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Abstract

Liquid flows with partial evaporation (cavitation) play an important role in energy technology

(pumps and turbines), in automotive technology (injection systems), in process technology

(hydraulic presses), in naval architecture and in space engineering. While evaporation itself

may limit the efficiency of a device or result in chocking of a nozzle, the collapse-like re-

condensation often results in the formation of noise or erosion damage of a machine [13,38].

The efficiency and the lifetime of a hydraulic device thus are strongly affected or even limited

by cavitation phenomena. Experimental investigations of real-scale devices often are hardly

possible. Furthermore, manufacturing of prototypes and performance of durability tests

might be too costly and time consuming during early development stages.

Due to ongoing gain in computational resources, several computational fluid dynamics pack-

ages for simulation of cavitating flows have been developed. Aside of open source software

(e.g. OpenFOAM), commercial software packages are mainly applied in industrial day-to-day

3-D simulations. Mean flow properties, such as discharge coefficients of nozzles or the effi-

ciency of ship propellers, are often satisfactorily predictable by available software packages.

However, the deduction of estimates to characterize potential risk for cavitation erosion was

mostly impossible with available methods and approaches.

The major development in this thesis is a numerical approach which allows for the prediction

of erosion risk. This is achieved by high temporal resolution of the dynamics of cavitating

flows including collapse-induced loads. The key element of the approach is the developed

flux-function. Unlike established techniques, the novel approach enables the computation

of compressible cavitating flows including wave dynamic phenomena without the use of

time-operator preconditioning even in case of low Mach number flows. Both efficiency and

robustness of the method have been increased until industrial applicability was reached.

In combination with a thermodynamic equilibrium model several internal and external flows

have been computed. Integral quantities, as well as computed cavitation phenomena, were

validated against experiments. Due to high temporal resolution and inclusion of compress-

ibility of the fluid, the computation of formation and propagation of shocks enabled the

identification of peak loads at the walls of devices. Good agreement was found by comparing

computed positions of intense loads with experimental findings. The ability of the inviscid

approach to predict different shedding mechanisms [23, 24] as well as ”crescent shaped re-
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Abstract

gions” [56] indicates that these phenomena are intrinsic instabilities that are mainly driven

by inertia.

The behavior of the thermodynamic model with respect to spatial resolution was investigated

by simulation of the collapse of a vapor bubble cloud. It was found that the duration of

the collapse as well as the detected pressure at the wall of the test-configuration can be

accurately predicted even in case of strongly insufficient spatial resolution. This motivates

the application of the approach to predict collapse intensities even for typically under-resolved

simulations of cavitating flows in real machines.

IV



Kurzfassung

Strömungen mit lokaler Teilverdampfung (Kavitation) des flüssigen Arbeitsfluids treten bei-

spielsweise in der Energietechnik (Pumpen, Turbinen), der Fahrzeugtechnik (Einspritzsys-

teme), der Prozess- und Automatisierungstechnik (hydraulische Systeme in Presswerken),

der Schifffahrt und der Raumfahrt auf. Während die Verdampfung häufig den Wirkungsgrad

einer Maschine oder den Massenstrom durch eine Drossel begrenzt, führt die kollapsartige

Rekondensation des gebildeten Dampfes beispielsweise zur signifikanten Geräuschentwick-

lung, zur Schwingungsanregung und insbesondere zur erosiven Bauteilschädigung [13, 38].

Der Wirkungsgrad und die Lebensdauer einer hydraulischen Maschine sind somit wesentlich

durch Kavitationsphänome beeinflusst und begrenzt. Experimentelle Untersuchungen sind

einerseits häufig nicht in Realgröße durchführbar. Andererseits sind Prototypenbau und

Dauerlauf gerade in den frühen Entwicklungsphasen meist zu zeit- und kostenintensiv.

Die stetige Zunahme der Rechenkapazität hat zur Entwicklung und industriellen Nutzung

zahlreicher numerischer Programme zur Simulation kavitierender Strömungen geführt. Im

industriellen Tagesgeschäft werden neben ”‘open source”’ Programmen (z.B. OpenFOAM)

hauptsächlich kommerzielle Programmpakete zur 3-D Simulation eingesetzt. Während zeitlich

gemittelte Strömungseigenschaften wie etwa der Durchflusskoeffizient in Drosseln oder der

Wirkungsgrad eines Schiffspropellers mit den verfügbaren numerischen Verfahren auch in-

dustriell meist sehr befriedigend ermittelt werden konnte, waren Aussagen zur Einschätzung

der möglichen kavitationsbedingten Bauteilschädigung nur unzureichend durch die eingeset-

zten Modelle und Verfahren ableitbar.

Im Rahmen dieser Arbeit wurde ein Simulationsverfahren entwickelt, welches durch zeitliche

Auflösung der Dynamik kavitierender Strömungen einschließlich der kollapsinduzierten Last-

spitzen erstmals eine mindestens qualitative Vorhersage erosionsgefährdeter Bauteilbereiche

ermöglicht. Das zentrale Element des entwickelten Verfahrens ist die zur Berechnung der

Flüsse eingesetzte Flussfunktion. Im Gegensatz zu etablierten Methoden ermöglicht die

im Rahmen dieser Arbeit entwickelte Methode die Berechnung kompressibler kavitieren-

der Strömungen einschließlich wellendynamischer Phänomene auch im Bereich sehr kleiner

Machzahlen ohne Vorkonditionierung des Zeitoperators. Die Methode wurde in ihrer Effizienz

und Robustheit derart optimiert, dass sie industriell eingesetzt werden kann.

In Verbindung mit einem thermodynamischen Gleichgewichtsmodell wurden Durchströmungs-
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Kurzfassung

und Umströmungsprobleme unter Vernachlässigung viskoser Effekte simuliert. Sowohl inte-

grale Größen als auch die simulierten Kavitationsphänomene wurden mit Experimenten va-

lidiert. Die durch die hohe zeitliche Auflösung und die kompressible Modellierung ermöglichte

Simulation der Bildung und Ausbreitung von Stoßwellen erlaubte eine Darstellung der Spitzen-

lasten auf Bauteilen. Ein Vergleich der Positionen der auftretenden Lasten mit experi-

mentellen Befunden ergab eine sehr gute Übereinstimmung. Die erfolgreiche Darstellung ver-

schiedener ”‘shedding”’ Mechanismen [23,24] sowie ”‘halbmondförmiger”’ Strömungsstruk-

turen [56] deutet an, dass diese Kavitationsinstabilitäten intrinsisch und dominant träg-

heitskontrolliert sind.

Mit der Simulation des Kollapses einer diskreten Blasenwolke wurde das Verhalten des ther-

modynamischen Modells in Abhängigkeit der räumlichen Auflösung untersucht. Es zeigte

sich, dass das Modell auch im Falle einer räumlichen Unterauflösung der hinreichend dichten

Blasenwolke quantitativ korrekte Aussagen zur Kollapsdauer und dem auf der Wand wir-

kenden stoßinduzierten Spitzendruck liefert. Dies motiviert die Anwendung des Modells

zur Vorhersage von Kollapsintensitäten auch für die typischerweise deutlich unteraufgelösten

Simulationen kavitierender Strömungen in realen Maschinen.

VI



1. Introduction

1.1. Fundamentals of cavitating flows

This work focuses on modeling and numerical simulation of liquid flows where flow-induced

rarefaction enforces partial evaporation of the fluid [7, 25, 39]. The process of evaporation

leads to a significant increase in compressibility of the fluid due to the formation of vapor

cavities such as bubbles, sheets or vapor-filled vortex cores. The characteristic dimensionless

quantity is the cavitation number σ , which is defined as

σ :=
pre f − psat(Tre f )

1/2 ·ρre f ·u2
re f

, (1.1)

where pre f , Tre f , ρre f and ure f are case specific reference states (pressure, temperature,

density and flow velocity) and psat(Tre f ) is the saturation pressure or vapor pressure at

reference temperature. Slightly different example the pressure loss ∆p = pin− pout within a

test-section or a device. Operating conditions for which the onset of cavitation is observed

correspond to the critical cavitation number σcrit . Consequently, operating conditions with

σ > σcrit usually lead to pure liquid flow (phase transition is avoided) while conditions for

which σ < σcrit enhance the appearance of cavities with decreasing cavitation number.

It is well known that pure (ideal) liquids may sustain strong tension, i. e. pressures far below

vapor pressure, before homogeneous nucleation takes place [81]. Realistic fluids, however,

typically contain sufficient nucleation sites (micro bubbles within the liquid or attached to

walls, as well as other impurities), such that heterogeneous phase transition is predomi-

nant [7]. Homogeneous nucleation can be an important mechanism if the thermodynamic

conditions of the fluid are close to critical conditions (critical temperature), since surface

tension and surface energy vanish in this special case. However, this case is not within the

scope of this work as the considered temperature regime is far below the critical tempera-

ture. A major difference between homogeneous and heterogeneous cavitation is the absence

or presence of phase boundaries. While homogeneous cavitation requires the formation of

critical nuclei within the pure liquid, heterogeneous cavitation can already occur when the

partial pressure of vapor within a micro bubble is lower than its saturation value. It should

be pointed out that various definitions of ”cavitation” and ”cavitation onset” are found in
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1. Introduction

the literature. However, with respect to this work, the term ”cavitation” is used when the

following requirements are fulfilled: the formation and growth of a cavity is (mainly) con-

trolled by a mass transfer from liquid to vapor without (significant) external heat supply.

Neither degassing processes, nor the growth of (nearly pure) gas bubbles, nor the formation

of a cavity due to heating (laser induced or spark induced phase transition) are discussed

within this work.

Once vapor cavities are exposed to pressures higher than saturation pressure, they act as

sinks. Thereby, the pressure gradient accelerates the surrounding liquid towards the cavity

and the vapor condenses at the interfaces. Depending on the shape of the cavity, the

structure of the underlying flow and on the vicinity of boundaries, re-condensation may take

place in various ways. One famous and well known mechanism is the collapse of a single

isolated and perfectly spherical bubble. In this case, detailed mathematical models show

the formation of a strong shock wave, possibly guided by re-evaporation (rebounds) or even

light emission (sonoluminescence). Asymmetric collapses of bubbles, vortex cores or sheet

cavities often imply the formation of liquid jets that may impinge on material surfaces, where

so-called ”water hammers” are generated. Resulting shock waves with post shock pressures

on the order of 109 Pa may arise [7, 25]. Often, these processes occur on time scales of

nanoseconds.

The technical relevance of cavitating flows is significant and manifold. Pumps and turbines

as well as ship propellers exhibit performance limitations due to cavitation. Noise generation

and material fatigue due to violent collapses of cavities, i. e. cavitation erosion [26, 36, 40],

may affect usability and life time of fluid machinery [46, 87]. On the other hand, cavitation

and re-condensation may prevent coking processes in fuel injectors, improve spray quality and

stabilize mass flows in chocked (super-cavitating) valves. Improvements of emulsion quality

or of mixing processes might be further applications.

In the following, examples of cavitation types on hydrofoils are briefly discussed. A quasi

two-dimensional NACA 16-012 hydrofoil is placed within a rectangular test-section. At zero

angle of attack, a flat pressure minimum is reached at approximately 60% of the chord

length, followed by a fast pressure recovery towards the trailing edge of the foil. The fluid

is water at room temperature and the Reynolds number based on the characteristic velocity

and on the chord length of the hydrofoil is Re≈ 106. Depending on the cavitation number

and on the angle of attack, different cavitation patterns can occur - see Figure 1.1.

2



1.1. Fundamentals of cavitating flows

Figure 1.1.: Typical forms of cavitation on hydrofoils [25]. Reproduced with permission from
Springer under License Number 3550741488027.
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1. Introduction

The following cavitation regimes can be distinguished:

• At small angle of attack the onset of cavitation is located slightly downstream of the

pressure minimum (situation 1). The structure of the cavity appears to be very ”clear”,

which means that large parts consist of pure vapor (coalescing big bubbles and partial

cavities). This situation is very complex, as several physical processes interact. By

comparison of the cavitating case with the non cavitating case at the same angle of

attack, one observes that the positions of flow separation and cavitation onset coincide.

Certainly this is not the case in general, but results from the shape of the investigated

hydrofoil. A numerical prediction of this cavitation pattern requires a precise prediction

of the separation position.

• In situation 2, the flow topology and the resulting cavitation pattern are even more

complex. Due to the increased angle of attack, the suction peak (minimum pressure)

is shifted towards the leading edge of the hydrofoil. Cavitation onset takes place at

several positions in span-wise direction, probably depending on incoming nuclei, surface

impurities as well as on highly dynamic separation zones. The overall impression is

that the cavity is still somehow clear, although slightly less than in situation 1. Again,

a numerical prediction of this cavitation pattern seems to be extremely challenging due

to the amount of uncertainties.

• In contrast to operating points 1 and 2, the cavitating flow at condition 3 is well

predictable. The angle of attack has pushed the onset of cavitation to a well defined

and very narrow region close to the nose of the hydrofoil. The arising vapor pocket is

very clear (nearly pure vapor) and ranges far beyond the trailing edge. This situation

is often called ”supercavitation” or ”full cavitation” and it is known that this type of

cavitation is very stable (stationary) and does not result in cavitation erosion on the

surface of the hydrofoil. As this type of cavitation is strongly inertia driven, an inviscid

modeling approach is often sufficient for numerical prediction of the flow.

• One of the most interesting and technically relevant operating points corresponds to

situation 3’. This so called ”partial cavitation” combines clear cavity regions, milky re-

gions (highly dispersed bubbly flow) and periodic separation of bubbly clouds and vortex

patterns. The periodic formation of a sheet-like structure, the onset of reverse flow (re-

entrant jet) and the separation of bubbly clouds is often called ”shedding”, [23,24,37].

Strong noise, vibration and surface damage are correlated to this cavitation type [56].

The author has demonstrated in one of his publications [69] that these processes are

dominated by inertia and do not require detailed representations of boundary layers.

• Situation 4 shows a typical two-phase (milky) cavity. As compared to 3’, clear cavity

regions do no longer occur. Although the dynamics of such two-phase cavities are

quite similar to the dynamics of partial cavities, they might be less complicated with

4



1.1. Fundamentals of cavitating flows

respect to numerical modeling. It is reasonable to assume that most models based on

mixture assumptions (bubbly dispersed mixtures or homogeneous mixtures) provide a

reasonable representation of milky cavities.

• At high angles of attack (situation 5), flow separation close to the leading edge (or

the nose) of the hydrofoil takes place. The cavity is no longer attached to the surface

but is generated in the separated shear flow. Often, the observed cavities are milky

clouds or bubbly vortex cores. A numerical prediction of this type of cavitation requires

sufficient resolution of the turbulent flow. Inviscid approaches surely fail in this regime.

Considering water as operating fluid, the ratio between the saturation densities of liquid and

vapor at room temperature (T ≈ 293 K) is 998.16/0.017≈ 6 ·104. These quantities already

provide a strong indication that cavitating water flows at approximately room temperature

are dominated by the momentum (or the momentum density) of the liquid phase, as the

momentum of the vapor phase is smaller by 4− 5 orders of magnitude. Density jumps (or

gradients) of such a magnitude pose a considerable challenge to numerical models. Even

small discretization errors may result in significant prediction deficiencies. As most of the

high order approaches are neither monotonic nor positivity preserving, a suitable compromise

between practical robustness and formal (asymptotic) order of accuracy is required.

The sound speeds are cl ≈ 1482 m/s in pure liquid and cv ≈ 423 m/s in pure vapor, both

at saturation conditions at room temperature. Evaluating the isentropic compressibility

βs = 1/(ρc2) as well as the acoustic impedance Z = ρc for both phases leads to βs,l =

4.56 ·10−10 Pa−1, βs,v = 3.29 ·10−4 Pa−1 and Zl = 1.48 ·106 Pa ·s/m, Zv = 7.2 Pa ·s/m. Again,

variations of several orders of magnitude have to be handled. Moreover, the quantities stated

above characterize pure-phase behavior only. With respect to saturated mixtures of liquid

and vapor, the effect on the speed of sound is even more critical. If phase transition is

taken into account, the equilibrium speed of sound is discontinuous at the onset of phase

change. Although the frozen speed of sound is mostly assumed to be a suitable choice for

non equilibrium models of evaporation [84], the equilibrium speed of sound has to be used

for equilibrium models. In this case one obtains for the values at the boundaries α→ 0+ and

α → 1− of the vapor volume fraction α

lim
α→0+

ceq = 0.0384 m/s, lim
α→1−

ceq = 419.7 m/s. (1.2)

Note that the jump in speed of sound from ceq ≈ 1482 m/s to ceq = 0.0384 m/s once more

demonstrates a dramatic change in material properties that has to be managed within the

numerical framework.
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1. Introduction

1.2. Problem description and literature overview

The aim of this work is to develop a numerical simulation code for the prediction of the

dynamics of low and high speed cavitating flows including wave dynamic processes. For this

purpose, the compressibility of the fluid needs to be taken into account and time scales aris-

ing from collapse processes have to be resolved. The characteristic velocity of the underlying

shear flow often leads to Mach numbers on the order of M = O(10)−3−O(10)−2 in classical

hydraulic machinery, while maximum values of M = O(10)−1−O(1) are common in modern

high pressure injection systems. Thus, numerical techniques have to be valid within this

regime. An additional requirement is the applicability of the code for simulation of cavitat-

ing flows within realistic devices, wherefore efficient and flexible numerical approaches and

physical models need to be chosen or developed. The numerical and physical requirements

on this thesis can be summarized as follows:

• Handling of liquid-vapor phase transition

• Validity and accuracy for low and moderate Mach numbers M = O(10)−3−O(1)

• Temporal resolution of wave dynamics, particularly of shock propagation within the

liquid

• Three-dimensionality in space, realistic (non-trivial) flows

• Efficiency and robustness (in a practical sense)

• Validation for a wide range of academic and industrial problems.

In order to achieve these objectives, innovative developments were required, since available

commercial codes or published academic achievements did not fulfill all of these require-

ments simultaneously. In the following, a short overview of available models and numerical

techniques is given.

1.2.1. Numerical techniques for simulation of cavitating flows

The development of numerical techniques for simulation of cavitating flows follows two

major paths. Path 1) starts from techniques that were introduced for the simulation of

low speed, incompressible liquid flows, while path 2) originates in aerodynamics of high

speed, compressible gas flows. Traditionally, the first path is mostly based on pressure-

based solvers with implicit time discretization, whereas path 2) follows density-based shock

capturing strategies combined with explicit time discretization. Although this differentiation

is no longer sharp since both approaches have been extended towards wider application areas,

they have sustained impact on cavitation modeling.

6



1.2. Problem description and literature overview

State of the art developments with respect to path 1) usually require an additional transport

equation for the vapor volume (or vapor mass) fraction. A source term based on bubble

dynamic considerations (Rayleigh equation) or based on empiric evaporation and condensa-

tion rates is used to model phase transition processes [8, 41]. Recent developments include

more detailed information such as the bubble number density, radii distributions, gas content

and surface tension. Although the inclusion of compressibility effects in the pure liquid (or

in both phases) is possible in path 1), it is often neglected. One reason might be that the

temporal resolution of wave dynamics requires time steps where implicit techniques are no

longer efficient. However, if the computation of wave dynamics is not a main focus, and

if the Mach number is sufficiently small, pressure based approaches using implicit time dis-

cretization and assuming constant liquid density can be a suitable choice for simulation of

cavitating flows, particularly for fast steady state predictions in pumps, turbines and around

ship propellers. Even though these approaches have been continuously improved over the

last two decades, convergence and robustness as well as proper parametrization of empirical

model coefficients are still partially unsolved issues.

Developments arising from path 2) lead to an increased interest since about one decade as

well. One might differentiate between models and approaches that either focus on detailed

simulations of discrete cavities (shock bubble interaction, collapses of single or few bubbles,

interface dynamics) or models and approaches to simulate large scale dynamics of cavitation

patterns (shedding processes, cloud fragmentation and cloud collapse, super-cavitation and

large scale vortex cavitation). As the simulation of large scale dynamics is the dominant

task in this work, special emphasis is put on those models and approaches. Provided that

the Mach number is sufficiently high, classical Riemann solvers combined with nonlinear

high resolution procedures are suitable building blocks. However, these schemes suffer from

the low Mach number problem [2, 16, 49] due to an inconsistent asymptotic behavior of the

non-central (i. e. dissipative) part in the flux computation [28, 29]. This issue is negligible

if the characteristic Mach number is sufficiently high, as for example in modern injector

components. In case of low Mach number flows, time operator preconditioning can be

applied to restore an accurate asymptotic behavior of the fluxes [10, 12, 82]. The resulting

technique is well suited to simulate cavity dynamics on the time scale of the flow velocity,

but tends to filter out wave dynamics. Therefore, neither classical Riemann solvers (as used

in case of high speed aerodynamics) nor time operator preconditioned methods fulfill the

requested demands. A major contribution of this work is a novel flux function with correct

asymptotic behavior in the low Mach number regime. The proposed scheme allows for an

efficient computation of wave dynamics while being robust within the requested spectrum of

applications.
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1. Introduction

1.2.2. Physical models for cavitating flows

Phase transition in a flow generally involves the transfer of mass, momentum and energy

from one phase to the other. The most detailed continuum approaches consider two (or even

multiple) sets of governing equations, i. e. balance laws for mass, momentum and energy for

each component or phase [13, 32, 44, 45]. Transfer or interaction terms, as well as interface

physics such as surface tension, can be defined [60]. The source terms are typically based

on local differences in pressure and temperature across phase boundaries and may require

calibration to optimize transfer rate coefficients. Models of this type are often combined with

sharp interface techniques, for example level set approaches [43]. With respect to cavitating

flows, models that are based on two sets of governing equations are mainly applied for

investigations involving a very limited number of discrete cavities due to the relatively high

numerical effort. Depending on the quality of transfer and interaction terms, predictions of

very high quality are possible.

Substantial simplification is achieved if a common set of governing equations is used to de-

scribe the kinematics of the flow. In single-fluid models the phases are not treated separately,

but they are characterized by their fractional contributions, i. e. by their mass and volume

fractions. Thus, the governing equations describe the evolution of mixture quantities, such

as the mixture density, the momentum and the total energy of the mixture.

Most of the models developed and used during the last two decades assumed constant

densities of the liquid and the vapor [4, 31, 47, 58, 88]. Furthermore, thermal effects and the

balance equation of the total energy of the mixture are often neglected. Phase transition is

modeled by a single additional transport equation for the vapor mass (or volume) fraction of

the form

∂

∂ t
(αρv)+div(α ·ρv ·~v) = ρv ·S(α, p, ~const), (1.3)

where ρv is the constant vapor density, p is the pressure in the liquid, α is the vapor vol-

ume fraction (sometimes called void fraction) and ~const contains parameters and calibration

factors as part of the source term ”S” [42, 58, 75, 89]. The source term usually contains the

difference of the pressure in the liquid and the (constant) saturation pressure. Models of this

type, as well as refined versions [15, 17, 54, 79], where additional transport equations for the

bubble number density or for properties of the nuclei are incorporated, require case-dependent

calibration.

Single-fluid models that enable the simulation of wave dynamics require compressible models

of the phases [3, 5, 86]. Weakly compressible effects can be modeled assuming barotropic

behavior. Either isentropic or isothermal equations of state could be used [9, 11, 48, 55].

Isentropic models can be suitable options if thermodynamic data are limited [22, 51, 76].
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1.2. Problem description and literature overview

In general, the density ρ and the specific internal energy e of the mixture are convex combi-

nations with convex parameters α and x (vapor mass fraction). Let the subscripts ”l” and

”v” denote liquid and vapor, then the mixture quantities are

ρ = α ·ρv(pv,Tv)+(1−α) ·ρl(pl,Tl), (1.4)

e = x · ev(pv,Tv)+(1− x) · el(pl,Tl), (1.5)

α ·ρv(pv,Tv) = x ·ρ, (1−α) ·ρl(pl,Tl) = (1− x) ·ρ. (1.6)

The previous set of three independent equations contains six unknowns: pv, pl, Tv, Tl, α

and x. In case of 0 < α < 1, the assumptions of temperature equilibrium (T = Tv = Tl) and

pressure equilibrium (p= pv = pl) reduce the number of unknowns to four: p,T,α,x. In order

to close the the system, an additional assumption or an additional information is required.

Let x be the local (non-equilibrium) vapor mass fraction and xeq be the corresponding local

equilibrium quantity under given conditions. Let τ be a (constant) relaxation time. Then

one can derive a simple relaxation model in conservative form as follows:

∂

∂ t
((x− xeq) ·ρ)+div((x− xeq) ·ρ ·~v) =−ρ · (x− xeq)

τ
. (1.7)

In case of τ→∞ the flow is called ”frozen”, while τ→ 0 describes phase equilibrium. While

frozen flows obviously do not allow phase transition, equilibrium flows do. In this special

case, the degrees of freedom of the system are further reduced as pressure and temperature

are no longer independent variables in a saturated mixture. Instead, pressure is exclusively

dependent on temperature.

In this work, phase equilibrium is assumed, which can be interpreted as an infinitely fast

relaxation process from a non-equilibrium state to the equilibrium value.

9



2. Physical model and numerical

approaches

2.1. Governing equations and thermodynamic model

The governing equations are the three-dimensional and time dependent balance laws for

mass, momentum and total energy. Since the major focus of this work is put on inertia driven

effects, viscous effects as well as heat transfer are neglected. However, successful extension of

the proposed methodology to more advanced approaches (Large Eddy Simulation) has been

demonstrated in [22, 30]. Instead of solving governing equations for each phase separately,

a common set of equations representing mixture properties is used. This implies that a

common velocity field is assumed (no slip between phases). Surface tension, additional

gas content and modeling of nuclei are neglected. The complexity is further reduced by

assuming thermal equilibrium (equal temperatures in both phases), mechanical equilibrium

(equal pressures) and phase equilibrium (equal Gibbs functions in case of two-phase flow).

As a result, the governing equations are the compressible Euler equations equipped with

suitable thermodynamic closure relations p(ρ,e) and T (ρ,e).

Let ~q be the vector of conserved quantities and F(~q,~ei) be the corresponding flux associated

with coordinate direction ~ei

~q :=




ρ

ρ~v

ρE


 , F(~q,~ei) :=<~v,~ei > ·~q+ p ·




0

~ei

<~v,~ei >


 , (2.1)

where the total energy ρE is the sum of internal energy ρe and kinetic energy 1/2 ·ρ|~v|2.

The governing equations thus read

∂

∂ t
~q+

3

∑
i=1

∂

∂xi
F(~q,~ei) =~0. (2.2)

Any thermodynamic closure relation that implies a positive speed of sound results in (non-

strict) hyperbolicity of the Euler equations. Since there are no source terms in this modeling
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2.1. Governing equations and thermodynamic model

approach, the speed of sound is the equilibrium speed of sound [50].

Due to the assumption of local thermodynamic equilibrium, the vapor volume fraction and

the vapor mass fraction correspond to equilibrium states as well, α = αeq and x = xeq.

Thus, the density ρ and the specific internal energy e are convex combinations with convex

parameters αeq and xeq:

ρ = αeq ·ρv(p,T )+(1−αeq) ·ρl(p,T ), (2.3)

e = xeq · ev(p,T )+(1− xeq) · eL(p,T ), (2.4)

αeq ·ρv(p,T ) = xeq ·ρ, (1−αeq) ·ρl(p,T ) = (1− xeq) ·ρ. (2.5)

In case of αeq = xeq = 0, the local properties of the fluid correspond to pure liquid. Conse-

quently, αeq = xeq = 1 refers to pure vapor.

In case of 0 < αeq < 1 (implying 0 < xeq < 1) the local properties correspond to a saturated

mixture of liquid and vapor where

p = psat(T ). (2.6)

Additionally, the densities of the liquid and the vapor are the temperature dependent satu-

ration densities

ρl = ρl,sat(T ), ρv = ρv,sat(T ). (2.7)

This allows for further simplification of equations 2.3, 2.4 and 2.5.

If the equilibrium state represents a pure state (pure liquid or pure vapor), then the system

is closed provided that suitable state descriptions for liquid and vapor are known. Usually,

these are of the form ρ = ρ(p,T ) and e = e(p,T ).

If the equilibrium state represents a saturated mixture (0 < α < 1), application of equations

2.3, 2.4 and 2.5 leads to

ρ = αeq ·ρv,sat(T )+(1−αeq) ·ρl,sat(T ), (2.8)

e = αeq ·ρv,sat(T ) · ev(psat(T ),T )+(1−αeq) ·ρl,sat(T ) · eL(psat(T ),T ). (2.9)

The remaining system (2.8 and 2.9) might require iterative solution procedures to obtain the
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2. Physical model and numerical approaches

unknowns α and T . Once these are evaluated, all relevant thermodynamic quantities can be

specified for a given set of (ρ,e).

Based on Saurel’s recommendation [59], the following thermal approximation is used to

model liquid water

p(ρ,T )+B = B ·
(

ρ

ρL,sat(T )

)N

+ psat(T ), (2.10)

with B = 3.3 · 108 Pa and N = 7.15 are assumed to be constants while the temperature

dependent saturation conditions are given by polynomial fits [27], which are provided at the

end of this subsection. Note that these polynomials are sometimes misleadingly referred

to as ”Oldenbourg-Polynomials”. The functional form is based on the so called ”Tait”

equation [18].

The caloric model of (pure or saturated) liquid water reads

el(T ) := cvl(Tre f ) · (T −Tre f )+ el(Tre f ), (2.11)

with Tre f being a case dependent reference temperature and cvl(Tre f ) being the specific heat

at constant volume. el(Tre f ) is the internal energy of the liquid at Tre f and p = psat(Tre f ). In

this work, the reference temperature is Tre f = 293.15 K leading to cvl(Tre f ) = 4157 J/(kg ·K)

and el(Tre f ) = 83.91 kJ/kg.

An efficient thermal model for water vapor is given by the ideal gas law

p = ρ ·Rv ·T, (2.12)

where the specific gas constant Rv = 462 J/(kg ·K) is assumed.

The caloric model of (pure or saturated) water vapor shares a common structure to its

counterpart applied for the liquid phase

ev(T ) := cvv(Tre f ) · (T −Tre f )+ ev(Tre f ). (2.13)

Based on a reference temperature of Tre f = 293.15 K and p = psat(Tre f ) the constants are

selected as cvv(Tre f ) = 1427 J/(kg ·K) and ev(Tre f ) = 2402.3 kJ/kg. The reference internal

energy contains the energy of vaporization.

The saturation conditions are modeled as proposed in [27]. Let θ := 1.0−T/Tkrit be the

reduced temperature. Then one obtains

ρl,sat(T ) = ρkrit ·Fl(θ), (2.14)
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2.1. Governing equations and thermodynamic model

a1 =−7.85823 b1 = 1.99206 c1 =−2.02957

a2 = 1.83991 b2 = 1.10123 c2 =−2.68781

a3 =−11.7811 b3 =−0.512506 c3 =−5.38107

a4 = 22.6705 b4 =−1.75263 c4 =−17.3151

a5 =−15.9393 b5 =−45.4485 c5 =−44.6384

a6 = 1.77516 b6 =−6.75615 ·105 c6 =−64.3486

Tkrit = 647.096 K pkrit = 22.064 ·106 Pa ρkrit = 322.0 kg/m3

Table 2.1.: Polynomial coefficients and critical conditions for saturated states for water

with

Fl(θ) := 1.0+b1 ·θ 1/3 +b2 ·θ 2/3 +b3 ·θ 5/3 +b4 ·θ 16/3 +b5 ·θ 43/3 +b6 ·θ 110/3, (2.15)

ρv,sat(T ) = ρkrit · eFv(θ), (2.16)

with

Fv(θ) := c1 ·θ 1/3 + c2 ·θ 2/3 + c3 ·θ 4/3 + c4 ·θ 3 + c5 ·θ 37/6 + c6 ·θ 71/6, (2.17)

and

psat(T ) = pkrit · eFp(θ), (2.18)

with

Fp(θ) := (Tkrit/T ) · (a1 ·θ +a2 ·θ 3/2 +a3 ·θ 3 +a4 ·θ 7/2 +a5 ·θ 4 +a6 ·θ 15/2). (2.19)

The critical conditions as well as the polynomial coefficients for water are summarized in

table 2.1.

Remark on thermodynamic models using closed form equations

Although the author’s work was almost exclusively based on the equations specified above,

it should be pointed out that recent work performed by the author and especially by the

colleagues at the Institute of Aerodynamics and Fluid Mechanics at Technische Univer-

sität München show that tabulated thermodynamic descriptions (either full energetic or

barotropic) might be more suitable with respect to various fluids and, most importantly,
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2. Physical model and numerical approaches

more efficient. It is thus recommended to apply tabulated data generated from reference

equations of state whenever possible [1].

Analogy of filtering and finite volume methods

The physical model described above is based on a series of simplifications and assumptions.

However, it is important to notice how the model interacts with numerical approaches. In

order to highlight this interaction and to motivate the choice of the model, a preliminary

thought experiment is conducted.

We consider a generic one-dimensional balance law in conservation form

∂

∂ t
ϕ +

∂

∂x

(
f (ϕ)

)
= 0, (2.20)

where f (ϕ) represents a (nonlinear) flux and ϕ denotes the conserved quantity. A numerical

approximation of ϕ requires that ϕ has compact support in wave-number space. If the

maximum wave number is unbounded, the balance law needs to be regularized. Provided

that the maximum wave number is bounded, but the available degrees of freedom (the

number of cells or grid points) of a discretization are insufficient to represent the maximum

wave number, then an additional (numerical) regularization is required. Note that solutions

of Euler equations are unbounded in wave-number space, whereas those of the Navier Stokes

equations might be but the maximum wave number is usually too large for direct numerical

simulation. Therefore, regularization is usually applied.

In the following, a relation between filtered data and finite volume methods is discussed.

As a result, it is demonstrated that the thermodynamic approach specified previously is well

suited when combined with finite volume methods. We consider a one-dimensional periodic

domain with length n ·h, where h is the constant size of a finite volume and n is the number

of volumes. Writing equation 2.20 in integral (weak) form results in

∂

∂ t
ϕ i +

fi+1/2− fi−1/2

h
= 0, (2.21)

where

ϕ i :=
1
h

∫ xi+h/2

xi−h/2
ϕ(x) dx (2.22)

is the integral average (volume average) of ϕ for volume Vi with center point xi and

fi±1/2 := f
(
ϕ(xi±h/2)

)
(2.23)

are the fluxes evaluated at the cell faces.
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2.1. Governing equations and thermodynamic model

Note that equation 2.21 is identical to the result of the following approach: Let Gh be a box

filter of width h and πi be a Dirac comb (a sampling function at xi, i = 1...n). Then, the

above stated finite volume method can be written in equivalent form

πi ∗Gh ∗
{

∂

∂ t
ϕ +

∂

∂x
f (ϕ)

}
= 0, (2.24)

or, when using equation 2.22

πi ∗
{

∂

∂ t
ϕ +

∂

∂x
f (ϕ)

}
= πi ∗

{
∂

∂x
f (ϕ)− ∂

∂x
f (ϕ)

}
. (2.25)

The resulting term on the right hand side may be of dissipative or of anti-dissipative nature.

In order to ensure stability (in a practical sense, i. e. without proof), one can add additional

regularization in an explicit or implicit fashion (i. e. provided by the discretization scheme).

Let Reg(h,ϕ,ϕ) be a suitable regularization, then the equation reads

πi ∗
{

∂

∂ t
ϕ +

∂

∂x
f (ϕ)

}
= πi ∗

{
∂

∂x
f (ϕ)− ∂

∂x
f (ϕ)+Reg(h,ϕ,ϕ)

}
. (2.26)

A combination of all contributions to find a modified flux fmod yields

πi ∗
{

∂

∂ t
ϕ +

∂

∂x
fmod(ϕ)

}
= 0. (2.27)

This demonstrates that approximate solutions obtained by using finite volume methods can

be interpreted as regularized approximate solutions of filtered quantities. Although physical

(or mathematical) models are usually formulated in a point-wise fashion using partial dif-

ferential equations of unfiltered quantities, one has to take into account the effects of the

numerical approaches when analyzing or assessing a model. For example, the thermody-

namic cavitation model specified above has an intrinsic scaling capability although it does

not contain information about the inner structure of cavities, such as radii or number density

of bubbles. Let h′ be the characteristic length or diameter of a cavity and h the width of the

numerical filter. Then one can distinguish three regimes:

• Resolved cavities: If h′/h >> 1, then filtering might have an effect on the sharpness

of the boundary of the cavity, but it is still possible to recover or resolve the cavity in

an accurate way. This, however, is only the case when clear sheet cavities are present,

or, in case of bubble dynamic investigations, if the spatial resolution is sufficiently high.

It should be noted that models and schemes that are especially designed to operate

in this regime, such as sharp interface models, allow for higher solution quality, as

they allow for incorporation of additional physical details such as surface tension or

non-equilibrium processes.
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2. Physical model and numerical approaches

• Under-resolved cavities: If h′/h << 1, then filtering removes all small scale struc-

tures. Bubbly mixtures are thus represented as homogenized mixtures. This is often

the case in computations of cavitating flows around large scale devices where the char-

acteristic length of the device (for example a ship propeller) is much larger than the

typical diameter of a bubble. However, if it is ensured that h′/h << 1 holds within the

entire flow field, and provided that cavities are (nearly) spherical, then bubbly mixture

models might allow for additional conclusions or effects.

• Marginally resolved cavities: If h′/h ≈ 1, then bubbly mixture models as well as

sharp interface models can fail or at least may require additional techniques to handle

this regime.

The advantage of the proposed model is its applicability to all regimes. Even transitions

between regimes due to fragmentation of clear sheets or due to coalescence can be handled.

2.2. Numerical approach

A density based, conservative, three-dimensional volume method (FVM) operating on body-

fitted hexahedral multi-block grids forms the basis of the spatial discretization scheme. The

implementation of the finite volume scheme is carried out in an unsplit fashion, which enables

the application of independent temporal discretization schemes (method of lines approach).

Spatial discretization thus leads to a set of ordinary differential equations of dimension 5 ·n,

where n is the number of finite volumes and the factor 5 results from the balance laws of

mass, momentum (three components) and total energy. In the author’s work, only stationary

(non-deforming and non-moving) grids are considered. The spatial discretization implies the

following steps:

• Step 1: Selection of a two-dimensional quadrature rule for approximation of the surface

flux integral.

• Step 2: Point-wise reconstruction of ”left” and ”right” states depending on the selected

quadrature rule of step 1 and depending on the selected flux function (step 3).

• Step 3: Application of a suitable numerical flux function to evaluate point-wise fluxes

from the states obtained within step 2.

• Step 4: Evaluation of the flux integral via application of the quadrature rule on the

results of step 3.

In this work an efficient one-point quadrature rule is used. This limits the maximum achiev-

able spatial order of accuracy to 2. If higher order is desired, a four point quadrature rule

(max. order is four) has to be applied and ”true multi-dimensional” reconstruction of left

and right states is required. This, however, would increase numerical costs at least by a
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2.2. Numerical approach

Figure 2.1.: Schematic showing cells as required for reconstruction of states to evaluate the flux
across a cell face in coordinate direction ”i” at constant ”k”.

factor of about 10, which seems to be not as beneficial as doubling the spatial resolution in

all spatial directions.

2.2.1. Reconstruction of ”left” and ”right” states

The reconstruction of the required ”left” and ”right” states is performed along the index

directions of the computational grids. Non-linear limiters (TVD limiters) and a WENO-3

procedure are available. As the computed flow fields involve large gradients in density while

the velocity field might be smooth (phase boundaries), reconstruction of primitive variables

(ρ,u,v,w, p,e) is favored. The procedure is demonstrated on the example of index direction

”i”.

We consider four adjacent hexahedra Hi−1, Hi, Hi+1 and Hi+2, all of them defined by their

point index sets {i− 1, i+ 3}×{ j, j+ 1}×{k,k+ 1}, see Figure 2.1. In order to compute

the fluxes at the common surface Si+1/2 adjacent to Hi and Hi+1 the required states (left

= subscript L, right = subscript R) need to be reconstructed. For each cell, primitive

quantities (ρ,u,v,w, p,e) are computed from the known conserved quantities. More than

twenty linear and nonlinear reconstruction procedures have been investigated. With respect

to solution quality, robustness and efficiency, the following choices are recommended for

simulation of cavitating flows: The ”MinMod” limiter [80] is applied on pressure, density

and on mass specific internal energy. The velocity field is reconstructed using either the

WENO-3 scheme [74] or using the ”Koren-limiter” [83], which is not as common as the well

known limiters and will thus be briefly described in the following paragraph.
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2. Physical model and numerical approaches

Figure 2.2.: TVD-diagram after Sweby [77]. The grey zone indicates TVD regime, the blue line
is the switching function of the ”MinMod” limiter and the red line depicts the limiter
proposed by Koren [83].

Let di−1/2, di+1/2 and di+3/2 be the distances of the centroids of the hexahedra Hi−1, Hi,

Hi+1 and Hi+2 and let ϕ be the quantity to be reconstructed at both sides of the interface.

We define

rL :=
di+1/2

di−1/2
· ϕi−ϕi−1

ϕi+1−ϕi
(2.28)

and

rR :=
di+1/2

di+3/2
· ϕi+1−ϕi+2

ϕi−ϕi+1
. (2.29)

These ratios are bounded through the limiting function φ(r). In case of using the limiter

proposed by Koren 2.2, this is achieved by

φ(r) := max[0,min(2r, (1+2r)/3, 2)]. (2.30)

Switching and limiting properties of this limiter are shown in Fig. 2.2 as TVD graph .

Finally, the reconstructed values on the left and right side are

ϕL = ϕi +0.5 ·φ(rL) · (ϕi+1−ϕi) (2.31)

and

ϕR = ϕi+1 +0.5 ·φ(rR) · (ϕi−ϕi+1). (2.32)

Koren’s limiter, when applied to one-dimensional problems with constant grid spacing, leads

to parabolic reconstruction within the range 0.25≤ r ≤ 2.5, i. e. linear and quadratic state

functions are exactly recovered. The left hand state, for example, is obtained from

18



2.2. Numerical approach

ϕL =
2
3
· (ϕi +0.5 · (ϕi+1−ϕi))+

1
3
· (ϕi +0.5 · (ϕi−ϕi−1)). (2.33)

For the WENO-3 approach at the same ratio r = 0.25 we obtain

ϕL =
1

129
· (ϕi +0.5 · (ϕi+1−ϕi))+

128
129
· (ϕi +0.5 · (ϕi−ϕi−1)) (2.34)

and for r = 2.5

ϕL =
625
657
· (ϕi +0.5 · (ϕi+1−ϕi))+

32
657
· (ϕi +0.5 · (ϕi−ϕi−1)). (2.35)

Although the WENO-3 can be proven to be of (asymptotic) order of three, it can be shown

that the optimal coefficients (in an asymptotic sense) of 2/3 and 1/3 are approximated with

a deviation of less than 5 % when the ratio of gradients is in the range of 0.98≤ r ≤ 1.02.

This observation does not contradict the theoretical (asymptotic) order of accuracy, but it

demonstrates that the asymptotic order of WENO schemes is reached only when the solution

is extremely well resolved, which might not be the case for the majority of simulations of

cavitating flows.

2.2.2. Numerical flux function

Once reconstructed left and right quantities are available, the point-wise flux computation

can be performed.

First, the physical flux as specified in equation 2.1 is slightly rearranged to obtain an equiva-

lent ”enthalpy form”. Using the definition of the volume specific total enthalpy ρH = ρE+ p
allows for definition of ~qH and F(~qH ,~ei) as

~qH :=




ρ

ρ~v

ρH


 , F(~qH ,~ei) :=<~v,~ei > ·~qH + p ·




0

~ei

0


 . (2.36)

The new flux function is now based on three approximation steps:

1) Approximation of an ”advection velocity” <~v,~ei >∗
2) Approximation of an ”advected vector” ~qH

∗
3) Approximation of the ”cell-face pressure” p∗.
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In the following, we assume that the unit directional vector ~ei is identical to the unit normal

vector of the cell face of two adjacent cells (indicated by ”L” and ”R”). It is further assumed

that ~ei points towards cell ”R”.

Step 1: Approximation of an ”advection velocity” <~v,~ei >∗

For given (reconstructed) states ~qH
L , pL,cL and ~qH

R , pR,cR at the left (L) and at the right (R)

side of the cell face, the approximation of the advection velocity is defined as follows.

We define the acoustic impedance at the cell face (ρc)∗ as

(ρc)∗ := max(ρL,ρR) ·max(cL,cR,cmin). (2.37)

Hereby, cmin is a numerical parameter which is used to prevent excessive pressure-velocity

coupling in case of a very low speed of sound. Note that this parameter does not alter or

affect the physical speed of sound.

In a next step, arithmetic averages of the normal velocities ~vvel and of the density-weighted

normal momentum densities ~vmom are computed from

~vvel := 0.5 ·
((ρ~v)L

ρL
+

(ρ~v)L

ρr

)
(2.38)

and

~vmom :=
(ρ~v)L +(ρ~v)L

ρL +ρr
. (2.39)

The resulting advection velocity <~v,~ei >∗ is defined as

<~v,~ei >∗:=< (χ ·~vvel +(1−χ) ·~vmom),~ei >−
pR− pL

2 · (ρc)∗
, (2.40)

with parameter 0≤ χ ≤ 1.

Numerical experiments indicated that both, the velocity average and the momentum density

average, can tend to improper approximations of the advection velocity. A robust compromise

is χ = 0.5, which gives

<~v,~ei >∗:=
<
(
3(ρL +ρR)~vL +3(ρR +ρL)~vR

)
,~ei >

4 · (ρL +ρR)
·− pR− pL

2 · (ρc)∗
, (2.41)

where ~vL,R is computed by (ρ~v)L,R/ρL,R.

20



2.2. Numerical approach

Step 2: Approximation of an ”advected vector” ~qH
∗

The computation of the advected vector is based on upwinding with respect to the advection

velocity. This can be written as

<~v,~ei >∗ ·~qH
∗ := 0.5·<~v,~ei >∗ ·(~qH

L +~qH
R )−0.5 · |<~v,~ei >∗ | · (~qH

R −~qH
L ). (2.42)

Step 3: Approximation of the cell-face pressure p∗

The pressure is computed by a simple arithmetic mean of reconstructed left and right sided

quantities

p∗ :=
pL + pR

2
. (2.43)

Combining all elements results in the proposed new flux function Fmod

Fmod(~qH
L ,~q

H
R ,~ei) :=<~v,~ei >∗ ·

~qH
L +~qH

R

2
−|<~v,~ei >∗ | ·

~qH
R −~qH

L

2
+

pL + pR

2
·




0

~ei

0


 . (2.44)

As face normals are pointing outward, the net-flux for cell Hi, j,k is given by the following sum

net-flux(Hi, j,k) = |Si+1/2| ·Fmod,i+1/2 − |Si−1/2| ·Fmod,i−1/2

+ |S j+1/2| ·Fmod, j+1/2 − |S j−1/2| ·Fmod, j−1/2

+ |Sk+1/2| ·Fmod,k+1/2 − |Sk−1/2| ·Fmod,k−1/2.

(2.45)

Therefore, the unsplit spatial discretization associated to hexahedron Hi, j,k with volume Vi, j,k

is

∂

∂ t

∫

Vi, j,k

~q dV =−net-flux(Hi, j,k). (2.46)
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2.2.3. Time integration

Several approaches have been considered for time integration of the semi-discrete method

introduced in equation 2.46. As wave dynamic processes need to be resolved, explicit schemes

are favored. Implicit techniques have recently been developed as well, but in the framework

of this thesis, explicit methods are used exclusively.

In particular, low-storage multi-stage schemes have been investigated. Following [35], a

reasonable option is given as:

q(i) = q(0)+4tβiF
(
q(i−1)

)
, i = 1, ..,4

q(0) = qn, q(4) = qn+1

(2.47)

The specific choice of this scheme leads to discretizations of order ≤ 2 for non-linear problems

[72]. Choosing coefficients β3 = 1/2 and β4 = 1.0 leads to schemes of 2nd order accuracy,

which are related to classical Runge-Kutta schemes. The remaining coefficients can be used

to optimize the stability region for the underlying problem, which may be simplified with the

generic equation q′ = F(q).

Applied to Dahlquist’s test equation [72]

q̇(t) = λq(t), q(0) = 1, λ ∈ Z mit Re(λ )< 0 (2.48)

we obtain the stability polynomial with z := λ4t

P(z) := 1+β4z+β4β3z2 +β4β3β2z3 +β4β3β2β1z4. (2.49)

Determination of the region of absolute stability (|P(z)| ≤ 1) as defined in [72] requires

numerical experiments. Results for three sets of coefficients, which are summarized in table

2.2, are shown in Figure 2.3.

Scheme β1 β2 β3 β4 Order of accuracy

LS 1 RK 4 11/100 5/18 1/2 1.0 2

LS 2 RK 4 9/112 2/9 1/2 1.0 2

LS 3 RK 4 1/3 4/15 5/9 1.0 1

Table 2.2.: Runge-Kutta coefficients

In order to demonstrate the effect of the coefficients β1 and β2 on the stability region, a

comparison with stability regions of classical Runge-Kutta schemes of orders one to four
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2.2. Numerical approach

Figure 2.3.: Comparison of stability regions for different Runge-Kuttta schemes
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2. Physical model and numerical approaches

is provided. ”LS 3 RK 4” was not considered as the order of accuracy is insufficient but

has the best imaginary axis stability properties. The scheme denoted as ”LS 1 RK 4” is

used in this work. In order to estimate the maximum allowable time step size, a linear one-

dimensional advection equation in a periodic domain and two spatial discretizations were

analyzed. Computing amplification factors G := |(qn+1/qn)| for the eigenvalues of a first-

order upwind discretization and a third-order upwind-biased discretization [34] indicates that

upper bounds might be at CFL = 2.49 (first order upwind) and at CFL = 2.09 (third order

upwind-biased). Although the scheme ”LS 2 RK 4” showed an improvement of about 8 % for

both test problems, it exhibits instabilities for CFL=2.0 when applied to the actual governing

equations, while ”LS 1 RK 4” remained stable. Note that both schemes, ”LS 1 RK 4” and

”LS 2 RK 4”, do not contain parts of the imaginary axis except for the origin.

The computation of the time step size follows a simple procedure:

• Determine the maximum cell face area Smax,i, j,k for a hexahedron Hi, j,k with volume

Vi, j,k.

• Estimate the maximum signal speed λmax,i, j,k := |~v|+ c.

• Compute the local time step ∆ti, j,k := CFL · Vi, j,k

Smax,i, j,k ·λmax,i, j,k
· 1

dim
, where ”dim” is

the number of non-trivial dimensions.

• Find the smallest local time step for each block of the multi-block grid.

• Find the smallest time step of all blocks.

In this work CFL= 1.5 was used for most of the computations. Although this might be a cau-

tious choice, since computations with CFL=1.8 seem to run stable as well, it is recommended

to use CFL = 1.5.
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3. Summary of achievements

3.1. Contributions of the author

The author has developed a new flux function for the simulation of cavitating liquid flows

including wave dynamics. In contrast to classical Riemann solvers, the developed scheme

results in an asymptotically correct scaling of the numerical truncation errors with decreasing

Mach number (low Mach number consistent). This is achieved by omitting the spectral

radius u± c as part of the regularization. Validation of the scheme is presented in the first

publication in Appendix A.

The scheme was implemented in a finite volume method which was developed during the

author’s diploma thesis [62]. A thermodynamic model proposed by Saurel [59] was selected

and implemented. The resulting simulation code was then applied to a series of high and

low speed flows. Internal flows in fuel injector models and external flows around twisted and

non-twisted hydrofoils as well as around a prismatic body and a sphere have been simulated

and analyzed. The author has demonstrated that shedding processes are essentially inertia

controlled (see publication number 5 in appendix E).

A major discovery was that the developed approach allows for the computation of collapsing

vapor patterns together with the formation and propagation of strong shocks. The footprints

of instantaneous loads can be used to determine regions of enhanced risk for cavitation

erosion. Recent publications [52,53] indicate that the computed intensity and the frequency

of events may allow for the derivation of load profiles. These profiles enable a quantitative

evaluation of the aggressiveness of cavitating flows. The author of this thesis proposed the

scaling law of the collapse intensity based on the decay law for spherical waves, as well as

an empirical scaling law for the frequency of collapses.

By coarse-graining the computational resolution from resolved bubbles to an under-resolved

vapor cloud an important property of the model was obtained. It was shown that the applied

model can be used in case of fully resolved cavities, represented or marginally resolved cavities

and under-resolved cavities. It is thus reasonable to interpret the model as a sub-grid model

in case of insufficient spatial resolution. A mathematical motivation of the observed model

behavior was proposed on basis of filtering which is implicitly contained in finite volume

methods.
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3. Summary of achievements

3.2. Awards

The author was a member of the winning team of ACM Gordon Bell Prize 2013, [57].

3.3. List of publications

The author’s progress was continuously published. Contributions fulfilling the following re-

quirements are listed below:

• At least 6 pages, no short papers or enlarged abstracts

• First authorship (9 publications) or co-authorship (18 publications)

• Available as printed version, online version or both

• Peer reviewed, either by a committee or by at least 2 referees.

1. ”Compressible simulation of high-speed hydrodynamics with phase change” [61]

2. ”Shock and wave dynamics of compressible liquid flows with special emphasis on un-

steady load on hydrofoils and on cavitation in injection nozzles” [70]

3. ”Shock waves as driving mechanism for cavitation erosion” [64]

4. ”Compressible simulation of liquid/vapor two-phase flows with local phase transi-

tion” [67]

5. ”Riemann technique for the simulation of compressible liquid flows with phase-transition

at all Mach numbers – shock and wave dynamics in cavitating 3-D micro and macro

systems” [66]

6. ”Numerical investigation of 3-D cloud cavitation with special emphasis on collapse

induced shock dynamics” [71]

7. ”Numerical analysis of shock dynamics for detection of erosion sensitive areas in com-

plex 3-D flows” [65]

8. ”Density based CFD-techniques for simulation of cavitation induced shock emission”

[68]
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3.3. List of publications

9. ”Inertia controlled instability and small scale structures of sheet and cloud cavita-

tion” [69]

10. ”Unsteady bubbly cavitating nozzle flows” [15]

11. ”Shock and wave dynamics in cavitating compressible liquid flows in injection noz-

zles” [73]

12. ”Non-barotropic models of cavitation and their applications” [14]

13. ”Collapse detection in compressible 3-D cavitating flows and assessment of erosion

criteria” [51]

14. ”Assessment of the prediction capability of a thermodynamic cavitation model for the

collapse characteristics of a vapor-bubble cloud” [63]

15. ”Numerical simulation of collapse induced shock dynamics for the prediction of the

geometry, pressure and temperature impact on the cavitation erosion in micro chan-

nels” [76]

16. ”Implicit large eddy simulation of cavitation in micro channel flows” [30]

17. ”Numerical prediction of erosive collapse events in unsteady compressible cavitating

flows” [53]

18. ”Numerical simulation of sheet and cloud cavitation and detection of cavitation ero-

sion” [78]

19. ”Turbulence Modulation by Phase Change in a Cavitating Shear Layer” [20]

20. ”Implicit large-eddy simulation of cavitation in a turbulent shear layer” [19]

21. ”Quantitative Prediction of Erosion Aggressiveness through Numerical Simulation of

3-D Unsteady Cavitating Flows” [52]
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3. Summary of achievements

22. ”Bubble Dynamics and Shock Waves: Shocks in Cavitating Flows”, Chapter 8, [13]

23. ”LES of Turbulent Cavitating Shear Layers” [21]

24. ”11 PFLOP/s simulation of cloud cavitation collapse” [57]

25. ”Numerical Prediction of Erosive Collapse Events in Unsteady Compressible Cavitating

Flows” [53]

26. ”Recent progress in experimental and numerical cavitation erosion prediction”, Chap-

ter 14, [38]

27. ”Large-eddy simulation of turbulent cavitating flow in a micro channel”, [22]
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In the following, ten selected publications are presented. Prior to each original publication,

a short summary of the achievements and/or developments is given and the contributions of

the author of this thesis are clarified.
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A. First publication

In the author’s first publication [61] a low Mach number consistent flux scheme for simulation

of cavitating liquid flows including wave-dynamics is proposed. In contrast to existing ap-

proaches, the novel technique does not require time-operator preconditioning to recover the

correct low Mach number behavior in low speed flows. The flux scheme is implemented into

an unsplit finite volume method using explicit time integration and block-structured body-

fitted hexahedral grids. A thermodynamic cavitation model proposed by Saurel et al. [59] is

applied and simplified equations of state for liquid water at approximately room temperature

are presented.

The novel scheme is validated by computation of well-known 1-D test-cases and is applied to

a low Mach number steady-state flow in a simplified 2-D nozzle. By computing the unsteady

flow in two different 3-D injection nozzles, the applicability of the proposed methodology

to simulate flows in technical devices is demonstrated. The effects of a swirl generator

upstream of the nozzle inlet are analyzed and a favorable behavior of the intrinsic dynamics

of the cavitating flow is observed. In particular, the cavity patterns are no longer in contact

with the wall of the bore hole, but form a stable vapor core at the center of the emerging

vortex. As a result, collapsing cavity patterns are kept away from the wall of the bore hole

and shocks due to collapses of vapor patterns do not lead to high loads on the material.

Although the proposed methodology was refined with respect to robustness and efficiency

during the author’s ongoing work [66, 71], the developments presented in this publication

served as basic concepts of all consecutive publications.

I developed the flux-function, implemented the thermodynamic approach, generated the

grids, performed simulation and analysis of results and prepared the manuscript.
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Abstract. The present paper focuses on a numerical approach based on the Riemann
problem to simulate liquid flows with phase changes. Thereby, the flow properties include
velocities from O(1) m/s to O(100) m/s and pressures from p ≈ 0 bar to O(1000) bar.
The thermal and caloric behavior of liquid and vapor is described by suitable equations
of state that keep the considered governing equations hyperbolic in time. This enables us
to study single-phase as well as two-phase wave propagation phenomena, which can have
strong effects on the performance of dynamic systems, e.g. on high-speed hydrodynam-
ics in injection nozzles or in high pressure valves. Our physical model is based on the
assumption that the two-phase regime can be described as a homogeneous mixture that re-
mains in thermodynamic and mechanical equilibrium. This model provides a macroscopic
description of the phase change and is independent of empirical parameters. Subsequent
to the description of the mathematical model and the numerical method, computations
are carried out to demonstrate the accuracy and applicability of the numerical scheme to
liquid flows for a large variety of industrial problems. Finally, the simulation results of
the time-dependent cavitating flow through a 3-D injection nozzle will be presented.

1 INTRODUCTION

Liquid flows at low or at least moderate Mach numbers are usually described as being
incompressible. This simplification is justified by the observation that the density change
along a particle path is almost zero as long as no phase change occurs. As a result, the con-
tinuity equation reduces to a kinematic constraint on the velocity field. Furthermore, the
pressure is no longer a thermodynamic state variable and thus one has to calculate it from
the known velocity field by a Poisson type equation. An important consequence of this
formulation is the loss of hyperbolicity of the time-dependent convective flow equations,
which means that the mathematical model does no longer describe wave motion with
finite propagation speeds. In the case of subsonic steady-state solutions this treatment

1
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gives satisfactory results. For unsteady flow patterns the elliptic pressure treatment can
lead to completely wrong predictions, for example when calculating the pressure raise in
a water hammer. Especially when dynamic systems such as high-speed valves or injection
systems are considered, the wave propagation and thus the compressibility has to be taken
into account. Most of the work done so far does consider only 1-D geometries1. Even if
there is no external force present that introduces pressure waves to the flow field, strong
compressibility effects can be observed when the liquid undergoes phase change. We will
exclusively focus on phase change phenomena caused by a local pressure drop below the
temperature-dependent saturation pressure - cavitation - , or if vapor is already present
and the pressure rises above its saturation value - condensation. Both effects can be a
consequence of acceleration or deceleration of the flow due to geometry properties as well
as due to rarefaction or shock waves. The description of microscopic details of the phase
change is beyond the scope of this investigation but there has been numerous research
on this subject2,3. Instead we will follow the assumption that a given fluid volume can
be represented by either a pure phase or by a homogeneous saturated mixture4. In the
case of a mixture region we define macroscopic quantities. This can be achieved by the
assumption that the flow particles undergo unconstrained thermodynamic equilibrium.
Moreover, the equilibrium assumption enables us to define an equilibrium speed of sound
c, which will be used to calculate the wave propagation in the two-phase mixture as well
as in single phase regions.

2 GOVERNING EQUATIONS

As we are mainly interested in the wave dynamics of convective high-speed hydrody-
namics, we base our mathematical model on the conservation laws of mass, momentum
and energy and neglect viscous effects. The saturated mixture quantities are then defined
as convex combinations of mass or volume fractions of the pure quantities. For liquid
states we use the index l and for vapor states the index v is taken. Quantities without
index represent either vapor-liquid equilibrium properties in the two-phase region or pure
substance properties in single-phase regions. We further use the notations:

α :=
Vv

Vv + Vl

volume fraction of vapor

µ :=
ρvVv

ρvVv + ρlVl

mass fraction of vapor.

(1)

Mass and volume fractions fulfill the relations

0 ≤ α ≤ 1 and 0 ≤ µ ≤ 1. (2)

The mixture density and the mixture internal energy can then be defined by

2
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ρ = αρv + (1− α)ρl
ρe = αρvev + (1− α)ρlel = ρ

{
µev + (1− µ)el

}
.

(3)

By interpreting the mixture quantities (ρ, ρ~v, ρE) as densities with respect to the Lebesgue
measure we find formally the same set of equations as for single phase flows:

∂t ρ + div(ρ~v) = 0

∂t(ρ~v) + div(ρ~v ⊗ ~v + pI) = ~0

∂t(ρE) + div(ρH~v) = 0.

(4)

Here, ~v ∈ R3 and I = δij. The total enthalpy H is given by:

H = E +
p

ρ
= e+

|~v|
2

2

+
p

ρ
. (5)

Furthermore, constitutive relations for the remaining quantities are needed. At this point
we assume relations for pressure and internal energy to be given in the form

p = p(ρ, e) and T = T (ρ, e). (6)

By writing the system (1) in quasi-linear form and calculating the eigenvalues in unit
direction ~n one obtains5:

~v · ~n− c, ~v · ~n, ~v · ~n, ~v · ~n, ~v · ~n+ c (7)

where c2 is defined by

c2 =
∂p

∂ρ

∣∣∣∣
s

=
∂p

∂ρ

∣∣∣∣
e

+
p

ρ2
∂p

∂e

∣∣∣∣
ρ

. (8)

The Euler system (4) is hyperbolic if and only if 0 < c2 < ∞. Then the quantity c is
called equilibrium speed of sound6.

3 EQUATIONS OF STATE (EOS) FOR LIQUID, VAPOR AND SATU-
RATED MIXTURE

In this section we give an example for the constitutive relations (6), which are suit-
able to describe the properties of water and water vapor for thermodynamic subcritical

3
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conditions occurring in a large range of practical applications. Note that the general nu-
merical method is not restricted to this special choice and hence, the use of problem-suited
relations is possible.

3.1 EOS for liquid water

One often used relation for the properties of liquid water is the Tamman EOS or
sometimes called Stiffened equation of state7. This EOS is well-designed for very high
pressures and its evaluation is extremely fast. Unfortunately, for the considered pressure
regime from nearly 0 bar up to 1000 bar the Tamman EOS is not suitable. Another well
known relation is given by Tait’s law:

p+B

pref +B
=

(
ρ

ρref

)N

. (9)

This equation is often used to describe isentropic variations and a thermally consistent
description for the corresponding internal energy could be of the form:

el = Cvl(T − Tref ) + elref . (10)

In EOS (9) and (10) the reference values (·)ref , the ”bulk coefficient” B, the ”adiabatic
exponent” N and the specific heat at constant specific volume Cvl are assumed to be con-
stants. The accuracy of the pressure law (9) can be increased by the use of temperature-
dependent saturation values instead of constants4. We then obtain the modified Tait law:

p+B

psat(T ) +B
=

(
ρ

ρl,sat(T )

)N

. (11)

Equation (11) can be interpreted as a set of self similar curves starting from saturation
values and then following Tait’s law. Again, B and N are assumed to be constant. Un-
fortunately, the modified Tait equation together with formulation (10) does not fulfill
Maxwell’s relations. Nevertheless it gives an useful description not only for water but for
a large range of materials8,9. It should be further pointed out that the resulting errors by
checking the compatibility relations are relative small and hence, we suggest that the mod-
ified Tait law (11) together with (10) can be an appropriate set of constitutive relations
for liquid flows. As the saturation properties are typically given by high-order non-linear
functions (e.g. Oldenburg polynomials10 for water and water vapor), the evaluation pro-
cedure is further simplified by approximating the saturation functions by problem specific
lower order relations.
The speed of sound cl for liquids is then found by applying (8) on (10) and (11). The
obtained values do in general agree well with the measurement data11, but relative errors
up to three percent are possible.
All calculations in section 5 are performed with the same reference values, which can be
found in the appendix.

4
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3.2 EOS for water vapor

In comparison to liquids, the thermodynamics of ordinary gases at moderate conditions
can be modeled in a more compact way. The simplest but still appropriate formulation
is given by the ideal gas law:

p = ρvRT

ev = Cvv(T − Tref ) + elref + Lvref .
(12)

For the sound speed cv in pure vapor the well known relation c =
√
κRT is applied.

Again, the used constants are given in the appendix.

3.3 EOS for saturated two phase mixture

The assumption of thermodynamic equilibrium enables us to define mixture states by
the following conditions:

ρ = αρvsat(T ) + (1− α)ρlsat(T )

ρe = αρvsat(T )ev(T ) + (1− α)ρlsat(T )el(T )

p = psat(T ).

(13)

The temperature-dependent saturation densities of water and vapor can again be approx-
imated by exponential functions (appendix). Note that by solving the first equation for
the volume fraction α and applying the result to the second equation we find:

ρe =
ρ− ρlsat(T )

ρvsat(T )− ρlsat(T )

{
ρvsat(T )ev(T )− ρlsat(T )el(T )

}
+ ρlsat(T )el(T ). (14)

This is a single nonlinear equation for the unknown temperature T , which can be solved
via appropriate numerical methods. In our case we have found a contradictive formula-
tion, and by applying Banach’s theorem we obtained a simple fixpoint scheme which has
proven to be at least 3 to 4 times faster then our previously used Newton method. If the
temperature is found, the first equation gives the volume fraction in a self-consistent way
and the calculation of the saturation pressure is easily done.
The calculation of the mixture speed of sound c can be simplified by the commonly used
formula1,2 given by Wallis12. This leads to the relation:

1

ρ · c2 =
α

ρv,sat · c2v
+

1− α

ρl,sat · c2l
. (15)

Evaluating this expression for saturation values, a very strong dependence on the vapor

5
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fraction α can be observed. The quantitative behavior for T = 293 K is demonstrated in
Fig. 1 (left). Note that the sonic speed decreases from O(1000) m/s to O(1) m/s. Even
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Figure 1: Speed of sound c for a two phase mixture in logarithmic scale (left) and combined EOS at
T=293 K and IAPWS data13 (right)

for very tiny mass and volume fractions an enormous reduction of the speed of sound
is observable. This fact was experimentally used to generate hypersonic flow fields at
relative low convective speeds14.

3.4 Combined EOS for liquid flows with phase change

Connecting the above defined equations of state leads to a complete description of the
properties of liquid and vapor. It should be pointed out that more accurate equations
are known15. The advantages of the procedure given above are its applicability to fluids
other then water and its high numerical efficiency. A comparison of the combined EOS
with IAPWS measurement data13 at a temperature T = 293 K is given in Fig. 1 (right).

4 NUMERICAL METHOD

The formulation of the governing equations as conservative hyperbolic system moti-
vates the use of specially adapted solution strategies, such as the Godunov approach16.
Although the Riemann problem is completely understood for 1-D ideal gas flows, the
extension to multidimensions and arbitrary equations of state is still somehow empirical.
Nevertheless, most of the results obtained by Godunov-type schemes are convincing and
especially the sharp wave capturing ability is up to now not reached by other methods.
A general Riemann problem description with special remark on ideal gases is given by

6
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Toro17. The Riemann problem for water and the interesting case of Riemann problems for
water/gas interfaces are solved for special equations of state7,18. General remarks on real
material flows can be found in the literature19. In the last few years, the density-based
solution procedures for the Cauchy problem of fluid dynamics have reached enormous
interest and successful and sophisticated numerical codes have been developed20. While
being well-designed for time-dependent wave propagation phenomena, it was found out21

that the calculation of steady-state flows at sufficiently low Mach numbers cannot be done
without modifying the density-based schemes. The introduction of asymptotic expansions
in natural powers of the Mach number show that the numerical problems arising for M
sufficiently small are due to wrong calculations in the pressure field22. To solve these
drawbacks, a modification of the numerical dissipation was found to be successful23. The
next subsections are therefore organized as follows: First, an approximate solution of the
Riemann problem is given and the influences of the fluid properties on the accuracy of a
numerical simulation are briefly discussed. As a main result, the calculation of the pres-
sure flux may need some modifications to ensure accurate steady state solutions. Taking
these modifications into account, a hybrid solution approach is given in subsection 4.2.

4.1 Accuracy of well-known Riemann solvers

Before we give a brief description of the numerical difficulties to solve compressible
liquid flows we introduce further quantities and notations. Therefore a schematic sketch
of the Riemann problem and the arising quantities is given in Fig. 2. The quantities on the

(ρL, uL, pL) (ρR, uR, pR)

(ρ∗L, u
∗, p∗) (ρ∗R, u

∗, p∗)

x

t

Figure 2: Schematic 1-D Riemann problem

very left (”L”) and on the very right sides (”R”) are the known integral averages from the
last timestep. To calculate the fluxes over the cell faces, the star conditions (ρ∗L, ρ

∗
R, u

∗, p∗)
are required. By assuming that the two outer states are close to some averages, a local
linearisation around that averages could be performed and an approximate solution is

7
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obtainable by applying Rankine-Hugoniot conditions across each wave:

u∗ =
uL + uR

2
+

pL − pR
2ρ̄c̄

p∗ =
pL + pR

2
+

ρ̄c̄(uL − uR)

2

ρ∗L = ρL +
ρ̄(uL − u∗)

c̄
ρ∗R = ρR +

ρ̄(u∗ − uR)

c̄

(16)

Note that the linearisation replaces the waves in the genuinely non-linear fields by jump
discontinuities independently of the specific wave types. The barred variables ρ̄, c̄ could be
specified as arithmetic means of left and right-sided values. Although more sophisticated
approximations for the star conditions are known17, the general properties of the result-
ing fluxes are quite similar to the one given above. Especially the behavior of the second
equation should be briefly discussed: Therefore, we consider an inviscid steady water flow
through a one-dimensional duct at a (nearly) constant temperature of 320 Kelvin and a
constant total pressure of 1.125 bar. The velocity is assumed to accelerate from 5m/s at
position x1 to 15 m/s at position x2. For these conditions, the steady density and sonic
speed distributions will be to best approximation constants, say ρ ∼= 1000 kg/m3 and
c ∼= 1540 m/s. The static pressure drop can then be calculated from the Bernoulli equa-
tion and one obtains: p(x1) = 1 bar and p(x2) = 0 bar. Note that the static pressure and
the velocity both vary in the order of their ”farfield values” at position x1. Although the
Mach number M of this problem is strictly smaller then 0.01, we are not allowed use the
asymptotic techniques developed for low Mach number flows, because the leading-order
variations do not permit the introduction of M -expansions22. In the context of a finite
volume approach all quantities are given by integral averages. Assume the discretization
leads to the following left- and right-sided values:

uL = 5 m/s, uR = 5.13 m/s,
pL = 1 bar, pR = 0.993 bar,
ρL = 1000 kg/m3, ρR = ρL − ε (ε ≪ 1).

(17)

Evaluating the expressions in (16) does then give the conditions

u∗ ≈ 5.056 m/s, p∗ ≈ 0 bar. (18)

On the one hand both values can be verified to be quite accurate solutions of the Riemann
problem for the given left and right sides. On the other hand the obtained pressure value
indicates the difficulty to calculate the numerical flux for a smooth water flow. The
calculated interface pressure p∗ is extremely sensitive even to small ”discrete jumps” in
the velocity field. An explanation for this behavior could be obtained by the following
observation: For nearly constant density and sonic speed the numerical approximation of
the pressure pL,R at the cell interface is given by the p∗ relation in (16):

pL,R =
pL + pR

2
+ ∆xρc

(uL − uR)

2∆x
=

pL + pR
2

−∆xρc
u′(ξ)

2
(19)

8

39



Steffen J. Schmidt, Ismail H. Sezal and Günter H. Schnerr

One can identify the product ρc as a scaling factor on the mesh dependent dissipation term
∆xu′(ξ). As a consequence, the use of the quantities arising from the Riemann problem
to calculate the fluxes over the cell faces (as commonly done in the approximate Godunov
approach) results in a scheme with a truncation error of O(ρc ·∆x). A comparison of air
and water at standard conditions leads to:

(ρc)air = O(102) and (ρc)water = O(106) (20)

From equation (20) it can be concluded that the calculation of a steady water flow may
require a much finer grid than a comparable air flow. Unfortunately, this is a consequence
of the discretization and not part of flow physics, as the velocity jumps are - for the
suggested smooth flow - not physically present. Keeping this in mind we can determine
possible ways to obtain accurate solutions for steady and unsteady liquid flow problems:
Fine grids, high-order reconstructions and/or a modification of the pressure flux calcula-
tion. The first two suggestions are in general limited in their efficiency and do not seem
to be sufficient to obtain accurate steady-state results on typical 2-D and 3-D grids. This
will be demonstrated in section 5.3 for a 2-D single-phase calculation.

4.2 Hybrid solver based on the Riemann problem and flux splitting

In order to study the behavior of well known flux functions we have applied the schemes
of ROE, HLL and HLLC, as well as the Rusanov scheme and two simple linearized schemes
on steady and unsteady water flow problems17. All schemes failed to give accurate steady-
state solutions for typical 2-D and 3-D nozzle flows, but they performed excellent or at
least satisfactory on shock tube problems. As supposed in the previous section, the
steady-state solutions indicated a strongly dissipative behavior. Contrary to the men-
tioned flux functions, the AUSM+ scheme24 performed quite well for t → ∞. For shock
tube calculations the scheme produced acceptable results but the mass flow was not as
accurate as the one predicted by the ROE or HLLC fluxes. Comparing the pressure flux
calculation in the AUSM type methods24,25 with those methods that are directly related
to the Riemann problem, one can figure out that the AUSM pressure splitting contains a
significantly lower diffusion term. For the nozzle flow problem stated above the interface
pressure calculated by the AUSM scheme is about 0.9 bar, which seems more reasonable
than the result given in equation (18). We therefore tried to combine the AUSM flux with
the HLLC flux to obtain a scheme26 that is able to handle problems containing nearly
steady regions as well as time dependent wave phenomena. Therefore, we follow the gen-
eral philosophy of the AUSM type methods and divide the conservative Euler fluxes F (Q)
into a ”convective component” and a ”pressure part”. This leads to the formula:

9
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F (Q) =




ρu
ρuu+ p
ρuv
ρuw
ρuH




= (ρu) ·




1
u
v
w
H




+




0
p
0
0
0




= ṁ · Fconv + Fpres (21)

The mass flux ṁ := (ρu) is a common scalar for the convective flux. Instead of approx-
imating ṁ via polynomials (as done in the original AUSM methods) we use the HLLC
mass flux17. For the schematic sketch given in Fig. 2 the mass flux reads then:

ṁ := (ρ∗Lu
∗) (22)

The convective vector Fconv is build up by pure left side states for positive mass flow and
otherwise by right side values. This is again a common part of AUSM. To determine the
pressure flux Fpres we apply the AUSM pressure splitting without additional modifications.
The resulting interface pressure pL,R can be written as:

pL,R := P+
5 (uL/cL) · pL + P−

5 (uR/cR) · pR (23)

A very detailed description of the AUSM scheme including the full presentation of the
polynomials P±

5 for the pressure splitting can be found in the literature24.

4.3 Higher-order spatial reconstructions

The finite volume framework leads to a method of lines type approach where the spatial
discretization can be selected independent of the time marching scheme. Although the
straight forward extension of the TVD theory to multi-dimensions has proven to be not
successful in a rigorous mathematical sense27, the so called MUSCL-type reconstructions
have been successfully used for many years. We apply the reconstruction procedures in
a coordinate-wise manner on the variables ρ, u, v, w, e and select the type of limiting de-
pending on the flow properties. For cavitating flows a positivity preserving reconstruction
is needed for the density, such as the MinMod limiter27. The velocity field is recovered by
a WENO-3 reconstruction28 and for the internal energy we apply the VanLeer limiter5.

4.4 Temporal integration

As the resolution of pressure waves requires a very small time step we use explicit time
marching schemes only. We have tested a second order TVD-Runge-Kutta method29 as
well as a non-TVD four stage second order low storage RK scheme5. Both worked stable
and accurate for all our numerical examples. It follows from the theory29 that the CFL
number for the TVD-RK has to be taken very small (< 0.3) to keep the scheme in the
TVD region. The four stage RK allows a CFL ≈ 1.5 and although it does not ensure
TVD we did not observe overshoots for the simulations done jet.

10
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5 NUMERICAL EXAMPLES

In the following section we validate the numerical scheme for 1-D and 2-D test cases
and apply it then to a 3-D geometry. If possible, the obtained solutions will be compared
with analytical results.

5.1 1-D single phase time-dependent test case

In order to verify the stability and the wave capturing ability of our method we start
with a well-known Joukovski-Shock or water hammer problem, which is actually an ordi-
nary moving normal shock. Thereby, a stationary water flow through a pipe with constant
area and the constant conditions ρ = ρ(p∞, T∞), u = u∞ > 0, p = p∞ and T = T∞ is
considered. At time t = tc the outflow boundary is entirely closed and a pressure rise at
the wall instantaneously occurs. This (weak) shock wave then travels in opposite direction
to the flow. Again, the pressure jump can be approximated by solving the generalized
Riemann invariant across the wave

dp+ ρcdu = 0 across ẋ = u− c. (24)

By evaluating the product ρc at the foot of the characteristic one obtains:

p∗ = p∞ + ρ∞c∞u∞. (25)

Using the experimental data from11 we find for water at conditions T∞ = 319.0 K and
p∞ = 0.9 bar the corresponding density ρ∞ = 989.86 kg/m3 and the corresponding sonic
speed c∞ = 1537.16 m/s. Taking u∞ = 1.0 m/s and evaluating (25) for these conditions
gives

p∗ = 16.12 bar. (26)

We now perform a numerical simulation by using p∞, T∞ and u∞ as stated above. The
corresponding density and sonic speed follow thereby from the equation of state. First we
find

ρ∞,eos = 989.84 kg/m3 and c∞,eos = 1544.14 m/s. (27)

The relative errors in density and sonic speed are ∆ρ/ρ∞ = 2 ·10−5 and ∆c/c∞ = 4 ·10−3.
The calculated pressure after the shock gives p∗num = 16.20 bar. Taking the analytical
estimate (26) as reference we find the relative error ∆p∗/p∗ = 5 · 10−3.

Remark 1: Calculating the Joukovski-Shock by integrating characteristic compatibility
relations across the shock (equations 24, 25) results in an underestimation of the pressure
jump. It is possible that the numerical result, which predicts a shock Mach number of
MS ≈ 1.0008, is closer to the true solution then the analytical estimate.

Remark 2: Contrary to steady subsonic flow patterns, the water hammer can not be
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calculated with an incompressible formulation. The divergence-free condition in incom-
pressible formulations does not permit the formation of the necessary pressure wave and
instead of the true time-dependent behavior the velocity in the whole pipe will be set to
zero after the first time step. From a physical point of view, this could be interpreted as an
infinitely fast signal speed, which is a general model error of incompressible formulations.

5.2 1-D two phase time-dependent test case

In this subsection we use the combined EOS and decrease the density below the satu-
ration density of pure liquid by enforcing two symmetric expansion waves. The domain
is given by a 1-D constant area tube with length 1 m. At time t = 0 s the whole tube
is filled with water at a temperature T = 303.15 K and a pressure p = 0.9 bar. The
velocity field is assumed to jump at x = 0.5 m from uL = −10 m/s to uR = 10 m/s.
These conditions enforce the phase change to occur. In Fig. 3 the resulting flow features
at time t = 1.5 · 10−4 s are shown. The domain was divided into 300 equally spaced cells
and the time integration was performed with the LS-RK 4 at CFL = 1.5.
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Figure 3: Flow quantities at time t = 1.5 · 10−4 s for the 1-D symmetric rarefaction problem.
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5.3 2-D Single Phase Steady-states

We now compare our solution strategy with the well-known HLLC approach7,17. There-
fore, we define a 2-D geometry typical for injection nozzles and search for the enforced
single phase steady-state solution. This means that we do not allow the liquid to undergo
a phase change by using the pure liquid EOS even if the density falls below its saturation
value. The same simulation was performed with higher pressure fields, but the qualitative
behavior was not affected. The geometry and the boundary conditions are given in Fig.
4. The spatial discretizations are the first order schemes (without any reconstruction)
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y
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m
]

Figure 4: 2-D plane nozzle geometry, fine grid (top half), coarse grid (bottom half) and boundary
definitions

and the quadratic interpolation of cell averages without limiters. The later one corre-
sponds to a third order accurate formulation on equally spaced one dimensional grids5.
For the time-marching the four stage RK scheme is applied and all solutions converged
at least seven orders in magnitude measured in the common L2-Norm of the conserved
quantities. The boundary conditions are subsonic inlet, subsonic outlet and adiabatic
inviscid walls. At the inlet we fix total pressure, static temperature and the direction of
the velocity. At the outlet, the static pressure is specified and all remaining quantities are
taken from inside. All boundaries are defined by ghost cells and hence, the treatment of a
boundary cell is equivalent to the treatment of the interior domain. The grids for the full
symmetric nozzle consist of 96 x 25 points (coarse grid) and 189 x 49 points (fine grid),
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both with finer treatment of the region where the small corner like radius R = 28 µm
will produce large gradients. For presentation purposes we show one half of the nozzle
for each solver. The top half of each nozzle picture shows the result obtained with HLLC
and the bottom shows the result of the Hybrid scheme. To verify the obtained solutions
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Figure 5: Comparison of HLLC (upper half) and Hybrid scheme (lower half) on the coarse grid (left)
and on the fine grid (right) for the 2-D plane geometry.

we calculate the velocity at the outlet by using the given boundary conditions together
with the area relation by evaluating the incompressible steady Bernoulli equation. For
the given conditions we find an exit velocity of uexit,Bernoulli ≈ 105 m/s. The first order
HLLC scheme produces a steady-state result with an exit velocity of less then 50 m/s on
the coarse grid and 64 m/s on the fine grid. This confirms the failure of the first order
HLLC scheme on both grids. The pressure field as well as the velocity field (not shown)
indicate a massively dissipating behavior of the HLLC solver for these flow conditions. For
the third order simulations we find the same insufficiency, but the obtained solutions are
more reasonable. The Hybrid scheme reproduced the analytical results very satisfactory
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for all test cases. The gain in accuracy by using finer grids or higher order reconstructions
is still noticeable, but a comparison of the isobars clearly shows that the main flow field is
well predicted even for the first order solution on the coarse grid. We therefore conclude
that our Hybrid formulation is a significant improvement.

5.4 3-D cavitating injection nozzles

To get more insight into the flow features in high-speed injection nozzles we have
simulated a typical 3-D axisymmetric configuration with representative conditions (config
1). Additionally, we have modified the standard geometry by closing the axial inlet and
adding four nearly tangential inlets in order to study swirl effects (config 2). This inlet
configuration is then comparable to a mixing chamber. Both geometries are shown in Fig.
6. The nozzle dimensions are the same as for the previously presented 2-D single phase
simulations (Fig. 4), but we added an outflow domain to study the wave dynamics outside
the nozzle as well. Thereby, the whole domain is assumed to be initially filled with water
at rest and pressure and temperature are assumed to be p = 23 bar and T = 293.15 K.
The conditions at the outflow boundaries are calculated by assuming that the farfield can
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Tin = 20 °C

walls

non-reflecting outflow

x [mm]
-2 -1 0 1 2 3 4 5 6 7
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Tin = 20 °C

walls

non-reflecting outflow

Figure 6: 3-D nozzle geometry with outflow and boundary definitions for nozzle configuration 1 (left)
and configuration 2 (right)

be represented here by a liquid at rest (Fig. 6) with constant ambient pressure p = 23 bar.
According to these assumptions we derived characteristic boundary conditions that allow
waves to pass through the boundary with minimum reflective behavior (non-reflecting
boundary conditions). The walls are again defined as inviscid adiabatic and impermeable
surfaces. The pressure for the ghost cells at the inlet plane was set to p = 80 bar. The
spatial reconstruction uses MinMod on density, WENO-3 on the velocities and VanLeer
on internal energy. For the time integration the LS-RK 4 with CFL = 1.3 was used. To
reduce calculation time, a 90 degree section of each full geometry was simulated. The
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additionally resulting boundaries are treated with periodic conditions. Inside the nozzle
we used a grid comparable to the coarse grid in Fig. 4. The total number of finite volumes
for both geometries is 6·104 volumes per section and hence parameter studies are possible.
For single-phase flows the grid was verified to be fine enough by comparing the numerical
solutions with the Bernoulli theory. Nevertheless, we observed that a finer grid can lead
to an increase in the resolved two-phase flow structures. The obtained flow fields for both
configurations were found to be unconditionally time-dependent although the remaining
variations are noticeably weaker then those during the buildup of the main flow fields. In
Fig. 7 the iso-surfaces of constant vapor volume fraction α for configuration 1 are shown.
The instantaneous picture gives an impression of the mean cavity length and the structure
of the mixture region. Furthermore one can see two small cloudy structures that have
been separated and convected into the outflow domain. The collapse of such structures
can cause pressure waves of high amplitude with ∆p = O(100) bar. The second geometry

Figure 7: Iso-surfaces of the vapor volume fraction α at one instant in time for configuration 1

produces a more steady flow field because the inlet modification leads to the formation of
a vortex structure. Only at the end of the cavitation core one can observe the separation
of small cloudy structures. This breakup is periodic with a frequency f = 60 kHz and
a series of planar cuts through the nozzle center is shown in Fig. 8. The flow inside
the nozzle is nearly stationary and hence the use of a scheme that ensures accurate 3-D
steady-state calculations is necessary for applications of this type26. To give an overall
impression of the velocity field we generated stream traces starting from the inlets and
ending at the outflow exit (Fig. 9). One can observe the acceleration in the convergent
nozzle part and the rotational symmetric vapor core is visible (blue core).
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Figure 8: Vapor fraction α in configuration 2 for one period T = 1/f = 1.7 · 10−5 s.

Figure 9: Stream traces at t = T + T/2 colored with the static pressure for configuration 2
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6 CONCLUSIONS

- A general framework for solving the time dependent compressible Euler equations
including the energy conservation law has been developed.

- An applicable set of constitutive relations for water and water vapor is given and
their advantages as well as their disadvantages are described.

- It has been shown that accurate calculations of steady-state liquid flows require very
fine grids and high-order reconstructions if common Riemann solvers are used.

- A Hybrid solver has been developed that overcomes the drawback of the previously
stated approaches.

- The scheme was then shown to be able to handle two phase flow including the crucial
phase change.

- Finally the cavitating flow fields through two different high-speed injection nozzles
were presented.

- The present scheme should be extended to handle an additional gas component. This
is especially important because it offers the possibility to simulate the outflow into a
gaseous domain rather than a liquid one.

7 APPENDIX

For the simulations presented in section 6 the following set of constants and functions
was used:

B Cvl [kJ/(kgK)] Tref [K] elref [kJ/(kgK)] N

3.3 · 108 4.18 273.15 0.617 7.15

Table 1: Constants for the liquid water EOS

R [kJ/(kgK)] Cvv [kJ/(kgK)] Tref [K] elref [kJ/(kgK)] Lvref [kJ/(kgK)] κ

0.4615 1.4108 273.15 0.617 2375.3 1.327

Table 2: Constants for the water vapor EOS

The saturation conditions psat(T ), ρl,sat(T ) and ρv,sat(T ) are taken from10. If the tem-
perature T is known to remain close to some reference value Tr, one can obtain approx-
imations to the above cited functions which are more efficient to handle. The following
example gives approximate conditions for a reference temperature Tr = 293.15 K:

θ := T − Tr (28)

psat(T ) = exp(7.7585 + 0.0619166 · θ − 0.0002 · θ2)
ρl,sat(T ) = exp(6.90591− 0.00021 · θ − 0.000006 · θ2 + 4.4 · 10−8 · θ3)
ρv,sat(T ) = exp(−4.05567 + 0.0585739 · θ − 0.000195 · θ2)

(29)
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B. Second publication

In the second publication [67] the authors simulate the cavitating flow in the lower part of a

realistic 6-hole fuel injector. Due to 6-fold symmetry of the injector geometry, a sixty degree

section is selected as numerical domain. The position of the needle is assumed to be fixed

at maximum lift throughout the simulation. In analogy to experimental investigations, the

domain outside of the bore hole is filled with liquid (no injection into gas). In total, 11

operating conditions are investigated, where the pressure upstream of the nozzle covers a

range from 100 bar to 1400 bar and the pressure in the outer domain ranges from 15 bar

to 60 bar. The discharge coefficient is found to be approximately 0.76, which is in good

agreement with experimental values.

The focus of this investigation is put on wave dynamics during the development of the

cavity pocket inside the bore hole. Although the numerically enforced start-up process does

not resemble the movement of the needle, the observed interaction of waves and cavitation

demonstrates the effects of compressibility and strengthen the application of the proposed

methodology. Instantaneous loads of more than 1000 bar are detected and the formation

and collapse of vapor pockets during the transient phase are shown. The structure of the

resulting cavity at steady state (where the mass flow remains constant) is presented and

compared to typical experimental observations.

I defined the test-cases, supervised the students who generated the grid and performed the

simulations, analyzed the results and prepared the manuscript. Note that the flux function

applied in this investigation was published in [66] (Appendix G).
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Abstract 
 
A conservative 3-D high resolution Godunov-type method is modified and extended to handle high and low speed liquid flows. 
An equilibrium phase transition model is applied to include cavitation-recondensation processes. Thereby, the thermodynamic 
properties of liquid and vapour are described by thermal and caloric equations of state. Our fully compressible time-accurate 
treatment of the equations of motion enables the investigation of wave dynamic effects such as shock formation and diffraction.  
The highly time dependent flow field inside a 3-D multi-hole injector is simulated. Thereby, wave dynamics dominates the flow 
characteristics during the first hundred microseconds. Rarefaction waves lead to acoustic cavitation close to the spray hole exit. 
Subsequently, the development of hydrodynamic cavitation is presented and a collapse induced shock wave is detected. Finally, 
the 3-D structure of the arising cavitation pocket is studied in detail. For a series of realistic operating conditions the nozzle 
discharge is analyzed and compared to analytical estimates. 
 

Introduction 
 
The design and improvement of high-speed fuel injection 
systems of Diesel- and Otto-engines is a challenging field of 
research. The operating conditions contain exceptional high 
pressure differences pin-pout=O(103) bar, which result in 
maximum flow velocities up to 500 m/s. Furthermore, high 
frequency excitations due to the needle lift induce strong 
wave dynamic flow features. Thereby, the arising pressure 
drop typically leads to acoustic and hydrodynamic cavitation. 
The subsequent recondensation of the evaporated liquid 
enforces the formation of violent shock waves which often 
results in cavitation erosion. 
Besides the reduction of the machine lifetime, cavitation 
significantly alters the flow field (Brennen, 1995, Franc & 
Michel, 2004). As a consequence, the nozzle discharge 
reduces and the occurrence of unsteadiness leads to a hardly 
controllable operating behaviour. However, cavitation often 
contains a self-cleaning effect inside the bore holes and might 
improve spray characteristics as well.  
Due to typical bore hole diameters of the order of 0.1 mm, 
experimental investigations are difficult and detailed studies 
of the flow field require numerical simulations (Alajbegovic 
et al., 2002). The simulation of phase transition requires a 
model to describe the arising mass transfer. Such models 
often rely on single bubble dynamics (Yuan & Schnerr 2001, 
2003) or on thermodynamic considerations. The former ones 
are applicable to quasi incompressible formulations of the 
equations of motion where the pressure is no longer 
depending on the density (Delale et al., 2006). The later ones 
require a functional relation of pressure and density. Here, 
simplified formulas can be derived that lead to efficient 
barotropic cavitation models (Hoeijmakers et al., 1998). A 
less restrictive formulation is obtainable by the use of thermal 

and caloric equations of state for liquid and vapour (Schmidt 
et al., 2006). The coexistence of both phases is often 
modelled as homogeneous mixture where the 
thermodynamic properties are defined by temperature 
dependent saturation conditions (Berg et al., 2005). 
 
Nomenclature 
 

T Static temperature (K) 
p Static pressure (N m-2) 

u,v,w Velocity components (m s-1) 
Vvap Integrated vapour volume (% of total volume) 

c Speed of sound (m s-1) 
t Time (s) 
m&  Mass flow (g s-1) 
m&∆  Mass flow defect 

A Area (m2) 
f Frequency (s-1) 

Greek letters 
α Vapour volume fraction  
ρ Density (kg m-3) 
  

Subscripts 
in Inlet condition  

out Outlet condition 
max Maximum value 
init Initialization condition 
ref Reference value 

num Numerical value  
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Mathematical Model 
 
The simulation of wave dynamics in single- and two-phase 
flows requires a fully compressible and time accurate 
treatment of the equations of motion (Iben et al., 2002). 
Therefore, the thermodynamic properties of liquid and 
vapour are expressed by thermal and caloric equations of 
state, which enable a well-posed definition of the speed of 
sound c. Contrary to barotropic formulations, our fully 
compressible formulation is not restricted to isothermal or 
homentropic processes. Hence, the simulation of strong 
shock waves, as well as the inclusion of heat transfer 
processes is possible.  
The liquid phase is currently represented by a modified Tait 
equation while the vapour phase is treated as ideal gas. This 
combination agrees well with measurement data for various 
fluids and its numerical evaluation is significantly more 
efficient than the evaluation of more general thermodynamic 
formulations. However, the mathematical model is not 
limited to this special choice, e.g. other formulations, 
including tabulated values, are possible as well (Wrona, 
2005).  
The coexistence of both phases is modelled as local 
homogeneous mixture at temperature dependent saturation 
conditions. These conditions are obtained via curve fitting 
procedures from experimental data.  
The application of saturation conditions implies the 
assumption of unconstraint thermodynamic equilibrium. 
Thus, the equilibrium speed of sound for two-phase domains 
is well defined, too. This aspect is of special importance as 
our numerical solution strategy directly relies on wave 
speeds.  
Further consequences arising from our model are the local 
equalities of temperature and pressure in saturated domains, 
as well as the common local velocity of liquid and vapour. 
The last aspect is due to the homogeneous mixture 
assumption, which does not permit the differentiation 
between liquid and vapour in saturated regions. 
An important advantage of the proposed model is its 
inexistence of a-priori unknown adjustable model parameters. 
Other formulations typically require the definition of the 
initial bubble number density or the initial void fraction, 
which may have to be adjusted by the user. Furthermore, no 
time calibration via a pre-defined reference velocity is 
required. 
 
Numerical Scheme 
 
Our recently developed CFD-tool CATUM (CAvitation TU 
Munich) is part of our multi-purpose solution package for 
compressible flow dynamics including phase transition, 
chemical reaction and heat addition (Schnerr et al., 2006). Its 
modular setup contains routines to solve the arising balance 
laws by splitting them into a hyperbolic part (convective 
fluxes), a parabolic part (viscous fluxes) and a source term 
part. As our recent work focuses on wave dynamics and 
phase transition in micro-scale systems, viscous effects are of 
minor importance and hence neglected. The balance laws are 
thus the conservation principles for mass, momentum and 
energy. Together with the thermodynamic equilibrium 
formulation of either pure liquid or saturated liquid/vapour 
mixture the remaining set of equations are the Euler 
equations for compressible flows. However, the density and 
the internal energy represent mixture quantities as soon as the 

thermodynamic states predict the coexistence of both phases. 
As the governing equations are hyperbolic in time, a 
Godunov-type method is suitable to describe the numerical 
fluxes through the cell faces of the finite volume scheme 
(Godunov, 1959). These methods rely on (approximate) 
solutions of the arising Riemann problem between adjacent 
cells. They are known to accurately reproduce even 
complicated wave structures, but their application to 
multidimensional low Mach number flow leads to wrong 
results (Guillard & Viozat, 1999) unless they are 
appropriately extended. We therefore introduce a modified 
pressure flux definition that enables accurate time dependent 
low Mach number calculations, including M→0, as well. Its 
basic idea is the reduction of the pressure-velocity coupling 
by assuming smoothness properties in the velocity field, 
although the finite volume averaging leads to discontinuous 
data. The mass flux is obtained without any additional 
assumptions and follows from an approximate solution of the 
Riemann problem (Schmidt et al., 2006).  
Nonlinear reconstruction procedures based on the conserved 
quantities ensure high-resolution of discontinuities as well as 
2nd order accurate discretization of smooth flows. The 
semi-discrete equations are advanced in time by an explicit 
4-stage Runge-Kutta method with enlarged stability region. 
The simulation tool CATUM provides 2nd order accurate 
solutions in space and time and its results are validated for 
high and low speed flows including phase transition.  
An explicit treatment of the time differentials enforces the 
compliance with the CFL condition. Therefore, the 
maximum time advancement per iteration is proportional to 
the ratio of the smallest spatial distance ∆x to the maximum 
wave speed |u|+c. The dominating spatial scales in injection 
systems are of the order of 10-4 m (bore hole diameter). To 
ensure sufficient spatial resolution of the arising gradients 
close to the bore hole entry, the discretization leads to a cell 
width of ∆x≈10-6 m. Together with the maximum wave speed 
of |u|+c≈1.5·103 m/s, the necessary numerical time step 
∆tCFD is of the order of 10-10 s. Thus, the time accurate 
simulation of a typical injection time of 10-3 s requires the 
computation of 107 time steps. To enable parameter studies of 
complex 3-D geometries, the maximum number of finite 
volumes is thus limited to the order of O(105). Furthermore, 
all simulations are performed on 32 processors on a 
SGI-Altix 3700Bx2 machine. The calculation time is 
approximately 2 weeks for a full simulation of an injection 
cycle and a spatial discretization of 105 finite volumes. 
 
Nozzle Geometry and Numerical Grids  
 
Figure 1 depicts a 180 degree section of a multi-hole fuel 
injector. The actual needle placement corresponds to its 
maximum lift position and hence, the valve is fully open. Six 
cylindrical bore holes are located in the lower part of the sack 
volume. In order to suppress flow separation, the inlet tips of 
the bore holes are rounded with a radius of wall curvature of 
0.028 mm. Such a micro-deburr is practically achieved by 
hydroerosive grinding and significantly improves the flow 
characteristics. 
The inner diameter of the upstream part of the nozzle is 3.9 
mm and the diameter of the needle is 3.26 mm. The diameters 
of the spray holes are 0.22 mm and their length to diameter 
ratio is 4.54.  
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Figure 2 depicts the discretization of the flow domain. Due 
to 6-fold radial periodicity of the injector we solve the flow 
equations for a 60 degree section. At the outlets of the bore 
holes enlarged domains are added in order to simulate the 
arising flow outside of the nozzle as well. This enables the 
physically consistent treatment of the flow dynamics close to 
the bore hole exits, which cannot be ensured if the domain 
outside the nozzle is replaced by numerical boundary 
conditions. To study the mesh dependence of the numerical 
results, calculations are carried out for three different grids 
containing 105, 2.6·105 and 4·105 cells (shown in Fig. 2). For 
all cases a high grid quality is achieved by the use of 85 
matching O- and H-grids, which consist of low aspect ratio 
hexahedrons only.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: 180 degree section of the 3-D 6-hole injector 
geometry; needle position at maximum lift. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Discretization of the injection nozzle including one 
sixth of the surrounding domain. Each 60 degree section 
contains 4·105 cells (fine grid).   

Flow properties and Numerical Boundary 
Conditions 
 
We assume the nozzle and the surrounding domain to be 
initially filled with pure liquid at rest. The pressure and the 
temperature are initially set constant to pinit=pout and Tinit=333 
K throughout the numerical domain. In spite of being a 
common experimental setup, this assumption may lead to 
different results than the more practical condition where the 
nozzle sack and the domain outside of the nozzle are initially 
filled with gas. However, this will require the 
implementation of non-condensable gas as a third 
compressible component into the numerical scheme, which is 
part of our current research. 
All solid walls are treated as adiabatic, inviscid, impermeable 
and stationary. Hence, the needle movement is not modelled. 
Instead we focus on the maximum lift position of the needle 
as shown in Fig.1.  
The numerical boundary treatment along the outer surface of 
the surrounding domain allows waves passing through 
(characteristic boundary conditions), but ensures constant 
prescribed pressure pout asymptotically (Rudy & Strickwerda, 
1980). Due to the large distances between the bore holes and 
the boundary surface, the oncoming disturbances are already 
very weak, which additionally improves the quality of this 
boundary treatment.  
At the inlet area we apply similar boundary conditions, but 
the prescribed pressure pin now resembles the rail pressure. 
Although the disturbances at the inlet boundary are partially 
of the same order as the pre-defined asymptotic conditions, 
our numerical boundary treatment is able to reproduce the 
experimentally observed time dependent pressure behaviour. 
Due to the six-fold symmetry of the injector geometry we 
apply symmetry boundary conditions at the lateral section 
planes. The enforced boundary conditions are thereby 
identical to those applied to inviscid walls. 
For this investigation all simulations are performed with 
water as the test-fluid at an initial temperature Tinit=333 K. 
 
Results and Discussion 
 
Figure 3 contains the time history of the mass flow m& (top) 
and the corresponding integrated vapour volume Vvap 
(bottom) for the pressure conditions pin=600 bar and pout=26 
bar. Both graphs are plotted against a logarithmic time axis 
(large pictures) as well as against a linear time axis (small 
pictures). The mass flows as well as the integrated vapour 
volume show a strong transient behaviour and reduce to 
constant values at time t≈10-4 s. As it will be presented in the 
following subsections, the solution turns out to reach a stable 
steady state at that time. However, comparison of the final 
values with their maximum amplitude during the transient 
flow development demonstrates the necessity of time 
accurate simulations of injection processes, especially if pilot 
or multipoint injections are considered. Moreover, 
comparison of the mass flow inm&  at the nozzle inlet to the 
mass flow outm&  at the exit of the spray holes highlights the 
compressible behaviour of the liquid fluid and the wave 
dynamics as dominating features. Any incompressible 
formulation would enforce the velocity field to be strictly 
divergence free, which implies the equality of inm&  and 

outm&  throughout the simulation. 
 55



S7_Tue_D_26                      6th International Conference on Multiphase Flow, 
                     ICMF 2007, Leipzig, Germany, July 9 – 13, 2007 
 

 4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Time history of the mass flow rate at the nozzle 
inlet and at the exit of the spray holes (top). Time history of 
the integrated vapour volume Vvap [% total volume] (bottom). 
pin=600 bar, pout=26 bar, Tinit=333 K, ∆tCFD=10-10 s. 
 
 
As shown in Fig. 3, the mass flows do not fulfil this 
assumption. Instead we observe oscillations with a mean 
frequency of f =70.5 kHz and a constant phase shift of π 
between inm&  and outm& . The amplitudes show exponential 
decay in time, which motivates a comparison of the transient 
flow dynamics with an under-damped harmonic oscillator. 
The following analysis is divided into three time intervals. 
The first time segment contains the initiated wave motion as 
a consequence of the enforced initial conditions. The second 
time segment includes the development of the mass flow at 
the bore hole exits which is accompanied with acoustic and 
hydrodynamic cavitation. The third time interval covers the 
main period of the transient development of the flow field. 
Finally, the properties of the steady state solution are 
analysed and special emphasis is placed on the arising 
cavitation pocket inside the bore holes. 
Picture 1-4 of Fig. 4 depict the pressure development during 
the first time interval 0 s ≤ t ≤ 5.36·10-6 s. Due to the initially 
enforced pressure jump ∆p=pin-pout=574 bar across the inlet 
boundary a shock wave instantaneously forms and 
propagates through the nozzle. The arising post-shock 
velocity û  can be estimated by characteristic compatibility 

conditions (Zierep, 1991) 
 
 
Together with the properties of water at Tinit=333 K and 
pout=26 bar, the density ρ and the speed of sound c are of the 
order of 10³ kg m-3 and 1.5·10 m s-1, respectively. Hence, the 
post-shock velocity û  turns out to be 38.2 m s-1. The applied 
single-wave approximation is thereby motivated with the 
pressure boundary condition at the inlet. The shock strength 
as well as the post-shock velocity remains unaltered as long 
as the wave propagates through to the constant area gap 
between the inner nozzle wall and the needle. This is due to 
the 1-D flow character through the annular gap. As soon as 
the shock wave reaches the conical part of the needle, the 
flow direction alters according to the wall geometry. 
Furthermore, the effective nozzle area reaches a local 
minimum at the uppermost part of the needle seat (Pic. 1). 
The combination of both geometrical features lead to shock 
deflection and shock focussing, respectively. Thereby, 
velocity and pressure increase, which results in a 
compression being effective backwards to the inlet. The 
shock propagates further and reaches the needle tip (Pic. 2). 
As the geometry is now divergent an opposite effect is 
observed. Due to the decreasing shock strength the 
post-shock pressure p̂  reduces as well. However, as the 
pressure slightly upstream is larger than the post-shock value, 
pressure equalization once more occurs. Inside the sack the 
shock front is no longer planar (Pic. 3) and strong diffraction 
is observable when the front reaches the bore hole. The 
diffraction result in a wave propagating towards the bottom 
of the sack and a nearly planar wave travelling through the 
throat (Pic. 4). 
Picture 1-12 of Fig. 5 focus on the flow development close 
to the bore holes. The time interval covers the period 
5.48·10-6 s ≤ t ≤ 8.88·10-6 s. Picture 1 depicts the 
multidimensional shock focusing at the lower wall of the 
sack. The maximum pressure pmax=2163 bar is thereby 
reached at t=5.55·10-6 s (Pic. 2). In Pic. 3 the shock wave 
reaches the exit of the bore hole. There it diffracts to a 
spherical front and propagates into the outside domain. At 
this time, the mass flow outm&  at the bore hole exit starts to 
develop. The shock-strength decreases proportional to the 
radius of the front and a rarefaction wave propagates inside 
the throat. This expansion is strong enough to partially 
reduce the static pressure to vapour pressure and thus to 
enforce cavitation. Two-phase domains are thereby indicated 
by isolines of the void fraction α=0.001. In Pic. 4 and 5 we 
observe two types of cavitation. Strong expansions around 
the edges of the spray holes result in vortex cavitation in the 
surrounding domain of the nozzle. The 3-D toroidal 
structures of the arising saturation regions outside the bore 
holes are indicated by closed isolines. Inside the bore holes 
acoustic cavitation is visible. Thereby, the whole cross 
section close to the bore hole exit is affected. However, as 
typical for wave induced phase transition, the maximum void 
fraction α is of the order of 10-3. Due to the remaining 
velocity field the vapour content is compressed and 
recondenses within 5·10-7 s (Pic. 6). In Pic. 8 we observe 
another acoustic cavitation. Furthermore, continuous 
reduction of the pressure inside the sack volume is visible. At 
the curved bore hole entry we observe the onset 
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Figure 4: Pure liquid wave dynamics inside the nozzle as 
consequence of the initiated shock wave, pin=600 bar, 
pout=26 bar, Tinit=333 K, ∆tCFD=10-10 s. 

of hydrodynamic cavitation (Pic. 9). The hydrodynamic 
cavitation pocket forms a torus-shaped structure as well. 
Only the upper part of the saturated two-phase domain grows 
along the flow direction, while the lower cavitation region 
disappears (Pic. 10-12). At this instant in time the integrated 
vapour volume fraction Vvap starts to grow significantly. 
However, this is due to the growth of the cavity inside the 
bore holes as well as in the outside domain, where the 
vortical structures lead to further evaporation.  
The subsequent quasi periodic behaviour will be termed as 
time interval three. Figure 6 depicts the formation and 
collapse of the hydrodynamic cavity. In Pic. 1 the cavitation 
pocket inside the bore hole already covers two thirds of the 
bore hole length. Further growth of the pocket takes place 
until the cavity reaches its maximum dimension at 
t=1.67·10-5 s (Pic. 2). This instance in time corresponds to 
the first local maximum of the integrated vapour volume (Fig. 
3, bottom). Both cavities start to recondense, which results 
in the shrinking of the vapour domains (Pic. 3). At 
t=1.95·10-5 s the cavitation pocket inside the bore hole breaks 
slightly behind the bore hole inlet (Pic. 4). Thereby, an 
increase of the pressure due to inertia forces is visible. The 
vapour pocket is rapidly compressed along the flow direction 
until the complete saturated domain disappears. 
Subsequently, a violent collapse occurs. As this process is 
accompanied with a significant increase of the velocity 
behind the collapsing cavity, as well as with a requisite 
decrease of the velocity ahead the cavitation pocket, the 
resulting velocity field directly after the collapse necessarily 
causes a discontinuity. The resulting “water-hammer” 
enforces the formation of a shock wave where the pressure 
raise is proportional to the velocity difference. Picture 5 
depicts the arising shock which leads to a maximum pressure 
of pmax=1029 bar, which is about twice the inlet pressure 
pin=600 bar. As it is known from 3-D spherical symmetric 
explosion theory, the formation of a rarefaction wave is 
inevitable. Together with the afresh forming vortex 
cavitation (Pic. 6) a cavity pocket inside the bore hole starts 
to grow. At t=2.77·10-5 s the integrated vapour volume again 
reaches its local maximum value and the period 
recommences. However, with each repetition of the process 
the break of the cavity occurs slightly closer to the bore hole 
outlet. Thus, the collapsing part of the cavity reduces its size 
and the collapse as well as the combination of shock and 
rarefaction weakens. Consequently, the vapour volume of the 
recreated vortex cavitation reduces as well. As a conclusion, 
the integrated vapour volume reduces its amplitude because 
the stable part of the cavity increases while the unstable 
cavitation pockets decrease. This explains the asymptotic 
behaviour of Vvap in Fig. 3 (bottom).  
At time t=1.1·10-4 s the repetition is no longer possible, 
vortex cavitation is no longer present and the complete 
hydrodynamic cavity is stable. The flow field reaches a 
steady state and thus vapour volume and mass flows remain 
constant. In Fig. 7 the resulting void fraction distribution at 
the centre cut of the injector is presented. For the same 
instant in time we isolate the cavity structure to study their 
shape in detail (Fig. 8). At the bore hole inlet the vapour 
pocket is nearly circular shaped. Slightly downstream of the 
inlet the structure is confined to the upper part of the spray 
hole. Although the shape of the cavity varies along the flow 
direction, the covered area is almost constant for each cross 
section of the bore hole (Hiroyasu et al., 1991). 

t1 = 4.37·10-6 s

t2 = 4.63·10-6 s

t3 = 5.11·10-6 s

t4 = 5.36·10-6 s
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t1 = 5.48·10-6 s t5 = 6.52·10-6 s t9 = 7.80·10-6 s 

t2 = 5.55·10-6 s t6 = 6.74·10-6 s t10 = 8.46·10-6 s 

t11 = 8.76·10-6 s 

t12 = 8.88·10-6 s 

t3 = 5.89·10-6 s t7 = 6.89·10-6 s 

t8 = 7.16·10-6 s t4 = 6.22·10-6 s 

Figure 5: Pressure field in the vicinity of the bore holes for the time interval ∆t1-12= 4.41·10-6 s.  
Orange lines indicate iso-values of constant void fraction of αmin=0.001. 
 pin=600 bar, pout=26 bar, Tinit=333 K, ∆tCFD=10-10 s. 
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t1 = 1.39·10-5 s t4 = 1.95·10-5 s

t5 = 2.04·10-5 st2 = 1.67·10-5 s

t3 = 1.86·10-5 s t6 = 2.13·10-5 s

Figure 6: Growth and collapse of hydrodynamic cavity during the time interval ∆t1-6= 7.40·10-6 s.  
Orange surfaces indicate iso-surfaces of the cavity with a minimum void fraction of αmin=0.001.  
Picture 5 shows the maximum instantaneous pressure pmax=1029 bar. 
 pin=600 bar, pout=26 bar, Tinit=333 K, ∆tCFD=10-10 s. 
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Figure 7: Steady-state cavitation pattern inside the bore 
holes at t≥10-4 s. pin=600 bar, pout=26 bar, Tinit=333 K, 
∆tCFD=10-10 s. 
 
 
 
 
 
 
 
 
 
 
Figure 8: Isolated 3-D view of the cavitation pattern inside 
the bore holes at t≥10-4 s. Flow from left to right. pin=600 bar, 
pout=26 bar, Tinit=333 K, ∆tCFD=10-10 s. 
 
 
 
In the following subsection, the influence of the prescribed 
inlet pressure pin on the steady state mass flow is discussed. 
Therefore, a reference mass flow refm&  is calculated by the 
Bernoulli equation. Assuming that the fluid is pure water 
with constant density ρ we find for the reference mass flow  
 
 
 
 
In combination with the numerically obtained mass flow a 
relative mass flow defect due to cavitation is defined as 
 
 
 
 
Table 1 presents the relative mass flow defect for different 
inlet pressures, while the outlet pressure is kept constant at 
pout=26 bar. For the simulated conditions the relative defect 
is approximately 24%. This defect can be interpreted as a 
24% reduction of the outlet area (Numachi et al., 1960). Our 
simulation results confirm this interpretation as they show for 
all cases a virtually identical vapour domain that covers an 
area of about 24% as shown in Fig. 9. It should be pointed out 
that the reference mass flow is based on 1-D inviscid theory. 

Our 3-D simulations neglect viscous effects as well, and 
hence, the mass flow defect is exclusively caused by the 
contracting effect of cavitation. The inclusion of viscous 
effects might lead to an even further reduction of the 
discharge of the nozzle.  
Subsequently to the inlet pressure variation we vary pout 
while keeping pin=600 bar constant. It is known that for 
sufficiently large pressure differences ∆p=pin- pout no further 
increase of the mass flow is achievable, even if the outlet 
pressure is significantly decreased (Randall, 1952). We 
simulate a series of outlet pressures of 60, 40, 26 and 15 bar. 
In all cases the numerically obtained mass flows are equal 
while the integrated vapour volume Vvap accordingly 
increases. However, as the outlet velocity scales with the 
square root of the pressure difference, the observed increase 
of the vapour volume is of the order of less than 1% for each 
reduction step of the outlet pressure.  
 
 
 
 

pin (bar) refm& (g s-1) numm& (g s-1) m&∆ (%) 

100 27.7 21.3 23.1 
200 42.5 32.1 24.5 
400 62.3 47.4 24.0 
600 77.4 58.8 24.0 

1000 100.8 75.9 24.7 
1200 110.7 84.8 23.4 
1400 120.1 90.3 24.8 

 
Table 1: Comparison of estimated mass flow for pure water 
and numerically observed mass flow in the presence of 
cavitation for a series of inlet pressures. The outlet pressure 
pout=26 bar is kept constant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Influence of the outlet area reduction of 24% with 
respect to the analytically obtained mass flow. Points 
represent numerically obtained mass flow rates including the 
contractive effects of cavitation.  
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Conclusions 
 
A 3-D time accurate numerical method which enables highly 
resolved simulations of liquid flows with phase transition is 
proposed. The scheme is applied to simulate the flow field 
inside a realistic 3-D fuel injector for a series of operating 
conditions. All numerical results match the experimental 
observations (Roosen et al., 1994, Busch, 2001). The 
importance of the compressible treatment of the governing 
equations is manifested by the detection of wave dynamics as 
essential feature of the temporal flow development. Special 
emphasis is put on the time history of the mass flow and of 
the vapour volume. During the first 10-4 s both quantities 
undergo massive variations. Especially for pilot or 
multi-point injections the observed highly unsteady flow 
characteristics dominate. Acoustic, hydrodynamic and vortex 
cavitation patterns are presented. A violent collapse inside 
the bore hole is resolved and the occurring shock wave is 
analysed in its strength. Although the outlet pressure is 
pout=26 bar, a maximum instantaneous pressure of more than 
1000 bar is observed. Finally, the arising cavitation pocket 
inside the spray hole is presented and the resulting nozzle 
discharge is analysed.  
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C. Third publication

The third publication [64] contains numerical analysis of the cavitating flow around a twisted

NACA0015 hydrofoil in a rectangular test-section. Due to twisting, the sheet cavity does not

reach the sidewalls of the test-section, wherefore typical interactions of boundary layers with

the cavity are omitted [23]. First, a cyclic shedding process and experimentally detected ”side

entrant jets” are discussed. Time histories of lift and drag as well as instantaneous surface

pressures are analyzed. The results confirm that high impulse loads are generated by collapse

induced shock waves. Furthermore, the necessity to use a fully compressible numerical

method and a sufficiently high time resolution of 10−7 seconds for this characteristic length

scale is shown. Even though the characteristic velocity is just 12 m/s, the resolution of wave

propagation requires time steps based on the speed of sound of the liquid.

Discrepancies in maximum pressures, which are also found in the experiments, are related

to the transducer sampling frequencies. This correlation is demonstrated by gradually down-

sampling of high resolution numerical data.

Load-intensive domains can be detected from the pressure foot prints on the surface of the

hydrofoil obtained numerically. This information enables the prediction of erosion endangered

areas already during the design process.

I generated the grid, performed the simulations, analyzed the results and prepared the

manuscript.
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The purpose of this study is the detailed numerical analysis of shock waves arising in cavitating liquid flows. 
Therefore, our recently developed CFD code CATUM is used to simulate the highly unsteady two-phase flow 
around a three dimensional twisted hydrofoil. The selected geometry is representative for pump and turbine blades 
as well as for ship propellers and allows the detailed study of sheet and cloud cavitation patterns. Special emphasis 
is put on the correlation of the time dependent void fraction distribution and the pressure field frequency spectrum. 
Thereby, recondensation induced shock waves are identified and analysed in their strength and their development. 
In order to relate our numerical results to measurement data, gradually downsampling to typical experimental 
sampling frequencies is performed. The resulting maximum static pressures for each sampling frequency are in 
excellent agreement with several comparable experimental setups and prove the necessity of using high frequency 
sensors to record the correct orders of magnitude. Finally, a detailed analysis of complete cycles of the pressure 
dynamics on the surface of the hydrofoil is presented and regions of instantaneous peak loads, which result in 
cavitation erosion, are obtained.                   

Keywords: Cavitation, Shock wave, Erosion, Phase transition, Riemann-solver 
 

Introduction     

The break up of a sheet cavity often leads to the 
separation of a liquid embedded cluster of vapour 
bubbles. This flow type, commonly known as cloud 
cavitation, typically arises around pump or turbine 
blades as well as around ship propellers and results in 
strong noise production and erosion. The main 
mechanism of both effects is the collapse-like 
recondensation of the vapour content which includes 
the formation of complex shock wave configurations.     

The collapse mechanism for a single isolated bubble 
has been extensively studied both theoretically and 

experimentally by several research groups [1-4]. One 
main result is the possibility of collapse induced shock 
formations. Experimental observations indicate a 
comparable behaviour for bubble clouds as well, in 
spite of being much more complicated due to various 
bubble-bubble interaction processes. However, the 
reported maximum intensity of those shock waves not 
only varies according to the operating conditions for a 
given setup but it seems to be strongly dependent on the 
properties of the selected measurement equipment, 
especially on the sampling frequency and the transducer 
location. The range of maximum instantaneous pressure 
variations reported in the literature covers the huge 
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interval of O(1) bar to O(100) bar. In order to improve 
the understanding of cavitation erosion it seems 
inevitably necessary to separate deviations caused by 
different measurement techniques from those related to 
different flow patterns arising during the shedding cycle. 
Reisman et al. [5] therefore introduced a classification 
into local and global shock events according to their 
flow dynamic origin. The local ones are associated with 
the less coherent collapse of vapour clouds and are 
termed ‘crescent-shaped regions’ and ‘leading-edge 
structures’. Contrary to the previously mentioned local 
events, the collapse of a well-defined and separate cloud 
leads to a global one when the vapour structure is 
convected into a region of higher pressure.  

This investigation contains numerical studies of the 
cavitating flow field around a 3-D twisted hydrofoil. 
Therefore, we present the time-dependent vapour 
structure and correlate lift and drag variations. Special 
emphasis is put on a high resolution pressure analysis 
on the surface of the hydrofoil in order to get insight 
into collapse induced shock formations and their 
specific properties such as shock strength and impact 
time. Finally, the pressure signal close to the exit plane 
of the numerical domain is analysed and its frequency 
spectrum is given.   

 

Mathematical Model and Numerical Approach  
Mathematical model 
In order to predict and explain wave dynamic effects 

in two-phase flows a fully coupled compressible 
mathematical formulation of the 3-D time-dependent 
governing equations of inviscid fluid motion is applied 
[6]. Instead of resolving the coupled physics for 
thousands of individual bubbles we describe an integral 
average behaviour of a bubbly liquid in small finite 
domains, commonly referred as homogeneous mixture 
approach. The thermodynamic properties are expressed 
by thermal and caloric equations of state for water and 
water vapour, together with temperature dependent 
saturation conditions in arising two-phase domains. The 
speed of sound is derived from the fluid specific 
equation of state and describes equilibrium properties in 
domains of saturated liquid/vapour flow. The model is 
hence independent of any additional parameters and can 
be applied to various fluids as well.  

Numerical approach 
The hyperbolic character of the arising governing 

equations motivates the choice of a Godunov method [7] 
as basic solution strategy. Approximate solutions to the 
non-linear reconstructed Riemann problem over each 
cell face are used to describe the fluxes for the unsplit 

finite volume method. A modified pressure flux 
definition is introduced into the Riemann-solver to 
maintain accurate solutions for smooth flow, especially 
for regions of low speed pure liquid flow [8]. To 
advance the conserved quantities in time, an explicit 
4-stage Runge Kutta method is applied. The resulting 
numerical approach CATUM (CAvitation TU Munich) 
is second order accurate in space and time.  

As our major research interest contains strong wave 
dynamic aspects we apply numerical time-steps in the 
order of 10-8-10-7 seconds. Significantly larger step 
sizes would act like a filter on the propagation of the 
high frequency genuinely non-linear waves. A grid 
refinement study was performed in order to exclude 
strong mesh dependence of the solutions. On the finest 
grid we use three different time-step sizes according to 
CFL numbers of 1.5, 1.0 and 0.5. All configurations of 
time and space discretizations give highly comparable 
results. Relative deviations in lift and drag, measured in 
l2-norm, are smaller than 1 ‰ for the selected time steps. 
The relative deviation of the mean shedding frequency 
is of the same order for both grids. This indicates that 
further grid refinement will not lead to qualitatively 
different structures. Nevertheless, a higher spatial 
resolution is expected to give more detailed 
fine-structures for the separated clouds and a sharper 
phase boundary of the sheet cavity. 
    

Geometry definition and grid properties 
It is known form experiments [9] that the interaction 

of cavitation with the sidewalls of the test-section often 
leads to rather stochastic cavitation patterns without 
well-defined and repeatable structures. To avoid strong 
sidewall effects a twisted geometry was designed which 
leads to well defined cavitation patterns for a certain 
range of operating conditions [10, 11]. Therefore a 
NACA 0015 profile with cord length c=0.15 m is turned 
around its middle point to obtain a varying angle of 
attack from -3° at the side walls to +6° at midspan. The 
resulting foil is placed in the middle of a rectangular 
test-section with length 0.6 m and quadratic cross 
section of 0.3 x 0.3 meters as sketched in Fig. 1.  

As the geometry is symmetric to the midspan-plane 
the simulation is performed in one half of the domain. 
The implied assumption of flow symmetry is verified in 
the experiments of Foeth et al [12].  

The grid for the simulated half-foil is an O-grid with 
sufficient high resolution close to the foil, consisting of 
75000 hexahedrons for the finest case. For 
parallelization purposes the grid is divided in 8 equally 
large blocks and calculated on 8 processors. The 
calculation time could thereby be reduced to 24 hours 
per shedding cycle. 

C. Third publication
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Initial and boundary conditions 
The selected geometry requires the definition of 

inflow, outflow and wall boundary conditions. We use 
two ghost-cells to maintain 2nd order accuracy on the 
boundaries as well. All walls and the foil surface are 
treated as adiabatic, inviscid and impermeable. The 
inflow conditions define pure water with fixed inlet 
velocity uin=12 m/s parallel to the test-section and fixed 
static temperature Tin=293 K. The outflow conditions 
consist of asymptotically matching non-reflecting 
conditions [6]. The static pressure at the outflow cross 
section is not fixed but will asymptotically reach an 
average value of pout,mix=0.524 bar. Together with these 
quantities we define the reference cavitation parameter 

σref =0.7 as a time average property but not as a constant 
state.    

The initialization of the domain is achieved by a 
steady state solution of the single-phase pure water 
simulation by applying the same boundary conditions as 
for the two-phase simulation. As the time-dependent 
character is a major part of the cavitating flow we 
compared the long-time behaviour of the resulting 
solutions for different initial conditions. In all cases the 
obtained shedding frequency and the qualitative flow 
character matched very well, so we suggest that the 
selected geometry together with the boundary 
formulation provides a unique and repeatable global 
flow character. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Computational domain and boundary conditions;  
Fluid: water, coming from left;  
Hydrofoil: NACA 0015, angle of attack is -3° (walls) and +6° (midspan). 

Fig. 2 Total vapor volume Vvap integrated over the computational domain for the complete time-accurate simulation. 
Investigated cycles 1 and 2 are highlighted.  

65



4 Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

1 

4 

3 

2 

8 

7 

6 

5 

Fig. 3 Cavitation cycle 1 - visualized by iso-surfaces of a void fraction α=5 % together with instantaneous stream traces.  

C. Third publication
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Fig. 4 Time history of drag force FD,p [N], lift force FL [N] and integrated vapour volume Vvap of cycles 1 and 2; 
  The emphasized numbers correspond to the 8 instants in time presented in Fig. 3. 

Computational Results 
Vapour structure and shedding cycle 
Figure 2 depicts the development of the integrated 

vapour volume Vvap. After a short transitional time a 
regular structure with mean frequency f=40.65 Hz is 
established. Although the frequency is only slightly 
varying within the range of ±1.5 Hz, the amplitude of 
the curve shows larger variations. In order to highlight 
possible variations as well as common aspects the 
following analysis will focus on cycle 1 and cycle 2.  

To give an impression of the cavitation development 
eight representative instants in time for cycle 1 are 
plotted. Figure 3 contains a top-view of the hydrofoil 
showing iso-surfaces of the void fraction α=5 % (left 
column) as well as plots of instantaneous stream traces 
(middle column) and a perspective view from the left 
side to the midspan plane (right column).  

The first instant in time resembles a triangular 
shaped attached sheet cavity and a nearly spherical cloud. 

The stream traces indicate that the re-entry jet has not 
yet reached the sheet, but in the perspective view a 
slight detachment of the cavity closure region is already 
visible. The maximum length for the fully attached 
sheet is 0.07 m (roughly half cord length). The second 
and third time instants show the downstream convection 
of the cloud and the formation of reverse flow below the 
sheet cavity. In time instants (4) and (5) the re-entry jet 
is no longer formed by pure reverse flow but includes a 
significant spanwise velocity component. Spiral 
singularities indicate the formation of vortices. Time 
instance (6) contains a fully wetted leading edge and a 
horseshoe-like cavitation cloud. At instance (7) and (8) 
the upstream part of the cloud overtakes the 
downstream part, leading to a reunification of the 
vapour structures to a single spherical cloud. The sheet 
on the leading edge develops and the cycle starts from 
the beginning.  
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Table 1 Influence of sampling frequency fsample on pmax as  
well as on duration and resulting impulse strength. 

Lift and drag forces 
The dynamic behaviour of the shedding process 

results in strongly time-dependent lift and drag forces 
(Fig. 4). Both curves contain significant decreases of 
lift and drag including negative values corresponding to 
time instant (2) in Figure 3. A detailed analysis of the 
flow field at this stage of the shedding cycle is given by 
Schnerr et al [6]. Thereby, the collapse of the small 
vapour cloud located between the foil surface and the 
main cloud was found to result in a shock wave that 
increases the surface pressure on the suction side close 
to the trailing edge of the foil. The shock wave leads to 
maximum instantaneous surface pressures of 84 bar in 
cycle 1 and 133 bar in cycle 2. This difference is related 
to slightly varying void fraction distributions. To show 
the influence of the shedded structures on the shock 
wave strength and thus on the surface pressure of the 
foil, we record the maximum surface pressure for each 
computational cell during cycle 1 (Fig. 5, top) and cycle 
2 (Fig. 5, bottom). The plots demonstrate that the most 
violating collapse in cycle 1 is close to midspan position 
(Fig. 5 top, location B) while the maximum shock wave 
impact is noticeably dislocated in cycle 2 (Fig. 5 bottom, 
location C). In order to understand this cycle-dependent 
behaviour we analyse the vapour structure of 7 cycles. 
The already obtained results indicate an almost 
alternating collapse behaviour comparable either to 
cycle 1 or to cycle 2.     
 

Surface pressure analysis 
A more detailed analysis of the time dependent static 

pressure requires the definition of “numerical pressure 
transducers”. We therefore record the static pressure 
during cycle 1 of all computational cells located on the 
hydrofoil and of one finite volume located close to the 
outflow plane. The size of our numerical transducers is 
thus the computational cell size, which covers a surface 
area of about 12 mm2 (2 x 6 mm) on the hydrofoil. In 
comparison with real sensors this area is relatively large, 
resulting in a spatial averaging of local events. The 
main advantage of numerical sensors is their high time 
resolution. As our numerical time-step is given by 
∆tCFD=5.5 x 10-8 s, the numerical sampling frequency 
turns out to be 18 MHz. This numerical sampling 
frequency is based on the requirement that even the 
fastest signals (shock waves) are not allowed to travel 
further than half of the distance defined by the shortest 
edge length of any finite volume. Hence, all time-scales 
of the physical model are fully resolved without aliasing 
effects. Moreover, numerics are not limited within a 
certain range of static pressures that can be accurately 
recorded by the transducers. In order to model the 

temporal averaging of sensors with lower sampling rate 
we define top-hat filtered time average values according 
to the following mapping 

      
 
 
Here, δ is the reciprocal value of the desired reduced 
sampling frequency fsample and represents the width of 
the top-hat window. The purpose is to study the 
dependence of the maximum recorded pressure and its 
impact time with respect to sampling frequencies of real 
transducers. Therefore, we start with the numerical 
pressure data obtained with fsample=18 MHz recorded at 
point B of cycle 1 (Fig. 6 top). As stated before, a 
significant peak occurs at t=T/10, corresponding to time 
instance (2) in Fig. 3. Besides the occurrence of small 
peaks with pmax<5 bar around t=T/4 no further 
deviation from the expected pressure is visible. It 
should be noted that the scaling of the ordinate of Fig. 6 
does not permit the visualization of weak pressure 
variations although they are present throughout the 
cycle. A strong magnification of the maximum peak is 
given in Fig. 6 (bottom), where the squares represent 
discrete samples obtained by the numerical transducer. 
Here, the impulsive pressure rise is fully resolved and a 
sudden increase from p=0.02 bar to p=84 bar within 
10-6 s is observed. The decay time is -for this event- 
defined as the time interval which is needed to relax the 
pressure from pmax to p<2 bar. This definition leads to a 
duration of 8 x 10-6 s and an impulse strength of 23.7 Pa 
s. The effects of reducing the sampling frequency can 
be seen in the two pictures in the middle of Fig. 6, 
where the upper one resembles the pressure signal 
obtained with fsample=100 kHz and the lower one the 
corresponding signal for fsample=20 kHz. The following 
table gives an overview of the resulting pmax together 
with duration and impulse strength for various sampling 
frequencies. 

 
 

fsample pmax duration  impulse 
strength 

18 MHz 84 bar 8.0 x 10-6 s 23.7 Pa s 

100 kHz 22 bar 1.4 x 10-5 s 22.3 Pa s 

20 kHz 5 bar 5.0 x 10-5 s 22.5 Pa s 

2 kHz 1 bar 5.0 x 10-4 s 25.3 Pa s 

ττ
δ

δ

δ
δ dptp

t

t
∫
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Fig. 5 Cell wise recorded maximum static pressure during cycle 1 (top) and during cycle 2 (bottom). 
In both pictures the maximum instantaneous static pressure occurs on the upper surface (suction side) 
of the hydrofoil, close to the trailing edge. The spanwise position varies from cycle to cycle in an 
alternating manner. The collapse of the leading edge cavity produces in both cases maximum static 
pressures of the order of 40 bar (point A). 

cycle 1 

cycle 2 
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Fig. 6 Pressure signal at point B of cycle 1 for three sampling frequencies and magnified shock detail. 
From top to bottom: Signal obtained by sampling frequencies fsample=18 MHz, fsample=100 kHz, fsample=20 kHz. 
Lowermost picture shows magnified rise and decay of the pmax impulse as recorded in the 18 MHz sample. 
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The results presented in Table 1 indicate that the 
impulse strength behaves nearly invariant under the 
defined low pass filter. While the observed maximum 
static pressure is successively reduced due to 
insufficient time resolution, the duration time grows 
according to the smoothing effect of the filter. Although 
we present this analysis only for cycle 1 at point B, our 
numerical studies for different locations confirm this 
behaviour without exception.  

A quantitative comparison of our numerical results 
with experimental data obtained from various cloud 
cavitation patterns fully supports our study. Le et al [13] 
give pulse magnitudes in the order of 70 bar (natural 
transducer frequency 1.7 MHz) while Shen and Peterson 
[14] reported pulses only in the order of 1 bar (sampling 
frequency 2 kHz). Another detailed experimental study 
was performed by Reisman et al [5] where different 
transducers where applied. They found maximum 
values in the order of 40 bar (transducer frequencies 
around 100 kHz) as well as maximum pressures in the 
order of 5 bar for transducers with sampling 
frequencies in the order of 20 kHz. Moreover, they 
report impulse strengths of the order of 20-40 Pa s, 
which convincingly agree with our simulation results.  

Because none of the experiments named above was 
performed for the geometry defined in this study, we 
conclude that the qualitative and quantitative agreement 
indicate general properties of cloud cavitation patterns 
occurring at free stream velocities of about 10 m/s and 
mean static pressures in the order of 1 bar.  

Besides the maximum static pressures we analyse 
radiated pulses at a certain distance away from the 
hydrofoil. We therefore record the static pressure in a 
computational cell located close to the exit plane in the 
centre of the cross-section of our numerical domain. 
Here, the maximum pulses are of the order of 1 bar and 
correspond to the collapse of the downstream convected 
cloud. As this vapour structure is embedded by vortical 
flow, the collapse turns out to be less intense. In Fig. 7 
(top) the arising pressure signal for 7 cycles is presented. 
Thereby, the time instant t1 corresponds to the 
beginning of cycle 1 in Fig. 2. In Fig. 7 (bottom) the 
spectral characteristics of this signal is presented. 
Besides the fundamental frequency of 40.65 Hz and the 
first 3 harmonics we observe additional maxima at 
frequencies around 1 kHz, 2 kHz and 2.5 kHz, as well as 
at 5.5 kHz. The cause of this high frequency content in 
our inviscid simulation is not yet fully understood but 
might stem from multiple reflections of shock waves  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
inside the test-section, i.e. inside the computational 
domain. Additional simulations with enlarged 
computational domains are therefore planned.  

 
Scaling of pulse strength with velocity 
Le at al [13] analysed the scaling of the shock 

strength with respect to the inlet velocity while keeping 
the cavitation parameter σ constant. They state that the 
pulse height is then directly proportional to the 
characteristic velocity. Our numerical studies of the 
same hydrofoil at an inlet velocity of 17 m/s confirm 
this behaviour very well. For high speed flows with 
characteristic velocities above 100 m/s we obtained a 
correlation of inlet velocity and shock strength as well, 
but our prediction states that the dependency is then 
much weaker. 
 

Fig. 7 Time history of static pressure close to the exit plane   
of the computational domain (top) and corresponding  
spectral analysis (bottom). 
The starting time t1 corresponds to the beginning of  
cycle 1, subsequently 7 cycles are presented.  
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Conclusions 
This investigation provides a quantitative analysis of 

surface loads of a 3-D unsteady cavitating hydrofoil. 
The results confirm that high impulse loads are 
generated by collapse induced shock waves. 
Furthermore, the necessity to use a fully compressible 
numerical method and a sufficiently high time 
resolution of 10-7 seconds for this characteristic length 
scale is shown. Comparisons with available 
measurement data demonstrate the capability of the 
method to accurately predict complex 3-D shedding 
cycles as well as the resulting forces. The experimental 
discrepancies in maximum pressures are related to the 
transducer sampling frequencies. This correlation is 
demonstrated by gradually downsampling of high 
resolution numerical data. Load intensive domains can 
be detected from the numerically obtainable pressure 
foot-prints on the hydrofoil surface. This quantitative 
information enables the prediction and reduction of 
cavitation erosion already during the design process.  

Although the physical model is able to reproduce 
most of the experimental observations, further 
extensions are planned. Therefore, we will include the 
presence of non-condensable gas (air) in order to study 
possible wave damping effects.  

In order to archive long time statistical data, 
additional simulations with different operating 
conditions are currently investigated.  
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In the fourth publication [65] simulations of two cavitating low speed flows are analyzed. The

first one is the flow around a prismatic body, where shear cavitation and vortex cavitation are

predominant. In this case, experimental information about cavitation erosion is compared to

positions of intense peak loads found in the simulation. Good overall agreement of cavitation

patterns and erosion endangered areas is achieved [33]. Due to numerical viscosity, the

inviscid formulation of the governing equations is sufficient to correctly predict global flow

features.

In the second part, the cavitating flow around a sphere is computed and compared to ex-

perimental findings [6]. Although most characteristic flow phenomena are well predicted by

the simulation, it is concluded that viscous effects (and maybe dissolved gas) may play an

important role for accurate prediction of the onset position of the sheet cavity. Numerical

viscosity is certainly not sufficient for proper boundary layer representation and thus, the

precise prediction of the pressure field around the sphere requires more sophisticated, but

also more costly numerical models and computations.

Both flows investigated here contain regions of pure vapor (sheets, vapor vortex cores) as

well as highly dispersed bubbly regions (clouds). As the proposed numerical model does not

rely on single bubble considerations, it is readily applicable to simulate both regimes.

I defined the test-cases, supervised the student who generated the grids and conducted the

computations, analyzed the results and prepared the manuscript. Note that the flux function

applied in this investigation was published in [66] (Appendix G).
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ABSTRACT 

The aim of the present investigation is modelling and 
simulation of the dynamic phase transition of complex 3-D 
unsteady liquid flows including the formation and propagation 
of collapse-induced shocks. We therefore developed the CFD-
Tool CATUM - Cavitation Technische Universität München, 
which is a conservative finite volume method based on the weak 
form of the balance laws for mass, momentum and energy [1-2]. 
For this investigation, the employed thermodynamic model is 
based on an equation of state for liquid water (modified Tait 
equation), on one for water vapor (ideal gas law), and on one for 
saturated water/vapor states (Oldenbourg polynomials). Meta-
stable or supercritical thermodynamic conditions are not 
modelled and the effects of viscosity are neglected.  

First we apply CATUM to simulate the 3-D cavitating flow 
field around a prismatic body. Here, we demonstrate the ability 
to predict the complex unsteady flow field including violent 
shocks that arise from collapsing vapor clouds. The 
impingements of these shocks on a solid wall are recorded in 
order to compare the predicted erosion sensitive areas with 
experimental observations. Finally, we investigate the ability to 
predict the shedding of cloud cavitation around a sphere. Again, 
comparison with experimental data is given. 

NOMENCLATURE 
u, ui    = velocity, velocity components                           [m·s-1] 
c         = speed of sound                                                   [m·s-1] 
M       = Mach number      
          = conserved quantities      [kg·m-3, kg·m-2·s-1 , J·m-3] 
          = flux in direction xi     [kg·m-2·s-1 , kg·m-1·s-2 , J·m-2·s-1] 
ρ        = density, local average density      [kg·m-3] 
E       = mass specific total energy       [J·kg-1] 
e        = mass specific internal energy       [J·kg-1] 
p       = static pressure                           [Pa] 
T       = static temperature                           [K] 
α       = vapor volume fraction     
ε       = vapor mass fraction     
σ       = cavitation parameter     
xi       = coordinate direction/length                          [m] 
ΔtCFD   = numerical time step               [s] 
Vvap    = integrated vapor volume   
 [% total volume of the computational domain]  
f         = frequency             [Hz] 

1. INTRODUCTION 
 The numerical simulation of wave dynamics such as shock 
formation and propagation in compressible multiphase flows 
offers the possibility to predict the formation and collapse of 
cavitation structures as well as to predict collapse induced 
shocks of cavitating flows. Serious numerical difficulties arise 
due to the different time scales defined by the flow velocity 
u=O(10) m/s and the speed of sound c=O(1000) m/s of the 
liquid. As long as no phase transition occurs the Mach number 
remains very low, typically 0<M<0.1. However, the 
thermodynamic properties of two-phase mixtures imply a strong 
reduction of the speed of sound [3] and hence, the Mach number 
reaches even supersonic values if the vapor volume content is 
sufficiently large. The collapse-like condensation of the vapor 
content results in the formation of shock structures that 
propagate through the flow [4]. These shocks result in 
instantaneous loads and are supposed to be a driving mechanism 
of cavitation erosion. The present investigation focuses on the 
simulation of 3-D time-dependent cavitating liquid flows 
including wave dynamics. The resolution of the latter one 
requires numerical time steps based on the fastest signal speeds 
of the system, which are of the order of the speed of sound of 
the liquid. Besides this physical constraint the numerical flux 
function must resemble the asymptotic behaviour [5] of the 
continuous equations for M 0. It is known that classical 
Riemann approaches suffer from the low Mach number problem 
and hence, their application as flux function typically leads to 
large errors in the calculated flow field [6-8]. Several numerical 
techniques have been developed to overcome the low Mach 
number problem. Time derivative preconditioning removes the 
stiffness of the governing equations and permits accurate steady 
state solutions in the low Mach number limit [9]. In combination 
with dual time-stepping approaches these techniques are 
applicable to simulate unsteady flows as well, but the resolution 
of wave dynamics is no longer possible [10-11]. Pressure 
correction methods enable the simulation of low Mach number 
flow [12], but their application to solve wave propagation 
problems suffers from the lack of efficiency of these techniques 
if the physically required time step is very small. If the Mach 
number is small throughout the flow domain, the discretization 
of the compressible low Mach number equations [13] is suitable. 
However, with respect to cavitating flow this condition is not 
fulfilled. In addition to the numerical difficulties of low Mach 
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number flows the simulation of cavitating flows require 
modeling of evaporation/condensation as well as of the resulting 
two-phase mixtures. The modeling of the phase-change is either 
achieved by finite rate models [14-16] or by thermodynamic 
closure relations [17-18, 1-2]. These models can be applied to 
single-fluid formulations as well as to two-fluid formulations. 
The latter ones enforce the solution of two sets of governing 
equations, together with the modeling of mass, momentum and 
energy transfer between both fluids [19]. A recently developed 
hybrid model is based on the assumption of locally stratified 
flow [20]. The advantages of single-fluid formulations together 
with suitable thermodynamic closure relations are their 
hyperbolic structure and the existing conservation form of the 
governing equations [21].  

 The present investigation is organized as follows: In 
chapters 2 and 3 we briefly summarize the mathematical model 
and the solution algorithm implemented in our CFD-Tool 
CATUM for time-dependent compressible liquid flows 
including the effects of evaporation and condensation. Chapter 4 
contains a detailed analysis of numerically predicted pressure 
loads of collapsing two-phase regions. Here, we compare our 
numerical observations of the cavitating flow around a prismatic 
body with experimental results of Huber [22]. Special emphasis 
is put on the correlation of experimentally observed regions of 
cavitation erosion with the numerical prediction. Finally, the 
cavitating flow around a sphere is investigated in chapter 5. We 
present pictures of the void fraction distribution as obtained by 
our currently performed simulation and compare these to the 
experimental results obtained by Brandner et al. [23]. 
 
2. PHYSICAL MODEL 

As our major interests contain wave and inertia driven flows 
we neglect viscous effects. From several experimental 
investigations it is known that cavitating flow is only weakly 
dependent on the Reynolds number and thus this approximation 
is suitable. However, the inclusion of viscous effects within the 
model is possible. 

Let qv  be the vector of conserved quantities defined by the 
density ρ, the components ui of the velocities in coordinate 
direction ix  and the specific total energy E as the sum of the 
specific internal energy e per unit mass and the specific kinetic 
energy 0.5·∑(ui)2. Let ( )qFi

v  be the physical flux in coordinate 
direction ix , while ijδ  and p denote the Kronecker symbol and 
the pressure respectively 
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The differential or pointwise form of the Euler equations can be 
written as  
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Instead of enforcing the conservation principles in a pointwise 
fashion we use the weak form of the Euler equations. Therefore, 
we partition the flow domain into disjoint fixed control volumes 

kC  of a corresponding volume kV , a surface kS  and an outer 

unit normal vector t
kkkk nnnn )( 3,2,1,=

v . The weak form of 
the Euler equations for each control volume kC  follows as  
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By defining the cell average operator kA  
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we assign to all weak solutions within the cell kC  their common 
integral average value ( )qAq kk

vv
= . It turns out that the weak 

form of the Euler equations resembles a system of evolution 
equations of the cell averages of weak solutions 
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Up to now we have not made any additional assumption on 

the flow field itself, which means that equation (5) is valid for 
any type of inviscid multicomponent and multiphase flow, even 
if the species do not share a common pressure, temperature or 
velocity. Nonetheless, the closure of the defined initial-boundary 
value problem (5) necessitates constitutive relations for the 
thermodynamic quantities kρ , ke , kp  as well as consistent 
initial and boundary conditions. In this section we assume that 
consistent initial and boundary data are available. Thus, the 
physical fluxes along the boundary surfaces are known and 
hence, equation (5) reduces to an initial value problem. At each 
instant in time the corresponding initial values kqv  already 
determine the average density kρ , velocity kuv  and total energy 

kE  within the control volume kC . Therefore, the average 
specific internal energy ke  is known as well. However, the 
definition of the average pressure kp  requires additional model 
assumptions. In this investigation we neglect surface tension and 
restrict the fluid to consist of two species: water and water vapor. 
It is known that highly purified water allows for the occurrence 
of meta-stable states far beyond saturation conditions [24], 
whereas tap water does not show this behaviour. In the latter 
case, the large number of impurities immediately results in 
heterogeneous nucleation [25] and thus in the formation of 
vapor bubbles. As the specific volume of water vapor is by 
several orders of magnitude larger than the one of liquid water, 
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the phase transition results in rapid pressure equalization close 
to the stable saturation state. Although impurities like solid 
particles or solute gas are currently not explicitly modelled in 
our CFD-Tool, we assume that infinitely fast pressure 
equalization takes place. This allows us to neglect meta-stable 
states and to consider stable thermodynamic conditions. 
Consequently, the coexistence of both phases implies that the 
pressure kp  is determined by the Clausius-Clapeyron relation 
and the average density kρ  within cell kC  is a convex 
combination of the saturation densities satl ,ρ , satv,ρ  of liquid 
and vapor. Furthermore, we define at each instant in time and 
for each control volume an average temperature kT  in order to 
relate the saturation density to the internal energy. By defining 
the vapor volume fraction kα  and the vapor mass fraction kε  
we obtain the unknown quantities kT , kα , kε  and kp  as 
solutions of the system 

 
 

( ) ( ) ( )ksatlkksatvkk TT ,, 1 ραραρ ⋅−+⋅=                 (6)                                                
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Thereby, the incorporated temperature dependent functions have 
to be specified. In the case of water and water vapor we model 
these by Oldenbourg polynomials [26]. The required closure 
relation in the presence of two-phase flow is thus completely 
defined.  

If the average density kρ  is larger then the saturation density 
of liquid water, we replace the closure relation by the modified 
Tait model ( 0, =kk εα )  
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together with an equation for the internal energy [27]. Even 
though the temperature variation of the liquid is typically small, 
the modification of the Tait equation remains necessary in order 
to ensure a continuous connection of the Tait model to the 
temperature dependent saturation conditions. For water we use 
B=3300 bar and N=7.15, independent of the temperature. 

If the average density kρ  is smaller then the saturation 
density of vapor, the applied constitutive relation models pure 
vapor ( 1, =kk εα ), treated as calorically perfect gas, where the 
ratio of the specific heats is given by κ=1.327 and the specific 
gas constant is 461.5 J/kg K.  

The comparison of the described thermodynamic closure 
relations with respect to the IAPWS data [28] demonstrates that 

the relations accurately model the behaviour of water and water 
vapor for a large range of thermodynamic subcritical conditions. 
Moreover, the presented model is neither restricted to the 
described set of thermodynamic closure relations nor to the 
assumption of instantaneous pressure equalization. 

 
3. NUMERICAL METHOD – CFD-TOOL CATUM 

Our CFD-Tool CATUM relies on an approximate solution of 
the evolution equation (5) for each control volume kC . The 
hyperbolic character of the compressible formulation of the 
governing equations motivates a Godunov type approximation 
of these fluxes. Thereby, the average values kqv  and iqv  of two 
adjacent control volumes kC , iC  are used to define the 
Riemann problem RP across the shared surface ikik CCS ∩=, . 
The solution ( )ik qqRP vv ,  of the Riemann problem at the surface 
Sk,i is constant in time within a time interval )/( cultRP +≈Δ

v , 

where l is the length scale of the volume and cu +
v represents 

the fastest signal speed. By replacing the physical fluxes )( kqF v  
in Eq. (5) with the numerical fluxes ( )( )ik qqRPF vv , , we obtain a 
set of ordinary differential equations, which represent a semi-
discrete unsplit finite volume method for hexahedral volumes 
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i
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dt
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This framework is well developed for the simulation of 

steady and unsteady compressible aerodynamics of moderate 
and high Mach number flows as well as for the investigation of 
wave propagation phenomena including sharp and accurate 
shock capturing in unsteady flow. Furthermore, methods based 
on Eq. (12) are conservative by construction and enable efficient 
time dependent simulations. Contrary to pressure based 
approaches, all fluxes are calculated without the need for sub-
iterations. However, the application of Godunov type methods to 
low speed flows requires substantial modification to overcome 
the low Mach number problem. Otherwise, the accuracy of the 
Godunov approximation significantly decreases if the Mach 
number is in the weakly compressible regime, 1.0~<M . With 
respect to the high acoustic impedance c⋅ρ  of liquids, the 
decrease of accuracy is further intensified.  

We obtain a consistent flux function with respect to the 
asymptotic behavior for 0→M  by modifying the pressure flux 
of the classical approaches. This is achieved by using the 
arithmetic average of the pressure of adjacent cells to define the 
pressure flux. The velocity and the density at the common 
interface of adjacent cells are calculated according to the 
classical solution of the Riemann problem.  

By applying high resolution reconstruction procedures 
(WENO-3, TVD) in space together with an explicit 4-stage 
Runge-Kutta method in time we obtain an efficient CFD-Tool 
that enables us to investigate wave dynamics arising in complex 
3-D cavitating flows in an accurate manner.  
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Fig. 1: Numerical test-section including the prismatic body and computational discretization of the domain.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s, 3.1·106 finite volumes. 

4. CAVITATING FLOW AROUND A PRISMATIC BODY 
 The occurrence of cavitation typically leads to a decrease of 
the efficiency of hydraulic machinery. For pumps the NPSH (net 
positive suction head) significantly reduces as soon as 
evaporation of the fluid takes place. Furthermore, cavitating 
flow tends to be inherently time dependent due to the periodic or 
chaotic fragmentation of vapor sheets and the subsequent 
formation of vortical cavitation clouds [29-30]. These clouds are 
convected into areas of increased static pressure, where a 
collapse-like recondensation is initiated. Thereby, shock 
structures form and propagate through the fluid. If the collapse 
of a vapor cloud occurs close to a solid surface, e.g. close to a 
pump or turbine blade, then the shock induced dynamic loads 
are supposed to be a major part of the mechanism of cavitation 
erosion [31]. It is further supposed that the interaction of a shock 
with a simultaneously collapsing single vapor bubble intensifies 
the erosive behavior. Within a previous investigation [1] we 
applied the CFD-Tool CATUM to simulate the collapse of a 
single vapor bubble and found excellent agreement with the 
theoretical prediction given by the Rayleigh-Plesset equation. 
However, the resolution of single bubble dynamics is not 
possible for 3-D cavitating flow as this would require 
unaffordable high mesh resolution. Here, we investigate the 
dynamics of large scale structures that can be interpreted as 
clouds of liquid embedded vapor bubbles. Therefore, we model 
and discretize an experimental setup consisting of a rectangular 
test-section of length 0.85 m, depth 0.3 m and height 0.3 m, 
where a prismatic body of height 0.1 m is located at the bottom 
wall. The lateral section of the prismatic body forms an 
equilateral triangle with side length 0.075 m. The mesh consists 
of 3.1·106 finite volumes and it is partitioned into 64 bocks (Fig. 
1). Liquid water at T=300 K enters the inlet plane with an 
average velocity uin=11 m/s. At the outlet plane of the numerical 
domain asymptotic non-reflective boundary conditions are 
applied, which ensure an average pressure pout,mix=1.12 bar. 
Based on the inlet velocity, the inlet temperature and the outlet  

pressure we obtain a cavitation parameter σref=1.8. The 
numerical analysis is performed within 240 hours on a SGI Altix 
3700Bx2 using 64 processors.  
We perform 106 time steps with a step size of ΔtCFD=2.9·10-7 s, 
which leads to a physical simulation time of 0.29 s. The first 
0.116 s of the simulation are not analyzed in detail as during this 
time the flow dynamics are supposed to be affected by the 
initialization of the simulation. In Fig. 2 the time history of the 
integrated vapor volume fraction Vvap within the complete 
numerical domain is shown. Starting from t=0.116 s we define 
three time intervals 1-3 with length Δtanalysis cycle=0.058 s. Within 
all three time intervals the graph of the integrated vapor volume 
fraction Vvap depicts oscillations of the frequencies f1=22.8 Hz, 
f2=62.7 Hz and f3=136.8 Hz.  

Figure 3 depicts a series of top views of the prismatic body 
(red) for 10 equidistant instants in time t1-t10 with ∆tpic=0.019 s. 
The flow is from left to right and the arising two-phase 
structures are visualized by blue iso-surfaces of the void fraction 
α=0.1%. We observe weakly time dependent cavitating tip 
vortices at the top of the prismatic body as well as highly 
unsteady cavitating vortices in the shear layers downstream of 
the body. Furthermore, we detect a transition of the shape of the 
cavitation structures from compact clouds in the near wake of 
the body to elongated structures (tubes) in the far wake (Pic. 9 
of Fig. 3). This transition is related to the interaction of the shear 
layer vortices arising at the vertical edges of the body with the 
shear layer at the trailing edge at the top of the body. 

Figure 4 provides a one-to-one comparison of the 
visualization of the experimentally observed cavitation pattern 
[22] with our numerically obtained result for one instant in time. 
The cavitating vortices at the tip of the body, the dispersed 
bubbly clouds in the near wake and the tubular cavitation 
structures in the far wake are well predicted by the simulation. 
The agreement of both visualizations confirms our view that the 
underlying dynamics of the investigated cavitating flow are 
mainly inertia controlled. 
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Fig. 2: Time history of the integrated vapor volume Vvap [% total volume of the computational domain].  
  Fluid: water, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
 

 

Figure 5 depicts three perspective views of the prismatic body 
as well as of the bottom wall and of one side wall of the 
numerical test-section. Both walls are colored according to the 
corresponding static pressure and two-phase structures are 
visualized by blue iso-surfaces of the void fraction α=0.1%. At 
t1=0.234 s (Pic. 1 of Fig. 5) we observe a vortical two-phase 
structure that slightly touches the bottom wall. In Pic. 2 at 
t2=t1+1.17·10-4 s the tubular structure is fragmented into two 
parts. The smaller one is located at the bottom wall where it 
collapses violently. Thereby, the surrounding liquid accelerates 
towards the center of the cloud and impacts onto the wall at the 
bottom of the test-section. This impact results in the formation 
of a spherical shock (Pic. 3 of Fig. 15, t3=t2+5.85·10-5 s), which 
propagates through the numerical domain and enforces a strong 
increase ∆p of the static pressure. For the presented collapse the 
maximum pressure increase reaches ∆p=65 bar directly after the 
impact of the liquid. The pressure increase behind the shock is 
approximately inverse proportional to the radius of the spherical 
shock front. Hence, the shock induced load on the walls of the 
numerical test-section strongly depends on the position of the 
collapsing cloud. If the distance between the cloud and the wall 
of the test-section is sufficiently small, then the instantaneous 
force on the wall might be strong enough to damage the material 
of the wall. Additionally, it is supposed that the erosive effect of 
the collapse induced shock is intensified by the interaction of a 
cloud collapse with a single vapor bubble that is in contact with 
the wall. Although the mechanism of cavitation erosion is not 
yet clarified in detail, it is reasonable to consider shock induced 
loads as a driving mechanism within the complex process of 
cavitation erosion. Therefore, we investigate the forces acting on 

the bottom wall of the numerical test-section for the previously 
defined “analysis cycles” 1-3 as shown in Fig. 2. For each of 
these time intervals we record the maximum static pressure 
within those computational cells that are directly located at the 
bottom wall. The resulting “foot-print” of the maximum 
pressure is depicted in Fig. 6 for each analysis cycle. Within the 
experimental investigation [22] the areas of intense erosion at 
the bottom walls were detected. The centers of these areas are 
marked by red crosses in Fig. 6 in order to relate the numerical 
prediction of the maximum forces to the experimentally 
observed damage at the surface of the bottom wall. Although the 
numerically predicted maximum loads of 60-100 bar occur 
slightly upstream of the experimentally determined areas of 
most intense erosion, the results demonstrate that the physical 
model together with the numerical approach is suitable to 
predict the position of erosion critical areas. Furthermore, it 
should be pointed out that the experiment runs for about 5400 s 
while the numerical simulation covers a small time interval of 
0.058 s for each analysis cycle. Nevertheless, even for the 
performed short time analysis a statistical behavior is present. 
We observe 2-5 strong impacts (∆p > 50 bar) per cycle, which 
leads to an estimated number of impacts of 3·105 for an 
experimental analysis of 5400 s. However, as previously stated, 
the number of erosive events could be 1 or 2 orders of 
magnitude smaller if it turns out that the coexistence of a cloud 
collapse together with a single bubble collapse should be the 
necessary constellation of cavitation erosion. Therefore, further 
experimental and numerical investigations are required to 
determine a correlation of erosion rates with the number of 
cloud collapse events.  
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Fig. 3: Top view of the prismatic body and arising cavitation structures at 10 equidistant instants in time within  
  the analysis cycles 1-3 of Fig. 2. Blue surfaces indicate two-phase regions with α≥0.1%.  

 Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s, Δtpic=0.019 s. 
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Experimentally determined 
areas of intense erosion 

Fig. 4:   Top view of the prismatic body and arising cavitation structures at one instant in time.  
     Visualization of the experiment [22] (top) and of the numerical result (bottom).  
     Blue surfaces indicate two-phase regions with α≥0.1%.  
     Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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Fig. 5:  Perspective view of the prismatic body and shock formation due to collapsing cavitation structure at 3  
    instants in time. The bottom wall and the side wall are colored according to the static pressure. The  
    maximum pressure at the bottom wall reaches 65 bar. Blue surfaces indicate two-phase regions with α≥0.1%.  

     Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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Fig. 6:   Top view of the prismatic body and the numerically obtained pressure “foot-prints” for the analysis cycles 1-3 as  
      defined in Fig. 2. Red crosses mark the experimentally [22] obtained centers of most intense erosion. In picture 3 the  
      small orange spot to the top left of the red cross corresponds to the collapse depicted in Fig. 5.  

       Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 

Cycle 1 

Cycle 2 

Cycle 3 
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Fig. 7: Numerical test-section including the sphere (red) and computational discretization of the domain. 
Fluid: water from left to right, Tin=293 K, uin=10 m/s, pout=0.42 bar, ΔtCFD=3.3·10-7 s, 1.3·106 finite volumes. 

 

5. CAVITATING FLOW AROUND A SPHERE 
 In order to investigate the shedding of cloud cavitation we 
model and discretize an experimental setup as applied by 
Brandner et al. [23]. The setup consists of a rectangular test-
section of length 2.75 m, depth 0.6 m and height 0.6 m, where a 
sphere of diameter 0.15 m is located at the center of the cross 
section. The mesh consists of 1.3·106 finite volumes and it is 
partitioned into 84 bocks (Fig. 7). Liquid water at T=293 K 
enters the inlet plane with an average velocity uin=10 m/s. At the 
outlet plane of the numerical domain asymptotic non-reflective 
boundary conditions are applied, which ensure an average 
pressure pout,mix=0.42 bar. Based on the inlet velocity, the inlet 
temperature and the outlet pressure we obtain a cavitation 
parameter σref=0.8. The numerical analysis is performed within 
120 hours on an AMD Opteron cluster using 84 processors.  
 We perform 1.2·106 time steps with a step size of 
ΔtCFD=3.3·10-7 s, which leads to a physical simulation time of 
0.39 s. The first 0.08 s of the simulation are not analyzed in 
detail as during this time the flow dynamics are supposed to be 
affected by the initialization of the simulation. In Fig. 8 we 
depict 6 equidistant instants in time t1-t6 with ∆tpic=3.3·10-3 s. 
The flow is from left to right and the arising two-phase 
structures are visualized by blue iso-surfaces of the void fraction 
α=5 %. In Pic. 1 of Fig. 8 we observe an attached sheet cavity 
around the meridian of the sphere. Slightly downstream 
detached clouds are visible. In the wake of the sphere tubular 
cavitation structures are predicted. Picture 2 depicts a 
subsequent instant in time, where the previously attached sheet 
cavity is partially separated from the surface of the sphere. In 
Pic. 3 a new attached sheet starts to develop from the bottom of 
the sphere. As the sheet grows it forms an almost regular band 
around the meridian of the sphere (Pic. 4).  

 

Before the elongation of the sheet reaches its maximum (Pic. 5) 
we observe the onset of re-entry jets that lead to the breakup of 
the sheet (Pic. 6) and to the subsequent detachment of 
fragmented clouds. Thereby, the formation of large scale 
vortices is predicted by our simulation.  
 As presented by Brandner et al. [23], the dynamic behavior 
of the shedding contains two dominant frequencies that depend 
on the value of the cavitation parameter σexperiment. For 
σexperiment=0.8 they report Strouhal numbers based on the 
diameter of the sphere of Str1=0.24 and Str2=0.4. From our 
simulation at σref=0.8 we obtain values of Str1=0.21 and 
Str2=0.52, but we want to point out that our currently simulated 
time interval might not be long enough to obtain representative 
statistics. Additional investigations of the shedding behavior and 
its dependence on the cavitation parameter are part of current 
research. 
 Figure 9 (top) depicts a photograph of the experimental 
investigation of Brandner et al. [23] together with the first 
instant in time (bottom) of the series presented in Fig. 8. As both 
pictures present snap-shots of highly unsteady flow fields, only 
qualitative comparison is reasonable. We observe good 
agreement of the predicted large scale structures, although there 
is a slight discrepancy of the position of the attached sheet 
cavity. The numerically predicted position is upstream to the 
meridian of the sphere, close to the position observed in the 
experiment for the slightly lower value of σexperiment=0.7. This 
might have several reasons: Our current investigation does 
neither take the effects of dissolved gas into account, nor do we 
model viscous effects such as pressure losses and the thickness 
of the boundary layers. These issues will be addressed in further 
investigations and are part of the ongoing development of our 
CFD-Tool CATUM. 
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Fig. 8: Side view of the sphere and arising cavitation structures at 6 equidistant instants in time.  
  Blue surfaces indicate two-phase regions with α≥5%.  

 Fluid: water from left to right, Tin=293 K, uin=10 m/s, pout=0.42 bar, ∆tpic=3.3·10-3 s, ΔtCFD=3.3·10-7 s. 
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Fig. 9:   Side view of the sphere and arising cavitation structures at one instant in time.  
     Visualization of the experiment [23] (top) and of the numerical result (bottom).  
     Blue surfaces indicate two-phase regions with α≥5%.  
     Simulation: Fluid: water from left to right, Tin=293 K, uin=10 m/s, pout=0.42 bar, ΔtCFD=3.3·10-7 s. 
     Experiment [23]: Fluid: water from left to right, ReD= 1.5·106.  
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CONCLUSIONS 
By investigating the flow around a prismatic body we 

demonstrate the ability of our recently developed CFD-Tool 
CATUM to predict erosion sensitive areas. This is achieved by a 
physically enforced time resolution of the order of 10-7 seconds 
and the necessarily compressible treatment of the governing 
equations. By comparison of our numerical results with 
experimental observations we further show that even complex 
features of cavitating flows are reasonable predicted without 
explicit modeling of viscous effects. This justifies the numerical 
approach and motivates our view, that the underlying dynamics 
of the investigated cavitating flows is strongly inertia controlled. 
Both investigated flows contain regions of pure vapor (sheets) as 
well as highly dispersed bubbly regions (clouds). As the 
proposed numerical model does not rely on single bubble 
considerations, it is readily applicable to simulate both regimes. 
However, the effects of dissolved gas within the flow field are 
thought to be an important aspect in order to further improve the 
quality of the numerical predictions. This issue is currently 
under development and will be prospectively presented in 
another investigation. 
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E. Fifth publication

The fifth publication [69] places a focus on the numerical simulation of inertia driven dynamics

of 3-D sheet and cloud cavitation on a NACA 0015 hydrofoil. Special emphasis is on the

numerical analysis of the re-entrant flow, the break-up of the sheet cavity and the formation

of clouds, as well as on self-excited instabilities in span-wise direction. It is demonstrated

that these instabilities may be predicted by the assumption of inviscid flow and equilibrium

thermodynamics. The importance of sufficient resolution in space and time is analyzed

by a grid dependence study. Large scale characteristics are only weakly dependent on the

resolution, while small scale structures are strongly grid dependent. The simulation predicts

various irregular break-up patterns, hairpin and horseshoe vortices. These delicate flow

features vary from cycle to cycle, strong periodicity is not observed for the investigated set-

up. The development of the re-entry jet as part of the shedding mechanism is analyzed. Here,

we observe significant vorticity production during the growth and the collapse of the sheet

cavity. It is demonstrated that the vorticity production is caused by a discontinuity at the

end of the attached part of the cavity where condensation takes place. The discontinuity is

part of the re-entry flow and fulfills Rankine-Hugoniot conditions as known from gasdynamic

shocks. Additionally, shocks due to collapsing fragments of clouds are computed. These

shocks produce significant maximum loads of 2400 bar, particularly close to the trailing

edge of the investigated hydrofoil. We conclude that the dynamics of sheet and cloud

cavitation are essentially inertia controlled. Hence, the application of an inviscid flow model

to simulate cavitating flows is justified as long as the boundary layers of the corresponding

single-phase flow remain attached. The numerically predicted flow features agree well with

the experimental observations of Kawanami et al [37].

I defined the test-cases, supervised the student who generated the grids and performed the

computations, analyzed the results and prepared the manuscript.
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ABSTRACT 
The present investigation focuses on the numerical simulation 
of inertia driven dynamics of 3-D sheet and cloud cavitation on 
a 2-D NACA 0015 hydrofoil. Special emphasis is put on the 
numerical analysis of the re-entrant flow, the break-up of the 
sheet cavity and the formation of clouds. We demonstrate that 
our CFD-Tool CATUM (CAvitation Technische Universität 
München) is able to predict even delicate 3-D flow features 
such as irregular break-up patterns, cavitating hairpin and 
horseshoe vortices, 3-D instabilities in spanwise direction  and 
the formation and propagation of shocks due to collapsing 
clouds close to the trailing edge of the hydrofoil. The 
numerically predicted flow features agree well with the 
experimental observations of Kawanami et al [1].   

INTRODUCTION 
Kawanami et al [1] investigate the 3-D structure of the 
cavitating flow around a NACA 0015 hydrofoil with cord 
length lcord=0.08 m and span lspan=0.15 m. The hydrofoil is 
placed within a rectangular test section, the angle of attack is 
8.36°. They observe that the dimensionless spanwise length 
lcav,s/lcord of the clouds is roughly proportional to the 
dimensionless length lcav,c/lcord of the sheet cavity along the cord 
of the hydrofoil. Furthermore, they show the formation and 
shedding of multiple clouds if lcav,c<<lspan (Fig. 1). An 
interesting situation arises at the region of lcav,c/lcord>0.5, where 
Kawanami et al observe irregular break-up patterns. If 
lcav,c/lcord≈1, then the irregular pattern is replaced by the 
shedding of one single cloud that covers the full width of the 
test section. Franc [2] refers the previously stated 3-D aspects 
of cloud shedding as being intrinsic instabilities - often referred 
as self-excited instabilities. Although the width of the test 
section might influence the characteristics of multiple shedding 
and irregular break-up, the physical origin of these instabilities 
seems to be determined by the cavity itself. It is known that the 
basic shedding mechanisms - the formation of re-entrant flow, 
the resulting separation of the sheet cavity, the formation of a 
downstream traveling spanwise vortex and the subsequent 
break-up into numerous cloudy structures - are mainly inertia 
controlled [3]. The aim of this investigation is to 
demonstrate that the occurrence of irregular break-up 

patterns and of 3-D spanwise instabilities is essentially 
inertia controlled as well. The key idea is to focus exclusively 
on the inviscid dynamics of cavitating flows by means of 
numerical simulation. This allows distinguishing inertia driven 
instabilities from instabilities due to viscosity/turbulence.  

PHYSICAL MODEL 
It is known that highly purified water can reach significant 
metastable thermodynamic states including tension [4]. The 
classical nucleation theory predicts that homogeneous 
nucleation is negligible for the typically arising flow conditions 
within hydraulic machinery. It is widely accepted that flow 
induced evaporation - cavitation - is dominated by 
heterogeneous processes such as the growth of liquid embedded 
gas bubbles [5]. Provided that the number density and the 
average size of heterogeneous nuclei are sufficiently large, the 
onset of evaporation occurs close to the saturation conditions 
defined by the Clausius-Clapeyron relation. Concerning natural 
(unpurified) water as working fluid within large scale hydraulic 
machinery, it is reasonable to neglect metastable 
thermodynamic conditions and to assume stable 
thermodynamic conditions exclusively. This assumption is 
questionable for operating conditions close to cavitation 
inception, yet it is sophisticated for sufficiently developed 
cavitating flow such as the investigated sheet and cloud 
cavitation. If we consider an open thermodynamic system at 
one instant in time t=t1 with given total mass m(t1), total 
internal energy U(t1) and fixed volume V, then the fundamental 
laws of thermodynamics imply that the only stable 
thermodynamic state is the equilibrium state, denoted by the 
subscript “eq”. It follows that the pressure peq(t1), the 
temperature Teq(t1) and the mass specific Gibbs energy geq(t1) 
are spatially and temporally constant within the specified 
thermodynamic system. Moreover, the system has minimal 
total Gibbs energy Geq(t1) and maximal total entropy Seq(t1). 
This information provides a unique and complete specification 
of the thermodynamic state including the phase properties (e.g. 
the mass fractions of liquid and vapor) of the system at time 
instant t=t1.  The previous consideration is the thermodynamic 
basis for modeling and simulation of cavitating flows due to the 
following aspects.  
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1) If the numerical method is a finite volume method, then the 
derivation of the stable thermodynamic state within each finite 
volume follows exactly the previously described consideration 
for each instant in time. The spatial resolution of the model is 
then consistent with the spatial resolution of the numerical 
approach, which is defined by the size of the finite volumes.  
2) The phase properties are directly obtainable from the total 
mass and the total internal energy U within each finite volume. 
Contrary to other models, the thermodynamic model does 
neither require the specification of (unknown) parameters nor 
does it require the formulation and solution of additional 
transport equations. 
3) The model takes compressibility effects into account. This is 
necessary for simulation of shock formation and propagation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4) The model is applicable to simulate saturated mixtures as 
well as pure vapor sheets and pure liquid flow.  
5) If the model is combined with a conservative numerical 
algorithm (conservative Euler solver), then the combination of 
both provides a mathematically well posed hyperbolic problem 
where the speed of sound is implicitly defined by the 
equilibrium speed of sound ceq.  
6) The model includes the effects of the latent heat due to phase 
transition. 
As our major interests are intrinsic instabilities of wave and 
inertia driven flows the governing equations are the 3-D 
compressible time dependent Euler equations. Several 
experimental and numerical investigations show that the 
dynamics of developed cavitating flow is only weakly 
dependent on the Reynolds number (see Fig. 1). Presuming that 

Fig. 1 Multiple shedding of clouds on a 2-D NACA 0015 hydrofoil 
The arising cloud patterns show a correlation of the length lcav,c of the cavity along the cord with the spanwise length lcav,s of the 
shedded clouds. For lcav,c /lcord≈0.8 irregular break-up is observed, for lcav,c /lcord≈1.0 a single cloud is shedded.  
NACA 0015, lcord=0.08 m, lspan=0.15 m, 8.36° angle of attack, uin=6.0 m/s -12 m/s, Tin≈299 K, Rec=3.5·105 - 6.9·105,  
σref =1.05 - 2.13, fluid water/water vapor. 
The experiments indicate that the arising structures are independent of the Reynolds number. 
Experiments and data from [1], reproduced with permission from Hajime Yamaguchi. 
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the boundary layers of the investigated flow remain attached as 
long as phase transition does not occur, the inviscid treatment 
of the fluid leads to suitable physical models that can be 
simulated significantly more efficient and more accurate than 
viscous fluids. However, the inclusion of viscous effects within 
the model is possible.  
Let q  be the vector of conserved quantities composed by the 
density ρ, the components ui of the velocities in coordinate 
direction ix  and the specific total energy E as the sum of the 
specific internal energy e per unit mass and the specific kinetic 
energy 0.5·∑(ui)2. Let ( )qFi  be the physical flux in coordinate 
direction ix , while ijδ  and p denote the Kronecker symbol and 
the pressure respectively 
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The differential or pointwise form of the Euler equations can be 
written as  
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Instead of enforcing the conservation principles in a pointwise 
fashion we use the weak form of the Euler equations. 
Therefore, we partition the flow domain into disjoint fixed 
control volumes kC  of a corresponding volume kV , a surface 

kS  and an outer unit normal vector t
3,k2,k1,kk )nnn(n = . The 

weak form of the Euler equations for each control volume kC  
follows as  
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By defining the cell average operator kA  
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we assign to all weak solutions within the cell kC  their 
common integral average value ( )qAq kk = . It turns out that 
the weak form of the Euler equations resembles a system of 
evolution equations of the cell averages of weak solutions 
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The closure of the defined initial-boundary value problem (5) 
necessitates constitutive relations for the thermodynamic 

quantities kρ , ke , kp  as well as consistent initial and 
boundary conditions. In this section we assume that consistent 
initial and boundary data are available. Thus, the physical 
fluxes along the boundary surfaces are known and hence, 
equation (5) reduces to an initial value problem. At each instant 
in time and for each control volume kC  the known values kq  
determine the average density kρ , velocity ku  and total energy 

kE  within the control volume kC . Therefore, the average 
specific internal energy ke  is known as well. We now follow 
the thermodynamic considerations stated at the beginning of 
this section by interpreting each control volume kC at each 
instant in time as an open thermodynamic system with known 
total mass mk, total internal energy Uk and fixed volume Vk. In 
order to obtain the stable thermodynamic states peq and Teq 
from the known conditions we relate them by suitable 
equations of state. The most accurate database for the 
thermodynamic properties of water, water vapor and saturated 
mixtures of water and water vapor is the IAPWS - International 
Association for the Properties of Water and Steam - database. 
They provide “state of the art” equations of state, so called 
reference equations of state [6]. Although it is possible to apply 
these equations to determine the unknown thermodynamic 
properties, we prefer to use suitable approximate equations. 
The reason therefore is given by the fact that the evaluation of 
the IAPWS equations is enormously time consuming. Although 
our approximate equations are significantly more efficient then 
the IAPWS equations, they are still highly accurate within the 
relevant thermodynamic regime of the considered flow.  
Following an idea of Saurel et al. [7], we distinguish the 
following three cases. 
 
Case 1) The stable thermodynamic state corresponds to a pure 
liquid state. Here, we apply a modified Tait model  
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to relate the pressure pk to the density kρ and the temperature Tk 

of the liquid. The temperature Tk is obtained by a caloric 
equation that relates the known specific internal energy ek to 
the unknown temperature Tk. Even though the temperature 
variation of the liquid is typically small, the modification of the 
Tait equation remains necessary in order to ensure a continuous 
connection of the Tait model to the temperature dependent 
saturation conditions - see case 2). For water we use the 
constants B=3300 bar and N=7.15. 
 
Case 2) The stable thermodynamic state corresponds to a 
saturated mixture of water and water vapor. The stable 
coexistence of both phases implies that the pressure kp  is 
determined by the Clausius-Clapeyron relation and the average 
density kρ  within each cell kC  is a convex combination of the 
saturation densities sat,lρ , sat,vρ  of liquid and vapor. The 
temperature kT  is a function of the mass specific internal 
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energy ek. By defining the vapor volume fraction kα  and the 
vapor mass fraction kε  we obtain the unknown quantities kT , 

kα , kε  and kp  as unique solutions of the system 
 

( ) ( ) ( )ksat,lkksat,vkk T1T ρ⋅α−+ρ⋅α=ρ                 (7)                                                
 

( ) ( ) ( )ksat,lkksat,vkk Te1Tee ⋅ε−+⋅ε=                   (8)                                                
 

( )ksat,vkkk Tρ⋅α=ρ⋅ε                              (9)                                                                 
 

)T(pp ksatk =                                      (10)                                                                   
 

1,0 <εα< .                             (11)                                                              
 
Thereby, the incorporated temperature dependent saturation 
conditions are modeled by the Oldenbourg polynomials [8].   
 
Case 3) The stable thermodynamic state corresponds to a pure 
vapor state. Here, the applied constitutive relation models pure 
vapor as calorically perfect gas, where the ratio of the specific 
heats is given by κ=1.327 and the specific gas constant is 461.5 
J/kg K.  
 
The comparison of the described thermodynamic closure 
relations with respect to the IAPWS data [6] demonstrates that 
the relations accurately model the behavior of water and water 
vapor for a large range of thermodynamic subcritical 
conditions, especially for the temperature range of 283 K ≤ T ≤ 
350 K. 
 

NUMERICAL METHOD 
The CFD-Tool CATUM (CAvitation Technische Universität 
München) is based on a semi-discrete unsplit finite volume 
method that operates on block structured meshes. The spatial 
discretization is obtained by a modified flux function that 
enables time accurate simulations of compressible high and low 
Mach number flows including wave dynamics and shock 
propagation [9]. We apply non-linear reconstruction procedures 
(TVB, TVD) to the primitive variables and obtain 2nd order 
accurate approximations of smooth quantities as well as sharp 
representations of discontinuous flow features.  The temporal 
discretization is obtained by a 2nd order accurate explicit 4-
stage Runge-Kutta method with enlarged stability region. Our 
CFD-Tool CATUM relies on an approximate solution of the 
evolution equation (5) for each control volume kC . The 
thermodynamic model is given by the constitutive relations (6)-
(11). By replacing the physical fluxes )q(F  in Eq. (5) with the 

numerical fluxes ( )*qF , we obtain a set of ordinary differential 
equations, which represent a semi-discrete unsplit finite volume 
method for hexahedral volumes 

 

( )*
6

1i
i,kk qFSq

dt
d

∑
=

⋅−= .                            (12) 

 

For presentation purposes we assume that kq  and iq  are the 
average conserved quantities within two adjacent control 
volumes kC , iC  and let i,kS  be the shared surface 

iki,k CCS ∩=  which is supposed to be perpendicular to the 1x  
spatial direction. We further assume that the 1x  spatial direction 
increases from kC  to iC . Hence, the required flux is the 
approximate flux )q(F1  in 1x  spatial direction. Provided that 

the flow is subsonic, the approximate states *q  at the shared 
surface are obtained by the following procedure. The 
approximate velocity *

1u  is given by 
 

( )
iikk

iki,1k,1*
1 cc

pp2
2

uu
:u

⋅ρ+⋅ρ
−⋅

+
+

= .                    (13) 

 
The pressure kp , the density kρ , the speed of sound kc  and 
the k,1u  velocity component correspond to the cell average 
values within cell kC , otherwise the values correspond to cell 

iC . Equation (13) can be interpreted as an approximate 
solution for the resulting velocity of the associated Riemann 
problem between cells kC  and iC  . A detailed derivation of 
Eq. (13) based on the theory of characteristics was recently 
published (Schmidt et al [10]). The pressure *p  at the shared 
surface is defined by 

2
pp:p ik* +

= .                                (14) 

 
Assuming that the value of *

1u  as defined by Eq. (13) is 
positive, the upwind character of the discretization is obtained 
by defining the remaining quantities at the shared surface as 
 

.E:E,u:u,u:u,: k
*

k,3
*
3k,2

*
2k

* ===ρ=ρ           (15) 
 

Otherwise, if *
1u  as defined by Eq. (13) is negative, the 

subscripts k  in Eq. (15) are replaced by i . With these 
definitions the numerical fluxes are completely defined. In 
contrast to classical numerical flux functions the proposed 
numerical flux is consistent with respect to the asymptotic 
behavior of the governing equations for 0M → . Therefore, the 
novel method enables the simulation of low Mach number 
flows including wave dynamics without the well known draw 
backs of classical schemes as stated in the introduction part of 
this investigation. The consistency with respect to 0M →  is 
achieved by Eq. (14) which defines the pressure *p  at the 
shared surface as the arithmetic mean of the pressure within the 
adjacent cells. The proposed flux function is replaced by pure 
upwinding of all quantities if the flow is locally supersonic. In 
order to ensure high resolution of discontinuities such as shocks 
and contact waves we apply the minmod TVD-limiter to 
reconstruct the density field and the WENO-3 procedure to 
reconstruct the velocity field. This choice is based on the 
observation that the density field requires a monotone 
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reconstruction procedure in order to avoid oscillations in 
regions of large gradients, especially in regions where 
evaporation/condensation takes place.   
The temporal discretization is obtained by a 4-stage Runge-
Kutta method. The 2nd order accurate low-storage time 
discretization for cell kC  is given by 
 

),q(D
V
tq:q),t(q:q i

s
k

CFD
i

0
k

i
k0k

0
k ⋅

Δ
⋅α−==         (16) 

 
4
kCFD0k q:)tt(q =Δ+                             (17) 

 
 
Here, the expression )q(D i

s  corresponds to the spatial 
discretization as given by Eq. (12). In order to optimize the 
stability region of the method, numerical stability tests have 
been performed. The resulting coefficients 4...1i=α  are 

11.01 =α , 2766.02 =α , 5.03 =α  and 0.14 =α  which enable 
stable time integration for CFL-numbers up to 2.0. A detailed 
description of the CFD-Tool CATUM including validation 
examples is given by Schmidt et al. [10]. The derivation of 
weakly reflective boundary conditions for simulation of wave 
dynamics within cavitating flows is given by Schnerr et al. [11]. 
The numerical analysis of cavitating flows within fuel injection 
nozzles and around profiles of propeller blades are published 
by Schmidt et al.[12,13] and Sezal et al.[14].     

 
NUMERICAL RESULTS 
We simulate the cavitating flow around a 2-D NACA 0015 
hydrofoil (angle of attack 6°, cord length lcord=0.13 m, span 
width lspan=0.3 m) that is placed in the middle of a rectangular 
test section (height 0.3 m, depth 0.3 m, length 0.9 m). The walls 
of the test section and the surface of the hydrofoil are modelled 
as inviscid adiabatic walls. At the inlet of the numerical domain 
the velocity uin=30 m/s and the static temperature Tin=293 K of 
the pure liquid inflow are prescribed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At the outlet we apply an asymptotic boundary condition for 
the static pressure pexit=4.5 bar. The resulting cavitation number 
is σref=1.0. The numerical domain is discretized by 2·105 cells 
(coarse grid G1), 4·105 cells (medium grid G2), 3·106 cells (fine 
grid G3) and 2.4·107 cells (finest/target grid G4). All 
computational grids are structured multi-block hexahedral 
grids. Let ∆x be the characteristic length of the smallest 
computational cell, then the numerical time step is necessarily 
of the order of  ΔtCFD ~ ∆x/cl, where cl is the speed of sound of 
pure liquid. Hence, the numerical time step ΔtCFD and the 
characteristic length ∆x are directly related. The finest grid 
(target grid) used for this investigation leads to the 
characteristic length ∆x≈0.4 mm of the smallest cells, which is 
at least one order of magnitude larger than the radius of a 
typical micro-bubble and definitely one order of magnitude 
larger than the Taylor microscale, which provides an indication 
of the minimum length scale on which inertia effects are still 
dominant over viscous effects. The resulting numerical time 
step for the finest grid is ΔtCFD,fine=8.5·10-8s. These small 
numerical time steps are necessary to resolve wave dynamics 
such as shock formation and propagation. In order to accelerate 
the numerical simulation we apply a grid sequencing technique. 
At first, a simulation on the coarse gird is performed until the 
typical periodic shedding of the cavitating flow is observed. To 
determine the shedding frequency we analyse the integrated 
vapor volume content Vvap [%] within the computational 
domain. Figure 2 depicts the temporal evolution of Vvap during 
the simulated time interval of Δtsim≈0.25 s. The simulated time 
interval Δtcoarse=0.15 s on the coarse grid corresponds to 
approximately 17 shedding cycles. This time interval is 
sufficient to ensure that the disturbances due to the initialization 
of the flow field are no longer present.  As the minimum cell 
size of the coarse grid is significantly larger than the one of the 
target grid, the numerical time step is larger as well. 
Additionally, the number of evolution equations (5) is by 2 
orders of magnitude smaller. Thus, the numerical effort to 
simulate 17 shedding cycles on the coarse grid is about 500 
times smaller than on the finest grid. The grid sequencing 
technique takes advantage of this fact by using the established  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Temporal evolution of the total vapor volume content Vvap [%] within the computational domain 
Grid sequencing procedure applied to 4 successively refined grids: G1 - 2·105 cells (coarse grid), G2 - 4·105 cells (medium 
grid), G3 - 3·106 cells (fine grid), G4 - 2.4·107 cells (finest/target grid). The coarse grids G1/G2 contain low frequency 
disturbances that vanish on the finest grid. See Fig. 3 for detailed information of the simulation on the finest grid G4.  
Shedding frequency f≈100 Hz, ΔtCFD,fine=8.5·10-8 s. 
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solution obtained for the coarse grid as an improved initial 
solution for the following finer grids. Thereby, all necessary 
quantities are interpolated to the next finer grid in a 
conservative manner and the simulation is continued. Due to 
the significantly improved initial solution, the simulation of 1 
to 5 consecutive shedding cycles is sufficient to obtain an 
established solution on the finer grid. The process is continued 
until the finest grid (target grid) is reached.  Figure 3 depicts 
the zoomed temporal evolution of Vvap during the simulated 
time interval of Δtsim≈0.05 s on the grids G3 (fine) and G4 
(finest). The marked time instants correspond to the 
subsequently analysed flow features. On the finest grid with 
2.4·107 cells the simulation is performed on 192 processors. 
The required simulation time to simulate 5 shedding cycles is 4 
weeks.  
 
Single-phase reference solution 
In order to relate the flow properties of the cavitating flow we 
calculate a single-phase reference solution of the same 
numerical set-up, including the same solution algorithm, 
computational grid (medium grid G2), initial and boundary 
conditions. We disable the phase transition routines of our 
numerical method and, hence, the thermodynamic model is 
given by Eq. (6). We observe a maximum velocity umax=53.1 
m/s and a minimum pressure coefficient cp=-2.37 
(corresponding to a minimum “pressure” of pmin=-6.0 bar). The 
numerically predicted drag coefficient is cd, num≈10-4, which is 
two orders of magnitude smaller than experimentally observed 
drag coefficients for comparable Reynolds numbers. As 
expected, the single-phase flow field is perfectly two 
dimensional, e.g. the variation of the thermodynamic 
quantities and of the velocities in spanwise direction is of 
the order of the numerical round-off error (approx. 10-15 for 
normalized quantities).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The steady single-phase solution only depends on the boundary 
conditions but not on the initial conditions. Moreover, the 
inviscid single-phase solution is stable - any enforced 
disturbance damps out and the unique steady solution recovers.  
 
Grid dependence of cavitating flows 
Neither the assumed inviscid flow nor the thermodynamic 
model defines a physical limit of the spatial resolution. 
However, in practice the resolution is limited by the available 
hardware resources. The key questions are as follows.  
1) Is the model suitable to predict the fragmentation of coherent 
structures such as clouds and sheets into smaller unities? 
2) Are large scale properties such as shedding frequencies and 
characteristic void fraction distributions (basic shapes of sheet 
and cloud cavities) grid independent? 
3) Provided that 1) and 2) are fulfilled, then how fine has the 
spatial resolution to be chosen in order to ensure that the 
desired flow information is resolved? 
In order to investigate 1) and 2) we analyse the structure of the 
cavitating flow as obtained during the grid sequencing process. 
Figure 4 depicts a comparison of the predicted vapor volume 
fraction of all four grids. The glossy surfaces are iso-surfaces of 
the vapor volume fraction α=0.05. It is important to note that 
the depicted flow patterns do not correspond to the same instant 
in time. The reason therefore is that the applied grid sequencing 
technique operates consecutively from the coarsest to the finest 
grid. However, the depicted comparison of the resolved 
cavitation structures is still representative as it shows 
corresponding time instants with respect to the shedding 
process. Our observations are as follows. The simulation 
predicts the periodic shedding of at least one cloud - 
independent of the applied computational grid. The shedding 
frequencies are within a range of fmin=90 Hz to fmax=107 Hz. 
During the first 10 cycles the flow field on the coarse grid G1 
is essentially two dimensional. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Zoom of Fig. 2 - total vapor volume [%] versus time - computation on the finest grid G4   
Dots 1 to 5 denote equidistant time instants Δt=2·10-3 s of one shedding cycle with ΔTcycle=0.01 s - see Fig. 5. 
Dots A to E denote the break-up of the sheet cavity for 5 consecutive cycles - see Fig. 6. 
The black dot denotes the time instant analysed in Fig. 7, the re-entrant flow analysis is performed within the  
marked time interval between dots C and D - see Fig. 8,9. 
Shedding frequency f≈100 Hz, ΔtCFD,fine=8.5·10-8 s, grid resolution G4 - 2.4·107 cells. 
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After about 10 cycles the first spanwise variation of the shape 
of the cloud is visible. During a few subsequent cycles the 
spanwise variation intensifies and reaches a constant order of 
magnitude (pic 1 of Fig. 4) - a return to a 2-D pattern is not 
observed. A possible explanation could be that the re-entry flow 
leads to the onset of the (inviscid) Rayleigh-Taylor instability. 
Thereby, the re-entry flow is lastingly altered in spanwise 
direction, which results in a non-uniform deformation of the 
sheet cavity. The first grid sequencing step to the medium grid 
does not significantly alter the characteristics of the flow field 
(pic 2 of Fig. 4). The structure of the sheet cavity is still 
approximately 2-D close to the leading edge, but the richness of 
the structures within the cloud is slightly increased. The same 
observation is obtained at the second grid sequencing step to 
the fine grid. Here, we have to note that the simulation time on 
the fine grid is supposed to be too short to observe significant 
differences with respect to the medium grid. However, the last 
grid sequencing step to the target grid provides new insight into  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the arising dynamics. Both, the sheet and the cloud contain 
small scale structures that cannot be resolved on the coarser 
grids and the 3-D character of the predicted flow is well 
represented (pic 4 of Fig. 4). The observed rise of small scale 
structures with increasing spatial resolution motivates the 
following conclusion. Unsteady solutions of cavitating flows 
are typically grid dependent with respect to small scale 
properties. However, large scale properties such as shedding 
frequencies and characteristic void fraction distributions (basic 
shape of sheet and cloud cavities) seem to be less dependent on 
the chosen spatial resolution.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Increase of resolved cavitation structures on 4 different computational grids as obtained during grid sequencing 
Perspective view of the hydrofoil and iso-surfaces of the vapor volume fraction α=0.05.  
Large scale structures are essentially grid independent, resolved small scale structures (richness of the flow) increases with grid 
refinement - grid dependence of unsteady cavitating flow. Observed 3-D instabilities are inertia driven (inviscid flow model) and 
develop naturally - self-excited instabilities. Shedding frequency f≈100 Hz, grid resolution G1 (coarse) - 2·105 cells, G2 (medium) - 
4·105 cells, G3 (fine) - 3·106 cells, G4 (finest/target) - 2.4·107 cells. 
NACA 0015, 6° angle of attack, lcord=0.13 m, lspan=0.3 m, uin=30 m/s, Tin=293 K, pexit=4.5 bar, σref =1.0, fcycle≈100 Hz, Tcycle≈0.01 s.
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Fig. 5 Numerically predicted cavitation structures at time instants 1-5 during the shedding cycle A-B as defined in Fig. 3 
Iso-surfaces of the vapor volume fraction α=0.05, top view - left, perspective view - right 
Flow:          water/water vapor, uin=30 m/s, Tin=293 K, pexit=4.5 bar, σref =1.0, fcycle≈100 Hz, Tcycle≈0.01 s 
Hydrofoil:   NACA 0015, 6° angle of attack, lcord=0.13 m, lspan=0.3 m 
Simulation: CATUM, finest grid G4 2.4·107 cells, 2nd order in space and time, ΔtCFD=8.5·10-8 s. 
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Shedding pattern on the target grid 
Figure 5 depicts a series of 5 equidistant instants in time of the 
arising cavitation structures during the shedding cycle A-B 
(Fig. 3) with fcycle≈100 Hz as observed on the finest grid with 
2.4·107 cells. The 5 time instants are denoted by blue dots 1-5 
along the temporal evolution of the vapor volume content Vvap 
in Fig. 3. The left column presents the top view of the suction 
side (LE-leading edge, TE-trailing edge) and the right column 
depicts the corresponding perspective view. The glossy surfaces 
are iso-surfaces of the vapor volume fraction α=0.05. Due to 
different illumination of the iso-surfaces the small scale 
disturbances of the sheet cavity are clearly visible within the 
top view but they are less pronounced within the perspective 
view.  At time instant 1 we observe an irregular break-up of the 
cavity and the formation of cavitating hairpin vortices in 
streamwise direction. The hairpins connect the larger structures 
in spanwise direction, both together form crescent shaped 
regions [15]. At the right hand side, the re-entry flow nearly 
reaches the leading edge of the foil. The streamwise length of 
the cavity is lcav/lcord≈0.8 at this instant in time. In accordance 
with Kawanami at al. [1] we observe a complete separation of 
the sheet cavity up to its onset close to the leading edge. At 
time instant 2 the formation of a new sheet cavity is partially 
visible. The irregular break-up pattern is integrated into a single 
coherent cloud. At time instant 3 the redeveloped sheet cavity 
covers roughly one third of the suction side of the hydrofoil. 
Close to the trailing edge we observe cavitating horseshoe 
vortices at the end of the downstream travelling cloud. At time 
instant 4 the downstream part of the sheet cavity is no longer 
fully attached to the surface of the hydrofoil and the 
downstream travelling cloud reaches the trailing edge where it 
fragments and collapses. At time instant 5 the sheet cavity 
nearly reaches its maximum length and the re-entrant flow is 
already present.   
 
Comparison of arising break-up patterns 
Although the previously described shedding process is periodic 
with respect to large scale dynamics it varies from cycle to 
cycle with respect to small scale phenomena. In order to 
indicate the bandwidth of small scale structures we discuss the 
break-up patterns for 5 consecutive shedding cycles A-E as 
defined within Fig.  3. The selected time instants correspond to 
the same relative position within the shedding process - the 
instant where the re-entrant flow reaches the onset of the sheet 
cavity close to the leading edge. Figure 6 depicts a series of top 
views of the suction side of the hydrofoil. Glossy surfaces 
correspond to iso-surfaces of the vapor volume fraction α=0.05 
and the flow is from top to bottom. The time interval between 
two successive pictures is Δt=Tcycle=0.01 s. The uppermost 
picture A of Fig. 6 depicts the break-up pattern of the 
previously discussed shedding cycle A-B. The break-up 
patterns of the following two cycles (Pics 2 and 3 of Fig. 6) 
contain 5 to 6 crescent shaped regions that occur at 
approximately the same positions. In cycle 4 we observe a 
break-up pattern that is biased to the left side of the sheet 
cavity. This pattern D distinguishes from all others as the length 
of the cavity along the cord is noticeably reduced. The 
lowermost picture of Fig. 6 depicts the break-up pattern of 
cycle 5. We conclude that the numerically predicted small 

scale structures undergo significant variations from cycle to 
cycle and the overall flow field is highly 3-D.          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Break-up patterns A to E of 5 consecutive 
shedding cycles  
Top view of the suction side of the hydrofoil at 
time instants A to E with Δtpic=Tcycle=0.01 s as 
denoted with red dots in Fig. 3. The selected time 
instants correspond to the same relative position 
within consecutive shedding cycles. Iso-surfaces 
of the void fraction α=0.05 demonstrate the 
occurrence of irregular break-up patterns including 
hairpin vortices and crescent shaped regions.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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The predicted inner structure of a cloud 
Figure 7 provides further insight into the arising small scale 
structures within a typical sheet and cloud cavitation pattern at 
one instant in time - see Fig. 3. We define the analysis plane A-
A, which is indicated within the top view of the suction side of 
the hydrofoil (Fig. 7 - top). The corresponding vapor volume 
fraction α within this plane is depicted at the bottom of Fig. 7. 
As expected, the void fraction α is approximately uniform 
within the sheet cavity. However, the downstream travelling 
cloud contains a significantly non-uniform distribution of the 
void fraction. The results of our simulations indicate that this 
non-uniformity is mainly due to superposition of cavitating 
vortices during the formation of the cloud. The inhomogeneity 
of the void fraction distribution and of the velocity field plays 
an important role at the stage of the cloud collapse. We observe 
that regions with low values of the void fraction partially 
condense during the advection of the cloud downstream to the 
trailing edge. The resulting fragmentation into smaller cloud 
structures lead to a series of violent cloud collapses including 
the formation and propagation of shocks with instantaneous 
pressure rises of up to 2400 bar. These shocks are known to be 
a driving mechanism of cavitation erosion. Moreover, they 
enforce total pressure losses, vorticity production and further 
alternation of the flow field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of re-entry flow 
In this section we analyse the shedding process as it is 
predicted by the applied model. It is important to review that 
the model is based on the assumptions of inviscid and adiabatic 
flow and equilibrium thermodynamics within each 
computational cell. It can be shown that these assumptions 
imply that the total entropy remains constant along each 
particle path as long as the flow is continuous (shock free). 
However, the model predicts a discontinuous 
recondensation at the closure region of the sheet cavity. The 
states on both sides of the discontinuity fulfill the Rankine-
Hugoniot conditions as known from gasdynamic shocks. We 
observe a maximum total pressure loss of up to 70% close 
to the surface of the hydrofoil and significant formation of 
vorticity. Figure 8 depicts a series of 5 instants in time with 
time intervals Δt1-2=2.5·10-3 s, Δt2-3=1.5·10-3 s, Δt3-4=1.0·10-3 s 
and Δt4-5=1.0·10-3 s. The complete time interval Δt1-5 is marked 
in Fig. 3. The left column contains the vapor volume fraction α 
within the plane A-A as defined in Fig. 7. The right column 
shows the corresponding x component of the velocity. At the 
first time instant a recently developed sheet cavity nearly 
reaches the position of the thickness maximum of the hydrofoil. 
The sheet undergoes further growth along the cord of the 
hydrofoil and its closure region steepens up. The x component 
of the velocity within the sheet is u1≈44 m/s and the static 
pressure is the vapor pressure. At time instant 2 the sheet cavity 
consists of two portions, an attached upstream part and a 
detached downstream part. The upstream part of the sheet is no 
longer growing - its position on the surface of the hydrofoil is 
frozen for a short time. At the end of the upstream part, 
particularly close to the surface of the hydrofoil, we observe a 
discontinuous variation of the void fraction and of the x 
component of the velocity u1 (black arrow in pic 2 of Fig. 8). 
This is the position where significant vorticity production is 
observed - see subsequent section and Fig. 9. The velocity 
directly downstream of the discontinuity is nearly zero but 
further downstream a re-entry jet is already present and reaches 
a value of u1≈-5 m/s of the x component of the velocity. The 
downstream part of the sheet is still growing along the 
spanwise direction. At time instant 3 the reverse flow covers 
roughly one third of the thickness of the downstream part of the 
sheet (δre-entrant≈3 mm). The x component of the velocity of the 
re-entrant jet is u1≈-20 m/s close to the end of the downstream 
part. Additionally, the two parts of the sheet are no longer 
directly linked together - the downstream part is from now on 
termed as cloud. The discontinuous transition at the end of the 
upstream part moves towards the leading edge with u1≈-7 m/s 
(position of black arrow in pics 3,4 of Fig. 8). At time instant 4 
the maximum thickness of the re-entry flow is δre-entrant≈7 mm 
and the x component of the velocity is u1≈-30 m/s. The 
remaining attached sheet terminates slightly upstream to the 
thickness maximum of the hydrofoil and the cloud starts to 
grow in height. At time instant 5 the previously attached sheet 
forms another cloud as the re-entry flow reaches the onset 
position of the cavity close to the leading edge. The maximum 
value of the x component of the velocity of the re-entry flow at 
this instant in time is u1≈-52 m/s.   
 
 

A 

A 

A-A 

Fig. 7 Inner structure of the cavity  
Top - typical sheet and cloud cavitation on the suction side 
of the hydrofoil, iso-surfaces of the void fraction α=0.05. 
Bottom - void fraction α at plane A-A indicating the 
complex inner structure of the flow within the cloud.  
Time instant is marked within Fig. 3. 
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
 

E. Fifth publication

98



 11  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Development and subsequent separation of a sheet cavity - analysis of the re-entrant jet   
left     void fraction α at 5 instants in time with intervals Δt1-2=2.5·10-3 s, Δt2-3=1.5·10-3 s, Δt3-4=1.0·10-3 s, Δt4-5=1.0·10-3 s. 
right   x component of the velocity u1 corresponding to t1 - t5, black isolines correspond to the void fraction α=0.05. 
The time interval t1 - t5 is indicated within Fig. 3. Arrows point to the attached part of the sheet where the discontinuity appears.     
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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Vorticity production due flow discontinuities 
As stated in the previous section, the predicted formation of 
vorticity is due to the discontinuous condensation at the closure 
region of the sheet during the growth process and during the 
collapse of the cavity. Hence, the flow is strongly rotational 
even before the re-entrant jet and the shedding mechanism 
become relevant. Figure 9 corresponds to the same instant in 
time as pic 2 of Fig. 8. The upper picture shows iso-surfaces of 
the vapor volume fraction α=0.05 on the suction side of the 
hydrofoil. The lower one depicts iso-surfaces of the magnitude 
|ω|=104 1/s of the vorticity vector.  It is observed that the onset 
of strong vorticity is located within the sheet cavity, precisely at 
that location where the attached part of the cavity recondenses. 
The growth of the detached part of the sheet results in the 
advection of the vorticity along the hydrofoil (smooth iso-
surface of Fig. 9). The fragmentation of the sheet and the 
subsequent cloud shedding alters the flow field and leads to a 
rich vortical flow pattern. It is obvious that such pronounced 3-
D characteristics result in highly 3-D cavitation structures as 
observed and discussed within this investigation.          
 
Shock induced maximum loads 
The collapse of a cloud or of a small structure within a cloud 
enforces the acceleration of the surrounding liquid towards the 
center of the cloud, comparable to the flow field of an isolated 
sink. At the instance of the final collapse, a significant part of 
the kinetic energy of the surrounding liquid is transferred to the 
formation of a shock, which leads to the discontinuous 
deceleration of the velocity towards the center of the cloud. The 
approximately spherical shock front propagates with a velocity 
uS≈1500 m/s through the liquid. Due to the rise of the pressure 
behind the shock, the collapse of surrounding clouds/bubbles is 
initiated or intensified. With respect to cavitation erosion this 
process is especially important if it takes place close to the 
surface of the hydrofoil. The CFD-Tool CATUM enables the 
simulation of shock formation and propagation [9-14] and 
provides a prediction of shock induced maximum loads on the 
surface of the hydrofoil. The key idea is to record the static 
pressure within all computational cells that are located at the 
surface of the hydrofoil for the time interval ΔtA-E=0.04 s as 
denoted within Fig. 3. The computational cells at the surface of 
the hydrofoil are thus interpreted as pressure transducers. The 
corresponding sampling frequency of the numerical transducers 
is fsample≈107 Hz, the average area of each of the numerical 
transducers is 0.5 mm x 1.2 mm = 0.6 mm². Those positions 
where the highest pressure peaks are recognized provide an 
indication of erosion sensitive areas. Figure 10 depicts an 
output of the numerical transducers. For each computational 
cell at the surface of the hydrofoil the maximum pressure 
during the time interval ΔtA-E=0.04 s is determined and 
visualized. We observe instantaneous maximum loads of 2400 
bar close to the trailing edge of the hydrofoil. It should be noted 
that the analysed time interval ΔtA-E=0.04 s is extremely short 
compared to experimental investigations [16] on cavitation 
erosion. However, our previous investigations [13,14] indicate 
that 5 to 10 shedding cycles provide sufficient data to 
determine the locations where erosion is most likely to occur.         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Correlation of void fraction α and vorticity |ω|  
Iso-surfaces of the vapor volume fraction α=0.05 
(top) and iso-surfaces of the magnitude |ω|=104 1/s 
of the vorticity vector (bottom) on the suction side 
of the hydrofoil. The corresponding time instant t2 
is defined in Fig. 8.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
 

α=0.05 

|ω|=104 1/s

Fig. 10 Instantaneous maximum loads    
Analysis of occurring maximum pressure within each 
computational cell at the suction side of the hydrofoil 
during the analysis interval A to E with ΔtA-E=0.04 s as 
defined in Fig. 3. The maximum pressure at the trailing 
edge is pmax=2400 bar.  
Finest grid G4 - 2.4·107 cells, ΔtCFD=8.5·10-8 s. 
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CONCLUSION 
The investigation focuses on wave and inertia driven 
mechanisms of cavitating flows. We apply the CFD-Tool 
CATUM (CAvitation Technische Universität München) to 
simulate the 3-D flow around a 2-D hydrofoil with special 
emphasis on self-excited instabilities in spanwise direction. It is 
demonstrated that these instabilities are predictable by the 
assumption of inviscid flow and equilibrium thermodynamics. 
The importance of sufficient resolution in space and time is 
analyzed by a grid dependence study. Large scale 
characteristics are only weakly dependent on the resolution 
while small scale structures are strongly grid dependent. The 
simulation predicts various irregular break-up patterns, hairpin 
and horseshoe vortices. These delicate features of the flow vary 
from cycle to cycle, strong periodicity is not observed for the 
investigated set-up. The development of the re-entry jet as part 
of the shedding mechanism is analyzed. Here, we observe 
significant vorticity production during the growth and the 
collapse of the sheet cavity. It is demonstrated that the vorticity 
production is caused by a discontinuity at the end of the 
attached part of the cavity where condensation takes place. The 
discontinuity fulfills Rankine-Hugoniot conditions as known 
from gasdynamic shocks. Contrary to the discontinuity related 
with the formation and break-up of the sheet cavity, we observe 
shocks due to collapsing fragments of clouds. These shocks 
produce significant maximum loads of pmax≈2400 bar, 
particularly close to the trailing edge of the investigated 
hydrofoil. We conclude that the dynamics of sheet and cloud 
cavitation are essentially inertia controlled. Hence, the 
application of an inviscid flow model to simulate cavitating 
flows is justified - provided that it is ensured that the boundary 
layers of the corresponding single-phase flow remain attached. 

 

ACKNOWLEDGMENTS 
We like to thank the KSB Stiftung Frankenthal, and the 
Deutsche Forschungsgemeinschaft DFG, Germany, for 
supporting our research on numerical simulation of cavitating 
flows including the prediction of erosion sensitive areas. 
 

NOMENCLATURE 
 
u, ui      velocity, velocity components      
c            speed of sound                             
M          Mach number        
            vector of conserved quantities      
              flux-vector in direction xi    
ρ           density        
ρv,sat           saturation vapor density  
ρl,sat           saturation liquid density    
E          mass specific total energy     
e           mass specific internal energy   
U   total internal energy 
p           static pressure      
T           static temperature     
α           vapor volume fraction    
ε           vapor mass fraction    

σref         cavitation number    
xi           coordinate direction     
ΔtCFD      numerical time step     
Vvap       integrated vapor volume [%]          
f           frequency 
lcord     cord length 
lspan     span width 
lcav,c     length of the cavity along the cord 
lcav,s     spanwise length of a shedded cloud 
δre-entrant   thickness of re-entrant jet 
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F. Sixth publication

In the sixth publication [63] the collapse behavior of a random distribution of spherical

bubbles is described. 125 spherical vapor bubbles with radii between 0.70 mm and 1.65 mm
are located within liquid water above a solid wall. The initial pressure within the bubbles

is vapor pressure at room temperature and the pressure far away from the bubble cluster is

40 bar. In order to reduce unphysical acoustics, a Laplace law is solved for the derivation of

the initial pressure field. A series of 6 computational grids are used with 73 to 2203 finite

volumes in the region of the bubble cluster. The influence of the spatial resolution on the

collapse duration, the maximum pressure at the wall and on the impulse strength is examined.

The study shows that the thermodynamic equilibrium model allows for reliable predictions

of collapse phenomena even if the spatial resolution is insufficient to resolve single bubbles.

The obtained maximum pressure at the wall, the impulse strength and the collapse duration

are nearly independent of the applied spatial resolution. These findings are of substantial

importance since they indicate that even under-resolved simulations may allow for reasonable

prediction of intense surface loads or erosion endangered areas.

The maximum pressure at the focal point of the main collapse increases proportional to grid

refinement. A justification based on the linear decay law of spherical waves is provided [85].

Although viscosity, surface tension, non-condensable gas content and non-equilibrium physics

are neglected, typical phenomena such as indentation of bubbles, focusing of the collapse

front and rebounds of bubbles are predictable when using a thermodynamic equilibrium

model.

The most important finding presented in this publication is the suitability of the proposed

thermodynamic model to compute fully resolved, marginally resolved and under-resolved

bubble clusters. In the latter case the approach provides an efficient sub-grid scale model for

sufficiently dense bubble clusters.

I defined the test-case, developed and implemented the random bubble generator, imple-

mented the Laplace solver for the initial pressure field, proposed the decay law, partially

analyzed the results and prepared the manuscript.
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ABSTRACT 

A large number of numerical approaches have been 
developed for simulating cavitating flows. One model, which is 
recently applied within the CFD community, is the 
thermodynamic equilibrium approach. With this approach, the 
density and the internal energy are the only quantities necessary 
for specifying the mixture of liquid and vapor in a computational 
cell. The objective of the present  investigation is to demonstrate 
that with thermodynamic equilibrium approaches even poorly 
resolved cloud-collapse events (typical for current CFD 
capabilities applied to complex systems) may provide important 
information for the prediction of erosion sensitive areas - 
provided that the temporal resolution of the numerical method is 
sufficiently high. By performing a sensitivity analysis of the 
main collapse characteristics with regard to the grid resolution 
we obtain an uncertainty estimation of the applied methodology. 

 
1. INTRODUCTION 

The design of hydraulic machines such as ship propellers, 
turbines, pumps, injection systems and throttles requires model 
testing. In particular, the assessment of the probability of 
cavitation erosion is a severe challenge. However, model tests 
can be very costly and they may not always provide a perfect 
representation of the suggested real-scale machinery. A 
promising way to reduce costs would be reliable CFD 
simulations. However, the uncertainty of numerical approaches 
is often too big to provide a secure validation of a suggested 
design. One reason could be that CFD approaches provide too 
many degrees of freedom for the user. For example, the proper 
choice of the grid resolution and the choice of a suitable 
numerical discretization scheme are sometimes strongly case-
dependent. Therefore, “best practice guides” can typically 
provide only hints instead of sustainable recommendations. In 
particular, thorough uncertainty quantification is mostly missing. 
With regard to cavitating flows, the choice of the cavitation 
model and of case-specific parameters enhances the complexity 
of modeling and simulation. Of course, expert knowledge is one 
important key to interpret and to evaluate numerical predictions. 
Surely, this knowledge will not be replaced by “computer 
decisions” within the next decade.  

Our objective is to develop numerical methods and 
physically motivated models that reduce uncertainty as much as 

possible. Additionally, widely applicable numerical methods 
must be robust with respect to varying operating conditions, and 
they should require as few predefined parameters as possible. 
Even if parameter-based models may outperform parameter-free 
models for selected test-cases, the quality of the prediction is 
often strongly dependent on a proper choice of the (mainly 
unknown) parameters. Hence, our developments focus on 
parameter-free models such as the thermodynamic equilibrium 
model.           

During the last two decades, a wide variety of physical 
models have been developed for simulating cavitating flows. 
Typically, these models are incorporated into finite volume 
methods to obtain approximate solutions of the balance laws of 
mass, momentum and (sometimes) energy, together with the 
vapor volume fraction for each computational cell. Thereby, 
Eulerian-Eulerian approaches are predominant.  

We define the following length-scale ratio ψ:=Δflow/ΔCFD  
where Δflow  is the characteristic length of two-phase structures 
and ΔCFD corresponds to the characteristic length of a 
computational cell. In case of ψ=Δflow/ΔCFD>>1, two-phase 
structures are perfectly resolved by the computational cells, 
while for ψ=Δflow/ΔCFD<<1 the structures might be approximated 
as homogeneous mixture. A particular difficulty arises for 
ψ=Δflow/ΔCFD≈1, since two-phase details are neither resolved, 
nor can they be represented as dispersed mixture. For simulation 
of cavitating flows, three entirely different Eulerian-Eulerian 
two-phase approaches will be briefly discussed. 

 
1) Sharp interface models (require ψ=Δflow/ΔCFD >>1) 

Sharp interface techniques are preferred to investigate the 
physics of a small number of bubbles in detail. Since the 
objective of sharp interface methods is to resolve physical 
phenomena within the bubble as well as along the bubble 
surface, the required numerical resolution ΔCFD is at least one or 
two orders of magnitude smaller than the typical diameter of a 
bubble Δflow. However, this requirement results in an 
infeasibility of sharp interface methods to simulate cavitating 
flow problems with several thousands of bubbles, such as 
common cloud cavitation. Yet they might be perfectly adequate 
to simulate pure sheet cavities, as long as the sheets do not 
disintegrate into clouds.  
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2) Mixture models assuming a homogeneous dispersion of 
bubbles (require ψ=Δflow/ΔCFD <<1) 

Mixture models are typically based on the assumption that 
the size of a computational cell ΔCFD is sufficiently larger than 
the diameter of a typical bubble Δflow. If this assumption is 
justified, one could model the fluid as dispersed mixture within 
each computational cell (bubbly flow model). In this case, the 
temporal evolution of the bubble diameter is often approximated 
by a modified Rayleigh-Plesset equation (or by simple finite-rate 
equations). Obviously, the approach is questionable as soon as 
the size of the bubbles reaches or even exceeds the cell-size of 
the adopted computational grid. Therefore, these methods are 
neither designed to simulate clear sheet cavities nor to simulate 
the collapse of a (resolved) bubble.  

 
3) Thermodynamic equilibrium models (no requirement on 
ψ) 

Thermodynamic equilibrium models are based on the 
assumption that for each computational cell the density ρ and the 
internal energy e determine the condition of aggregation, as well 
as unknown thermodynamic states, such as pressure and 
temperature. The evaluation of unknown states requires either 
closed-form equations or tabulated data. Since thermodynamic 
equilibrium models are free of intrinsic length and time scales, 
they provide an interesting option for simulating cavitating 
flows. If a flow detail (for example a single bubble) is resolved 
by the applied computational grid, then the thermodynamic 
equilibrium model implicitly captures the interface and performs 
comparable to a sharp interface technique. If the grid is too 
coarse to capture the detail, then the model behaves similar to a 
mixture approach. As a matter of principal, physical effects such 
as surface tension or finite-rate evaporation cannot be 
incorporated into thermodynamic equilibrium models. 
  

Our current research focuses on the assessment of the 
ability of thermodynamic equilibrium approaches to predict the 
characteristics of cavitating flows, especially the formation of 
sheet and cloud cavitation as well as collapsing clouds of vapor 
bubbles and generated shock waves. In this investigation we 
evaluate the sensitivity of a thermodynamic equilibrium model 
with respect to the applied computational grid. In particular, we 
investigate the collapse characteristics of a cloud of vapor 
bubbles by resolved simulations and by under-resolved 
numerical simulations. 

 
2. DESCRIPTION OF THE METHODOLOGY 
 
2.1 Cloud Generation 
 

We apply a numerical procedure to generate a random 
distribution of spherical bubbles. Although experimentally 
observed clouds certainly show a random character, we assume 
that the following additional properties are reasonable: 
 
1) The “numerical cloud” consists of 125 spherical vapor 
bubbles with radii between Rmin≈0.70 mm and Rmax≈1.65 mm. 
The average radius is Rav≈0.95 mm. The total vapor volume 
fraction is 5.8% with respect to the small domain. 
 

2) The bubbles do not intersect; the minimum distance between 
two bubbles is 0.2 mm. 
 
3) We assume that bubbles are larger and more densely spaced 
around the center of the cloud than at the outer regions 
 
4) The cloud is located within a liquid-filled cubic domain of 
20x20x20 mm³ – see figure 1. This domain is embedded into a 
larger rectangular domain of 4x4x2 m³. The bottom faces of 
both domains are coplanar and impermeable for representing a 
solid wall. The other faces of the outer domain correspond to 
far-field boundaries.  
 

Since we apply a thermodynamic equilibrium approach, we 
need to simplify the test-case by neglecting surface tension and 
non-condensable gas content, and we assume the following 
properties: 
 
1) The initial pressure pB inside the bubbles is equal to the vapor 
pressure psat=2340 Pa at T=293 K. 
 
2) The initial pressure within the surrounding liquid satisfies a 
Laplace law, where the pressure sufficiently far away from the 
bubbles is p∞=const.=40 bar, and the pressure at the bubble 
surfaces is equal to the vapor pressure psat=2340 Pa.   
 
3) The velocity field is initially at rest. 
 
4) The initial temperature is T=293 K. 
 
5) Viscous effects are negligible.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cloud with 125 spherical non-intersecting 
vapor bubbles within the small cubic domain of 20³
mm³. The total vapor volume fraction is 5.8% with 
respect to the volume of the small domain. The lower 
boundary at z=0 is modeled as solid wall; the other 
boundaries are connected to a huge outer domain of 
4x4x2 m³ (not shown here).  

105



 3   

2.2 Discretization of the cloud and applied grids 
 

The simulation of the collapse of the previously described 
“numerical cloud” requires a discrete representation of the 
specified properties. We adopt 6 different computational grids to 
discretize the small domain where the cloud is located. The grids 
consist of uniform hexahedrons and the resulting numerical 
resolutions ΔCFD are listed in table 1.   
 

 Number of cells ΔCFD ψ:= Δflow/ΔCFD 

Grid 1 220³ ≈ 1.1·107 0.09 mm ≈ 16 - 36 

Grid 2 110³ ≈ 1.3·106 0.18 mm ≈ 8 - 16 

Grid 3 55³ ≈ 1.7·105 0.36 mm ≈ 4 - 8 

Grid 4 28³ ≈ 2.2·104 0.71 mm ≈ 2 - 4 

Grid 5 14³ ≈ 2.7·103 1.43 mm ≈ 1 - 2 

Grid 6 7³ ≈ 3.4·102 2.86 mm ≈ 0.5 - 1 
 
 
 
 
 

On the finest computational grid (Grid 1) each of the 
smallest bubbles is resolved by at least 2000 cells and each of 
the largest bubbles is resolved by about 25000 cells.  

The analytically defined initial conditions are mapped to the 
grids by the following approach. First, we detect all 
computational cells that are either completely inside or 
completely outside of the bubbles. These cells are marked as 
“pure state cells”. The remaining cells are necessarily “cut cells” 
that contain liquid and vapor. In case of a “cut cell” we perform 
an accurate evaluation procedure to obtain the vapor volume 
fraction α within the cell. Since we assume that the initial 
temperature field is T=293 K within the whole domain, the 
thermodynamic properties of a cut cell are obtained by tabulated 
relations e=e(α,T), ρ=ρ(α,T), p=psat(T). If a “pure state cell” 
contains vapor, then the thermodynamic properties of vapor at 
T=293 K and p=psat(T) are prescribed. If a pure cell contains 
water, then the initial temperature T=293 K is assigned. The 
initial pressure field is determined by solving a Laplace equation 
within the complete domain (including the large outer region) 
where the pressure at the far-field is p∞=40 bar. Only the pure 
liquid domain is altered since the properties of cut cells or “pure 
vapor cells” are kept constant. Once the discrete pressure field is 
available, the thermodynamic properties are specified by 
evaluating tabulated relations e=e(p,T), ρ=ρ(p,T). The described 
procedure is employed to provide the initial fields for each 
computational grid. The resulting discrete representations are 
shown in figure 2. One horizontal cut plane depicts the initial 
vapor volume fraction by using continuous coloring, and the 
remaining cut planes show the vapor volume fraction by using 
cell center coloring. The colored bottom plane indicates the 
initial pressure field. It can be seen that the bubble shapes are 
sharply represented by the fine grids 1 and 2, while they are 
completely under-resolved by the coarse grids 5 and 6. The grids 
3 and 4 allow for partial resolution of the bubble shapes. 
 

2.3 Numerical Method  
 

We apply our flow simulation code CATUM (CAvitation 
Technische Universität München [1, 2]), which is a density 
based finite volume method employing a Low-Mach-number 
consistent flux function and an explicit time marching 
procedure. The spatial reconstruction of the velocity field is a 
WENO-3 procedure; density and internal energy are 
reconstructed by monotonic TVD limiters (“minmod”). Time 
marching is performed through an explicit low storage 4-step 
Runge-Kutta method with an optimized stability region. The 
combination of both methods results in a 2nd order numerical 
approach in space and time for smooth flow while ensuring a 
sharp representation of discontinuous flow features such as 
shocks and contact waves. In this investigation we focus on the 
simulation of inertia-driven effects and wave dynamics 
wherefore we neglect viscous effects. Hence, the governing 
equations are the compressible Euler equations. 

The working fluids can be characterized by closed-form 
equations of state, or for complex fluids by look-up tables. In 
this investigation we use tabulated thermodynamic relations 
p=p(ρ,e), T=T(ρ,e), α(ρ,e). The tables are obtained from the 
IAPWS database [3] of equilibrium states of water and water 
vapor. In order to allow for the simulation of shock formation 
and wave propagation, the compressibility of the fluids (liquid 
and vapor) is taken into account. Hence, the numerical time step 
is necessarily proportional to the ratio of the smallest length 
scale (minimum grid size) and the fastest signal speed (~ speed 
of sound of the liquid).  

The phase transition model is based on local equilibrium 
assumptions for pressure, temperature and specific Gibbs 
functions.  

Previous investigations [4, 5] showed that CATUM allows 
for the reliable prediction of erosion-sensitive areas by 3-D 
unsteady simulations of compressible cavitating flows including 
collapse-induced shock formation and propagation.  
 

 
2.4 Simulation of the cloud collapse  

 
The adopted explicit time marching scheme is subject to a 

numerical constraint on the time-step size (CFL condition). The 
constraint ensures that even the fastest information (propagating 
shocks) does not pass more then one computational cell per time 
step. For the present investigation, the CFL-number is kept 
constant at CFL=1.4 (4 stage low storage Runge-Kutta). Hence, 
the time-step sizes are proportional to the size of the cells of the 
adopted grid. The finest grid (grid 1) requires a time-step size of 
1.95·10-8 s, while for the coarsest grid (grid 6) the resulting time-
step size is 6.24·10-7 s. The remaining time-step sizes are as 
follows: 3.90·10-8 s (grid 2), 7.80·10-8 s (grid 3), 1.56·10-7 s (grid 
4), 3.12·10-7 s (grid 5).  

We adopt two “numerical pressure transducers” located at 
the center of the bottom wall. The larger transducer records the 
average static pressure on an area of 1x1 cm² while the smaller 
one covers an area of 1x1 mm². Both transducers store the static 
pressure for each instant in time, resulting in a maximum 
sampling frequency of 5.1·107 Hz (grid 1).      

 

Table 1: Properties of the applied computational grids to 
discretize the small domain. ΔCFD is the cell length; ψ is the 
ratio of diameters of the bubbles and the cell length. 
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Figure 2: Discretization of the cloud by different computational grids. The forward faced plane depicts the vapor volume 
fraction α by using continuous coloring (red = pure vapor, blue = pure liquid, other colors represent mixtures). The 
remaining cut planes are colored by cell value coloring. At the bottom plane, the initial static pressure is depicted.  
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Aside from the “numerical pressure transducers”, the 
maximum pressure within the complete flow field during each 
simulation is monitored. Furthermore, we analyze the time 
history of the total vapor volume within the domain.  

The computations are performed on Intel Nehalem-EP 
based 8-way nodes and consumed 512 CPU-hours on grid 1, 21 
CPU-hours on grid 2, 1 CPU-hour on grid 3, and negligible 
computation times on the coarse grids.  

 
3. ANALYSIS OF THE NUMERICAL RESULTS  

 
The analysis of the simulations focuses on the following 

characteristics. We evaluate the duration of the collapses by 
monitoring the total vapor volume. Only the first collapse is 
taken into account to determine the collapse duration. Since the 
observed rebounds are relatively weak, this criterion is justified. 
Figure 3 depicts the time history of the vapor volume as 
predicted by the simulations. One observes that the predicted 
durations agree well for all resolutions. The maximum deviation 
from the predicted mean collapse duration occurs for grid 3 and 
is less than ± 6%. Table 2 provides an overview of the observed 
collapse durations. Since experimental data are not available for 
the specific cloud and the specific boundary conditions, we 
utilize a simplified analytical estimate to evaluate the order of 
magnitude of the collapse duration. Therefore, we consider the 
Besant problem (collapse of a single spherical bubble within an 
infinitely large domain) of an “equivalent bubble”. Based on the 
initial vapor volume of the cloud we obtain the radius Requiv=4.8 
mm of a single large bubble with equal vapor volume. This 
radius is applied to estimate the Rayleigh time (time required for 
the complete collapse, no gas content, no surface tension, 
incompressible liquid, spherical collapse). One obtains the 
analytic expression [6] 

 

v

L
0tc pp

R915.0
−
ρ

⋅⋅≈τ
∞

 

 
where τtc is the collapse duration, R0 the initial bubble radius, ρL 
the constant density of the liquid, p∞ the constant far-field 
pressure and pv the constant vapor pressure within the bubble. 
Using R0=Requiv=4.8 mm, p∞=40 bar, ρL=1000 kg/m³ and 
pv=0.023 bar one finds a collapse duration of τtc=6.94·10-5 s, 
which agrees well with the numerically predicted durations.      

In the following, the instantaneous maximum pressures 
within the flow field as well as at the bottom wall of the small 
domain are analyzed. Table 2 shows the grid dependence of the 
maximum pressure within the domain. We observe that the 
instantaneous maximum pressure within the domain varies by 
approximately two orders of magnitude. However, the maximum 
pressure at the wall shows only a weak variation of a factor of 
about two (see figure 4). To examine the numerical predictions 
we consider the propagation of a linear spherical pressure wave. 
The amplitude of a linear spherical wave decays inversely 
proportional to the radius of the wave front [7]. As soon as the 
wave impinges on the wall, it is reflected and the amplitude after 
the impingement is about twice the amplitude before the 
impingement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Pmax (domain) Pmax (wall) Collapse 
duration 

Grid 1 3.14 ·109 Pa 4.1 ·107 Pa 6.5 ·10-5 s 

Grid 2 1.17 ·109 Pa 3.9 ·107 Pa 6.6 ·10-5 s 

Grid 3 0.63 ·109 Pa 3.6 ·107 Pa 6.3 ·10-5 s 

Grid 4 0.34 ·109 Pa 3.5 ·107 Pa 6.7 ·10-5 s 

Grid 5 0.12 ·109 Pa 2.8 ·107 Pa 6.9 ·10-5 s 

Grid 6 0.07 ·109 Pa 1.9 ·107 Pa 7.0 ·10-5 s 

Figure 3: Time history of the dimensionless vapor 
volume as obtained with 6 different resolutions of the 
small domain.   

Table 2:  Comparison of the maximum pressure within the 
flow field as well as at the wall (small sensor) and duration of 
the collapse as observed for different numerical resolutions. 

Figure 4: Scaling of the maximum pressures within the 
flow field (blue) and at the wall (red) with respect to the 
applied grid resolution. 
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By combining the linear decay law and the linear wave 
reflection at solid walls we obtain a (strongly) simplified 
relation of the maximum wall pressure to the maximum pressure 
within the flow field. We assume that the maximum wall 
pressure pwall is the result of a reflected spherical wave at a 
distance D from its origin. Since the initial radius of the wave 
front cannot be smaller then half of the cell length ΔCFD, we 
obtain the relation 

CFDWallmax,

Fieldmax, D
p
p

Δ
≈ . 

 
Assuming that the collapse is perfectly focused into one 

fixed point independently of the applied grid, one would expect 
that D is approximately constant (if nonlinear effects are 
negligible). By evaluating D we find the following distances of 
the assumed focus point to the bottom wall: D=7.0 mm (grid 1), 
D=5.5 mm (grid 2), D=6.4 mm (grid 3), D=6.9 mm (grid 4), 
D=6.1 mm (grid 5), D=10.6 mm (grid 6). All estimates are in a 
reliable range. Through this simple analysis we demonstrate that 
the increase of the observed maximum pressure within the flow 
field is not a numerical artifact but a physical property that is 
well captured by the applied methodology.       

Figure 5 shows the output of the large pressure sensor 
(sensor area 1x1 cm², located at the center of the bottom wall). 
The black line is the signal obtained for grid 1 and the signal 
obtained with grid 6 is shown in red. The numerical sampling 
frequencies are 51 MHz (grid 1) and 1.6 MHz (grid 6). One can 
observe that the peak is more pronounced with the fine grid and 
the high temporal resolution. In the present case, the duration of 
the shock-induced peak pressure is only about 5 μs (grid 1). On 
the coarse grid 6 the amplitude of the peak is reduced and the 
peak is smeared. In order to compare the transducer signals for 
all 6 grid resolutions we evaluate the time integral of the 
pressure. Three evaluations are performed: 

 

∫
−

=

410

0

pdt:1StrengthpulseIm  

 

∫
−⋅

−⋅

=

5105.8

5105

pdt:2StrengthpulseIm  

 

( )∫
−

≥=

410

0

dtbar80p:3StrengthpulseIm  

 
The first value corresponds to the impulse strength during 

10-4 seconds and covers the complete collapse. Impulse strength 
2 corresponds approximately to the time interval where the 
collapse-induced peak pressure is observed. The third value is 
obtained by integrating the pressure during the time interval 
where the pressure exceeds 80 bars (twice the far-field value). 
Although the specific threshold is somewhat arbitrarily chosen, 
it should allow for comparison of the pressure peaks. The 
obtained results are listed in table 3.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 Imp. Strength 
1 

Imp. Strength 
2 

Imp. Strength 
3 

Grid 1 3.94·102 Pa·s 2.86·102 Pa·s 1.82·102 Pa·s 

Grid 2 3.90·102 Pa·s 2.79·102 Pa·s 1.77·102 Pa·s 

Grid 3 3.77·102 Pa·s 2.79·102 Pa·s 2.12·102 Pa·s 

Grid 4 3.94·102 Pa·s 2.94·102 Pa·s 1.99·102 Pa·s 

Grid 5 3.81·102 Pa·s 2.83·102 Pa·s 1.84·102 Pa·s 

Grid 6 3.74·102 Pa·s 2.76·102 Pa·s 1.84·102 Pa·s 
 
 
 
 

 
Finally, we present a series of snapshots (figure 6) of the 

collapse as predicted by using grid 1. The snapshots do not show 
equidistant time instants but provide an overview about the 
observed physical processes. Pic 1 of figure 6 shows the initial 
distribution of the bubbles, together with the static pressure on 
the wall. In pic 2 a relatively isolated bubble has collapsed and a 
spherical shock is indicated by its footprint on the wall. Pic 3 
shows partially deformed bubbles and a slight increase of the 
pressure on the wall. In pic 4 some of the bubbles are impinged 
by liquid jets (thus forming tori). Picture 5 is the time instant of 
the final collapse and the occurrence of the maximum pressure 
within the complete flow field. However, the maximum pressure 
at the wall is observed slightly afterwards in pic 6. Here, already 
rebounding vapor structures are formed. The rebounding 
structures reach the maximum vapor volume at pic 8 and 
collapse again at pic 10. Picture 11 corresponds to the second 
rebound and pic 12 shows the final stage after the third collapse.  

 

Figure 5: Comparison of the wall pressure as recorded 
by the numerical pressure sensor (area 1x1 cm²) by 
applying grid 1 (finest) and grid 6 (coarsest).   

Table 3:  Comparison of the impulse strength as obtained with 
three different evaluation procedures. Criteria are specified 
above.  
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Figure 6: Snapshots of the numerically predicted collapse of the cloud (grid 1 was used).  
Time instants: t1=0 μs, t2≈28 μs, t3≈52 μs, t4≈60 μs, t5≈64 μs, t6≈68 μs, t7≈80 μs, t8≈84 μs, t9≈90 μs, t10≈96 μs, t11≈102 μs, 
t12≈116 μs. 
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4. DISCUSSION AND FUTURE PROSPECTS 
 
Our numerical investigation of the collapse characteristics 

of a cloud of bubbles leads to the following conclusions. 
1) The combination of a thermodynamic equilibrium 

model with a density based finite volume method 
enables the simulation of collapsing vapor bubbles 
including the subsequent formation of strong shock 
waves. We conclude that taking compressibility 
effects into account and providing high temporal 
resolution are necessary to investigate cloud collapse 
phenomena. 

2) The influence of the spatial resolution on the 
collapse duration, the maximum pressure at the wall 
and on the impulse strength is examined. We 
conclude that the thermodynamic equilibrium model 
allows for reliable predictions of collapse 
phenomena even if the spatial resolution is 
insufficient to resolve single bubbles. The obtained 
maximum pressure at the wall, the impulse strength 
and the collapse duration are nearly independent of 
the applied spatial resolution. This finding is of great 
importance since it substantiates the methodologies 
investigated in [4, 5] and [8, 9] to predict erosion-
sensitive areas. 

3) Although viscosity, surface tension, non-condensable 
gas content and non-equilibrium physics are 
neglected, detailed features of cloud collapses are 
predictable. A comparison of our results with a sharp 
interface method is planned.  

 
Our current research focuses on the prediction of cavitation 

erosion by means of numerical simulations. We investigate 
break-up patterns of unstable sheet cavitation [2] as well as flow 
features that may be responsible for cavitation erosion. Aside of 
cavitating water flows [5] we consider cavitation of Diesel-like 
fluids in high-speed micro channels [8, 9]. Recent results 
promisingly indicate that the reliable prediction of cavitation 
erosion could be possible [8, 9]. Additional numerical 
investigations of the experiments discussed in [10, 11] are 
currently performed. 

Further numerical developments will be the inclusion of 
viscous effects and of non-condensable gas content.  
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In this publication [66] an optimization of the proposed flux function is presented. Compared

to the first formulation [61] the optimized version is significantly faster but equally robust

and accurate. A series of validation examples are presented and the inconsistency of classical

Riemann solvers in the low Mach number limit is demonstrated by analytical considerations.

By computing the steady-state inviscid flow around a 2-D cylinder the accuracy of the method

is shown for Mach numbers down to M = 0.001. A Riemann problem with initial pressure

jump from 2500 bar to 0.025 bar is solved in order to highlight the robustness of the method.

Some of the results presented in this investigation have been previously published by the

author [65, 67] and corresponding details are discussed in Appendix B and D of this thesis.

I optimized the flux-function, demonstrated the low Mach number problem for classical

Riemann solvers, generated the grids for the validation cases, performed simulations and

analysis of results for the validation cases and prepared the manuscript.

Reproduced with permission from AIAA under License Number 3555300155799.
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Riemann Techniques for the Simulation of Compressible 
Liquid Flows with Phase-transition at all Mach numbers - 
Shock and Wave Dynamics in Cavitating 3-D Micro and 

Macro Systems 

Steffen J. Schmidt1, Ismail H. Sezal2, Günter H. Schnerr3 and Matthias Talhamer4 
Technische Universität München, Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik, 

D-85748 Garching, Germany  

We investigate numerical flux functions for the inviscid flux components of the 3-D time-
dependent balance laws of mass, momentum and energy. Special emphasis is put on the 
suitability of these fluxes to simulate compressible low speed liquid flows as well as to 
simulate liquid flows with phase transition. It is demonstrated that the classical approaches 
based on exact or approximate solutions of the Riemann problem between adjacent cells do 
not lead to uniformly consistent flux functions with respect to multidimensional low Mach 
number flow. Therefore, we introduce a uniformly consistent numerical flux function and 
perform a series of steady and unsteady simulations of pure liquid flow and cavitating liquid 
flow. We demonstrate the applicability of the proposed CFD-Tool CATUM to resolve wave 
dynamics and to predict the evolution of cavitation structures inside a 3-D multi-hole 
injector. Finally, we investigate the 3-D time dependent cavitating flow around a prismatic 
body. Here, we point out the suitability of our CFD-Tool to predict erosive shock loads of 
collapsing vapor clouds. 

Nomenclature 
u, ui = velocity, velocity components   [m·s-1] 
c = speed of sound      [m·s-1] 
M = Mach number        
 = vector of conserved quantities  [kg·m-3, kg·m-2·s-1 , J·m-3] 
 = flux in coordinate direction xi  [kg·m-2·s-1 , kg·m-1·s-2 , J·m-2·s-1] 
ρ = density, local average density  [kg·m-3] 
E = mass specific total energy   [J·kg-1] 
e = mass specific internal energy  [J·kg-1] 
p = static pressure       [Pa] 
T = static temperature      [K] 
α = vapor volume fraction     
ε = vapor mass fraction      
σ = cavitation parameter      
xi = coordinate direction/ length   [m] 
ΔtCFD = numerical time step     [s] 
Vvap = integrated vapor volume    [% total volume of the computational domain] 
i,k = indices of computational cells    
f = frequency        [Hz] 

                                                           
1 Ph.D. student, TU München, Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik, D-85748 Garching, Germany, AIAA  
  Member. 
2 Ph.D. student, TU München, Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik, D-85748 Garching, Germany. 
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4 Undergraduate student, TU München, Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik, D-85748 Garching, Germany. 
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I. Introduction 
HE numerical simulation of wave dynamics such as shock formation and propagation in compressible 
multiphase flows offers the possibility to predict the formation and collapse of cavitation structures as well as to 

predict collapse induced shocks of cavitating flows. Serious numerical difficulties arise due to the different time-
scales defined by the flow velocity u=O(10) m/s and the speed of sound c=O(1000) m/s of the liquid. As long as no 
phase transition occurs the Mach number remains very low, typically 0<M<0.1. However, the thermodynamic 
properties of two-phase mixtures imply a strong reduction of the speed of sound1 and hence, the Mach number 
reaches even supersonic values if the vapor volume content is sufficiently large. The collapse-like condensation of 
the vapor content results in the formation of shock structures that propagate through the flow2. These shocks result 
in instantaneous loads and are supposed to be a driving mechanism of cavitation erosion. The present investigation 
focuses on the simulation of 3-D time-dependent cavitating liquid flows including wave dynamics. The resolution of 
the latter one requires numerical time steps based on the fastest signal speeds of the system, which are of the order 
of the speed of sound of the liquid. Besides this physical constraint the numerical flux function must resemble the 
asymptotic behaviour3 of the continuous equations for M 0. It is known that classical Riemann approaches suffer 
from the low Mach number problem and hence, their application as flux function typically leads to large errors in 
the calculated flow field4-6. Several numerical techniques have been developed to overcome the low Mach number 
problem. Time derivative preconditioning removes the stiffness of the governing equations and permits accurate 
steady state solutions in the low Mach number limit7. In combination with dual time-stepping approaches these 
techniques are applicable to simulate unsteady flows as well, but the resolution of wave dynamics is no longer 
possible8,9. Pressure correction methods enable the simulation of low Mach number flow10, but their application to 
solve wave propagation problems suffers from the lack of efficiency of these techniques if the physically required 
time step is very small. If the Mach number is small throughout the flow domain, the discretization of the 
compressible low Mach number equations11 is suitable. However, with respect to cavitating flow this condition is 
not fulfilled. In addition to the numerical difficulties of low Mach number flow the simulation of cavitating flow 
requires modeling of evaporation/condensation as well as of the resulting two-phase mixtures. The modeling of the 
phase-change is either achieved by finite rate models12-14 or by thermodynamic closure relations15-17. These models 
can be applied to single-fluid formulations as well as to two-fluid formulations. The latter ones enforce the solution 
of two sets of governing equations together with the modeling of mass, momentum and energy transfer between 
both fluids18. A recently developed hybrid model is based on the assumption of locally stratified flow19. The 
advantages of single-fluid formulations together with suitable thermodynamic closure relations are their hyperbolic 
structure and the existing conservation form of the governing equations20.  
 The present investigation is organized as follows: In chapter II we present a mathematical model for time-
dependent compressible liquid flows including the effects of evaporation and condensation. Based on the weak form 
of the conservation laws of mass, momentum and energy we obtain a set of evolution equations. Thermodynamic 
closure relations are applied to local integral averages of the fluid. Chapter III contains an interpretation of the low 
Mach number problem as a result of the definition of the pressure flux for classical Riemann approaches. 
Furthermore, we propose a modified definition of the pressure flux that does not show the low Mach number 
problem. In chapter IV we perform numerical simulations to validate the modified flux. Finally, our recently 
developed CFD-Tool CATUM (CAvitation Technische Universität München) is used to simulate 3-D time 
dependent flow through a multi-hole injector as well as to simulate the cavitating flow around a prismatic body.  

 

II. Mathematical Model 
As our major interests contain wave and inertia driven flows we neglect viscous effects. With respect to several 

experimental investigations it is known that cavitating flow is only weakly dependent on the Reynolds number and 
thus this approximation is suitable. However, the inclusion of viscous effects within the model is possible. 

Let qv  be the vector of conserved quantities defined by the density ρ, the components ui of the velocities in 
coordinate direction ix  and the specific total energy E as the sum of the specific internal energy e per unit mass and 
the specific kinetic energy 0.5·∑(ui)2. Let ( )qFi

v  be the physical flux in coordinate direction ix , while ijδ  and p 
denote the Kronecker symbol and the pressure respectively 

T 
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The differential or pointwise form of the Euler equations can be written as  
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∂ .                                                                    (2) 

 
Instead of enforcing the conservation principles in a pointwise fashion we use the weak form of the Euler equations. 
Therefore, we partition the flow domain into disjoint fixed control volumes kC  of a corresponding volume kV , a 

surface kS  and an outer unit normal vector t
kkkk nnnn )( 3,2,1,=

v . The weak form of the Euler equations for 
each control volume kC  follows as  
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By defining the cell average operator kA  

( ) ∫=
kCk

k q
V

qA kdV1: vv ,                                                                       (4) 

we assign to all weak solutions within the cell kC  their common integral average value ( )qAq kk
vv

= . It turns out 
that the weak form of the Euler equations resembles a system of evolution equations of the cell averages of weak 
solutions 
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Up to now we have not made any additional assumption on the flow field itself, which means that equation (5) is 

valid for any type of inviscid multicomponent and multiphase flow, even if the species do not share a common 
pressure, temperature or velocity. Nonetheless, the choice of fixed control volumes kC  introduces local length 

scales lk of the order of 3
kk Vl =  into the physical problem and hence, any process occurring beyond those scales 

can no longer be resolved. Therefore, the previously defined cell averages can be interpreted as the result of a 
conservative low pass filtering of the flow field. In the case of cavitating bubbly liquid flow the resolution of two-
phase features depends on the fraction klR /=Ψ of the bubble radius R  and the induced length scale kl . If 1<<Ψ  
the model resembles the average behavior of a mixture, while it fully resolves single bubbles if 1>>Ψ . As the 
transition from the resolved case to the averaged case and vice versa does not require additional modelling, we 
denote the evolution of integral averages as a scale adaptive model. Furthermore, the right hand side of equation (5) 
implies that the evolution of the integral average equations is entirely dependent on the net fluxes of mass, 
momentum and energy across the surface of each control volume, while explicit knowledge of small scale 
information within the cell kC  is not required. However, the closure of the defined initial-boundary value problem 
(5) necessitates constitutive relations for the thermodynamic quantities kρ , ke , kp  as well as consistent initial and 
boundary conditions. In this section we assume that consistent initial and boundary data are strictly available. Thus, 
the physical fluxes along the boundary surfaces are known and hence, equation (5) reduces to an initial value 
problem. At each instant in time the corresponding initial values kqv  already determine the average density kρ , 
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velocity kuv  and total energy kE  within the control volume kC . Therefore, the average specific internal energy ke  
is known as well. However, the definition of the average pressure kp  requires additional model assumptions. In this 
investigation we neglect surface tension and restrict the fluid to consist of two species: water and water vapor. 
Impurities like solid particles or solute gas are not explicitly modeled, but their effects on the thermodynamic 
behavior of water are taken into account in a simplified manner. It is known that highly purified water allows for the 
occurrence of meta-stable states far beyond saturation conditions,21 whereas tap water does not show this behavior. 
In the latter case, the large number of impurities immediately results in heterogeneous nucleation22 and thus in the 
formation of vapor bubbles. As the specific volume of water vapor is by several orders of magnitude larger than the 
one of liquid water, the phase transition results in rapid pressure equalization close to the stable saturation state. This 
allows us to neglect meta-stable states and to consider stable thermodynamic conditions. Consequently, the 
coexistence of both phases implies that the pressure kp  is determined by the Clausius-Clapeyron relation and the 
average density kρ  within cell kC  is a convex combination of the saturation densities satl ,ρ , satv,ρ  of liquid and 
vapor. Furthermore, we define at each instant in time and for each control volume an average temperature kT  in 
order to relate the saturation density to the internal energy. By defining the vapor volume fraction kα  and the vapor 
mass fraction kε  we obtain the unknown quantities kT , kα , kε  and kp  as solutions of the system 

 
 

( ) ( ) ( )ksatlkksatvkk TT ,, 1 ραραρ ⋅−+⋅=                                                         (6) 
( ) ( ) ( )ksatlkksatvkk TeTee ,, 1 ⋅−+⋅= εε                                                           (7) 

( )ksatvkkk T,ραρε ⋅=⋅                                                                        (8) 
)( ksatk Tpp =                                                                               (9) 

1,0 << εα .                                                                               (10) 
 
Thereby, the incorporated temperature dependent functions have to be specified. In the case of water and water 
vapor we model these with the Oldenbourg polynomials.23 The required closure relation in the presence of two-
phase flow is thus completely defined.  

If the average density kρ  is larger then the saturation density of liquid water, we replace the closure relation 
with the modified Tait model ( 0, =kk εα )  
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together with an equation for the internal energy.24 Even though the temperature variation of the liquid is typically 
small, the modification of the Tait equation remains necessary in order to ensure a continuous connection of the Tait 
model to the temperature dependent saturation conditions. For water we use B=3300 bar and N=7.15 independent of 
the temperature. 

If the average density kρ  is smaller then the saturation density of vapor, the applied constitutive relation models 
pure vapor ( 1, =kk εα ), treated as calorically perfect gas, where the ratio of the specific heats is given by κ=1.327 
and the specific gas constant is 461.5 J/kg K.  

The comparison of the described thermodynamic closure relations with respect to the IAPWS data25 
demonstrates that the relations accurately model the behaviour of water and water vapor for a large range of 
thermodynamic subcritical conditions. Moreover, the presented model is neither restricted to the described set of 
thermodynamic closure relations nor to the assumption of instantaneous pressure equalization. However, the 
thermodynamic relations must imply a consistent definition of the equilibrium speed of sound c to ensure that the 
model is hyperbolic in time and that the initial-boundary value problem is well posed. Furthermore, the 
incorporation of small scale information, such as the bubble number density or the bubble size distribution, is 
possible, but the scale adaptability may then be lost and the model reduces to the dispersed mixture model. 
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III. Numerical Method 
Our CFD-Tool CATUM relies on an approximate solution of the evolution equation (5) for each control volume 

kC . As it is stated in chapter 2, the temporal development of Eq. (5) is completely defined by the time dependent 
fluxes across the surfaces of the control volumes. The hyperbolic character of the compressible formulation of the 
governing equations motivates a Godunov type approximation of these fluxes. Thereby, the average values kqv  and 

iqv  of two adjacent control volumes kC , iC  are used to define the Riemann problem RP across the shared surface 

ikik CCS ∩=, . The solution ( )ik qqRP vv ,  of the Riemann problem at the surface Sk,i is constant in time within a time 

interval )/( cultRP +≈Δ
v , where l is the length scale of the volume and cu +

v represents the fastest signal speed. 
By replacing the physical fluxes )( kqF v  in Eq. (5) with the numerical fluxes ( )( )ik qqRPF vv , , we obtain a set of 
ordinary differential equations, which represent a semi-discrete unsplit finite volume method for hexahedral 
volumes 

 

( )),(
6

1
, ik

i
ikk qqRPFSq

dt
d vvv ∑

=

⋅−= .                                                           (12) 

 
This framework is well developed for the simulation of steady and unsteady compressible aerodynamics of 

moderate and high Mach number flows as well as for the investigation of wave propagation phenomena including 
sharp and accurate shock capturing in unsteady flow. Furthermore, methods based on Eq. (12) are conservative by 
construction and enable efficient time dependent simulations. Contrary to pressure based approaches, all fluxes are 
calculated without the need for sub-iterations. However, the application of Godunov type methods to low speed 
flows requires substantial modification to overcome the low Mach number problem. Otherwise, the accuracy of the 
Godunov approximation significantly decreases if the Mach number is in the weakly compressible regime, 1.0~<M . 
With respect to the high acoustic impedance c⋅ρ  of liquids, the decrease of accuracy is further intensified. An 
extensive discussion of the low Mach number problem is beyond the scope of this investigation but can be found in 
the literature.26,27 These contributions highlight the inconsistency of the discrete pressure component as part of the 
numerical momentum fluxes with respect to asymptotic analysis of the governing equations.27,28  
 In order to motivate the subsequent modification of the calculation of the interface pressure *p  we briefly recall 
the compatibility relations of the 1-D time dependent Euler equations29 
 

0=⋅⋅± ucp δρδ   along  cux ±=& ,                                                             (13) 

02 =⋅− δρδ cp   along  ux =& .                                                                   (14) 
 
Assuming smooth state variations across the genuinely nonlinear fields defined in Eq. (13) we obtain an expression 
of the interface pressure *p  at the shared surface Sk,i  for subsonic flow30 
 

( )ki
ikikik uu

cppp −⋅
⋅

−
+

=
22

,,* ρ
.                                                             (15) 

 
Thereby, the acoustic impedances at the origins of both characteristics are approximated by an average value of the 
acoustic impedance denoted by the subscript k,i. Although various different approximations are known it should be 
pointed out that the main feature of all Godunov type methods is the coupling of the interface pressure with the 
difference of the velocities of both sides of the interface. As it can be seen in Eq. (13) this coupling is weighted by 
the acoustic impedance, which is close to a constant value if the Mach number remains small within the flow field. 
Any method based on compatibility relations or on Rankine-Hugoniot relations will lead to an interface pressure *p  
that is comparable to the one given by Eq. (15) provided that the Mach number is sufficiently low and that the states 
on both sides of the interface are sufficiently close to each other.  

To demonstrate the failure of Eq. (15) for low Mach number flow we investigate the 2-D potential flow field 
around a circular cylinder of radius R as sketched in Fig. 1. Let M∞, c∞, p∞ and ρ∞ be the Mach number, the speed of 
sound, the pressure and the density at the far field of the cylinder. Assume the flow being inviscid, stationary and 
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adiabatic. Presuming that M∞<<1 it follows that c as well as ρ will be close to their states c∞, ρ∞ at infinity and 
hence, the approximation of the flow field by the incompressible potential solution is reasonable.  

The velocity u(S) as well as the pressure coefficient cp(S) along a streamline S infinitely close to the cylinder 
wall can be derived by incompressible potential theory 
 

( ) ( ) ∞⋅⋅= uSu ϕsin2 ,            ( ) ( )ϕ2sin41 ⋅−=Sc p .                                                     (16) 
 

It turns out that the average increase of the velocity u(S) from the primary stagnation point at φ=0 to the thickness 
maximum at φ=π/2 along S is given by 
 

( ) ( ) ( )( )
π

π
π ⋅

⋅
=−

⋅
=

∂
∂ ∞

R
u

uu
RS

Su

average

4
02/

2/
1 .                                                  (17) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: 2-D plane circular cylinder of radius R and sketch of the computational cells in the vicinity of the 
streamline starting from the primary stagnation point at φ=0 and passing the point of maximum thickness at φ=π/2. 
Flow from left to right, M∞<<1. 

 
 
Suppose the numerical discretization in circumferential direction of the previously defined 90 degree section of the 
cylinder is given by N computational cells. The average length ΔS of each cell along S is 
 

N
RS 2/π⋅

=Δ .                                                                                    (18) 

 
Hence, the average velocity difference Δu between adjacent cells along S is given by 
 

( )
N
u

S
S
Suu

average

∞⋅
=Δ⋅

∂
∂

=Δ
2

.                                                               (19) 

 
We apply Eq. (15) to approximate the interface pressure *p for adjacent cells along the 90 degree section of the 
cylinder wall 
 

N
ucpp

N
ucpp

p ikikikik ∞∞∞∞ ⋅⋅
−

+
≈

⋅⋅
−

+
=

ρρ
22

,,* .                                                 (20) 

 
For smooth flow we can approximate the exact value pexact of the pressure at the surface Sk,i by Taylor series  
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( )2

2
SO

pp
p ik

exact Δ+
+

= .                                                                     (21) 

 
Applying Eq. (21) to Eq. (20) we obtain a relation of the numerically predicted pressure coefficient cp,numerical   
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∞
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⋅
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⋅
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⋅
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−
=
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ppp
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222

2/1 22

*

,
ρρ

.                                   (22) 

 
The first term on the right hand side of Eq. (22) is the exact pressure coefficient cp, which is of order 1 (see Eq. 16). 
The second term is of the order of 1/(N·M∞). Therefore, the numerical error that is introduced by the application of 
Eq. (15) grows inversely proportional to the Mach number M∞ as long as the number of cells N is kept constant. This 
implies that those numerical fluxes ( )( )ik qqRPF vv ,  that contain Eq. (20) lead to numerical methods that are not 
uniformly consistent with respect to the Mach number. We conclude that the low Mach number problem is directly 
related to the numerical approximation of the interface pressure *p  based on the compatibility relations. As 

illustrated before, this approximation is not suitable to simulate low Mach number flows as it would require N~ 1−
∞M  

along streamlines. 
In order to overcome the low Mach number problem we introduce a modified numerical flux ( )ik qqMF vv ,  for 

cavitating liquid flow, which is equipped with an asymptotically consistent pressure flux definition. Due to the 
rotational invariance of the convective fluxes we restrict the presentation of the formulation to one spatial direction 
x1. We use the subscripts k,i for the average flow variables corresponding to the control volumes to the left and to 
the right of the shared surface Sk,i, which we assume to be part of the x2, x3 plane. Provided that the Mach numbers 
Mk, Mi are low, the velocity u* at the surface Sk,i follows from the locally linearized compatibility conditions31 

 

iikk

ikiiikkk

cc
ppucuc

u
⋅+⋅

−+⋅⋅+⋅⋅
=

ρρ
ρρ 1,1,* .                                                   (23) 

 
Contrary to Eq. (15) the pressure p* at the surface Sk,i is computed by 
 

2
* ik pp

p
+

= .                                                                               (24) 

 
Equation (24) does not contain additional diffusive components and it leads to a uniformly consistent pressure flux. 
We achieve an upwind character of the numerical flux by the sign of the velocity u*. Assuming positive sign we 
define the following numerical flux ( )ik qqMF vv ,  in accordance with the physical flux as defined in equation (1) 
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For negative mass flow (u*<0) the subscripts k and i are reversed. In the presence of cavitation the local Mach 
numbers Mk, Mi  may reach supersonic values and hence, the numerical flux should resemble pure upwinding of all 
conserved quantities. In this case, the interface values u* and p* are replaced by the corresponding variables on the 
left or on the right hand side, depending on the flow direction. The final form of the discrete evolution equations 
reads 
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=

⋅−= .                                                            (24) 

 
As the density at the interface is defined by a pure one-sided approximation the resulting flux (23) preserves 

stationary contact discontinuities. In order to increase the spatial accuracy of the method we apply WENO-3 
reconstruction procedures32 to the velocity components and a TVD reconstruction33 to the density field. As the 
pressure flux is already second order accurate by definition, no further procedure is required. The spatial 
discretization is thus second order accurate for smooth solutions and it significantly reduces oscillations in the 
presence of discontinuities.  

We apply an explicit four-stage/low storage Runge-Kutta method with enlarged stability region to advance the 
system (16) in time. Second order accurate simulations in space and time thereby enforce the numerical time step 

CFDtΔ  being determined as the minimum of RPtΔ  within all control volumes.  
 

IV. Numerical Results 
 

A. 2-D steady state liquid flow at low Mach numbers 
In order to demonstrate the potential of the proposed numerical method we investigate several numerical results 

of low Mach number flows. In accordance to the previous section we discuss the 2-D flow field around a circular 
cylinder of radius R. The boundary conditions at the far field of the computational domain are given by p∞=1.5 bar, 
T∞=300 K and M∞,1=10-2, M∞,2=10-3 and M∞,3=10-4. All three simulations are performed using the same 
computational grid consisting of 128 cells in circumferential direction and 32 cells in radial direction. The far field 
of the O-grid is located 65·R away from the surface of the cylinder. In all cases the fluid is water as given by Eq. 
(11). For the above stated conditions the speed of sound is given by c=1500 m/s and hence, the velocity u∞ is 15 m/s, 
1.5 m/s and 0.15 m/s corresponding to M∞,1=10-2, M∞,2=10-3 and M∞,3=10-4. In order to save computational time we 
apply local time-stepping with CFL=1.5 in all cases. The reconstruction of the density field is achieved by the Van 
Leer limiter.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 2: Pressure coefficient cp (numerical solution - CATUM) of the stationary inviscid 2-D flow around a circular 

cylinder of radius R at a free-stream Mach number M∞=10-4. Flow from left to right, liquid water at p∞=1.5 bar, 
T∞=300 K. 
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Figure 2 depicts isolines of the pressure coefficient cp as predicted by our numerical method for the free stream 

Mach number M∞,3=10-4. Although the computational grid is quite coarse the obtained result indicates the quality of 
the proposed flux function. For the free stream Mach numbers M∞,1=10-2, M∞,2=10-3 we obtain visually identical 
results.  

We compare the numerical results with the solution of the incompressible potential solution along the surface of 
the cylinder as given in Eq. (16). Figure 3 depicts the dimensionless velocity u(S)/u∞ and the pressure coefficient cp 
for all numerical cases as well as for the analytical solution. Although the numerical method leads to slight under-
predictions of u(S)/u∞ and cp close to the thickness maximum, the agreement of the numerical result with the 
analytical solution is good even for the applied coarse computational grid. The calculated drag coefficients are 
within the range of cD=1.4-1.6·10-5, which confirms the quality of the numerical solutions. Moreover, the numerical 
results are nearly indistinguishable with respect to the dimensionless quantities u(S)/u∞ and cp for all three Mach 
numbers. Thus we conclude that the proposed method is uniformly consistent for M→0.  
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 Figure 3: Comparison of the analytically and numerically obtained distributions of the relative velocity u(S)/u∞ and 

of the pressure coefficient cp(S) along the streamline S for the far field Mach numbers M∞,1=10-2, M∞,2=10-3 and 
M∞,3=10-4. Liquid water at p∞=1.5 bar, T∞=300 K. 
 
 
 
 

 
B. 1-D shock-tube problem 
 In order to demonstrate the potential of the method to capture and predict wave dynamics we investigate a 
classical shock-tube problem. We assume a 1-D tube of length l=1 m to be filled with water at T=293 K. The tube is 
initially divided into two regions of length l/2 by a membrane. On the left hand side, the pressure is given by 
pL=2500 bar and on the right hand side the pressure is pR=0.025 bar. The flow is initially at rest (uL=uR=0 m/s) and 
the densities on both sides are determined by Eq. (11). The numerical domain is divided into 100 computational 
cells of length 0.01 m. The boundary conditions correspond to solid walls on both ends of the tube. Figure 4 depicts 
the time evolution of the right traveling shock and the left propagating rarefaction wave. On the left of fig. 4 the 
pressure ratio p/pR is plotted for three instants in time. The shock Mach number MS for the presumed pressure ratio is 
still rather small, MS ≈1.17. Due to the high acoustic impedance of O(106) of the liquid, the convective velocity u 
reaches hardly 70 m/s, see fig. 4 - right. The shock and the rarefaction wave are captured without the presence of 
overshoots.  
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 Figure 4: Numerically obtained dimensionless pressure p/pR and velocity u for 4 equidistant instants in time (t0=0 s, 
∆t=5.7·10-5 s). Initial conditions within the closed shock-tube: pL=2500 bar, pR=0.025 bar, TL=TR=293 K, uL=uR=0 m/s, 
initial discontinuity at x=0.5 m, tube length 1 m.  
 
 
 

 
C. 1-D traveling contact wave 

Besides the resolution of nonlinear wave dynamics it turns out that the quality of the simulation of cavitating 
liquid flow strongly depends on the resolution of contact discontinuities. As stated in chapter III, the proposed flux 
function preserves contacts due to the definition of a common mass flux component and the pure upwinding of the 
density. However, the averaging that is inherently implied within any finite volume method may lead to 
inconsistencies if the pressure is not given by a function of the form p=K1·ρe + K2, where K1,2 are constants. Here 
we simulate a traveling contact wave by initializing the previously defined 1-D domain through: uL=uR=500 m/s, 
pL=pR=1.0 bar, TL=293 K and TR=323 K. The densities on both sides are determined by Eq. (11). The boundary 
conditions for this problem are extrapolated from the interior of the domain. Figure 5 depicts the temperature for 
three instants in time. The initial discontinuity of the temperature is well preserved although the pressure and the 
velocity experience the previously stated oscillations due to the form of the Tait model.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 5: Numerically obtained temperature for 4 equidistant instants in time (t0=0 s, ∆t=2.2·10-4 s). Initial conditions 

within the tube: pL=pR=1.0 bar, TL= 293 K, TR=323 K, uL=uR=500 m/s, initial discontinuity at x=0.5 m, tube length 1 m.  
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 Both numerical tests indicate that nonlinear effects such as the formation of rarefactions and shocks in liquid 
flow do not lead to numerical instabilities although the pressure flux is significantly less diffusive than the ones 
derived from Eq. (15). We suggest that the numerical method benefits from the increased stability region (including 
parts of the imaginary axis) of the low storage Runge-Kutta procedure. The application of the forward Euler time 
integration method together with the modified flux does not lead to a stable discretization for all investigated test 
cases while the proposed combination works stable and accurate. Further investigations are required to improve the 
understanding of the interaction of spatial and temporal discretization procedures.  
 
D. 3-D wave dynamics and cavitation inside a multi-hole injector 

The design and improvement of high-speed fuel injection systems of Diesel- and Otto-engines is a challenging 
field of research. The operating conditions contain exceptional high pressure differences pin-pout=O(103) bar, which 
result in maximum flow velocities up to 500 m/s. Furthermore, high frequency excitations due to the lift of the 
needle induce strong wave dynamic flow features. Thereby, the arising pressure drop typically leads to acoustic and 
hydrodynamic cavitation. The subsequent recondensation of the evaporated liquid enforces the formation of violent 
shock waves, which often results in cavitation erosion34,35.  

Figure 6 - left - depicts a 180 degree section of a multi-hole fuel injector. The position of the needle is fixed to its 
maximum lift. Six cylindrical bore holes are connected to the lower part of the sack volume. In order to suppress 
flow separation, the inlet tips of the bore holes are rounded with a radius of wall curvature of 0.028 mm. Such a 
micro-deburr is practically achieved by hydro-erosive grinding and significantly improves the flow characteristics. 
The inner diameter of the upstream part of the nozzle is 3.9 mm and the diameter of the needle is 3.26 mm. The 
diameters of the spray holes are 0.22 mm and their length to diameter ratio is 4.54. On the right hand side of fig. 6 
the discretization of the flow domain is depicted. The 6-fold radial periodicity of the injector allows for the 
numerical analysis of a 60 degree section. At the outlet of the bore hole an outflow domain is added in order to 
simulate the arising flow outside of the nozzle as well. This enables the physically consistent treatment of the flow 
dynamics close to the exit of the bore hole, which cannot be ensured if the domain outside of the nozzle is 
completely replaced by numerical boundary conditions. To study the mesh dependence of the numerical results, 
calculations are carried out for three different grids containing 105, 2.6·105 and 4·105 cells. For all cases a high grid 
quality is achieved by the use of 85 matching O- and H-grids, which consist of low aspect ratio hexahedrons only. 
 

 

 
 

Figure 6: CAD-model and computational grid of the investigated 3-D multi-hole injector. Discretization of the 
simulated 60 degree section: 4·105 cells.  
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We assume the nozzle and the surrounding domain to be initially filled with pure liquid at rest. The pressure and 
the temperature are initially set to pinit=pout and Tinit=333 K throughout the numerical domain. In spite of being a 
common experimental setup, this assumption may lead to different results than the more practical condition where 
the nozzle sack and the domain outside of the nozzle are initially filled with gas. However, this will require the 
implementation of non-condensable gas as a third compressible component into the numerical scheme, which is part 
of our current research. 

All solid walls are treated as adiabatic, inviscid, impermeable and stationary. Hence, the movement of the needle 
is not modelled. Instead we focus on the maximum lift of the needle as shown in Fig.6.  

The numerical boundary treatment along the outer surface of the surrounding domain allows waves passing 
through (characteristic boundary conditions), but ensures constant prescribed pressure pout asymptotically36. Due to 
the large distances between the bore holes and the boundary surface, the oncoming disturbances are already very 
weak, which additionally improves the applicability of this boundary treatment. At the inlet area we apply similar 
boundary conditions, but the prescribed pressure pin now resembles the rail pressure. Although the disturbances at 
the inlet boundary are partially of the same order as the pre-defined asymptotic conditions, our numerical boundary 
treatment is able to reproduce the experimentally observed time dependent pressure behaviour. 

Due to the six-fold symmetry of the injector geometry we apply symmetry boundary conditions at the lateral 
section planes. The enforced boundary conditions are thereby identical to those applied to inviscid walls. For this 
investigation all simulations are performed with water as the test-fluid at an initial temperature Tinit=333 K. 

Figure 7 contains the time history of the mass flow m& (left) and the corresponding integrated vapor volume Vvap 
(right) for the pressure conditions pin=600 bar and pout=26 bar. Both graphs are plotted against a logarithmic time 
axis (large pictures) as well as against a linear time axis (small pictures). The mass flows as well as the integrated 
vapor volume show a strong transient behaviour and reduce to constant values at time t≈10-4 s. As it will be 
presented in the following subsections, the solution turns out to reach a stable steady state at that time. However, the 
comparison of the final values with their maximum amplitude during the transient flow development demonstrates 
the necessity of time accurate simulations of injection processes, especially if pilot or multipoint injections are 
considered. Moreover, the comparison of the mass flow inm&  at the nozzle inlet with the mass flow outm&  at the exit 
of the spray holes highlights the compressible behaviour of the liquid fluid and the wave dynamics as dominating 
features. Any incompressible formulation would enforce the velocity field to be strictly divergence free, which 
implies the equality of inm&  and outm&  throughout the simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Time history of the mass flow at the inlet inm&  and the outlet outm&  of the injector (left); time history of the 
integrated vapor volume fraction within the complete computational domain (right).  
Fluid: water at Tin=333 K, pin=600 bar, pout=26 bar. 
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Picture 1-12 of Fig. 8 focus on the flow development close to the bore holes. The time interval covers the period 
5.48·10-6 s ≤ t ≤ 8.88·10-6 s. Picture 1 depicts the multidimensional shock focusing at the lower wall of the sack. The 
maximum pressure pmax=2163 bar is thereby reached at t=5.55·10-6 s (Pic. 2). In Pic. 3 the shock reaches the exit of 
the bore hole. There it diffracts to a spherical front and propagates into the outside domain. At this time, the mass 
flow outm&  at the bore hole exit starts to develop. The shock-strength decreases proportional to the radius of the front 
and a rarefaction wave propagates inside the throat. This expansion is strong enough to reduce the static pressure to 
the vapor pressure and thus to enforce cavitation. Two-phase domains are thereby indicated by isolines of the void 
fraction α=0.001. In Pic. 4 and 5 we observe two types of cavitation. Strong expansions around the edges of the 
spray holes result in vortex cavitation in the surrounding domain of the nozzle. The 3-D toroidal structures of the 
arising saturation regions outside of the bore holes are indicated by closed isolines. Inside the bore holes acoustic 
cavitation is visible. Thereby, the whole cross section close to the bore hole exit is affected. However, as typical for 
wave induced phase transition, the maximum void fraction α is of the order of 10-3. Due to the remaining velocity 
field the vapor content is compressed and recondenses within 5·10-7 s (Pic. 6). In Pic. 8 we observe another acoustic 
cavitation. Furthermore, a continuous reduction of the pressure inside the sack volume is visible. At the curved bore 
hole inlet we observe the onset of hydrodynamic cavitation (Pic. 9). The hydrodynamic cavitation pocket forms a 
torus-shaped structure as well. Only the upper part of the saturated two-phase domain grows along the flow 
direction, while the lower cavitation region disappears (Pic. 10-12). At this instant in time the integrated vapor 
volume fraction Vvap starts to grow significantly. However, this is due to the growth of the cavity inside the bore 
holes as well as in the outside domain, where the vortical structures lead to further evaporation.  

Figure 9 depicts the formation and collapse of the hydrodynamic cavity. In Pic. 1 the cavitation pocket inside the 
bore hole already covers two thirds of the length of the bore hole. Further growth of the pocket takes place until the 
cavity reaches its maximum length at t=1.67·10-5 s (Pic. 2). This instance in time corresponds to the first local 
maximum of the integrated vapor volume (Fig. 7, right). Both cavities start to recondense, which results in the 
shrinking of the vapor domains (Pic. 3). At t=1.95·10-5 s the cavitation pocket inside the bore hole fragments slightly 
behind the bore hole inlet (Pic. 4). Thereby, an increase of the pressure due to inertia forces is visible. The vapor 
pocket is rapidly compressed along the flow direction until the complete saturated domain disappears. Subsequently, 
a violent collapse occurs. As this process is accompanied with a significant increase of the velocity behind the 
collapsing cavity as well as with a requisite decrease of the velocity ahead the cavitation pocket the resulting 
velocity field directly after the collapse necessarily implies a discontinuity. The resulting “water-hammer” enforces 
the formation of a shock where the pressure raise is proportional to the velocity difference. Picture 5 depicts the 
arising shock, which leads to a maximum pressure of pmax=1029 bar, which is about twice the inlet pressure pin=600 
bar. As it is known from 3-D spherical symmetric explosion theory, the subsequent formation of a rarefaction wave 
is inevitable. Together with the afresh forming vortex cavitation (Pic. 6) a cavity pocket inside the bore hole starts to 
grow. At t=2.77·10-5 s the integrated vapor volume again reaches its local maximum value and the periodic 
behaviour recommences. However, with each repetition of the process the fragmentation of the cavity occurs 
slightly closer to the outlet of the bore hole. Thus, the collapsing part of the cavity reduces its size and the collapse 
as well as the combination of shock and rarefaction weakens. Consequently, the vapor volume of the recreated 
vortex cavitation reduces as well. Finally, the integrated vapor volume reduces its amplitude because the stable part 
of the cavity increases while the unstable cavitation pockets decrease. This explains the asymptotic behaviour of Vvap 
in Fig. 7 (right).  
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Figure 8: Wave dynamics (visualized by the static pressure) and the development of acoustic and hydrodynamic 
cavitation (orange isolines with α=0.1%) at the meridional plane of the injector at 12 instants in time.  
Fluid: water at Tin=333 K, pin=600 bar, pout=26 bar. 
 

t1 = 5.48·10-6 s t5 = 6.52·10-6 s t9 = 7.80·10-6 s 

t2 = 5.55·10-6 s t6 = 6.74·10-6 s t10 = 8.46·10-6 s 

t11 = 8.76·10-6 s 

t12 = 8.88·10-6 s 

t3 = 5.89·10-6 s t7 = 6.89·10-6 s 

t8 = 7.16·10-6 s t4 = 6.22·10-6 s 
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Figure 9: Development, fragmentation and collapse of hydrodynamic cavitation structures (orange iso-surfaces with 
α=0.1%) within the bore hole of the injector at 6 instants in time. Visualization of the static pressure at the meridional 
plane. Fluid: water at Tin=333 K, pin=600 bar, pout=26 bar. 
 
 
 
 

t1 = 1.39·10-5 s t4 = 1.95·10-5 s

t5 = 2.04·10-5 st2 = 1.67·10-5 s

t3 = 1.86·10-5 s t6 = 2.13·10-5 s
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At time t=1.1·10-4 s the vortex cavitation is no longer present and the complete hydrodynamic cavity is 
stationary. The flow field establishes a steady state and thus the vapor volume and the mass flow remain constant. In 
Fig. 10 (left) the resulting void fraction distribution at the meridional plane of the injector is presented. For the same 
instant in time we isolate the cavity structure to study their shape in detail (Fig. 10 – right, bottom). At the bore hole 
inlet the vapor pocket is nearly circular shaped. Slightly downstream of the inlet the structure is confined to the 
upper part of the spray hole. Although the shape of the cavity varies along the flow direction, the covered area is 
almost constant for each cross section of the bore hole37. Figure 10 depicts a comparison of the experimental results 
obtained by Busch38 for the conditions pin=600 bar, pout=1 bar with the results of our numerical simulation. In the 
visualization of the experimentally obtained cavitation structure the vapor appears as dark area within the bore hole 
while the visualization of the numerical result depicts an iso-surface of the void fraction of α=0.1%.  

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 10: Vapor volume fraction α of the steady state solution at t=1.1·10-4 s at the meridional plane (left); 3-D 
perspective view of the experimentally38 (right-top) and numerically (right-bottom) obtained cavitation structure 
within the bore hole. Fluid: water at Tin=333 K, pin=600 bar, pout=26 bar. 

 
 
E. 3-D time dependent cavitating flow around a prismatic body and collapse induced shock formation 
 The occurrence of cavitation typically leads to a decrease of the efficiency of hydraulic machines. For pumps the 
NPSH (net positive suction head) significantly reduces as soon as evaporation of the fluid takes place. Furthermore, 
cavitating flow tends to be inherently time dependent due to the periodic or chaotic fragmentation of vapor sheets 
and the subsequent formation of vortical cavitation clouds39,40. These clouds are convected into areas of increased 
static pressure where a collapse-like recondensation is initiated. Thereby, shock structures form and propagate 
through the fluid. If the collapse of a vapor cloud occurs close to a solid surface, e.g. close to a pump or turbine 
blade, then the shock induced dynamic loads are supposed to be a major part of the mechanism of cavitation 
erosion41. It is further supposed that the interaction of a shock with a simultaneously collapsing single vapor bubble 
intensifies the erosive behavior. Within a previous investigation17 we applied the CFD-Tool CATUM to simulate the 
collapse of a single vapor bubble and found excellent agreement with the theoretical prediction given by the 
Rayleigh-Plesset equation. However, the resolution of single bubble dynamics is not possible for 3-D cavitating flow 
as this would require unaffordable high mesh resolution. Here, we investigate the dynamics of large scale structures 
that can be interpreted as clouds of liquid embedded vapor bubbles. Therefore, we model and discretizise an 
experimental setup consisting of a rectangular test-section of length 0.85 m, depth 0.3 m and height 0.3 m where a 
prismatic body of height 0.1 m is located at the bottom wall. The lateral section of the prismatic body forms an 
equilateral triangle with side length 0.075 m. The mesh consists of 3.1·106 finite volumes and it is partitioned into 64 
bocks (Fig. 11). Liquid water at T=300 K enters the inlet plane with an average velocity uin=11 m/s. At the outlet 
plane of the numerical domain asymptotic non-reflective boundary conditions are applied, which ensure an average 
pressure pout,mix=1.12 bar. Based on the inlet velocity, the inlet temperature and the outlet pressure we obtain a 
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cavitation parameter σref=1.8. The numerical analysis is performed within 240 hours on a SGI Altix 3700Bx2 using 
64 processors.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Numerical test-section including the prismatic body and computational discretization of the domain.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s, 3.1·106 finite volumes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Time history of the integrated vapor volume Vvap [% total volume of the computational domain].  
Fluid: water, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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We perform 106 time steps with a step size of ΔtCFD=2.9·10-7 s, which leads to a physical simulation time of 0.29 s. 
The first 0.116 s of the simulation are not analyzed in detail as during this time the flow dynamics are supposed to 
be affected by the initialization of the simulation. In Fig. 12 the time history of the integrated vapor volume fraction 
Vvap within the complete numerical domain is shown. Starting from t=0.116 s we define three time intervals 1-3 with 
length Δtanalysis cycle=0.058 s. Within all three time intervals the graph of the integrated vapor volume fraction Vvap 
contains oscillations of the frequencies f1=22.8 Hz, f2=62.7 Hz and f3=136.8 Hz.  

Figure 13 depicts a series of top views of the prismatic body (red) for 10 equidistant instants in time t1-t10 with 
∆tpic=0.019 s. The flow is from left to right and the arising two-phase structures are visualized by blue iso-surfaces 
of the void fraction α=0.1%. We observe weakly time dependent cavitating tip vortices at the top of the prismatic 
body as well as highly unsteady cavitating vortices in the shear layers downstream of the body. Furthermore, we 
detect a transition of the shape of the cavitation structures from compact clouds in the near wake of the body to 
elongated structures (tubes) in the far wake (pic. 9 of Fig. 13). One reason therefore is the interaction of the shear 
layer vortices arising at the vertical edges of the body with the shear layer at the trailing edge at the top of the body. 

Figure 14 provides a one-to-one comparison of the visualization of the experimentally observed cavitation 
pattern42 with our numerically obtained result for one instant in time. The cavitating vortices at the tip of the body, 
the dispersed bubbly clouds in the near wake and the tube-like cavitation structures in the far wake are well 
predicted by the simulation. The agreement of both visualizations confirms our suggestion that the dynamics of 
cavitating flow are mainly inertia controlled. 

Figure 15 depicts three perspective views of the prismatic body as well as of the bottom wall and of one side 
wall of the numerical test-section. Both walls are colored according to the corresponding static pressure and two-
phase structures are visualized by blue iso-surfaces of the void fraction α=0.1%. At t1=0.234 s (picture 1 of Fig. 15) 
we observe a vertical two-phase structure that reaches the bottom wall. In picture 2 at t2=t1+1.17·10-4 s the tube-like 
structure is fragmented into two parts. The smaller one is located at the bottom wall where it collapses violently. 
Thereby, the surrounding liquid accelerates towards the center of the cloud and impacts onto the wall at the bottom 
of the test-section. This impact results in the formation of a spherical shock (picture 3 of Fig. 15, t3=t2+5.85·10-5 s), 
which propagates through the numerical domain and enforces a strong increase ∆p of the static pressure. For the 
presented collapse the maximum pressure increase reaches ∆p=65 bar directly after the impact of the liquid. The 
pressure increase behind the shock is approximately inverse proportional to the radius of the spherical shock front. 
Hence, the shock induced load on the walls of the numerical test-section strongly depends on the position of the 
collapsing cloud. If the distance between the cloud and the wall of the test-section is sufficiently small, then the 
instantaneous force on the wall might be strong enough to damage the material of the wall. Additionally, it is 
supposed that the erosive effect of the collapse induced shock is intensified by the interaction of a cloud collapse 
with a single vapor bubble that is in contact with the wall. Although the mechanism of cavitation erosion is not yet 
clarified in detail, it is reasonable to consider shock induced loads as a driving mechanism within the complex 
process of cavitation erosion. Therefore, we investigate the forces acting on the bottom wall of the numerical test-
section for the previously defined “analysis cycles” 1-3 as shown in Fig. 12. For each of these time intervals we 
record the maximum static pressure within those computational cells that are directly located at the bottom wall. The 
resulting “foot-print” of the maximum pressure is depicted in Fig. 16 for each analysis cycle. Within the 
experimental investigation42 the areas of intense erosion at the bottom walls were detected. The centers of these 
areas are marked by red crosses in Fig. 16 in order to relate the numerical prediction of the maximum forces to the 
experimentally observed damage at the surface of the bottom wall. Although the numerically predicted maximum 
loads of 60-100 bar occur slightly upstream of the experimentally determined areas of most intense erosion, the 
results demonstrate that the physical model together with the numerical approach is suitable to predict the position 
of erosion critical areas. Furthermore, it should be pointed out that the experiment runs for about 5400 s while the 
numerical simulation covers a small time interval of 0.058 s for each analysis cycle. Nevertheless, even for the 
performed short time analysis a statistical behavior is present. We observe 2-5 strong impacts (∆p > 50 bar) per 
cycle, which leads to an estimated number of impacts of 3·105 for an experimental analysis of 5400 s. However, as 
previously stated, the number of erosive events could be 1 or 2 orders of magnitude smaller if it turns out that the 
coexistence of a cloud collapse together with a single bubble collapse should be the necessary constellation of 
cavitation erosion. Therefore, further experimental and numerical investigations are required to determine a 
correlation of erosion rates with the number of cloud collapse events.  
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Figure 13: Top view of the prismatic body and arising cavitation structures at 10 equidistant instants in time within 
the analysis cycles 1-3 of Fig. 12. Blue surfaces indicate two-phase regions with α≥0.1%.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s, Δtpic=0.019 s. 
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Figure 14: Top view of the prismatic body and arising cavitation structures at one instant in time.  
Visualization of the experiment42 (top) and of the numerical result (bottom).  
Blue surfaces indicate two-phase regions with α≥0.1%.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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Figure 15: Perspective view of the prismatic body and shock formation due to collapsing cavitation structure at 3 
instants in time. The bottom wall and the side wall are colored according to the static pressure. The maximum 
pressure at the bottom wall reaches 65 bar. Blue surfaces indicate two-phase regions with α≥0.1%.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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Figure 16: Top view of the prismatic body and the numerically obtained pressure “foot-prints” for the analysis cycles 
1-3 as defined in Fig. 12. Red crosses mark the experimentally42 obtained centers of most intense erosion. In picture 3 
the small orange spot to the top left of the red cross corresponds to the collapse depicted in Fig. 15.  
Fluid: water from left to right, Tin=300 K, uin=11 m/s, pout=1.12 bar, ΔtCFD=2.9·10-7 s. 
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V. Conclusion 
We apply a conservative thermodynamic model to simulate liquid flows including cavitation/recondensation. In 

order to resolve wave dynamics in low Mach number flows we introduce a modified numerical flux function that is 
uniformly consistent for M→0 and provides stable time-accurate simulations. The results of our CFD-Tool CATUM 
are validated with analytical considerations and one-to-one comparisons of numerical and experimental results are 
presented. We demonstrate the applicability of CATUM to simulate high speed flows in micro-channels including 
the resolution of wave dynamics during the development of the flow. The obtained two-phase region within the 
bore-hole of the investigated 6-hole Diesel injector reduces the effective area of the nozzle by 24%, which is in good 
agreement with the experimental data43. The formation of shocks during the last stages of collapsing vapor clouds 
and its relation to cavitation erosion are discussed in detail for a complex 3-D flow around a prismatic body. 
Although the numerically predicted critical areas are slightly upstream to the experimentally determined positions 
we conclude that the results are sufficient to predict erosive effects, which is highly important for the design and the 
optimization of hydraulic machinery such as pumps, turbines and injection systems.  

Further investigations will focus on the effects of non-condensable gas within the liquid. Preliminary numerical 
tests already indicate that this leads to a reduction of the collapse strength as well as to a reduction of high frequency 
flow features. Moreover, we are investigating the interaction of collapsing clouds and single bubbles to obtain 
additional insight into the flow dynamic mechanisms of cavitation erosion. 
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This publication [71] contains a similar analysis as presented in [64] (Appendix C). Again,

cavitation phenomena around a twisted hydrofoil are investigated. However, in this publica-

tion a NACA0009 hydrofoil at different twist angles is considered. The results compare well

with previous observations of the author as well as with experimental findings [23].

An excellent agreement is reported by comparison of the numerically predicted collapse of a

spherical bubble with the solution of the Rayleigh-Plesset equation [7]. This indicates the

potential of the thermodynamic model for the prediction of bubble collapses as presented in

Appendix F [63].

Non-reflecting boundary conditions are implemented in order to reduce artificial wave reflec-

tions at the inlet and the outlet of the numerical domain.

I derived the formulation for the boundary conditions, generated all grids, performed most

of the simulations, analyzed most of the results and prepared the manuscript.

Reproduced with permission from AIP. Copyright Phys. Fluids 20, 040703 (2008), AIP

Publishing LLC.
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Numerical investigation of three-dimensional cloud cavitation
with special emphasis on collapse induced shock dynamics
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The aim of the present investigation is to model and analyze compressible three-dimensional �3D�
cavitating liquid flows with special emphasis on the detection of shock formation and propagation.
We recently developed the conservative finite volume method CATUM �Cavitation Technische
Universität München�, which enables us to simulate unsteady 3D liquid flows with phase transition
at all Mach numbers. The compressible formulation of the governing equations together with the
thermodynamic closure relations are solved by a modified Riemann approach by using time steps
down to nanoseconds. This high temporal resolution is necessary to resolve the wave dynamics that
leads to acoustic cavitation as well as to detect regions of instantaneous high pressure loads. The
proposed two-phase model based on the integral average properties of thermodynamic quantities is
first validated against the solution of the Rayleigh–Plesset equation for the collapse of a single
bubble. The computational fluid dynamics tool CATUM is then applied to the numerical simulation
of the highly unsteady two-phase flow around a 3D twisted hydrofoil. This specific hydrofoil allows
a detailed study of sheet and cloud cavitation structures related to 3D shock dynamics emerging
from collapsing vapor regions. The time dependent development of vapor clouds, their shedding
mechanism, and the resulting unsteady variation of lift and drag are discussed in detail. We identify
instantaneous local pressure peaks of the order of 100 bar, which are thought to be responsible for
the erosive damage of the surface of the hydrofoil. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2911039�

I. INTRODUCTION

The significance of understanding cavitating flows is un-
doubtedly related to their occurrence in various technical ap-
plications, such as hydraulic machinery and fuel injection
systems, as well as in medical procedures. The compressible
dynamics of collapsing vapor bubbles or bubbly clouds con-
stitutes a common and important aspect of two-phase flow
phenomena within these applications.

Due to the operating conditions of pumps, turbines, and
ship propellers, cavitation is hardly avoidable. Caused by the
breakup of a sheet cavity, bubbly vapor clouds are convected
into regions of increased pressure, where collapselike recon-
densation leads to the formation of shocks. Thereby, high
frequency unsteady load as well as noise production and ero-
sion occur. Cavitating two-phase flow is also experienced in
microscale injection systems of internal combustion engines.
The corresponding flow characteristics contain high fre-
quency wave dynamics and acoustic cavitation due to the
dynamic needle excitation. Furthermore, the extensive accel-
eration of the flow within the injector leads to hydrodynamic
cavitation at the entries to the spray holes. Here, the predic-
tion of cavitation is important to improve the spray charac-
teristics of the fuel and to detect erosion critical areas.

The collapse mechanism of a single isolated bubble has
been extensively studied theoretically and experimentally by
numerous research groups for different conditions.1–7 Experi-

mental observations for the collapse of a single bubble as
well as a bubble cloud demonstrate that violent shock struc-
tures occur. Fujikawa and Akamatsu8 investigated the behav-
ior of collapsing bubbles and radiated pressure waves. They
reported shock intensities at the wall of the order of 100 bar
in magnitude when the collapsing bubble is close to the sur-
face. Philipp and Lauterborn9 observed pressures up to sev-
eral ten thousand bar acting on the material surface due to
the collapse of bubbles, which are in direct contact with the
solid wall. Reisman et al.10 experimentally investigated the
periodic breakup and collapse of sheet and vortex cavities for
different hydrofoils and observed large impulsive surface
loads. Moreover, they introduced a classification of local and
global shock events according to their flow dynamic origin
and suggested that shock dynamics is responsible for the
damage and the noise observed in many cavitating flows.
Ikeda et al.11 investigated the appliance of collapsing vapor
clouds within the technique of shock wave lithotripsy—
cavitation controlled lithotripsy.

Besides these experimental investigations, numerical
analysis based on various techniques are used to predict cavi-
tating flow characteristics. Dang12 applied a three-
dimensional �3D� panel method based on the incompressible
potential theory to predict sheet cavitation as well as the
development of the re-entry jet for different hydrofoil geom-
etries. Chen and Heister13 presented a method developed by
Chorin14 to simulate two-dimensional �2D� cavitating flows
where the density of the liquid is assumed to be constant.
Methods based on the pressure correction technique area�Electronic mail: schnerr@flm.mw.tu-muenchen.de.
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widely applied to simulate the periodic formation of the
sheet cavity and its breakup dynamics for 2D and 3D appli-
cations. In these approaches, the phase transition is either
controlled by bubble dynamic considerations15 or in accor-
dance to calibrated finite rate models.16 Typically, both
phases are assumed to have constant density. Preconditioning
techniques in combination with density based numerical
methods enable the incorporation of compressibility effects
of both phases. Furthermore, these methods allow for the
simulation of low speed unsteady flow by the use of dual
time-stepping approach.17–19 Kunz et al.20 demonstrated the
applicability of preconditioning techniques to perform turbu-
lent simulations of unsteady 3D cavitating flows based on a
barotropic state law.

Although these methods allow for the prediction of
steady and unsteady flow characteristics based on the time
scale of the convective velocity, they do not incorporate
wave dynamic effects where the time scale is necessarily
inverse proportional to the speed of sound c. We therefore
propose a numerical approach that is especially developed to
predict the formation and propagation of collapse related
shocks and rarefaction waves occurring in cavitating flows.
In order to model both wave dynamics and hydrodynamics,
we present a consistent numerical flux function for low and
high speed unsteady flows and propose a phase transition
formulation based on stable thermodynamic states of water
and water vapor.

II. PHYSICAL MODEL

Cavitating flows involve a large variety of physical phe-
nomena, such as bubble dynamics, nonequilibrium thermo-
dynamics, multiphase turbulence, and multiphase wave dy-
namics. Each physical aspect incorporates specific spatial
and temporal scales, which strongly depend on the consid-
ered flow field. Even the use of high performance computers
does not presently enable simulations that resolve all scales
of the above stated physical phenomena, especially not for
3D unsteady flows arising from typical technical applica-
tions. This motivates the development of a scale adaptive
physical model based on the conservation principles of mass,
momentum, and energy as well as on thermodynamic rela-
tions. Particularly, we investigate the potential of modeling
the dynamics of cavitating flows by the use of spatially av-
eraged governing equations. Due to the dominance of inertia
effects within the considered two-phase flows, we neglect
viscous effects and express the conservation principles by the
Euler equations. However, the inclusion of dissipative
mechanisms into the model is possible without restrictions.

Let q� be the vector of conserved quantities defined by
the density �, the components ui of the velocities in coordi-
nate direction xi, and the specific total energy E as the sum of
the specific internal energy e per unit mass and the specific
kinetic energy 1

2�ui
2. Let Fi�q�� be the physical flux in coor-

dinate direction xi, while �ij and p denote the Kronecker
symbol and the pressure, respectively,

q� =�
�

�u1

�u2

�u3

�E
� , Fi�q�� = �ui ·�

1

u1

u2

u3

E
� + p ·�

0

�1i

�2i

�3i

ui

� . �1�

The differential or pointwise form of the Euler equations can
be written as

�

�t
q� = − �

i=1

3
�

�xi
Fi�q�� . �2�

With respect to the classical interpretation, we know that
Eq. �2� is valid only if the flow variables are differentiable.
However, in order to model wave dynamics of cavitating
flows, we have to take discontinuities due to shocks as well
as due to phase interfaces into account. Instead of enforcing
the conservation principles in a pointwise fashion, we use the
weak form of the Euler equations. Therefore, we partition the
flow domain into disjoint fixed control volumes Ck of corre-
sponding volume Vk, surface Sk, and outer unit normal vector
n�k= �nk,1 nk,2 nk,3�t. The weak form of the Euler equations for
each control volume Ck follows as

d

dt
�

Ck

q�dVk = − �
Sk

�
i=1

3

nk,iFi�q��dSk. �3�

By defining the cell average operator Ak through

Ak�q�� ª
1

Vk
�

Ck

q�dVk, �4�

we assign to all weak solutions within the cell Ck their com-
mon integral average value q�k=Ak�q��. It turns out that the
weak form of the Euler equations resembles a system of
evolution equations of the cell averages of weak solutions,

d

dt
q�k = − �

Sk

�
i=1

3

nk,iFi�q��dSk. �5�

Up to now, we have not made any additional assumption
on the flow field itself, which means that Eq. �5� is valid for
any type of inviscid multicomponent and multiphase flow,
even if the species do not share a common pressure, tempera-
ture, or velocity. Nonetheless, the choice of fixed control
volumes Ck introduces local length scales lk of the order of
lk=	3 Vk into the physical problem and, hence, any process
occurring beyond those scales can no longer be resolved.
Therefore, the previously defined cell averages can be inter-
preted as the result of a conservative low pass filtering of the
flow field. In the case of cavitating bubbly liquid flow, the
resolution of two-phase features depends on the fraction �
=R / lk of the bubble radius R and the induced length scale lk.
If ��1, the model resembles the average behavior of a
mixture, while it fully resolves single bubbles if ��1. As
the transition from the resolved case to the averaged case and
vice versa does not require additional modeling, we denote
the evolution of integral averages as a scale adaptive model.
Furthermore, the right hand side of Eq. �5� implies that the
evolution of the integral average equations is entirely depen-
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dent on the net fluxes of mass, momentum, and energy across
the surface of each control volume, while explicit knowledge
of small scale information within the cell Ck is not required.
However, the closure of the defined initial-boundary value
problem �5� necessitates constitutive relations for the cell
averaged thermodynamic quantities, �k, ek, and pk, as well as
consistent initial and boundary conditions. In this section, we
assume that consistent initial and boundary data are strictly
available. Thus, the physical fluxes along the boundary sur-
faces are known and, hence, Eq. �5� reduces to an initial
value problem. At each instant in time, the corresponding
initial values already determine the average density �k, ve-
locity u�k, and total energy Ek within the control volume Ck.
Therefore, the average specific internal energy ek per unit
mass follows from the average total energy Ek by subtracting
the specific kinetic energy. However, the definition of the
average pressure pk requires additional model assumptions.
In this investigation, we restrict the fluid to consist of water
and water vapor. Impurities such as solid particles or solute
gas are not explicitly modeled, but their effects on the ther-
modynamic behavior of water are taken into account in a
simplified manner. It is known that highly purified water al-
lows for the occurrence of metastable states far beyond satu-
ration conditions,21 whereas tap water does not show this
behavior. In the latter case, the large number of impurities
immediately results in heterogeneous nucleation22 and, thus,
in the formation of vapor bubbles. As the specific volume of
water vapor is by several orders of magnitude larger than the
one of liquid water, the phase transition results in rapid pres-
sure equalization close to the stable saturation state. This
allows us to neglect metastable states and to consider stable
thermodynamic conditions. In order to avoid the definition of
unknown local parameters such as the average bubble radius
or the bubble number density, we have to neglect surface
tension and buoyancy effects. Consequently, the coexistence
of both phases implies that the pressure pk is determined by
the Clausius–Clapeyron relation and the average density �k

within cell Ck is a convex combination of the saturation den-
sities �l,sat, �v,sat of liquid and vapor. Furthermore, we define
at each instant in time and for each control volume an aver-
age temperature Tk in order to relate the saturation density to
the internal energy. By defining the vapor volume fraction �k

and the vapor mass fraction �k, we obtain the unknown quan-
tities Tk, �k, �k, and pk as solutions of the system,

�k = �k�v,sat�Tk� + �1 − �k��l,sat�Tk� , �6�

ek = �kev,sat�Tk� + �1 − �k�el,sat�Tk� , �7�

�k�k = �k�v,sat�Tk� , �8�

pk = psat�Tk� , �9�

0 � �, � � 1. �10�

Thereby, the incorporated temperature dependent func-
tions have to be specified. In the case of water and water
vapor, we model these with the Oldenbourg polynomials.23

The required closure relation in the presence of two-phase
flow is thus completely defined.

If the average density �k is larger than the saturation
density of liquid water, we replace the closure relation with
the modified Tait model ��k ,�k=0�,

pk + B

psat�Tk� + B
= 
 �k

�l,sat�Tk�
�N

, �11�

together with an equation for the internal energy.24 Even
though the temperature variation of the liquid is typically
small, the modification of the Tait equation remains neces-
sary in order to ensure a continuous connection of the Tait
model to the temperature dependent saturation conditions.
For water, we use B=3300 bar and N=7.15 independent of
the temperature.

If the average density �k is smaller than the saturation
density of vapor, the applied constitutive relation models
pure vapor ��k ,�k=1�, treated as calorically perfect gas,
where the ratio of the specific heats is given by 	=1.327 and
the specific gas constant is 461.5 J /kg K.

The comparison of the described thermodynamic closure
relations with respect to the IAPWS data25 demonstrates that
the relations accurately model the behavior of water and wa-
ter vapor for a large range of thermodynamic subcritical con-
ditions. Moreover, the presented model is neither restricted
to the described set of thermodynamic closure relations nor
to the assumption of instantaneous pressure equalization.
However, the thermodynamic relations must imply a consis-
tent definition of the equilibrium speed of sound c to ensure
that the model is hyperbolic in time and that the initial-
boundary value problem is well posed. Furthermore, the in-
corporation of small scale information, such as the bubble
number density or the bubble size distribution, is possible,
but the scale adaptability may then be lost and the model
reduces to the dispersed mixture model.

III. NUMERICAL METHOD AND VALIDATION

Our numerical method CATUM relies on an approximate
solution of the evolution equation �5� for each control vol-
ume Ck. As stated in Sec. II, the temporal development of
Eq. �5� is completely defined by the time dependent fluxes
across the surfaces of the control volumes. The hyperbolic
character of the compressible formulation of the governing
equations motivates a Godunov-type approximation of these
fluxes. Thereby, the average values q�k and q� i of two adjacent
control volumes Ck, Ci are used to define the Riemann prob-
lem across the shared surface Sk,i=Ck�Ci. The solution
RP�q�k ,q� i� of the Riemann problem at the surface Sk,i is con-
stant in time within a time interval 
tRP� l / �
u� 
+c�, where l
is the length scale of the volume and 
u� 
+c represents the
fastest signal speed. By replacing the physical fluxes F�q�k� in
Eq. �5� with the numerical fluxes RP�q�k ,q� i�, we obtain a set
of ordinary differential equations, which represent a semidis-
crete unsplit finite volume method for hexahedral volumes,

d

dt
q�k = − �

i=1

6

Sk,i·RP�q�k,q� i� . �12�

This framework is well developed for the simulation of
steady and unsteady compressible aerodynamics of moderate
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and high Mach number flows as well as for the investigation
of wave propagation phenomena including sharp and accu-
rate shock capturing in unsteady flow. Furthermore, methods
based on Eq. �12� are conservative by construction and en-
able efficient time dependent simulations. Contrary to pres-
sure based approaches, all fluxes are calculated without the
need for subiterations. However, the application of Godunov-
type methods to low speed flows requires substantial modi-
fication to overcome the low Mach number problem. Other-
wise, the accuracy of the Godunov approximation
significantly decreases if the Mach number is in the weakly

compressible regime, M�̃0.1, in particular, due to the high
acoustic impedance �c of liquids, the decrease of accuracy is
further intensified. An extensive discussion of the low Mach
number problem is beyond the scope of this investigation but
can be found in the literature.26,27 These contributions high-
light the inconsistency of the discrete pressure component as
part of the numerical momentum fluxes with respect to the
asymptotic analysis of the governing equations.27,28

In order to overcome the low Mach number problem, we
introduce a modified numerical flux MF�q�k ,q� i� for cavitating
liquid flow, which is based on the theory of characteristics
and equipped with an asymptotically consistent pressure flux
definition. Due to the rotational invariance of the convective
fluxes, we restrict the presentation of the formulation to one
spatial direction x1. We use the subscripts k , i for the average
flow variables corresponding to the control volumes to the
left and to the right of the shared surface Sk,i, which we
assume to be part of the x2, x3 plane. Provided that the Mach
numbers Mk, Mi are low, the velocity u* at the surface Sk,i

follows from the locally linearized compatibility
conditions,29

u* =
�kckuk,1 + �iciui,1 + pk − pi

�kck + �ici
. �13�

The pressure p* at the surface Sk,i is computed by

p* =
pk + pi

2
. �14�

Equation �14� does not contain the strong coupling of pres-
sure and velocity as it would be enforced by the compatibil-
ity relations. However, this coupling is known to cause the
low Mach number problem and, hence, the application of the
compatibility conditions to obtain the pressure p* at the sur-
face Sk,i is avoided by the definition of Eq. �14�. Although the
proposed pressure flux is significantly less dissipative than
those of the well known linearized Riemann approaches, we
do not observe related numerical instabilities. We conclude
that the coupling of pressure and velocity is sufficiently im-
plied within the definition of the velocity u* �13�. Further-
more, we achieve an upwind character of the numerical flux
by the sign of the velocity u*. Assuming positive sign, we
define the following numerical flux MF�q�k ,q� i� in accordance
to the physical flux as defined in Eq. �1�,

MF�q�k,q� i� = �ku* ·�
1

u*

uk,2

uk,3

Ek

� + p* ·�
0

1

0

0

u*
� . �15�

For negative mass flow �u*�0�, the subscripts k and i are
reversed. In the presence of cavitation, the local Mach num-
bers Mk, Mi may reach supersonic values and, hence, the
numerical flux should resemble pure upwinding of all con-
served quantities. In this case, the interface values u* and p*

are replaced by the corresponding variables on the left or on
the right hand side, depending on the flow direction. The
final form of the discrete evolution equations reads

d

dt
q�k = − �

i=1

6

Sk,i·MF�q�k,q� i� . �16�

In order to increase the spatial accuracy of the method,
we apply weighted essentially non-oscillatory reconstruction
procedures �WENO-3�30 to the velocity components and a
total variation diminishing reconstruction �van Leer�31 to the
density field. As the pressure flux is already second order
accurate by definition, no further procedure is required. The
spatial discretization is thus second order accurate for
smooth solutions and it significantly reduces oscillations in
the presence of discontinuities.

We apply an explicit four-stage, second order Runge–
Kutta method with enlarged stability region to advance the
system �16� in time. Second order accurate simulations in
space and time thereby enforce the numerical time step

tCFD being determined as the minimum of 
tRP within all
control volumes.

Up to now, we have presented the numerical treatment of
average values corresponding to control volumes inside the
computational domain. However, it turns out that the same
method is applicable to boundary related cells as well. There-
fore, we define additional control volumes—ghost cells—
which exist only virtually. The specification of the boundary
values is thus equivalent to the definition of the average val-
ues within these ghost cells. We discuss the following types
of boundary values: inviscid adiabatic walls, inlet and outlet
surfaces, and farfield boundaries. Besides the walls, all
boundary definitions are approximate in the sense that the
physical domain, e.g., a cavitation tunnel, does not provide a
determined inlet or outlet. This fact is taken into account by
the use of essentially nonreflective conditions. From the
theory of characteristics, it follows that at a subsonic inlet
surface, four conditions have to be specified, while the fifth
one has to be extracted from the interior of the domain. Con-
sequently, only one condition from the outside of the domain
is required at a subsonic outlet surface and four conditions
follow from the interior. It is known that the specific choice
of presumed conditions is not arbitrary but needs to be con-
sistent with the compatibility conditions.32 We therefore pre-
sume temporally mean values of T�, u1,�, u2,�, and u3,� at the
inlet and p� at the outlet. For presentation purposes, we as-
sume that u2,�=0 and u3,�=0. Let the superscripts �, 
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denote the values of the current and the previous instant in
time, let the subscripts g and i denote the average values
corresponding to the ghost cell and the adjacent interior cell,
and let �=c ·
tCFD / l be the dimensionless distance defined
by the speed of sound c, the numerical time step 
tCFD, and
the cell length l. Within the ghost cells close to the inlet
plane, we specify

pg
+ =

pg
− + 0.5��pi + pg

− + �g
−cg

−�u1,� − u1,i��
1 + �

, �17�

u1,g
+ =

u1,g
− + 0.5�
 �pg

− − pi�
�g

−cg
− + u1,� + ui�

1 + �
, �18�

�g
+ = Tait�pg

+,T�� . �19�

In analogy, we obtain for the related ghost cells at the outlet,

pg
+ =

pg
− + 0.5��pi + p� + �g

−cg
−�u1,i − ug

−��
1 + �

, �20�

u1,g
+ =

u1,g
− + 0.5�
 �pi − p��

�g
−cg

− + u1,g
− + ui�

1 + �
, �21�

�g
+ = Tait�pg

+,Ti� . �22�

We suppose that the numerical inlet and outlet boundaries
are located sufficiently far from two-phase domains. This
assumption allows us to prescribe the average density by Eq.
�19� and Eq. �22� by the modified Tait model for pure liquid
water given by Eq. �11�. Although we could obtain reason-
able results even if this requirement is violated at the outlet
of the domain, we recommend ensuring sufficiently large
numerical domains.

An exact definition of solid impermeable walls is ob-
tained by enforcing the flow tangency condition at the sur-
faces. Thereby, the average values assigned to the ghost cells
are defined by the asymmetry of the average velocity normal
to the boundary and the symmetry of all remaining values.

In order to ensure second order accurate calculations
close to the boundary surfaces, the presented procedures are
applied to derive average values for an additional set of
ghost cells located even more distant to the specific bound-
ary.

Our computational fluid dynamics �CFD� code CATUM is
applicable to block structured hexahedron meshes and all
numerical approaches operate fully parallelized. In order to
validate the proposed model and the numerical method, the
simulation of a single vapor bubble collapse is performed.
Therefore, we construct a spherical vapor region of radius
RB=0.4 mm located at the center of a cubic 3D liquid do-
main. The grid resolution of lk=0.02 mm results in �=20
with respect to RB and, hence, the initially defined bubble is
fully resolved. Based on the requirement stated in Sec. III,

we apply numerical time steps of 
tCFD=6.5 ns. The numeri-
cal boundaries are located 25 diameters away from the
bubble and the corresponding ghost cells model constant
pressure p�=1.0 bar and T�=293 K at infinity. Initially, the
flow is at rest and the temperature and the pressure within the
liquid domain are equal to the farfield values. The pressure
inside the bubble is given by the vapor pressure psat=0.023
bar at T=293 K. The initially enforced pressure difference
leads to the development of a centrally directed flow field,
which causes the vapor bubble to collapse. The defined “Be-
sant problem” is well known and its dynamics has been ana-
lyzed by various techniques. Although our numerical method
includes compressibility effects, we compare our results with
the solution of the incompressible Rayleigh–Plesset model.
We motivate this comparison regarding the analytical inves-
tigation of Gilmore,33 where it is demonstrated that the in-
corporation of liquid compressibility results in only a slight
increase of the dimensionless collapse time of 0.5% as com-
pared to the incompressible model. In order to achieve simi-
lar conditions, we neglect viscosity, surface tension, and non-
condensable gas content within the Rayleigh–Plesset model.
The first two assumptions are known to have minor influence
to the collapse behavior if the initial radius of the vapor
bubble is sufficiently large.34 Figure 1 shows the time depen-
dent evolution of the normalized bubble radius with respect
to the time normalized by the Rayleigh time. The solid line
corresponds to the solution of the Rayleigh–Plesset equation
and the dots represent the results of the 3D compressible
simulation. The agreement of both data sets demonstrates the
ability of the numerical method to accurately predict inertia
controlled effects such as the collapse of a vapor region.
Thereby, the applied thermodynamic closure relation allows
for the complete recondensation of the vapor. During the
collapse, the liquid accelerates toward the center of the
bubble and initiates the formation of an outward propagating
shock when it impacts at the center of the recondensed
bubble. The intensity of the shock is related to the impact

FIG. 1. �Color online� Collapse of a single bubble—comparison of simula-
tion and bubble dynamics. Evolution of dimensionless radius R /R0 with
respect to dimensionless time t / tRayleigh from 3D CATUM simulation �dots�
and solution of the Rayleigh–Plesset equation for collapse of a spherical
vapor bubble, 
tCFD=6.5�10−9 s.
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velocity of the liquid. For the presumed initial conditions and
the defined spatial resolution, we obtain a maximum instan-
taneous pressure of 1040 bar within the control volume lo-
cated at the center of the domain. In accordance to the
theory, the spherical shock then propagates into the sur-
rounding liquid and attenuates proportional to its distance
from the origin. Due to the high acoustic impedance of the
liquid, the shock speed is only slightly supersonic.

IV. 3D SHOCK DYNAMICS OF COLLAPSING VAPOR
CLOUDS AROUND A CAVITATING TWISTED
HYDROFOIL

Our CFD code CATUM is currently applied to simulate
wave dynamics in 3D multihole fuel injectors as well as to
simulate unsteady shedding mechanisms around 3D hydro-
foils. In this investigation, we discuss recently obtained re-
sults of shock and cloud dynamics around a twisted hydro-
foil.

Figure 2 depicts the numerical test section consisting of
a rectangular flow domain of dimensions of 0.3�0.3
�1.0 m3. The hydrofoil is placed at the center of the test
section and defined by the NACA 0009 profile with chord
length of 0.15 m. The profile is twisted relative to the mid-
span plane to obtain a varying angle of attack from −1° at the
sidewalls to +10° at midspan. Therefore, the interaction of
the cavitation pattern with the sidewalls of the test section is
avoidable for a certain range of operating conditions.12 Fur-
thermore, a comparable setup is experimentally investigated
by Foeth et al.,35 where it is demonstrated that the described
hydrofoil is suitable to study well defined and repeatable
shedding structures. The experimentally observed flow field
is symmetric with respect to the midspan up to small scale
fluctuations. This motivates a symmetric numerical treatment
of the test section in order to reduce the computational effort.

We apply an O grid consisting of 300 000 hexahedrons,
where we refine the spatial resolution close to the surface of
the hydrofoil. Thereby, we obtain cell lengths of 1 mm� lk

�5 mm of those computational cells, where two-phase flow
is supposed to occur. Experimental investigations show that
the maximum radius of the vapor bubbles for the considered
cloud cavitation pattern is of the order of 1 mm. Therefore,
we conclude that the applied spatial resolution covers the
interval of ��1 to ��1. The resulting requirement on the
numerical time step leads to 
tCFD=45 ns. At the inlet plane
of the numerical domain, we presume pure water with an
inlet velocity u�=50 m /s and an inlet temperature T�

=300 K. At the outlet plane, we prescribe p�=10 bar. The
essentially nonreflective treatment of the boundaries accord-
ing to Sec. III is applied for both planes. The prescribed
temporal mean values allow for the definition of the refer-
ence cavitation parameter,

�ref =
p� − psat�T��
1
2�l�p�,T��u�

2 = 0.81. �23�

Previous investigations have demonstrated that the aris-
ing long time flow characteristics of this setup are deter-
mined by the boundary conditions independent of the initial-
ization of the numerical domain. However, the required
computational effort to reach the experimentally observed
quasiperiodic shedding behavior is reduced by initializing
the two-phase simulation with the steady state solution of a
comparable single phase flow.

Figure 3 depicts perspective views of the hydrofoil to-
gether with isosurfaces of the void fraction composed of all
cells with �min=0.05 at five representative instants in time

FIG. 2. 3D twisted NACA 0009 hydrofoil—computational domain and boundary conditions. Chord length c=0.15 m, span s=0.3 m, angles of attack, −1°
�walls� and +10° �midspan�, channel height of 0.3 m, and channel length of 1 m. Water inflow from left to right, inlet conditions u�=50 m /s and T�

=300 K, outlet condition p�=10 bar, and reference cavitation number �ref=0.81 �Eq. �23��. Grid: 3�105 hexahedrons.
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within the time interval 
t1–5=4.1 ms corresponding to the
first investigated shedding cycle—cycle 1 �see Fig. 4�. The
numerically obtained frequency f �230 Hz of the shedding
cycles is constant up to 3%. Based on the numerically ob-

served maximum length of the attach sheet cavity �40% of
the chord length�, we obtain a Strouhal number of St�0.27.
At the first instant in time, we observe the formation of an
attached sheet cavity close to the leading edge of the hydro-
foil. Slightly upstream of the trailing edge, a horseshoe
shaped detached cloud is visible. The vertical elongation of
this cloud is of the order of 50% of the chord length. At the
second instant in time, the previously attached sheet sepa-
rates from the hydrofoil due to the onset of reverse flow
between the cavity and the surface of the hydrofoil. Further-
more, the cloud located close to the trailing edge recon-
denses. At the leading edge of the hydrofoil, the reformation
of the attached sheet cavity takes place. In the picture corre-
sponding to the third instant in time, the attached sheet cavity
at the leading edge reaches its maximum length and the de-
tached cloud is still connected to the sheet. Here, the re-entry
jet below the cloud is no longer formed by pure reverse flow
but includes a significant spanwise velocity component, i.e.,
a side re-entrant jet.35–37 The collision of the re-entrant flow
with the side entrant jets below the vapor cloud causes the
cloud to completely separate from the suction side of the
hydrofoil. Thereby, the formation of vortices takes place that
superimpose onto the main flow and accelerate the cloud
downstream. This behavior is observed within various ex-
perimental setups and analyzed in detail.10,35–38 Between
time instants 3 and 4, the cloud undergoes a strong compres-
sion that is initiated by the surrounding pressure field. Pic-
ture 4 of Fig. 3 shows the vapor cloud just before its final
collapse occurs. Moreover, two secondary instabilities lo-
cated at the closure of the triangularly shaped sheet cavity
indicate vortex structures due to the side entrant flow. At the
last instant in time, a series of small scale vapor structures
close to the trailing edge are observed. One of them is lo-
cated nearly at the same position as the previously collapsed
cloud. Indeed, this structure forms due to the postexpansion
corresponding to the collapse induced shock.

The dynamic behavior of the shedding mechanism re-
sults in strongly time dependent lift and drag variations. Fig-
ure 4 depicts the time history of drag force FD,p, lift force FL

and integrated vapor volume Vvap of cycle 1 and of the sub-
sequent cycle 2. Both forces exhibit significant peaks includ-
ing highly negative values subsequent to the collapse corre-
sponding to time instant 4 in Figs. 3 and 4. Here, the small
vapor cloud located above the trailing edge of the hydrofoil
violently collapses and the resulting 3D shock front propa-
gates through the domain. Figure 5 depicts the pressure con-
tours at the midspan plane as well as at the surface of the
hydrofoil corresponding to a time instant subsequent to the
collapse. The maximum pressure behind the shock reaches
230 bar. This leads to an instantaneous maximum pressure of
105 bar on the surface of the hydrofoil, directly after the
shock impinges on the suction side. Thereby, we observe
strongly decreasing lift and drag forces for a time interval of
14 ms, corresponding to point 4 in Fig. 4.

Due to the spatial resolution of ��1 to ��1, the
physical model is no longer able to resolve single bubbles
but locally predicts an average behavior of liquid and vapor
within the computational cells. Nonetheless, the fundamental
principles of conservation together with the thermodynamic

FIG. 3. Unsteady shedding mechanism, cavitation cycle 1 �see Fig. 4�, f
�230 Hz, 
t1–5=4.1�10−3 s, and 
tCFD=4.5�10−8 s. Isosurfaces of void
fraction with �min=0.05 at five instances in time as indicated in Fig. 4, t1

=1.26�10−1 s, t2=1.27�10−1 s, t3=1.28�10−1 s, t4=1.29�10−1 s, and
t5=1.30�10−1 s. 3D twisted NACA 0009 hydrofoil, u�=50 m /s, �ref

=0.81, p�=10 bar, and water T�=300 K.
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closure relations enable the prediction of sheet and cloud
cavitation structures, as well as the prediction of shocks due
to the collapse of fragmented vapor regions. Furthermore,
the agreement of the obtained global flow character with dif-

ferent experimental observations10,35–38 for comparable ex-
perimental setups demonstrates that the dominating flow
phenomena for the investigated hydrofoil are essentially in-
ertia controlled.

FIG. 5. Instantaneous 3D shock front emerging after cloud collapse at the trailing edge subsequent to time instant 4 of Figs. 3 and 4, pmax=230 bar.
Isosurfaces of void fraction �min=0.05. 3D twisted NACA 0009 hydrofoil, u�=50 m /s, �ref=0.81, p�=10 bar, and water T�=300 K.

FIG. 4. �Color online� Time history of drag force FD,p �N�, lift force FL �N�, and integrated vapor volume Vvap of cycles 1 and 2, f �230 Hz and 
tCFD

=4.5�10−8 s. The black dots numbered 1–5 correspond to the five instances in time presented in Fig. 3. 3D twisted NACA 0009, u�=50 m /s, �ref=0.81,
p�=10 bar, and water T�=300 K.
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V. CONCLUSIONS

A physical model together with a numerical solution
strategy for the simulation of wave dynamics and hydrody-
namics in cavitating two-phase flows is presented. A numeri-
cal pressure flux function is proposed that enables time ac-
curate simulations of liquid flows including phase transition
without the need of any additional preconditioning tech-
niques. Based on the dimensionless quantity �=R / lk, we
demonstrate that the thermodynamic model is suitable to pre-
dict either the dynamics of a single bubble ���1� or to
predict the average behavior of liquid embedded vapor struc-
tures ���1�. By applying numerical time steps of the order
of nanoseconds, we first validate the proposed method
against the solution of the Rayleigh–Plesset equation for the
Besant problem. Finally, we investigate the highly unsteady
3D cavitating flow over a twisted hydrofoil with special em-
phasis on the formation and propagation of shocks emitted
by collapsing vapor clouds. Thereby, the proposed model
predicts complex 3D unsteady shedding cycles including
secondary instabilities caused by side-entry flow. Further-
more, we demonstrate that collapse induced shocks generate
high impulsive loads on the surface of a hydrofoil. We locate
an instantaneous maximum pressure of 105 bar on the sur-
face of the hydrofoil directly after shock impingement. The
locations as well as the intensities of these loads are thought
to be related to erosion critical areas. Further investigations
will include statistical analysis of the observed effects as
well as one to one comparison with recently obtained experi-
mental data. Additionally, the effect of noncondensable gas
with respect to the formation and collapse of vapor structures
will be considered within the thermodynamic closure rela-
tion.
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Chapter 14
Assessment of Erosion Sensitive Areas
via Compressible Simulation of Unsteady
Cavitating Flows

Steffen J. Schmidt, Michael S. Mihatsch, Matthias Thalhamer
and Nikolaus A. Adams

Abstract The objective of this paper is the assessment of the numerical pre-
dictability of erosive events arising in cavitating flows. First, a numerical method
and an efficient thermodynamic model for the simulation of cavitating flows are
briefly described. The prediction of typical flow details is evaluated by simulating
the 3-D flow around a quasi 2-D NACA hydrofoil. We find that the maximum
length of the attached cavity, the Strouhal number, and the average diameter of
detached clouds are essentially grid independent. Scale enrichment and enhanced
3-D flow details are observed on refined grids. Even delicate flow features, such as
cavitating vortices and irregular 3-D break-up patterns, are reproduced, provided
that the spatial resolution is sufficiently high. The simulation of cloud collapses
and resulting instantaneous peak pressures is assessed in a second investigation.
Here, we analyze the effect of the computational grid resolution with respect to
typical collapse characteristics, such as the collapse duration, and the instanta-
neous maximum pressure within the flow field and at walls. The proposed meth-
odology is confirmed by a third investigation, where an experimental setup to
investigate cavitation erosion is simulated, and regions of experimentally observed
cavitation damage are compared with numerical predictions of strong collapses.
The excellent agreement of numerically predicted collapse positions and experi-
mentally observed damage justifies the proposed methodology.

14.1 Introduction

The numerical prediction of erosive events arising in cavitating flows is a serious
challenge due to the large range of involved spatial and temporal scales. The
extent of a partial cavity at the suction side of a propeller blade might be four to
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five orders of magnitude larger than the diameter of a collapsing bubble or of a
nucleus [1–5]. Similarly for temporal scales, the duration of a peak pressure due to
a shock impinging on a material surface is in the order of a few microseconds,
whereas the duration of a typical cloud-shedding process might be several milli-
seconds [6, 7]. Moreover, the process of cavitation erosion might take place over
the lifetime of the propeller. Except for a few academic cases, current computa-
tional capabilities do not allow the resolution of all scales arising in typical cav-
itating flows. Therefore, an accurate prediction of medium and large scale
dynamics, such as cloud formation and cloud collapses, is highly desired.

One approach for removing unresolvable small scales is to filter the continuous
governing equations using spatial low-pass filters [8]. Filtering not only removes
unresolvable small-scale kinematics, it additionally replaces unresolvable two-
phase structures with locally homogeneous mixtures. It can be shown that finite-
volume methods provide approximate solutions of the top-hat filtered governing
equations without explicit filtering [9]. The filter width of a finite volume dis-
cretization is related to the computational mesh, which constitutes the lower bound
of resolvable spatial scales [10]. In most cases of practical relevance, the com-
putational grid is far too coarse to resolve single bubbles or small-scale kinematics
in the range where viscous dissipation is dominant, i.e. the grid is insufficient for
direct numerical simulations. However, the investigations summarized within this
paper provide a strong indication that a considerable amount of relevant detail for
the prediction of cavitation and cavitation erosion are much larger than nuclei or
single bubbles.

The time discretization method needs to ensure sufficient resolution of the
dynamic processes as well. Here, the predominant physical constraint is the fastest
signal speed, which is in the order of the speed of sound in the liquid: e.g.,
assuming that the spatial resolution is 0.1 mm and the speed of sound is 1,500 m/s,
the numerical time step must be on the order of 60–70 ns to resolve collapse-
induced peak pressures that are known to be a driving mechanism of cavitation
erosion.

14.2 Numerical Method

In the following sections we present investigations of cavitating flows as predicted
by our flow simulation code CATUM (CAvitation Technische Universität Mün-
chen [11, 12]), which is a density-based finite volume method employing a low
Mach-number consistent flux function and an explicit time marching procedure.
Since the objective of this investigation is the prediction of erosive collapses, we
focus on inertia-driven dynamics. Thus, the governing equations are the 3-D
unsteady Euler equations resulting from mass, momentum and energy balances.
We denote that the applied computational grids are far too coarse to resolve
boundary layers or kinematics with wave numbers close to the viscous sub-range.
Therefore, we neglect viscous effects on purpose and apply a nonlinear
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discretization scheme that implicitly provides a sufficient amount of numerical
regularization [13].

The spatial reconstruction of the velocity field follows a WENO-3 procedure
[14]. Density and internal energy are reconstructed by monotonic TVD limiters
(‘‘minmod’’) [15]. Time marching is performed by adopting an explicit low-
storage four-step Runge–Kutta method with optimized stability region [11, 12, 16].
The combination of both methods results in a second-order numerical approach in
space and time for smooth flow, and it ensures sharp representation of discon-
tinuous flow features, such as shocks and contact waves.

In order to allow for the simulation of shock formation and wave propagation,
the compressibility of the fluids (liquid and vapor) is taken into account. Conse-
quently, the numerical time step is proportional to the ratio of the smallest length
scale (minimum grid size) and the fastest signal speed (* speed of sound in the
liquid). The fluids can be characterized by closed form equations of state, or by
look-up tables for complex fluid models, e.g. for fluids where closed form equa-
tions are not available or computationally expensive. For this investigation we use
closed form equations for the simulation of the flow around a hydrofoil, and more
efficient look-up tables for simulation of the cloud collapse and the nozzle-target
flow. Both thermodynamic models provide high quality approximations of the
IAPWS database [17] of water, vapor, and liquid-vapor equilibrium.

The phase-transition model is based on local equilibrium assumptions for
pressure, temperature and specific Gibbs functions [18]. Therefore, two-phase
regions are modeled as saturated mixtures (liquid-vapor equilibrium with vapor
volume fraction a), where the resulting pressure is the temperature-dependent
vapor pressure [19]. For each computational cell, and at each instant in time, the
average density, the average momentum, and the average total energy are given by
the governing equations. These quantities allow for a cell-wise evaluation of the
average internal energy. Using the previously specified local equilibrium
assumptions together with suitable fluid-models (closed form equations or look-up
tables) all unknown thermodynamic properties can be obtained from density and
internal energy. Thereby, the effects of latent heat are fully taken into account and
the method is inherently conservative. Moreover, the speed of sound is the equi-
librium speed of sound that leads to a well-posed mathematical problem [20].

We consider it advantageous that the equilibrium model does not require user-
specified and potentially unknown parameters, such as initial nuclei distributions
or evaporation/condensation rates. Surely, equilibrium assumptions might be
questionable in case of cavitation inception where meta-stable states (pressures
below the vapor pressure or even tension [21, 22]) may occur. However, our
observations indicate that equilibrium assumptions may lead to a sufficiently
accurate model for developed cavitating flows, such as those investigated within
this paper.
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14.3 Hydrofoil Cavitation and Predictability of Large
and Medium Scale Dynamics

In this section we assess the effect of the chosen computational grid on typical
cavitation phenomena around a quasi 2-D hydrofoil. The investigation represents a
brief summary of Ref. [23]. We simulate the cavitating flow around a 2-D
NACA 0015 hydrofoil (angle of attack 6�, cord length lcord = 0.13 m, span width
lspan = 0.3 m), which is placed in the middle of a rectangular test section (height
0.3 m, depth 0.3 m, length 0.9 m). The walls of the test section and the surface of
the hydrofoil are modeled as inviscid adiabatic walls, since the grid resolution is
insufficient to resolve boundary layers. At the inlet of the numerical domain the
velocity uin = 30 m/s and the static temperature Tin = 293 K of the liquid inflow
are prescribed. Since the inlet conditions correspond to a pure liquid state, the
initial vapor volume fraction is zero. At the outlet the static pressure of pex-

it = 4.5 bar is prescribed. The resulting cavitation number is rref = 2(pexit-psat(Tin))/
(qliquid uin

2 ) = 1.0.
The numerical domain is discretized by 2 9 105 cells (coarse grid) and

2.4 9 107 cells (fine grid), respectively. First, a simulation is performed on the
coarse grid until the typical periodic shedding of the cavity is statistically devel-
oped. This may require 2–5 shedding processes where the maximum length of the
sheet might be initially overestimated. To determine the shedding frequency, the
integrated vapor volume content Vvap [%] within the computational domain is
analyzed. The simulated time interval of 0.15 s corresponds to nearly 17 shedding
cycles. As depicted in Fig. 14.1—left, the attached cavity is mainly two-dimen-
sional, while spanwise variations of the vapor volume are observed for the
detached cloud. The results obtained with the coarse grid are now compared to
those obtained by using the refined counterpart with 2.4 9 107 cells, see
Fig. 14.1—right. Here, the simulated time interval of 0.11 s corresponds to 12

Fig. 14.1 Prediction quality of cavitation phenomena around a hydrofoil. Predicted iso-surfaces
of the vapor volume fraction a = 5 % using two different computational grids. The maximum
length lmax/lcord of the sheet cavity is 0.75 (coarse grid) and 0.8 (fine grid). The shedding
frequency is approximately 110 Hz (±5 Hz) on both grids. The typical diameter of the detached
cloud close to the trailing edge (as shown in this figure) is approximately lcord/3 for both grids
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shedding cycles. The shedding frequency is approximately 110 Hz on both grids.
The numerical time step for the simulation on the fine grid is DtCFD,

fine = 8.5 9 10-8 s. We observe that the maximum length of the sheet cavity, the
typical diameter of the cloud close to the trailing edge, and the shedding frequency
compare well for both spatial resolutions. This is a strong indication that large-
scale dynamics of cavitating flows can be predicted even if the spatial resolution is
relatively coarse. Grid refinement enables the computation of medium-scale
phenomena, such as cavitating vortices in the streamwise direction and enhanced
cloud fragmentation. All predicted disturbances develop as a result of Rayleigh-
Taylor and Kelvin-Helmholtz instabilities initiated by the re-entrant flow. As
analyzed in [23], the flow field develops perfectly two-dimensional in case of pure
liquid flow (rref � 1) where the numerical method predicts a stationary solution.
Hence, numerical round-off errors are insignificant, although they might provide
initial disturbances. It is thus reasonable to denote the observed instabilities as
intrinsic instabilities [3] that seem to be mainly inertia controlled [23].

Figure 14.2 shows a time series of iso-surfaces of the vapor volume fraction
a = 5 %. On the left the top view is presented, while on the right perspective
views at the same instants in time are shown. Due to different illumination on the

Fig.14.2 A typical shedding
cycle with f & 110 Hz using
the fine grid. Iso-surfaces of
a = 5 % at 5 consecutive
instants in time showing the
break-up of the sheet cavity,
the formation of cavitating
vortical structures and the
disintegration and collapse of
two-phase regions. On the left
the top view is presented,
while on the right perspective
views at the same instants in
time are shown

14 Assessment of Erosion Sensitive Areas via Compressible Simulation 333

I. Ninth publication

152



left and on the right hand side, slightly different details of the iso-surfaces are
highlighted. The position and intensity of the streaks observed on the left side vary
from cycle to cycle. Their occurrence seems to be related with the break-up pattern
of the previous cycle.

Although the prediction of large-scale dynamics might be sufficient to quantify
integral properties such as lift and drag, it is suggested that a sufficient amount of
medium-scale dynamics has to be resolved in order to capture at least a certain
amount of flow detail that is related to cavitation erosion. In particular, we suggest
that it is required to resolve collapsing clouds and collapse-induced peak pressures
at the surface of the hydrofoil. These issues are addressed in the following
sections.

14.4 Collapse of a Bubble Cluster Versus Collapse
of a Vapor Volume Fraction

In the previous section the prediction of medium-scale phenomena, such as cav-
itating vortices in streamwise direction and enhanced cloud fragmentation was
assessed on the example of hydrofoil cavitation. In this section we assess the
prediction of the collapse characteristics of a resolved bubble cluster and compare
them with the collapse characteristics predicted by under-resolved simulations.
This test case is motivated by the observation that our numerical simulations of
cavitating flows predict strong shock waves in case of collapsing vapor regions,
although the numerical resolution is far too coarse to resolve single bubbles. These
shocks result in high instantaneous surface-loads as soon as they impinge onto a
material surface. Depending on the flow conditions, the loads last for a few
microseconds and can reach several thousand bars. In order to allow for a reliable
forecast of erosive collapses, the influence of the numerical resolution on the
predicted loads needs to be evaluated.

We generate a random distribution of spherical bubbles with the following
properties: The ‘‘numerical cloud’’ consists of 125 spherical vapor bubbles with
radii between Rmin & 0.70 mm and Rmax & 1.65 mm. The average radius is
Rav & 0.95 mm and the minimum distance between two bubbles is 0.2 mm. The
cloud is located within a liquid-filled cubic domain of 20 9 20 9 20 mm3, which
will be referred to as the ‘‘inner domain’’. This inner domain is embedded into a
larger ‘‘outer domain’’ of 4 9 4 9 2 m3. The inner domain is discretized with
uniform cubic cells while stretched cells are applied to discretize the outer domain.
The bottom faces of both domains are coplanar and impermeable for representing
solid walls. The other faces of the outer domain correspond to far-field boundaries.
The total vapor volume fraction is 5.8 % with respect to the inner domain. Since
we apply a thermodynamic equilibrium approach, we simplify the test case by
neglecting surface tension and non-condensable gas. Furthermore, the following
properties are enforced: the initial pressure within the surrounding liquid satisfies a
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Laplace equation Dp = 0, where the pressure sufficiently far away from the
bubbles is p? = const. = 40 bar, and the pressure inside the bubbles is equal to
the vapor pressure pv = 2,340 Pa. Thereby we ensure that the initial pressure field
does not contain spurious acoustics. It is further assumed that the velocity field is
initially at rest and the initial temperature is T = 293 K. Viscous effects are
neglected.

A series of 6 grids with 73, 143, 283, 553, 1103, and 2203 cubic cells is used to
discretize the inner domain. On the finest computational grid (2203 cells), the
smallest bubbles are resolved by at least 2000 cells each, and each of the largest
bubbles is resolved by about 25,000 cells. On the coarsest grid (73 cells), the
bubbles are no longer resolvable but their vapor volume content contributes to the
specified cell-averaged void fraction. Three of the initial fields are shown in
Fig. 14.3. One horizontal cut plane shows the initial vapor volume fraction by
using continuous coloring and the remaining cut planes show the vapor volume
fraction by using cell-center coloring. The colored bottom-plane indicates the
initial pressure field. The shapes of the bubbles are sharply represented by the fine
grids (2203, 1103 not shown), while they are not resolved by the coarse grids (73,
143 not shown). The medium grids (553, 243 not shown) allow for partial reso-
lution of the bubble shapes. The finest grid (2203) requires a time-step size of
1.95 9 10-8 s, while for the coarsest grid (73) the resulting time-step size is
6.24 9 10-7 s.

For each computational grid we adopt two ‘‘numerical wall pressure trans-
ducers’’ located at the center of the bottom wall. The larger transducer records the
average pressure on an area of 1 9 1 cm2, while the smaller one covers an area of
1 9 1 mm2. Using two sensors with different areas allows for a grid independent

Fig. 14.3 Discrete representation of a bubble cluster using different grids. Bubbles are fully
resolved by using 2203 cells, partial resolution is achieved with 553 cells. Bubbles are represented
by a locally homogeneous mixture using 73 cells
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evaluation of the pressure at the wall. Both transducers store the pressure for each
instant in time, resulting in a maximum sampling frequency of 5.1 9 107 Hz
(using 2203 cells). The signals obtained by the large sensor are shown in
Fig. 14.4—left, and the corresponding outputs of the small sensor are shown on
the right hand side. As expected, the large sensor provides slightly smoother
outputs with reduced amplitudes. The numerical sampling frequencies vary from
51 MHz (using 2203 cells) to 1.6 MHz (using 73 cells). The peaks are more
pronounced when computing on the fine grid and with high temporal resolution. In
the present case, the duration of the shock-induced peak pressure is only about
5 ls for the run using 2203 cells. On the coarse grid (run using 73 cells), the
amplitude of the peak is reduced, and the peak is smeared. The small sensor
detects a secondary collapse for the simulation using 553 cells (dashed blue line).
This secondary event is actually the collapse of a small vapor pocket after rebound
that occurs in this case close to the surface of the small sensor.

Aside from the ‘‘wall pressure transducers’’, the maximum pressure within the
complete flow field is monitored during each simulation. The resulting data are
provided in Table 14.1 and visualized in Fig. 14.5—left.

Before we analyze the obtained data, we investigate the following thought
experiment: We consider the temporal evolution of a weak spherical shock front
with given radius R(t2) and pressure amplitude A(t2), where t2 is a given instant in
time and R(t2) is the distance of the front to its origin. Since the shock is assumed
to be weak, we may apply the linear theory [24] and obtain A(t2) 9

R(t2) = A(t1) 9 R(t1). If we assume that the pressure amplitude and the radius are
known at time t2 [ t1, we can compute the amplitude A(t1) for any radius R(t1) [ 0
as long as the linear theory remains valid. With respect to numerical computations,

Fig. 14.4 Outputs of two numerical wall pressure transducers. Two numerical wall pressure
transducers are adopted to record the pressure at the center of the bottom wall. The large sensor
covers an area of 1 9 1 cm2 and the small one covers an area of 1 9 1 mm2. The figures show
the obtained signals for the applied numerical resolutions. It is observed that the signals obtained
with the large sensors (left) are slightly smeared and the amplitudes are slightly reduced,
compared to the signals obtained with the small sensors (right)
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the smallest resolvable radius of a shock front is limited by the resolution of the
applied computational grid. By assuming that the origin of the front is located at
the center of a computational cell of size h 9 h 9 h, the smallest resolvable radius
Rmin is approximately h/2. Therefore, the maximum resolvable amplitude Amax is
directly proportional to the resolution of the applied computational grid. Finally,
one obtains Amax = A(t2) 9 R(t2) / Rmin & 2 9 A(t2) 9 R(t2) / h, provided that
the origin of the front is located at the center of a computational cell. If the origin
of the front is not located at the cell center, the smallest resolvable radius is
slightly larger (h/2 B Rmin B h), and the corresponding maximum amplitude is
smaller as well.

Table 14.1 Comparison of recorded maximum pressure within the domain and at the wall (small
sensor and large sensor) and comparison of collapse durations with respect to six different
numerical resolutions

Grid pmax (domain)
(Pa)

pmax (wall) small sensor
(Pa)

pmax (wall) large sensor
(Pa)

Collapse duration
(s)

2203 3.14 9 109 4.10 9 107 3.63 9 107 6.5 9 10-5

1103 1.17 9 109 3.74 9 107 3.40 9 107 6.6 9 10-5

553 0.63 9 109 3.59 9 107 3.21 9 107 6.3 9 10-5

283 0.34 9 109 3.53 9 107 3.10 9 107 6.7 9 10-5

143 0.12 9 109 2.76 9 107 2.44 9 107 6.9 9 10-5

73 0.07 9 109 1.87 9 107 1.68 9 107 7.0 9 10-5

Fig. 14.5 Comparison of maximum pressures within the domain and at the wall (left) and
collapse durations (right) using different numerical resolutions. On the left, the predicted
maximum pressures (logarithmic scale) within the domain and at the bottom wall are plotted
against the applied grid resolution (number of cells). One observes an approximately linear
increase of the maximum pressure within the domain, and a very weak increase of the maximum
pressures at the wall with increased grid resolution. On the right, the temporal evolution of the
dimensionless vapor volume as predicted by different grids is shown. It can be concluded that the
collapse durations compare well for all numerical resolutions
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The result of this thought experiment allows for an illustrative interpretation of
the data provided in Table 14.1 and visualized in Fig. 14.5—left: The collapse of
the cloud initiates a shock front at the focal point of the collapse. Due to finite cell
sizes, the exact position of the focal point cannot be resolved. Instead, a shock
front of radius Rmin with h/2 B Rmin B h is captured. The post-shock pressure of
this front constitutes the maximum pressure within the domain. Since the smallest
resolvable radius Rmin is directly proportional to the grid resolution, the maximum
amplitude is grid dependent as well. Therefore, the predicted linear increase of the
maximum pressure within the domain with respect to the grid resolution (see
Table 14.1) is confirmed by theoretical considerations.

On the other hand, if the focal point and the initial amplitude of the shock were
grid independent, the amplitude (i.e. the maximum pressure) at the wall would be
grid independent since it depends only upon the distance from the focal point to
the wall. During our simulations we record the position of the maximum pressure
within the domain to estimate the position of the focal points. The distances of the
focal points to the wall are summarized in Table 14.2. Note that due to the grid
dependent cell size h, an uncertainty of h/2 of the position of the focal point is
assumed. We notice a slight displacement of the focal point towards the wall with
increasing resolution. However, convergence towards the final position is clearly
visible. It is supposed that the slight increase of the wall pressure is caused by the
displacement of the focal point towards the wall, and by an improved resolution of
the shock front. By using at least 283 computational cells the predicted wall
pressures differ only by about 15 %. Therefore, the investigation demonstrates that
the predicted wall pressure is only weakly grid dependent, provided that the
position of the focal point is accurately captured.

Furthermore, we analyze the time history of the total vapor volume within the
domain. Figure 14.5—right shows the time history of the vapor volume as pre-
dicted by the simulations. One observes that the predicted collapse durations agree
well for all resolutions. These results confirm that the numerical methodology
provides reasonable approximations of collapsing bubble clusters, even if the
applied computational grid is far too coarse to resolve individual bubbles. How-
ever, this statement might not apply to dilute clusters, where the interaction of the
involved bubbles is weak. More details on this investigation are given in Ref. [25].

Table 14.2 Distance of the focal points to the wall as predicted by six different numerical
resolutions

Grid Wall distance of focal point (mm) Cell size h (mm)

73 10 ± 1.43 2.86
143 9.3 ± 0.71 1.43
283 8.2 ± 0.36 0.71
553 7.8 ± 0.18 0.36
1103 7.5 ± 0.09 0.18
2203 7.4 ± 0.05 0.09
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14.5 Prediction of Erosion-Sensitive Areas
in an Axisymmetric Nozzle-Target Flow

We simulate an experimentally investigated nozzle-target flow [26, 27] to evaluate
the numerical predictability of erosion-sensitive areas. The experimental setup
results in an axisymmetric stagnation flow, as shown in Fig. 14.6—left. At the exit
of the nozzle the fluid accelerates along a small radius and forms a toroidal
cavitation pocket. Collapse-induced erosion is quantified experimentally within an
annulus at the surface of the target disc. The remaining parts are manufactured out
of highly cavitation resistant material. Figure 14.6—right shows a cut through the
computational domain. In accordance with the experiment, water at approximately
room temperature enters the nozzle with an inlet velocity of uin = 31 m/s. All
observed flow details develop on their own without imposition of additional dis-
turbances, such as random noise. An asymptotic pressure boundary condition
pe = 10.1 bar is imposed at the exit of a circular reservoir attached at a radial
distance of 100 mm. All solid boundaries are treated as inviscid adiabatic walls,
since the applied grid resolution is too coarse to resolve boundary layers. The
computational grid consists of 5 9 105 body-fitted hexahedra.

We observe the onset of sheet cavitation at the rounded edge of the nozzle
outlet. The fragmentation of the sheet and its transient shedding are strongly non-
uniform in circumferential direction. The collapse of the vapor structures is gen-
erated by a positive pressure gradient in the radial direction. The part of the
simulation analyzed here corresponds to a physical time interval of 7 9 10-2 s,
and consists of 2.5 9 106 time steps with a time-step size of Dt & 2.8 9 10-8 s.
Figure 14.7 shows a perspective view of two consecutive time instants with an
increment Dt = 2.8 9 10-5 s. At the top, vapor structures (marked in red) are
observed at a radial position of & 2.6 9 10-2 m. At the bottom, most of these
vapor structures have already collapsed. At the focal point of the collapse a shock
front is initiated that leads to a strong increase of the pressure (Fig. 14.7—bottom).

The duration of the complete collapse is about 2.8 9 10-5 s, which is resolved
by approximately 1,000 time steps. Figure 14.8—right shows a photograph (from
an angle) of an eroded target disc. The damage exhibits an almost perfect circular
shape. Most pits are found at a radial distance between r = 19 and r = 32 mm
measured from the nozzle axis [26]. In [27] the authors present pressure mea-
surements for a series of operating points. They apply a flush-mounted sensor
whose sensitive area has a diameter of 3.6 mm and the specified natural frequency
is larger than 250 kHz. Pressures up to 400 bar are reported [27] for comparable
operating conditions. However, the authors clearly state that the impact pressure
can only be estimated if the impacted surface area is known, which is not the case.
Figure 14.8—left shows the maximum pressure for each computational cell on the
target disc recorded during the analysis interval of 7 9 10-2 s. Only pressures
about one order of magnitude higher than the stagnation pressure are shown. The
highest recorded value at the wall is 1,560 bar, but values between 250 bar and
700 bar seem to be predominant. The small discrepancy between the
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Fig. 14.6 Schematic and numerical model of the experimental setup. Based on [26], reproduced
with permission of ASME

Fig. 14.7 Collapse of vapor structures and resulting shock wave. Iso-surfaces of a vapor volume
fraction a = 10 % and pressure at the target disc and on a cut-plane at two consecutive instants in
time. Top: Fragments of vapor structures are advected into regions of increased pressure. Due to
the pressure gradient between the vapor structures and the surrounding liquid an acceleration of
liquid towards the center of the vapor pockets is initiated and re-condensation occurs. Bottom: At
the final stage of the collapse the inertia of the accelerated liquid results in the formation of a
shock (‘‘water hammer’’)

340 S. J. Schmidt et al.

159



experimentally obtained pressure pulses and our numerical prediction might be
related to the different sensitive areas. The sensitive area of the transducer applied
in [27] is approximately 10 mm2, while the areas of the ‘‘numerical transducers’’
are about 0.4–0.6 mm2. We observe a convincing similarity of the maximum-
pressure distribution and the areas of erosion damage as detected experimentally.
However, further investigations using much larger analysis intervals are required
to improve the statistical relevance of the prediction.

The ‘‘foot-print’’ of maximum pressures on the target disc already provides
information about erosion-sensitive areas, but it does not provide information
about the frequency of collapses or of the number of collapses above a certain
threshold-pressure. To overcome these drawbacks, a numerical ‘‘collapse
detector’’ was developed [28]. Cells where the vapor content has condensed
entirely during the previous time step are denoted as ‘‘collapse candidates’’. If
the surrounding cells of a ‘‘collapse candidate’’ contain only liquid, an isolated
collapse is detected. Once a collapse is detected, the maximum pressure is
recorded at that instant in time when the divergence of the velocity field changes
its sign. The strength of the collapse is characterized by the maximum (negative)
divergence of the velocity field and, in particular, by its maximum pressure. The
main advantages of the collapse detector as compared to the maximum pressure
approach are as follows: The collapse detector automatically distinguishes
between collapse-induced maximum pressures and high pressures at stagnation
points. Furthermore, the number of collapse events, as well as their position and
their strength, provide important information about the stress profile the material
is exposed to. This information can be used to estimate erosion rates. A potential
drawback of the collapse detector could be the lack of information on the col-
lapse intensity at material surfaces. As proposed in [28], an efficient projection
method based on the linear decay law of spherical waves may be used to esti-
mate the surface loads.

Figure 14.9 shows the collapses detected within the gap between the nozzle and
the target disc during the analyzed part of the simulation. The collapses are
indicated as spheres plotted at the position of collapse occurrence. The diameter of
each sphere and its color represent the collapse intensity. On the left side, the
collapse pressure is visualized, whereas the collapse pressure projected onto the
target wall using the linear decay law of spherical waves is depicted on the right
side, respectively. In both cases, most of the collapses are found within the marked
area (red circles) where pits were detected experimentally. However, the thickness
of the band where the strongest pitting was observed (dark band in Fig. 14.8—
right) is narrower than our numerical prediction. Still, both numerical indicators
(maximum pressure and detected collapses) might be suitable surrogates for the
prediction of cavitation erosion.
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14.6 Conclusions and Outlook

We assessed the numerical predictability of erosive events, such as collapsing
vapor clouds, and resulting shocks. It is demonstrated that at least a certain range
of large and medium-scale two-phase structures are represented correctly by our
numerical simulations. In particular, typical features of hydrofoil cavitation, such
as crescent-shaped regions [29] and irregular break-up patterns are well predicted.

Fig. 14.8 Predicted maximum pressures at the surface of the target disc (left) and damaged
target (right). Regions where the majority of pits occurred are indicated by circles. Based on [26],
reproduced with permission of ASME

Fig. 14.9 Detected collapses within the gap between the nozzle and the target. Spheres represent
detected collapses. Size and color of the spheres indicate the collapse intensity. On the left side,
the intensity is the collapse pressure. On the right side, the collapse pressure is weighted by the
inverse distance from the collapse location to the target as proposed in [28]. The application of
this projection method slightly improves the prediction since the collapses within the inner circle
disappear
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By comparison of the collapse-characteristics of a numerically-resolved bubble
cluster with the collapse of a locally homogeneous two-phase mixture it is dem-
onstrated that important information about the collapse intensity and its duration
can be obtained even if the numerical resolution is far too coarse to resolve
individual bubbles. The ability to predict areas where intense collapse events
damage the material is evaluated by the simulation of an experimentally investi-
gated nozzle-target flow. We note a convincing agreement of numerically pre-
dicted collapse positions with experimentally observed pitting. Further
investigations using state of the art Large Eddy Simulation techniques [10] are
planned.
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potential of the second approach is shown on example of cavitation on a hydrofoil [69] and

on exapmle of the collapse of a vapor bubble cluster. The bubble cluster is identical to the

one discussed in [63] but another simulation with additional grid refinement is analyzed.
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Reproduced with permission from Springer under License Number 3550740976556.

1Note that the author’s contributions of the work summarized in this review article are already discussed in the
original articles in the previous sections.
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Shocks in Cavitating Flows

Nikolaus A. Adams, Steffen J. Schmidt

Abstract We present two numerical methods for simulation of compressible mul-
tiphase flows with phase transition. The first approach is a two-fluid method using
sharp interface treatment and non-equilibrium mass transfer terms. This technique
is applied to investigate collapsing vapor bubbles and resulting shock patterns. De-
pending on the bubble–wall configuration, different types of liquid jets are observed
during the collapse stages of the bubbles. These results provide detailed insight
into collapse processes and resulting peak loads. The second approach is a single-
fluid method using local thermodynamic equilibrium assumptions. Its applicability
to simulate cavitating flows is assessed on example of hydrofoil cavitation as well
as for the collapse of a bubble cluster. Typical features of sheet and cloud cavita-
tion are reproduced and the formation of shocks due to collapsing vapor regions is
analyzed. In case of the investigated cluster of vapor bubbles, a collapse front prop-
agating toward the focal point of the collapse is predicted.This process leads to an
amplification of the intensity of the final collapse.

1 Modeling and Simulation of Shocks in Compressible
Two-Phase Flows

Cavitating flows occur in various technical applications, such as hydraulic machin-
ery, fuel injection systems, reaction and process technology, as well as in medical
engineering applications [18], [33]. The quasi-periodic formation of sheet cavities
and their subsequent shedding into clouds introduce low frequency time scales that
are correlated with the bulk velocity [2]. Subsequent advection of bubbly clouds into
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2 Nikolaus A. Adams, Steffen J. Schmidt

regimes of increased pressure results in the collapse-likerecondensation of vapor re-
gions [22], [23]. Due to liquid inertia, intense shocks appear at the focal points of
collapses [16], [21]. These shocks may lead to material damage (cavitation erosion),
noise and vibration [6], [35].

Even at early design stages, reliable forecasts of the expected properties of novel
or redesigned hydraulic machinery are nowadays requested [4]. Therefore, an accu-
rate numerical prediction of two-phase flow phenomena, including collapse-induced
shock formation and resulting peak loads, is highly desired.

Our primary research objectives are the prediction of sheetand cloud cavitation
including formation and propagation of shocks due to collapsing vapor bubbles or
clouds. We discuss two numerical approaches: A two-fluid model with sharp inter-
face treatment, and a single-fluid model using thermodynamic equilibrium assump-
tions. In order to allow for the simulation of shock formation and wave propagation,
the compressibility of the fluids (liquid and vapor) is takeninto account. Conse-
quently, the numerical time step is proportional to the ratio of the smallest length
scale (minimum grid size) and the fastest signal speed (≈ speed of sound in the
liquid).

Both methods are based on a well-established numerical technique for simu-
lation of compressible flows, which is the finite volume method. The flow field
is partitioned into computational cells for which the integral form of the govern-
ing equations is approximated by conservative numerical methods. Therefore, finite
volume methods introduce a numerical length scale given by the edge lengthlnum

of the finite volumes [9], [7], [8]. On the other hand, two-phase flows include in-
trinsic length scaleslphysgiven by the characteristic sizes of bubbles, clear cavities,
or of vapor cores within vortices. The ratioΨ = lphys/lnum allows for the definition
of three different regimes. In case ofΨ >> 1, all vapor structures are resolvable
and highly accurate methods, such as sharp interface methods, can be used to sim-
ulate the flow in detail. IfΨ << 1, none of the vapor structures is resolved. In this
case, mixture models (e.g. bubbly flow models or single-fluidmodels based on ther-
modynamic considerations) might be a sound option for simulation of large scale
dynamics, i.e. dynamics that are resolvable with the selected computational grid.
However, ifΨ ≈ 1, the flow is only marginally resolved and sharp interface meth-
ods as well as bubbly flow models may run into difficulties. In contrast, single-fluid
models based on thermodynamic considerations might remainvalid.

The ratioΨ depends on available computational resources as well as on the
complexity of the investigated problem. For example, highly resolved simulations
(Ψ > 100) of collapsing single bubbles or of clouds consisting of a small number
of bubbles are nowadays performable. Therefore, it seems reasonable to develop
highly sophisticated methods that are purpose-made for problems that allow for res-
olutions withΨ >> 1. These methods might be used to obtain reference solutions
using very elaborate physical models. However, for a broad range of engineering
applications, such as the cavitating flow around ship propellers, full resolution of
all bubbles is unfeasible even if supercomputers are used. Thus, models based on
reduced physical complexity are equally desired to predictmedium and large scale
dynamics even ifΨ << 1 .
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Shocks in Cavitating Flows 3

2 Numerical Methods for Compressible Two-Phase Flows

In this investigation we focus on single component fluids at subcritical thermody-
namic conditions. The considered fluid is liquid water or water vapor. Other states
of matter or additional gas components are not taken into account. We imply that the
continuum assumption is valid for each phase, and phase boundaries, if resolvable,
are assumed to be sharp. We neglect viscous effects and focuson the prediction of
inertia driven dynamics.

Based on previous considerations, two mathematical modelsfor simulation of
compressible two-phase flows are now discussed. The first oneis a highly sophis-
ticated two-fluid model using a sharp interface approach, and the second one is an
efficient single-fluid model using local thermodynamic equilibrium assumptions.
Both methods enable simulations including compressibility effects, such as shock
formation and propagation. While sharp interface techniques are purpose-made to
simulate flows where the resolution of phase boundaries is essential, single-fluid
approaches are suggested to be suitable for simulation of medium and large scale
dynamics, e.g. sheet and cloud formation, and cloud collapses.

2.1 Two-fluid model with sharp interface treatment

Our two-fluid approach is based on a conservative interface method [12]. Validation
and applications of the method can be found in [19], [20]. At each instant in time,
the fluid domainΩ(t) is partitioned into a finite number of subdomainsΩk(t)⊆ Ω
with boundariesΓ (t) := ∂Ωk(t). For each subscriptk, the corresponding subdomain
is either filled with pure liquid (li ) or with pure vapor (v). A sharp interfaceΓ (t),
which is tracked with the level-set approach proposed in [5], separates vapor and
liquid within the computational domain. Using two-fluid models with sharp inter-
face treatment, two-phase flows are interpreted as interacting single phase flows.
The interaction takes place at the phase boundaries, where transfer terms for mass,
momentum and energy, as well as jump conditions (surface tension) can be de-
fined. These models enable investigations which may involvethermal, mechanical
and phase non-equilibrium processes, and they are particularly well suited to study
bubble dynamics.

We solve the integral form of the Euler equations for both fluids separately on
the corresponding subdomains in a conservative way (m= v, li ).

V
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+
∫ n+1

n
dt Xm(∆Γ ) ,

whereαmUm andUm are the vector of the conserved quantities in the cut cell and
the vector of volume averaged conservative variables respectively.Fpq

m is the average
flux across a cell face. The volume fractionsαm and the cell-face aperturesApq

m are
reconstructed from the level-set field. The coupling between both fluids is achieved
by a conservative interface interaction termXm(∆Γ ), where∆Γ is the interface
area within the cut cell.

The interaction term accounts for the contributions of pressure force and phase
change, respectively,

Xm(∆Γ ) = Xp
m+Xt

m . (2)

From the solution of the two-material Riemann problem [24] at the interface, the
interface pressurepI and the interface normal velocityuI serve to compute the pres-
sure termXp

m

Xp
m =




0
pI ∆Γ (nm · î)
pI ∆Γ (nm · ĵ)
pI ∆Γ (nm · k̂)
pI ∆Γ (nm ·uI )




. (3)

The mass transfer termXt
m is given by

Xt
v =−Xt

li =




ṁ ∆Γ
ṁ∆Γ (v · î)
ṁ ∆Γ (v · ĵ)
ṁ ∆Γ (v · k̂)

ṁ∆Γ
(

ev+
1
2 |v|

2
)
+ pI ∆q∗ ∆Γ




, (4)

wherev is the velocity of the liquid at the interface in case of evaporation and
the velocity of the vapor in case of condensation, respectively. ∆q∗ = ṁ/ρli is the
phase-change induced velocity. The phase change ˙m at the interface is based on a
non-equilibrium assumption proposed by [32]

ṁ=
λ√
2πRv

(
ps(Tli )√

Tli
− pv√

Tv

)
. (5)

Here,Rv is the specific gas constant in the vapor phase, andλ is the accommodation
coefficient for evaporation or condensation (assumed to be constant).Tv andTli are
the temperatures of vapor and liquid at the phase interface,respectively.pv is the
actual vapor pressure at the interface, andps(Tli ) is the equilibrium (saturation)
vapor pressure at temperatureTli .

For our computations with the two-fluid method, we use a fifth-order WENO
scheme [14] and a third-order TV Runge–Kutta scheme [34] to discretize the Euler
equations. Simulations are carried out with the CFL number of 0.6. We model vapor
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as ideal gas (p=RρT with γ = 1.335, R= 461.5 J/(kg K)) and use Tait’s equation of
state for water (p= B(ρ/ρ0)

γ −B+A with B= 3310 bar,A= 1 bar,ρ0 = 1kg/m3

andγ = 7.15).

2.2 Single-fluid model using local thermodynamic equilibrium
assumptions

For single-fluid models, a common set of governing equationsis used to describe
the kinematics of the flow. The phases are not treated separately but they are char-
acterized by their fractional contributions, i.e. by theirmass fractionsεv, εli or their
volume fractionsαv, αli . Therefore, the governing equations describe the evolution
of mixture quantities, such as the mixture densityρ̃ :=αvρv+(1−αv)ρli , as well as
the momentum and the total energy of the mixture. The phase transition is modeled
by an additional equation for the vapor mass

∂
∂ t

(ρ̃εv)+∇ · (ρ̃εvv) = ρ̃ · D
Dt

εv = Sεv, (6)

whereρ̃εv = αvρv andSεv is a source term that might depend on pressure, temper-
ature or additional parameters, such as the initial concentration of nuclei or their
initial size. One particular intuitive model is derived as

∂
∂ t

(ρ̃εv)+∇ · (ρ̃εvv) =−ρ̃ · εv− εv,equi

τ
, (7)

whereεv,equi is a local equilibrium mass fraction of vapor andτ is the relaxation
time. The evaluation of the local equilibrium mass fractionεequi requires further
assumptions, such as thermal equilibriumTli = Tv, pressure equilibriumpli = pv,
and phase equilibriumµli = µv, whereµ denotes the specific Gibbs function of
liquid or vapor. With these assumptions one can use thermodynamic databases, such
as theIAPWSor NIST databases [13], to obtain the equilibrium mass fractions
directly from the known densitỹρ and internal energỹe of the mixture:εv,equi =
DATABASE(ρ̃, ẽ). Note that the databases will returnεv,equi = 0 andεv,equi = 1 if
the pure liquid state or the pure vapor state is stable, respectively. In case of 0<
εv,equi< 1, the saturated mixture is the stable thermodynamic state [26].

The derivation of the relaxation timeτ is not a straightforward task. However,
the limitsτ → 0 andτ → ∞ are quite intuitive. In case ofτ → 0, the flow is assumed
to be in local thermodynamic equilibrium at each point in space and at each instant
in time. Therefore,εv(x, t) = εv,equi(x, t). On the other hand, ifτ → ∞, the flow is
called frozen, which means that the initial state of matter will remain for all time
[11].

For our single-fluid model, we assumeτ → 0 and apply our flow simulation code
CATUM (CAvitation Technische Universität München [31],[28], [25]), which is
a density-based finite volume method employing a low Mach-number consistent
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flux function and an explicit time marching procedure. The spatial reconstruction of
the velocity field follows a WENO-3 procedure [14]. Density and internal energy
are reconstructed by monotonic TVD limiters (”minmod”) [36]. Time marching is
performed by adopting an explicit low-storage 4-step Runge-Kutta method with op-
timized stability region [31], [28], [17].

For this investigation we use closed form equations for the simulation of the flow
around a hydrofoil, and more efficient look-up tables for simulation of the cloud col-
lapse. However, both thermodynamic models provide high quality approximations
of the IAPWS database [13] of water, vapor, and liquid-vaporequilibria. The phase-
transition model is incorporated in the local thermodynamic equilibrium approach.
Surely, equilibrium assumptions might be questionable in case of cavitation incep-
tion, where meta-stable states (pressures below the vapor pressure or even tension
[37], [1]) may occur. However, our observations indicate that equilibrium assump-
tions may lead to a sufficiently accurate model for developedcavitating flows, such
as the investigated flow around the hydrofoil.

2.3 Investigations using the two-fluid model

2.3.1 Collapse of a single vapor-bubble near a solid wall

outletsymmetry

vapor

water

outlet

solid wall C

solid wall B

solid wall A
−416 µm

10 mm

x

y

−140 µm

140 µm

10 mm
0 400 µm

Fig. 1 Sketch of the problem. Three configurations with different wall positions are investigated.
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Shocks in Cavitating Flows 7

We apply our sharp interface technique to investigate the collapse of a vapor bub-
ble near a solid wall. As shown in Fig. 1, the initial bubble radius is 400µm and
we consider three different wall positions A, B and C. We takeadvantage of sym-
metries and compute only one quarter of the bubble. The grid spacing is equidistant
in the bubble region with 100 computational cells over the initial bubble radius.
Grid stretching is applied in the far-field. Outlet boundaryconditions are imposed at
x,y,z= 10 mm. Data are mirrored on the (X-Y)- and (Y-Z)-plane for visualization.
Both fluids have a common initial temperature of 293.0 K which is the saturation
temperature corresponding to the initial vapor pressure of0.0234bar. Initial liquid
pressure is 100 bar and the accommodation coefficient is taken asλ = 0.01.

(b) (c)(a)

Fig. 2 Initial situation and bubble shape after cavity development for case A, B and C.

(b)(a) (c)

Fig. 3 Liquid jets during vapor bubble collapse near a wall (frame size in µm): a) Wall-normal
re-entrant jet for configuration A, b) primary wall-normal re-entrant jet (solid line) and secondary
wall-parallel outward pointing jet (dashed line) for configuration B, and c) wall-parallel inward
pointing jet for configuration C. Arrows indicate the jet direction.

For all configurations, the vapor bubble shrinks slowly during the initial period.
The rapid stage of the bubble collapse starts with the development of an indentation,
followed by the formation of a liquid jet. Two fundamentallydifferent scenarios
at the early stages of bubble collapse can be found. For a detached bubble or a
bubble cut in the lower hemisphere, the collapse is initiated at the top of the bubble
(Fig. 2 a,b). A fast liquid jet develops and penetrates through the bubble in wall-
normal direction (Fig. 3 a,b). For an attached bubble cut in the upper hemisphere,
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8 Nikolaus A. Adams, Steffen J. Schmidt

the collapse is initiated between wall and interface (Fig. 2c) and a liquid jet develops
radially toward the bubble center (Fig. 3 c).

(a)   t = 0.0 

X

Y

Z

(b)   t = 4.233 µs

p [bar]

10000
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4000

3000

2000

1000

100

0

-100

-1000

(c)   t = 4.0 µs (d)   t = 4.2 µs

(e)   t = 4.225 µs (f)   t = 4.233 µs

(g)   t = 4.28 µs (h)   t = 4.31 µs

(i)   t = 4.33 µs (j)   t = 4.4 µs

Fig. 4 Collapse of a vapor bubble in configuration A: a) Initial configuration, b) cut through an
iso-surface of the zero level-set (interface) att = 4.0525µs, showing the shape of the bubble and
the wall pressure, and c) - j) bubble shape and pressure field at different time instants. All figures
except b) have the same magnification scale. The simulation was performed using our two-fluid
model with sharp interface technique.
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(b)   t = 4.053 µs

(c)   t = 3.7 µs (d)   t = 3.9 µs

(e)   t = 3.95 µs (f)   t = 3.975 µs

(g)   t = 4.008 µs (h)   t = 4.053 µs

(i)   t = 4.068 µs (j)   t = 4.083 µs

(k)   t = 4.093 µs (l)   t = 4.1077 µs

(m)   t = 4.118 µs (n)   t = 4.138 µs

Fig. 5 Collapse of a vapor bubble in configuration B: a) Initial situation, b) cut through an iso-
surface of the zero level-set (interface) att = 4.053 µs showing the shape of the bubble and the
wall pressure, and c) - n) bubble shape and pressure field at different time instants. All figures
except b) have the same magnification scale. The simulation was performed using our two-fluid
model with sharp interface technique.
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(a)   t = 0.0 (b)   t = 2.22 µs
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(c)   t = 2.65 µs (d)   t = 2.8 µs

(e)   t = 2.805 µs (f)   t = 2.81 µs

(g)   t = 2.82 µs (h)   t = 2.825 µs

(i)   t = 2.85 µs (j)   t = 2.925 µs

X
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Z

(l)   t = 2.805 µs
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Y

Z

(k)   t = 2.65 µs

Fig. 6 Collapse of a vapor bubble in configuration C: a) - j) Bubble shape and pressure field at
different time instants at same magnification scale, and k) -l) two cuts through an iso-surface of
the zero level-set (interface) att = 2.65 µs andt = 2.805µs showing the shape of the bubble and
the wall pressure. The simulation was performed using our two-fluid model with sharp interface
technique.

The appearance of a secondary jet can be only observed with configuration B
since the wall normal jet is deflected at the wall and interacts with the remaining
bubble ring (Fig. 3 b, dashed lines). This secondary jet is radially symmetric and
develops from the symmetry axis outwards in wall-parallel direction. For configu-
ration A no secondary jet develops as the residual bubble ring is not attached to the
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Shocks in Cavitating Flows 11

wall. Figures 4 b, 5 b and 6 k-l give a three-dimensional visualization of the bubble
shape during the stage of the three different liquid jets.

Figures 4 - 6 visualize the pressure fields during bubble collapse in configuration
A, B and C, respectively. The first occurrence of extreme pressure magnitudes coin-
cides with jet breakdown. For cases A and B with a wall-normalre-entrant jet, the
observed maximum wall pressures are of comparable magnitude of about 100 times
the initial pressure. Slightly larger values for the detached bubble can be attributed
to a higher jet velocity. Looking at wall-parallel radial jets, one has to distinguish be-
tween the outward-pointing secondary jet of configuration Band the inward pointing
primary jet of configuration C. In the latter case, the liquidis gradually compressed
while being transported toward the symmetry axis, where maximum pressure oc-
curs. The maximum pressure after inward-pointing, wall-parallel jet breakdown is
about six times larger than that for a wall-normal jet. For the outward-running, wall-
parallel secondary jet of configuration B, extremely low pressure is observed inside
the jet as an expansion of the liquid further decreases the pressure of the high-
velocity jet. After the jet breaks down, the liquid pressureincreases, but remains
significantly smaller than for the inward-pointing jet.

During the final stage of the bubble collapse, two different scenarios occur. For
cases A and C, the residual vapor bubble is detached after jetbreakdown. Thus,
the maximum pressure due to final bubble collapse occurs awayfrom the wall. The
emitted shock wave impinges on the wall with reduced magnitude, and the wall
pressure does not reach the level observed for jet breakdown, see Figs. 4 and 6. The
second scenario can be found for configuration B. After primary and secondary jet
breakdown, a residual vapor ring remains at the wall. This ring is surrounded by
high pressure which initiates the final collapse radially toward the symmetry axis
(Fig. 5). Liquid is compressed toward the center region resulting in large pressure
with a maximum at the symmetry axis of about 400 times the initial pressure.

2.4 Investigations using the single-fluid model

The applicability of a local thermodynamic equilibrium approach together with a
conservative finite volume method to simulate cavitating flows is assessed in the
following sections. First, the cavitating flow around a hydrofoil is simulated and
analyzed. As a second investigation, the collapse of a bubble cluster is computed,
and local and global collapse characteristics are discussed.

2.4.1 Hydrofoil Cavitation

In this section we assess the predictability of typical cavitation phenomena around
a quasi 2-D hydrofoil using our single-fluid model. The investigation represents
a sequel to [29]. We apply our single-fluid model to compute the cavitating flow
around a 2-D NACA 0015 hydrofoil (angle of attack 6, cord length lcord = 0.13 m,
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span widthlspan= 0.3 m), which is placed in the middle of a rectangular test section
(heighth= 0.3 m, depthd = 0.3 m, lengthl = 0.9 m). The walls of the test section
and the surface of the hydrofoil are modeled as inviscid adiabatic walls. At the
inlet of the numerical domain the velocityuin = 30 m/s and the static temperature
Tin = 293 K of the liquid inflow are imposed. At the outlet the static pressure of
pexit = 4.5 bar is imposed. The resulting cavitation number isσre f = 2 · (pexit −
psat(Tin))/(ρliquid ·u2

in) = 1.0, wherepsat(Tin) = 2340Paandρliquid = 998.4 kg/m.
The numerical domain is discretized by 2.4 ·107 cells. A time step of 8.5 ·10−8 s is
applied and a time interval of 0.11 s is simulated. Twelve shedding cycles with an
average shedding frequency of 110Hzare analyzed.

It should be noted that we do not disturb the flow field. All predicted disturbances
develop as a result of Rayleigh-Taylor and Kelvin-Helmholtz instabilities initiated
by the re-entrant flow. It is thus reasonable to denote the observed cavitation-induced
instabilities as intrinsic instabilities [6] that seem to be dominated by inertia [29].

Figure 7 shows a time series of iso-surfaces of the vapor volume fractionαv =
5%. The time increment between two consecutive instants is∆ t ≈ 1.14·10−3 s. One
observes the break-up of the sheet (1) including crescent-shaped regions [27]. At
time instant (2), the sheet is no longer present but cloudy structures are formed. The
time instants (3) and (4) show the re-formation of the sheet and cavitating horseshoe
vortices close to the trailing edge. Futher growth of the sheet and the onset of re-
entrant flow is detected at time instant (5). Between time instants (6) and (7) the
majority of clouds collapse at positions close to the trailing edge. Thereby, strong
shockwaves are emitted that will be subsequently discussed. At time instant (8) the
maximum length of the sheet is recovered and partial fragmentation due to the re-
entrant flow is visible.

The predicted inner structure of the sheet and the clouds is analyzed in Fig. 8. At
the top, iso-surfaces ofαv = 5% are shown, and on the bottom, the vapor volume
fraction at the cut-planeA−A is visualized. The sheet cavity essentially consists of
vapor (αv ≈ 1), while the detached cloud is a mixture of liquid and vapor (0< αv <
1).

The collapse of vapor clouds close to the trailing edge results in the formation of
strong shocks which propagate through the domain. A typicalsituation is shown in
Fig. 9. On the left, a vapor cloud has collapsed and an instantaneous maximum pres-
sure of more than 2400bar at the focal point of the resulting shockS1 is recorded.
After about 30µs, the shock frontS1 is still visible, but its amplitude is reduced
to less than 10bar due to spherical decay [38]. However, a second shockS2 is
observed, where the maximum pressure at the focal point is 1500bar.

Finally, a qualitative comparison of numerically predicted cavitation structures
with experimental observations [15] is shown. Although theoperating conditions
used for the experiment are slightly different, a strong structural similarity is identi-
fied. For both investigations, a NACA 0015 hydrofoil is used and the fluid is water at
approximately room temperature. The investigations differ since the angle of attack
was 8.36 in the experiment and 6 in the simulation. However, the cavitation number
applied in the experiment isσexp= 1.09, while it isσsim = 1.0 for the simulation.
Therefore, it is reasonable to assume that the deviations ofboth set-ups partially
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Shocks in Cavitating Flows 13

Fig. 7 A typical shedding cycle with shedding frequencyf = 110Hz. Perspective view of NACA
0015 hydrofoil and predicted iso-surfaces of a vapor volumefractionαv = 5%. The time increment
between two consecutive instants is∆t ≈ 1.14·10−3 s. The simulation was performed using our
single-fluid model.
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14 Nikolaus A. Adams, Steffen J. Schmidt

Fig. 8 Iso-surfaces of the vapor volume fractionαv = 5% (top) and distribution of the vapor vol-
ume fraction at the cut-planeA−A. The sheet essentially consists of vapor, i.e.αv ≈ 1, while the
detached cloud consists of a mixture, i.e. 0< αv < 1. The simulation was performed using our
single-fluid model.

Fig. 9 Shock formation and propagation close to the trailing edge of the hydrofoil. The shock
strength are 2400 bar at the focal point of shockS1 and 1500bar at the focal point ofS2. The
simulation was performed using our single-fluid model.
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cancel each other. In particular, the observed crescent-shaped regions [27] are well
represented in the simulation. This is a convincing indication that the applied local
thermodynamic equilibrium approach is a suitable technique for the prediction of
sheet and cloud cavitation.

Fig. 10 Comparison of simulated cavitation patterns (iso-surfaces of αv = 5%) with experimental
observation (experiment by [15]). Structures called crescent shaped regions [27] are well repro-
duced by the simulation. The simulation was performed usingour single-fluid model.

2.4.2 Bubble Cloud Collapse

The thermodynamic approach is now applied to investigate the collapse of a bub-
ble cluster [30]. Therefore, we generate a random distribution of bubbles with the
following properties: the bubble cluster initially consists of 125 spherical vapor bub-
bles with radii betweenRmin = 0.70 mmandRmax= 1.65 mm. The average radius
is Rav = 0.95 mm, and the minimum distance between two bubbles is 0.2 mm. The
cloud is located within a liquid-filled cubic domain of 20·20·20mm3, which will be
referred to as the ”inner domain”. This inner domain is embedded into a larger ”outer
domain” of 4·4·2 m3. The inner domain is discretized by using 4403 = 8.5·107 cu-
bic cells with cell-lengthh = 45.5 µm. The large outer domain is discretized by
3.5 ·107 stretched cells. A time-step size of

∆ t =
1.4 ·h

3 ·max(‖v(t)‖+ c(t))

is applied, where‖v(t)‖ andc(t) are the maximum velocity magnitude and the max-
imum speed of sound at timet, respectively. Since in this case the speed of sound
and the maximum velocity undergo significant variations during the stages of the
collapse, the resulting dynamic time step is 5.2 ·10−9 s≤ ∆ t ≤ 9.7 ·10−9 s.
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16 Nikolaus A. Adams, Steffen J. Schmidt

Fig. 11 Initial distribution of bubbles within the small inner domain. Colors represent initial bubble
radii R0.

The bottom faces of both domains are coplanar and impermeable for representing
solid walls. The other faces of the outer domain correspond to far-field boundaries.
The total initial vapor volume fraction is 5.8% with respect to the inner domain. The
initial radiusA0 of the cloud is approximately 10mm. Based on the initial radiusA0,
the initial vapor volume fractionαv,0 of the cloud is approximately 11%. Hence,
the cloud interaction parameterβ := αv,0 · (A0/Rav)

2 ≈ 12>> 1 indicates strong
interaction of the individual bubbles [3]. The following properties are enforced: The
initial pressure within the surrounding liquid satisfies a Laplace equation∆ p = 0,
where the pressure sufficiently far away from the bubbles isp∞ = const.= 40 bar,
and the pressure inside the bubbles is equal to the vapor pressurepsat = 2340Pa.
Thereby we ensure that the initial pressure field does not contain spurious acoustics.
It is further assumed that the velocity field is initially at rest and the initial tempera-
ture isT = 293K. Viscous effects as well as non-condensable gas are neglected.

A series of local and global properties are evaluated to characterize the collapse
of the cloud. The time history of the vapor volumeVvap(t) of the cloud is used
to define an equivalent radiusRequiv(t) of a single spherical bubble of equal vapor
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volume

Requiv(t) := 3

√
3

4π
·Vvap(t).

For the investigated case, the initial radius isRequiv(t0)≈4.78mm. The characteristic
collapse time or Rayleigh timeτequiv of the equivalent bubble can be estimated by
using a well known relation [6]

τequiv≈ 0.915·Requiv(t0) ·
√

ρliquid

p∞ − psat
≈ 6.92·10−5 s. (8)

It should be noted that the Rayleigh time as estimated by equation (8) provides
an approximation of the collapse duration of a single isolated spherical bubble. Al-
though this estimate might be questionable in case of a collapsing cluster, it can be
applied to define the dimensionless timet/τequiv.

Figure 12 a) shows the evolution of the dimensionless vapor volumeVvap/Vvap,0

and of the dimensionless equivalent radiusRequiv/Requiv,0 versus the dimensionless
time t/τequiv. The equivalent radius shows its first minimum att/τequiv= 0.96 with
a value ofRequiv/Requiv,0 = 0.04. Therefore, the duration of the cloud collapse is
slightly shorter than the one of an equivalent bubble. We like to point out that the
minimum equivalent radius, and hence the minimum vapor volume of the cloud,
occurs slightly later than the time instantt/τequiv= 0.95 where the collapse reaches
its maximum intensity (maximum pressure and emission of thestrongest shock).
Bubbles that have collapsed at an earlier stage lead to an increase of the total vapor
volume due to interim rebounds. The rebounds after the main collapse result in a
total vapor volume ofRequiv/Requiv,0 = 0.18 att/τequiv= 1.33. The dots along the
graph of the equivalent radius indicate time instants for which pictures of the cloud
are shown in Fig. 13.

Figure 12 b) shows the evolution of the maximum pressure. Thehighest value
(pmax= 9.36 GPa) is detected att/τequiv= 0.95 and holds for less than 10ns. The
total duration of the most intense peak is about 90ns. We found that the durations
of all peaks are less than 130ns. In total, 120 peaks with maximum pressures higher
than 0.45 GPa are predicted. Aside of the highest value ofpmax= 9.36 GPa, two
peaks with maximum values above 4.5 GPaare recorded.

In Fig. 12 c), the time history of the dimensionless average pressure is presented.
The observed maximum value of the average pressure within the small domain is
148bar and it occurs att/τequiv= 1.01.

Figure 12 d) presents the time history of the kinetic energy within the small
domain. The maximum value is 0.77 J. As long as the liquid is accelerated toward
the focal point of the collapse, an increase of kinetic energy is predicted. Strong
shocks due to collapsing bubbles momentarily decrease the kinetic energy. Once the
focal point is reached, the most intense shock is initiated.The outward propagating
shock front reduces the kinetic energy by more than 50%.

In order to characterize the instantaneous loads at the wall, we apply a numerical
wall pressure transducer. The transducer is located at the center of the wall and the
sensitive area is 1·1 mm2. Since the numerical time step is adapted dynamically, the
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Fig. 12 Analysis of dimensionless collapse characteristics: a) vapor volumeVvap(t)/Vvap(t0)
and equivalent radiusRequiv(t)/Requiv(t0), b) point-wise maximum pressure within the domain
pmax(t)/pmax,total, c) dimensionless average pressure within the small domain, d) kinetic energy
within small domain, e) output of the wall pressure transducer, f) L2-norm of the divergence of
the velocity field within the small domain. The simulation was performed using our single-fluid
model.
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Fig. 13 Visualization of the bubble cluster at six instants in time a) - f). The selected time instants
are indicated in picture a) of Fig. 12. The colored bottom plane shows the corresponding pressure
field. The simulation was performed using our single-fluid model.
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sampling frequency of the transducer is in the range of 0.1−0.2GHz. The output of
the transducer is depicted in Fig. 12 e). In accordance with the maximum pressure
within the domain (see Fig. 12 b), two close peaks are detected. The duration of
each of both peaks is 1.1 ·10−6 s and a maximum value of 499bar is predicted at
t/τequiv= 1.01. It is interesting to compare the maximum pressure withinthe domain
with the output of the wall pressure transducer, particularly for 0.25≤ t/τequiv≤ 0.5.
Although significant peak pressures are predicted within the domain, most of them
are not recorded by the wall pressure transducer. We supposethat the surrounding
bubbles strongly dampen the intensity of collapse-inducedshocks toward the trans-
ducer.

In Fig. 12 f), the dimensionlessL2-norm of the divergence of the velocity field is
evaluated within the small domain,

L2(∇ ·v(t)) :=
∫

Vsmall

(∇ ·v(t))2 dV.

This quantity can be used to characterize the instantaneousamount of expansion
and compression within the domain. Again, a significant decrease is predicted once
the focal point of the collapse is reached.

Figure 13 shows the progress of the cloud collapse at six instants in time a) -
f). The selected time instants are indicated as dots in Fig. 12 a). The bubbles are
visualized by iso-surfaces of the vapor volume fraction ofαv = 50%, and the static
pressure is indicated on the bottom wall. It can bee seen thatthe outermost bubbles
collpase first and emit shock waves. An isolated spherical shock wave is detected in
picture b), and a series of shocks are visibles in picture c) of Fig. 13. A collapse front
propogates towards the center of the cloud where the final collapse occurs. This pro-
cess is guided by rebounds of bubbles. Most bubbles show aspherical shapes during
their collapse, in particular, one-sided indentation and jet formation are observed.
Due to geometric focusing, the collapse front accelerates towards the focal point,
and the average pressure increases until the inertia of the impinging liquid enforces
the formation of a strong shock at the final stage of the primary collapse. Picture d)
of Fig. 13 shows the remaining cloud slightly before the finalcollapse, and picture
e) shows rebounds after the final collapse. Afterwards the peak pressure decays and
further growth of the bubbles is observed, compare picturese) and f).

3 Summary and Future Perspective

We have presented two numerical approaches for simulation of compressible multi-
fluid flows with phase-change.

The first one is a sharp interface approach using a two-fluid model. This tech-
nique was applied to investigate collapses of single bubbles for three different
bubble–wall configurations. For a detached bubble and a bubble cut by the wall
in its lower hemisphere, we found the appearance of the well known wall-normal
re-entrant jet. For the latter configuration, also a secondary radial and wall-parallel
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jet was found. If the bubble is attached, but cut by the wall inits upper hemisphere,
the developing jet is wall-parallel and compresses the liquid toward the axis of sym-
metry. Jet-induced shocks are analyzed and compared in their strength.

The second approach is based on a single-fluid model using local thermodynamic
equilibrium assumptions. We assessed the applicability ofa local thermodynamic
equilibrium approach to simulate sheet and cloud cavitation around a hydrofoil. In
particular, typical features of hydrofoil cavitation, such as crescent-shaped regions
[27], and irregular break-up patterns [15], are observed. Strong shocks due to col-
lapsing vapor regions close to the trailing edge are predicted. As a second investiga-
tion, the local thermodynamic equilibrium approach is usedto simulate the collapse
of a cluster of resolved vapor bubbles. A collapse front thatpropagates toward the
center of the cluster is predicted. Due to strong focusing ofthe collapse, an intense
peak pressure of more than 9GPaoccurs and holds for less than 10 nanoseconds.

Further investigations using state of the art Large Eddy Simulation techniques
[10] are planned.
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