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Abstract—This paper describes an in-depth investigation of training
criteria, network architectures and feature representations for regression-
based single-channel speech separation with deep neural networks
(DNNs). We use a generic discriminative training criterion corresponding
to optimal source reconstruction from time-frequency masks, and intro-
duce its application to speech separation in a reduced feature space (Mel-
domain). A comparative evaluation of time-frequency mask estimation by
DNNs, recurrent DNNs and non-negative matrix factorization on the 2nd
CHiME Speech Separation and Recognition Challenge shows consistent
improvements by discriminative training, whereas Long Short-Term
Memory recurrent DNNs obtain the overall best results. Furthermore, our
results confirm the importance of fine-tuning the feature representation
for DNN training.

Index Terms—speech enhancement; deep neural networks; discrimi-
native training

I. INTRODUCTION

Single-channel source separation aims to recover one or more
source signals of interest from a mixture of signals. An important
application in audio signal processing is to obtain clean speech
signals from single-channel recordings with non-stationary noises, in
order to facilitate human-human or human-machine communication
in unfavorable acoustic environments. Popular algorithms for this
task include model-based approaches such as non-negative matrix
factorization (NMF) [1]–[3] and more recently, supervised learning
of time-frequency masks for the noisy spectrum [4]–[7]. However,
it is notable that these methods do not directly optimize the actual
objective of source separation, which is an optimal reconstruction of
the desired signal(s). Initial studies have recently shown the benefit
of incorporating such criteria for NMF [8] and deep neural network
[9] based speech separation.

In this paper, we consolidate earlier work on discriminative speech
separation by starting from a generic discriminative training objective
for optimizing SNR. We then use this framework to derive a novel
discriminative objective for mask estimation in a reduced feature
space (here, the Mel-domain) from which a full-resolution result
is obtained by filtering. Furthermore, we show the importance of
feature and training target representation in combination with deep
learning techniques for single-channel speech separation. Finally, by
investigating discriminative training of Long Short-Term Memory
recurrent neural networks for speech separation, we show that good
design of discriminative objective functions is complementary to
improved recurrent neural network architectures circumventing the
vanishing gradient problem.

II. SPEECH SEPARATION BY TIME-FREQUENCY FILTERING

The problem of single-channel speech separation is to obtain
an estimate ŝ(t) of a target speech signal s(t) from a mixture
signal m(t), which also contains background noise n(t). A popular
approach is to work in the time-frequency domain, for example

obtained by short-time Fourier transform (STFT) based on a discrete
Fourier transform (DFT) with F frequency bins, and apply a time-
varying filter yt ∈ RF+ to the magnitude spectrum mt of the mixture
to obtain an estimate ŝt of the speech magnitude spectrum such that:

ŝαt = yt ⊗mα
t (1)

where ⊗ denotes element-wise multiplication and α > 0 is an
exponent that affects the estimation of yt. A time-domain signal
is then reconstructed using inverse STFT of the complex spectrum
obtained from ŝt and the phase of the mixture.

In many cases, it is useful to estimate filters in a reduced resolution
feature space, for example obtained using a Mel transform. An
advantage of this is that the filters may be smoother and easier
to learn, requiring fewer parameters, and might generalize better
to unseen speakers and noise [3], despite reducing the achievable
separation quality. See [3] for a comparison of Mel-domain with
full-resolution speech enhancement based on NMF.

We consider a Mel transformation applied to the full-resolution
spectrum as mmel

t = Bmα
t with B = (bi,f ) ∈ RB×F , where B is

the number of Mel bins and bi,f is the weight of the DFT bin f in the
i-th Mel bin, and similarly for smel and nmel. From a filter estimated
in that domain, we have to estimate a corresponding full-spectrum
filter to use with (1). However, the Mel matrix B is rectangular (B <
F ) and hence the corresponding linear transform is not invertible. As
an ‘ad-hoc’ method to reconstruct from Mel domain filters, we can
compute a full-spectrum filter as:

yt = Bᵀymel
t . (2)

Due to the fact that the rows of B are overlapping Mel filter envelopes
that sum to one, this distributes the estimated filter value ymel

i,t for
the i-th Mel filter back to the f -th full-spectrum frequency bin in
proportion to that bin’s original contribution bi,f to that Mel filter.
Although this is a rather ad-hoc approach, we found that it did not
perform worse in terms of SNR than a more principled approach
using a Wiener-like filter, where the Mel-domain speech and noise
estimates are both transformed with the pseudo-inverse B+ of B.

III. SUPERVISED TRAINING FOR SPEECH SEPARATION

The most common approach to estimate the filter yt is based on
time-frequency masking [1]–[9], which restricts the filter to [0, 1]F

to form a time-frequency mask. This resctriction is reasonable: it
introduces little approximation error (0.36 dB in oracle experiments),
and avoids estimation of unbounded values. These methods rely on
a supervised training scheme based on a parallel training corpus of
clean speech signals and speech mixtures. They optimize a system
mt 7→ ŷt that produces a mask estimate ŷt from the features
mt of the mixed signal. Among these, two main approaches have
emerged: the mask approximation approach trains the system so that



the estimated mask best approximates a reference mask computed
using the clean and noisy speech; the signal approximation approach
trains the system so that the estimated mask, when applied to the
mixture, leads to the best approximation of the reference signal.

In both approaches, it may be useful to introduce a non-linear
warping x 7→ xα of the magnitudes in the objective function, in
order to differientally affect the sharpness of the mask or the dynamic
range of the features. Here, we consider α = 2 (power spectrum),
α = 1 (magnitude spectrum) and α = 2/3 (‘auditory’ spectrum). The
latter is motivated by the ‘power law of hearing’ as in computation
of perceptual linear prediction (PLP) coefficients [10].

A. Mask approximation (MA)

In mask approximation, given a reference mask y∗
t , the objective

function is defined as

EMA(ŷ) =
∑
f,t

D(ŷf,t, y
∗
f,t) (3)

where D is a distance measure. In this paper, we use the squared
Euclidean distance, which ensures that EMA is closely related to the
source separation evaluation criterion in terms of signal-to-distortion
ratio (SDR). The reference mask is often taken to be the so-called
ideal ratio mask (IRM) [4]:

y∗
t =

sαt
sαt + nαt

, (4)

where nt is obtained from n(t) = m(t) − s(t), and division is
performed element-wise.

B. Signal approximation (SA)

Even though the mask approximation objective is discriminative,
it does not directly optimize the actual source separation objective,
which is to deliver the best possible reconstruction of the speech
signal (e.g., in terms of SDR). We use instead the following signal
approximation objective, whose minimization maximizes the SNR for
the warped features in each time-frequency bin:

ESA(ŷ) =
∑
f,t

(
ŝαf,t − sαf,t

)2
=
∑
f,t

(
ŷf,tm

α
f,t − sαf,t

)2
. (5)

Such an objective function can be applied to any mask estimation
scheme, for example see [8], [9]. It can in particular be used to
estimate a Mel-domain mask ŷmel = (ŷmel

i,t ) by substituting (2):

ESA,Mel(ŷmel) =
∑
f,t

((∑
i

bi,f ŷ
mel
i,t

)
mα
f,t − sαf,t

)2
, (6)

which takes into account the fact that the Mel mask ŷi,t influences
one or more DFT bins.

C. Mask estimation by deep neural networks

We now describe the mask estimators considered in this paper.
While some studies used Support Vector Machines [5] or decision
trees [7], there is an increasing trend towards deep neural network
(DNN) based speech separation [4], [6], [9]. In this study, we first
use K-layer feed-forward DNNs with K − 1 hidden layers and one
output layer, which compute an estimated mask ŷt as

ŷt = σ
(
WKH

(
WK−1 · · ·H

(
W1[xt; 1]

)))
, (7)

where xt are the input features, σ denotes the element-wise logistic
sigmoid function, H is an element-wise non-linear function (here we
use the hyperbolic tangent), and [a;b] := (aᵀ,bᵀ)ᵀ denotes row-
wise concatenation. For our DNN experiments, we concatenate C
consecutive frames of log spectra of the mixture (C − 1 past frames

and the current frame, to allow for real-time operation) to obtain the
input features xt = log[mt−C+1; · · · ;mt].

Deep neural networks have a few convenient properties for the
speech separation task. First, the masking functions for all frequency
bins can be represented in a single model. Second, non-linearities in
the feature representation can be introduced effectively, thus allowing
for compression of the spectral magnitudes, which is considered
useful in speech processing. Once trained, (7) can be very effi-
ciently evaluated, unlike iterative methods such as NMF. Finally, the
backpropagation algorithm allows for easy discriminative training,
since only the gradient of the objective function with respect to
the network output ŷ needs to be modified accordingly, whereas all
other derivatives are unaffected. In particular, computing the gradients
∂EMA/∂ŷ , ∂ESA/∂ŷ and ∂ESA,Mel/∂ŷ is straightforward.

D. Deep recurrent neural networks

Since audio is sequential, it is not surprising that in recent years
recurrent neural networks have seen a resurgence in popularity for
speech and music processing tasks [9], [11]–[15]. The combination
of deep structures with temporal recurrence yields so-called deep
recurrent neural networks (DRNNs) [13]. The function computed
by deep recurrent neural networks can be defined by the following
iteration for k = 1, . . . ,K − 1 and t = 1, . . . , T :

h1,...,K−1
0 = 0, (8)

h0
t = xt, (9)

hkt = H(Wk[hk−1
t ;hkt−1; 1]), (10)

ŷt = σ(WK [hK−1
t ; 1]). (11)

In the above, hkt denotes the hidden feature representation of time
frame t in the level k units (k = 0: input layer (9)).

To train RNNs, the recurrent connections in (10) can be ‘unfolded’,
conceptually yielding a T -layer deep network with tied weights.
However, this approach (‘backpropagation through time’) suffers
from a vanishing or exploding gradient for larger T , making the
optimization difficult [16]. As a result, RNNs are often not able to
outperform DNNs in practical speech processing tasks [9], [17]. One
of the oldest, yet still most effective solutions proposed to remedy
this problem is to add structure to the RNN following the Long
Short-Term Memory (LSTM) principle as defined in [18], [19]. In
particular, LSTM-DRNNs perform exceptionally well on standard
speech recognition benchmarks [13], [20].

In LSTM networks, the computation of hkt is performed by a
differentiable function Lk(hkt ;hkt−1) which performs soft versions
of read, write, and delete operations on a memory variable. Each
of these operations is governed by weights which are optimized
in the manner of backpropagation through time. The memory is
implemented as a recurrent unit with weight 1, allowing the RNN to
preserve an arbitrary amount of temporal context. It can be shown that
this approach avoids the vanishing gradient problem, thus allowing
to effectively train DRNNs using gradient descent.

E. Baseline: discriminative non-negative matrix factorization

As a strong, model-inspired baseline for supervised speech separa-
tion, we use discriminative NMF (DNMF) [8]. At test time, DNMF
computes the mask ŷt as follows:

h0
t = 1⊗ (1/R), (12)

hkt = hk−1
t ⊗Wᵀ(xt/Whk−1

t )

Wᵀ1+ λ
, 1 ≤ k < K, (13)

ŷt =

∑
r≤Rs

wK,(r)hKr,t

WKhKt
(14)



where R is the number of NMF dictionary atoms,
W = [w(1) · · ·w(Rs) · · ·w(R)] and WK =
[wK,(1) · · ·wK,(Rs) · · ·wK,(R)] ∈ RCF×R

+ are NMF dictionaries
with Rs speech atoms and R − Rs noise atoms, each of which
corresponds to a sliding window of C contiguous STFT spectra
(magnitude, α = 1). xt ∈ RCF+ is a sliding window of mixture
magnitude spectra similar to the input features of the DNN, λ is a
free parameter controlling the sparsity of the ‘hidden’ activations h,
and K is a fixed number of iterations.

In conventional NMF, it is assumed that WK = W, and W is
trained non-discriminatively, for example using sparse NMF on each
source [21]. Note that, as shown in [8], sparse NMF can significantly
outperform the recently popular ‘exemplar-based’ approaches [3]
based on random sampling of speech and noise observations.

However in the context of discriminative training, it is convenient
and effective to allow WK to differ from W, so that WK can
be trained using the objective function (5), given the activations
hKt obtained by (13). A multiplicative update algorithm for this
optimization is given in [8].

IV. EXPERIMENTAL SETUP

Our methods are evaluated on the corpus of the 2nd CHiME Speech
Separation and Recognition Challenge (track 2: medium vocabulary)
[22], which is publicly available1. The task is to estimate speech
embedded in noisy and reverberant mixtures. Training, development,
and test sets of noisy mixtures along with noise-free reference signals
are created from the Wall Street Journal (WSJ-0) corpus of read
speech and a corpus of noise recordings. The noise was recorded
in a home environment with mostly non-stationary noise sources
such as children, household appliances, television, radio, etc. The
dry speech recordings are convolved with a time-varying sequence
of room impulse responses from the same environment where the
noise corpus is recorded. The training set consists of 7 138 utterances
at six SNRs from -6 to 9 dB, in steps of 3 dB. The development
and test sets consist of 410 and 330 utterances at each of these
SNRs, for a total of 2 460 and 1 980 utterances. Our evaluation
measure for speech separation is source-to-distortion ratio (SDR)
[23]. By construction of the WSJ-0 corpus, our evaluation is speaker-
independent. Furthermore, the background noise in the development
and test set is disjoint from the noise in the training set, and a different
room impulse response is used to convolve the dry utterances.

All experiments use spectral features obtained with the square root
of the Hann window, a frame size of 400 samples (25 ms) and a frame
shift of 160 samples (10 ms). For the NMF baseline, we set C = 9,
K = 25, Rs = 1000, R = 2000 and λ = 5 based on limited
parameter tuning on the CHiME development set [8].

In D(R)NN training, all the weight matrices Wk, k = 1, . . . ,K
are estimated by supervised training as outlined in Section III. The
training targets are derived from the parallel noise-free and multi-
condition training sets of the CHiME data. The input features are
globally mean and variance normalized on the training set, this kind
of normalization allowing for on-line processing at run time. The
DNN topology was optimized based on limited parameter tuning
(number of hidden layers and units) on the CHiME development
set (cf. Table I). The DRNN topology used in this study was
determined based on earlier experiments with speech separation and
feature enhancement on different corpora. All weights are randomly
initialized with Gaussian random numbers (µ = 0, σ = 0.1). For
DNN training, ‘discriminative’ pre-training is used [24], i.e., building

1http://spandh.dcs.shef.ac.uk/chime challenge/ – as of July 2014

TABLE I
AVERAGE SDR FOR VARIOUS TOPOLOGIES (# OF HIDDEN LAYERS × # OF
HIDDEN UNITS PER LAYER) OF DNN AND LSTM-DRNN ON THE CHiME

DEVELOPMENT SET.

SDR [dB] Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -3.73 -1.05 1.18 2.86 4.53 6.19 1.66
DNN 1×1024 4.48 6.90 8.96 10.38 12.11 13.95 9.46
DNN 2×1024 4.76 7.17 9.15 10.62 12.38 14.27 9.72
DNN 3×1024 5.77 8.00 9.92 11.24 12.99 14.84 10.46
DNN 4×1024 5.70 7.92 9.91 11.26 13.02 14.83 10.44
DNN 2×1536 4.61 7.06 9.13 10.60 12.39 14.28 9.68
LSTM-DRNN 1×256 7.30 9.31 11.14 12.38 14.15 15.93 11.70
LSTM-DRNN 2×256 7.94 9.89 11.68 12.92 14.60 16.35 12.23
LSTM-DRNN 3×256 7.64 9.69 11.52 12.70 14.46 16.18 12.03
Oracle (IRM) 13.91 15.26 16.52 17.38 18.91 20.49 17.08

the DNN layer by layer by backpropagation (as opposed to generative
pre-training).

We train the DNNs and DRNNs through stochastic (‘on-line’)
gradient descent with an initial learning rate of 10−5 and a momen-
tum of 0.9. Weights are updated after ‘mini-batches’ of 25 feature
sequences. In DRNN training, sequences within these mini-batches
are processed in parallel on a graphics processing unit (GPU), but
unlike in DNN training, there is no parallelism across time steps.
Hence, to increase the efficiency of DRNN training, the utterances
are ‘chopped’ into sequences of at most T = 100 timesteps (but not
shorter than T = 50).

Two common strategies are used to reduce over-fitting on the
training set. First, Gaussian noise (µ = 0, σ = 0.1) is added to
the inputs in the training phase. Second, we use an early stopping
strategy where we evaluate the objective function on the development
set after each training epoch and select the best network accordingly.
Training is stopped as soon as no improvement on the development
set is observed for ten training epochs or after 100 epochs. We
use the GPU enabled DNN and LSTM-DRNN training software
CURRENNT [25], which is publicly available2.

V. RESULTS AND DISCUSSION

A. Neural network topologies

Table I shows the source separation performance using various
network architectures and dimensions. Best DNN results are obtained
with 3 layers and 1024 units per layer (10.46 dB SDR), whereas
for 4 layers the performance saturates. 1.0 dB SDR is gained by
increasing the depth from 1 to 3 layers, whereas increasing the
width of the network to 1536 units does not seem to help. LSTM-
DRNN can achieve up to 12.23 dB SDR with a much smaller model
size (3×1024 DNN: 4.1 M trainable parameters, 2×256 LSTM-
DRNN: 1.0 M), indicating a clear benefit of explicitly modeling
temporal dependencies. Interestingly, the benefit of adding depth to
LSTM-DRNN (besides their inherent depth in time) seems to be
comparatively minor for the de-noising task, leading to competitive
results even with a single layer (11.70 dB).

B. Influence of feature representation

Fig. 1 shows the influence of the feature representation on the
oracle masking performance as well as on the results obtained with
supervised training of mask estimation with LSTM-DRNNs. As is
expected, in the oracle case the full-resolution mask delivers the
best SDR. Regarding warping, α = 1 (magnitude spectrum) works
best. However, when the estimated mask is used, best results are

2https://sourceforge.net/p/currennt
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mask, IRM) as well as LSTM-DRNN based mask approximation (MA) for
various values of the spectral warping parameter α used in computation of
DFT and Mel spectra (B = 40, B = 100).
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Fig. 2. SDR on the CHiME development set with LSTM-DRNN mask esti-
mation, trained with the mask approximation (MA) and signal approximation
(SA) objectives, and SA-based retraining of LSTM-DRNNs trained with MA
(MA+SA). Mel (B = 100) and DFT magnitudes (α = 1).

obtained with Mel masks (B = 100), and the full-resolution mask
works only slightly better than the low-resolution (B = 40) Mel
mask. Since for B = 100, the lower Mel bins correspond to single
DFT bins while the higher Mel bins comprise multiple DFT bins,
this indicates difficulties in precisely estimating the mask for the
higher frequencies, which could be due to insufficient training data.
Furthermore, while ‘auditory’ spectra (α = 2/3) deliver clearly the
worst performance in oracle masking, they are on par with magnitude
spectra for the estimated mask. Apparently, using warping with
α = 2/3 (which smoothes the training targets) eases the optimization
of the cost function enough to compensate for the lower attainable
performance in oracle masking. Overall, the performance differences
stemming from the feature representation are surprising. In the DFT
power spectrum domain, 11.39 dB average SDR are obtained while
in the Mel magnitude domain (B = 100) we get 12.81 dB.

C. Influence of the objective function

Fig. 2 shows the impact of using discriminative objective functions
for α = 1. Interestingly, when training LSTM-DRNNs using the
discriminative objectives ESA and ESA,Mel (‘SA’ in Fig. 2), we
obtain worse performance than with mask approximation (‘MA’ in
Fig. 2). We found sub-optimal convergence of the cost function in this
case, both on the training and held-out development set. However,
if we start from the solution obtained by training with EMA until
convergence, we can significantly improve the results over MA (‘MA
+ SA’ in Fig. 2). Yet the results in the DFT domain using MA + SA

TABLE II
SOURCE SEPARATION PERFORMANCE FOR SELECTED SYSTEMS ON CHiME

TEST SET (α = 1). Mel: B = 100.

SDR [dB] Mel SA Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -2.27 -0.58 1.66 3.40 5.20 6.60 2.34
NMF [8] 5.48 7.53 9.19 10.88 12.89 14.61 10.10
DNMF [8] 3 6.61 8.40 9.97 11.47 13.51 15.17 10.86
DNN 6.89 8.82 10.53 12.25 14.13 15.98 11.43
DNN 3 7.89 9.64 11.25 12.84 14.74 16.61 12.16
DNN 3 3 8.36 10.00 11.65 13.17 15.02 16.83 12.50
LSTM-DRNN 3 3 10.14 11.60 13.15 14.48 16.19 17.90 13.91
Oracle (IRM) – 14.53 15.64 16.95 18.09 19.65 21.24 17.68
Oracle (IRM) 3 – 14.00 15.14 16.45 17.62 19.21 20.82 17.21

are still below the results with Mel domain MA. Furthermore, if
we apply MA + SA in the Mel domain, we can obtain best results
(13.09 dB average SDR on the CHiME development set).

D. CHiME test set evaluation

We conclude our evaluation with a comparison of selected speech
enhancement systems on the CHiME test set, cf. Table II. The
topologies for DNN and LSTM-DRNNs as tuned on the devel-
opment set are used (2×256 LSTM-DRNN and 3×1024 DNN,
cf. Table I). The default training procedure for DNN is MA, while
the training procedure for DNN and LSTM-DRNNs with SA is
MA+SA as described above. Comparing the results obtained with
full-resolution magnitude spectra, we observe that considering signal
approximation in the objective leads to a performance improvement
for both DNN and NMF. Note that DNN including SA-based training
outperformed the DNMF results reported in [8], but it remains
to be seen how the methods would compare with similar training
procedures, e.g., MA+SA, use of the Mel domain, and optimization
of α. As on the development data, using the Mel magnitude domain
(B = 100) instead of DFT improves the results for the DNN.
The gains by using the LSTM-DRNN network architecture are
complementary, and 1.4 dB performance improvement are achieved
with the LSTM-DRNN over a strong DNN baseline using Mel
magnitudes and SA-based discriminative training, leading to the best
result of 13.91 dB average SDR. While this corresponds to 11.6 dB
gain over the noisy baseline, there is still a gap of 3.77 dB relative
to the oracle masking (17.68 dB). Audio examples are available at
http://www.mmk.ei.tum.de/%7Ewen/denoising/chime.html.

VI. CONCLUSIONS

By a comparative evaluation on the CHiME Challenge data set,
we were able to show that a straightforward discriminative training
criterion based on optimal speech reconstruction can improve the
performance of time-frequency masking approaches to speech separa-
tion. Best performance in real-time speech separation on the CHiME
database was achieved by discriminatively trained DRNNs operating
in the Mel domain. It is interesting that DRNNs outperform DNNs
by a large margin in our study, whereas this was not the case in
earlier work [9]; we attribute this to avoiding the vanishing temporal
gradient in conventional DRNN training as used by [9] thanks to
the LSTM architecture. Furthermore, it is notable that the choice of
feature representation has such a strong effect on the results, but
this is in accordance with earlier studies showing that DNN acoustic
models cannot compensate even for simple rotations of the input
features [26]. In future work, we will investigate whether the lack of
training data may have been responsible for the under-performance
of full-resolution features. Such features could indeed support the
separation of harmonics in the higher frequencies.
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