
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Physik funktionaler Schichtsysteme, E10

Torque magnetometry on graphene and Fermi surface
properties of VB2 and MnB2 single crystals studied by the

de Haas-van Alphen effect

Stephan Gerhard Albert

Vollständiger Abdruck der von der Fakultät für Physik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Martin Zacharias
Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dirk Grundler
2. Univ.-Prof. Christian Pfleiderer, Ph. D.

Die Dissertation wurde am 24.02.2015 bei der Technischen Universität
München eingereicht und durch die Fakultät für Physik am 23.03.2015
angenommen.





Short Abstract

Magnetic properties of two- and three-dimensional materials, id est
large-area graphene and single crystals, respectively, of VB2 and MnB2,
are studied at low temperatures and in high magnetic fields by torque
magnetometry. Magnetic quantum oscillations are not observed for five
differing graphene samples, consistent with sample quality available to
date. Single crystals of VB2 and MnB2 of large size and unprecedented
crystalline quality exhibit a pronounced de Haas-van Alphen effect. We
report the angular and temperature dependencies of two de Haas-van
Alphen frequencies for each crystal. They allow us to make a detailed
comparison with band structure calculations and the isostructural com-
pounds CrB2 and MgB2.

Es werden magnetische Eigenschaften von zwei- und dreidimen-
sionalen Materialien, nämlich großflächiges Graphen und VB2- und
MnB2-Einkristalle, bei tiefen Temperaturen und in hohen Magnetfeldern
mit Drehmoment-Magnetometrie untersucht. Magnetische Quantenoszil-
lationen werden für fünf verschiedenartige Graphen-Proben in Überein-
stimmung mit heute verfügbarer Qualität nicht beobachtet. Große VB2-
und MnB2-Einkristalle mit außergewöhnlicher Qualität weisen einen
ausgeprägten de-Haas-van-Alphen-Effekt auf. Wir zeigen die Winkel-
und Temperaturabhängigkeit von jeweils zwei de-Haas-van-Alphen-
Frequenzen. Dies ermöglicht einen Vergleich mit Bandstrukturdaten und
den isostrukturellen Verbindungen CrB2 und MgB2.
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Abstract

Technological innovation relies on the continuous research of novel mate-
rials. If techniques for scalable growth, reliable manipulation of material
properties, and integration of different materials are developed, novel ma-
terials can ultimately lead to new tailored device applications with new
functionalities and superior performance compared to existing technolo-
gies.
The electronic structure is at the heart of many properties of a material.
Investigation of the de Haas-van Alphen (dHvA) effect, the quantum os-
cillations of magnetization, allows to directly probe the electronic struc-
ture at the Fermi surface. In this thesis, we employ highly sensitive torque
cantilever magnetometry at low temperatures and in high magnetic fields
to study the magnetization of three different novel materials: large-area
samples of graphene and single crystals of vanadium diboride (VB2) and
manganese diboride (MnB2). Additionally, we design and implement a
new experimental setup for cantilever magnetometry with an interferomet-
ric readout scheme. The following results are obtained:

• Magnetometry experiments on large-area graphene samples:
Torque magnetometry experiments at temperatures down to 280 mK
and in fields up to 15 T are performed on five different types of large-
area graphene samples: graphene, grown by chemical vapor deposi-
tion (CVD), monolithically integrated with the employed cantilever
sensor; CVD-grown graphene on a silicon substrate with a thermal
silicon oxide layer; epitaxial monolayer graphene (MLG) on the sil-
icon terminated side of 6H-silicon carbide substrates of two differ-
ing thicknesses; quasifree-standing monolayer graphene (QFMLG)
with an intercalated hydrogen layer on the silicon terminated side of
6H-silicon carbide. None of the different approaches provides a sig-
nal that can be attributed to the respective graphene layer. It is con-
cluded that presently large-area graphene samples have an electronic
quality and homogeneity that is not sufficient for the observation of
magnetic quantum oscillations.
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• Sample head for cantilever magnetometry with interferometric
readout: An experimental sample head to be used in a vacuum load-
ing 3He system for cantilever magnetometry experiments with an
interferometric readout scheme is designed and implemented along
the following guidelines: integration into an existing 3He system and
use in existing superconducting solenoids, sample fine-positioning
allowing for a sub-micrometer control and stability of translation in
three directions and a tilt compensation with 0.02° resolution, and
sub-angstrom readout sensitivity of the cantilever position.

• Investigation of the dHvA effect of VB2: We study the angular,
temperature, and field dependence of the dHvA effect of a VB2 sin-
gle crystal at temperatures down to 280 mK and in magnetic fields up
to 15 T. Two distinct dHvA frequencies are observed, one of which
belongs to a closed extremal orbit and the other to an open extremal
orbit on the Fermi surface of VB2. Comparison with band structure
calculations1 suggests that both observed dHvA orbits stem from
bands with a predominant V-d character. The measured effective
masses are enhanced over the calculated band masses by factors of
1.6 and 1.4, respectively. This allows us to estimate upper bounds
of the electron phonon coupling constant for V-d-derived bands of
0.4-0.6.

• Investigation of the dHvA effect of MnB2: We study the an-
gular, temperature, and field dependence of the dHvA effect of a
MnB2 single crystal at temperatures down to 280 mK and in mag-
netic fields up to 15 T. Two distinct dHvA frequencies are observed,
both belonging to closed Fermi surface sheets. Comparison with
band structure calculations1, considering an antiferromagnetic or-
dering of consecutive Mn planes along the c-axis, suggests that both
dHvA orbits originate from the same Fermi surface sheet and arise
from a band with Mn-d character. The measured effective masses are
enhanced over the calculated band masses by factors of 1.6 and 1.5,
respectively. Accordingly, the derived upper bounds for the elec-
tron phonon coupling constant of the Mn-d-derived band is 0.5-0.6.
An analysis of corresponding data for isostructural CrB2 and MgB2

1Density functional calculations were performed by Dr. Jan Kuneš, Institute of Physics,
Academy of Sciences, Cukrovarnicka 10, Praha 6 16253, Czech Republic.
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provided in literature reveals that VB2, CrB2, and MnB2 share sim-
ilar scales for the electron phonon coupling constant with MgB2 de-
pending on the B-pxy contribution to the respective electronic states
despite profound differences in the general electronic structures.
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1 Introduction

Much of the rapid technological progress of the 20th and the beginning
21st century has been driven by microelectronics and in particular the dra-
matic advances in semiconductor technology. In daily as well as profes-
sional life, we are surrounded by the products of this progress, such as
computers, smartphones, digital cameras, flat TV screens, navigation sys-
tems, chip card systems, miniaturized sensors for a vast variety of pur-
poses, et cetera. They have revolutionized our life and the economies
of many countries are increasingly dependent on the corresponding in-
dustries. Much of this progress relies on the development of controlled
growth processes of special materials, techniques to manipulate their prop-
erties, and the ability to integrate different materials with tailored physical
characteristics in one device. However, while existing technologies and
materials are pushed to their limits, a continuous search for alternatives is
needed if technological innovation is to be maintained. For example, the
semiconductor industry is primarily based on silicon. The famous empiric
law of Moore [1] states that the number of transistors per area in an inte-
grated circuit approximately doubles every two years. This prophecy has
now been fulfilled for half a century with an astonishing precision. Yet, -
like any real-world exponential growth - it will eventually hit limitations.
There are fundamental physical limits imposed by thermodynamics, elec-
trodynamics, and quantum dynamics [2]. But there are also limitations set
by the material used and for this reason Moore’s law cannot be maintained
forever with silicon-based devices [3]. Therefore, a permanent research on
novel materials for more powerful chips as well as other next-generation
applications is essential.
One of the most intriguing materials of this kind is graphene, a sheet of
carbon atoms considered to be the first two-dimensional crystal. Since its
existence has been experimentally proven [4] and methods for large-scale
growth have been demonstrated [5, 6], graphene has attracted an unprece-
dented attention of scientific and industrial research [7]. The European
Union has decided to fund graphene related research with one billion euro
over a period of ten years [8]. Because of its unusual properties, such as
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1 Introduction

extraordinary electrical and thermal conductivity, high electron mobility,
and mechanical robustness, it holds promise for numerous applications.
For example, it could be used as a conductive, yet transparent layer in
displays, dissipate energy in integrated circuits, be implemented in novel
types of biosensors [9], and maybe even become a substitute for silicon in
transistors when patterned [10] or combined to heterostructures with other
materials [11].
Another class of candidates for future technological advances are materi-
als hosting correlated electron systems. The term “correlation” describes a
mutual relationship between the electrons, i. e. that they cannot be viewed
as independent from each other in a single-particle picture, which is possi-
ble in silicon and graphene in good approximation. Rather, their mutual in-
fluence must be considered to correctly describe the material’s properties.
Electronic correlations give rise to macroscopic quantum phenomena, such
as superconductivity and (anti-)ferromagnetism. Thus, electronic correla-
tions can alter the properties of materials dramatically, giving rise to novel
ground states and thereby paving the way for possible novel functionality.
It is thus not surprising that much of the recent research towards innova-
tion on the material level has focused on materials with correlated electron
systems. Vanadium diboride (VB2), chromium diboride (CrB2) [12, 13],
and manganese diboride (MnB2), three representatives of the class of tran-
sition metal diborides, are isostructural and differ mainly by the addition
of an extra electron when the atomic number of the transition metal con-
stituent is increased from vanadium over chromium to manganese. Yet,
they have three different magnetic ground states [14, 15]. Furthermore,
they are isostructural to superconducting MgB2, which has the highest
known transition temperature of all conventional phonon-mediated super-
conductors [16]. They are hence an interesting object of study for the
electronic requirements of the two correlation phenomena of magnetic or-
dering and superconductivity.
A key ingredient in the understanding of most macroscopic properties of
a material is the knowledge of its electronic structure as given by its dis-
persion relation. Thereby, electrons directly located at the Fermi energy
define the properties. The de Haas-van Alphen (dHvA) effect [17], i. e. the
oscillations of magnetization as a function of inverse magnetic field as a
purely quantum mechanical phenomenon, is a powerful tool to map out the
Fermi surface, i. e. the electronic states at the Fermi energy. In this thesis,
torque cantilever magnetometry has been employed to study graphene and
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the dHvA effect of VB2 and MnB2.

The outline of this thesis is as follows: In Chapter 2, the theoretical deriva-
tion of the dHvA effect of bulk electron systems is sketched and the frame-
work for the interpretation of the dHvA effect is introduced. Chapter 3 is
dedicated to the presentation of torque cantilever magnetometry, which
is the measurement technique employed in this thesis for the study of
graphene, VB2, and MnB2. A treatment of the mechanical properties of
the specific cantilever sensors used in this thesis, which is relevant for the
interpretation of the experimental data, is included. In Chapter 4, numer-
ical calculations of the dHvA effect in graphene and different approaches
for the experimental study of the dHvA effect in graphene are presented.
One of these approaches is exemplified and the absence of a dHvA signal
in the experimental data is discussed. In Chapter 5, we describe the design
and implementation of an experimental setup for torque cantilever magne-
tometry with interferometric readout. Chapter 6 gives an introduction to
the class of transition metal diborides and specifically to the investigated
representatives VB2 and MnB2. Chapter 7 discusses measurements of the
dHvA effect in VB2, the extraction of dHvA frequencies from band struc-
ture calculations, and properties of the Fermi surface topology as inferred
from angle-dependent measurements and calculations. Additionally, the
analysis of the temperature and field dependence of the dHvA effect al-
lows for the determination of the effective masses of the charge carriers
as well as the associated mean free paths. In Chapter 8, measurements of
the dHvA effect in MnB2 are reported. The study of the angular, tempera-
ture, and field dependence of the dHvA effect provides valuable informa-
tion on the Fermi surface topology of MnB2 as well as effective masses
of charge carriers along with mean free paths. The measured properties
are compared to the respective quantities as extracted from band structure
calculations. A synoptic discussion of dHvA measurement results, Fermi
surface properties, and electronic states of VB2, CrB2, MnB2, and MgB2

is included. Finally, a summary of the results and a brief outlook is given
in Chapter 9.
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2 Theoretical concepts

In this chapter, fundamental theoretical concepts, which are relevant for
the understanding of the experimental results obtained in this thesis, are
introduced. The experimental results are based on the observation of the
de Haas-van Alphen effect. This effect is the phenomenon of quantum
oscillations in the magnetization of an electron system. It was first ob-
served in bismuth by de Haas and van Alphen in 1930 [17]. We sketch the
theoretical derivation of the de Haas-van Alphen effect by starting from
the Landau quantization of free electrons in a magnetic field in Sec. 2.1.
This is followed by a qualitative explanation for the appearance of quan-
tum oscillations in general (Sec. 2.2) and a more quantitative treatment of
magnetic oscillations in particular (Sec. 2.3). We then present the Lifshitz-
Kosevich formalism considering finite temperature and disorder (Sec. 2.4),
which is of great experimental importance, and introduce the nomenclature
for highly anisotropic Fermi surfaces (2.5).

2.1 Landau quantization of free electrons in a magnetic
field

The Landau quantization of free electrons (or any other charged particles)
in a magnetic field lies at the heart of quantum oscillatory phenomena. The
derivation can be found in standard textbooks (e. g. Ref. [18]). Because of
its central role in this thesis, we recapitulate the derivation below.
For this, we consider a free electron of charge −e (e is the positive elemen-
tary charge) travelling in a constant magnetic field B. The Hamiltonian of
this electron is given by

H =
1

2me
(p + e ⋅A)

2
, (2.1)

where me is the electron mass, p = h̵
i
∇ the momentum operator, and A

the vector potential, which is related to B by B = ∇ ×A. The operator
P = p + e ⋅A is called the canonical momentum. Without loss of gen-
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2 Theoretical concepts

erality, we assume the field to be oriented along the z-axis, B = Bêz . In
the symmetric gauge, the vector potential is A = 1

2
(−yB,xB,0). The

Hamiltonian Eq. 2.1 then decomposes into two commuting terms

H = H⊥ +Hz, with (2.2)

H⊥ =
1

2me

(P 2
x + P

2
y ) , (2.3)

Hz =
1

2me
p2
z. (2.4)

The componentHz of the Hamiltonian is solved by plane waves exp (ikzz),
i. e. the degree of freedom associated with the motion of the electron in the
z-direction is unaffected by the magnetic field. We perform a simple trans-
formation of the canonical momentum operators by rescaling

πi =
1

√
eB

Pi, i ∈ {x, y}. (2.5)

The Hamiltonian H⊥ then takes the form

H⊥ =
1

2

eB

me

(π2
x + π

2
y) . (2.6)

It is easily shown that the new operators obey the commutation relations

[πy, πx] = ih̵, [πx, πx] = [πy, πy] = 0. (2.7)

The Hamiltonian of Eq. 2.6 and the commutation rules for πx and πy re-
semble the corresponding equations for the one-dimensional harmonic os-
cillator with conventional operators x̂ and p̂ for space coordinate and mo-
mentum. By defining operator a and its Hermitian conjugate a†

a =
πy + iπx
√

2h̵
, a†

=
πy − iπx
√

2h̵
, (2.8)

the Hamiltonian Eq. 2.6 can be expressed in the standard form of the har-
monic oscillator in terms of ladder operators

H⊥ = h̵ωc (a
†a +

1

2
) . (2.9)
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2.2 The origin of quantum oscillations

Here, we introduced the cyclotron frequency ωc defined by

ωc =
eB

me
. (2.10)

The eigenenergies of the combined Hamiltonian H =H⊥ +Hz are

E = (n +
1

2
) h̵ωc +

(h̵kz)
2

2me
, with n ∈ N0, (2.11)

i. e. the sum of the eigenenergies of the one-dimensional harmonic oscil-
lator (cf. e. g. Ref. [19]) and of the energy associated with the free motion
in z-direction h̵2k2

z/(2me). This result is the well known Landau quan-
tization of free electrons in a magnetic field. While the movement of the
electrons along the z-direction is unaffected by the magnetic field (in a
classical picture the z-component of the Lorentz force vanishes), the wave
numbers kx and ky are not good quantum numbers in the presence of the
magnetic field anymore. Instead, the electrons have the energy quantiza-
tion of the harmonic oscillator. The corresponding eigenenergies are called
Landau levels. The above result can also be derived in a semi-classical
picture for electrons moving in reciprocal space (K-space) by imposing
the Bohr-Sommerfeld quantization. In this picture, the electrons move on
circles perpendicular to the field in real and reciprocal space under the in-
fluence of the Lorentz force. Hereby, only discrete radii k⊥ in K-space are
allowed by the quantization rule. They are given by

h̵2k2
⊥

2me
= (n +

1

2
) h̵ωc. (2.12)

2.2 The origin of quantum oscillations

After the derivation of the Landau quantization, we now turn to a qual-
itative explanation for the emergence of quantum oscillatory phenomena
from the Landau quantization.
For free electrons in zero magnetic field, the states (kx, ky, kz) inK-space
are equidistantly spaced (where the exact spacing depends on the boundary
conditions). In a magnetic field, however, the states for fixed kz assem-
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2 Theoretical concepts

ble1 on discrete circles with radii given by Eq. 2.12. If the kz-axis is also
considered, the circles become cylinders, the famous Landau tubes. The
Landau levels are degenerate2. The degeneracy of the Landau levels can be
derived by calculating the number of electron states in zero magnetic field
which assemble on one Landau circle if the field is applied. Per unit area,
the density of states in two-dimensional K-space is 1/(2π)2. This con-
stant is multiplied by the annular difference area πk2

⊥,n+1 − πk
2
⊥,n of two

neighboring Landau circles with quantum numbers n and n+1 in Eq. 2.12
to arrive at the Landau level degeneracy DL per unit area

DL =
eBgs

2πh̵
, (2.13)

where gs takes the spin degeneracy into account. It can be shown that this
result is rigorously true for arbitrary dispersion relations [20]. Both the
Landau energies and their degeneracies increase linearly with magnetic
field B such that the number of states in a given K-space volume stays
constant for arbitrary field strength B.
For a given Fermi energy EF (i. e. N electrons in a given volume V ) of
the free electron gas at T = 0, only electron states inside a sphere in K-
space with radius kF ∝ (N/V )1/3 are occupied. The surface of the sphere
is referred to as Fermi surface. With magnetic field applied, this means
that only those parts of the Landau tubes are occupied, which lie inside
the sphere. This is sketched in Fig. 2.1 (a). In this picture, the origin of
quantum oscillations can be understood qualitatively. For this, we con-
sider a two-dimensional cross section of the Fermi sphere perpendicular
to B with area A as depicted in Fig. 2.1 (b). The projection of the Lan-
dau tubes onto the cross section are Landau circles of radii k⊥ implicitly
given by Eq. 2.12 and the three-dimensional Fermi surface itself is repre-
sented by a Fermi circle (green) in this cross section. The Landau circles
represent degenerate electron states of constant energy and only Landau

1Sometimes, the term “condense” is used in text books, which we avoid due to possible
misleading associations.

2At this point, it is often omitted in textbooks what the second quantum number is when
going from (kx, ky) in zero field to the Landau level index n. In fact, the second quantum
number isX , which corresponds to the average spatial coordinate of the circles on which
the electrons travel in a semiclassical picture. For this reason, it is not a contradiction
to Pauli’s exclusion principle that one Landau level can be occupied by more than one
electron.
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2.2 The origin of quantum oscillations

maximal cross section A

non-extremal cross section �

Fermi sphere

n = 0

n = 1
n = 2
n = 3

(a) (b)

k  , Bz

occupied Landau circles

Fermi circle

unoccupied Landau circles

Figure 2.1: (a) Landau tubes in K-space inside the Fermi sphere of an isotropic
free electron gas. The electron states are quantized on Landau tubes, which have
a cylindrical shape along magnetic field B. The surfaces of constant energy of the
free electron gas are spherical. Only those parts of the Landau tubes inside a sphere
of radius kF corresponding to the Fermi energy EF are occupied. A non-extremal
cross section (green) and the maximal cross section (red) of the Fermi sphere are
indicated. (b) Non-extremal cross section of the Landau tubes and of the Fermi
surface . The Landau levels and the Fermi surface are represented by circles. Only
Landau circles inside the Fermi circle are occupied (solid). The dashed Landau
circles are not occupied.

circles within the Fermi circle are occupied. As B increases, the radii of
the Landau circles grow and consequently the associated eigenenergies in-
crease as well. Accordingly, also the total energy, given by the sum over
the eigenenergies of the Landau circles within the Fermi circle multiplied
by their degeneracy, increases. However, when a Landau circle crosses the
Fermi circle, it is depleted and consequently the total energy decreases.
When B is further increased, the process repeats. Hence, this process of
growing Landau circles, which consecutively leave the cross-sectional area
A, constitutes a periodic behavior of the total energy1. By calculating the
required field Bn for the n-th Landau circle to coincide with the Fermi cir-
cle, it is easily shown that the oscillatory behavior is periodic in 1/B with

1We note that in a rigorous treatment the considered two-dimensional case is slightly more
involved if the total energy U is considered because oscillations of the chemical potential
need to be taken into account to fix the total electron number. The explanation above is
meant to provide an intuitive understanding of the origin of quantum oscillations, which
is the periodic crossing of Landau levels through the Fermi energy. For this qualitative
understanding, the explanation is adequate.
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2 Theoretical concepts

period 2πe/(h̵A) or alternatively frequency

F =
h̵A

2πe
. (2.14)

Returning to the three-dimensional case of a spherical Fermi surface, the
above considerations apply for any arbitrary cross-sectional slab of the
sphere perpendicular to B with respective frequencies F given by their
respective cross-sectional areas A. However, the cumulative behavior of
the slabs is totally dominated by so-called extremal cross sections. These
are cross sections for which the cross-sectional area A(kz) as a function
of the K-space coordinate kz parallel to B is stationary, i. e.

∂A

∂kz
= 0. (2.15)

In the case of a spherical Fermi surface, there is one extremal area, which
is a maximal area. It is identical with the cross section through the cen-
ter of the Fermi sphere, i. e. it is the cross-sectional circle with the same
radius as the radius kF of the Fermi sphere. In the following, we denote
extremal cross sections by A (instead of A) and their associated frequen-
cies by f (instead of F). The total dominance of extremal cross sections
can be rigorously shown [20]. It can also be appreciated intuitively: The
Landau tubes intersect the Fermi surface at non-extremal cross sections
while the n-th Landau tube touches the Fermi surface at the extremal cross
section for a corresponding field Bn in a tangential manner. If we con-
sider the distribution of states on the Landau tubes in kz-direction, it is
clear that the states that coherently contribute to the frequency f associ-
ated with the extremal area A drastically outnumber other states belonging
to non-extremal areas and frequencies, respectively. For this reason, only
frequencies f associated with extremal cross sections A of the Fermi sur-
face are of physical relevance. We restate Eq. 2.14 for this case:

f =
h̵A

2πe
. (2.16)

This is a famous result first derived by Onsager [21].
As qualitatively explained above, the total energy U of an electron system
shows quantum oscillations in 1/B with periodicity given by Eq. 2.16.
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2.3 The de Haas-van Alphen effect

Because the total energy is related to other thermodynamical potentials
by Legendre transformations and physical observables are related to the
thermodynamical potentials via partial derivatives, quantum oscillations in
general exist for a variety of quantities. Most notable are the Shubnikov-de
Haas effect for electrical conductivity and the de Haas-van Alphen oscil-
lations for magnetization, whose derivation is sketched in the following
section.

2.3 The de Haas-van Alphen effect

We now turn to the quantum oscillations of the magnetization of an elec-
tron system. These oscillations were first observed in bismuth by de Haas
and van Alphen in 1930 [17] and the effect became to be known under the
name of its discoverers although a quantum-mechanical understanding was
not provided before Onsager’s paper in 1952 [21]. In this section we con-
strain ourselves to stating some results of the derivation of the de Haas-van
Alphen effect. For a formal derivation, which involves some subtle mathe-
matical arguments, the reader is referred to Ref. [20]. The relations stated
relate to zero temperature and zero Landau level broadening.
Most often, de Haas-van Alphen oscillations are examined in systems with
fixed electron number N and at fixed temperature T . The thermodynam-
ical potential associated with these conditions is the free energy F . It is
related to the (internal) energy U by a Legendre transformation

F = U − TS, (2.17)

where S is the entropy. The free energy F can be obtained by evaluat-
ing the associated canonical partition function Zc. If the free energy F is
known, the components of the magnetization can be derived by a partial
differentation

Mi = −(
∂F

∂Bi
)
N,T

. (2.18)

However, for ensembles which obey Fermi-Dirac statistics, as for example
electrons, the calculation of the canonical partition function Zc is difficult
because the fixed particle number imposes some troublesome constraints
on the summation. Therefore, it is more convenient to abandon particle
conservation and to consider the grand canonical ensemble Ω, which is
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related to the free energy through another Legendre transformation

Ω = F − µN. (2.19)

The grand canonical ensemble is not a function of N anymore, but of the
chemical potential µ. This means that the chemical potential µ is fixed
instead of the particle number N . Its advantage is that the corresponding
grand canonical partition function Zg is easier to evaluate. The potential
and the partition function are connected by Ω = −kBT lnZg. For particles
with single-particle energy states ε and the Fermi-Dirac statistics, this leads
to [22, 23]

Ω = −kBT∑
ε

ln [1 + exp(
µ − ε

kBT
)], (2.20)

where the sum runs over all single-particle energy states ε. At T = 0, the
grand canonical potential is Ω = U −Nµ and the grand canonical potential
for free electrons in a volume V in a magnetic field with the energy states
Ej(kz) given in Eq. 2.11 becomes

Ω = V ∑
j

DL ∫

kj

0

dkz
2π

(Ej(kz) − µ) , (2.21)

where DL is the degeneracy of the Landau levels including spin degener-
acy (Eq. 2.13). Both the sum and the integral in Eq. 2.21 are constrained
by the occupation: For given Landau level index j, the integral is to be
taken from 0 to kj , implicitly given by h̵2k2

j /(2m) = µ − (j + 1/2)h̵ωc.
The sum over j runs over values for which (j + 1/2)h̵ωc < µ. Hereby, the
condition of free electrons with a spherical Fermi surface can be relaxed
to a parabolic dispersion characterized by a band mass mb (replacing me)
within the considered two-dimensional cross sections and to a Fermi sur-
face arbitrarily shaped along kz , i. e. not restricted to a sphere. Much of
the involved mathematics, which continues the derivation from this point,
is related to finding appropriate approximations of the sum in Eq. 2.21 by
integrals, observing the constraints on the upper boundaries of the sum and
the integral, and finally expressing the result in a Fourier series. Here we
only state the result for the oscillatory part of the grand-canonical potential
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2.3 The de Haas-van Alphen effect

Ωosc for one extremal area A

Ωosc = const. ×
B5/2

√
A′′

∞

∑
p=1

1

p5/2
cos [2πp

f

B
+ φp] . (2.22)

Here, the frequency f is defined by Eq. 2.16 for the considered extremal
area A and φp is a phase depending on the harmonic of f , numbered by
the sum index p. The prefactor 1/

√
A′′ contains the curvature of the cross-

sectional area A as a function of kz , i. e. along the field direction, at the
position of the extremal cross section kz(A):

A′′
≡ ∣
∂2A(kz)

∂k2
z

∣
kz=kz(A)

. (2.23)

The prefactor expresses a circumstance that has already been discussed
qualitatively: The lower the curvature at the extremal area is, the more in-
timate is the touching of a Landau tube with the Fermi surface, i. e. the
larger is the interval along kz of states on the tube that constructively con-
tribute to the frequency of the extremal area. In the limiting case of a
cylindrical Fermi surface, the cross-sectional area is constant along kz and
the curvature is zero. In this case all states on the Landau tube contribute
to f .
The magnetization M is now obtained by taking the gradient derivative of
Ω with respect to B at fixed chemical potential µ and temperature T

M = −(∇BΩ)µ,T . (2.24)

When the gradient is considered in spherical coordinates, the components
of M can be separated into a component M∥ parallel to B (which we still
assume to be oriented parallel to êz w. l. o. g.) and two components M⊥,x,
M⊥,y in perpendicular directions êx, êy to B

M∥ = −
∂Ω

∂B
, (2.25)

M⊥,x = −
1

B

∂Ω

∂θx
, (2.26)

M⊥,y = −
1

B

∂Ω

∂θy
, (2.27)
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e  , Mz
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Β

Figure 2.2: Definitions of the angles θx and θy with respect to the coordinate
system, which serve for the derivation of the perpendicular components M⊥,x and
M⊥,y from the grand canonical potential. The magnetic field B is assumed to be
oriented along the z-axis w. l. o. g.

where θi denotes the angle of B in the plane spanned by êz and êi, which
is illustrated in Fig. 2.21. We stress this point because it will have some
relevance in the understanding of the torque measurement technique and
the interpretation of experimental results in the following chapters.
Execution of the derivatives yields the oscillatory parts of the magnetiza-
tion components (with higher order terms dropped) [20]:

M osc
∥

= const. ×
B1/2

√
A′′

∞

∑
p=1

1

p3/2
sin [2πp

f

B
+ φp] (2.28)

M osc
⊥,x = −

1

f

∂f

∂θx
M osc
∥

(2.29)

M osc
⊥,y = −

1

f

∂f

∂θy
M osc
∥
. (2.30)

The above equations express the oscillation of the magnetization as a func-
tion of inverse field 1/B. The frequency of the oscillation is f as defined
by the Onsager relation Eq. 2.16 and higher harmonics thereof. We hence
have derived the de Haas-van Alphen effect, i. e. the quantum oscillations
of the magnetization, on theoretical grounds. Henceforth, we refer to f as

1For the derivatives w. r. t. the angles θi, the orientation of B is allowed to vary around êz .
We choose θx and θy for the evaluation instead of conventional spherical coordinates θB,
φB because we evaluate the derivatives at the pole where φB is ill-defined.

26



2.4 Lifshitz-Kosevich theory of finite temperature and inhomogeneity

de Haas-van Alphen (dHvA) frequency.
At this point, it is worthwhile to comment on the consequences of de-
riving the dHvA effect using the grand-canonical potential Ω. In princi-
ple, Eqs. 2.28-2.30 strictly hold only for fixed chemical potential µ, which
equivalently means that they imply oscillations of the particle number N
as a function of 1/B. Obviously, this does not express the concrete ex-
perimental situation in most cases. However, it turns out that the oscil-
lations in particle number are small for three-dimensional systems, such
as bulk solid state crystals, because the number of electrons that construc-
tively participate in the dHvA oscillation is small compared to the entire
electron number. Therefore, Eqs. 2.28-2.30 are generally a very good ap-
proximation for three-dimensional systems. In two-dimensional systems,
the situation is however very different. For this reason, operations which
are equivalent to reversing the Legendre transformation Eq. 2.19 need to
be performed when calculating the dHvA effect for these systems.
The relations for the perpendicular components Eqs. 2.29 and 2.30 depend
on the logarithmic derivatives 1

f
∂f
∂θi

of the dHvA frequency f w. r. t. θi.
These logarithmic derivatives represent the variation of the cross-sectional
area of the Fermi surface for changes of the orientation of B. For a com-
pletely symmetric Fermi surface, e. g. a sphere, these terms vanish and
perpendicular components of the magnetization are consequently absent.
Therefore, they are often referred to as anisotropy terms. For the torque
measurement technique of dHvA oscillations, the anisotropy terms are of
great importance (Sec. 3.1).

2.4 Lifshitz-Kosevich theory of finite temperature and
inhomogeneity

So far we have only considered electrons at zero temperature and confined
to infinitely sharp Landau levels. In the following, we present a formalism
to include the effects of finite temperature and broadened Landau levels in
the description of de Haas-van Alphen oscillations.
We start with the treatment of the temperature dependence. At zero tem-
perature the Fermi-Dirac distribution is a step function and Landau tubes
are fully occupied for energies Ej(kz) < µ = EF

1. At finite temperature

1In the three-dimensional case the oscillations of µ are negligible and we can therefore set
µ = EF.
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T , the Fermi-Dirac distribution NFD

NFD(ε, µ, T ) =
1

1 + exp ε−µ
kBT

(2.31)

smears out the occupation over neighboring Landau levels in the proximity
of µ. The consequence is a suppression of the dHvA amplitude by the
temperature reduction factor

RT =
X

sinhX
, with X =

2π2kBm
⋆T

h̵eB
. (2.32)

In the above equation, we use the effective mass m⋆ instead of the band
mass mb. The band mass takes into account only the scattering of a Bloch
electron in the crystal lattice. Compared to the band mass, the effective
mass is renormalized by many-body interactions, e. g. electron-electron
and phonon-electron interactions. An extensive treatment of many-body
interactions is beyond the scope of this thesis. However, we do want to
emphasize at this point that the effective mass m⋆, not the band mass mb,
appears in the temperature reduction factor when many-body effects are
included in the description of the dHvA effect [20]. This is different from
the reduction factor due to disorder, which we treat in the following.
In a real electron system such as a crystal, residual disorder leads to elec-
tron scattering. If a characteristic scattering time τ and an exponential
decay of the occupation of a state by the scattering process with time con-
stant τ is assumed, a Lorentzian broadening of the Landau levels

L(ε,En, τ) =
1

π

h̵/(2τ)

(ε −En)2 + (h̵/(2τ))2
(2.33)

is the consequence. The broadening of the Landau levels also causes a
suppression of the dHvA amplitude by the Dingle reduction factor

RD = exp(−
πmb

eBτ
) . (2.34)

As mentioned above, the band mass mb, not the effective mass m⋆, enters
the Dingle reduction factor RD, different from the temperature reduction
factor RT. This fact appears to be counterintuitive. An increased scatter-
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ing on phonons, for example, would be expected to give rise to a reduction
similar to Eq. 2.34 and hence the effective mass m⋆ should appear in this
relation in some form. The reasons for its absence are complicated [24],
but the effect is documented experimentally [25]. The reduction due to
disorder Eq. 2.34 was first derived by Dingle [26] while the temperature
reduction Eq. 2.32 has been first elaborated by Lifshitz and Kosevich in a
comprehensive treatment of the de Haas-van Alphen effect [27, 28].
Often Eqs. 2.32 and 2.34 are merely stated although they can be derived
relatively easily in an original manner [20]. The basic idea is that in a
non-ideal sample, various inhomogeneities can be taken into account by
assuming a smearing of the phase φ of the dHvA frequency with a char-
acteristic phase distribution function D(φ). The superposition of dHvA
oscillations ∝ sin(f/B + φ) of varying phase φ weighted by the distri-
bution function D(φ) amounts to a reduction factor proportional to the
Fourier transform of the distribution function D(φ). The effect of finite
temperature T can be considered as an example of phase smearing if a real
electron system at temperature T with chemical potential µ is thought of
as an ensemble of electron systems at T = 0 with a distribution of Fermi
energies χ around µ such that at a given energy ε a fraction NFD(ε, µ, T )

of hypothetical electron systems has χ > ε. In other words, a fraction
NFD(ε, µ, T ) of the hypothetical electron systems has the state with en-
ergy ε occupied. It is easily shown that the required distribution of Fermi
energies is −∂NFD/∂ε∣ε=χ. The deviation χ − µ of the Fermi energy of a
hypothetical electron system from the average Fermi energy µ is equivalent
to a phase shift of the dHvA frequency of the respective electron system.
We omit the required mathematics, but state that the temperature reduction
factor RT =X/ sinhX thus arises as the Fourier transform of the negative
derivative of the Fermi-Dirac distribution. Similarly, a Lorentzian broad-
ened Landau level can be treated as an ensemble of electron systems at
T = 0 with a distribution of Fermi energies χ around µ, where the dis-
tribution is proportional to 1/ ((χ − µ)2 + (h̵/2τ)2). Here, the analytical
form of the Dingle reduction factor Eq. 2.34 as an exponentially decaying
function is fairly obvious since this is the well known Fourier transform of
a Lorentzian.
In the limit h̵ eB

m⋆
≲ 2π2kBT , i. e. for low fields or high temperatures, re-
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spectively, the temperature reduction factor becomes

RT ≈
4π2kBT

ωch̵
exp(−

2π2kBT

ωch̵
). (2.35)

In this form, it is similar to the Dingle reduction factor. In other words, the
effect of a finite scattering time τ is similar to the temperature reduction
for sufficiently high temperatures. For this reason, often a temperature
equivalent to the scattering time τ is specified, which indicates sample
purity. This so-called Dingle temperature is defined by

TD =
h̵

2πkBτ
. (2.36)

To arrive at the expressions for the magnetization at finite temperature and
with a finite scattering time τ , Eqs. 2.28-2.30 can simply be multiplied by
the two reduction factors:

M osc
∥

(T, τ) = M osc
∥
RTRD, (2.37)

M osc
⊥,x(T, τ) = M osc

⊥,xRTRD, (2.38)
M osc
⊥,y(T, τ) = M osc

⊥,yRTRD. (2.39)

These equations are referred to as Lifshitz-Kosevich relations. They are of
great experimental importance because they allow the extraction of the ef-
fective mass m⋆ of a dHvA orbit by studying the temperature dependence
of the magnetization oscillations and the extraction of the quotient of band
mass and scattering time mb/τ by examination of the field dependence of
the magnetization oscillations.

2.5 Topology of Fermi surfaces

In the previous sections, we have mostly used the concept of the Fermi
sphere of free electrons in order to explain the origin of the dHvA effect.
The enormous experimental importance and power of the dHvA effect are
rooted in the ability to reconstruct arbitrarily shaped Fermi surfaces by
mapping out their extremal cross-sectional areas. The specific shape of
the Fermi surface of a crystal depends on its band structure, i. e. the k-
dependent dispersion of the electrons. A presentation of methods for the
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calculation of crystal band structures is beyond the scope of this thesis.
Here, we only introduce a nomenclature for Fermi surfaces that arise from
energy bands with strongly differing dispersion in differentK-space direc-
tions.
The isotropic shape of the Fermi sphere of free electrons reflects the com-
pletely isotropic dispersion. The dispersion of a real electron system in a
crystal given by its band structure is in general not isotropic. Scattering
on the crystal lattice and many-body interaction with phonons and other
electrons will alter the dispersion depending on K-space orientation and
energy. For the nomenclature of different Fermi surface topologies, we
refer to Fig. 2.3. Figure 2.3 (a) shows an ellipsoidal Fermi surface. This
Fermi surface reflects a dispersion that is similar to the one of free elec-
trons. An ellipsoid as in Fig. 2.3 (a) arises as Fermi surface instead of the
spherical surface when the dispersion in the different K-space directions
differs slightly, which is expressed by different band masses mb. If, in
contrast, the dispersion of the electrons drastically differs for one K-space
direction kz compared to the other two perpendicular directions, i. e. their
energy is (quasi) independent from kz , the resulting Fermi surface will
have a cylindrical shape. This is depicted in Figs. 2.3 (b,c). In the ideal
case of zero dispersion in one direction, the Landau surface is a cylin-
der as depicted in Fig. 2.3 (b). Because of the lack of dispersion in one
direction, this is referred to as two-dimensional Fermi surface. A real sys-
tem will however feature at least a small dispersion in kz-direction. The
corresponding Fermi surface would then resemble a warped cylinder as
illustrated in Fig. 2.3 (c). This is called a quasi-two-dimensional Fermi
surface. Similarly, in the complete absence of dispersion in two directions,
the Fermi surface is a plane. In a real system the plane features some cor-
rugations. These Fermi surfaces are shown in Figs. 2.3 (d,e) and referred
to as one-dimensional and quasi-one-dimensional Fermi surface, respec-
tively.
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(d)

(a) 3D

1D

(b)

Q1D

Q2D(c)2D

(e)

Figure 2.3: Nomenclature of Fermi surfaces from bands with different anisotropic
dispersions. (a) Ellipsoidal Fermi surface that arises from bands for which the dis-
persion in different K-space directions differs only slightly. (b) Idealized case of
a Fermi surface, which arises from a band with zero dispersion in one direction.
The Fermi surface is a cylinder. This is referred to as two-dimensional Fermi sur-
face. (c) Quasi-two-dimensional Fermi surface from a band with little dispersion
in one direction compared to the other two directions. (d) One-dimensional Fermi
surface, which arises from a band with zero dispersion in two directions. (e) Quasi-
one-dimensional Fermi surface from a band with little dispersion in two directions
compared to the third direction.
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3 Torque measurements using micromechanical
cantilevers

For the measurement of the de Haas-van Alphen effect several measure-
ment methods exist. The traditional technique, which was also employed
by de Haas and van Alphen in the original discovery of the effect in bis-
muth [17], makes use of the force acting on a magnetic moment in an
inhomogeneous magnetic field. However, there is a serious intrinsic dis-
advantage of this method: Because of the inhomogeneity of the field, the
energy of a Landau level n is not constant in space or, equivalently, the po-
sition of the Fermi energy EF relative to the Landau level depends on the
spatial position. In the language of Sec. 2.4, this constitutes a phase smear-
ing of the dHvA frequencies, inherent to the measurement technique. For
this reason, the power of the original method is rather limited.
Nowadays, there are essentially three established and widely used meth-
ods: (1) The torque technique exploits the torque Γ = M × B acting
on a sample with magnetization M in a magnetic field B. This method
was used for the experiments presented in this thesis. (2) In the modu-
lation technique [29–33], a small oscillating field is superimposed onto
the field B, which causes the sample magnetization M also to oscillate
around the value M(B). The sample is placed in the proximity of a pick-
up coil, where the oscillating magnetization induces an electro-magnetic
field. Hereby, the physical quantity derived from the measurement sig-
nal is not the magnetization itself, but its first and higher-order deriva-
tives dkM/dBk with respect to B. (3) Similarly to the modulation tech-
nique, pulsed field experiments in high field laboratories utilize the electro-
magnetic field induced in a pick-up coil by the rapid variation of the mag-
netization in the pulsed field [34]. All techniques have their specific advan-
tages. The modulation technique allows for a phase sensitive detection, the
pulsed field experiments can reach field regimes which are not accessible
by static fields while the torque technique is easily integrated in experimen-
tal conditions with limited space. The static torque technique also leaves
the electron system in its thermodynamic ground state, which is particu-
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larly important for experiments with two-dimension electron systems [35].
In this chapter, we present the torque measurement technique used for the
experiments of this thesis. The technique employs micromechanical can-
tilever magnetometers (MCMs) with a capacitive readout scheme. The
chapter is organized as follows: In Sec. 3.1, the basic working principle
of the measurement technique and of the readout is explained. Section 3.2
describes the specific MCMs which we employ and their fabrication. Sec-
tions 3.3 and 3.4 treat the coupling of different torque components to the
measurement signal and the calibration of the MCMs. In Sec. 3.5, we
briefly sketch the experimental setup it its entirety and specify the sensi-
tivity achieved in the magnetization experiments.

3.1 Cantilever torque magnetometry

The torque measurement principle of a micromechanical cantilever mag-
netometer (MCM) is straightforward: The sample is mounted on the free
end of a flexible, singly clamped beam. In the presence of a magnetic field
B, a torque Γ acts on the sample if it has a non-vanishing magnetization
component perpendicular to B:

Γ =M ×B. (3.1)

The torque will deflect and/or twist the beam. The resulting deflection
and/or torsion can be read out by some means and thus provide a measure
for the magnetization of the sample. The measurement principle requires
a non-parallel component of the magnetization with respect to B, i. e. an
anisotropic magnetization M ∦ B. The parallel magnetization component
M∥ cannot be detected. As discussed in Sec. 2.3, the oscillatory magneti-
zation due to the dHvA effect can exhibit componentsM osc

⊥,x, M osc
⊥,y perpen-

dicular to B if the Fermi surface is anisotropic. Hence, dHvA oscillations
can be detected by the torque technique as long as the corresponding Fermi
surface sheet is not completely isotropic. For symmetry reasons, dHvA
frequencies are generally stationary around high-symmetry directions of a
crystal and the anisotropy term consequently vanishes in these directions.
The torque method for mapping out a Fermi surface thus has intrinsic blind
spots for the magnetic field along these directions. This is, however, not a
severe limitation since usually the torque is detectable at a small angular
deviation (of a few degrees or less) from the high-symmetry direction.
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Figure 3.1: Measurement principle of cantilever torque magnetometry. A sam-
ple is mounted on the free end of a clamped cantilever beam. In the presence of
a magnetic field B, a torque Γ = M ×B acts on the sample with magnetization
M. The torque has two components Γd and Γt associated with the magnetization
components perpendicular to B,M⊥,y andM⊥,x, respectively. The bending torque
component Γd deflects the cantilever from its equilibrium position by an angle η.
This corresponds to a linear deflection ∆d of the cantilever, changing its equilib-
rium distance d0 to the substrate. The torsional torque component Γt twists the
cantilever by an angle τ (not shown). Readout of the cantilever deflection can be
achieved with capacitive means by monitoring the capacitance C, which is formed
by the (metallized) cantilever and a suitable counter electrode on the substrate.

For a more detailed analysis of the coupling of the magnetization com-
ponents to the MCM, we refer to Fig. 3.1, where a cantilever beam, onto
which a sample is attached, is depicted. The magnetic field B effects two
perpendicular magnetization components M

⊥,x, M
⊥,y, where the former

points out of the plane of projection and the latter is oriented approxi-
mately along the cantilever’s beam. The magnetization component M

⊥,y

will exert a bending torque component Γd on the cantilever whereas mag-
netization component M

⊥,x causes a torsional torque component Γt. The
bending component Γd deflects the cantilever beam from its equilibrium
position by an angle η. By contrast, the torsional component Γt twists the
cantilever beam along its axis by an angle τ (not shown). Several methods
exist for the detection of the cantilever deflection. Most widely used are
techniques which rely on an optical readout, e. g. employing a laser in-
terferometer [36], a piezoresistive readout [37, 38], and a capacitive read-
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out [39]. For the experiments of this thesis, we used the capacitive method.
For this technique, the cantilever is either conductive itself or possesses a
conductive layer on its bottom side (Fig. 3.1). The cantilever forms a ca-
pacitor of capacitance C0 together with a suitable counter electrode on a
substrate, on which the cantilever is mounted. The bending component Γd

causes a deviation ∆d from the cantilevers equilibrium distance d0 from
the substrate. This effects a change of capacitance ∆Cd which can be
detected. In principle, also the torsional component Γt will influence the
capacitance C. We will however show that the effect of the torsional com-
ponent is negligible for the experiments presented in this thesis.

3.2 Copper beryllium cantilevers

The cantilevers used for the experiments presented in this thesis are made
from the alloy copper beryllium (CuBe). They were produced from a CuBe
foil of 50 µm thickness.
For the preparation, the cantilever contours were defined by means of opti-
cal lithography on one side of the CuBe foil while a protective photoresist
layer was applied onto the other side. The foil was then immersed into
a FeCl3 etching solution in order to etch the defined cantilever structure
from the CuBe foil. Subsequently, the photoresist was removed by rinsing
the cantilever with acetone.
The cantilever is shown in Fig. 3.2 in a schematic view. It consists of a
4 × 5 mm2 paddle to carry the sample and two beams of 160 µm width
each. The cantilever is mounted onto a printed circuit board using one,
two, or three 50 µm thick spacer parts, which were also produced from
the CuBe foil. The circuit board contains an electrode, which forms a ca-
pacitor together with the cantilever’s paddle for detection. In Fig. 3.3
the dimensions of the cantilever are specified. These parameters will be
relevant for the following section.

3.3 Coupling of torque components to capacitive readout

In the following, we discuss the capacitive readout for torque magnetom-
etry quantitatively and derive equations for the relation of the capacitance
change effected by the bending and the torsional torque component, re-
spectively. We argue that the torsional component is completely sup-
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Figure 3.2: Schematic view of the CuBe cantilevers employed for this thesis. The
cantilever consists of a 4 × 5 mm2 paddle and two beams of 160 µm width. It is
fabricated from a 50 µm thick CuBe foil. The sample is placed onto the central part
of the paddle. The cantilever is attached to a substrate using spacer parts to adjust
the height of the cantilever over the substrate. The substrate comprises a contact for
the cantilever and a suitable counter electrode such that the cantilever’s paddle and
the counter electrode form a capacitor. Its capacitance can be detected in order to
acquire a measure for the deflection of the cantilever and hence the magnetization
of the sample.

pressed by the specific cantilever design used. This fact will be relevant
for the interpretation of the experiments presented in Chs. 7 and 8.
We start with the quantitative treatment of the bending torque component
Γd. Following Hooke’s law, the deflection angle η (cf. Fig. 3.1) is propor-
tional to Γd for sufficiently small deflections, where we define the spring
constant kd by

Γd = kdη. (3.2)

The spring constant kd can be determined by applying Euler-Bernoulli
beam theory. For a cantilever with rectangular paddle and beam and a
torque distributed over the paddle, the corresponding equations and bound-
ary conditions have been solved in Ref. [40]. Here, we only state the result
for the spring constant in terms of geometric dimensions and material con-
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w
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thickness t

Figure 3.3: Specification of the geometrical dimensions of the CuBe cantilever:
paddle width a = 5.0 mm, paddle length b = 4.0 mm, distance from clamp to
paddle center L = 3.5 mm, beam length l = 1.5 mm, beam distance r = 1.5 mm,
beam width w = 160 µm. The thickness of the cantilever is t = 50 µm. The area of
the paddle is denoted by A = ab.

stants1:
Γd = kdη =

2Y IsL

(L + b
2
) (L − b

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kd

⋅η, (3.3)

where L and b are as defined by Fig. 3.3, Y is the Young’s modulus of
the cantilever’s material, i. e. CuBe, and Is is the second areal moment of
inertia for a deflection of the cantilever in the discussed direction. For a
beam of constant rectangular cross section with width W and thickness T ,
it is given by Is = 1

12
WT 3. For the bending degree of freedom, we can

treat the two beams in Fig. 3.3 of width w and thickness t as one beam of
width 2w and thickness t. Hence the areal moment of inertia Is is given by

Is =
1

6
wt3. (3.4)

1We omit some terms given in Ref. [40], which can be neglected in the approximation of a
thin beam width compared to the paddle width.

38



3.3 Coupling of torque components to capacitive readout

In the small-angle approximation, the linear deflection of the cantilever ∆d
at the position of the paddle center is proportional to η:

∆d = Lη. (3.5)

We now turn to the capacitance change effected by the deflection. The
capacitance C formed by the paddle and the counter electrode can be ex-
panded in a power series in ∆d/d0, where d0 is the equilibrium distance
between cantilever and substrate:

C(d0 +∆d) =
ε0A

d0 +∆d
= C0 (1 −

∆d

d0
+O(

∆d2

d2
0

)) , (3.6)

where ε0 is the vacuum permittivity and A = ab the area size of the paddle.
From the power series, we read off the capacitance change ∆Cd from the
bending torque Γd in leading order:

∆Cd = C0
∆d

d0
= C0

L

d0
η =

C0L

d0kd
Γd, (3.7)

where we have used Eqs. 3.5 and 3.2 to replace ∆d and η, respectively.
The torque Γd couples in first order to the capacitance.

We now proceed with the discussion of the effect of the torsional torque Γt

component on the capacitance signal, where we again refer to Fig. 3.3 for
the geometrical definitions. The torsional movement of the double beam
cantilever is more complicated: It involves both a twisting and a bending
of the two beams at the same time because a torsion as indicated in Fig. 3.1
will lift one beam upwards and press the other one downwards while twist-
ing both of them. Here, we are only interested in an estimate of the scale
of the torsional capacitance change relative to the change effected by the
bending. For this, the following model should be sufficient. We assume a
torsional angular deflection τ and approximate the two contributions to the
resulting torque from twisting and up- and down-bending of the two beams
separately. Hereby, we ignore the paddle, i. e. we assume that the paddle is
completely stiff and that the torque acts directly on the beams. We consider
Fig. 3.4, where the two cantilever beams are sketched in a cross-sectional
view both in their equilibrium position and at a finite torsional angle τ . At
the position of the beams, the linear deflection vl is given by
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r/2

w

t
t

F
l v

l

cantilever beams twisted/deflected

equilibrium

Figure 3.4: Torsional degree of freedom of the cantilever. A component Γt of the
torque twists the cantilever around its central axis by an angle τ . This causes a
simultaneous up- and down-bending of the two beams as well as a torsion of both
beams. The coupling of this motion to the capacitance signal can be neglected. For
details, the reader is referred to the text.

vl = τ
r

2
. (3.8)

With Euler Bernoulli beam theory, the deflection vl at the end of the beam
can be related to a force Fl acting at the same position:

Fl =
3Y Ib
l3

vl, (3.9)

where the areal moment of inertia is Ib = 1
12
wt3. For a rotation around the

central axis of the configuration, the lever is r/2. Hence the first contribu-
tion Γt,1 to the torsional torque, arising from the up- and down-bending,
is

Γt,1 = 2 ⋅
r

2
⋅ τ
r

2

3Y Ib
l3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fl

, (3.10)

where the leading factor of two takes the second beam into account and
where we have used Eq. 3.8. The contribution Γt,2 from the twisting of the
beams is readily calculated from the textbook formula for beam torsions
[41]

Γt,2 = 2 ⋅
GIt
l
τ. (3.11)

Here, G stands for the shear modulus, It for the torsion constant, and the
leading factor of two again accounts for the second beam. The torsion
constant is It = βtwt3, where βt depends on the ratio of w and t. For the
values as in Fig. 3.3 one finds βt ≈ 0.26 [42].
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3.3 Coupling of torque components to capacitive readout

Collecting Γt,1 and Γt,2, we obtain the spring constant kt for the torsional
degree of freedom of the cantilever:

Γt = ktτ = (
2GIt
l

+
3Y Ibr

2

2l3
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kt

⋅τ. (3.12)

It now remains to relate the deflection τ caused by Γt to a capacitance
change. The capacitance C of the capacitor formed by the substrate elec-
trode and with the paddle tilted around its central axis by angle τ is easily
retrieved by integration:

C(τ) =
ε0b

τ
ln

⎛

⎝

1 + a
2d0

τ

1 − a
2d0

τ

⎞

⎠
. (3.13)

We apply the expansion ln ( 1+ε
1−ε

) = 2ε + 2
3
ε3 +O(ε5) to arrive at the power

series of the capacitance in τ

C(τ) = C0 +
C0a

2

12d2
0

τ2
+ . . . (3.14)

The leading order correction to C0

∆Ct = C0
a2

12d2
0

τ2
= C0

a2

12d2
0

(
Γt

kt
)

2

(3.15)

is quadratic in τ . This is intuitive as the tilting does not change the distance
between the paddle and the substrate on average.
We are now able to compare the coupling of the torsional torque compo-
nent and the bending torque component to the measurement signal, i. e. the
capacitance, with each other. For this we evaluate the ratio of ∆Ct from
Eq. 3.15 and ∆Cd from Eq. 3.7

∆Ct

∆Cd
=

a2

12d0L
⋅
τ2

η
=

a2

12d0L
⋅
kdΓ2

t

k2
t Γd

. (3.16)

For comparative purposes, we assume equal torsional and bending torque
components Γ ≡ Γt ≡ Γd and use the geometric and material parameters
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(Y = 130 GPa, G = 50 GPa, [43]) to arrive at

∆Ct

∆Cd
= 0.007 ⋅

Γ

10−6 Nm
. (3.17)

The resulting ratio depends linearly on the considered torque scale Γ.
This is caused by the different order of coupling of bending and torsional
torque to the measurement signal. Typical scales of the oscillatory torque
components of dHvA oscillations discussed in the following chapters are
1⋅10−11 Nm−1⋅10−7 Nm and in some exceptional cases 1⋅10−6 Nm. Hence,
the coupling of the magnetization component M⊥,x effecting the torsional
torque Γt to the measurement signal is usually less than 0.1% relative to
the component M⊥,y. Thus, it can be neglected. This insight will be im-
portant for the interpretation of the experimental results in Chs. 7-8.

3.4 Calibration

We now turn to the discussion of the calibration scheme used for the can-
tilevers described in Sec. 3.2. As discussed in the previous section, the de-
gree of freedom associated with a torsional motion of the cantilever around
its central axis can be neglected in the experiments. Therefore, we drop the
indices that distinguish between the torsional and the bending torque com-
ponent and the two perpendicular magnetization components, respectively,
in the following.
In principle, Eq. 3.7 along with the explicit expression of kd in Eq. 3.3
provides the required relation of the torque Γ acting on the sample to the
measurement quantity ∆C. By Eq. 3.1 the perpendicular magnetization
M⊥ can be deduced. However, the measurement principle allows for a
convenient in-situ calibration of the cantilever to derive the experimental
calibration constant K defined by

Γ =K∆C. (3.18)

For the calibration, a dc voltage U is applied between the cantilever pad-
dle and the counter electrode on the substrate. This causes an attractive
electrostatic force F acting on the paddle, given by

F =
1

2

C0U
2

d0
. (3.19)
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Figure 3.5: Calibration curve of a CuBe cantilever. A dc voltage U is applied
between the cantilever paddle and the counter electrode. This deflects the cantilever
and effects a change in capacitance ∆C. The open circles represent measured data
for the capacitance change ∆C versus applied voltage U . A quadratic fit routine
is used (red line) to obtain the parameter κ defined by ∆C = κU2, which is a
measure for the sensitivity of the magnetometer.

The force acting on the paddle is equivalent to a torque given by

Γ = βFL =
βC0LU

2

2d0
, (3.20)

whereL is the lever, i. e. the distance from the paddle center to the clamp of
the cantilever. The factor β accounts for the reduced mechanical response
of a cantilever, which is subject to a force at the end of the beam, compared
to a cantilever deflected by a torque acting at the same position. This has
been discussed in detail [40]. It is a function of the geometrical dimensions
of paddle and beam. Here we only give the value for the specific double-
beam cantilever of Sec. 3.2, which is β = 0.98.
Combining Eqs. 3.18 and 3.20, a quadratic dependence of ∆C on U is
obtained

∆C = κU2, with κ =
βC0L

2d0K
. (3.21)

The constant κ can readily be determined by a quadratic fit to capacitance
data as a function of applied voltage U . Figure 3.5 shows an exemplary
calibration curve for a CuBe cantilever. The experimental calibration con-
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stant K is then inversely related to the constant from the quadratic fit

K =
βC2

0L

2ε0Aκ
, (3.22)

where we used C0 = ε0A/d0 to replace d0 by the paddle area A and the
equilibrium capacity C0 since A and C0 are easier to determine than d0.
At this point, it is worthwhile to consider the dependence of K on the
equilibrium capacitance C0. By Eq. 3.18 we have

K =
Γ

∆C
. (3.23)

Using Eq. 3.7 we can replace ∆C by ∆C = C0
∆d
d0

:

K =
Γ

∆d
⋅
d0

C0
. (3.24)

Since the deflection ∆d ∝ Γ caused by the torque is independent of the
capacitance and d0 ∝ 1/C0, we have

K ∝
1

C2
0

. (3.25)

This means thatK for the same cantilever mounted at different distances to
the substrate d0 has an inverse quadratic dependence on C0 or equivalently
a quadratic dependence on d0. For experiments with samples for which
the total capacitance signal varies over a considerable range depending on
field strength B due to a large non-oscillatory magnetization signal, this
scaling dependence of K is important to obtain a correct field-dependent
calibration constant.

3.5 Experimental setup and sensitivity

Observation of the de Haas-van Alphen effect requires low temperatures
and high magnetic fields. The experiments presented in the following
chapters were performed in two superconducting solenoids from Cryo-
genic Limited, each of which is integrated into a liquid Helium cryostat.
They are capable of providing maximum fields of 14 T and 15 T at the
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field center. The 15 T-magnet was set up in the framework of this thesis. It
additionally features two removable insert coils, which can provide either
a gradient field of 5 T/m or or an ac field, whose amplitude depends on
the modulation frequency. The insert coils were not used for the experi-
ments in this thesis. The specified field homogeneity of the main solenoids
are 10−4 and 5 ⋅ 10−5 in a 1 cm3 spherical volume around the field center
for the 14 T-magnet and the 15 T-magnet, respectively. The homogeneity
guarantees that the effect of possible forces on the cantilever arising from
a non-vanishing field gradient via ∇(M ⋅B) is negligible compared to the
effect of the torque signal. Their relative scale is 1/B ⋅∂B/∂x ⋅L, where L
is the length of the lever. For the specified homogeneity and L = 3.5 mm,
this parameter is 3 ⋅ 10−5 and hence force contributions are irrelevant.
Low temperatures were achieved by mounting the cantilever on its sub-
strate on the sample head of a 3He system. For operation, the parasitic
3He system is immersed into the liquid helium bath of the combined magnet-
cryostat such that the position of the cantilever at the sample head coin-
cides with the field center. The high field homogeneity around the field
center specified above allows a manual positioning of the 3He system rela-
tive to the field axis since an accuracy on the millimeter scale is sufficient.
In the liquid helium bath, the 3He system can provide temperatures down
to T = 280 mK. In detail, two systems from Oxford Instruments plc (He-
liox VL) and ICE Oxford Ltd (3ICEDIPPER) were employed. The former is
able to achieve a reliable temperature control from 0.3 K to ∼ 50 K while
the latter has a rotary sample stage which allows for angle-dependent mea-
surements.
Both 3He systems were equipped with coaxial cables for the capacitive
readout of the cantilever torque signal described in Sec. 3.3. The coax-
ial wiring guarantees shielding from stray capacitances and fields, which
would severely deteriorate the capacitance signal. For the readout highly
sensitive capacitance bridges from Andeen Hagerling (model 2500A and
2700A) were used. Figure 3.6 depicts a photographical in-situ image of
a CuBe cantilever. It is mounted with a clamp to the substrate. The area
on the substrate surrounding the cantilever is also metallized in order to
provide a defined electrical ground for the three-terminal capacitance mea-
surements with the Andeen Hagerling bridge. In the picture, parts of the
coaxial wiring as well as a gear of the rotational stage of the 3ICEDIPPER

(out of focus) can be seen. The cantilever carries the MnB2 sample, ex-
perimental data of which are discussed in Ch. 8. For measurements with a
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Figure 3.6: Photographical in-situ image of a CuBe cantilever carrying the MnB2

sample of Ch. 8. The cantilever is mounted to a substrate using spacer parts and
screws. The area on the substrate surrounding the cantilever is metallized such that
an electric ground can be defined in the proximity of the cantilever for the three-
terminal capacitance measurement. Parts of the coaxial wiring for the capacitive
readout are visible. Also, a gear of the rotational stage of the 3ICEDIPPER can be
seen (out of focus).

small variation of the overall capacitance C and typical averaging times
of the capacitance bridge set to ∼ 1 s, the rms noise of the bridge was
δC ≈ 2 aF. This allows to estimate the sensitivity with which the mag-
netization M can be measured via ∆M = δΓ/B = KδC/B. The magne-
tization resolution δM hence depends on the calibration constant K and
the field B at which it is detected. In Table 3.1 we list the values for K
and the maximal resolution δMmax for the different experimental series of
the following chapters. Hereby, the maximal sensitivity δMmax is given
at the highest accessible field strength B = 15 T. The values given for K
differ due to fabrication variances1 and different mounting distances d0

from the substrate. We also note that the values given in Table 3.1 relate
to the specific cantilevers that were used for the majority of the respective
series. Due to infrastructural reasons, parts of some series were performed

1For example, the width of the cantilever beams can vary as a result of varying etching
durations etc.
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Experimental series K (Nm/pF) δMmax (J/T) at B = 15 T
VB2 ([100]-[120]) 0.998 ⋅ 10−5 ∼ 1.5 ⋅ 10−12

VB2 ([001]-[100]) 2.82 ⋅ 10−5 ∼ 3.8 ⋅ 10−12

VB2 ([001]-[120]) 0.405 ⋅ 10−5 ∼ 0.5 ⋅ 10−12

MnB2 ([100]-[120]) 2.09 ⋅ 10−5 ∼ 2.8 ⋅ 10−12

Table 3.1: List of experimentally determined calibration constants K and corre-
sponding maximal sensitivities δMmax for a rms capacitance noise of δC ≈ 2 aF
at magnetic fieldB = 15 T. The majority of the experimental series indicated in the
first column has been performed using a cantilever with the respective parameters.
The Miller indices in the first column relate to the plane in which the orientation of
the magnetic field B was varied in the respective series. See Chs. 7-8

or repeated in subsequent cool-down cycles with different cantilevers. For
measurements with a strongly varying overall capacitance signal, the ca-
pacitance signal has a considerable variation even within the averaging
time ∼ 1 s of the bridge. Therefore, the effective resolution δM is reduced
compared to the maximal resolution δMmax in this case. Furthermore, it
was found that the capacitance bridge performs a re-balancing after every
change of the overall signal by 2.5 fF. The re-balancing causes jumps in
the capacitance signal of a field sweep as a function of B on the order of
5-10 aF. These jumps also result in an effective reduction of the ideally
attainable resolution.
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4 Torque magnetometry experiments on
graphene

In this chapter we present torque magnetometry measurements on the two-
dimensional carbon allotrope graphene. Graphene, a truly two-dimensional
crystal, is briefly introduced in Sec. 4.1. This is followed by numerical cal-
culations of the de Haas-van Alphen effect for two-dimensional electron
gases with a linear dispersion relation as in graphene in Sec. 4.2. We then
turn to a listing of the separate experiments and of the specific graphene
samples which have been investigated in Sec. 4.3. The chapter is con-
cluded by a discussion of the experimental outcome in Sec. 4.4.

4.1 Graphene - a truly two-dimensional crystal

Graphene is a two-dimensional crystalline allotrope of carbon. It con-
sists of a monolayer of sp2-hybridized carbon atoms in a honeycomb lat-
tice (Fig. 4.1 (a)) and can be regarded as the base structural material for
building other carbon allotropes: An appropriately cut graphene sheet can
be wrapped to a zero-dimensional C60 fullerene. Graphene sheets can
also be rolled up to form one-dimensional carbon nanotubes or stacked
to form three-dimensional graphite. Graphene has theoretically been stud-
ied for decades [44–46], but was assumed not to exist as a stand-alone
crystal. The free state was predicted to be thermodynamically unstable to-
wards decomposition and formation of wrapped or rolled structures such
as fullerenes and nanotubes [47]. This assumption was falsified in 2004
when Novoselov et al. isolated monolayers from graphite with a tech-
nique of striking simplicity and straightforwardness [4]: They mechani-
cally exfoliated graphene from pyrolytic graphite by repeated peeling us-
ing a commercial adhesive tape and subsequently deposited the isolated
graphene flakes on silicon oxide substrates. This ignited tremendous re-
search efforts both in academia and industry and graphene became one of
the most active fields of research in science in the last decade [7, 48–52].
This enthusiasm is justified by unique properties of graphene, such as ex-
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Figure 4.1: (a) Graphene lattice structure. The graphene honeycomb lattice con-
sists of two equivalent sublattices A and B. The hexagonal lattice with a basis of
two atoms per unit cell is spanned by unit vectors a1 and a2. (b) Dispersion rela-
tion of the π and π∗ bands of graphene for t = 2.7 eV and t′ = −0.2 t. Energy units
in eV. K-space coordinate units in 1/a. A blow-up of the energy bands at one of
the Dirac points is shown.

treme mechanical strength as well as extraordinarily high electronic and
thermal conductivities, making it a promising candidate for a vast variety
of applications in electronics, photonics, sensor technology, et cetera [9].

4.2 Theory of the de Haas-van Alphen effect of Dirac
electrons

One of the most remarkable properties of graphene is its electronic struc-
ture. Graphene is a zero-gap semiconductor. Valence and conduction band
touch each other at the K-points of the Brillouin zone. Expansion of the
dispersion relation around these points yields a linear dependence of en-
ergy on momentum. Charge carriers in graphene hence mimic relativistic
massless particles as described by the Dirac equation. This constitutes a
profound difference compared to the situation in three-dimensional crys-
tals as well as other two-dimensional electron gases (2DESs), where the
dispersion relation is generally parabolic. The linear dispersion relation
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also modifies quantum oscillatory phenomena, such as the Shubnikov–de
Haas effect and the de Haas-van Alphen effect, which has been discussed
for parabolic three-dimensional systems in Ch. 2 and for parabolic 2DESs
in Ref. [40]. In fact, the exact confirmation of the predicted anomalies of
the quantum Hall effect for Dirac fermions constituted the smoking gun in
the seminal papers of Novoselov et al. [53] and Zhang et al. [54]. Magneti-
zation experiments on graphene therefore seem worthwhile from a funda-
mental point of view since they could allow for the first-time observation of
the dHvA effect of particles obeying a relativistic dispersion relation and
would thus combine one of the best-known effects in solid state physics
with the physics of Dirac particles. Moreover, they might also provide a
means to measure the Fermi velocity, which is the proportionality constant
of the linear dispersion relation, and a method to test the band structure
for possible deviations from linearity. In more advanced experiments with
structured graphene one might even think of the observation of the effects
of different edge states on the magnetization, such as zigzag and armchair
edges [55–57].
The band structure with its linear dispersion relation is at the heart of much
of graphene physics. We therefore briefly comment on its features before
we turn to the presentation of numerical calculations of the dHvA effect
in graphene. Analytic results, which also include the quantum limit1, are
not available in literature. The numerical calculations were performed to
assess the scale of the magnetization signal for different samples and also
to highlight the differences compared to conventional 2DESs.
The band structure of graphene was calculated as early as 1947 using a
tight-binding model Hamiltonian [44]. The calculations yield for the bind-
ing π and the anti-binding π∗ band:

E±(k) = ±t
√

3 + f(k) − t′f(k), (4.1)

where

f(k) = 2 cos (
√

3kya) + 4 cos(

√
3

2
kya) cos(

3

2
kxa) , (4.2)

and where t is the nearest-neighbor hopping energy and t′ is the next-
to-nearest-neighbor hopping energy. This band structure is depicted in

1Analytic results for low magnetic fields, i. e. h̵ωc ≪ EF, were reported in Ref. [58].
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Fig. 4.1 (b). The upper and the lower band touch each other at the K
and K′-points of the Brillouin zone. Expansion of the dispersion relation
around these points yields

E±(q) ≈ ±h̵vF ∣q∣ + O ((q/K)
2) , (4.3)

where q measures the momentum relative to the K- and K′-points and the
Fermi velocity is vF = 3ta/(2h̵). The parameters t and t′ are generally
reported to be t ≈ 2.7 eV and ∣t′∣ ≲ 0.2t [49] yielding a Fermi velocity
of vF ≈ 1 ⋅ 106 m/s. Equation 4.3 represents the aforementioned linear
dispersion relation in the proximity of the K- and K′-points, which are also
called Dirac points for this reason. The linear dispersion relation manifests
itself in a cone-like shape of the band structure at the Dirac points, which
is shown in a blow-up in Fig. 4.1 (b).
The Landau levels for charged particles with linear dispersion relations are
given by [59]

En = h̵ωc

√
n, with n ∈ N0, (4.4)

where the cyclotron frequency is ωc =
√

2vF

√
(eB/h̵). Different from

the parabolic case, the Landau levels according to Eq. 4.4 are not equally
spaced due to the dependence on

√
n. Moreover, the lowest (zeroth) Lan-

dau level is pinned to zero energy while in the parabolic case the energy
of the lowest Landau level h̵ωc/2 depends linearly on the magnetic field
B (cf. Eq. 2.10). However, because both the Landau level index n and the
magnetic field B enter Eq. 4.4 with a square root dependence, quantum
oscillations for Dirac electrons are also periodic in 1/B as in the parabolic
case. The Landau level degeneracy scales linearly with B:

DL =
gsgv

2π

eB

h̵
. (4.5)

Hereby, the factor gv = 2 takes into account an additional degeneracy in
graphene, which is a consequence of the honeycomb lattice consisting of
two identical sublattices A and B (cf. Fig. 4.1). This degeneracy is gener-
ally termed “valley” or “pseudospin” degeneracy additional to the normal
spin degeneracy gs. We refrain from a further treatment of this degener-
acy and only mention that it gives rise to interesting analogies between
graphene and quantum electrodynamics [7, 49].
A routine for the numerical calculation of the dHvA effect at zero tem-
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perature applies the following steps: First, the dependence of the chem-
ical potential µ(B) on the magnetic field B must be derived by impos-
ing particle conservation. As pointed out in Ch. 2, this is important for
two-dimensional electron systems, where the oscillations of the chemical
potential are not negligible. The particle sheet density n0 is given by

n0 = ∫

µ(B)

0
D(B, ε)dε, (4.6)

where D(B, ε) is the magnetic field-dependent density of states (DOS).
Without disorder, it is a sum of Dirac delta functions at the positions of
the Landau levels multiplied by the Landau level degeneracy, D(B, ε) =

∑
∞

n=0DLδ(ε − En). In order to consider disorder, the δ-functions can be
smeared out to properly normalized Lorentzians. Implicit solution of 4.6
yields the oscillations of the chemical potential µ(B).
As a second step, the total internal energy can now be calculated

U(B) = ∫

µ(B)

0
D(B, ε) εdε. (4.7)

Different to the case of parabolic 2DESs, the internal energy has a non-
trivial non-oscillatory contribution Ũ due to fact that the Landau levels are
not equally spaced. In the course of this thesis, we have derived an exact
analytic expression for this contribution to U . It can be expressed as

Ũ(B) =DL (
EF

2
+H

(−1/2)
nB−1 ) . (4.8)

Hereby, the Fermi energy EF is given by EF = h̵vF
√
πn0, the number nB

corresponds to the hypothetical fractional Landau level index coinciding
with the Fermi energy, nB = (EF/(h̵ωc))

2, and H(t)s denotes the general-
ized harmonic number given by

H(t)s =
s

∑
k=1

1

kt
, s ∈ N, (4.9)

whose definition can be extended to arbitrary complex arguments s and t
by

H(t)s = ζ(t) − ζ(t, s + 1), (4.10)
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4 Torque magnetometry experiments on graphene

where ζ(t) is the Riemann zeta function and ζ(t, s+1) is the Hurwitz zeta
function [60, 61]. Subtraction of Ũ(B) from U(B) yields the oscillatory
component of the internal energy

Uosc(B) = U(B) − Ũ(B). (4.11)

The magnetization oscillations can now be obtained by numerical differ-
entiation with respect to B

Mosc(B) = −
∂Uosc

∂B
. (4.12)

Figure 4.2 illustrates exemplary results of this numerical dHvA routine.
The calculations were performed for n0 = 1 ⋅ 1013 cm−2, which is the typ-
ical sheet density of electron-doped epitaxial graphene on silicon carbide
[62,63], which has been investigated in the course of this thesis (Sec. 4.3).
Charge carrier densities of exfoliated graphene are typically smaller by
about one order of magnitude. The electron density n0 corresponds to a
Fermi energy of EF = 0.37 eV. An energy-independent Lorentzian broad-
ening with a width of 0.3 meV was included. Figure 4.2 (a) depicts the
oscillations of the chemical potential µosc(B) as a function of B, mea-
sured relatively to the Fermi energy, as inferred by implicit solution of
Eq. 4.6. The chemical potential oscillates periodically in 1/B in such a
manner that the electron density remains constant. Because the ampli-
tude of the oscillations increases as a function of B, the oscillations of
the chemical potential need to be taken into account in the calculation of
the total energy unless h̵ωc ≪ EF. In the quantum limit, i. e. when the
Landau level with index n = 1 exceeds the Fermi energy, the chemical
potential jumps to the zeroth Landau level, i. e. zero energy according to
Eq. 4.4, which corresponds to −EF when measured relatively to the Fermi
energy EF. This is different to the parabolic case where the energy of the
zeroth level linearly scales withB and where hence the chemical potential,
being pinned to the zeroth level, linearly increases as a function ofB in the
quantum limit (cf. Ref. [40]). Figures 4.2 (b,c) illustrate the dependence
of the total internal energy U as a function of B and 1/B, respectively, as
obtained by Eq. 4.7. As noted above, unlike to the parabolic case, the total
energy U features a non-oscillatory contribution. This is a consequence
of the fact that the Landau levels are not equally spaced due to the square
root dependence on the index n. Additional to the oscillations caused by
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the consecutive passing of Landau levels through the Fermi energy as B
increases, the internal energy U also depends on the number of occupied
Landau levels, i. e. the number of Landau levels with energy below the
Fermi energy. This fact is special to the case of a linear dispersion rela-
tion and expressed by the analytic result Ũ in Eq. 4.8. Another difference
to the parabolic case is again the quantum limit where the internal energy
drops to zero corresponding to the energy of the zeroth Landau level. In
a similar fashion as for the chemical potential, the internal energy linearly
increases with B in the quantum limit for a parabolic dispersion relation.
In Fig. 4.2 (d) the oscillatory component Uosc = U − Ũ of the internal en-
ergy is shown as obtained by subtraction of the non-oscillatory contribu-
tion given by Eq. 4.8. Numerical differentiation of Uosc leads to the dHvA
oscillations of magnetization Mosc, which are depicted in Figs. 4.2 (e,f) as
a function of B and 1/B, respectively. As B increases, the amplitude of
the dHvA oscillations also increases slightly. This is again a consequence
of the Landau levels not being equidistant in energy for a linear dispersion
relation. In 2DESs with parabolic dispersion relations, the amplitudes are
constant in the ideal case of zero level broadening.

4.3 Overview of graphene samples, magnetization
experiments, and experimental technique

In the course of the research for this thesis, several magnetization experi-
ments with graphene samples produced by different techniques have been
carried out:

(1) Graphene was grown on copper foils by chemical vapor deposition
by Dr. Paul Berberich (group of the present author). The copper
foil was etched away in an acid solution from where the floating
graphene sample was skimmed with a GaAs single crystal sample
covered with an Al2O3 layer for better visibility of the graphene
sheet. Subsequently, a micromechanical cantilever magnetometer
(MCM) was prepared from the combined GaAs/Al2O3/graphene sam-
ple such that graphene was monolithically integrated into the mag-
netometer [64].

(2) Graphene was grown on copper foils by chemical vapor deposi-
tion [6,65] in the group of Dr. José Garrido of Technische Universität
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Figure 4.2: Numerical calculation of the dHvA effect for a two-dimensional elec-
tron system with linear dispersion relation. The calculation was performed for a
sheet density of n0 = 1 ⋅ 1013 cm−2 and with an energy-independent Lorentzian
broadening of the Landau levels of 0.3 meV. (a) Oscillating contribution µosc to
the chemical potential as a function of magnetic field strength B. (b) Energy per
electron U/N as a function of field strength B. (c) Energy per electron U/N as
a function of inverse field strength 1/B. (d) Oscillatory component of the energy
per electron Uosc/N as a function of inverse field strength 1/B. (e) Oscillatory
component Mosc of magnetization as a function of field strength B in units of
n0µB. (f) Oscillatory component Mosc of magnetization as a function of inverse
field strength 1/B in units of n0µB.
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München. The copper foil was again etched away and the graphene
sample was skimmed with a silicon sample of 45 µm thickness cov-
ered with 300 nm thermal SiO2. The Si/SiO2/graphene sample was
then transferred onto a GaAs-based MCM. This modification of the
previous experiment was performed since it had been assumed that
the graphene sample had suffered from a severe deterioration in
terms of electronic quality in the preparation process of the MCM
with monolithically integrated graphene [66]. Figure 4.3 (b) shows
a photographical image of the Si/SiO2/graphene sample attached to
the paddle of the GaAs-based MCM.

(3) Graphene was epitaxially grown on the Si-terminated side of 6H-
SiC samples of 140 µm thickness in the group of Prof. Thomas Seyller
of Friedrich-Alexander-Universität Erlangen-Nürnberg (present af-
filiation: Technische Universität Chemnitz). Raman spectroscopy
examination of the samples verified a coverage with predominantly
monolayer graphene (MLG). The SiC/Graphene samples were at-
tached onto a GaAs-based MCM [66]. Figures 4.3 (a,c) show atomic
force microscopy (AFM) images of one of the investigated epitaxial
graphene samples, where Fig. 4.3 (a) depicts the height profile and
Fig. 4.3 (c) the phase contrast at the same sample position.

(4) The previous experiment was repeated with MLG samples on thin-
ner SiC samples (40 µm thickness) in order to reduce a strong para-
magnetic signal attributed to point defects of the SiC substrate [67].

(5) Quasi-free-standing monolayer graphene (QFMLG) was epitaxially
grown on 6H-SiC samples with an intercalated hydrogen layer [68]
in the group of Prof. Thomas Seyller. The homogeneity of the graphi-
tization process was examined with Raman spectroscopy by scan-
ning a sample in 10 µm steps from the edge to the middle. It was
found that only at a distance of ∼ 100 µm from the edge, the graphi-
tization process led to predominantly MLG/QFMLG. Closer to the
edge, multilayer graphene or graphite, respectively, dominated [69].
For this reason, the graphitic residues at the sample edges were
etched away in an oxygen plasma incinerator with a protective resist
coating applied to the central sample region. The resist was sub-
sequently removed and the sample was attached to a GaAs-based
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4 Torque magnetometry experiments on graphene

MCM [67]. Figure 4.3 (d) shows a photographical image of the
QFMLG sample on SiC with a droplet of the protective PMMA re-
sist applied before incineration.

(6) The development of Si-based MCMs on the micrometer scale with
200 nm thickness, which would in principle allow for the obser-
vation of the dHvA effect of exfoliated graphene flakes, was initi-
ated [66].

The GaAs-based MCMs of experiments (1-5) use the same working princi-
ple as the CuBe-based MCMs described in Ch. 3, but achieve a sensitivity
that exceeds the CuBe MCMs by approximately two orders of magnitude
due to smaller dimensions. Figure 4.4 depicts a drawing, true to scale, of
a GaAs MCM mounted to a sapphire substrate by fixing the cantilever’s
foot of dimensions 2 × 3 mm2 with a conductive glue. The cantilever fea-
tures a paddle, which carries the sample and whose bottom side is metal-
lized with gold palladium (AuPd) for capacitive readout of the cantilever’s
deflection. The sapphire substrate also comprises appropriately formed
Au-metallized surface areas in order to contact the paddle electrode and
to form the counterelectrode for the paddle. The distance of the paddle
and the substrate electrode is determined by the foot height and is usually
set to 80-150 µm. The beam width is 100-200 µm and the paddle dimen-
sions of 1.2 × 2.0 mm2 determines the maximum sample size which can
be examined (usually 1.0 × 1.8 mm2). The preparation of the GaAs-based
MCMs involves photolithographical, wet etching, and thermal evaporation
techniques for metallization and is described in detail in Refs. [40,70,71].

4.4 Experimental outcome

Magnetization experiments (1-5) as listed in Sec. 4.3 were conducted in
broad field and temperature ranges. In each case, our detailed data analysis
showed that none of the different and complementary approaches provided
us with a signal that could be attributed to the respective graphene layer.
We refrain from a detailed discussion of all experimental results and only
exemplify the experiments by a brief presentation of experiment (3) from
Sec. 4.3.
The relevant graphene was synthesized on silicon carbide (SiC) by subli-
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(a) (b)

(c) (d)

 1m
m

500 µm

Figure 4.3: Various large-area graphene samples, which have been investigated.
(a) AFM height profile of a sample of epitaxial graphene on the Si-terminated
side of 6H-SiC. The typcial terrace structure of SiC when treated by chemical-
mechanical polishing and subsequent annealing can be seen. (b) Sample of CVD-
grown graphene on a Si substrate with a layer of thermal SiO2 on the paddle of a
GaAs-based cantilever. The graphene sheet forms wrinkles on the substrate, which
are weakly visible. (c) AFM phase contrast profile of the same sample and at
the same position as in Fig. (a). The darker areas can be attributed to regions
with bilayer or few-layer graphene. (d) Sample of quasi-free standing monolayer
graphene on the Si-terminated side of 6H-SiC, partially covered by a droplet of
PMMA resist. The resist was applied in order to protect the central region of the
sample in an incineration process step of few-layer graphene regions and graphitic
residues at the sample edges.
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Figure 4.4: Drawing of a GaAs-based micromechanical cantilever magnetometer
(MCM). The cantilever with a metallized bottom side is attached to a sapphire sub-
strate. The substrate comprises appropriately formed Au-metallized surface areas
in order to contact the cantilever paddle electrode and to form a counterelectrode
for the paddle for capacitive readout of the cantilever’s deflection. The thickness
of the paddle and the beam is ∼ 4.5 µm. The dimensions of the cantilever paddle,
onto which the sample is placed, are 1.2 × 2 mm2 and the length and width of the
beam are given by 1.0 mm and 100-200 µm, respectively.

mation of Si atoms [72,73]. Such epitaxial graphene is a graphene realiza-
tion which features a lot of the salient features of ideal graphene. Amongst
the scalable production techniques it yields graphene of the highest elec-
tronic quality [74]. Although the high substrate costs of SiC will probably
prevent it from becoming a general competitor to Si-based devices, epi-
taxial graphene is a promising candidate for some niche applications [75].
For detailed reviews of epitaxial graphene physics and possible applica-
tions see Refs. [76–78].
The samples for experiment (3) were prepared from a 2 inch 6H-SiC wafer,
which had been thinned down to 140 µm and intentionally polished by NO-
VASiC1 using a chemical-mechanical technique to guarantee an atomically
flat surface ready for epitaxy. The polished wafer was then cut into sam-
ples of size 1.0 × 1.8 mm2 and graphene was epitaxially grown on the Si-

1NOVASiC, Allée du Lac d’Aiguebelette, Savoie Technolac, 73370 Le Bourget-du-Lac,
France
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terminated side of the samples in the group of Prof. Seyller at Friedrich-
Alexander-Universität Erlangen-Nürnberg using a thermal graphitization
technique which has been described in detail elsewhere [79, 80]. Raman
spectroscopy established that the samples were covered by predominantly
monolayer graphene (MLG) [66, 69]. The samples were also scrutinized
by means of atomic force microscopy (AFM). Figures 4.3 (a,c) show typi-
cal AFM images of the investigated samples, where Fig. 4.3 (a) depicts the
height profile and Fig. 4.3 (c) the phase contrast of the same position on
the same sample. Both images show the typical terrace structure formed
by the SiC substrate when treated by chemical-mechanical polishing and
subsequent annealing in the epitaxial growth procedure. The step height
between the terraces is ∼ 1.5-3 nm, which corresponds to the scale of the
6H-SiC unit cell with c = 15.1198 Å [81]. From the images it can also be
inferred that the terrace width is on the scale of 1 µm, which establishes
an excellent sample quality [69,79]. The phase contrast image Fig. 4.3 (c)
shows darker areas, which we attribute to regions with bilayer graphene or
few-layer graphene (FLG) [69]. The area ratio covered by such undesired
FLG crystallites is small, which confirms the finding from the scanning
Raman spectroscopy.
Figure 4.5 shows typical raw capacitance data C versus magnetic field
B from magnetization experiments performed with the epitaxial graphene
samples on 6H-SiC at temperature T = 290 mK with a GaAs MCM as
depicted in Fig. 4.4. A large paramagnetic overall signal is found, which
is argued to stem from point defects of the SiC samples [67]. To isolate
a possible signal stemming from the epitaxial graphene layer, a low-order
polynomial fitting function was subtracted from the raw data. The result-
ing reduced capacitance data ∆C are shown in Fig. 4.6 (a), where the color
discerns data from different magnetic field sweeps (black: up-sweep 1,
red: down-sweep 1, blue: up-sweep 2, green: down-sweep 2). Sawtooth-
like features are present. They were traced to a technical issue in that the
employed capacitance bridge re-balanced repeatedly. This process was pe-
riodic in changes of the overall signal by 2.5 fF. To eliminate this feature
and to study the data in detail for graphene magnetization, we implemented
an algorithm that detected the positions of the jumps, analyzed the respec-
tive amplitudes of the jumps, discarded data in a range of ±26 mT around
the jumps, and subtracted the amplitudes in the original raw data C for all
field values greater than the jump position in such a manner that the par-
asitic jumps were removed. The processed data are shown in Fig. 4.6 (b)
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Figure 4.5: Raw capacitance data C versus magnetic field B from magnetization
experiments performed with an epitaxial monolayer graphene sample on 6H-SiC
at temperature T = 290 mK. A large paramagnetic overall signal is found, which
can be attributed to point defects of the SiC samples [67].

were the subtraction was performed for the reduced data ∆C for the pur-
pose of illustration. Subsequently, a low-order polynomial was fitted to
the reconstructed data Crec to discard the paramagnetic substrate signal.
The resulting data ∆Crec are shown in Fig. 4.6 (c) versus inverse magnetic
field. Figure 4.6 (c) contains an oscillating feature of two periods. It illus-
trates a principal dilemma when large overall signals are tested for possible
(low-frequency) quantum oscillations on a scale which is lower by several
orders of magnitude: If oscillations are present, a polynomial of reason-
ably high degree must be subtracted to isolate them. At the same time,
it is difficult to discern between oscillating features artificially introduced
by the subtraction of the polynomial and possible physical oscillations. To
gain clarity, the experiment was repeated with a pure substrate, which had
not undergone the graphitization procedure, under exactly the same exper-
imental conditions as for the graphene samples. Subsequently, exactly the
same data analysis was carried out. Figure 4.6 (d) depicts the resulting
data. The close similarity to the data in Fig. 4.6 (c) suggests that the epi-
taxial graphene layer did not contribute a discernible magnetic signal. We
attribute the remaining oscillating signals to artificially created oscillations
when subtracting the polynomial fitting function.
As mentioned in Sec. 4.3, the experiment was modified and repeated in
order to address issues which might have prevented the observation of a
graphene magnetization signal. To reduce the influence of the substrate,
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Figure 4.6: Analysis of the experimental raw data of Fig. 4.5 from a sample with
epitaxial graphene on 6H-SiC. (a) Capacitance data ∆C after subtraction of a
low-order polynomial fitting function versus magnetic field B. The sawtooth fea-
ture stems from a period re-balancing of the employed capacitance bridge. (b)
Elimination of the sawtooth jumps from the data in Fig. (a) after application of a
dedicated algorithm. (c) Reconstructed capacitance data ∆Crec after elimination
of parasitic jumps in the raw data and subtraction of a low-order polynomial fitting
function. (d) Capacitance data from a pure 6H-SiC substrate sample after applica-
tion of the same processing steps as illustrated in Figs. (a-c) for the 6H-SiC sample
with epitaxial graphene.
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thinner samples (40 µm) were used. Additionally, samples where edges
had been cleaned with oxygen plasma were investigated as well as sam-
ples with an intercalated hydrogen layer promising a better electron mo-
bility [68]. Moreover, the capacitance bridge was operated in a mode in
which it did not re-balance, but used the voltage deviation from the balanc-
ing point, found at the beginning of the field sweep, as the direct output.
However, a magnetic signal attributed to graphene could not be deduced in
any of the experiments.
We conclude that to date large-area graphene samples are not provided
with an electronic quality and sample homogeneity sufficient for the ob-
servation of magnetic quantum oscillations of Dirac electrons. Electron
mobilities at cryogenic temperatures of good epitaxial MLG and epitaxial
QFMLG samples amount to 2000 cm2/(Vs) [63] and 3000 cm2/(Vs) [68],
respectively, but this still falls short of the mobilities achieved in 2DESs in
semiconductor and oxide heterostructures, where the dHvA effect is rou-
tinely observed, by approximately two to three orders of magnitude (e. g.
1 ⋅ 105 cm2/(Vs) [82], 1.4 ⋅ 106 cm2/(Vs) [83], 3.7 ⋅ 105 cm2/(Vs) [84],
2.9 ⋅ 105 cm2/(Vs) [85]). Measurements of Shubnikov-de Haas oscilla-
tions and the quantum Hall effect have been reported for epitaxial mono-
layer graphene by Jobst et al. [62, 63]. However, these experiments were
performed in a high-field laboratory and the effects could only be clearly
shown for magnetic fields ≳ 10-12 T. For lower fields, no quantum oscil-
lations were observed even after background subtraction routines simi-
larly to ours had been applied [86]. Moreover, the Hall bar for the trans-
port measurements in Refs. [62, 63] was patterned on a single SiC terrace
(Fig. 4.3 (a)) and had lateral sizes on the scale of a few micrometers. Thus,
a considerably higher electronic homogeneity can be assumed than for our
samples where the epitaxial graphene layer extended over millimeters and
numerous terraces. Reference [62] provides a histogram of charge carrier
densities in 51 different MLG samples (Fig. 2) showing a considerable dis-
tribution of the densities between 7 and 13 ⋅ 1012 cm−2. If it is assumed
that this distribution does not only apply to different samples, but also to
different positions on the same sample due to doping by surface defects,
crystallite grain boundaries etc., a considerable position-dependent varia-
tion of the dHvA frequency is the consequence. Following Schoenberg’s
arguments (cf. Sec. 2.34 and Ref. [20]), this would cause a massive smear-
ing of dHvA oscillations due to sample inhomogeneity. In the light of
these arguments, we consider our results to be consistent in that our high-

64



4.4 Experimental outcome

sensitivity torque magnetometers did not allow us to observe the dHvA
effect in large-area graphene samples.
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5 Sample head for cantilever magnetometry
with interferometric readout

In this chapter, we present the design and assembly of a sample head for
magnetization experiments at low temperatures down to 280 mK and high
magnetic fields employing a cantilever-based magnetometer with a fiber-
optical interferometric readout. We briefly explain the experimental moti-
vation that led to the development of a new sample head (Sec. 5.1) before
turning to general design considerations (Sec. 5.2) and their implementa-
tion in the final realization of the sample head (Sec. 5.3).

5.1 Motivation

The development of a new sample head was pursued in order to provide
an additional system for torque magnetometry experiments employing an
optical readout scheme and particularly to allow for the optical readout of
cantilevers with lateral dimensions on the micrometer scale. In the follow-
ing, the optical readout scheme is compared to the capacitive technique
given in Sec. 3.3 and the desirability of a system designed for the employ-
ment of miniaturized cantilevers is briefly discussed.
For torque magnetometry on two-dimensional electron systems (2DESs),
GaAs-based cantilevers have successfully been employed in a long se-
ries of studies [70, 82–85, 87–98]. While the CuBe cantilever, detailed in
Sec. 3.2, have the advantage of being comparably robust, straightforward
to produce, and able to support a large sample weight of a few grams, the
semiconductor-based cantilevers from GaAs have a better sensitivity due
to their smaller dimensions, which exceeds the CuBe cantilevers by ap-
proximately two orders of magnitude. Conventional readout of such GaAs
cantilvers employs a capacitive scheme [70] which is essentially the same
as for the CuBe cantilevers presented in Sec. 3.3. For this purpose, a thin
AuPd layer is evaporated onto the backside of the GaAs cantilever. Thus,
the metallized cantilever and a substrate with an appropriate counter elec-
trode permit a capacitive readout of the cantilever’s deflection.
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An alternative route [93] is an optical readout where infrared laser light is
guided through a fiber and directed onto a metallized surface of the can-
tilever’s paddle or beam. The light is reflected and coupled back into the
fiber thus forming a Fabry-Pérot interferometer. The distance between the
cantilever and the fiber ending is controlled by a piezo stack. A feedback
loop is employed to keep this distance constant by applying a voltage to
the piezo stack. In this manner, the voltage applied to the piezo by the
feedback loop can serve as a measurement signal proportional to the can-
tilever’s deflection.
The two readout techniques complement each other. The capacitive tech-
nique is preferable in situations where the laser light could cause unde-
sired effects on the investigated sample such as heating or electronic exci-
tation. It also allows for rotations of the sample system and hence angle-
dependent magnetization measurements in uniaxial magnets while the op-
tical technique requires a fixed orientation of the cantilever relative to the
fiber. Moreover, the capacitive technique is more robust with respect to
external vibrational disturbance due to its open-loop design. The chief
advantages of the optical readout are a further increase in sensitivity of
approximately one order of magnitude for the GaAs cantilevers and, for
2DESs, the ability to incorporate field effect electrodes. The latter is diffi-
cult with the capacitive readout due to crosstalk effects.
The advancement of experimental capabilities to miniaturized cantilevers
with dimensions of a few micrometers seems desirable for various rea-
sons. Continued interest to study magnetic properties via micromechani-
cal means [99,100] and the ability of high-resolution dHvA measurements
on crystals which cannot be grown in large single crystals yet are prime
examples. Capacitive readout reaches its limits for cantilevers with such
dimensions because the capacitance signal scales with the electrode area
formed by the cantilever. For this reason, the optical technique is the pre-
ferred choice for microcantilevers. However, this demands the ability to
exactly position the cantilever with respect to the optical fiber guiding the
laser light. Moreover, the positioning needs to be adjustable in an ultra-
cold environment because a misalignment can be caused by the cool-down
from room temperature due to different thermal expansion coefficients of
the materials of the sample head and in the cantilever itself.
The availability of a robust system for optical readout of the conventional
GaAs cantilevers for increased experimental flexibility as well as the afore-
mentioned requirements for experiments with miniaturized cantilevers were
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the stimuli for the development of the sample head.

5.2 Design considerations

For the design of a sample head for torque magnetometry experiments in
high magnetic fields at low temperatures, various geometrical, mechanical,
and electrical constraints as well as experimental requirements need to be
considered. In the following, we briefly discuss the main aspects.

(1) General geometric considerations. The sample head is to be at-
tached to an existing vacuum loading 3He system and the system
is to be used in existing superconducting solenoids. This imposes
two geometrical constraints. The sample head must fit into the inner
vacuum chamber (IVC) of the 3He system and the sample position
within the sample head must allow to reach the field center of the
solenoids when the 3He system is immersed into the bath cryostat
containing the solenoid.

(2) Fine positioning of the cantilever. For the optical readout tech-
nique, the cantilever’s position needs to be adjustable along three
spatial directions. Moreover, the angle of the normal of the can-
tilever should be adjustable. The fine positioning ability is important
to optimize the coupling of the reflected light back into the fiber after
cool-down to cryogenic temperatures. For miniaturized cantilevers
it is essential because misalignment due to thermal expansion prop-
erties must be expected to be on the same scale as the cantilever’s
dimensions. The required positioning abilities demand for four posi-
tioning units corresponding to three spatial directions and one angle.

(3) Experimental angle. For the static equilibrium measurement tech-
nique on 2DESs, a finite angle ϑ between the magnetic field axis
and the cantilever normal is required because the torque vanishes
for zero angle. For the optical readout, a standard angle of ϑ = 15°
is established. Future experiments might however apply a resonant
measurement scheme where the torque effected by the sample mag-
netization shifts the spring constant and hence the oscillation fre-
quency of the cantilever [101]. For this technique, it was decided
that the sample head should also allow for an experimental angle of
ϑ = 0°.
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(4) Cantilever coordinates vs. lab coordinates. It is preferable to
position the cantilever with respect to a reference system which is
spanned by the direction of the cantilever beam, the surface normal
of the cantilever and the direction perpendicular to both the beam
and the normal. This system is referred to as sample coordinates
(x, y, z) and is depicted in Fig. 5.2 (a). For the design with exper-
imental angle ϑ = 15°, this reference system is not parallel to the
lab coordinates (X,Y,Z), which are spanned by the direction of the
magnetic field B and two directions perpendicular to B. This dif-
ference needs to be adjusted for in such a manner that any linear
positioning unit only drives one specified axis of the cantilever co-
ordinates. Similarly, the angular positioning unit travels on a circle
of radius r = 32.8 mm. It is preferable that the effect of the angu-
lar positioning unit at the sample position is only a variation of the
angle with respect to the lab system, but no linear travel.

(5) Experimental access, accommodation, and protection of wiring
and optical fiber. The experimental head must provide enough
space to accommodate numerous wires and associated connectors.
The positioning units alone require 4 × 2 wires for driving and 3 × 3
wires for readout. The piezo stack for the optical fiber and the cali-
bration coil of the cantilever require four additional mandatory wires
for the optical readout technique. This is complemented by addi-
tional optional wiring required by the experimental situation such
as the implementation of a gate terminal or simultaneous electrical
transport measurements. At the same time, experimental access in
order to mount the sample must be guaranteed and both thin wires
and the fragile optical fiber must be protected.

(6) Wiring of the positioning units. The working principle of the posi-
tioning units is a stepper slip-stick technology that requires the appli-
cation of sawtooth voltage signals to a piezoelectric actuator, which
represents a high capacitive load [102]. For this reason, the ohmic
resistance of the wires driving the positioning units needs to be less
than 5 Ω in order to guarantee the required sharp voltage flanks.

(7) Load capacities. The loads which the positioning units are able to
move are limited. This needs to be taken into account when stacking
different positioning units and designing other structural parts.
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5.3 Implementation

Figure 5.1 depicts a computer-aided drawing of the sample head in the ϑ =
15° configuration. The sample head consists of a main body (transparent)
in the upper part. The piezo stack (green) for the optical fiber is attached
via a support plate to the main body. Two elongated side parts extend on
opposite sides from the main body downwards. The side parts carry a stack
of various parts. From bottom to top, the stack consists of: a carrier part,
a linear z-positioner (blue), a spacer part 1, an angular positioner (blue),
a linear y-positioner (blue), a spacer part 2, a linear x-positioner (blue),
and a sample holder (black) carrying a chip carrier (brown) for the sample.
The chip carrier is located at a position in the proximity of the piezo stack
for the fiber, with its surface perpendicular to the piezo stack axis.
In the following, we describe how the various constraints outlined in the
previous section were addressed in the final design:

(1) The general geometric constraints were met by observing corre-
sponding limits for the overall dimensions. In order to accommodate
the sample head inside the IVC, the cross section of the sample head
perpendicular to its axis fits into a circle of radius 38 mm. This cor-
responds to the form of the IVC, which is cylindrical with an inner
radius of 40.5 mm. Similarly, the length along the axis was chosen
to be approximately ∼ 185 mm. The position of the sample chip car-
rier is located on the central axis and 13.5 mm offset from the top of
the sample head. This distance is dictated by the dimension of the
existing solenoids and in particular the position of their magnetic
field centers.

(2) In order to implement the required fine positioning abilities, three
linear and one angular positioner employing a piezo slip-stick step-
per technique, produced by attocube systems AG, were acquired.
They are shown in blue in Fig. 5.1. The fine positioners are designed
to function in ultracold environments and high magnetic fields and
allow fine positioning with a precision of ∼ 1 µm and 0.02° at T =

4 K. Figure 5.2 (b) depicts a linear positioner for horizontal travel.

(3) The main body was designed such that the support plate for the op-
tical fiber can be mounted to the body at ϑ = 15° and ϑ = 0°. For
the sake of brevity, we restrict ourselves here to the illustration of
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linear y-positioner
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Figure 5.1: Computer aided drawing of the entire sample head in the 15° con-
figuration. The main body of the sample head (transparent) houses the optical
fiber (not shown) and experimental wiring along with associated connectors (not
shown). The piezo stack holding the optical fiber is mounted on the main body.
Two elongated side parts extend downwards and carry the positioning stack con-
sisting of three linear and one angular positioner and different spacer parts with the
chip carrier for the cantilever sample on top of the positioning stack.
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the 15° configuration depicted in Fig. 5.1. The carrier part and the
spacer parts for the positioning stack were also designed and built in
another version in order to realize the ϑ = 0° geometry.

(4) The difference of sample coordinates (x, y, z) and (X,Y,Z) is ad-
justed for by the specific design of the structural parts of the posi-
tioner stack in such a manner that any linear positioner only drives
one specified axis of the sample coordinates. This is illustrated in
Fig. 5.3 (a). The carrier part tilts the z-positioner by 15° with respect
to the Z-axis. Spacer part 1 reverses this angle again. It carries the
angular positioner and the y-positioner whose axis is parallel to the
corresponding lab axis Y . Spacer part 2 reintroduces the 15° angle
for the x-axis of the sample coordinates. Spacer part 2 also adjusts
the distance along the stack in such a way that the center of the
circle along which the angular positioner travels exactly meets the
sample surface (indicated by the circle). There are further detailed
constraints on the design following from the general geometric con-
straints (1), which we omit here.

(5) The space to accommodate and protect wires, connectors, and the
optical fiber is provided by the main body. It is machined to contain
two separate cavities. One is designated for the fiber such that it can
be isolated from the wiring. The other cavity houses the wiring. It
contains a number of grooves and threads for mounting of various
connectors. Also, one of the elongated side parts contains a groove
to lead the experimental wiring to the chip carrier.

(6) The constraint on the ohmic resistance of the wiring used to drive
the positioners requires the use of copper instead of Constantan,
which is common in wiring for experiments at cryogenic temper-
atures below 1 K and is the wiring supplied by the manufacturer of
the 3He system. Due to its very high thermal conductivity, pure cop-
per wiring for the positioners would however introduce a high heat
load with negative consequences for the experiment. This suggests
the use of superconducting NbTi wires. However, in high magnetic
fields the superconducting phase could break down inflicting sudden
jumps of the wire resistance to a few hundred Ohms. Furthermore,
driving the positioners leads to substantial heating due to dissipation.
A direct NbTi wiring to the positioners is therefore not advisable be-
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cause the heating can destroy the superconducting state. Last but not
least, the heat sinking of the positioners is aided by the experimental
wiring, which should ensure a good thermal contact to the 3He pot.
For this reason, a hybrid solution is chosen, which is sketched in
Fig. 5.3 (b). Copper wiring is employed between the connector at
the outside of the 3He system at room temperature and the 1 K-pot
of the 3He system. This guarantees a low ohmic contribution. The
copper wiring is thermally anchored at the 1 K-pot. It is then con-
tinued by NbTi wiring between the 1 K-pot and the 3He pot of the
3He system. This superconducting section guarantees zero ohmic
resistance while at the same time avoiding a thermal bridge from the
1 K-pot to the 3He pot.The wiring then switches back to copper and
is thermally anchored at the 3He pot. From there it leads to the posi-
tioners. To facilitate efficient handling, connectors are integrated at
various positions.

(7) The load constraints were fulfilled by the use of a stronger (and
larger) z-positioner (type ANPz101) compared to the x, y-positioners
(type ANPx51). Also, the spacer parts 1 and 2 were milled with large
recesses in order to lower their mass. By doing so, the upper load
constraints on the angular positioner could be met exactly.

Figure 5.4 depicts two photographical images of the sample head that has
been built along the guidelines discussed above. All structural parts have
been machined out of titanium. Also, all screws, which are used to mount
the various parts onto each other, are out of titanium to achieve a high de-
gree of expansion matching. Figure 5.4 (a) shows the sample head from a
similar perspective view as the drawing in Fig. 5.1 and Fig. 5.4 (b) shows
the opposite side. Various parts discussed above can be found in the im-
plementation. We restrict ourselves to pointing out a few of them. At the
top the copper made 3He pot of the 3He system can be seen as well as the
4He capillary of the system. Also, a thermal anchor to the 3He pot for the
copper wires leading to the positioners is depicted. In Fig. 5.4 (a) the cavity
housing the optical fiber is covered by a protective plate. On the opposite
side, the cavity for the wiring and the connectors is open. Various connec-
tor plugs and numerous experimental wires are visible. Further down, the
piezo stack for the optical fiber can be seen. This is followed by the sam-
ple holder with the chip carrier. Wiring for gate-controlled magnetization
experiments and simultaneous transport measurements on a 2DES leads to
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© attocube systems AG
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Figure 5.2: (a) Sample coordinate system (x, y, z) vs. lab coordinate system
(X,Y,Z). The sample coordinates are rotated by 15° with respect to the lab coor-
dinates in the standard constellation for experiments on two-dimensional electron
systems (2DES) with optical readout. (b) Photographical image of a ANPx51-type
linear positioner from attocube systems AG. Two units of this type are used as x-
and y-positioners in the positioning stack of the sample head.

a printed circuit board onto which the holder for 32 pin-leadless chip car-
riers is mounted. The sample holder resides on the top of the positioning
stack consisting of the three linear positioners, the angular positioner from
attocube systems AG, and the various spacer parts. It can also be seen how
the experimental wiring is guided through one of the side parts of the sam-
ple head.
The sample head was employed in numerous experiments not presented
in this thesis. With respect to the measurement technique and the sam-
ple head’s performance, these experiments were successful. The posi-
tioning system proved to work reliably under the experimental conditions.
Figure 5.5 illustrates an exemplary experiment with the sample head. Fig-
ure 5.5 (a) shows a photographical image of a GaAs-based cantilever at-
tached to a substrate that is mounted in the chip carrier of the sample head.
The fiber for the optical readout scheme is also visible. It points onto a sur-
face part of the cantilever’s paddle which is metallized with gold for better
reflection. Figure 5.5 (b) shows a microscope picture of the paddle of a
GaAs-based cantilever with a sample attached, which has been prepared
by the present author. The metallized surface part for the readout is visible
in the upper part of the image. The transparent sample of rectangular shape
can be seen below the metallized surface. It is an oxide heterostructure of
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Figure 5.3: (a) Positioning stack in the 15° constellation. The stack is carried by
a carrier part that introduces the 15° angle for the z-positioner. The angle is re-
versed by spacer part 1 carrying the angular positioner and the y-positioner. The
15° angle is reintroduced for the x-positioner by spacer part 2. The chip carrier for
the cantilever sample is mounted on top of the positioning stack beneath the piezo
stack for the optical fiber, which is attached to the main part of the sample head
(not shown). The various 15° inclined parts guarantee that the sample coordinates
x and z are parallel to the cantilever beam and the cantilever normal, respectively.
(b) Schematic illustration of the wiring for the piezo slip-stick positioners from at-
tocube systems AG. A hybrid solution of copper and NbTi superconducting wiring
is employed inside the inner vacuum chamber (IVC) of the 3He system in order to
guarantee both low ohmic resistance to the piezo actuators and low heat load to the
experiment at the same time.
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Figure 5.4: Photographical images of the sample head. Fig. (a) shows a similar
perspective view as Fig. 5.1 and Fig. (b) shows the opposite side. The 3He pot and
the 4He capillary of the 3He system can be seen as well as a thermal anchor of
the positioner wiring to the 3He pot. The two cavities for the optical fiber and the
wiring are indicated. Further down, the piezo stack for the optical fiber is visible.
Beneath the piezo stack, the positioning stack consisting of the linear and angular
positioners as well as the chip carrier with the sample can be seen.

MgZnO/ZnO, which features a 2DES at the interface. Shubnikov-de Haas
oscillations have been reported for this material [103]. The sample was
provided by the group of Prof. M. Kawasaki from the University of Tokyo.
The sample has been prepared for simultaneous measurement of magneti-
zation and electric transport by the present author. For this, four contacts
to the 2DES were defined by optical lithography and realized by argon
milling and in-situ evaporation of Ti/Al. They are visible in the corners of
the sample. Corresponding contact lines were prepared on the cantilever
for a four-point measurement of resistivity. The sample was glued in a
flip-chip configuration onto the cantilever paddle in such a way that the
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(a) (b)

2 mm

2 mm

Figure 5.5: (a) Photographical in-situ image of GaAs-based cantilever mounted in
the sample head with fiber-optical readout. Besides the GaAs cantilever, the opti-
cal fiber is visible. Image courtesy of F. Herzog (group of the present author). (b)
Photographical image of the paddle of a GaAs-based cantilever with an attached
MgZnO/ZnO sample for simultaneous measurement of electric transport and mag-
netization.

contacts on the sample match the corresponding contacts on the cantilever.
For this, a conductive two-component glue was applied at the contact posi-
tions. The glue dots can bee seen in the image. Although the de Haas-van
Alphen effect of a similar MgZnO/ZnO system had been measured with
the capacitive readout scheme [104], the experiment with optical readout
did not yield an oscillatory torque signal. This can probably be attributed
to heating of the electron system caused by the laser light used for the read-
out, which suppresses the dHvA oscillations. However, in the group of the
author there is ongoing experimental work to repeat this experiment with
an optimized technique, which requires considerably less laser power. A
success of this effort would enable the observation of the dHvA effect in
the MgZnO/ZnO system using optical readout and thus open the way to
new experiments with this intriguing material.
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In this chapter, we introduce the materials and the specific samples which
have been investigated in this thesis. The examined materials are two
representatives from the isostructural series of transition metal diborides,
more specifically, VB2 and MnB2. In Sec. 6.1, the crystal structure of
transition metal diborides as well as electronic properties common to this
isostructural series are presented. This is followed by brief reviews of the
specific electronic and magnetic properties of VB2 in Sec. 6.2 and of MnB2

in Sec. 6.3.

6.1 Transition metal diborides

Transition metal diborides MB2 (where M is a transition metal) have at-
tracted a long-standing interest as promising candidates for technical ap-
plications due to their high chemical inertness, mechanical robustness, re-
sistivity against corrosion, high melting points, hardness, and good thermal
and electrical conductivity [105–109]. They also provide an interesting
object of investigation of how electronic and magnetic properties evolve
with atomic number as one moves through the rows of transition metals
in the periodic table while the crystal structure of the compounds remains
unaltered. The discovery of the superconducting transition in MgB2 at
Tc = 39 K, being the highest transition temperature known in metallic su-
perconductors [16, 110], has sparked additional interest in the transition
metal diborides due to their isostructural composition with MgB2.
Transition metal diborides MB2 crystallize in the C32 (AlB2) structure
with the spacegroup P6/mmm. The C32 structure is depicted in Fig. 6.1.
It consists of an alternating sequence of layers of closest-packed M atoms
and layers of B atoms in a honeycomb lattice stacked in [001]/c-direction.
Planes parallel to the B honeycomb layers and the hexagonal M hexag-
onal layers are sometimes referred to as basal planes in this thesis. The
boron sublattices are isostructural to graphene and any boron atom is cen-
tered above 3 M atoms. An M atom has 6 nearest M neighbors and 12
nearest B neighbors. There is one formula unit (f. u.) per primitive unit
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Figure 6.1: C32 crystal structure of transition metal (M) diborides MB2. Closest-
packed layers of M atoms and layers of B atoms in a honeycomb lattice alternate
in [001]/c-direction.

cell. The distance between M layers is c and the distance between nearest
M neighbors is a. Even though the crystal possesses a layered structure,
the packing is dense and the interlayer bonding is relatively strong. The
boron electron shells essentially hybridize to sp2-orbitals forming strong
intralayer σ-bonds and out-of-plane pz-orbitals with a lower degree of lo-
calization bonding with d-electrons from the M layers.
Transition metal diborides share a range of common properties, but are
also distinguished by profound differences. Among them is a remarkable
variety of different magnetic ground states. While the diborides of the first
three elements of the 3d-row of transition metals have no magnetic order,
for instance, the following compounds CrB2 and MnB2 show antiferro-
magnetic ordering [14, 111].
Considerable effort has been made to relate the common features of tran-
sition metal diborides as well as their differences to their electronic struc-
ture [12,13,112–117]. To gain insight into the nature of the chemical bond-
ing in transition metal diborides and particularly into the electronic states at
the Fermi energy EF, studies of the diboride band structures and their den-
sity of states (DOS) have been performed employing different methodic
approaches [113–115, 117]. In view of the experiments and calculations
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Figure 6.2: Typical density of states as a function of energy of transition metal (M)
diborides MB2. Characteristic features of the DOS are a peak from sp2-hybrid
bonds in the B planes, another peak from M-B bonds, followed by a pseudogap
in the proximity of the Fermi energy EF. Above EF a pronounced peak from
localized M-d states is found. Figure taken from Ref. [114]. Green labels added
by the present author.

presented in the following chapters, the widely accepted common charac-
teristics of the DOS of transition metal diborides are briefly summarized
as inferred from calculations without spin polarization. In Fig. 6.2, coming
from negative energies (by convention, EF is set to zero) a broadened peak
reflects the sp2-hybrid bonds of the boron planes, primarily consisting of
B-2s and B-2pxy atomic orbitals. Closer to EF a second peak appears,
which originates mostly from M-B bonding states, i. e. states with B-2pz
and M-3d character. This is followed by a pseudogap, a region of rela-
tively low DOS. Beyond the pseudogap, a pronounced peak of localized
M-3d states is found, which is followed by a series of anti-bonding states.
When moving through the series of 3d-transition metals, the Fermi energy
EF approaches the 3d-peak of the DOS: For the first three elements of the
series (Sc, Ti, and V), n(EF) is relatively low in the proximity of the pseu-
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dogap. For the following elements Cr, Mn, and Fe1, however, EF resides
in regions of high DOS. This suggests that the unpolarized state is unstable
towards magnetic ordering [115].

6.2 Vanadium diboride

Vanadium diboride is the third representative of the class of C32 diborides
in the 3d-series of transition metals and the last in this series to be para-
magnetic. Owing to this position, it has the highest value of n(EF) with-
out magnetic ordering in this series. For this reason, it was revisited after
the discovery of the superconducting state in MgB2 as a potential candi-
date for superconductivity mostly in theoretical studies [116, 119, 120]. It
seems worthwhile to examine VB2 due to this property. Further, it can
serve as a non-magnetic reference system for other diborides.
The VB2 sample investigated in this thesis was provided by the group of
Prof. Pfleiderer of Technische Universität München. It was grown by op-
tical float-zoning [121]. Even though the very high melting temperature
of 2750 K presented some problems for the growth process, nearly single-
crystalline samples of VB2 were obtained consisting of several grains with
an orientation mismatch of a few degrees [121]. Details of the preparation
procedure are given in Ref. [121]. The sample has a shape resembling a
breadbox which was the result of rectangular cutting by a wiresaw while a
rounded face stemming from the float-zoning process remained. It is de-
picted in Fig. 6.3 and had dimensions of 3.00×2.00×2.05 mm3 parallel to
[100], [120], and [001], respectively. The crystal orientations with respect
to the perpendicular edges were established by Laue x-ray diffraction.

6.3 Manganese diboride

The compound MnB2 follows CrB2 and VB2 in the isostructural series of
the 3d-transition metal diborides. Early studies of MnB2 [122, 123] sug-
gested weak ferromagnetism below Tc = 157 K/143 K with a saturation
moment of 0.25µB/f. u. and 0.19µB/f. u., respectively. Subsequent mea-
surements of electrical resistivity, magnetic susceptibility and anisotropy
as well as nuclear magnetic resonance challenged this view in favor of

1FeB2 is metastable in the Fe-B system [118], but its theoretical investigation is nevertheless
instructive.

82



6.3 Manganese diboride

Figure 6.3: (a) Photographical image of the investigated VB2 sample. It resembles
a bread box with dimensions 3.00× 2.00× 2.05 mm3 parallel to [100], [120], and
[001], respectively. (b) Photographical image of the investigated MnB2 sample.
It has a cuboid shape with dimensions of 2.7 × 2.8 × 1.7 mm3 parallel to [100],
[120], and [001], respectively. Staples serve as a scale.

an antiferromagnetic order of in-plane magnetic moments localized at the
Mn sites [14, 124]. Below the Néel temperature of TN = 760 K, an an-
tiferromagnetic coupling of consecutive Mn planes was proposed while
the moments within a single plane are aligned parallel with a moment of
3µB/f. u. This state will be referred to as AF-c state in this thesis. The
small experimental ferromagnetic component below Tc was attributed to a
slight out-of-plane canting of the AF-c ordered moments at the Mn sites
towards the c-axis. The essentially antiferromagnetic order was confirmed
by neutron diffraction experiments of MnB2 [125] stating an in-plane mag-
netic moment of 2.6µB/f. u. Most theoretical surveys of the electronic
properties of transition metal diborides merely suggested that MnB2 is
prone to itinerant magnetism [109, 115]. Only recently, the specific mag-
netism of MnB2 attracted attention of theoretical approaches [126,127]. It
was shown that the AF-c order of local moments is energetically favorable
over ferromagnetic order and that the canted AF-c structure is possible un-
der both energetic as well as symmetry considerations. In accordance with
the experimental findings, an itinerant character of the MnB2 magnetism is
disputed by these calculations in favor of an essentially localized Mn mag-
netism in MnB2 [127]. At the same time, MnB2 is presumed to be an
example of Kübler’s covalent magnetism [128] in that the DOS cannot be
described with a rigid-shift behavior in the antiferromagnetic state due to
the effects of covalent magnetism.
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The MnB2 sample investigated in this thesis was provided by the group of
Prof. Pfleiderer of Technische Universität München. Similar to the VB2

sample, it was grown by optical float-zoning. The sample is supposed to
be the first large single crystal of MnB2 [121]. Earlier experiments were
primarily performed on sintered polycristalline samples that suffered from
admixtures of MnB4 and Mn3B4. The sample is depicted in Fig. 6.3. It has
a cuboid shape with dimensions of 2.7 × 2.8 × 1.7 mm3 parallel to [100],
[120], and [001], respectively. Measurements of specific heat, susceptibil-
ity, and magnetization showed a smooth crossover below ∼ 130 K from the
pure AF-c sate into the canted state [121]. For details of these measure-
ments as well as the preparation, the reader is referred to Ref. [121].

We note that CrB2 was the object of investigation of a previous study
similar to this thesis [12, 13]. The compound CrB2, being located be-
tween VB2 and MnB2, represents the onset of magnetic ordering in this
isostructural series and an example of weak itinerant antiferromagnetism
[111, 129, 130]. In contrast to the AF-c ordering of MnB2, a cycloidal
magnetic structure below TN ≈ 88 K with an ordering wave vector q =

0.285q110 and q110 = 2π/a
2

was established [15,112]. Fermi surface prop-
erties inferred from dHvA measurements were found to be consistent with
this ordering [12].

In summary, the series of VB2, CrB2, and MnB2 presents an interesting
example of the transition of C32 isostructural compounds from paramag-
netism over weak itinerant antiferromagnetism to an interlayer antiferro-
magnetic coupling of localized moments.

Apart from Ref. [12], there are few studies which directly probe the Fermi
surface properties of transition metal diborides by means of the dHvA ef-
fect and thus provide a test of the electronic structure calculations. For
VB2 pulsed field experiments for two selected field orientations have been
reported [131]. Pluzhnikov et al. performed temperature-dependent dHvA
measurements using the modulation technique on first row transition metal
ScB2, ZrB2 from the second row, and HfB2 from the third row [132] after
general Fermi surface properties of ZrB2 and HfB2 had already been es-
tablished in Ref. [133] and Ref. [134], respectively. For TiB2, Tanaka et
al. performed modulation technique measurements [135].
To the best of our knowledge, there are no studies of the dHvA effect in
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MnB2 previous to ours presented in this thesis.
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7 De Haas-van Alphen effect and Fermi surface
properties of VB2

In this chapter the de Haas-van Alphen (dHvA) effect of nearly single crys-
talline VB2 is investigated in order to derive Fermi surface properties of
VB2. The dHvA effect is derived from the quantum oscillatory component
of the torque measured by cantilever magnetometry.
The chapter is organized as follows: The general experimental procedure is
briefly explained in Sec. 7.1. Experimental results of the angular, temper-
ature, and field dependence of the dHvA effect are presented and analyzed
in Sec. 7.2-7.5. This is followed by a presentation and analysis of results of
band structure calculations in Sec. 7.6-7.7 before turning to a comparison
of the experimental findings and the calculations in Sec. 7.8.

7.1 Experimental procedure

For the magnetization measurements, the VB2 sample, details of which
have been described in Ch. 6, was attached to a double beam CuBe can-
tilever described in Sec. 3.2. The cantilever was mounted on a rotary stage
attached to the cold head of a vacuum loading 3He insert, which allowed
for measurements between 0.28 K and 20 K. The 3He insert was operated
in a superconducting, axial 15 T-magnet. The capacitive readout tech-
nique introduced in Sec. 3.3 was used to determine the magnetic torque.
Angle-dependent measurements were performed at the base temperature of
∼ 280 mK in magnetic fields of up to 15 T and temperature-dependent mea-
surements were performed between 280 mK and 20 K. In order to find a
compromise between time constraints on the one hand and an adequate res-
olution and the reduction of inductive heating on the other hand, magnetic
sweep rates were varied between 0.3 T/min and 0.0025 T/min. For exam-
ple, a typical run would consist of a relatively fast scan of the complete
field range with 0.1 T/min and a slow scan for 12-15 T with 0.01 T/min.
The angle of applied magnetic field B relative to the sample was varied in
all three major planes of the C32 crystal structure. Figure 7.1 shows the
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Figure 7.1: Side view of a CuBe cantilever with the VB2 sample attached to it. The
orientation of the magnetic field B was varied in all three major planes. Figures
(a), (b), and (c) illustrate the denotation, where ϕ represents the angle of B in the
basal plane relative to the [120]-axis while ϑ and ψ represent the azimutal angles
relative to the c-axis for measurements with B in the [001]-[100]- and the [001]-
[120]-plane, respectively.

different orientations of the crystal relative to the applied field. We denote
the three corresponding angles by ϕ, ϑ, and ψ, where ϕ represents the an-
gle in the basal plane relative to the [120]-axis while ϑ and ψ represent
the azimutal angles relative to the c-axis for measurements in the [001]-
[100]- and the [001]-[120]-plane, respectively. For ϕ amd ϑ, the angle
was varied in increments of 7.5° while for ψ the increment was 10°.

7.2 Experimental findings

Typical experimental data are illustrated in Fig. 7.2, where the torque Γ
is plotted versus magnetic field strength B = ∣B∣ in every subfigure. Fig-
ures 7.2 (a) and (c) show raw data for the basal plane (angle ϕ) and the
[001]-[100]-plane (angle ϑ), respectively. The change in capacitance has
been translated into torque via the calibration scheme outlined in Sec. 3.4.
Exemplary data for the [001]-[120]-plane (angle ψ) are very similar to ϑ-
data and are therefore not shown for the sake of brevity. Figures 7.2 (b)
and (d) show the oscillatory part Γosc of Γ after subtraction of the non-
oscillatory background of the torque signal for different values of ϕ and
ϑ. Curves are vertically offset for clarity. In order to eliminate the non-
oscillatory signal part, a low-order polynomial was fitted to the raw data in
B and then subtracted. The resulting data were then taken in 1/B and an-
other low-order polynomial was subtracted if deemed necessary to further
reduce the background.
For each rotational plane, one dHvA frequency is found. Each dHvA fre-
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quency corresponds to an extremal orbit perpendicular to the given mag-
netic field B via the Lifshitz-Onsager relation Eq. 2.16. The frequency in
the basal plane is on the order of 1.4 kT and denoted as fα (with α being
the corresponding extremal orbit), while the frequency fβ of orbit β for
the ϑ-plane (and also the ψ-plane) is ∼ 100-200 T. Figure 7.2 (a) shows
data for ϕ = −7.5° where fα is visible in the raw data. As can be inferred
from Fig. 7.2 (b), the amplitude of Γosc varies for different angles ϕ. Its
maximal value in the accessible field range ≤ 15 T of ∼ 1 ⋅ 10−10 Nm is
adopted for ϕ = −7.5° while it almost vanishes for ϕ = −30°, where it is as
small as 1 ⋅ 10−11 Nm. For other angles intermediate values are observed.
In a likewise fashion, Fig. 7.2 (c) shows raw data for ϑ = −15°, where the
oscillatory part is maximal in the ϑ-plane. Figure 7.2 (d) shows the oscilla-
tory part Γosc for four different values of ϑ. The amplitude of Γosc initially
increases from ϑ = 0° to ϑ = −15°, i. e. for B tilting away from the c-axis.
For ϑ = −30° and −45°, it decreases again. We note that the amplitudes
for the two observed dHvA frequencies fα and fβ differ by roughly four
orders of magnitude.

7.3 Angular dependence

As mentioned in Sec. 7.1, the orientation of B was varied in increments
of 7.5° for ϕ and ϑ and 10° for ψ to study the angular dependence of the
dHvA signals.
In the basal plane, the frequency fα was traced over an angular range of
200°. For an exact determination of fα, a fast Fourier transform (FFT) of
the oscillatory part of the magnetization Mosc = Γosc/B as a function of
1/B was analyzed for every angle ϕ. Figure 7.3 (a) shows the FFT spec-
trum for ϕ = −7.5°. Only one distinct frequency at fα = 1385 T is found.
Magnetic field sweep rates and sampling rates were adjusted such that fre-
quencies of up to ∼ 15 kT could have been resolved if accessible within the
limits of the experimental parameters, such as field strength and tempera-
ture. Figure 7.3 (b) depicts the evolution of fα as a function of ϕ. A peri-
odicity of 60° is supported by the data. The frequency fα is maximal for
(n + 1/2) ⋅ 60° (n ∈ N0), i. e. the ⟨100⟩-directions, at fα(⟨100⟩) ≈ 1460 T
and minimal for n ⋅ 60°, i. e. the ⟨120⟩-directions, at fα(⟨120⟩) ≈ 1365 T.
We also note that the signal strength is maximal for ϕ = −7.5°, 7.5°, 52.5°
. . . while the oscillation amplitude is minimal and barely detectable in the
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Figure 7.2: (a) Raw data of torque Γ for ϕ = −7.5° in the basal plane. (b) Oscil-
latory component Γosc of Γ for different angles in the basal plane. (c) Raw data
of torque Γ for ϑ = −15° in the [001]-[100]-plane. (d) Oscillatory component
Γosc of Γ for different angles in the [001]-[100]-plane. The amplitudes of the
two observed dHvA frequencies α and β differ by approximately four orders of
magnitude.

proximity of the maximal value of fα, i. e. for ϕ ≈ −30°, 30°, and 90°.
This fact is reflected in the size of the error bars in Fig. 7.3 (b). Also, the
resolution for the period 0 ≤ ϕ ≤ 60° is better than for other values. This
is a consequence of the orientation of the cantilever. For this period the
paddle of the cantilever is oriented horizontally or points downward. It is
found that this generally results in a better resolution than for the cantilever
pointing upwards or placed in an upside-down position.
Similarly, in the [001]-[100]-plane, the frequency fβ was traced over an
angular range of 270° and FFT spectra were calculated for every angle
ϑ. Figures 7.4 (a,c) illustrate the corresponding results. Figure 7.4 (c)
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Figure 7.3: Experimental results for rotation of B in the basal plane. (a) Fast
Fourier transform ofMosc(1/B) atϕ = −7.5° revealing one orbit αwith frequency
fα = 1385 T. (b) Angular dependence of fα for −75° ≤ ϕ ≤ 127.5°. The orbit
features a 60° periodicity.

shows four FFT spectra corresponding to the torque data of Fig. 7.2 (d).
When tilting B away from the c-axis, the frequency fβ increases. We also
recover the evolution of the signal strength described in Sec. 7.2 in the
FFTs: The signal strength increases from 0° to −15° and decreases for
−30° and −45°. Figure 7.4 (a) illustrates the evolution of fβ in the [001]-
[100]-plane. A 180° periodicity is observed. Frequency fβ is minimal
along the c-axis where fβ = 102 T. When B tilts away from the c-axis, fβ
increases adopting large values of fβ(−52.5°) = 188 T, fβ(50°) = 166 T,
and fβ(130°) = 183 T. For 50° < ϑ < 130°, fβ was not observed.
In the [001]-[120]-plane, measurements were performed for 0° ≤ ψ ≤ 90°
in increments of 10°. A dHvA frequency fβ′ belonging to an orbit β′ is
observed for 0° ≤ ψ ≤ 50°. The angular dependence of fβ′ is depicted in
Fig. 7.4 (b). The tendency fβ′(ψ) is similar to fβ(ϑ) in Fig. 7.4 (a) with
fβ′ slightly exceeding fβ for larger angles.
The 60° periodicity of α is consistent with the six-fold symmetry of the
crystal in the hexagonal plane. Since α exhibits a non-zero signal strength
for a full period (and more), it can be concluded that it stems from a closed
sheet of the Fermi surface. As fα varies only by about 7%, the correspond-
ing surface sheet has a nearly constant area for cross sections perpendicular

91



7 De Haas-van Alphen effect and Fermi surface properties of VB2

f 
(T

)

 q (deg)

0 30 60

100

150

200

f 
(T

)

 y (deg)
100 200 300

q = 0°

q = -15°

q = -45°

F
F

T
 a

m
p
li

tu
d
e
 (

a.
u
.)

f (T)

q = -30°

(a)

(b) (c)

-30 0 30 60 90 120 150 180 210

100

150

200

b

b' b

Figure 7.4: Experimental results for rotations of B in the [001]-[100]-plane and
the [001]-[120]-plane. (a) Angular dependence of fβ for −52.5° ≤ ϑ ≤ 217.5°.
Measurements were taken in approximately equal increments. Orbit β was not
observed for ϑ ≤ −60° and 57.5° ≤ ϑ ≤ 122.5°. (b) Angular dependence of fβ′
for 0° ≤ ψ ≤ 50°. Orbit β′ was not observed for 60° ≤ ψ ≤ 90°. (c) Fast Fourier
transforms of Mosc(1/B) for four different angles ϑ corresponding to the data in
Fig. 7.2 (d) showing orbit β shifting to higher frequencies for B tilting away from
the c-axis
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7.3 Angular dependence

to the hexagonal plane.
To explain the variation of the signal strength Γ =M⊥ ⋅B, we recall that the
component of the magnetization M osc

⊥,i = −
1
f
⋅
∂f
∂θi
M osc
∥

depends on the so-
called anisotropy factor 1/f ⋅ ∂f/∂θi, being the logarithmic derivative of
the dHvA frequency with respect to θi (cf. Eqs. 2.29 and 2.30 and Fig. 2.2).
Hereby, the angle θi measures the orientation of B in the plane of B and
the considered component M osc

⊥,i . Furthermore, in Sec. 3.3 it was shown
that only the bending torque component Γt, associated with the perpen-
dicular magnetization component M⊥,y inside the plane spanned by the
cantilever beam and the direction of the field B (Fig. 3.1), has a substan-
tial coupling to the measurement signal. Therefore, we can deduce that
the relevant angle θi for the derivative in the anisotropy term is identical
to the respective experimental angle defined in Fig. 7.1. This insight will
be important for the further discussion of the experimental results. We
henceforth only state the anisotropy term with the respective experimental
angle for the derivative, e. g. for the rotation of B in the basal plane the
anisotropy term is 1/f ⋅ ∂f/∂ϕ. It is plausible that Γosc is reduced in the
⟨100⟩- and ⟨120⟩-directions as the anisotropy term of high-symmetry di-
rections should ideally vanish.
Also, it is worthwhile to note that M osc

∥
in turn (and hence M osc

⊥
as well)

scale with 1/
√
A′′ where A′′ is the curvature of the extremal area of the

Fermi surface in the direction of B. From the data, it can also be inferred
that either the anisotropy for ⟨100⟩ is smaller than for ⟨120⟩ or the curva-
ture along ⟨100⟩ is larger or a combination thereof as the signal strength
is higher for the minima of fα (along ⟨120⟩) than for the maxima of fα
(along ⟨100⟩).
In the [001]-[100]-plane, the 180° periodicity of fβ is also consistent with
the crystal symmetry. In contrast to fα however, fβ disappears for cer-
tain field directions indicating that β belongs to an open Fermi sheet. The
exceptionally high signal strength hints to a very low curvature and/or a
large anisotropy 1/f ⋅ ∂f/∂ϑ, i. e. the sheet should locally resemble an
elongated, cylindrical shape along the c-direction.
For orbit β′ we assume the same origin in the Fermi surface as for orbit β
due to their close similarity in angular frequency dependence. In fact, as
both constellation ϑ = 0° and constellation ψ = 0° coincide with B paral-
lel to the c-axis, fβ and fβ′ should be identical for these angles, which is
fulfilled. For this reason, we henceforth identify β′ with β.
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a

y = 90°

Figure 7.5: Signature of orbit α for a rotation of B in the [001]-[120]-plane at
ψ = 90°, i. e. the coincidence angle with ϕ = 0°. The jump of Γosc at B = 14.66 T
is caused by measurement artifacts. Two periods of the dHvA oscillation can be
resolved with the three maxima indicated by red arrows.

Since we inferred that α stems from a closed Fermi sheet, its absence in
the experiments in the [001]-[100]- and the [001]-[120]-plane must be ex-
plained. We attribute its absence to two reasons: (1) As noted in Sec. 7.2,
the observed signals for B inside and outside the basal plane differ by four
orders of magnitudes. If it is assumed that Mosc for α is on a similar scale
outside and inside the basal plane, the effective sensitivity of the capaci-
tance bridge employed in the experiments is not sufficient to resolve both
fα and fβ at the same time, as explained in Sec. 3.5. (2) Explanation
(1) cannot hold for ϑ,ψ ≈ 90°, i. e. in the proximity of the basal plane,
where β is not observed. Although ϑ = 90° coincides with ϕ = 30° and
ψ = 90° conincides with ϕ = 0°, the resulting torques can however greatly
differ due to the different anisotropy factors 1/f ⋅ ∂f/∂ϕ, 1/f ⋅ ∂f/∂ϑ,
and 1/f ⋅ ∂f/∂ψ for the different constellations. We thus assume that the
anisotropy of the α-sheet for B varied within the basal plane is larger than
for B passing through the basal plane. We mention that signatures of α
were found in some measurements with B in the proximity of the basal
plane, i. e. for ϑ or ψ, respectively, close to 90°. Figure 7.5 illustrates
exemplary data. The data quality, however, does not support a detailed
quantitative analysis.
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Figure 7.6: Temperature dependence of orbit α. (a) Temperature-
dependent fast Fourier transforms of Mosc(1/B) at ϕ = 7.5° for T =
0.3 K,1.0 K,1.4 K,2.0 K,3.0 K,3.5 K,4.0 K, and 5.0 K. (b) Normalized FFT am-
plitudes I(T ) corresponding to the data in Fig. (a) (points) and fit of Eq. 7.1 (red
line) to the data points as a function of temperature. The fit reveals an effective
mass of m⋆

α = (0.79 ± 0.03)me.

7.4 Temperature dependence

The temperature dependence of Mosc = Γosc/B for both orbit α and orbit
β was studied for one fixed angle ϕ and ϑ, respectively.
For orbit α, ϕ = 7.5° was chosen as this orientation yields the strongest
signal. Figure 7.6 (a) shows FFT spectra for temperatures T ranging from
0.3 K to 5.0 K. The FFT spectra base on Mosc(1/B) limited to the field
range between 13.75 T and 15 T. The peak of α at fα = 1390 T decays for
increasing temperature, vanishing almost completely for T = 5.0 K.
According to the Lifshitz-Kosevich formula (Eq. 2.39), the temperature
dependence of the dHvA amplitude at constant field B can be related to the
effective electron massm⋆ of the corresponding band and at corresponding
K-space coordinates via the reduction factor

RT =
X

sinhX
, with X =

2π2kBm
⋆T

h̵eB
. (7.1)

Equation 7.1 was fitted to the normalized temperature-dependent peak heights
I(T )/I(T = 0.3 K) extracted from the FFTs of Fig. 7.6 (a). For B the
arithmetic mean of the analyzed field range B̄ = 14.375 T was inserted and
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Figure 7.7: Temperature dependence of orbit β. (a) Temperature-dependent oscil-
latory torque Γosc(B) at ϑ = 15° for T = 0.3 K, 0.8 K, 1.6 K, 5.0 K, 7.5 K, 10.0 K,
12.5 K, 15.0 K, and 20.0 K. (b) Normalized amplitude of “last” oscillation period
∆Γosc,max(T ) corresponding to the data in Fig. (a) (points) and fit of Eq. 7.1 (red
line) to the data points as a function of temperature. The fit reveals an effective
mass of m⋆

β = (0.182 ± 0.004)me.

m⋆ and a multiplicative constant were used as free fit parameters. The ex-
tracted data (points) as well as the fitted reduction factor (line) are depicted
in Fig. 7.6 (b). The fit yields m⋆

α = (0.79 ± 0.03)me.
Similarly, for β the temperature was varied between 0.3 K and 20 K at fixed
angle ϑ = 15°. Figure 7.7 (a) depicts data Γosc versus magnetic field B.
However, in contrast to the analysis for α, the amplitude data in Fig. 7.7 (b)
is not based on FFTs over a finite field range, but corresponds to the am-
plitude of only the last observed oscillation period (i. e. at maximal field)
∆Γosc,max(T ). Because of the low value of fβ , this method is expected
to yield a more accurate result since Eq. 7.1 depends on the field strength
B and the full Lifshitz-Kosevich formula Eq. 2.39 contains an additional
field-dependent reduction factor RD. The fit of Eq. 7.1 yields a small ef-
fective mass of m⋆

β = (0.182 ± 0.004)me.
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7.5 Field dependence

While the dependence of Mosc on temperature T at fixed field B yields
the effective mass (Sec. 7.4), study of the dependence on B at fixed T
can provide the mean free path of the respective charge carriers. For this,
we consider the Lifshitz-Kosevich formula for Γosc restricted to the first
harmonics of the dHvA frequencies,

Γosc = ∑
i∈{α,β,...}

C0
i ⋅B

3
2 exp(−

πmb,i

eBτ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RD,i

Xi

sinhXi
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
RT,i

sin(
2πfi
B

+ φi) , (7.2)

where the sum runs over all orbits {α,β, . . .},RD,i is the Dingle reduction
factor with mb,i being the band mass of the respective orbit and τ being
the scattering time, Xi = (2π2kBm

⋆

i T )/(h̵eB) is defined as in Sec. 7.4,
φi accounts for phase differences of the contributing frequencies fi, and
C0
i are prefactors weighting the contributions. As we do not observe more

than one dHvA frequency simultaneously, the sum collapses to just one
summand and we can use C0

α (C0
β), mb,α/τ (mb,β/τ ), and φα (φβ) as

free fit parameters while we use fα (fβ) and m⋆

α (m⋆

β) as obtained in the
previous sections. Figure 7.8 (a,b) show Γosc of α for ϕ = −7.5° and
Γosc of β for ϑ = 15°, respectively (black lines). The red lines depict
the Lifshitz-Kosevich formula Eq. 7.2 fitted to the data. Assuming free
electrons, mb/τ can be replaced by h̵kF/l in Eq. 7.2 with l being the mean
free path. Here, kF denotes the Fermi wave vector. Following Refs. [136,
137], we further set πk2

F = 2πef/h̵, which implies the approximation that
frequency f stems from a circular orbit on the Fermi surface. Applying
these approximations, the fits yield lα = 25 nm and lβ = 21 nm for the
mean free paths.

7.6 Band structure and Fermi surface

Band structure calculations for VB2 were performed by J. Kuneš1. The
local density approximation of density functional theory using the full-
potential linearized augmented plane-wave method implemented in the

1Institute of Physics, Academy of Sciences, Cukrovarnicka 10, Praha 6 16253, Czech Re-
public
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Figure 7.8: Field dependence of orbit α and β. (a) Γosc for α at ϕ = −7.5° as a
function of field strength B (black line). The red line is a fit of Eq. 7.2 to the data
using fα and m⋆

α as determined in the previous sections. It yields the free mean
path lα = 25 nm. (b) Γosc(B) for β at ϑ = 15° (black line). The fit of Eq. 7.2 (red
line) to the data using fβ and m⋆

β as determined above yields the free mean path
lβ = 21 nm.

WIEN2k package was applied [138–140]. The 90 K lattice constants a =

2.998 Å and c = 3.044 Å from Ref. [131] were used. Figure 7.9 depicts
the band structure along high-symmetry directions of the Brillouin zone.
The results are similar to previous calculations [116, 119, 120, 131]. We
revisited such calculations as we will use the data to extract dHvA effect
frequencies fi in the following. We aim at identifying relevant Fermi sur-
face cross sections. In total, three bands highlighted in blue, green, and red
cross the Fermi Energy EF. In the following, we refer to them as band 10,
11, and 12, respectively1. The density of states n(E) (DOS), normalized
to one formula unit (f. u.), i. e. per one V atom and two B atoms, as a func-
tion of energy E as derived from the calculated band structure is shown
in Fig. 7.10. In Fig. 7.10, contributions to the DOS originating from B-
2s orbitals, B-2p orbitals, and V-3d orbitals are illustrated separately, and
additionally the total density of states is shown. The typical DOS of non-
magnetic transition metal diborides (as discussed in Sec. 6.1) is recovered.

1The numbering of the bands is adopted from the WIEN2k results. The WIEN2k calcu-
lations were performed for 21 electrons/f. u., neglecting the deeply bound core electrons
[Ne]3s2 at the V sites. Taking spin degeneracy into account, this explains that EF re-
sides approximately centered between band 10 and 11 as in Fig. 7.9. Apart from that, the
numbering can be regarded as purely conventional.
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Figure 7.9: Calculated band structure of VB2 using the WIEN2k package along
high-symmetry directions of K-space. Three bands (blue, green, red) cross EF,
denoted as band 10, 11, and 12.
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Figure 7.10: Density of states (DOS) of VB2 per formula unit (f. u.) as inferred
from the calculated band structure. The total DOS is shown and additionally the
contributions from B-2s, B-2p, and V-3d states are drawn separately. The typical
DOS of non-magnetic transition metal diborides (as discussed in Sec. 6.1) is re-
covered. The Fermi energy EF, by convention set to EF = 0, resides at the left
flank of the V-d peak. The states at EF are dominated by V-d components with an
admixture of B-p orbitals.
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7 De Haas-van Alphen effect and Fermi surface properties of VB2

The Fermi energyEF, by convention set toEF = 0, resides on the left flank
of the V-d peak. The DOS for VB2 is very similar to the DOS for hypo-
thetically non-magnetic CrB2, which has been discussed in Ref. [71]. The
main difference between the two DOS arises from the additional electron
in CrB2, which makes the Fermi energy move even closer to the d-peak in
CrB2 and consequently causes the itinerant antiferromagnetism found in
CrB2 in contrast to VB2. From Fig. 7.10, it can also be deduced that the
character of the bands around EF is dominated by V-d orbitals with only
a small admixture of the B-p DOS. In more detail, it can furthermore be
inferred from the band structure calculations that the B-p component atEF

mainly consists of B-pxy contributions. The B-pz states are pushed away
from EF. Corresponding fat bond plots, indicating B-pxy , B-pz , and V-
d contributions to the bands separately, can be found in App. A. As argued
in App. A, the character of the states atEF can in summary be described as
V-dwith a varying degree of B-pxy contributions depending on band index
and K-space direction. A further treatment of the nature of the electronic
states at EF is postponed to a comparative discussion of the experimental
results for VB2 along with the isostructural compounds MnB2, CrB2, and
MgB2 in section 8.9.
Figures 7.11 (a-c) depict the three sheets of the Fermi surface in the Bril-
louin zone corresponding to the three bands 10, 11, and 12, which cross
EF. For clarity, they are drawn separately. In accordance with the num-
bering of their associated bands, we denote them by sheet 10, 11, and 12,
respectively. Figure 7.11 (d) illustrates the real space geometry with the
experimental angles ϕ, ϑ, and ψ. Note that for the hexagonal lattice the
Brillouin zone is oriented parallel to the real space (Bravais) unit cell, i. e.
the real space direction ⟨100⟩ is parallel to the connecting line of Γ and K
and the real space direction ⟨120⟩ is perpendicular to faces of the Brillouin
zone. As a scale reference, we note that the equivalent areas of each face
and the hexagonal plane of the Brillouin zone are 52 kT and 53 kT, respec-
tively. The blue sheet 10 in Fig. 7.11 (a) originates from (blue) band 10
in Fig. 7.9. It consists of a thick trunk parallel to the c-axis from which
six roots extend toward the edges of the Brillouin zone both in the up-
per and the lower half of the zone. Close to the zone boundary, pairs of
each one upper root and one lower root unite and then separate again into
two branches that perpendicularly penetrate the faces. On every face two
branches of two neighboring pairs of roots slightly merge at the M-point.
The green sheet 11 in Fig. 7.11 (b) stems from the green band in Fig. 7.9.
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It consists of an ellipsoidal electron pocket at A and two copies of another
smaller electron pocket halfway between Γ and A with a tear drop-like
form. Similarly, the red sheet 12 of Fig. 7.11 (c) originates from the red
band in Fig. 7.9 and has a spherical shape centered at A, but it is smaller
than the ellipsoid of the green sheet at the same position.

7.7 Extraction of dHvA frequencies

The SKEAF program (Supercell K-space Extremal Area Finder) [141]
was employed to extract dHvA frequencies from the band energies calcu-
lated with WIEN2k. The tool allows for the calculation of extremal orbits
and their corresponding dHvA frequencies for rotations of B in arbitrary
planes. Additionally, it provides the corresponding band mass, sheet cur-
vature, the type of the orbit (i. e. electron- or hole-like), and the average
K-space coordinates. In order to compare the results directly with the ex-
periment, we extracted extremal areas for rotations in the same planes as in
Fig. 7.1. Figure 7.12 illustrates results for the basal plane. Figure 7.12 (a)
shows dHvA frequencies versus angle ϕ for band 11 and 12, Fig. 7.12 (b)
is a blow-up of Fig. 7.12 (a), Fig. 7.12 (c) depicts dHvA frequencies ver-
sus ϕ for band 10, and Fig. 7.12 (d) shows curvature data for the orbit of
Fig. 7.12 (b). The three calculated orbits in Fig. 7.12 (a) have frequencies
on the order of 1 kT. The two orbits illustrated by triangle symbols (△)
stem from band 11. The orbit at ∼ 1.9 kT belongs to the ellipsoid at A,
the other orbit at ∼ 1.35 kT originates from the tear drop-like pockets. The
middle orbit depicted by diamond symbols (◇) originates from the sphere
of sheet 12. The frequencies of the two orbits stemming from the pockets
at A of band 11 and 12 vary very little with ϕwhile the variation of the tear
drop pocket frequency is more pronounced. From Fig. 7.12 (b) it can be
inferred that this variation is approximately 40 T. As can be expected from
the complicated form of the sheet in Fig. 7.11 (a), the dHvA spectrum of
band 10 is richer than the one of band 11 and 12. DHvA Frequencies up
to 40 kT were found by the SKEAF tool. In Fig. 7.12 (c) the frequencies
up to 12.5 kT are illustrated. A complete assignment of all orbits to the
corresponding features of the Fermi surface is omitted. As an example,
we point out that the orbit at ϕ = 0° and f = 5.7 kT stems from the two
touching branches on the faces forming a dumbbell-like cross section.
In a similar fashion, Fig. 7.13 illustrates the SKEAF results for rotations
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Figure 7.11: (a-c) Fermi surface sheets of the three bands crossing EF depicted in
the Brillouin zone. For clarity, they are drawn separately. (a) Sheet 10 consists of a
trunk with a complicated root structure protruding from the trunk to the faces of the
Brillouin zone. (b) Sheet 11 consists of ellipsoidal pockets at the A-points and two
copies of a tear drop-like pocket halfway between Γ and A. (c) Sheet 12 consists of
a nearly spherical pocket at A. The areas of the faces and the hexagonal plane of the
Brillouin zone are equivalent to dHvA frequencies of 52 kT and 53 kT, respectively.
(d) Real space coordinate system with the experimental angles ϕ, ϑ, and ψ. The
Bravais unit cell is oriented parallel to the Brillouin zone of reciprocal space. The
experimentally observed extremal orbits stem from small hole-like capillaries at
the K-points of sheet 10 (orbit β, Fig. (a)) and the electron-like tear drop pockets
of band 11 (orbit α, Fig. (b)).
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Figure 7.12: Angular dependence of dHvA frequencies and of curvature of ex-
tremal orbits versus angle ϕ for rotations of B in the basal plane as extracted from
the band structure calculations using the SKEAF tool [141]. (a) Angular depen-
dence of extremal orbits of band 11 and 12 corresponding to the surface sheets
in Figs. 7.11 (b,c). Two orbits stemming from band 11 are depicted as triangles
△. The orbit from band 12 is represented by diamonds ◇. The lowest orbit,
highlighted in red, is shown in an magnified view in (b). The experimentally ob-
served orbit α is assigned to this orbit stemming from the tear drop-like pockets of
Fig. 7.11 (b). (c) Angular dependence of extremal orbits of band 10 corresponding
to the surface sheet in Fig. 7.11 (a). Many orbits are found. Only frequencies be-
low 12.5 kT are shown. (d) Angular dependence of curvature A′′ along B of the
extremal orbit in (b).
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through the c-axis, i. e. for the experimental azimutal angles ϑ and ψ.
The left column of subfigures (a,c,e) depicts orbit frequencies versus an-
gle for the [001]-[100]-plane, i. e. angle ϑ while the right column (b,d,f)
shows data for the [001]-[120]-plane, i. e. angle ψ. The first row of sub-
figures (a,b) again illustrates the orbits of band 11 (triangles △) and 12
(diamonds ◇). A very similar angular dependence for rotations over the
edges (ϑ, Fig. 7.13(a)) and over the faces (ψ, Fig. 7.13 (b)) of the Bril-
louin zone is found. We recover the spherical, the ellipsoidal, and the tear
drop-like pocket of the sheets in Figs. 7.11 (b,c) with the tear drop orbits
having the lowest frequencies. All orbit frequencies feature a significant
dependence on the azimutal angles with each of them having its maxi-
mum for B along the c-axis and its minimum for B in the basal plane.
We note that the frequency from the tear drop pocket has a very flat fre-
quency dependence around the basal plane for both ϑ and ψ, but more pro-
nounced for ϑ. Again, band 10 has a more complicated frequency spec-
trum (Figs. 7.13 (c,d)). Frequencies up to 40 kT are extracted of which
Figs. 7.13 (c,d) show the part up to 12.5 kT. We do not assign all orbits
here, but restrict ourselves to a few examples: The orbit at ϑ = ψ = 0°
and f = 11.4 kT stems from the cross section of the trunk at the A-point.
The frequency band between ∼ 3.5 kT and 5 kT for 12.5° ≤ ϑ ≤ 72.5° (and
mirrored angles 107.5° ≤ ϑ ≤ 167.5°) originates from the roots protruding
from the trunk. The dumbbell cross section of the branches on the Bril-
louin zone faces can be traced between for 65° ≤ ψ ≤ 115° ranging from
5.7 kT to 7.4 kT. Attention should be paid to the lowest frequency band of
Figs. 7.13 (c,d) (highlighted in red), which is shown in a magnified view in
Figs. 7.13 (e,f). For both angles ϑ and ψ, it extends from 0° to 52.5° (and
mirrored angles 180° to 127.5°). Its minimum at f = 106 T coincides with
the c-axis. The frequency increases in a (approximately) parabolic fashion
for increasing angles, but it is not found for angles ϑ,ψ ≥ 55° (the incre-
ment for the SKEAF calculations was ∆ϑ = ∆ψ = 2.5°). The maximal
values at ϑ = ψ = 52.5° are 246 T and 252 T, respectively. The origin of
this small orbit in the Fermi surface are thin capillaries formed at the K-
points of the Brillouin zone by root branches from neighboring Brillouin
zones. For a visualization it is better to change from the representation of
the sheets in the Brillouin zone of reciprocal space as in Fig. 7.11 to a rep-
resentation in the primitive unit cell of reciprocal space. This is depicted
in Fig. 7.14, where the capillaries at the K-points can be recognized more
easily.
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Figure 7.13: Angular dependence of dHvA frequencies of extremal orbits ver-
sus angle ϑ and ψ for rotations of B in the [001]-[100]-plane (left column)
and in the [001]-[120]-plane (right column), respectively, as extracted from the
band structure calculations using the SKEAF tool [141]. (a,b) Angular depen-
dence of extremal orbits of band 11 and 12 corresponding to the surface sheets
in Figs. 7.11 (b,c). Two orbits stemming from band 11 are depicted as trian-
gles △. The orbit from band 12 is represented by diamonds ◇. Experimentally,
only signatures of the lowest orbit (α) stemming from the tear drop-like pockets in
Fig. 7.11 (b) were found for these rotation planes. The best resolution was found
for ψ ≈ 90° (highlighted in red). (c,d) Angular dependence of extremal orbits
of band 10 corresponding to the surface sheet in Fig. 7.11 (a). Many frequency
branches were extracted. Only frequencies below 12.5 kT are shown. (e,f) Mag-
nified view of the orbit highlighted in red in (c,d). The experimentally observed
orbit β is assigned to this orbit stemming from the capillaries at the K-points of the
Brillouin zone in Fig. 7.11 (a) and Fig. 7.14.
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Figure 7.14: Depiction of the Fermi surface sheet of band 10 in the primitive unit
cell of reciprocal space, where the capillaries forming orbit β can be recognized
better than in the visualization of Fig. 7.11.

7.8 Comparison of experiment and theory

In the following, experimental and theoretical results are compared and an
assignment of the experimentally observed dHvA frequencies to the or-
bits extracted from the band structure calculations is suggested. Similar
to Ref. [12], we base the assignment on the accordance of the following
quantities: dHvA frequencies and angular frequency evolutions in exper-
iment and theory, measured effective masses and calculated band masses,
and uniqueness of the theory candidate for the observed orbit.
For orbit α we suggest an identification with the tear drop-like pocket of
band 11 in Fig. 7.11 (b). In the SKEAF results in Fig. 7.12 and Fig. 7.13,
it is highlighted in red for those angle ranges of ϕ and ψ for which it has
been observed. Both the observed and the theory orbit feature a 60° peri-
odicity consistent with the lattice symmetry where the frequency is mini-
mal for ⟨120⟩-directions and maximal for ⟨100⟩-directions (cf. Fig. 7.3 (b)
and Figs. 7.12 (a,b)). The experimental frequency has an average value of
1410 T which is in very good agreement with the calculated average fre-
quency of 1350 T. The experimental variation of the orbit frequency over
ϕ is 95 T which is larger than the theoretical variation of 40 T. Relative to
the size scale of Brillouin zone faces, which are equivalent to 52 kT, the
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deviations amount to 0.1%. This is, altogether, a very good agreement of
experiment and theory. The effective mass from experimentm⋆

α = 0.79me

(measured at ϕ = 7.5°) is enhanced by a factor of 1.6 over the calculated
band mass of mb,α = 0.49me (extracted at ϕ = 8°). The enhancement of
the effective mass over the band mass can be attributed to many-body inter-
actions not taken into account in the band structure calculations [142]. If it
is assumed that electron phonon interactions dominate this mass renormal-
ization, an upper bound for the electron phonon coupling constant λ can
be determined via m⋆ = (1 + λ)mb [143]. The analysis yields λα = 0.6
for orbit α1. In principle, the ellipsoid and the sphere at the A-point from
band 11 and 12, respectively, are also candidates for orbit α as they also
represent closed sheets and their frequency is on the correct scale (cf.
Fig. 7.12 (a)). However, we do favor the tear drop pocket over the two
spheres for the following reasons: The frequency match of the tear drop
pockets to α is better. The frequency variation of the observed orbit is
larger than the variation of any of the three theoretical orbits, but the tear
drop orbit has the greatest frequency variation of the three, hence being
closest to the experiment. Finally, the frequency of the tear drop orbit is
the lowest, making it the most likely to be observed within experimental
limitations of finite field strength and temperature. We even find a quali-
tative consistency of the SKEAF calculations with the fading of the signal
strength of α observed for ϕ = ±30° (cf. Fig. 7.2 (b)) and equivalent angles
and with the absence of α for rotations through the basal plane.
The fading for ϕ = ±30° can be explained by the increased curvature of the
sheet for this direction. In Fig. 7.12 (d) curvature A′′ for orbit α is plotted
for rotations of B in the basal plane, i. e. versus angle ϕ. The maximum
of curvature is found at ϕ = 30°, thus suppressing Mosc for this direction.
In Sec. 7.3 it was argued that α should also be present for rotations in the
[001]-[100]-plane and in the [001]-[120]-plane if it belongs to a closed
Fermi surface sheet. However, only signatures such as in Fig. 7.5 were
found in these planes (highlighted data points in Fig. 7.13 (b)). We can
relate this finding to a lower anisotropy 1/f ⋅ ∂fα/∂ϑ and 1/f ⋅ ∂fα/∂ψ

1There is only little insight on basis of theoretical studies into the question to which degree
electron phonon interactions contribute to λ in VB2 and other transition metal diborides.
Vajeeston et al. compare calculated and measured electronic specific heat coefficients
and deduce for the electron phonon coupling λ = 0.952 for VB2 and λ = 0.26 for
spin-polarized MnB2 [115]. Heid et al. report an average electron phonon coupling of
λ = 0.28 for VB2 from ab initio DFT calculations [144].
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7 De Haas-van Alphen effect and Fermi surface properties of VB2

than the anisotropy in the basal plane 1/f ⋅∂fα/∂ϕ reflected in the flat fre-
quency curves for α in Figs. 7.13 (a,b). If we approximate the anisotropy
factors by the corresponding difference quotients of the SKEAF results,
we in fact find a difference by a factor of three and ten, respectively

∆fα
∆ϕ

∣
ϕ=30°

= 0.7
T

deg
,

∆fα
∆ψ

∣
ψ=90°

= 0.24
T

deg
,

∆fα
∆ϑ

∣
ϑ=90°

= 0.07
T

deg
.

The reduced anisotropies for ϑ and ψ might explain the absence of or-
bit α in the [001]-[100]- and [001]-[120]-plane in the torque experiment.
These considerations are in very good agreement with the inferences from
the measurements discussed in Sec. 7.3.
For β only one orbit of the SKEAF calculations matches, which is the
one highlighted in red in Fig. 7.13 (c-f) stemming from the capillaries
of Fig. 7.14. The agreement with experiment is striking: Experimen-
tally, it was observed in an angular range of 102.5° while theory pre-
dicted 105°. The experimental frequency range is 102 − 188 T compared
to 106 − 252 T in the calculations. We find an approximately parabolic
dependence on angle in both experiment and theory. The measured ef-
fective mass m⋆

α = 0.182me (measured at ϑ = 15°) is enhanced over the
band mass mb,β = 0.126me (extracted at ϑ = 15°) by a factor of 1.4, very
similar to the enhancement of mb,α. The very high signal strength of β
(cf. Fig. 7.2) compared to α is caused by a combination of large anisotropy
1/f ⋅ ∂fβ/∂ϑ and small curvature along the elongated capillaries depicted
in Fig. 7.14 and by the small mass.
The band structure calculations imply that both α and β have predomi-
nantly V-d character. Compared to the orbits arising from the two pock-
ets at A of band 11 and 12, the B-pxy contribution is small. Table 7.1
summarizes the experimental and theoretical results for VB2. Karki et al.
performed pulsed high-field dHvA measurements for VB2 [131], which is
the only other dHvA study of VB2 we are aware of. Orbit β is not ob-
served in this study. We identify our orbit α with frequency Fa = 1404 T
(for B ∥ [100]) in Ref. [131]. The agreement with our fα = 1460 T for
corresponding angle ϕ = 30° is good. Surprisingly, Karki et al. report an
effective mass of m⋆ = 0.53me for Fa. This value conincides with the
“naked” band mass mb,α = 0.52me (extracted at ϕ = 30°) of our band
calculations, meaning essentially an absence of renormalizing many-body
interactions. A corresponding analysis is however not found in Ref. [131].
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Orbit Band fcalc (T) fexp (T) m⋆/me mb/me l (nm) λ
α electron V-d 1350 (av.) 1410 (av.) 0.79 ± 0.03 0.49 25 0.6

β hole V-d 106
(B ∥ [001])

102
(B ∥ [001])

0.182 ± 0.004 0.126 21 0.4

Table 7.1: Band origin, experimental and calculated dHvA frequencies, effective
masses m⋆, band masses mb, mean free paths l, and electron phonon coupling
constants λ (upper bounds) of the experimentally observed orbits α and β in VB2.

It seems worthwhile to comment on the absence of the majority of fre-
quency branches found by SKEAF in the measurements. According to the
calculations, all of them have either a larger mass, a higher frequency, or
both, if compared to the observed orbits. Experimental limitations of finite
temperature T and field strength B and sample quality consequently make
their observation less likely. Larger masses lead to smaller dHvA sig-
nals via the thermal reduction factor RT and higher frequencies are more
strongly reduced via the Dingle factor RD of Lifshitz-Kosevich theory.
The Dingle temperatures (Eq. 2.36) corresponding to the mean free paths
given in Table 7.1 correspond to 24 K (α) and 30 K (β), indicating only
an intermediate sample quality. Thus, it is not surprising that frequencies
above the 1 kT scale are not observed in the experiment. The two spherical
pockets of band 11 and 12 at the A-point have band masses of 0.37me and
0.29me. They are interesting in that they possess the highest contribution
of B-pxy states of all extremal orbits determined by SKEAF. Even though
they have a smaller band mass than α, we have not observed them. This
can be attributed to slightly higher frequencies, smaller anisotropies, and
to smaller curvatures suggested by the calculations. Potentially, their ab-
sence is also a consequence of their B-pxy contributions due to higher mass
enhancements of B-pxy-derived states, which was observed in both CrB2

and MgB2 [12,145]. For comparative purposes their observation would be
particularly interesting in consecutive experiments.
In summary, we find the two experimentally observed orbits α and β along
with their angular frequency dependence in very good agreement with the
band structure calculations. The measured effective masses are enhanced
over the calculated band masses by similar factors 1.6 and 1.4, respec-
tively, which also indicates a consistency as both orbits share their origin
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7 De Haas-van Alphen effect and Fermi surface properties of VB2

from V-d states. Furthermore, the angular variation of observed dHvA sig-
nal intensities can be related to the angular dependence of calculated sheet
anisotropies and curvatures. Effectively, the dHvA measurements for VB2

thus confirm the high reliability of DFT band structure calculations, specif-
ically for non-magnetic compounds. Future experiments at higher fields
and lower temperatures could allow for the observation of more orbits pre-
dicted by the calculations and provide useful information on many-body
interactions in VB2, particularly the electron phonon coupling of B-pxy-
derived states.
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8 De Haas-van Alphen effect and Fermi surface
properties of MnB2

In this chapter, the de Haas-van Alphen (dHvA) effect of single crystal
MnB2 is investigated in order to derive Fermi surface properties of MnB2.
The dHvA effect is derived from the quantum oscillatory component of the
torque measured by cantilever magnetometry.
The chapter is organized as follows: The general experimental procedure is
briefly explained in Sec. 8.1. Experimental results of the angular, temper-
ature, and field dependence of the dHvA effect are presented and analyzed
in Sec. 8.2-8.5. This is followed by a presentation and analysis of results of
band structure calculations in Sec. 8.6-8.7, before turning to a comparison
of the experimental findings and the calculations in Sec. 8.8. The chapter
is concluded with a comparison of the results for MnB2 and VB2 with the
isostructural compounds CrB2 and MgB2 in Sec. 8.9.

8.1 Experimental procedure

For the magnetization experiments with the MnB2 sample, which has been
described in Ch. 6, a procedure very similar to the one for VB2 (Sec. 7.1)
was followed. The sample was glued onto a CuBe cantilever (Sec. 3.2),
which itself was mounted onto a rotary stage of a 3He insert operated in a
15 T-superconducting magnet. The capacitive readout technique (Sec. 3.3)
was used. However, for MnB2 the orientation of the magnetic field B
could only be varied within the basal plane. Figure 8.1 (a) shows the ori-
entation of the crystal relative to the applied field and the convention for
the experimental angle ϕ, denoting the orientation of B relative to the
[120]-axis. Note that the crystal was placed on the cantilever with a differ-
ent orientation than for VB2 in Ch. 7, but the convention for ϕ is identical
with the notation of Ch. 7 relative to the crystal structure.
Outside the basal plane, magnetization measurements were not fruitful be-
cause the magnetic moment along the c-axis resulting from the canting of
the localized momenta in the hexagonal planes (cf. Ch. 6) caused an irre-
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B
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f[120]

(a) (b)

Figure 8.1: (a) Side view of CuBe cantilever with the MnB2 sample attached to
it. The orientation of the magnetic field B with respect to the sample was varied
wihtin the basal plane. The angle ϕ represents the angle of B in the basal plane
relative to the [120]-axis. (b) Deformed cantilever with attached sample after an
attempt of magnetization experiments in the [001]-[120]-plane.

versible deformation of the cantilever for these orientations. Fig. 8.1 (b)
shows a photography of a cantilever with the MnB2 sample attached to it
after an attempt to perform torque measurements with B oriented in the
[001]-[120]-plane. The paddle has been bent considerably by the large
torque.

8.2 Experimental findings

Typical experimental data are illustrated in Fig. 8.2. Figure 8.2 (a) shows
raw data, i. e. capacitance C versus magnetic fieldB for three different an-
gles ϕ. Depending on angle ϕ, a large non-oscillatory background signal
is present. The origin of the background signal is not the topic of this the-
sis. However, it necessitates a more careful subtraction procedure than for
VB2 to arrive at the oscillatory part of the magnetization Mosc. Generally,
a polynomial was fitted to the raw capacitance data as a function of field
strength B and then subtracted. Then for every value of B, the subtracted
data were multiplied by C2

0/C(B)2 ⋅K(C0), where C(B) is the the ca-
pacitance data value and K(C0) is the calibration constant at capacitance
C0. For large variations of the overall capacitance, this modification of the
calibration scheme is necessary to account for the dependence of the cali-
bration constant K(C) on capacitance C since K scales with the inverse
square of the cantilever’s capacitance (cf. Sec. 3.4). To further reduce the
non-oscillatory part of the signal, a moving average of the signal as a func-
tion of 1/B was subtracted. The number of data points to be averaged over
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Figure 8.2: (a) Raw capacitance data C as a function of magnetic field B for ϕ =
−30°, 0°, and 30°. (b) Oscillatory part of magnetization Mosc for ϕ = 0° versus
inverse magnetic field. (c) “Inflated” oscillatory part of magnetization M̃osc(1/B)
versus inverse magnetic field for ϕ = 0°. (d) FFT data exhibiting two dHvA orbits
α and β.

was adjusted such that the signal was effectively disposed of frequencies
lower than 40 T. Figure 8.2 (b) shows resulting data for the oscillatory part
of magnetization Mosc as a function of inverse field 1/B for ϕ = 0°. The
signal shows a slight beating pattern. This can be inferred from the fact
that the envelope function is not a pure decay for increasing inverse field
since the amplitudes of consecutive oscillations do not decrease continu-
ously. Hence, more than one frequency must be present. To enhance the
frequency resolution, the analysis of Ch. 7 was adapted to this finding: the
FFTs are not based on Mosc(1/B) solely, but on Mosc(1/B) ⋅ exp (ξ/B)

where exp (ξ/B) is a heuristic, exponentially increasing factor to counter-
balance the Dingle reduction factor RD originating from finite relaxation
time τ . Fig. 8.2 (c) shows the resulting function M̃osc(1/B), which corre-
sponds to Mosc(1/B) in Fig. 8.2 (b). Figure 8.2 (d) depicts a fast Fourier
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8 De Haas-van Alphen effect and Fermi surface properties of MnB2

transform of magnetization M̃osc(1/B). Two frequencies fα and fβ be-
longing to two orbits α and β, respectively, can clearly be resolved where
the amplitude of fβ exceeds the one of fα by a factor of approximately 2.5.
Using the scaling factor exp (ξ/B), the two frequencies were resolved in
the entire basal plane.
We note that the “inflation” procedure - while sharpening the main peaks
- increases the height of the side lobes of the FFT peaks. For example, the
lobe right to the α-peak in Fig. 8.2 (d) is not attributed to a distinct third
frequency. It is shifted by 15 T, which coincides exactly with the position
where the first side lobe of the α-peak is to be expected for the given win-
dow width of the signal in 1/B. A similar analysis was performed for all
FFTs of the angle-dependent measurements of the following section.

8.3 Angular dependence

The angular dependence of orbits α and β was studied in the basal plane
in an angular range of 165° with increments of 7.5°. FFTs of the “inflated”
magnetization M̃osc(1/B) were analyzed for every angle ϕ to extract the
dHvA frequencies. Orbit β was traced over the entire angular range and
orbit α was detected for a range of 120°. Fig. 8.3 illustrates the angular
dependencies of frequencies fβ (black squares) and fα (open circles). The
fact that α could not be resolved for ϕ < −67.5° and ϕ > 52.5° is assumed
to be due to experimental limitations. In these angle ranges the overall
capacitance signal C as a function of magnetic field B features a sharp
peak at positions between 9.5 T and 12.5 T. The exact position was found
to vary in different measurements. Typical data are shown in Fig. 8.4 for
ϕ = −60° and ϕ = 60°. The origin of this feature is not known. No system-
atic dependence was found: The position of the peak did not coincide with
angles reflecting specific crystal symmetries. The two angles of Fig. 8.4
(ϕ = −60° and ϕ = 60°) as well as the data for ϕ = 0° in Fig. 8.2 (a) were
in fact equivalent with respect to the symmetry of the hexagonal plane.
However, for ϕ = −60° and for ϕ = 60° the positions of the peak signifi-
cantly differed while for ϕ = 0° the peak was not found at all. Moreover,
the position of the peak did not coincide in different measurements for
one angle after the orientation of the cantilever had been varied to a dif-
ferent angle and then changed back to the former angle again. Also, the
position of the peak did not coincide in subsequent cool-down cycles. Fur-
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Figure 8.3: Angular dHvA frequency dependencies of orbit α and β for a rotation
of the magnetic field B in the basal plane. Both orbits exhibit a 60° periodicity.

thermore, a dependence on the canting of the ordered magnetic momenta
(cf. Sec. 6.3) could be ruled out. For this, the temperature was increased
to 180 K, i. e. beyond TC ≈ 157 K, below which the canting is assumed
to occur. However, the peak feature still appeared. We therefore assume
that the cause of this feature is probably not purely magnetic, but more
likely a complicated interplay between magnetic and mechanical, possibly
magnetostrictive effects. A further investigation was not within the scope
of this thesis. It is noteworthy that the sharp capacitance peak decreased
the frequency resolution of respective experiments by reducing the inverse
field range on which the FFTs were based. We therefore strongly assume
that the absence of α for the corresponding angles is not a feature of the
Fermi surface, but only due to the discussed experimental limitation.
Both fα and fβ feature a 60° periodicity consistent with the sixfold sym-
metry of the hexagonal plane. Frequency fα varies between ∼ 235 T and
∼ 270 T and fβ varies between ∼ 310 T and ∼ 365 T. Thereby, minima of
fα coincide with maxima of fβ at ϕ = −60°, 0°, and 60° and likewise max-
ima of fα coincide with minima of fβ at ϕ = −30° and 30°. This antiphase
behavior of fα and fβ will be explained in the context of the discussion of
the Fermi surface sheet from which the two orbits arise in Sec. 8.8.
Both orbits α and β stem from closed Fermi surface sheets since they were
observed for a full 60° period (and more). The peak-to-peak variation of
extremal area corresponding to the observed frequency variation is 15%
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Figure 8.4: Raw data for ϕ < −57.5° and ϕ > 52.5° feature a sharp peak in the
field range between 9.5 T and 12.5 T. The origin of this feature is not the subject
of this thesis, but resolution of the FFTs for determination of dHvA frequencies is
effectively reduced by the peaks.

and 18%, respectively.

8.4 Temperature dependence

The temperature dependence of the dHvA signals from α and β was stud-
ied at angle ϕ = −15° for temperatures T = 0.3 K, 0.8 K, 1.25 K, 2.0 K,
3.0 K, and 4.0 K in order to determine the effective masses of the respec-
tive orbits. FFT spectra of M̃osc were analyzed to extract the temperature-
dependent Fourier amplitude I(T ) for both α and β. The spectra are based
on an inverse field range corresponding to Bmin = 6.3 T and Bmax =

14.0 T. Figure 8.5 illustrates the experimental data. In Fig. 8.5 (a) the
FFT amplitude I(f) is depicted versus frequency f . Both peaks decrease
with increasing temperature and almost completely vanish for T = 4.0 K.
In Fig. 8.5 (b) the peak heights of the FFTs of Fig. 8.5 (a), normalized to
the peak height at T = 0.3 K, are plotted versus temperature T . The black
squares represent frequency fβ and the open circles represent fα. Simi-
larly to Sec. 7.4, the temperature reduction factor RT Eq. 2.32 (multiplied
by a multiplicative constant) is fitted to each data set to extract the effec-
tive mass m⋆ of the respective extremal orbit. For B the arithmetic mean
B̄ = (Bmin +Bmax) /2 of the analyzed field range was inserted. The fits
are depicted as solid lines in Fig. 8.5 (b), green corresponding to α and
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Figure 8.5: Temperature dependence of the signal strength of dHvA frequencies
fα and fβ . (a) Temperature-dependent fast Fourier transforms of M̃osc(1/B) at
ϕ = −15° for T = 0.3 K,0.8 K,1.25 K,2.0 K,3.0 K, and 4.0 K. (b) Normalized
FFT amplitudes I(T )/I(T = 0.3 K) corresponding to the data in (a) and fits of
Eq. 7.1 to the data points as a function of temperature. Open circles (data points)
and the solid green line (fit) represent data for orbit α. Black squares (data points)
and the solid blue line (fit) represent data for orbit β. The fits reveal effective
masses of m⋆

α = (0.50 ± 0.05)me and m⋆

β = (0.64 ± 0.03)me.

blue corresponding to β. The effective masses determined by this analysis
are m⋆

α = (0.50 ± 0.05)me and m⋆

β = (0.64 ± 0.03)me.

8.5 Field dependence

Similar to Sec. 7.5, the mean free path lβ of orbit β was determined af-
ter extraction of the effective masses. For this, the full Lifshitz-Kosevich
formula

Γosc = C
0
β ⋅B

3
2 exp(−

πmb,β

eBτ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RD,β

Xβ

sinhXβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RT,β

sin(
2πfβ

B
+ φβ) , (8.1)

was fitted to the torque data Γosc at angle ϕ = 0°, where C0
β , mb,β/τ ,

and φβ were used as free fit parameters and values for fβ and m⋆

β were
inserted as determined above. The approximation of free electrons on a
circular orbit was again applied by replacing mb,β/τ through h̵kF/lβ and
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Figure 8.6: Dingle analysis of orbit β. (a) Γosc for ϕ = 0° as a function of field
strength B (black line). The red line is a fit of Eq. 8.1 to the data using fβ and m⋆

β

as determined in the previous sections. It yields the free mean path lβ = 48 nm.

πk2
F = (2πefβ)/h̵ (cf. Sec. 7.5). Figure 8.6 depicts the experimental torque

data (black line) as well as the fit (red line). The fit yields the mean free
path lβ = 48 nm. It was also tried to fit Eq. 7.2 for both frequencies fα
and fβ to the data, increasing the number of free parameters to six (C0

α,
C0
β , mb,α/τ , mb,β/τ , φα, φβ). However, the fit did not provide physically

meaningful results for orbit α. It is assumed that the contribution of α and
the field range window is too small and the number of free parameters is
too large in order to extract reasonable mean free paths for both orbits.

8.6 Band structure and Fermi surface

Band structure calculations for MnB2 were performed by J. Kuneš apply-
ing the local spin density approximation method of density functional the-
ory. Experimental lattice constants of a = 3.0062 Å and c = 3.0288 Å were
used, which were determined by X-ray diffraction at T = 12 K for a sample
grown in the same float-zoning process as the investigated sample [146].
Different from VB2, MnB2 exhibits magnetic order below TN = 760 K as
discussed in Ch. 6. In the calculations, the pure AF-c state was consid-
ered, i. e. the canting of the localized moments at the Mn sites towards
the c-axis was not taken into account. The AF-c structure corresponds to a
doubling of the magnetic unit cell in c-direction or equivalently to cutting
the Brillouin zone of reciprocal space in half. The corresponding back-
folding results in a doubling of bands in K-space compared to a hypo-
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8.6 Band structure and Fermi surface

thetically non-magnetic compound. Figure 8.7 depicts the band structure
along high-symmetry directions of the Brillouin zone. In total, four bands
highlighted in red, blue, purple, and green cross the Fermi Energy EF. In
the following, we refer to them as bands 21, 22, 23, and 24, respectively1.
Figure 8.8 shows the density of states n(E), normalized to one formula
unit (f. u.), as a function of energy E as derived from the calculated band
structure assuming the AF-c ordered state. Similar to Sec. 7.6, in addition
to the total DOS, the contributions from B-2s, B-2p, and Mn-3d states are
also drawn separately. The main difference to the DOS of non-magnetic
transition metal diborides, as discussed in Sec. 6.1, is the splitting of the
Mn-d peak into two peaks by the AF-c order, one below and one above the
Fermi energy EF, by convention again set to EF = 0. Hereby, the DOS is
depicted for a Mn atom Mn1 with a localized moment and the two peaks
relate to spin-up and spin-down projection with respect to the polarization
of Mn1 (density of states DOS1). For a second Mn atom in a neighbor-
ing hexagonal plane, Mn2, i. e. with opposite polarization, the density of
states DOS2 would be the same. Only the up- and down-labels of the peaks
would be reversed, thus restoring the symmetry of the DOS with respect to
spin projection2. The Fermi energy resides in the region of low DOS be-
tween the two Mn-d peaks. Despite of the Mn-d peak splitting, the states at
EF still have predominantly Mn-d character with an admixture of B-p or-
bitals as in non-magnetic transition metal diborides. In more detail, similar
to VB2, the B-p admixture to the bands around EF is almost entirely from
B-pxy states. The B-pz states are pushed away from EF. Hereby, the de-
gree of the B-pxy admixture varies depending on K-space direction and
band index. This can be derived from corresponding fat band plots, dis-
cussed in App. A, indicating B-pxy , B-pz , and Mn-d contributions to the
bands separately. We postpone a detailed discussion of the nature of the
electronic states at EF to a comparative discussion of the experimental re-
sults for MnB2 along with the isostructural compounds VB2, CrB2, and
MgB2 in Sec. 8.9.
In Fig. 8.9 the Fermi surface sheets of the four bands that cross EF are de-
picted in the Brillouin zone. For clarity they are drawn in separate subfig-

1Similarly to Sec. 7.6, the numbering of the bands is adopted from the WIEN2k results. The
doubling of the unit cell by the magnetic order explains the fact that there are approxi-
mately twice as many occupied bands as in VB2.

2The density of states DOS1 and DOS2 are related to each other by DOS1(↑) = DOS2(↓)
and DOS1(↓) = DOS2(↑).
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Figure 8.7: Calculated band structure of MnB2 with AF-c magnetic order using
the WIEN2k package along high-symmetry directions of K-space. Four bands
(red, blue, purple, green) cross EF, denoted as band 21, 22, 23, and 24.

Energy (eV)
0 4-4-8-12

0

1

2

3

D
O

S
 (

st
at

es
/e

V
/f

. 
u
.)  DOS

 Mn-d

 B-p

 B-s

 tot
EF

Figure 8.8: Density of states (DOS) of MnB2 per formula unit (f. u.) as inferred
from the calculated band structure with AF-c order. The total DOS is shown and ad-
ditionally the contributions from B-2s, B-2p, and V-3d states are drawn separately.
The M-d peak of the typical DOS of non-magnetic transition metal diborides MB2,
discussed in Sec. 6.1, splits into two peaks by the AF-c order. Hereby, the Fermi
energy EF, by convention set to EF = 0, resides in the region of low DOS be-
tween the two peaks. The states at EF are dominated by Mn-d components with
an admixture of B-p orbitals.
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8.7 Extraction of dHvA frequencies

ures. Since the unit cell was doubled in the c-direction for the calculation,
the Brillouin zone is correspondingly cut in half. The hexagonal plane and
the faces of the Brillouin zone have equivalent areas of 53 kT and 26 kT,
respectively. The red sheets in Fig. 8.9 (a) represent the Fermi surface of
band 21. The sheets are composed of tori at the H-points with horn-like
protrusions pointing towards the Γ-points. Each torus is segmented into
six identical parts, each part belonging to one of the six neighboring Bril-
louin zones at each H-point. For this reason, the sheet of band 21 is better
drawn in the primitive unit cell of reciprocal space as in Fig. 8.10. In this
representation, the six segments of neighboring Brillouin zones comple-
ment each other to form one torus with six protrusions at each of the two
H-points of the primitive unit cell. The Fermi surface sheets of bands 22,
23, and 24 are located at the Γ-points and depicted in Fig. 8.9 (b-d). Sheet
22 in Fig. 8.9 (b) resembles a spinning top with its axis oriented along the
c-axis. Both band 23 and band 24 feature sheets that are nearly ellipsoidal
with their elongated axes oriented along the c-axis. Hereby, the ellipsoid
of band 24 is smaller and closer to a sphere than the one from band 23.

8.7 Extraction of dHvA frequencies

The SKEAF program (Sec. 7.7, [141]) was employed to extract dHvA fre-
quencies from the band structure data calculated with WIEN2k. Since
magnetization experiments were only performed in the hexagonal plane,
we restrict ourselves in this chapter to the presentation of the results for a
rotation of B in this plane. The calculated dHvA frequencies for rotations
of B through the hexagonal plane are presented in App. B. Figure 8.11
depicts the results for the hexagonal plane. DHvA frequencies are plotted
versus angle ϕ in every subfigure. Figure 8.11 (a) represents the results
of band 21 corresponding to the tori of Fig. 8.9 (a) while the frequencies
of bands 22, 23, and 24 corresponding to the sheets of Fig. 8.9 (b-d) are
summarized in Fig. 8.11 (b). In Fig. 8.11 (b), dHvA frequencies stemming
from the spinning top of band 22 are represented by squares ◻, frequencies
from the ellipsoid of band 23 are represented by triangles △, and frequen-
cies from the ellipsoid of band 24 are represented by diamonds ◇, with the
◻-branch of band 22 having the highest frequencies and the ◇-branch of
band 24 having the lowest frequencies.
All frequency branches depicted in Fig. 8.11 (a) arise from the tori with
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Figure 8.9: Fermi surface sheets of the four bands crossing EF depicted in the
Brillouin zone. For clarity, they are drawn separately. (a) Sheet 21 consists of
tori at the H-points with horn-like protrusions pointing towards Γ. Each torus is
segmented into six parts distributed over neighboring zones. (b) Sheet 22 resembles
a spinning top at Γ with its axis oriented along the c-axis. (c) Sheet 23 is an
ellipsoidal pocket at Γ with its elongated axis along the c-axis. (d) Sheet 24 also
consists of an ellipsoidal pocket at at Γ with its elongated axis along the c-axis. It is
less elongated than sheet 23. Fig. (d) also depicts the real-space crystal orientations
[100] and [120] relative to the Brillouin zone along with the experimental angle ϕ.
The areas of the faces and the hexagonal plane of the Brillouin zone are equivalent
to dHvA frequencies of 26 kT and 53 kT, respectively.

122



8.7 Extraction of dHvA frequencies

A

H

L

M

Γ

Γ

Γ

[210]

[100]
a

b

Figure 8.10: Depiction of the Fermi surface sheet of band 21 in the primitive unit
cell of reciprocal space, where the torus segments of neighboring Brillouin zones
complement each other to form one torus with six protrusions at each of the two
H-points of the primitive unit cell. The experimentally observed orbits α and β
are assigned to the minimal torus cross sections. The origin of the orbits from the
minimal cross sections of a simple torus varied by the addition of the protrusions
explains the antiphase behavior of α and β observed in the experiment. Real-space
orientations [100] and [210] are indicated.

the protrusions at the H-points. To understand how they arise, a simple
torus is considered first as depicted in Fig. 8.12. For orientations of the
magnetic field in the plane perpendicular to the rotational axis of the torus,
a simple torus has two extremal areas with two copies each. One extremal
cross section arises from the two identical circles of radius r perpendicular
to B (depicted in green). These areas are minimal areas. For continuity
reasons there must also be maximal areas (depicted in red) whose exact
position depends on the ratio of r and R. For an ideal torus, the area of
minimal and maximal cross sections does not depend on the orientation of
B in the plane perpendicular to the rotational axis. For the tori of band 21
at the H-points of reciprocal space (Fig. 8.10), the protrusions towards the
Γ-points alter the above considerations: There are two smaller extremal
cross sections to be compared with the green circles of the simple torus,
whose areas are not necessarily the same because they are varied by the
protrusions depending on the orientation of B. These are minimal cross
sections. Accordingly, there are also two maximal cross sections, which
are to be compared with the red areas of the simple torus. Their areas are
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8 De Haas-van Alphen effect and Fermi surface properties of MnB2

also varied by the protrusions depending on the orientation of B. For this
reason, the two copies of the green minimal cross sections (circles) and the
two copies of the red maximal cross sections of the simple torus split into
four frequency bands in Fig. 8.11 (a). If B is oriented along Γ-K-lines,
the two smaller extremal areas coincide for symmetry reasons and hence
the two corresponding frequency branches cross. This constellation corre-
sponds to ⟨100⟩-orientations or alternatively for ϕ = 30° + n ⋅ 60° (n ∈ Z)
(cf. Fig. 8.10). Similarly, the two larger extremal areas coincide if B is
oriented along Γ-M-lines, i. e. ⟨120⟩-orientations, which corresponds to
ϕ = n ⋅ 60°. Between ϕ = 10° and 12° (and mirrored angles 48° and 50°),
the upper frequency band of the smaller extremal areas jumps by approx-
imately 0.5 kT. This a consequence of the fact that in the proximity of the
horn-like protrusions the surface normal abruptly changes its orientation.
For this reason, the extremal cross section is located “on” the horn for an-
gles ϕ ≤ 10°. Between 10° and 12°, the extremal cross section “slips off”
the horn and is located besides the horn on the torus for angles ϕ ≥ 12°
where it has a considerably smaller area.

8.8 Comparison of experiment and theory

In the following, experimental and theoretical results are compared and an
assignment of the experimentally observed dHvA frequencies to the or-
bits extracted from the band structure calculations is suggested. We again
base the assignment on the accordance of: dHvA frequencies and angular
frequency evolutions in experiment and theory, measured effective masses
and calculated band masses, and uniqueness of the theory candidate for the
observed orbit.
We suggest that the observed orbits α and β stem from the two minimal
cross sections of the tori with the protrusions, whose origins have been
discussed in Sec. 8.7. The corresponding frequency branches are high-
lighted in green and blue in Fig. 8.11 (a). Of all the frequency branches in
Figs. 8.11 (a,b) the frequency match for the the two small torus orbits is
the best although the theoretical values exceed the experiment by ∼ 180 T.
This corresponds however to only 0.3 % of the area of the hexagonal basal
plane of the Brillouin zone, which represents a good agreement. A rigid
band shift of only ∼ 60 meV can bring the calculated frequency branches
into very good coincidence with the measured frequencies of α and β.
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Figure 8.11: Angular dependence of dHvA frequencies of extremal orbits versus
angle ϕ for rotations of B in the basal plane as extracted from the band structure
calculations using the SKEAF tool [141]. (a) Angular dependence of extremal
orbits of band 21 corresponding to the surface sheet in Fig. 8.9 (a) or Fig. 8.10,
respectively. Four frequency branches are present. They arise from two minimal
and two maximal cross sections of the tori at the H-points. (b) Angular depen-
dence of extremal orbits of bands 22-24. DHvA frequencies from band 22 are
represented by squares ◻, frequencies from band 23 are represented by triangles
△, and frequencies from band 24 are represented by diamonds ◇. The experimen-
tally observed orbits α and β are assigned to the two lower frequency branches in
(a) stemming from the minimal cross sections of the tori.
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Figure 8.12: Extremal areas of a simple torus for orientations of the magnetic field
B perpendicular to the rotational axis of the torus. There are two identical minimal
cross sections (green circles) and two identical maximal cross sections (red areas).
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The antiphase frequency evolutions of α and β in experiment (Fig. 8.3)
and of the two minimal cross sections of the horned tori in the calcula-
tions (Fig. 8.11 (a)) are similar. The two branches separate when B tilts
towards ⟨120⟩ (ϕ = −60°,0°, . . . ) both in experiment and in theory. The
calculated branches cross each other for ⟨100⟩-directions (ϕ = −30°,30°,
. . . ). This crossing is not observed in experiment, but in experiment the
fα and fβ branch are closest for the same angles. Moreover, we do not
observe a jump for fβ like the jump for the upper (blue) frequency branch
in Fig. 8.11 (a). The pronounced horns of the tori in Fig. 8.10, which
cause the jumps, could be an exaggerated feature of the calculations as a
consequence of the fact that the DFT calculations do not take fully into ac-
count all interactions. Inclusion of further interactions generally smooths
out Fermi surfaces [147], which could explain the absence of the jumps
in the measurements. Moreover, the non-crossing of the experimental fre-
quency branches could be caused by a slight mismatch of the sample edges
and the crystal symmetry axes, by a slight misalignment of the sample on
the cantilever, a slight misalignment of the cantilever with respect to the
magnetic field, or a combination thereof. There is additional support for
the attribution of α and β to the two smaller extremal cross sections of the
tori: (1) Other candidate frequencies have a higher frequency mismatch
thus requiring more substantial band shifts to bring calculations and mea-
surements into coincidence. (2) We note that the torque signals for the two
branches fα and fβ have similar intensities for ϕ = −30°,30°, . . . , i. e.,
where the branches are closest in experiment. This supports that they stem
in fact from the same Fermi surface features. Also, for this orientation
the two minimal torus cross sections are identical for symmetry reasons.
Hence, this represents a consistency of experiment and theory. (3) For
other angles, fβ has a stronger signal than fα which is consistent with the
anisotropies 1/f ⋅ ∂f/∂ϕ of the branches in Fig. 8.11 (a), where the corre-
sponding derivative for the upper (blue) band is higher than for the lower
(green) band. (4) All other frequency branches in Fig. 8.11 (a,b) have band
masses mb of 0.65-2.89me such that their band masses surpass the mea-
sured effective masses of m⋆

β = 0.64me and m⋆

α = 0.50me, which argues
against their identification with the observed orbits.
After the identification of α and β with the minimal tori cross sections,
the respective mass enhancements can be determined. From the SKEAF
results we extract at ϕ = 14° band masses mb,α = 0.31me and mb,β =

0.42me, which yields a mass enhancement of the measured effective masses
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Orbit Band fcalc (T) fexp (T) m⋆/me mb/me l (nm) λ

α hole Mn-d 405 (av.) 250 (av.) 0.50 ± 0.05 0.31 0.6
β hole Mn-d 490 (av.) 340 (av.) 0.64 ± 0.03 0.42 48 0.5

Table 8.1: Band origin, experimental and calculated dHvA frequencies, effective
masses m⋆, band masses mb, mean free paths l, and electron phonon coupling
constants λ (upper bounds) of the experimentally observed orbitsα and β in MnB2.

m⋆

α = 0.50me and m⋆

β = 0.64me by a factor of 1.6 and 1.5, respectively.
Accordingly, estimates for upper bounds of the electron phonon coupling
strengths are λα = 0.6 and λβ = 0.5 (cf. Sec. 7.8). The band structure cal-
culations suggest that the torus orbits have predominantly Mn-d character.
Compared to the orbits arising from sheets 22 and 23 (spinning top and
ellipsoid) the B-pxy contribution is small.
Table 8.1 summarizes the experimental and theoretical results for MnB2

from our experiments, which are the first dHvA measurements for MnB2

to the best of our knowledge. The maximal torus orbits from band 21 and
the orbits from the electron pockets of bands 22-23 are absent in the ex-
perimental data. According to the SKEAF results all of them have higher
masses, higher frequencies, or both properties compared to the observed
orbits. By the same arguments as in Sec. 7.8, this can explain their ab-
sence. The Dingle temperature corresponding to the mean free path given
in Table 8.1 corresponds to 7 K (β), indicating a better sample quality than
for VB2. The spinning top pocket of band 22 and the ellipsoidal pocket
of band 23 are interesting for having significantly larger contributions of
B-pxy states than the tori of band 21. Their observation would therefore
be particularly interesting in consecutive experiments for a comparison of
electron phonon coupling strengths of B-pxy-derived bands in MnB2 with
other transition metal diborides.
In summary, we find the two experimentally observed orbits α and β along
with their angular frequency dependence in good agreement with the band
structure calculations. They can be assigned to the same Fermi surface
feature, i. e. torus-like sheets at the H-points of the Brillouin zone. The
measured effective masses are enhanced over the calculated band masses
by factors 1.6 and 1.5. The orbits have a hole-like Mn-d character. The
agreement of measured and calculated Fermi surface features is interest-
ing in view of the magnetic order of MnB2: The AF-c state assumed in the
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8 De Haas-van Alphen effect and Fermi surface properties of MnB2

calculations reproduces measured features well and the electronic struc-
ture seems to be altered only slightly by the out-of-plane canting of the
ordered moments. Experiments at higher fields and lower temperatures
are expected to allow for the observation of more orbits predicted by the
calculations and thus to provide useful information on many-body interac-
tions in MnB2. Particularly interesting are the electron phonon coupling
of B-pxy-derived states as well as a more rigorous test of the Fermi surface
properties predicted by the calculations.

8.9 Comparison with CrB2 and MgB2

It is instructive to compare our results from Ch. 7 and Ch. 8 for VB2 and
MnB2, respectively, with the isostructural compounds CrB2 and MgB2.
We start with a short review of the experimental findings for CrB2 in
Ref. [12] and then compare the dHvA results and Fermi surface properties
of transition metal diborides VB2, CrB2, and MnB2. This is followed by
a review of the electronic structure and Fermi surface properties of MgB2

before we conclude with some comments on common properties as well
as differences between transition metal diborides and MgB2.
For CrB2 Brasse et al. reported the observation of three dHvA orbits and
studied the variation of dHvA effect frequencies depending on the field
orientation [12]. The experimental results were compared to DFT calcula-
tions respecting the cycloidal magnetic order of CrB2 discussed in Sec. 6.3.
Two of the three orbits, βCr and δCr, were assigned to bands with B-pxy
character, while the third orbit αCr was tentatively assigned to a band with
Cr-d character. The phonon coupling constants λ for the two B-pxy or-
bits were reported to be λ = 1.3 and λ = 1.0 (upper bounds), respectively.
The presumable Cr-d orbit has a lower coupling constant of λ ≈ 0.3. Ta-
ble 8.2 summarizes the results for the transition metal (M) diborides MB2

of Ref. [12] and Chs. 7 and 8.
The two B-pxy-derived orbits in CrB2 originate from two electron-like
pockets with two copies each between the A- and the H-points of the Bril-
louin zone as inferred from the DFT calculations with cycloidal magnetic
order. Brasse et al. also performed a non-magnetic calculation where sin-
gle copies of the two pockets appear at the A-point. The doubling of the
pockets and the shift along the A-H-direction is thereby caused by the lift-
ing of the spin degeneracy and the direction of the magnetic ordering wave
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Comp. Ref. Orbit Band fcalc (T) fexp (T) m⋆/me mb/me λ

VB2 Ch. 7 αV V-d 1350 1410 0.79 0.49 0.6
βV V-d 106 102 0.182 0.126 0.4

CrB2 Ref. [12] αCr Cr-d (734) 308 1.22 0.93 (0.3)
βCr B-pxy 1899 1608 0.86 0.37 1.3
δCr B-pxy 2452 1951 1.07 0.53 1.0

MnB2 Ch.8 αMn Mn-d 405 250 0.50 0.31 0.6
βMn Mn-d 490 340 0.64 0.42 0.5

Table 8.2: Summary of the dHvA results for VB2, Cr2, and MnB2 from Chs. 7, 8
and Ref. [12]. Observed dHvA orbits along with their band origin, experimen-
tal and calculated frequencies, effective masses m⋆, band masses mb, and upper
bounds for electron phonon coupling constants λ are listed.

vector, respectively [12]. Inspection of the calculated band structures of
(non-magnetic) VB2 and (non-magnetic) CrB2 reveals a close similarity
where in CrB2 the Fermi energy EF is shifted upwards with respect to the
bands by the additional electron of Cr compared to V. In CrB2 the band 10,
correspondingly identified for VB2, does not crossEF, but the two pockets
at A of CrB2 are essentially derived from the same bands as the pockets at
A formed by bands 11 and 12 in VB2 (Fig. 7.11). As cycloidal magnetic
order in CrB2 doubles and relocates them in the Brillouin zone, we now
attribute the two pockets of orbits βCr and δCr to corresponding pockets
at the A-points in VB2. Following similar arguments, there are analogies
of CrB2 and VB2 also with MnB2. As stated in Sec. 8.6, for MnB2 the
band structure calculations were performed with the unit cell doubled in
c-direction in order to account for the AF-c state. This corresponds to a
back-folding of the bands in the c-direction of reciprocal space. For this
reason, electron pockets with B-pxy character located at the zone boundary
in VB2 and CrB2 are transferred to the Γ-point.
Experimentally, for VB2 and MnB2, only M-d-derived orbits have been
observed with coupling constants λ of 0.4-0.6 (Table 8.2). The two orbits
of CrB2 that could be attributed to bands with B-pxy contributions have
significantly higher coupling constants λ of 1.0 and 1.3. This can be at-
tributed to a high sensitivity of the strong bonds formed by the in-plane
B-pxy orbitals to the B-B binding length and to the light mass of B. Ob-
servation of dHvA orbits from B-pxy-derived orbits in VB2 and MnB2
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8 De Haas-van Alphen effect and Fermi surface properties of MnB2

in future experiments would therefore be particularly interesting to study
electron phonon coupling in the corresponding boron planes. In view of
the relatively small values derived for M-d-attributed coupling constants
in VB2 and MnB2 (0.4-0.6), we think that the small coupling constant of
orbit αCr (0.3 in Ref. [12]) is indeed consistent with the Cr-d band, tenta-
tively suggested in the same work. Following the analysis performed in the
course of the present thesis, a B-pxy band should have a more enhanced
coupling constant by the above arguments.
For the following comparison with MgB2 it is helpful to revisit a charac-
teristic property of the electronic states in MB2 at EF: All bands at EF in
all the investigated transition metal diborides have a high M-d contribution
independent from K-space direction and also independent from the mag-
netic order as inferred from the DFT calculations. Moreover, as a common
feature of MB2, the B-pz states are pushed away from EF. The contri-
bution of B-pxy orbitals to the states at EF varies depending on band and
K-space orientation. However, the calculations suggest that there are no
“pure” B-pxy states. A considerable M-d component is always present.
Following this, we conclude that the electronic states at EF for transi-
tion metal diborides can be characterized as M-d states with a varying
B-pxy contribution.
We now turn to a comparison of our findings with the isostructural com-
pound MgB2. In the light of the discovery of the superconducting tran-
sition temperature of Tc = 39 K in MgB2 [16], the study of the nature of
the electronic states of transition metal diborides at EF is particularly in-
teresting. This exceptionally high value of Tc for a conventional, phonon-
mediated superconductor [148,149] cannot solely be attributed to the light
B masses raising the phonon frequency, which scales the transition tem-
perature in conventional BCS theory [150]. Enormous effort has been
devoted to the explanation of superconductivity in MgB2 on grounds of
its electronic structure [143, 151–153]. At the heart of the superconduct-
ing state of MgB2, there is a peculiar interplay of two superconducting
gaps [110, 154–157]. The two gaps arise from two different band systems
atEF, of which one system is derived from in-plane B-pxy states (σ-bands)
and the other from B-pz states (π-bands) [158–160]. Hereby, the ionic
character of the Mg2+ layers lowers energetically the π-bands relative to
the σ-bands. This results in a considerable hole-doping of the σ-bands,
where phonon coupling is strong [154]. Both band systems are almost
pure, i. e. the admixture of the respective other state is very small. This
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8.9 Comparison with CrB2 and MgB2

orthogonal character suppresses interband scattering which would other-
wise strongly reduce Tc [161]. At the level of the Fermi surface, the two
orthogonal band systems manifest themselves in four distinct sheets. Two
of them belong to the σ-bands and form slightly warped cylinders along
the Γ-A-axes of two-dimensional character. The two sheets formed by
the π-bands resemble tubular networks extending perpendicularly to the
cylinders in the Γ- and in the A-plane, respectively [159]. All four Fermi
surface sheets are open. The orthogonality of the σ- and π-states leads to a
very low dispersion of the σ-bands along the c-axis. This fact is reflected
by the two-dimensionality of the corresponding cylindrical sheets of the
Fermi surface. Similarly, the fact that all sheets are open and the absence
of closed pockets of ellipsoidal shape can be regarded as a consequence of
anisotropic dispersions of all bands at EF and hence as a characteristic of
the orthogonality of σ- and π-states. These features of the Fermi surface
were confirmed in a series of dHvA experiments [137,143,145,162]. Four
σ-orbits stemming from the cylinders along Γ-A with electron phonon cou-
pling strengths of λ ∼ 0.9-1.2 and two π-orbits from the tubular networks
with λ ∼ 0.3-0.4 were observed [145]. The coupling constants were in very
good quantitative accordance with theoretical predictions: Large electron
phonon coupling was suggested for the partially filled σ-states due to the
light B masses and the sensitivity of the strong covalent B-σ bonds to the
B-B binding length. The B-π states have a metallic character [158, 159].
For this reason, they are less sensitive to phonons than the σ-states. Con-
sistently their coupling constants were found to be smaller by a factor of
∼ 3 compared to the σ-states [143, 145, 152].
Comparing all values for λ of the transition metal diborides in Table 8.2
to the coupling constants for MgB2 [145], we find an accordance of two
scales for λ: The M-d states in MB2 and π-states in MgB2 share a similar
(relatively low) scale for λ of 0.3-0.6 and 0.3-0.4, respectively. In contrast,
for the states with a large in-plane B-pxy component in MB2 and for the
σ-states in MgB2, λ is enhanced to 1.0-1.3 and 0.9-1.2, respectively.
While the accordance of the two scales for states with and without B-
pxy contributions represents a similarity in MB2 and MgB2, there are pro-
found differences of the electronic nature of the states at EF. Most impor-
tantly, the transition metal contributes 3d-electrons, which are absent in
MgB2, and all bands at EF are M-d states with a varying B-pxy contribu-
tion. Particularly, they do not possess the orthogonality of the rather pure
σ-bands (from B-pxy) and π-bands (from B-pz) of MgB2. This results in
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8 De Haas-van Alphen effect and Fermi surface properties of MnB2

a common characteristic of the Fermi surfaces of the three MB2 compared
to MgB2: They lack quasi-two-dimensional surface sheets (cf. Sec. 2.5)
like the cylinders along Γ-A in MgB2. Instead all of them feature pockets
of ellipsoidal or spherical shape with a more isotropic, three-dimensional
character and closed sheets. In fact, all orbits in Table 8.2 are attributed to
closed sheets except βV, i. e. closed sheets have been observed for all rep-
resentative MB2 compounds. In contrast, MgB2 exhibits only open sheets.
In summary, the transition metal diborides MB2 share similar scales for
the coupling constant λwith MgB2 depending on whether or not B-pxy or-
bitals contribute to the respective bands. However, the nature of electronic
states at EF in MgB2 and MB2 differs profoundly. In MgB2, the orthogo-
nality of the states gives rise to quasi-two-dimensional sheets of the Fermi
surface while in MB2 the ever-present M-d contributions render the surface
more isotropic.
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9 Summary and outlook

In this work, we studied the magnetization of three materials: graphene,
VB2, and MnB2. Additionally, we designed and implemented a new ex-
perimental setup for torque cantilever magnetometry with optical readout
to be used in a vacuum loading 3He system.
Torque cantilever magnetometry was employed to investigate the magne-
tization of samples of the three different materials at low temperatures and
in high magnetic fields. We designed, fabricated, and used two types of mi-
cromechanical cantilever magnetometers (MCMs), one based on GaAs can-
tilever sensors, the other based on CuBe cantilever sensors, in order to ac-
count for the specific properties of the respective material and the particu-
lar experimental conditions. The mechanical properties of the CuBe can-
tilever sensors were analyzed in detail to allow for a correct interpretation
of the experimental data. The MCMs were mounted in vacuum loading
3He systems to provide temperatures as low as 0.28 K and up to 20 K with
precise control. Magnetic fields of up to 14 T and 15 T were provided by
two superconducting solenoids. The 15 T-magnet was set up in the frame-
work of this thesis.
In the following, we give separate summaries of the results of the four
main parts of this thesis and include a brief outlook.

Magnetization experiments on large-area graphene samples

Magnetization experiments with GaAs-based micromechanical sensors were
performed on five different types of large-area graphene samples: CVD-
grown graphene monolithically integrated with the GaAs-based MCM,
CVD-grown graphene on a Si substrate with a thermal SiO2 layer, epitaxial
monolayer graphene (MLG) on the Si-terminated side of 6H-SiC of two
differing thicknesses, quasi-free-standing monolayer graphene (QFMLG)
with an intercalated hydrogen layer on the Si-terminated side of 6H-SiC.
None of the approaches provided a signal that could be attributed to the
respective graphene layer. To date, large-area graphene samples are not
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9 Summary and outlook

provided with an electronic quality and sample homogeneity sufficient for
the observation of magnetic quantum oscillations of the graphene electron
system. Electron mobility and sample homogeneity fall short of the re-
spective parameters achieved in 2DESs in semiconductor heterostructures,
where the de Haas-van Alphen effect is routinely observed, by several or-
ders of magnitude. Existing growth processes of graphene will likely ad-
vance and new fabrication methods might emerge, which could ultimately
lead to large-scale graphene samples of sufficient quality to study the or-
bital magnetism of graphene. An alternative tantalizing route is the study
of a single exfoliated graphene flake by means of cantilever torque mag-
netometry, but the path to this experiment is fraught with immense chal-
lenges, such as cleavage of a sufficiently large graphene flake with satisfac-
tory mobility, development of dedicated sensor technology and integration
of favorable graphene substrates (e. g. hexagonal boron nitride) in the sen-
sor, development of techniques for transferring flakes and appropriate sub-
strates onto the sensors, protection of the sensor/sample combination from
deteriorating environment influences, techniques for in-situ annealing of
the sample, development of a suitable readout technique, damping of the
micromechanical sensor, et cetera. During the research for this thesis, we
became aware of an interesting variation of the suggested MCM experi-
ment on individual exfoliated graphene flakes. Changyao Chen presents
in his thesis measurements in the quantum Hall regime of a graphene res-
onator formed by a suspended flake, which had directly been exfoliated
on elevated source and drain electrodes with a local gate electrode pat-
terned in a trench between them, using a capacitive readout with balanced
background. Thus, the graphene flake acts as the embedded 2DES and the
mechanical resonator simultaneously. A strong magneto-mechanical cou-
pling to dHvA oscillations of the Dirac electron gas was observed [163].

Sample head for cantilever magnetometry with interferometric read-
out

We designed, implemented, and tested a new experimental sample head
used in a vacuum loading 3He system for cantilever magnetometry exper-
iments using an interferometric readout scheme. We presented the guide-
lines along which the sample head was developed, such as integration into
an existing 3He system and use in existing superconducting solenoids,
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sample fine-positioning considerations, wiring challenges for experiments
at cryogenic temperatures, and access issues in experimental environments
with limited space. We showed how these design challenges were suc-
cessfully addressed in the implementation. The sample head was tested
and will allow for highly sensitive magnetization experiments with sub-
micrometer control of the sample position. This opens the possibility of
experiments with cantilevers having lateral dimensions on the micrometer
scale, carrying samples, e. g. single crystal specimen, which require higher
magnetometric sensitivities than presently available.

De Haas-van Alphen effect and Fermi surface properties of VB2

The angular, temperature, and field dependence of the dHvA effect of VB2

was studied in all three major planes of the C32 crystal structure. We iden-
tified two distinct extremal orbits α and β of the Fermi surface. The exper-
iment suggests that orbit α, having an average frequency of fα,av = 1410 T,
stems from a closed surface sheet while β is an open orbit with a minimal
frequency of fβ,min = 102 T. The Lifshitz-Kosevich analysis of tempera-
ture and field dependence revealed effective masses of m⋆

α = 0.79me and
m⋆

β = 0.182me and free mean paths of lα = 25 nm and lβ = 21 nm, re-
spectively. The experimental results were compared to data extracted from
brand structure calculations. Orbit α could be attributed to a Fermi surface
feature with a tear drop-like form and orbit β was found to originate from
a thin capillary at the zone boundary formed by complicated open surface
sheets of neighboring Brillouin zones. The electronic states of both or-
bits have predominantly V-d character. Orbit α is electron-like and orbit
β is hole-like. Comparison of the measured effective masses m⋆ with the
band masses mb extracted from the calculations yielded mass enhance-
ment factors of 1.6 and 1.4 and accordingly upper bounds for the electron
phonon coupling constants of 0.6 and 0.4. Experimental observations of
the relative dHvA signal strengths for different orientations could be con-
sistently explained by curvature and anisotropy data of the extremal orbits
as obtained from the calculations. To the best of our knowledge, our ex-
periments represent the first detailed study of the angular dependence of
the dHvA effect of VB2. In particular, the observation of orbit β had not
been reported before.
In the experiments conducted for this thesis, we were limited to tempera-
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tures greater than 280 mK and magnetic fields up to 15 T. The band struc-
ture calculations suggest the existence of numerous dHvA orbits which
have not been observed. All of them have either larger band masses or
higher frequencies than the found orbits. The experimental limitations
make their observation thus less likely. Two spherical pockets predicted by
the calculations are particularly interesting in that they possess the highest
contribution of B-pxy states of all extracted extremal orbits. Their obser-
vation in consecutive experiments at higher fields and lower temperatures
would thus allow for a comparison of electron phonon coupling constants
of B-pxy- and V-d-derived states in VB2 and with the respective param-
eters in isostructural compounds. As the two orbits from B-pxy-derived
pockets have only slightly higher frequencies than α and even lower band
masses, we have reason to speculate that their observation is just “right
around the corner”

De Haas-van Alphen effect and Fermi surface properties of MnB2

The angular, temperature, and field dependence of the dHvA effect of
MnB2 was studied in the basal plane of the C32 crystal structure. We
identified two distinct extremal orbits α and β of the Fermi surface. The
experiment suggests that both orbits stem from closed surface sheets. Or-
bit α, having an average frequency of fα,av = 250 T, and orbit β with an
average frequency of fβ,av = 340 T showed a periodic frequency variation
when the field was rotated in the basal plane consistent with the crystal
symmetry. More precisely, an anti-phase behavior of α and β with re-
spect to the frequency dependence was observed. The Lifshitz-Kosevich
analysis of temperature and field dependence revealed effective masses of
m⋆

α = 0.50me and m⋆

β = 0.64me, respectively, and for β a free mean
path of lβ = 48 nm. The experimental results were compared to data
extracted from brand structure calculations considering the antiferromag-
netic AF-c ground state of MnB2, but neglecting the canting of localized
moments towards the c-axis. Both orbits could be attributed to a Fermi
surface sheet at the Brillouin zone boundary resembling a torus with horn-
like protrusions. The anti-phase behavior of the angular frequency depen-
dence could be explained by a variation of the two identical minimal cross
sections of a simple torus by the addition of the horns. Both orbits are
hole-like and originate from bands having predominantly Mn-d character.
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Comparison of the measured effective masses m⋆ with the band masses
mb extracted from the calculations yielded mass enhancement factors of
1.6 and 1.5 and accordingly upper bounds for the electron phonon cou-
pling constants of 0.6 and 0.5. The dHvA signal strength of frequency fβ
was larger than the one of fα, a fact found to be consistent with a higher
anisotropy of the extremal area of orbit β compared to orbit α as inferred
from the calculations. We thus found a good agreement of the experimen-
tal results with the predictions from band structure calculations assuming
the AF-c state. To the best of our knowledge, our investigation is the first
dHvA study of MnB2.
Similarly to VB2, the calculations suggest the existence of a variety of
other dHvA orbits, which have not been observed in the experiments. Ac-
cording to the calculations, all of them have larger band masses or higher
frequencies than the found orbits. Experimental limitations of finite tem-
perature and magnetic fields would thus lead to a reduction of the rela-
tive strength of their dHvA signals. Future experiments in higher magnetic
fields and/or at lower temperatures, e. g. in a 3He/4He dilution refrigerator,
might allow for the exploration of orbits with heavier masses and higher
frequencies. In particular, the existence of two electron-like pockets is pre-
dicted with a considerably higher contribution of B-pxy states than in the
observed orbits. Their observation would be particularly interesting in or-
der to derive useful quantitative information on many-body interactions in
MnB2, particularly the electron phonon coupling of B-pxy-derived states.
Additionally, the observation of more orbits would allow for a more rig-
orous test of the calculated Fermi surface properties. It is well established
that the magnetic ground state of MnB2 is characterized by a slight cant-
ing of the AF-c ordered magnetic moments. A finite canting angle lifts
the degeneracy of the band structure with respect to spin projection, result-
ing in a splitting of the bands for majority and minority charge carriers.
The splitting of the bands could be observed in dHvA experiments and the
band structure calculations could be revisited considering a finite canting
angle. By comparison of such experimental and theoretical data, valuable
information on the canting angle could be derived and ultimately lead to a
better understanding of the peculiar nature of MnB2 magnetism.

A detailed comparison of the experimental results for VB2 and MnB2 and
of the inferences about the nature of the electronic states and Fermi surface
properties of VB2 and MnB2 with a dHvA investigation of the transition
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metal diboride CrB2 [12] and with various studies of the isostructural rare
earth metal diboride MgB2 was included. In this synoptic discussion, we
argued that the electronic states at the Fermi energy in all transition metal
(M) diborides VB2, CrB2, and MnB2 predominantly have M-d charac-
ter with a varying contribution from B-pxy orbitals. Hereby, the upper
bound of the electron phonon coupling constant for comparatively pure
M-d states is 0.4-0.6 while the states with considerable B-pxy contribu-
tions have an enhanced coupling constant of 1.0-1.3. Even though the three
compounds have different magnetic ground states, the electron pockets in
the three Fermi surfaces with large B-pxy contributions could be traced to
the same origin in the band structure.
In comparison with MgB2, we found that the transition metal diborides
MB2 share similar scales for the electron coupling constant with MgB2

depending on whether or not B-pxy orbitals contribute to the respective
bands. However, the nature of electronic states at the Fermi energy in
MgB2 and MB2 differs profoundly. The rare earth compound MgB2 lacks
3d-electrons. The Fermi surface is characterized by two band systems σ
and π, derived from B-pxy and B-pz orbitals, respectively, with a high
degree of orthogonality. This orthogonality of the states gives rise to
quasi-two-dimensional sheets of the Fermi surface and explains the lack
of closed sheets. In contrast, the ever-present M-d contributions to the
electronic states in the transition metal diborides render the Fermi surface
more isotropic and closed Fermi surface sheets of ellipsoidal or spherical
shape were found for all representative MB2 compounds both in experi-
ments and calculations.
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A Details of electronic structure calculations
for VB2 and MnB2

In this appendix, details of the electronic structure calculations for VB2

and MnB2 are presented in order to substantiate the statements in the main
text about the atomic origin of the various bands of the compounds and
in particular of the bands at the Fermi Energy EF constituting the Fermi
surface and the dHvA orbits.

A.1 Atomic orbital origin of VB2 band structure

For the discussion of the origin of the VB2 bands from atomic orbitals,
we refer to Fig. A.1 for illustration. Figure A.1 depicts the electronic band
structure of VB2 for high-symmetry directions inK-space as inferred from
density functional theory calculations performed by J. Kuneš. In the corre-
sponding energy range, it is identical to Fig. 7.9. Figure A.1 (a) illustrates
the contributions from B-p orbitals. The radii of black (red) circles indicate
the degree of B-pxy (B-pz) contributions. The out-of-plane B-pz states are
pushed away from EF, by convention at zero energy. This is a common
feature of transition metal diborides. At EF the B-pz contributions are
small for all bands. In contrast, the in-plane B-pxy contributions at EF

vary depending on band and K-space orientation. As can be seen from
Fig. A.1 (a), the B-pxy contribution at EF is largest for the two bands
crossing EF in the proximity of the A-point. These two bands (labelled 11
and 12 in Ch. 7) give rise to the ellipsoidal and the spherical Fermi surface
sheet at the A-point (cf. Figs. 7.11 (b,c)) discussed in Ch. 7. Figure A.1 (b)
illustrates the contribution from V-d orbitals. All bands at EF have a high
degree of V-d components. In this sense, the electronic states at EF can be
essentially characterized as V-d states with a varying B-pxy contribution.
In Figs. A.1 (a,b), we have indicated the positions of the experimentally
observed orbits α and β, which stem from a tear drop-like electron pocket
half-way between Γ and the A-point (Fig. 7.11 (b)) and capillaries at the
K-point (Figs. 7.11 (a) and 7.14). The bubble plot Fig. A.1 (a) suggests
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A Details of electronic structure calculations for VB2 and MnB2

that neither of the two has substantial B-pxy components compared to the
pockets at the A-points. In this sense, the character of orbits α and β is
described as V-d type in Ch. 7.
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A.1 Atomic orbital origin of VB2 band structure
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A.2 Atomic orbital origin of MnB2 band structure

For the discussion of the origin of the MnB2 bands from atomic orbitals,
we refer to Fig. A.2 for illustration. Figure A.2 depicts the electronic band
structure of MnB2 for high-symmetry directions in K-space as inferred
from density functional theory calculations performed by J. Kuneš. In
the corresponding energy range it is identical to Fig. 8.7. As the AF-c
order of MnB2 doubles the unit cell in real space, which corresponds to
a back-folding of bands along the c-direction, twice as many bands are
present compared to Fig. A.1. Figure A.2 (a) illustrates the contributions
from B-p orbitals. The radii of black (red) circles indicate the degree of
B-pxy (B-pz) contributions. Similarly to VB2 and other transition metal
diborides, the out-of-plane B-pz states are pushed away from EF, by con-
vention at zero energy. The states with considerable B-pxy character are
centered around Γ. This is a consequence of the back-folding. In VB2

and CrB2, they are at the zone boundary. More precisely, in VB2 and non-
magnetic CrB2 [12] they are located around the A-point and in cycloidally
ordered CrB2 they are shifted along the A-H-line [12]. Figure A.2 (b) il-
lustrates the contribution from Mn-d orbitals. The color labels relate to
the electron spin projection (red = up, black = down) with respect to an
arbitrary Mn atom Mn1. For a second Mn atom in a neighboring hexag-
onal plane, Mn2, i. e. with opposite polarization, the labelling would be
reversed, thus restoring the symmetry of the band structure with respect to
spin projection. Independent from this, all bands at EF have a high degree
of Mn-d components. In this sense, the electronic states at EF can be es-
sentially characterized as Mn-d states with a varying B-pxy contribution.
In Figs. A.2 (a,b) we have indicated the positions of the experimentally
observed orbits α and β, which stem from the two small cross sections of
the tori at the H-points (Fig. 8.10) as discussed in Ch. 8. The bubble plot
Fig. A.2 (a) suggests that neither of the two has substantial B-pxy compo-
nents compared to the Γ-centered pockets. In this sense, the character of
orbits α and β is described as Mn-d type in Ch. 8.
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A.2 Atomic orbital origin of MnB2 band structure
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B Supplementary results from de Haas-van
Alphen frequency calculations for MnB2

In this appendix, we report the dHvA frequencies extracted from the band
structure calculations for MnB2 using the SKEAF tool [141] correspond-
ing to rotations of the magnetic field B in the [001]-[100]-plane and in the
[001]-[120]-plane. Hereby, the conventions used for the angles ϑ and ψ
coincide with the ones used for VB2 as defined in Fig. 7.1 and Fig. 7.11 (d).
Figs. B.1 (a-d) show the resulting dHvA frequencies versus the respec-
tive angles ϑ and ψ where the left column of subfigures (a,c) shows the
frequencies for the [001]-[100]-plane and the right column of subfigures
(b,d) shows the frequencies for the [001]-[120]-plane. The first row of
subfigures (a,b) corresponds to the Fermi surface sheet arising from band
21 as depicted in Fig. 8.9 (a) and Fig. 8.10 while the second row of sub-
figures (c,d) summarizes the frequencies arising from the Fermi surface
sheets of bands 22-24 as depicted in Figs. 8.9 (b-d). DHvA frequencies
stemming from band 22 are represented by squares ◻, frequencies from
band 23 are represented by triangles △, and frequencies from band 24 are
represented by diamonds ◇.
In Figs. B.1 (a,b), two dHvA frequencies are found for ϑ = ψ = 0, which
corresponds to B oriented along the c-axis. In the model of the simple
torus (cf. Fig. 8.12), they correspond to the inner and outer circle of the
torus when viewed from above. The orientations of B corresponding to
ϑ = 90° and ψ = 90° are identical to ϕ = 30° and ϕ = 0°, respectively,
when B is rotated in the basal plane. Consequently, we recover the same
three frequencies at these angles as in Fig. 8.11 (a). These directions are
the high-symmetry directions where the two maximal cross sections of the
horned torus (ϑ = 90°) or the two minimal cross sections of the horned
torus (ψ = 90°) are identical. For angle values of ϑ and ψ between 0° and
90°, a transition from the situation where the inner and outer circle of the
torus constitute the extremal orbits to the situation discussed in Sec. 8.7
should obviously be found and this is reflected in Figs. B.1 (a,b).
In Figs. B.1 (c,d), the dependencies of the dHvA frequencies arising from
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B Supplementary results from de Haas-van Alphen frequency
calculations for MnB2
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Figure B.1: Angular dependence of dHvA frequencies of extremal orbits versus
angle ϑ and ψ for rotations of B in the [001]-[100] plane (left column) and in the
[001]-[120] plane (right column), respectively, as extracted from the band struc-
ture for MnB2 calculations using the SKEAF tool [141]. (a,b) Angular dependence
of extremal orbits of band 21 corresponding to the surface sheet in Fig. 8.9 (a) or
Fig. 8.10, respectively. (c,d) Angular dependence of extremal orbits of bands 22-
24. DHvA frequencies from band 22 are represented by squares ◻, frequencies
from band 23 are represented by triangles △, and frequencies from band 24 are
represented by diamonds ◇.

Fermi surface sheets 22, 23, and 24 are similar for ϑ and ψ. The frequency
from the spinning top sheet 22 is relatively high (6.9 kT) for B ∥ c, i. e.
ϑ = ψ = 0°. When B tilts away from the c-axis, it decreases to values
between 2 kT and 3 kT when the extremal area “leaves” the broadened
surface region of the spinning top in the basal plane (cf. Fig. 8.9 (b)). The
extremal cross sections from Fermi surface sheet 23 show a frequency vari-
ation as a function of ϑ and ψ corresponding to the ellipsoidal shape of the
sheet while the nearly spherical sheet 24 leads to a frequency branch with
a relatively small variation.
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List of abbreviations

abbreviation explicit
2DES two-dimensional electron system
AFM atomic force microscopy/microscope
Al2O3 aluminium oxide
AuPd gold palladium
CrB2 chromium diboride
CuBe copper beryllium
CVD chemical vapor deposition
DFT density functional theory
dHvA de Haas-van Alphen
DOS density of states
FeCl3 iron chloride
FFT fast Fourier transform
GaAs gallium arsenide
HfB2 hafnium diboride
IVC inner vacuum chamber
MCM micromechanical cantilever magnetometer
MgB2 magnesium diboride
MgZnO magnesium zinc oxide
MLG monolayer graphene
MnB2 manganese diboride
QFMLG quasi-free-standing monolayer graphene
ScB2 scandium diboride
SiC silicon carbide
SKEAF Supercell K-space Extremal Area Finder
TiB2 titanium diboride
VB2 vanadium diboride
ZnO zinc oxide
ZrB2 zirconium diboride
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