
Accelerated Gradient Temporal Difference Learning
Algorithms

Dominik Meyer, Rémy Degenne1, Ahmed Omrane1 and Hao Shen
{dominik.meyer,remy.degenne,ahmed.omrane,hao.shen}@tum.de

Institute for Data Processing,
Technische Universität München, Germany

Abstract—In this paper we study Temporal Difference (TD)
Learning with linear value function approximation. The classic
TD algorithm is known to be unstable with linear function ap-
proximation and off-policy learning. Recently developed Gradient
TD (GTD) algorithms have addressed this problem successfully.
Despite their prominent properties of good scalability and con-
vergence to correct solutions, they inherit the potential weakness
of slow convergence as they are a stochastic gradient descent
algorithm. Accelerated stochastic gradient descent algorithms
have been developed to speed up convergence, while still keeping
computational complexity low. In this work, we develop an
accelerated stochastic gradient descent method for minimizing the
Mean Squared Projected Bellman Error (MSPBE), and derive a
bound for the Lipschitz constant of the gradient of the MSPBE,
which plays a critical role in our proposed accelerated GTD algo-
rithms. Our comprehensive numerical experiments demonstrate
promising performance in solving the policy evaluation problem,
in comparison to the GTD algorithm family. In particular,
accelerated TDC surpasses state-of-the-art algorithms.

I. INTRODUCTION

In Reinforcement Learning (RL), an agent interacting with
its environment has the ultimate objective to optimize its policy
based on the reward it gets from the taken actions. Policy iter-
ation allows solving such a problem by iteratively evaluating
the current policy and then improving it. Many approaches
tackling the policy evaluation task have been developed. The
Temporal Difference (TD) learning [9] approach is particularly
known for being well appropriate for RL problems due to its
temporal aspect.

Although the first TD algorithm, also known as TD(0),
can achieve accurate predictions, it suffers from some major
problems, since it is not guaranteed to converge under off-
policy learning and non-linear function approximation. An al-
ternative to TD(0) is the residual gradient algorithm introduced
in [1]. This algorithm is considered to be the first gradient-
based temporal difference algorithm. It overcomes the previous
restrictions of TD(0), achieves smaller temporal differences
but fails to attain the same TD(0) solution [6]. Recently, a
new family of gradient TD algorithms was introduced in [10]
and [11]. The three algorithms of this family (GTD, GTD2
and TDC) dealt with the deficiencies of TD(0) and guaranteed
theoretical convergence to the same solution.

The gradient based algorithms, even though they have the
virtue of being applicable to general settings with proved

1This paper is based on results of an interdisciplinary student project of
Rémy Degenne and Ahmed Omrane.

convergence properties, inevitably inherited the weaknesses
of the stochastic gradient descent (SGD) that can harm the
convergence speed of the algorithm. Historically, one of the
approaches that allowed to remedy this issue is the accelerated
gradient descent introduced in [7]. The importance of this
approach comes from its computational simplicity since it
only relies on first order information like the gradient descent
method and does not increase the asymptotic computational
cost. Consequently, this family of algorithms appealed to
researchers from the machine learning community who were
able to successfully implement it in several contexts, like
the use of momentum methods in deep learning [8] or the
extension of SGD to an accelerated version applicable to online
learning [5].

The contribution of this paper is the extension of the
gradient algorithms used in RL to new accelerated versions.
In our work, we restricted ourselves to policy evaluation
with linear function approximation for on-policy learning.
We describe accelerated versions of stochastic gradient based
algorithms and derive a bound for the important Lipschitz
constant of the gradient which is needed as a parameter to
the accelerated algorithms. To investigate the performance of
the new algorithms compared to their original counterparts,
we employ seven numerical experiments. Three versions of a
random walk chain, the Boyan chain, two random MDPs and
a continuous cart-pole balancing task.

II. NOTATIONS AND PRELIMINARIES

In this work, we consider a RL process as a Markov
Decision Process (MDP), defined as a tuple (S,A, P, r, γ),
where S is a set of possible states of the environment, A
is a set of actions of the agent, P : S × A × S → [0, 1]
the conditional transition probabilities P (s, a, s′) over state
transitions from state s to state s′ given an action a, r : S → R
is a reward function assigning immediate reward r to a state
s, and γ ∈ [0, 1] is a discount factor.

A. GTD Learning with Linear Function Approximation

The goal of a RL agent is to learn a mapping from states
to actions, i.e. a policy π : S → A, which maximizes the value
function V π : S → R of a state s taking a policy π, defined
as

V π(s) := E
[∑∞

t=0γ
tr(st)|s0 = s, π

]
. (1)

It is well known that, for a given policy π, the value function
V π fulfills the Bellman equation, i.e.

V π(s) = r(s) + γ
∑
s′

P (s, π(s), s′)V π(s′). (2)

The right hand side of Eq. (2) is often referred to as the
Bellman operator for policy π, denoted by T V π(s). In other
words, the value function V π(s) is the fixed point of the
Bellman operator T V π(s), i.e. V π(s) = T V π(s).

When the state space is too large or infinite, exact repre-
sentation of the value function is often practically unfeasible.
Function approximation is thus of great demand for estimating
the actual value function. A popular approach is to construct
a set of features by the map φ : S → Rk, which are called the
features or basis functions, and then to approximate the value
function by a linear function. Specifically, for a given state s,
the value function is approximated by

V (s) ≈ (φ(s))>θ =: Vθ, (3)

where θ ∈ Rk is a parameter vector. In the setting of TD
learning, the parameter θ is updated at each time step t, i.e.
for each state transition and the associated reward (st, rt, s

′
t).

Here, we consider the simple one-step TD learning with linear
function approximation, i.e. λ = 0 in the framework of TD(λ)
learning. The parameter θ is updated as θt+1 = θt + αtδtφt,
where αt > 0 is a sequence of step-size parameters, and δt is
the simple TD error

δt = rt + θ>t (γφ′t − φt) . (4)

Note, that the TD error δt can be considered as a function of
the parameter θt. By abuse of notation, in the rest of the paper,
we denote

δθ = δ(θ) := r + θ> (γφ′ − φ) . (5)

In order to find an optimal parameter θ∗ via an optimization
process, one has to define an appropriate objective function,
which accurately measures the correctness of the current value
function approximation, i.e. how far the current approximation
is away from the actual TD solution. Motivated by the fact that
the value function is the fixed point of the Bellman operator
for a given policy, correctness of an approximation Vθ can be
simply measured by the TD error itself, i.e. the Mean Squared
Bellman Error (MSBE), which is defined as

MSBE(θ) := 1
2 ‖Vθ − T Vθ‖

2
D , (6)

where D ∈ R|S|×|S| is an invertible diagonal matrix, whose
components are the steady state distribution under the current
policy.

Ideally, the minimum of the MSBE function admits a good
value function approximation. Unfortunately, it is well known
that, in practice, the performance of an approximation Vθ de-
pends on the pre-selected feature space F :=

{
Φ>θ|θ ∈ Rk

}
,

i.e. the span of the rows of Φ := φ(S). By introducing the
projector as

Π = Φ>
(
ΦDΦ>

)−1
ΦD, (7)

the so-called Mean Squared Projected Bellman Error
(MSPBE) is often preferred

J : Rk → R, J(θ) := 1
2 ‖Vθ −ΠT Vθ‖2D

= 1
2E[δθφ]>E[φφ>]−1E[δθφ].

(8)

Minimizing the MSPBE function finds a fixed point of the
projected Bellman operator in the feature space F , i.e. Vθ =
ΠT Vθ. By computing the gradient of J(θ) as

∇J(θ) = E
[
(γφ′t − φt)φ>t

] (
E
[
φtφ
>
t

])−1 E[δtφt], (9)

a gradient descent algorithm can be formulated straightaway.
Unfortunately, the evaluation of the gradient ∇J(θ) requires a
triple independent sampling. In order to avoid this difficulty,
a quasi-stationary estimate of w ≈

(
E
[
φtφ
>
t

])−1 E[δtφt] is
proposed, i.e.

wt+1 = wt + βt(δt − φ>t wt)φt, (10)

which leads to two stochastic gradient descent TD algorithms,
cf. [11].

The update rules of the resulted GTD2 and TDC algorithms
are specified by

θt+1 = θt + αt(φt − γφ′t)(φ>t wt) (11)

and
θt+1 = θt + αt(δtφt − γ(φ>t wt)φ

′
t), (12)

respectively. Here αt and βt are appropriate step sizes. It has
been proven that both algorithms are asymptotically convergent
to the correct TD solution. However, as typical stochastic
gradient descent algorithms, the convergence rate of both is
still in O(1

t). In order to achieve higher order of convergence,
we propose to apply the Nesterov’s acceleration strategy to
minimize the MSPBE.

B. Nesterov’s Accelerated Gradient Descent Algorithm

Let us consider a problem of minimizing a smooth convex
cost function

f : Rm → R. (13)

A standard gradient descent algorithm, defined as the following
iteration

xt+1 = xt − γ∇f (xt), (14)

where ∇f (xt) is the gradient of f(x) at xt and γ > 0 is an
appropriate step size, converges to a minimum of f(x). It is
well known that such a gradient decent algorithm has only
a convergence rate of O(1

t). The seminal work by Nesterov

Algorithm 1: Nesterov’s Accelerated Gradient Descent
Algorithm.

Input: The Lipschitz constant L of the function f(x).
Initialize: Given an arbitrary guess x0 ∈ Rm, set
y0 = x0, λ0 = 0, and t = 0.
repeat

λt+1 =
1+
√

1+4λ2
t

2 ;
γt = 1−λt

λt+1
;

yt+1 = xt − 1
L∇f (xt);

xt+1 = (1− γt)yt+1 + γtyt;
until converged;
Output: yt+1.

in [7] develops a simple but effective algorithm, which en-
ables faster convergence for optimization of convex functions

with Lipschitz first-order derivatives. The so-called Nesterov’s
accelerated gradient descent algorithm, as in Algorithm 1,
attains a convergence rate of O(1

t2). Recent work in [5] has
adapted the Nesterov’s accelerated gradient descent algorithm
to stochastic convex optimization and online learning, named
the Stochastic Accelerated GradiEnt (SAGE) algorithm. Note,
that the cost functions studied in [5] are in the form of expected
value of some loss function, while the MSPBE function J(θ)
is essentially a quadratic term of some expected values.

III. ACCELERATED GTD ALGORITHMS

In this section, we derive some important properties of
the MSPBE cost function, and then adapt a stochastic online
learning scheme to derive an accelerated TDC algorithm.

A. Properties of the MSPBE Function

First of all, we represent the MSPBE function as

J : Rk → R, J(θ) := 1
2

∥∥Vθ −ΠT Vθ
∥∥2
D

= 1
2

∥∥Π(Vθ − T Vθ)
∥∥2
D

= 1
2 (Vθ − T Vθ)>Π>DΠ(Vθ − T Vθ)

= 1
2

∥∥Π̂
√
D(Vθ − T Vθ)

∥∥2
2
,

(15)

where

Π̂ :=
√
DΦ>

(
ΦDΦ>

)−1
Φ
√
D ∈ R|S|×|S| (16)

is an orthogonal projector onto the column span of
√
DΦ>.

It is easy to see that the MSPBE function is quadratic, hence
convex, in θ. Recall Vθ = Φ>θ and T Vθ = R+ γPΦ>θ with
R ∈ R|S| being the reward vector, we compute the Hessian
HJ(θ) of J(θ) directly as

HJ(θ) = Φ(I − γP)>
√
DΠ̂
√
D(I − γP)Φ>. (17)

Lemma 1. Assume that the feature matrix Φ ∈ Rk×|S| is
full rank, and that the Markov chain defined by the transition
matrix P is aperiodic and irreducible. Then the MSPBE
function J(θ), as defined in Eq. (8), is strongly convex.

Proof: As the transition matrix P defines an aperiodic and
irreducible Markov chain, it follows directly that the matrix
(I−γP) is full rank, cf. [12]. Then the result follows from the
computation of the Hessian as a product of full rank matrices
Eq. (17).

Remark 1. Although the MSPBE function J(θ) is easily seen
to be strongly convex, the smallest eigenvalue of the Hessian
HJ(θ) is unbounded from below, for an arbitrary feature
matrix Φ.

Lemma 2. Let denote by Φ = [φ1, . . . , φ|S|] ∈ Rk×|S| the
feature matrix. Then the gradient of the MSPBE function J(θ)
is L-Lipschitz with

L = (1 + γ)2 max
j
‖φj‖22. (18)

Proof: As the MSPBE function J(θ) is strongly convex,
the gradient of J(θ) is L-Lipschitz, if the inequality

θ>HJ(θ)θ ≤ L‖θ‖22 (19)

holds for all θ ∈ Rk. Recall the Hessian as computed in
Eq. (17), we express θ>HJ(θ)θ as

θ>HJ(θ)θ = θ>Φ(I − γP)>
√
DΠ̂
√
D(I − γP)Φ>θ

=
∥∥Π̂
√
D(I − γP)Φ>θ

∥∥2
2

=
∥∥√DΦ>θ

∥∥2
2
− 2γθ>ΦDPΦ>θ +

γ2
∥∥Π̂
√
DPΦ>θ

∥∥2
2

≤
∥∥√DΦ>θ

∥∥2
2
− 2γθ>ΦDPΦ>θ +

γ2
∥∥√DPΦ>θ

∥∥2
2

=
∥∥√D(I − γP)Φ>θ

∥∥2
2
,

(20)

where the inequality follows from the fact that Π̂ is an
orthogonal projector, i.e.∥∥Π̂

√
DPΦ>θ

∥∥2
2
≤
∥∥√DPΦ>θ

∥∥2
2
. (21)

By the triangle inequality, we have

θ>HJ(θ)θ ≤
(∥∥√DΦ>θ

∥∥
2

+ γ
∥∥√DPΦ>θ

∥∥
2

)2
≤
(∥∥√DΦ>θ

∥∥
2

+ γ
∥∥√DΦ>θ

∥∥
2

)2
= (1 + γ)

2 ∥∥√DΦ>θ
∥∥2
2
,

(22)

where the second inequality follows from Lemma 9.2.1 in [2],
i.e. ‖Pz‖D ≤ ‖z‖D for all z ∈ C|S|. Then, we compute

∥∥√DΦ>θ
∥∥2
2

=
∥∥Φ>θ

∥∥2
D

=

|S|∑
j=1

dj(φ
>
j θ)

2

≤
|S|∑
j=1

dj‖φj‖22‖θ‖22

≤(max
j
‖φj‖22)‖θ‖22.

(23)

Finally, we get

θ>HJ(θ)θ ≤ (1 + γ)
2 (

max
j
‖φj‖22

)∥∥θ∥∥2
2
. (24)

Thus, the result follows.

B. An Accelerated TDC Learning Algorithm

Following the result from the previous subsection, we
can directly adopt the Nesterov’s accelerated gradient descent
algorithm, as presented in Algorithm 1, to minimize the
MSPBE function J(θ). Surely, efficient evaluation of the actual
gradient, shown in Eq. (9), is still a computational challenge
for a direct implementation. Fortunately, such an issue has been
successfully addressed by using a quasi-stationary estimate
strategy, which leads to the promising GTD learning algo-
rithms, cf. [10], [11]. In what follows, we present a stochastic
accelerated gradient descent algorithm in combination with the
GTD updates. Specifically, in Algorithm 2, only the accelerated
TDC algorithm is presented. An accelerated version of the
GTD2 algorithm can be developed in the same fashion.

As pointed out in Remark 1, the strong convexity constant
of the MSPBE function is not bounded from below in general.
Nevertheless, for a given feature matrix Φ a fixed strong
convexity constant guarantees its convergence property as

Algorithm 2: Accelerated TDC Algorithm
Input: Parameters L0 > L and ν ∈ [0, 1] for the

optimization, sequence of parameters βt for the
computation of the gradient in TDC, sequence
of state transitions and rewards (φt, rt, φ

′
t).

Initialize: Given an arbitrary guess y0 ∈ Rk, set
z0 = y0, w0 = 0, and t = 1.
repeat

Update Lt = (ν
√
t− 1 + 1)L0;

Compute θt = (1− ν)yt−1 + νzt−1;
Draw a sample (φt, rt, φ

′
t);

Compute a stochastic estimate of the TDC gradient:
δt = rt + γφ′>t θt − φ>t θt;
gt = −δtφt + γ(φ>t wt)φ

′
t;

wt+1 = wt + βt(δt − φ>t wt)φt;
Compute the SAGE update:
yt = θt − 1

Lt
gt;

zt = zt−1 − ν
Lt
gt;

Set t = t+ 1;
until converged;
Output: weight vector θ = yt.

stated in [5]. However, in order to implement such algorithm
calculation of the smallest singular value of Φ is needed but
not necessarily computationally practical. Therefore, in this
work, we only adopt the online learning algorithm, namely
the SAGE-based online learning algorithm (algorithm 2 in [5]),
without the assumption of strong convexity. In this algorithm,
there are two controlling parameters: (i) L0 > 0, a constant
greater than the Lipschitz constant L of the gradient, and (ii)
ν ∈ [0, 1], which can be seen as a momentum parameter in
the sense that a value near 0 gives high importance to the
recent updates. Specifically, setting ν to 0 turns this algorithm
into the standard gradient descent, while increasing ν will give
importance to a greater number of past updates.

Incorporating the stochastic TDC update into an acceler-
ated algorithm is straightforward but not trivial. We need to
carefully arrange and interleave the updates of both algorithm
variables. First we update the parameter sequence Lt according
to theorem (3) in [5] and compute the current value of θt to
be able to update the stochastic gradient estimate gt of the
TDC algorithm. Then by recalling the update for the estimate
of the auxiliary sequence wt as given in Eq. (10), we update
the sequences of yt and zt. Note, that the initial value of L0

is chosen to be a greater value than the Lipschitz constant,
calculated in Eq. (18).

IV. EXPERIMENTS

To verify the successful combination of accelerated
stochastic gradient algorithms with gradient temporal differ-
ence learning, we employed seven different numerical exper-
iments. The diverse nature of experiments ensures to test the
algorithms comprehensively within simulated environments.
To evaluate the performance, we compare each accelerated
algorithm with its original counterpart. When we refer to
the accelerated versions of the algorithms in the figures and

following paragraphs, we do so with a suffix ‘a’, i.e. the
accelerated versions of TDC and GTD2 are called TDCa and
GTD2a respectively. For the sake of readability, in this paper,
only results for GTD2, GTD2a, TDC and TDCa are depicted.
Further experimental results can be found in the supplementary
material.

A. Experimental Setting

We used seven different experiments to evaluate the numer-
ical performance. The first three are random walks with three
different features, as described in [11], the fourth is the Boyan
chain example [3] and the fifth and sixth are two random MDPs
of different size. The last benchmark is a continuous cart pole
balancing task. Throughout the experiments the parameter γ
and the features φ are selected in accordance with specific
problems by using common principles.

The random walk over a 5-state chain is a discrete en-
vironment, where the two outermost states are terminal and
absorbing states. Reward is 0 on all transitions except upon
transitioning into the rightmost terminal state, where it is 1.
The discount rate is set to γ = 0.9. Following the authors
in [11], we can create three different experiments from this
environment by selecting three different feature representations
φ. For the first experiment, so called tabular features are used,
where the feature vector has the same length as number of
states and a single 1 identifies in which state we are by its
position in the feature vector. The so called inverted features
have a similar construction as the previous ones, except a zero
indicates the state we are in. The other values are all chosen to
be positive and such that the feature vector has unit norm (in
our case this would be 1

2). The third feature representation, the
so called dependent features have length 3 and can therefore
no longer perfectly represent the state space. These features
are also normalized to have unit length.

The second experiment, Boyan chain, is also an episodic
experiment. We use a 14 state version with 4 dimensional
features and set γ = 0.95.

As the random walk and Boyan chain are episodic envi-
ronments, we set the maximum episode length to 20 steps and
did the learning over 600 episodes.

To evaluate the performance on bigger discrete environ-
ments, we did run the algorithms on two random MDPs. Those
are generated by selecting the number of states |S| and actions
|A| and then randomly sampling the state transition matrix,
ensuring that each state is reachable from any other state by
adding a very small constant to each state transition probability.
The third parameter is the size k of the feature vector. For
each state we then generate a vector of length k of which
k − 1 entries are be sampled uniformly from [0, 1] and one
constant 1 as a bias term. The reward for each state transition
is also determined uniformly from the interval [0, 1] and the
discounting factor was chosen to be γ = 0.95.

As the random MDPs are non episodic only the total
number of steps has to be selected. We evaluated the algorithms
on two different random MDPs, one with |S| = 30, |A| = 4
and k = 8, which we ran 6000 simulation steps on and the
other with |S| = 100, |A| = 10 and k = 20 which we ran for
12000 steps.

To investigate the performance in a continuous domain,
we ran the algorithms in the cart pole balance task. The agent
can actuate a cart on a rail either to the left or to the right.
Fixed with a joint on the cart is a pole that has to be balanced.
The angle of the pole with respect to the upright position ψ
as well as the position of the cart x can be measured. The
state consists of the angle of the pole, the angular velocity, the
position of the cart and its velocity st = [ψt,

d
dtψt, xt,

d
dtxt]

>.
We used the version of this experiment which employs the
so called imperfect feature representation, where the feature
vector contains all elements of the state vector squared element
wise. Reward is given in such a way that nonzero angles ψ
are heavily penalized, as well as applying acceleration to the
cart and positioning the cart away from the start position. The
policy evaluated was found by linearizing the system for small
angles ψ and solving with dynamic programming. For details
compare [4]. We ran this experiment for 15000 steps while the
performance was evaluated every 500 steps. The discount rate
is set to be γ = 0.95 and the initial state is a small perturbation
of the equilibrium s0 = [0.0001, 0, 0, 0]>.

In all the above experiments, the weight vector is initialized
to θ0 = 0.

To average out fluctuations introduced by the randomness
of the environments, the results of all experiments are averaged
over 10 independent runs.

1) Objective Criteria: In order to compare the algorithms
with respect to the final error attained and convergence speed,
we employed three performance criteria.

The first is the final error attained, after the algorithm
has converged. This criterion ensures the accelerated versions
to converge to similar values as the known gradient based
algorithms. We determine this error value as the mean over
the last third of the episodes in episodic tasks and over the
last third of update steps in non-episodic tasks. For example
if we run an experiment for 600 episodes, then we determine
the error attained as the mean over the last 200 episodes.

The second criterion is the number of iterations needed to
reach a value close to the convergence value of the original
algorithms and the third criterion is the computation time
needed to reach the same value. Those two criteria compare the
speed of convergence and we consider the algorithm to have
reached an error level lower than ε at the step t if for all t′ > t
the error is lower than ε. The error level ε was determined from
the original gradient based learning algorithms after they have
converged.

Although, the accelerated algorithms are still O(n) in
complexity, we distinguish between iterations and wall-clock
time for convergence speed. We do this, because for smaller
problems, the constant factor of additional computation intro-
duced can have an impact on the overall processing time. For
example, for problems where sampling is arbitrarily fast, then
the impact of additional processing in each update step could
be significant. On the other side, if each update step is much
faster compared to the sampling, then only the total number
of iterations plays a role in total convergence speed.

B. Algorithm Parameters

The accelerated versions of the gradient TD algorithms
introduce an additional parameter, denoted as ν.

In most situations an additional parameter is undesirable
and it involves some additional tradeoff between tuning all
parameters and acquiring exact results. We ran the accelerated
algorithms for a range of ν and observed, that increasing the
value of ν improved the performance in almost all cases. For
the simple random walk and Boyan chain examples, a value
between 0.6 and 0.9 had not much impact on performance and
achieved approximately the same results.

For larger problems, however, the impact of ν becomes
more prominent. As we can observe in the larger random
MDP examples, a value closer towards 1 yielded best results,
especially as the problem size grows. This makes sense as
larger values for ν take a larger number of past gradients into
consideration, effectively bringing the approximation closer to
the true gradient. As the problems have higher dimension, the
history of gradients has to be longer in order to have a good
estimation for the expectation of the gradient.

Upon studying Fig. 1, a thing that sticks out is the experi-
ment for GTDa in the 30 state random MPD. Here values of ν
larger than 0.1 caused the algorithm to converge so slowly such

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.00

0.02

0.04

0.06

0.08

0.10

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

Random Walk - Tabular Features

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.00

0.02

0.04

0.06

0.08

0.10

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

Random Walk - Inverted Features

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.00

0.02

0.04

0.06

0.08

0.10

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

Random Walk - Dependent Features

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.0

0.1

0.2

0.3

0.4

0.5
R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

Boyan Chain

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.0

0.1

0.2

0.3

0.4

0.5

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

30-State Random MDP

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.0

0.2

0.4

0.6

0.8

1.0

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

100-State Random MDP

0.0 0.2 0.4 0.6 0.8 1.0

parameter ν

0.00

0.05

0.10

0.15

0.20

R
M
S
P
B
E

a
ft
e
r
co
n
v
e
rg
e
n
ce

Cart Pole Bal. - Imperfect Features

Fig. 1. Sensibility of GTD2a and
TDCa to the variation of parameter
ν. GTD2a in orange, dashed line,
TDCa in blue, solid line.

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Tabular Features

GTD2 α=0.015625 µ=1.0
TDC α=0.015625 µ=0.001
GTD2a α=0.5 µ=0.1 ν=0.9
TDCa α=0.5 µ=0.001 ν=0.9

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Inverted Features

GTD2 α=0.0625 µ=1.0
TDC α=0.03125 µ=0.001
GTD2a α=2.0 µ=0.1 ν=0.3
TDCa α=1.0 µ=0.001 ν=0.9

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Dependent Features

GTD2 α=0.0625 µ=2.0
TDC α=0.03125 µ=0.001
GTD2a α=2.0 µ=0.1 ν=0.9
TDCa α=1.0 µ=0.001 ν=0.9

0 100 200 300 400 500 600

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

R
M

SP
B

E

Boyan Chain

GTD2 α=0.5 µ=0.5
TDC α=0.125 µ=0.01
GTD2a α=16.0 µ=0.01 ν=0.9
TDCa α=8.0 µ=0.001 ν=0.5

0 1000 2000 3000 4000 5000 6000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SP
B

E

30-State Random MDP On-policy

GTD2 α=0.125 µ=0.5
TDC α=0.0625 µ=0.001
GTD2a α=4.0 µ=0.01 ν=0.1
TDCa α=4.0 µ=0.001 ν=0.9

0 2000 4000 6000 8000 10000 12000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SP
B

E

100-State Random MDP On-policy

GTD2 α=0.0625 µ=0.5
TDC α=0.03125 µ=0.001
GTD2a α=4.0 µ=0.01 ν=0.7
TDCa α=2.0 µ=0.001 ν=0.9

0 2000 4000 6000 8000 10000 12000 14000

Timesteps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
M

SP
B

E

Lin. Cart-Pole Balancing On-pol. Imp. Feat.

GTD2 α=0.015625 µ=0.1
TDC α=0.0078125 µ=0.001
GTD2a α=1.0 µ=0.001 ν=0.9
TDCa α=0.5 µ=0.001 ν=0.5

Fig. 2. Errors in the six ex-
periments for the final error crite-
rion. The error is plotted after each
episode for the experiments 1 to
4, after each step for the experi-
ments 5 and 6. The parameters are
choosen to minimize the mean of
the RMSPBE over the last third of
the episodes (respectively steps for
experiments 5, 6 and 7).

that at the end of the 6000 timesteps the final error was not
yet reached. The values reported for ν > 0.1 are therefore not
the final RMSPBE values. Nevertheless, we can still conclude,
that the convergence speed for GTD2a for this experiment is
the fastest for ν = 0.1.

If no tuning of ν is desired, then as a rule of thumb a value
close to 1 could be considered a reasonable choice. Especially,
when dealing with high dimensional problems.

1) Parameter Search: To obtain good results and do a fair
comparison with the existing algorithms, we did an extensive
grid search over the parameter space. The parameters to be
determined for each algorithms were α, the initial learning
rate, where for the accelerated versions α = 1

L0
is already

predetermined, µ = β
α the ratio between the learning rate and

the update rate of the auxiliary descent in TDC and GTD2
and ν the parameter determining the length for the history of
the past gradients to consider in the accelerated versions. As
already mentioned above, ν could be set to a value close to 1
if there is no possibility for inclusion in the grid search.

We determined the search steps for the different parameters
as follows: α was chosen to be powers of 2 between 2−7 and
25, µ was tested with the values µ ∈ (0.001, 0.01, 0.1, 0.5, 1, 2)
and ν with the values ν ∈ (0.1, 0.3, 0.5, 0.7, 0.9).

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Tabular Features (Target Value: 0.03)

GTD2 α=0.015625 µ=1.0
TDC α=0.015625 µ=0.001
GTD2a α=0.5 µ=0.5 ν=0.7
TDCa α=0.5 µ=0.001 ν=0.9

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Inverted Features (Target Value: 0.03)

GTD2 α=0.0625 µ=2.0
TDC α=0.03125 µ=0.001
GTD2a α=2.0 µ=0.1 ν=0.9
TDCa α=1.0 µ=0.001 ν=0.7

0 100 200 300 400 500 600

Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

SP
B

E

Random Walk - Dependent Features (Target Value: 0.05)

GTD2 α=0.0625 µ=2.0
TDC α=0.03125 µ=0.001
GTD2a α=2.0 µ=0.1 ν=0.9
TDCa α=1.0 µ=0.001 ν=0.9

0 100 200 300 400 500 600

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

R
M

SP
B

E

Boyan Chain (Target Value: 0.15)

GTD2 α=0.5 µ=0.5
TDC α=0.125 µ=0.01
GTD2a α=16.0 µ=0.01 ν=0.9
TDCa α=8.0 µ=0.001 ν=0.5

0 1000 2000 3000 4000 5000 6000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SP
B

E

30-State Random MDP On-policy (Target Value: 0.15)

GTD2 α=0.0625 µ=0.5
TDC α=0.125 µ=0.001
GTD2a α=4.0 µ=0.01 ν=0.1
TDCa α=4.0 µ=0.001 ν=0.9

0 2000 4000 6000 8000 10000 12000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SP
B

E

100-State Random MDP On-policy (Target Value: 0.2)

GTD2 α=0.0625 µ=0.5
TDC α=0.125 µ=0.001
GTD2a α=4.0 µ=0.01 ν=0.7
TDCa α=2.0 µ=0.01 ν=0.9

0 2000 4000 6000 8000 10000 12000 14000

Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
M

SP
B

E

Lin. Cart-Pole Balancing On-pol. Imp. Feat. (T. Val.: 0.13)

GTD2 α=0.03125 µ=0.01
TDC α=0.0078125 µ=0.001
GTD2a α=1.0 µ=0.001 ν=0.7
TDCa α=0.25 µ=0.001 ν=0.3

Fig. 3. Errors in the six experi-
ments for the convergence speed in
iterations. The error is plotted after
each episode for the experiments 1
to 4, after each step for the experi-
ments 5 and 6. The parameters are
chosen to minimize the number of
episodes, respectively steps needed
to reach the plotted target value
(dashed horizontal line).

C. Results Analysis

In all experiments, we measured the algorithms perfor-
mance with respect to the square root of the MSPBE, referred
to as RMSPBE.

Additionally, as a reference, we compared the performance
of all algorithms to the traditional TD(0) algorithm. Since the
results were almost exactly the same as for TDC, those are
omitted in the figures to increase readability.

1) Results According to the Final Error Criterion: In
almost all cases TDCa performs the best among the compared
TDC, GTD2 and GTD2a. In the best case, we achieve 15%
gain over the original algorithm for the random walk with
dependent features. Overall we can say that qualitatively TDCa
and GTD2a converge to the same values as their original
counterparts. Also the fact that TDC generally outperforms
GTD2 is still true for the accelerated versions.

For Experiments 5 and 6, the random MDPs, we can
observe that the accelerated algorithms are performing worse
in the beginning. For example for the larger random MDP,
TDCa reaches a RMSPBE error value of up to 50 in the
first 400 steps before going back to values smaller than 1
after 800 steps. The error to which GTD2a goes up to during
the first steps is lower, but it needs longer to reach back to
values smaller than 1 after a bit more than 4000 steps. The

TABLE I. SIMULATION RESULTS FOR EXP. 1: RANDOM WALK - TABULAR FEATURES, EXP. 2: RANDOM WALK - INVERTED FEATURES, EXP. 3:
RANDOM WALK - DEPENDENT FEATURES, EXP. 4: BOYAN CHAIN, EXP. 5: SMALL RANDOM MDP, EXP. 6: LARGER RANDOM MDP, EXP. 7: CART POLE

BALANCING

Final error Number of iterations Computation time (sec) Computation time (msec) per iter.
Algorithms original accelerated original accelerated original accelerated original accelerated

Exp. 1
TD(0) 0.021 - 270 - 0.018 - 0.067 -
TDC 0.021 0.017 278 128 0.047 0.035 0.169 0.273

GTD2 0.020 0.018 340 186 0.045 0.045 0.132 0.242

Exp. 2
TD(0) 0.019 - 249 - 0.018 - 0.072 -
TDC 0.019 0.017 249 120 0.044 0.034 0.177 0.283

GTD2 0.021 0.017 314 138 0.043 0.035 0.137 0.254

Exp. 3
TD(0) 0.040 - 291 - 0.012 - 0.041 -
TDC 0.040 0.033 291 134 0.028 0.021 0.096 0.157

GTD2 0.046 0.038 448 178 0.037 0.025 0.083 0.140

Exp. 4
TD(0) 0.033 - 23 - 0.004 - 0.174 -
TDC 0.034 0.043 41 14 0.019 0.014 0.463 1.000

GTD2 0.099 0.122 326 344 0.117 0.235 0.359 0.683

Exp. 5
TD(0) 0.059 - 892 - 0.017 - 0.019 -
TDC 0.055 0.051 891 589 0.047 0.049 0.053 0.083

GTD2 0.125 0.074 4239 2401 0.174 0.178 0.041 0.074

Exp. 6
TD(0) 0.079 - 2098 - 0.021 - 0.010 -
TDC 0.081 0.060 1867 1819 0.053 0.082 0.028 0.045

GTD2 0.162 0.148 7764 7777 0.171 0.312 0.022 0.040

Exp. 7
TD(0) 0.107 - 7000 - 0.116 - 0.017 -
TDC 0.106 0.089 7000 2500 0.777 0.458 0.111 0.183

GTD2 0.117 0.102 14000 7500 1.188 1.216 0.085 0.162

original versions TDC and GTD2 show similar behavior in
the beginning of the experiments, the maximum error they go
up to is however smaller.

The overview in Table I suggests almost consistent im-
provement for the accelerated versions of the algorithms,
except for Experiment 4, where the classic TD(0) algorithm
achieves best results.

The parameters found for the experiments were chosen
according to the first performance criterion to minimize the
average error attained. Note that nevertheless especially TDCa
still outperforms the other algorithms in convergence speed.
This brings us to the discussion of the steps needed to reach
below a certain error threshold.

2) Analysis of the Convergence Speed Results: In order
to compare the algorithms with respect to convergence speed,
we ran a second parameter search with the second performance
criterion of the steps needed to reach below a certain threshold.

In general TDCa attains the chosen target value (which
might be different for each experiment) in less iterations than
TDC, GTD2 and GTD2a. The improvement over TDC is
slightly over 50% for the random walks and the cart pole
balancing task and around 40% for the Boyan chain and the
small random MDP. For the larger random MDP, however, the
performance with respect to the number of iterations is almost
the same as the original TDC version.

Similarly, GTD2a performs better than its original version
in the random walks, the cart pole balancing task and the
smaller random MDP. It fails to outperform GTD2 for the
Boyan chain and the larger random MDP.

It is well known that the original GTD family has the
computational complexity being linear in terms of the size
of features k. The last two columns of Table I calculate the
average computation time per iteration for all algorithms in
comparison, via dividing the total runtime spent in algorithm
updates by the number of iterations till convergence. It is

evident, as well as without surprise, that the computation
time per iteration for all accelerated algorithms is less than
double of the time needed by their original counterparts. This
observation suggests that accelerated GTD algorithms share
the same property of having linear computational complexity
with respect to the size of features. In the majority of the
experiments, the faster convergence with respect to the number
of iterations compensates for this difference and allows for the
accelerated algorithms to be faster or equally fast than their
original counterparts. If we compare with Table I then we can
conclude, however, that due to the simplicity of its update
TD(0) remains the fastest among all considered algorithms in
our setup.

If we look at the results again more closely and compare the
algorithms to each other, we can see, that TDCa still performs
very good. In four out of seven experiments it reaches the
threshold value 20% - 30% faster than TDC with respect to the
total computation time needed. GTD2a can outperform GTD2
in Exp. 2 and Exp. 3 where it needs around 25% less total
time, but falls behind on the other experiments.

Generally, we can conclude, that the accelerated versions
of the gradient algorithms outperform their counterparts. Ex-
ceptions are mainly with respect to computational time, which
is however very dependent on the problem size and number
of iterations considered. Overall TDCa shows the best perfor-
mance amongst the gradient based algorithms.

V. CONCLUSION

In this work, we employ the Nesterov’s accelerated gradient
descent algorithm to minimize the MSPBE cost function. With
an identification of the Lipschitz constant of the gradient of
the MSPBE cost function, we propose a stochastic accelerated
GTD algorithm scheme as an extension of the well known
GTD algorithms. Our numerical experiments confirm that the
proposed accelerated GTD algorithms only require a slight
extra computation per iteration. Meanwhile, they enjoy a
higher convergence rate in terms of the number of iterations,

and achieve better performance in terms of smaller MSPBE
function values. The promising capacity in solving the policy
evaluation problem suggests their potential benefits in control
scenarios.

ACKNOWLEDGMENT

The authors would like to thank Christoph Dann for mak-
ing his implementation of several reinforcement algorithms,
tdlearn, publicly available. This work has been supported
by IGSSE - International Graduate School of Science and
Engineering, Technische Universität München.

REFERENCES

[1] L. Baird: Residual algorithms: Reinforcement learning with function
approximation. Proceedings of the 12th International Conference on
Machine Learning, pp. 30-37. (1995)

[2] D. P. Bertsekas, V. S. Borkar, A. Nedic: Improved temporal difference
methods with linear function approximation. Learning and Approximate
Dynamic Programming, pp. 231–255. (2004)

[3] J. A. Boyan: Least-squares temporal difference learning. Proceedings
of the 16th International Conference on Machine Learning, pp. 49-56.
(1999)

[4] C. Dann, G. Neumann, J. Peters: Policy Evaluation with Temporal
Differences: A Survey and Comparison. Journal of Machine Learning
Research, vol. 15, pp. 809–883. (2014)

[5] C. Hu, J. T. Kwok, W. Pan: Accelerated Gradient Methods for Stochastic
Optimization and Online Learning. Advances in Neural Information
Processing Systems 22, pp. 781–789. (2009)

[6] L. Li: A worst-case comparison between temporal difference and residual
gradient with linear function approximation. Proceedings of the 25th

International Conference on Machine Learning, pp. 560–567. (2008)
[7] Y. Nesterov: A method of solving a convex programming problem with

convergence rate O(1
k2). In Soviet Mathematics Doklady, vol. 27, no. 2,

pp. 372–376. (1983)
[8] I. Sutskever, J. Martens, G. Dahl, G. Hinton: On the importance of

initialization and momentum in deep learning. Proceedings of the 30th

International Conference on Machine Learning, pp. 1139–1147. (2013)
[9] R. S. Sutton: Learning to predict by the methods of temporal differences.

Machine learning, vol. 3, no. 1, pp. 9–44. (1988)
[10] R. S. Sutton, Cs. Szepesvári, H. R. Maei: A convergent O(n) algorithm

for off-policy temporal difference learning with linear function approxi-
mation. In Advances in Neural Information Processing Systems 21, pp.
1609–1616. (2008)

[11] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
Cs. Szepesvári: Fast Gradient-Descent Methods for Temporal-Difference
Learning with Linear Function Approximation. In Proceedings of the
26thInternational Conference on Machine Learning (ICML), pp. 993–
1000. (2009)

[12] J. N. Tsitsiklis, B. Van Roy: An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control,
vol. 42, no. 5, pp. 674–690. (1997)

