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Abstract— During decision making and acting in the en-
vironment humans appraise decisions and observations with
feelings and emotions. In this paper we propose a framework
to incorporate an emotional model into the decision making
process of a machine learning agent. We use a hierarchical
structure to combine reinforcement learning with a dimen-
sional emotional model. The dimensional model calculates
two dimensions representing the actual affective state of the
autonomous agent. For the evaluation of this combination, we
use a reinforcement learning experiment (called Dyna Maze) in
which, the agent has to find an optimal path through a maze.
Our first results show that the agent is able to appraise the
situation in terms of emotions and react according to them.

I. INTRODUCTION

The integration of affective states and emotions into next
generation artificial intelligence (AI) could be the next
consequent step in the development of robotic systems. In
modern psychology emotions are an important component
in decision making. Humans judge situations with emotions
and the reactions depends on them [1], [2]. Emotions can also
be seen as a way to simplify actual decisions, enabling one
to compare different events and actions against each other
[3]. Thereby, emotions can be used as a utility function for
action selection and for event classification. Using objective
utility functions for decision making is a common basis
in AI systems. In the future, it would be desirable to
use affective utility functions instead. This could improve
the believability and behaviour of AI systems. At a first
glance, emotions could be seen as a direct result of the
state and previous actions and hence there is no difference
compared to objective utility functions. But generally emo-
tions incorporate more than objective features. They depend
on personality (especially the mood), the attachment to
things and previous experiences. Especially knowledge and
experience are main components of emotions. In psychology
there is a phenomenon called mental time travel describing
a situation in which the current action promises an imme-
diate positive emotion but also simultaneously an expected
negative consequence in the future (e.g. stealing something).
Remembering consequences requires a memory process and
the ability to learn. Particularly reinforcement learning (RL)
combines rewards with previous actions and is a commonly
used strategy in artificial intelligence. However, not many
existing systems combine reinforcement learning with re-
wards calculated using artificial emotions. One approach
integrating emotional attachment and decision making into
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an agent is described in [4]. This approach shows some
similarities to our system, but focuses mainly on the human-
machine interaction part. However, our approach focuses on
the affective appraisal of decisions made by the agent itself.
Therefore, we integrate affective states into reinforcement
learning. Furthermore, we describe why such a combination
is a contribution to social robotics. Social robotics means in
this context that a robotic system should act in a way that can
be understood by humans. Today, many robots act like big
black boxes with some actuators and thereby elicit feelings
of fear and anxiety in their human operators. On the one
hand, this is a result of their often cryptic textual outputs
and signals. On the other hand, there exists only few output
devices displaying the current emotional state of the system
using profound integrative and functional frameworks of the
displayed emotion and mood. A display showing the user the
actual emotional state (e.g. the feelings and mood) enables
the AI agent more transparent to non experts and therefore
more attractive and less frightening.

The primary goal of this work is the combination and
integration of affective states and models with reinforcement
learning. We use a reinforcement learning framework (Dyna
Maze) simulating a small maze, which is bounded with walls
and contains some obstacles. In Section II we point out
some basic principles of reinforcement learning. Section III
describes the main points of our dimensional emotion model
which is then, in Section IV, used in combination with the
reinforcement learning framework to appraise the learning
progress of the agent. The last two Sections discuss the
results and conclude the work.

II. REINFORCEMENT LEARNING

For the evaluation of our emotional model and the com-
bination with reinforcement learning we use the well known
gridworld example Dyna Maze [5]. This example represents
a rectangular maze with some walls and obstacles. The agent
has in each state four possible actions, up, down, right, and
left (cf. Fig. 1). Selecting one of the actions takes the agent
to the corresponding neighbouring state. In cases when the
movement is blocked by a wall or the boundaries of the
maze, the agent remains in its current position. The agent
begins in the start state S and has to reach the goal state
G. We define the state space S = s1, s2, ..., sn and the
available set of actions as A(s). Hence, st ∈ S denotes the
actual state of the agent at time t and at ∈ A(s) denotes
the action executed at time t. Executing action at causes a
transition change from state st to state st+1. Additionally,
we can assume a deterministic world so that each transition
or action is executed properly.
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Fig. 1. Gridworld example and the four possible actions at. Each field of
the grid corresponds to a possible state st of the agent.

The experiment is conducted in episodes. In each episode
the agent has to find its way from the starting point to
the goal. The maze always remains unchanged. In the first
episode the agent is placed at the start state S without any
knowledge about the structure of the maze. The agent first
selects an action (randomly) and performs the movement
within this new environment. After performing each action
the agent receives a reward rt from the environment. The
first steps or episodes can be seen as an exploration process.
During the exploration the reward is either negative or
relatively low. If the agent reaches the goal state G, it receives
a high positive reward. After some episodes, the cumulative
reward at the end of each episodes increases because the
agent gains knowledge about the maze.

In our experiment we use the Dyna-Q algorithm [5] for
learning and selecting the actions in each state. Dyna-Q
includes planning, acting, model-learning and direct rein-
forcement learning. Each process occurs continually during
the exploration and path-finding.

First, the agent selects an action at and performs the
transition st, at → st+1, rt+1 to the next state st+1. After
the state transition the agent gets the reward which depends
only on state st+1. With the reward and the performed
action the model records in its table entry for the previous
state and action pair st, at the prediction for the reward
in the following state st+1 taking action at+1. Thus, the
model is able to predict the next reward using the last-
observed next state and reward. The model update step is
followed by the planning step. While planning the Dyna-
Q algorithm randomly samples previously observed state-
action pairs improving the action-value (Q-) function. The
action-value function Q is learned or updated after each
state transition. The Q-function estimates the future expected
reward taking an action in a specific state. This enables the
agent to determine how good it is to be in a given state and
perform a given action [5]. We use Q-learning to update the
action-value function. The update of the Q-function

Q(st, at)← Q(st, at)+α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
(1)

is independent of the policy being followed (off-policy) [6]
and depends on the step-size α and discount-rate γ (cf. Table
I). After planning, updating the Q-function and the model,
the agent uses the action-value function to select the next
action. For the action selection we used the ε-greedy policy.

This policy selects most of the time the greedy action (the
one with the highest Q value), but once in a while with a
small probability ε it selects a random action.

We use the described Dyna-Q learning algorithm for the
path-finding task in a small maze environment because this
experiment provides a manageable complexity, sufficient
events for the stimulation of our emotional model and
additionally, the structure can be integrated in the affect
design structure of Norman et al. [7].

III. EMOTIONAL MODEL

There is no unique definition of emotions but rather
there are several different models of emotional systems. One
theory describes the emotional system of humans with so-
called basic emotions. This theory was mainly influenced by
Paul Ekman [8] and Jaak Panksepp [9]. The basic emotion
theory describes emotions as discrete states disregarding
some intermediate states and the integration of the theory into
an overarching framework. Such a complete and continuous
structure of emotions is offered by so called dimensional
theories [10], [11], [12]. Commonly, dimensional models
represent emotions as a point in a two- or three-dimensional
space. The different dimensions were determined in em-
pirical studies in which subjects had to appraise emotional
scenes.

There is an ongoing discussion [13], [14] between the
dimensional and the basic emotion views of emotion, but
it is not our objective to support one model explicitly.
Furthermore, we consider the different models regarding
their usability in technical systems. Therefore, we decided
to implement and evaluate an emotional model based on the
dimensional theory of emotions.

VA-Space Model

In dimensional models the affective state of an organism
is represented in a space of two- or three-dimensions. This
space is called core affective state space. Most computational
models build on the three-dimensional PAD model of Mehra-
bian and Russell [10]. In the PAD model the three dimensions
of the core affective state are denoted as pleasure P, arousal
A, and dominance D. Dropping dominance D is a common
simplification of the model. The dimension of dominance is
not significant in the present scenario involving only a single
agent. Pleasure denotes a measure of valence and indicates
whether an emotion, an event, or an experience is good or
bad for you (the general perception of positivity or negativity
of a situation). In psychology, the terms pleasure and valence
are interchangeable. In the following, we will use valence
V. The second fundamental dimension is called arousal A
and indicates the level of affective activation of an agent.
Arousal can be defined as the mental alertness and physical
activity [15]. The core affective state space spanned by the
two dimensions of valence and arousal is further described by
the discrete emotions which subjects have reported for each
quadrant (Q1 – Q4 in Figure 2) [16]. They serve as additional
discrete labels for each core affective state. Placing a point
in this two-dimensional space and pushing it around by a
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continuous time-varying process appraising eliciting events
is a commonly used implementation for the core affect of an
agent [17], [18]. Besides direct influences of eliciting events,
the core affect could additionally be modified by incorpo-
rating the impact of dispositional tendencies such as mood
state and personality. There is some disagreement within
psychology to use dimensional models as emotion eliciting
process [13], [14], [18]. However, in technical systems the
representation of events within the two-dimensional affective
state space is a convenient and economical way to appraise
events in terms of emotions [18], [19]. For this reason, we
use a two-dimensional emotion model for calculating the
affective state during a reinforcement learning experiment.

arousal
high

low

valence
positivenegative

excited

happy

relaxed

calm

sad

depressed

anxious

fearful

Q1

Q2Q3

Q4

Fig. 2. Core affect represented in two-dimensional space – valence and
arousal. Possible reported affective states (emotions) are stated in each
quadrant (words in italics). The left half-plane of the VA-space is related to
negative (red) experiences and the right half-plane to positive (green) ones
(adapted from [16]).

IV. INTEGRATION OF THE EMOTIONAL MODEL INTO
DYNA MAZE

Norman et al. published a paper about affect and machine
design describing a model of affect and cognition. They
propose a three-level theory of human behaviour basically
applicable to the architecture of affective computer systems
[7].

The three levels are the reaction level, the routine level,
and the reflection level. These levels enable a processing of
the surrounding world in terms of affective evaluation and
cognitive interpretation of the environment.

Figure 3 depicts the three levels including their assigned
components of the Dyna Maze example and the emotional
model. Lower levels perform fast computations and processes
and higher levels involve more information resulting in
increased effort.

The lowest level – the reaction level – processes low level
information, performs rapid reactions to the current state
(such as reflexes), and controls motor actions. Therefore, we
have used the reaction level to perform the state transitions

Routine Level

Reaction Level

Check Direction
Goal in Sight

Calculate Valence and Arousal

Update Model
Perform Planning

Discretize State

ε - Greedy Selection
Update Q-Learning

Do Action

Wall Detection

Get Reward

Fig. 3. Integration of reinforcement learning and Dyna Maze into the three
level model of affect and cognition.

of the agent within the maze, detect collisions with walls and
obstacles and receive the reward from the environment.

In the routine level, routinized actions are performed. In
humans, the routine level is responsible for most motor skills,
language generation, and other skilled and well-learned be-
haviours [7]. It has access to working memory and more
permanent memory to guide decisions and update planning
mechanisms. Therefore, it is the perfect level to perform
two important steps of reinforcement learning: updating the
action-value function (Update Q-learning) and selecting the
following action according to a routinized policy (e.g. ε-
Greedy Action Selection). In the present maze scenario,
the discretization of the state is not a complex step, but
in alternative scenarios with continuous states and a non-
deterministic world, the Discretize State step would be a
challenging and computationally expensive step and thus has
to be performed in the routine level.

The highest level – the reflection level – calculates the
most computationally intensive steps. Reflection is a meta-
process involving all available data to build own internal
representations about the surrounding environments. It rea-
sons about the environment and interprets the pre-processed
sensory inputs of lower levels. The main tasks of this
level are planning, problem solving, and reasoning about
facts. This suggests to implement the update and planning
functions of reinforcement learning into the reflection level.
Updating the model means to use the current and previous
state, the actual performed action, and the earned reward to
update the previously saved model with this new information.
Similarly, the planning step of reinforcement learning uses
the model (the long-term memory of the agent) and selects
random previously observed states and performs virtually a
random action at this state. The model outputs a reward
for this random action which in turn is used to update
the model itself. This kind of planning internally simulates
the environment and produces simulated experience [5].
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Besides these high-level functions of reinforcement learning
the reflection level accommodates the calculation of the core
affect of the agent.

Calculation of Arousal and Valence

The calculation of the arousal and valence value requires
information of lower levels and, additionally, reasoning steps
and thus takes place in the reflection level. The reaction
level monitors changes in direction, collisions with walls,
and obstacles. This triggers short term memory processes in
the reflection level. Each memory process is modeled by a
frequency variable. The frequency is high, if the event occurs
frequently and decays to zero, if the event does not occur
anymore.

If a collision occurs (c = 1) this is reported to the
reflection level. The reflection level uses this information and
computes a frequency of collisions given by

fcol(t) =

{
fcol(t− 1) + (1− fcol(t− 1)) · ν if c = 1
fcol(t− 1) + (−1− fcol(t− 1)) · ν otherwise,

(2)
using a discrete dynamical system where ν describes the
amount of residue that is added or subtracted from the
frequency value. The system responds to collision in an
exponential way. The more collisions occur the faster (ex-
ponential) the frequency value converges to one. If there are
no collisions, the frequency value decays exponentially and
converges to minus one.

A similar approach was chosen to model the frequency of
changes in direction fdir(t). If the agent changes its direction
in every step, a value should go up indicating these frequent
changes. For this the reaction level reports the actual action to
the reflection level. A comparison with the previous action
results in setting a variable d = 1 indicating the direction
change. A second frequency value is calculated by

fdir(t) =

{
fdir(t− 1) + (1− fdir(t− 1)) · θ1 if d = 1
fdir(t− 1) + (−1− fdir(t− 1)) · θ1 otherwise,

(3)

with θ1 determining the amount of fdir(t − 1) added to or
subtracted from the previous frequency value. The response
to changes in direction is also exponential and increases or
decreases at the beginning very fast and slowly converges
then to its maximal value of minus or plus one. We ad-
ditionally modified θ1 if the agent follows the policy and
selects the optimal selection or if the agent performs random
exploration steps.

After these calculations, the agent checks if the goal state
is in sight. Therefore, we used the Bresenham line algorithm
[20] to calculate the states between the actual state and the
goal state and compare the resulting states with the positions
of walls and obstacles. If there is no obstacle in the line
of sight, the agent is able to see the goal state (g = 1).
This information is used to calculate a third frequency value
fgoal(t) which is high if the goal is regularly in sight and
decaying if the goal gets out of sight. For this calculation we
use the same type of equation as in Equation 2 and 3 with
different variables fgoal(t), θ2, and g.

Finally we use these three frequencies to calculate the
arousal value A(t) of the agent as a weighted average given
by

A(t) =

{
A(t) = fdir(t)+fcol(t)

2 if g = 0

A(t) =
fdir(t)+fcol(t)+fgoal(t)

3 if g = 1.
(4)

The valence value V (t) is calculated using fgoal(t) and
the information if the agent is moving away from the starting
point. This information is derived by calculating the distance
between starting point and actual position. If this distance
increases (i = 1) the agent assumes to be on the right way,
otherwise, it assumes something is going wrong (i = −1).
The variable i is used in a discrete dynamical system to
calculate a frequency equivalent fright(t) (i is the limit the
frequency value converges to and κ the factor determining
the slope) as

fright(t) = fright(t− 1) + (i− fright(t− 1)) · κ. (5)

Using these two frequencies, fgoal(t) and fright(t), the
valence component V (t) for the actual core affect state is
calculated as

V (t) =
fgoal(t) + fright(t)

2
. (6)

All these calculations are performed in the reflection
level at each time step during the reinforcement learning
experiment. The resulting arousal and valence values are
used to affectively appraise the learning process.

V. SIMULATION AND RESULTS

In the following we show some results of this appraisal
and explain them according to the elicited emotions.

In our experiments the agent is placed at the beginning
of each episode in the start state S and has to find the
goal state G. Each episode consists of a maximum of 2000
steps. Within this period the agent has to find the goal state,
otherwise the episode is terminated. At the beginning of an
experiment the model and Q-table is reset to the initial value
of zero and the agent is placed at its starting position. All
other variables and temporary tables are set to their initial
values (Table I). Those initial values are depended on the
episode length and the desired behavior of the agent. The
slope factors ν, θ1, and θ2 determine how fast the agent
reacts on events and how long they have an effect. After
each episode, the agent’s position is reset to the start state,
but the already learned model and Q-tables are reused in
the following episode(s). One experiment consists of several
episodes, in which the agent advances its performance and
reduces the steps needed to find the goal.

There are two variants of this experiment. In the first, the
agent’s performance is only appraised with the described core
affect. In the second variant of the experiment the actual core
affect is used to bias the reward function of the reinforcement
learning framework. At the beginning of both experiments
the reward function is set to rt = −1 in each state except
the goal state (at the goal the agent receives a reward of
rt = 10). In the second variant of the experiment, in which

546



TABLE I
PARAMETERS USED IN THE EXPERIMENTS

Parameter Definition Value

n number of episodes 20
maxsteps maximum number of steps per episode 2000
p steps number of planning steps 50
α step-size 0.01
γ discount-rate 0.95
ε probability for random action in ε-greedy policy 0.1
ν factor determining the slope of fcol(t) 0.2

θ1, θ2 factor determining the slope 0.2
of fdir(t) and fgoal(t)

κ factor determining the slope of fright(t) 0.15

the reward function is biased by the actual affective state
of the agent, the reward in each state (except the goal state)
depends additionally on the core affect. In those states where
the core affect is valenced positively (quadrant 1 and 2), the
agent receives (or perceives) a reward rt = 0 for the actual
state. This should influence the learning behaviour in a way
that the agent actively searches for states with a positively
valenced core affect.

In Figure 4 we have plotted the average affective states
of the agent during 20 episodes of the first variant of the
reinforcement learning experiment. It should be noted that
the reinforcement learning experiment is non-deterministic,
therefore we had to average the affective state of each
episode over several experiments. For each point, we have
used the affective appraisal of 50 independent iterations of
the experiment.
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Fig. 4. Average affective states during 20 episodes of the reinforcement
learning experiment.

Next to each point the episode number is plotted. The
brighter the point the older the episode. There is a clear
temporal movement of the core affect form quadrant four
to quadrant two. During the first three episodes the agent
gains knowledge about the maze. This requires a lot of
steps and changes in direction resulting in a highly negative
valence value and a positive arousal value, corresponding

to an affective state of anxiety and fear. After about four
episodes the reinforcement learning algorithm has gathered
enough model knowledge about the maze enabling the agent
to find a short path to the goal state. This requires less steps
and directional changes and therefore the arousal is reduced
and the overall feeling (valence) is positive. In the following
episodes (7 to 20) the path is further optimized and the agents
selects frequently the optimal action. This further reduces the
arousal and the valence value increases. The result shows that
the agent is able to appraise the learning progress in terms
of an affective state.

Figure 5 shows the results of the second variant of the
experiment which incorporates the affective state into the
reinforcement learning process. Compared to the first variant
of the experiment, the agent experiences a wider range and a
more uniform temporal movement of affective states, which
is accompanied by a slower learning progress.
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Fig. 5. Results of the second experiment which incorporates the core affect
into the learning process.

The slower learning progress of the second experiment
is characterized by a slower decrease of needed steps per
episode as compared to the first experiment (Figure 6). On
average, the learning performance of both experiments is
similar.
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Fig. 6. Average learning curves for both experiments. Experiment 1 uses
unmodified Dyna-Q-Learning and Experiment 2 incorporates the calculated
affective state of the agent.

This slower learning progress is the result of the in-
corporation of the affective state of the agent. The agent
simultaneously tries in each episode to improve the policy
and the perceived valence of the situation. As a result,
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the agent learns the optimal policy more slowly, but is
able to perceive (and display) its current learning progress
through its core affect. Additionally, the more diverse and
uniform states enable a more believable communication of
the affective states towards human observers [21].

In the first experiment the agent is only able to display
sudden changes of its core affect. Whereas in the second
experiment, the agent can communicate its learning progress
with a more uniform transition of its affective state. A human
could perceive the transition of the agent’s core affect as
follows: First, the agent displays fear and anxiety due to the
new situation it is encountered. After these first episodes, the
agent is depressed because of its bad performance. However,
the improvement of the policy results in core affects of calm
and satisfaction.

Overall, the results indicate that our approach for integrat-
ing affective states into reinforcement learning can be used
in autonomous affective systems. The generated core affects
can be used as an alternative way for communicating the
actual system state towards a human observer.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an architecture for integrating a
dimensional emotional model into a virtual agent. We believe
that agents or robots using affective models to guide their
decisions or express their current state are highly beneficial
in holding a better social interaction with humans. To prove
this belief, we described a reinforcement learning framework
simulating a virtual agent making decisions to find the
shortest path to the goal in a maze. Further we showed how
the reinforcement learning framework could be integrated
into a model of affect and cognition. Finally, we extended
this framework with an dimensional emotional model to
calculate the core affect of the agent during the learning
process. The affective appraisals of the learning progress
show that the emotional model is successfully integrated into
the machine learning algorithm and is able to evaluate the
current state of the agent in terms of an affective state. A
second experiment, which uses these affective states to guide
or bias the decision behaviour of the agent was conducted.
The results show that the core affect can be used to bias the
reward function to guide the decisions of an agent.

However, an extensive study is necessary for a statistical
prove of the system and an evaluation of its performance
in different scenarios. Furthermore, in a future study we are
going to use the affective state for displaying the learning
progress in a more interactive way to the user and implement
the whole system to a small two-wheeled robot performing
the same path-finding task in a real environment.

In future implementations we will integrate free-floating
moods into the system. Moods are long-term influences onto
the core affective state of the system. This means that the
affective state of the agent is additionally influenced through
the personality of the system and its long term reactions on
events.
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