θΓ = cos−1

Ç
1− |x2|

r

å
. (10.28)
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10. Two-mass system

10.3.2. Control algorithm

The structure of the control algorithm is the same as in the last chapter. The expansion and
rollback stages are simulated using the discrete-time and the continuous-time models of
the system respectively. The sign for the actuation in each stage in given by the position
of the state with respect to Γ. The time frame for the expansion stage is assumed to be one
sampling period and it might or might not occur in the following sampling period. The
time for the rollback stage is calculated exploiting the geometrical properties of (10.17).
No prediction is carried out for the contraction stage, since it is already given by the Γ
curve.
The discrete-time model for the abstract two mass system is produced using the method

described in 2.4.
The expansion stage is simulated with a prediction for the state from the i.c. xi up to

point xe with u = ue (see Fig. 10.4). Starting from xe, a long term prediction up to point
xr is carried out, to account for the rollback stage. The sign of the actuation for this stage
is calculated using the position of xe relative to the Γ curve in the x1x2 plane:

ur =


−û if R+ ∨ (R+ ∨R−) ∧ (x1 < −kdd)
û if R− ∨ (R+ ∨R−) ∧ (x1 > −kdd)
0 if x1 = x2 = 0

, (10.29)

with

R+ := (x1 + kdd)
2 + (x2 + r)2 ≤ r2 (10.30)

R− := (x1 + kdd)
2 + (x2 − r)2 ≤ r2 . (10.31)

The time span for the rollback stage, tr, is calculated exploiting the geometry of the
trajectories described by the state in the x1x2 plane: it is given by the angle subtended
by the arc between xe and xr in the circumference with center C =

Ä
− kd
ωc
d,−ku

ωc
ue
ä
and

radius rr = ||C − (xe1, xe2)||:

tr =
θr
ωc
. (10.32)

The point xr in the x1x2 plane is calculated as the intersection of two circumferences,
described by the following equations:Ç

x1 +
kd
ωc
d

å2

+

Ç
x2 +

ku
ωc
ue

å2

= r2r , (10.33)Ç
x1 +

kd
ωc
d

å2

+

Ç
x2 −

ku
ωc
ue

å2

=

Ç
ku
ωc
û

å2

. (10.34)

The first circumference represents the trajectory of the state during the rollback stage, the
second is the trajectory of the state during the contraction stage, or the projection of the
Γ curve in the x1x2 plane (see Sec. 10.3.1).
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10.3. Smoothened quasi-time-optimal control for the abstract two-mass system

The control decision is taken upon the position of xr relative to Γ in the x2x3 plane,
compared to the position of the i.c.: if the state does not cross the Γ23 curve, the kinetic
energy in the harmonic oscillator can still be expanded before proceeding to the rollback
stage. On the other hand, if the state goes beyond the Γ23 curve, x3 will necessarily
have to show overshoot before reaching its reference and therefore, in this situation no
expansion stage should take place ;the state should proceed to the rollback stage and be
driven towards Γ.
The control decision takes the form of a reference for an inner controller for x0: if it is

decided to proceed with the expansion, the reference for x0 takes the value of its prediction
with u = ue. On the other hand, if the decision is to rollback, the reference takes the value
of the prediction for x0 with u = −ue.
The constraint on the magnitude of x0 is taken into account considering that both the

expansion and rollback stages can only develop up to a point where the constraint in x0
is upheld. To implement this, whenever the expansion stage prediction violates the con-
straint with u = ±û, the prediction up to point xe is instead simulated assuming that the
actuation takes the exact value that steers the electrical torque (x0) towards its constraint.
This violates the assumption regarding the bang-bang structure for the actuation, but it
is necessary to ensure the satisfaction of the constraint and, at the same time, that the
whole range of x0 will be utilized. On the other hand, whenever the time for the rollback
stage tr is longer than the time required to drive x0 to its constraint, tr is cut down to the
time that takes x0 exactly to its constraint:

tc =
τ0
ue

(sgn(ue)x̂0 − x0) (10.35)

The proposed controller is implemented as a sampled system and thus is only allowed
to switch the actuation at the sampling instants. This is not enforced in the STPM, con-
sequently, the time-optimal behaviour described in the last section requires that switches
occur at arbitrary instants. In the proposed algorithm, when the optimal switching time
falls between the current and the next sampling time, the xr prediction crosses the Γ, but
proceeding directly to the rollback stage would fall short. To solve this and approximate
the behaviour generated by the STPM, two new predictions are introduced, with u = 0
and u = −ue for the expansion stage. Then, if the prediction assuming u = ue (x+r )
crosses Γ23, but the prediction assuming u = 0 (x0r) does not, the actuation is calculated
as a linear combination of both ue and 0: the linear combination between x+r and x0r that
exactly hits Γ23. An equivalent procedure is carried out when the current state is near the
Γ23 curve and the predictions for the expansion stage cross it. In this situation the linear
combination is calculated between the prediction that crosses Γ23 and the prediction that
does not.
Finally, there are regions in the state space where ue = ur (see eqs. (10.22) and (10.29)),

i.e., no switch of the actuation occurs between the expansion and the rollback stages. This
means that x2 is increasing the error in x3 and ue must be applied to revert this situation
(a reference x∗0 = sgn(ue)x̂0 is given to the inner controller).
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10. Two-mass system

10.3.3. Smoothening near the steady state

The reference for x0 (Te) produced by the algorithm described above depends on the po-
sition of the state (in proposed scheme, the predicted state) relative to a switching curve,
and it is always the result of applying an extreme value of the control set. This naturally
results in chattering around the switching curve and poor steady state performance. To
avoid this, a classical and smoother LQR is introduced to take over the control the task,
when the state is near its desired steady state. The tuning of the LQR and the region
where it should take over were done empirically through simulations. The main goal for
the tuning was to minimize noticeable effects during the transitions from one controller
to the other.

10.3.4. Inner Controller - Predictive Torque Control

The design of the control algorithm is independent from the inner controller, but requires
it to generate the same behaviour as STPM imposes on all the states. This is achieved
using the torque controller developed in sections 4.3.

10.3.5. State Estimation

The proposed control method acts as a state feedback and since measurements for all com-
ponents of the state are not available at the test bench used for experimental verification,
a state observer was implemented. For this work, a reduced order extended Kalman filter
was used, since it also effectively separates the observation from the control problem (see
Appendix A).

10.4. Experimental results
Fig. 10.5 presents a step response of the system using the proposed control method. The
reference for Ts goes from approximately 0Nm to 7.0 Nm. The controller achieves ref-
erence tracking for Ts by forcing Te towards its constraint for the whole transient. As a
result Ts displays a sigmoid behavior, typical of time-optimal controllers.
It is possible to see some overshoot in Ts before it settles at its reference. This can be

observed more explicitly in the difference between ωm and ωl. This may be the effect of
neglecting the back-emf to calculate T ∗

e in the SQTOC (see eq. (10.5)), since this effect is
smaller, when operating at lower speeds. This is more explicit in the first plot in Fig. 10.6,
where x0 represents the electrical torque Te: when the Te is steered towards T̂e, its rate of
change matches the expected one, on the other hand, when Te is steered towards−T̂e, its
rate of change is slightly slower, since the back-emf opposes to this change. Otherwise,
the obtained behaviour is as expected.
Figures 10.6 and 10.7 presents the same results as in Fig. 10.5, in terms of the abstract

states introduced in 10.1.2. Experimental measurements are compared with the expected
behaviour, calculated using the STPM applied to the abstract two-mass-system. These
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results show how the controller effectively reproduces the expected behavior. A slight
oscillation can observed between t =10.0ms to 15.0ms. At this point, the smoother LQR
takes over.
Fig. 10.8 presents experimental results using the proposed controller for Ts and an

external PI controller for the load speed ωl. The PI controller was tunned using pole
placement for a plant with the formG(s) = 1

Jls
, to obtain a closed loop natural frequency

of approximately 8.67Hz, this is, only 6 times slower than then resonant frequency of the
system. The test consists of a start-up maneuver, where the reference for ωl goes from
0 to 2π50rade s−1 (1000rpm mechanical), followed by a speed reversal and a load torque
impact.
In Fig. 10.5, at t ≈ 16ms it is also possible to distinguish a small change in Te. This is

caused by the LQR, when it takes over. This effect is more patent in Fig. 10.8 at t ≈ 0.4 s
and t ≈ 0.75 s. Although this behaviour does not cause major problems, it would be
desirable to have strategies to match both controllers at the transition boundary, or at
least to verify that the LQR action will not take the state out of its region of activity
resulting in chattering around the transition frontier.
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Figure 10.4.: Approximation using the SQTOC method. xi represents the i.c. for the
method. xe (□) is the prediction for the expansion stage. Two predictions are
shown: using u = ue (see eq. (10.22)) and u = 0. Points xr (×) pertain to
the outcome of the long range predictions, with u = −ue, representing the
rollback stage. The time frame for this prediction is calculated from θr. The
rays subtending θr intersect at

Ä
− kd
ωc
d,−ku

ωc
ue
ä
. The sign for ue is calculated

from the position of xi with respect to the Γ curve (see sec. 10.3.1) in the x2x3
plane. The control decision is taken upon the position of xr, with respect to
the Γ curve in the x2x3 plane. In first case both predictions, with u = ue
and u = 0 stay on the same side as the i.c. with respect to Γ. In this case
the controller decides to go on with the expansion stage and applies u = ue.
In the second case (in the zoom box), the prediction with u = ue crosses Γ,
whereas the prediction with u = 0 does not. In this case u = 0 is applied.
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Figure 10.5.: Experimental results: transient for a step torsional torque reference change,
using the proposed method. The reference for Ts is represented in the second
plot with a gray dashed line. In this plot, the light gray line represents the
electrical torque Te being developed by the PMSM. The third plot represent
the speeds of the rotor of the PMSM and the load ωm and ωr, respectively.
The integral of the difference between them is proportional to the torsional
torque.
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Figure 10.6.: Experimental (solid) and simulation (dashed) results: transient for a step
torsional torque reference change, using the proposed method, represented
in term of the state of the abstract two-mass-system, introduced in section
10.1.2. Simulation results were obtained using the STPM applied to the ab-
stract two-mass-system, with the parameters of the real drive.
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Figure 10.7.: Experimental (solid) and simulation (dashed) results: transient for a step
torsional torque reference change, using the proposed method, represented
in term of the state of the abstract two-mass-system, in the x1x2 and x2x3
planes. The initial condition and the target are represented with the ◦ and×
symbols.
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11. Conclusions

In this work, the finite-set model predictive control algorithm [13] was taken as starting
point and was further developed in two directions.
First, the issues produced by the application of a single switching state by the power

converter, during a whole sampling instant, namely:

• irregular switching pattern,

• distributed frequency spectrum

• and the impossibility of achieving control with arbitrary precision,

were tackled in chapter 4, introducing a pulse with modulation scheme. With this, the ac-
tuator (the power converter) can be used to approximate voltages in a continuous set. The
core ideas in finite-set model predictive control were leveraged to obtain fast dynamics.
The torque controller developed for the PMSM in chapter 4 also introduces a method-

ology to approach different control goals simultaneously.
The second direction developed in this work was the integration of higher order dynam-

ics in the controller. Chapters 6, 7 and 8 deal with the development of torque and speed
controllers for the PMSM and the IM and chapters 9 and 10 with the development of a
position controller for a PMSM drive and of the torsional torque in a two-mass system.
This was achieved first by introducing specially designed cost functions and second, by
adapting existing control methods, based on numerical optimization algorithms, to con-
struct non-linear feedback rules. In all the cases, the performance index used was the time
required to steer the state of the system towards a target. With this, a common ground
was established to fix the expected dynamic behaviour of the system.
At the core of this methodology is the approximation of the drive dynamics using ex-

tremely simplified models. The solution of the time-optimal control problems for these
models is not trivial, but is much simpler than solving an optimal control problem consid-
ering the whole dynamics of the drive. This thesis verified in each case, that these models
were sufficient to roughly account for the desired time-optimal dynamics. The developed
control methods are computationally feasible and reproduce the expected behaviour.
In this sense, it is important to remark that, in order to obtain satisfactory results, an

appropriate fit of the models was necessary, so that the measured and the expected be-
haviour match. This led, for example, to use values for the stator inductances, which were
smaller than their usual expected values (the synchronous frequency inductance), since Ed-
die currents and iron saturation, which are not considered in the drive models, make the
inductance of the motors appear smaller at higher frequencies.
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11. Conclusions

The proposed control methods do not introduce tunning parameters, other than the pa-
rameters of smooth controllers used to take over the control task, once the state has ap-
proached its desired state behaviour. This was necessary to reduce the undesired steady-
state chattering, that the bang-bang part of the proposed control methods produce. For
this task, classical controllers were used, adjusted to avoid further chattering around the
boundary between the two strategies. Otherwise and for the most part, the proposed
control algorithms rely on the system model and its parameters.

11.1. Further work
The work reported in this thesis solved most of the problems laid out at its beginning,
namely, fixing the dynamics of higher order systems with feasible control algorithms. It
does, however, put more questions forward.
As hinted before, the methods developed in this work do not introduce tunning param-

eters and the model parameters only change the scale of the problem. This holds primar-
ily, when high switching frequencies are used. In this sense, the pulse width modulation
scheme introduced in chapter 4 and the drive model should be improved to account for
effects appearing in low switching frequency regimes.
The robustness of the proposed methods against variations in the model parameters

needs to be verified. In this sense they could also be extended to use on-line parameter
fitting schemes.
From the control perspective, the smoothening property needs to be improved: the

results obtained with the position controller in chapter 9 show that chattering near the
steady state is effectively eliminated passing the control task to a classical controller. The
transition phase, however, is not completely smooth and chattering could still be ob-
served, when the state was near the switching curve. In this sense, analytical tools are
required to stablish the region where the classical and smoother controller should take
over and to match the behaviour of the classical controller and the bang-bang strategy on
the boundary of this region.
The general approach used during the development of this work was to focus on one

problem, solve it and move on to the next problem using the lessons learned up to that
point. Still, the form the work took displays some kind of pattern: the methods proposed
in part III for the second order system consist broadly of a prediction stage and an eval-
uation stage (the cost function). The methods proposed in part IV for the third order
systems consist of two prediction stages and two function evaluation stages: the Γ curve
and the cost function: the complexity of the algorithms did not grow exponentially, but
rather linearly. A consequence of the dynamic programming principle is the curse of di-
mensionality: the complexity of an optimal control problem grows exponentially with the
order of the system. The algorithm developed in this work seem to suggest that the curse
of dimensionality could be dodged using particular knowledge of the system at hand. This
is no evidence to make any general statement, but rather opens the following questions

• can the synthesis of the control algorithms proposed in this work be systematized
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11.1. Further work

for systems of arbitrary order?

• what is the nature of the information required to devise these algorithms?

Meaningful answers to these questions would enable the development of new control
methods, based on the time-optimality performance index, for a broader family of mecha-
tronic systems.
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A. State Observer: Reduced Order
Extended Kalman Filter

In all the control schemes described in this work, except for that in section 6: torque
control for the induction motor, the whole state of the system being controlled is required
as feedback for the controller.
In order to achieve this and effectively decouple the control problem from the observa-

tion one, so as to focus on the control, a Kalman filter was used in each case [61, 4, 62, 63].
The Kalman filter is one of the greatest achievements of control theory in the past century:
it is the solution for the optimal observer for linear systems subject to white noise in its
measurements and system equations, considering a quadratic criterion. It is to observers,
what the Linear Quadratic Regulator is to linear controllers: the gain for the innovations
(the error between the estimated output and the actual output of the system: (c(x̂)−y)), is
calculated using the model of the noise and the system to minimize the expected value of
square of the error between the actual system state x and the estimated one x̂, E[x− x̂]2.
The obtained gain is called the Kalman gain.
The Kalman Filter can also be applied to non-linear systems linearizing at each opera-

tion point to recalculate the Kalman gain at each step and , although optimality can not
be guaranteed, its performance is still reasonable. This kind of filter is called Extended
Kalman Filter, and was used in this work [64, 65, 63], given the non-linearities posed by
themodels of both the inductionmotor and the synchronousmotor in the back-emf terms.
It has been repeatedly noted, that one of the difficulties posed by this kind of observer

is its computational burden. To cope with this, the order of the implemented observer
was reduced by assuming that the noise in the measurements for the stator currents is
neglectable. This kind of observers are called Luenberger observers. A complete formu-
lation for such observers can be found in [3].
In this section we will describe the steps necesary to implement a reduced order ex-

tended Kalman filter for the systems described in chapter 2.
None of the control schemes described in this work have internal states. This means

that they do not have any means to integrate to compensate for constant or slow-varying
perturbations: they rely on the assumption that an estimate of the perturbation is avail-
able. In all cases, where a Kalman filter was used, it was assumed that the only external
perturbation is the load torque Tl. In order to estimate its value, the state of the observer
was extended to include Tl, with the associated dynamic equation:

dTl
dt

= 0, (A.1)

145



A. State Observer: Reduced Order Extended Kalman Filter

which entails that Tl changes very slowly with time.
With this, the state for the PMSM, the IM and the two-mass-system, driven by the PMSM

are given respectively by:

x =


iα
iβ
ω
θ
Tl

 x =



iα
iβ
ψα
ψβ
ω
θ
Tl


x =



iα
iβ
ωm
θm
Ts
ωl
Tl


(A.2)

PMSM IM PMSM-TMS (A.3)

The model of the IM, introduced in section 2.3, eq. (2.56), did not include the rotor angle
θr as a state. It is included here, for the filter to be able to gather information from the
anglemeasurement, which is realizedwith an incremental encoder. The dynamic equation
associated with θr is given by:

dθr
dt

= ω (A.4)

A discrete time version of this equation is obtained as in eq. (2.58), with N = 3.
In all cases the formulation of the Kalman filter requires the introduction of a measure-

ments vector as a function of the state:

y =

 iα
iβ
θ

 (A.5)

In each case θr corresponds to the rotor angle measurement realized by the incremental
encoder and iα and iβ to the stator currents, measured with LEM sensors.
For each case, the reduced state p, which includes only the states to be filtered, is defined

as:

p =

 ω
θ
Tl

 p =


ψα
ψβ
ω
θ
Tl

 p =


ωm
θm
Ts
ωl
Tl

 (A.6)

PMSM IM PMSM-TMS (A.7)

Then, a partition for the output is introduced, which separates the measurements be-
tween those with and without noise (y1 and y2 respectively):

y =

ñ
y1
y2

ô
=

 θ
iα
iβ

 (A.8)
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This introduces a partition in the Kalman gain:

H = [H1 H2] (A.9)

and the costate:

q[n] = p[n]−H2[n− 1]y2[n]. (A.10)

Using these definitions a state space representation for p is built:

p[n+ 1] = g(p[n], u[n], y2[n]) + v[n] (A.11)
z[n] = c(p[n], u[n], y2[n]) + w[n] (A.12)

Here g(·) includes the discrete time version of the dynamic equations for the states in-
cluded in p: it includes a partition of f(·) in eq. (2.59) and the discrete time versions of
(A.4) and (A.1). v and w represent the system and measurement noise respectively, they
are assumed to have normal probability distributions, characterized by their covariance
matrices Q and R. If a model of w and w were available, their covariance matrices could
be used directly, but since the production of such a model is cumbersome and out of the
scope of this work, they were tuned empirically by iterative simulation and trial with the
experimental setup.
The output function c(·) is given by:

c(·) =
ñ
y1[n]
y2[n+ 1]

ô
(A.13)

y2[n+ 1] corresponds to the discrete time version of the dynamic equations for i⃗s: it is a
partition of f(·) in eq. (2.59).
The filter algorithm consists of two stages: correction and prediction. In the correction

stage, the state estimate for the current sampling instant k (predicted in the last iteration)
is corrected with the new available measurements:

p̂[n|n] = q[n] +H2[n− 1]y2[n]. (A.14)

Tanking this estimate for the state as operating point, the system dynamics are linearized
and the Kalman gain is calculated:

A[n] =
∂g

∂p

∣∣∣∣∣
p=p̂[n|n]

(A.15)

C[n] =
∂c

∂p

∣∣∣∣∣
p=p̂[n|n]

(A.16)

H[n] = A[n]P [n]C[n]T
Ä
R + C[n]P [n]C[n]T

ä−1 (A.17)
(A.18)
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A and C are the Jacobian matrices of g(·) and c(·) respectively.
In the prediction stage, the state and the error covariance matrix for the next sampling

instant are predicted using the system model and the estimated state at the current sam-
pling instant k:

p̂[n+ 1|n] = g(p̂[n|n], u[n], y2[n]) (A.19)
q[n+ 1] = p̂[n+ 1|n] +H1[n]y1[n]−H[n]ẑ[n] (A.20)
P [n+ 1] = A[n]P [n]A[n]T +Q−H[n]C[n]P [n]A[n]T (A.21)

The system state can be reconstructed after evaluating eq. (A.14) or (A.19):

x̂[n] =

ñ
y2[n]
p̂[n|n]

ô
(A.22)

Then x̂ is used as the state feedback for the controller. In the control methods described
in this work eq. (A.19) was used to compensate for the calculation time delay (see chapter
3.2).
The computation of the filter can be very demanding. Therefore special care was taken

for the implementation in the experimental setup, in order to make the computation of
the filter as efficient as possible: all the matrix operations were written explicitly, instead
of using loops. To evaluate the Jacobian matrices A and C , all terms that are constant are
computed offline, and the expressions for the terms that are not constant are grouped so
as to end up with expressions consisting only of additions and multiplications between
variables and constants. Trigonometric functions are computed only once, since they all
take the same argument.
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B. Current model for the Induction
Motor - Stator Flux Observer

All of the torque control schemes for the induction machine described in this work (see
sections 3.1, 3.2 and chapter 6) assume that measurements of at least stator currents and
rotor flux are available. Hall sensors for the magnetic fluxes are very complex and, more-
over, extremely expensive. Therefore, flux measurements are usually not available and
it needs to be estimated. A common technique to achieve this involves the integration
of the model equations, using the available measurements. When measurements of the
speed (or at least good estimates) are available, the preferred equation is (2.44), written
here again:

τr
dψ⃗r
dt

+ ψ⃗r = Lm⃗is + Jωrτrψ⃗r, (B.1)

since the negative feedback of ψ⃗r ensures that the integral for the estimated flux:

˜
ψ⃗r =

1

τr

∫ (
(Jωrτr − 1)

˜
ψ⃗r + Lm⃗is

)
dt (B.2)

will not explode, even in the presence of offsets in the current measurements. Eq. (B.2) is
implemented in practice using the discrete version of (B.1) (see section 2.4).
With this, the estimated angle of the flux in the αβ plane can be calculated with:

θ̃k = atan2
Ä
˜
ψrβ,

˜
ψrα
ä
, (B.3)

the motor variables in the dq frame are then given by:

˜

⟲
ıs = T−1(θ̃k )⃗is (B.4)

˜

⟲
vs = T−1(θ̃k)v⃗s (B.5)
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