
Technische Universität München
Fakultät für Maschinenwesen

Institut für Luft- und Raumfahrt
Lehrstuhl für Leichtbau

Design optimization of lightweight space-frame structures
considering crashworthiness and parameter uncertainty

Erich Josef Wehrle

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Phaedon-Stelios Koutsourelakis
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Horst Baier

2. Univ.-Prof. Dr.-Ing. habil. Fabian Duddeck

Die Dissertation wurde am 18. März 2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 29. Juni 2015 angenom-
men.





A B S T R A C T

Mechanical structures undergoing crashworthiness loads can behave very sensitive
with respect to uncertainty of loading, geometry and material parameters. In this
work, techniques are presented and investigated for design optimization of lightweight
space-frame structures considering structural mechanics, including crashworthiness
and uncertainty using fuzzy methods. Complementary to the developed optimization
approaches, shadow uncertainties and shadow uncertainty prices—based on the idea
of Lagrangian multipliers as shadow prices—are derived and applied to post-process
results of both uncertainty analyses and optimizations under uncertainty. Through
these measures, the effect of uncertain parameters can be estimated on system re-
sponses and the optimization objective. As a demonstrator for the methods developed
here, a space-frame body-in-white, the Lightweight Extruded Aluminum Frame

(LEAF), and its design philosophy will be introduced. An efficient fuzzy analysis
method based on α-level optimization was developed and implemented. Further, the
feasibility of analytical design sensitivities with respect to uncertain and design vari-
ables of transient, nonlinear structural-mechanical analysis is investigated on an aca-
demic example. The ability to use surrogate modeling in optimization under uncer-
tainty of crash structures with fuzzy methods to increase computational efficiency is
also shown.
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K U R Z FA S S U N G

Mechanische Strukturen unter Aufpralllasten können sich sehr empfindlich gegenüber
Unsicherheiten von Last-, Geometrie-, und Werkstoffparametern verhalten. Im Rah-
men dieser Arbeit werden Techniken zur Entwurfsoptimierung leichter Rohrrahmen-
strukturen unter Betrachtung von Strukturmechanik einschließlich Aufprallsicherheit
und Unsicherheiten mittels unscharfer Methoden vorgestellt und untersucht. Ergän-
zend zu den entwickelten Optimierungsansätzen werden Schattenunsicherheiten und
Schattenunsicherheitspreise – basierend auf der Idee der Lagrange’schen Multiplika-
toren als Schattenpreise – hergeleitet und auf Ergebnisse aus Unsicherheitsanalysen
und aus Optimierungen unter Unsicherheit angewandt. Hierdurch wird der Einfluss
unsicherer Parameter auf Systemantworten und das Optimierungsziel abgeschätzt.
Als Demonstrator für die entwickelten Methoden wird die Rohrrahmenkarosserie, der
Leichte Extrudierte Aluminium-Fahrzeugrahmen (LEAF) und dessen Konstruk-
tionsphilosophie präsentiert. Eine effiziente Methode für unscharfe Analyse wurde
beruhend auf der α-Niveau-Optimierung entwickelt und implementiert. Des Weiteren
wurde die Machbarkeit analytischer Entwurfssensitivitäten bezüglich Unsicherheits-
und Entwurfsvariablen in transienten nichtlinearen strukturmechanischen Analysen
anhand eines akademischen Beispieles untersucht. Um die Recheneffizienz zu er-
höhen wird zudem die Anwendung von Ersatzmodellen bei der Optimierung von
Aufprallstrukturen unter Unsicherheiten mithilfe unscharfer Methoden aufgezeigt.
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KKT Karush–Kuhn–Tucker optimality criteria

The nomenclature is defined as the following: vectors and matrices are in bold and
lower case and upper case, respectively. In the case of scalars lower and upper case
has no meaning other than differentiation. Optimization symbols are written in sans
serif font and those for structural mechanics are written with serif font.
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I N T R O D U C T I O N

There is no more sense in having extra weight in an article than there is in the
cockade on a coachman’s hat. In fact, there is not as much. For the cockade may
help the coachman to identify his hat while the extra weight means only a waste
of strength. I cannot imagine where the delusion that weight means strength came
from. It is all well enough in a pile-driver, but why move a heavy weight if we are
not going to hit anything with it? In transportation why put extra weight in a
machine? Why not add it to the load that the machine is designed to carry? Fat
men cannot run as fast as thin men but we build most of our vehicles as though
dead-weight fat increased speed! A deal of poverty grows out of the carriage of
excess weight. Some day we shall discover how further to eliminate weight.

Henry Ford in My life and work (1922)

1.1 motivation

Light-weight frame structures are important, efficient structural elements in engineer-
ing design. This is especially the case in transportation vehicles, i.e. automotive, nau-
tical, aeronautical and astronautical vehicles, which rely on such frames to provide
structural integrity, stiffness and crashworthiness, amongst other criteria. While pro-
viding the structural function, they shall be as lightweight as possible. The lighter
such structures are, the more economical they are; often in all facets of the life cycle of
such structures: Lighter means (a) less use of material in the production, (b) less use
of fuel in operation, (c) lower loads in operation, which lessen structural requirements,
(d) less of which to recycle and dispose. This is, therefore, twofold of importance:
cost and environmental, both of which are driving aspects in the design of modern
products.

To achieve the lightest possible structures, structural design optimization is used,
which is a mathematical algorithm-based approach used to find the optimal or best
structure based upon one or more objectives being limited by constraints of geomet-
rical, mechanical and manufacturing nature. Minimal mass is the most common ob-
jective, as the field of design optimization finds its origins in the budding American
astronautical program. The reduction of mass was paramount to capacitate space ex-
ploration, as well as to allow larger payloads. Other objectives can be used including,
but not limited to cost, manufacturability and other structural performance measure
(e.g. stress or energy absorption).

1
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Of special interest in the present work is the expansion of the design problem to
include crashworthiness aspects of vehicles and vehicular components under uncer-
tainty. Both of these topics represent numerical, computational and design challenges
in structural design optimization. A space-frame structure will be used as a demon-
strator, being developed in a decomposed design development philosophy.

Crashworthiness is ascertained numerically using computationally costly transient
nonlinear finite-element method with explicit time integration. In the past, consid-
eration of such structural responses in design optimization was not possible due to
restrictive analysis time. The increase in computational power as well as parallelism
in structural analysis have reduced computation times from days to minutes for the
investigation of large, transient, nonlinear calculations, as is the case with vehicular
crash simulations.

Structural analyses of transient and nonlinear nature are susceptible to uncertainty
in loading, material and geometry. Engineering information is never complete and
without uncertainty; meaning deviated, imperfect, erroneous and imprecise. Even low
levels of uncertainty may lead to drastic deviations of the structural response. Uncer-
tainty in engineering design can be found in the geometric model, load model, mate-
rial model or from the requirements set. These areas of uncertainty have a number of
different sources, which include manufacturing errors and deficient load assumptions.
Uncertainties result from either inherent variation or from the lack of information at
the time of designing. The models used to analyze mechanical behavior themselves
can be uncertain or imprecise due to their abstraction from reality. Constantly improv-
ing manufacturing techniques can reduce both resulting material as well as geometri-
cal uncertainty. Better knowledge of loading and the behavior of our models allows
further refinement. Yet, both parameters as well as models are inherently imprecise
and, thus, the resulting structural response. Structures, especially those responsible
for human safety as is the case with crashworthiness, must perform as designed even
with such uncertainty and, therefore, consideration of uncertainty in the design pro-
cess is indispensable. In this work possibilistic and interval methods to describe this
uncertainty are investigated and compared. These uncertainty analyses are integrated
into the design optimization procedure.

1.2 state of the art

The state of the art will be described of structural design optimization of light-weight
frame structures with crashworthiness requirements under uncertainty. The literature
survey is split into three sections: uncertainty in design and analysis in § 1.2.1, possi-
bilistic modeling of uncertainty in § 1.2.2 and design optimization of structures with
crashworthiness requirements in § 1.2.3.



1.2 state of the art 3

1.2.1 Uncertainty in structural-mechanical analysis and design

Engineering information is neither complete nor fully understood; instead it is un-
certain, deviated, imperfect, erroneous and imprecise. The known documentation of
uncertainty and its consequences in engineering goes back to birth of civilization to
the 18th century B.C. and the Code of Hammurabi, which describes the liability of the
builder (engineer) for reliability problems:

If a builder builds a house for some one, and does not construct it properly, and
the house which he built fall in and kill its owner, then that builder shall be put to
death (Hammurabi 1750 BC).

Understandably within this context, an overbuilding paradigm to accommodate the
unknowns resulted and remains a tried method in engineering design. This simplest
form of dealing with uncertainty, including lack of knowledge, known as safety factors,
are detailed—especially in relation to reliability—by Elishakoff (2004), in which this
pragmatic, yet possibly overly conservative method is discussed. Safety factors, being
of implicit nature, ignore the actual source of the uncertainty with a blanket method
and have, therefore, been referred to as an ignorance factor. Further safety factors
are unable to afford proper handling in all structural-mechanical problems, especially
when decoupled from the thought of reliability. In one such example where safety
factors have little currency is that of Koiter (1945) in which it is shown that the lack of
consideration of geometrical imperfections in previous work by Flügge and Donnell
show a much higher critical buckling load factor (stability) than was found empirically.

Using the probability theory, which reached maturity in the 19th century with works
by Laplace, engineers began to look at the uncertainty in structural mechanics at the
beginning of the 20th century. The explicit consideration of structures of uncertainty
with probability theory goes back to Mayer (1926). This early work treating structures
as non-deterministic (i.e. uncertain) is dominated by civil engineers, e.g. Freudenthal
(1947), but quickly moved to aeronautical engineers with Hilton and Feigen (1960) and
Switzky (1964).

With the era of digital computation, came advancement with the finite-element
method and structural design optimization and with it numerical routines for un-
certainty analysis. In concert with structural-mechanical analysis, Monte Carlo simu-
lations were used on one hand and on the other, more efficient methods of first- and
second-order reliability theory, which are based on local sensitivities. Schuëller (2006,
2007) provides a contemporary overview of structural mechanics with stochastic un-
certainty as do Lemaire (2014) and Bucher (2009), while the latter highlights especially
the Monte Carlo methods.

Although, a probabilistic approach to uncertainty has dominated, non-probabilistic
methods have also been put forward. In addition to a fuzzy or possibilistic approach
(cf. § 1.2.2) other non-probabilistic methods include convex modeling, proposed by
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Ben-Haim (1994), and anti-optimization by Elishakoff et al. (1994) and Qiu and El-
ishakoff (1998). The author of the present work considers both of these methods to
be special cases of fuzzy uncertainty (cf. § 1.2.2). Hybrid methods have also been put
forth, notably by Tonon et al. (2001).

The inclusion of uncertainty in structural design optimization is the natural next
step. The first use of uncertainty (known to the author) in numerical optimization
is put forth by Dantzig (1955) with applications to linear programming in operations
research. Shortly after the application of numerical optimization to structural design
by Schmit (1960) (cf. Barnett (1966) for a survey of early structural design optimiza-
tion), uncertainty was integrated into the process. This was carried out in the form of
reliability as posed by Switzky (1964).

Increased computational capabilities at the turn of the last millennium has allowed
for further research in this field and interest from practitioners, evident in the number
of books published: i.a. Ayyub and Klir (2006), Banichuk and Neittaanmäki (2010),
Barlow (1998), Ben-Tal et al. (2009), Bernardini and Tonon (2010), Bucher (2009), Choi
et al. (2006), Elishakoff (2004), Elishakoff and Ohsaki (2010) as well as Möller and Beer
(2004).

1.2.2 Describing engineering uncertainty with possibilistic methods

Uncertainty can be categorized in two general types: aleatoric uncertainty due to ran-
domness and epistemic uncertainty due to lack of information or imprecision. Epis-
temic uncertainty is nonreducible and is a common hurdle in the early design phase of
structures. Interval methods and their extention in possibilistic or fuzzy methods are
well suited for describing epistemic uncertainty. The origins of fuzziness can be traced
back to the term vagueness used by Russell (1923) and Black (1937) and later ensembles
flou (fuzzy or vague sets) by Menger (1951). Zadeh (1965) formalizes and coins the
term fuzziness, which is further expanded to possibility theory by Zadeh (1978) as well
as Dubois and Prade (1988).

Blockley (1979) makes (to the knowledge of the author) the first usage of the ideas
put forth with fuzzy modeling of human and system uncertainty in structural design.
The author uses a mixed approach of fuzziness and probability, foreshadowing the
later work in fuzzy randomness of Möller and Beer (2004). Brown and Yao (1983)
summarize the early use of fuzzy methods in structural engineering. These ideas
of fuzziness have also been applied for nonlinear material behavior: Klisinski (1988)
introduces a plastic theory based on fuzzy sets. Seising (2005, 2007) describes the
broad practical usages of fuzzy uncertainty in the decision making process from fuzzy
control theory to medical diagnoses.

Rao and Sawyer (1995) introduce the fuzzy counterpart to the stochastic finite-
element method (cf. Ghanem and Spanos 1991, Panayirci 2010, Sudret et al. 2003,
2006 as well as Sudret and Der Kiureghian 2000) for structural-mecahnical analysis,
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applying elastostatic analysis to a simple bar and beam example. This is furthered
to elastodynamic problems including eigenvalue analysis and frequency response by
Moens et al. (1998), comparing the results with Monte Carlo simulation. Crash analy-
sis has been considered as presented by Thiele et al. (2005), Turrin et al. (2006), Turrin
and Hanss (2007) as well as Beer and Liebscher (2008).

Muhanna and Mullen (1999) increase the complexity of applications and introduce
a method of fuzzy analysis based on intervals at defined levels of uncertainty using
optimization and antioptimization, thus defining an interval as a special (or a sub-)
case of fuzzy theory. Möller et al. (2000), in advancing this using a modified evolu-
tionary strategy, refer to this method as α-level optimization, as found in the present
work. Moens and Hanss (2011) provide a summary of non-probabilistic methods of
the finite-element method, including the interval finite-element method (cf. Köylüoglu
and Elishakoff 1998, Modarezadeh 2005, Muhanna et al. 2004, Muhanna et al. 2007

and Rama Rao et al. 2011).
Huber (2010) extends modeling of engineering data with type-II fuzzy, originally in-

troduced by Zadeh (1975a,b,c) to incorporate an uncertainty in the membership func-
tion, for fuzzy knowledge of manufacturing aspects.

Nikolaidis et al. (2004) compare the use of fuzzy and probabilistic methods, find-
ing merit in both approaches, depending on the nature of the design problem. In a
further comparison by Chen (2000), possibilistic methods are found to be more conser-
vative than their probabilistic counterparts and the strength of possibilistic methods
lies when little information is available in regards to the uncertainty.

1.2.3 Design optimization of crashworthiness structures

The foundation of structural design optimization considering crashworthiness is the
structural-mechanical analysis of such, usually automotive, structures. Initially this
was done using analytical methods, greatly simplifying the structural-mechanical prob-
lem, only on a component-level. Such components include the crushing of longitudinal
sections in the so-called crumple zone in the front of a vehicle. Alexander (1960) de-
rives a simple set of functions to serve in the design of thin-walled cylindrical shells
under axial loading as energy-absorbing devices in nuclear reactors. Here an ideal
rigid-plastic material model is used and it is limited to the unisymmetrical concertina
collapse (or crush) mode. Johnson et al. (1977) extend this to consider different col-
lapse modes based on geometric relationships. Abramowicz and Jones (1984a,b, 1986)
build upon the early models to better represent the plastic hinges and their lobes, fur-
ther expanding to square cross-sectional geometries. A summary of these findings and
developments is found in Jones (1989).

Structural-mechanical analysis made great strides in the late 1970s and early 1980s
with the advancement in transient nonlinear finite-element codes, especially LS-DYNA
(including its predecessor DYNA3D) and Pam-Crash. These developments led to the
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first automotive body-in-white crash, discussed by Haug et al. (1986), in which a small
car was analyzed using 5555 shell elements and 106 beam elements. This calculation
was able to meet the desired computational duration, completing overnight.

Although computational technology of the nonlinear finite-element method has pro-
gressed a long way since these initial investigations (cf. Belytschko et al. 2000, Crisfield
1996a,b, and de Borst et al. 2012), Belytschko and Mish 2001 outline the boundaries of
computability including material models, smoothness of structural response, geomet-
rical and material instabilities as well as uncertainty. The authors further point out
that these challenges cannot be solved via increased computational effort and instead
need fundamental advances.

Alternative methods of structural-mechanical analysis in crashworthiness are out-
side the scope of this work and include superfolding elements and equivalent mech-
anism. Super-folding elements, introduced by Abramowicz (2003, 2004) as well as
Takada and Abramowicz (2004, 2007), allow for the analysis of complex assemblies of
thin-walled sections. In the equivalent-mechanism approach, the complex structure of
e.g. an automotive body-in-white is modeled with nonlinear spring elements as shown
by Kim et al. (1996), Hamza and Saitou (2005), Liu (2005, 2010), Liu and Day (2006,
2007c,a,b), Fender (2013) and Fender et al. (2014). Both methods save the great com-
putational expense of transient nonlinear finite-element analysis of full models, yet do
this at the expense of less exact structural behavior.

Optimization being carried out with finite-element analysis is challenged by noisy
and bifurcated structural-mechanical responses with respect to the design variables,
as discussed by Duddeck (2008). These challenges are in addition to those posed for
nonlinear finite-element analysis (cf. above, Belytschko and Mish 2001). To alleviate
these challenges, structural optimization of crash structures has been handled by three
general approaches: surrogate-based methods, utilization of simplified modeling and
use of efficient optimization algorithms.

An overview of surrogating techniques in design optimitation is provided by For-
rester et al. (2008). This method has been used extensively with crash optimization.
Blumhardt (2001) introduces a surrogate-based optimization approach utilizing regres-
sions for the design optimization using large-scale crash simulations. Sobieszczanski-
Sobieski et al. (2001) carry out a multidisciplinary optimization of an automotive body-
in-white including crash using different approximation techniques for each discipline.
Kurtaran et al. (2002) discusses a sequential and adaptive technique, dividing the de-
sign domain into subdomains, which is applied to rather simple structures. Fors-
berg and Nilsson (2005) compare polynomial regression with Kriging for use in de-
sign optimization for crashworthiness. Xu (2014) uses an extended surrogate-based
modeling approach for the design optimization of a front-crash system with adap-
tive, knowledge-enhanced Kriging to reduce the number of samples needed, yet still
increases the resolution.
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Structural optimization utilizing simplified models follows either the approach of
equivalent mechanism or analytical modeling (c.f. above). In this way, the high com-
putational effort of full finite-element analysis can be foregone. This is discussed thor-
oughly by Kim et al. (2001), Hamza and Saitou (2005), Halgrin et al. (2008), Fender
(2013) and Fender et al. (2014).

New efficient optimization algorithms utilize local gradient information and do not
necessitate design sensitivities as such. Examples of these algorithms are hybrid cel-
lular automaton introduced by Tovar (2004) and expanded by Patel (2007) as well as
(bidirectional) evolutionary structural optimization discussed by Huang et al. (2007),
though poorly named as it has nothing to do with evolutionary algorithms. The cur-
rent application of these algorithms are in topology optimization, which is out of the
scope of this work.

1.3 case examples of tubular space frames

The case examples in this dissertation are tubular space frames and components thereof.
Tubular space frames are structural-mechanically efficient and are especially suitable
for manufacturing in small series. Applications of space frames include architectural,
aerospace and automotive structures. Space frames trace their lineage back to the early
days of aviation and Alexander Graham Bell. Though more famous for his use of space
frames in geodesic domes, Buckminister Fuller first made use of a space frame for au-
tomotive with his design of the Dymaxion (fig. 1.1a1). Other landmark automotive
space frame designs include the “birdcage” of the 1959 Maserati Tipo 61. This lin-
eage continues today with the hybrid space-frame–integral-body structure Audi Space

Frame (Paefgen and Leitermann 1994, Christlein and Schüler 2000, Leitermann and
Christlein 2000 and Mayer et al. 2002, fig. 1.1b) and Lotus aluminum platforms. Fur-
ther, tubular structures have shown to be effective in the absorption of impact loads
(i.a. The Aluminum Association 1998 as well as Abramowicz and Jones 1984a,b, 1986).

(a) Space frame of Buckminster Fuller’s Dymax-
ion

1

(b) The Audi Space Frame (Mayer
et al. 2002)

Figure 1.1: Examples of automotive space frames

1 www.classicdriver.com/de/article/norman-foster-lässt-buckminster-fullers-dymaxion-auferstehen

http://www.classicdriver.com/de/article/norman-foster-l�sst-buckminster-fullers-dymaxion-auferstehen


8 introduction

f

(a) Two-bar truss
Front crash system

Crash absorber

(b) Crash absorber and front crash
system from LEAF

Figure 1.2: Benchmark examples used here

The examples used in this work as benchmarks for the methods developed are in-
troduced in the following sections. The second two examples are taken from the
Lightweight Extruded Aluminum Frame (LEAF), which is introduced in § 6.

Two-bar truss

The cross-sectional area of the truss is to be dimensioned for lowest possible mass,
while limiting the displacement, which allows for some displacement but does not
allow for a loss of stability (snap through). Material uncertainty will be investigated.
Further, the use of analytical design sensitivity with nonlinear structural-mechanical
analysis will be shown.

Crash absorber

Extruded aluminum profiles are simple, yet effective structures to absorb energy of an
impact. They are oriented so that the impact causes axial “crushing” of the section.
This crushing is a complex, highly dynamic process, which is extremely sensitive to
uncertainties if not properly designed. In the optimal design of this structure, attention
will be paid to simplified modeling as well as uncertainty in the parameters.

Automotive front crash system

The space-frame front crash system is constructed of two longitudinal members (the
crash absorbers above) and a transverse member (bumper). The structure, modeled
with finite elements, will be optimized using a surrogate-based method. Again an
uncertain material model will be considered.
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1.4 organization

This dissertation is broken down into four columns in which a decomposed multi-
level development of a vehicular space frame is used as a demonstrator: introduction,
theory, numerical examples and conclusion. The flow of this dissertation is within
the realm of a decomposed design philosophy (fig. 1.3). Following the introduction,
the models used in the structural design optimization will be theoretically introduced.
Thereafter, these models are implemented in numerical examples. Here, the structural
design requirements are given for the concept of a vehicular space frame, Lightweight

Extruded Aluminum Frame. As a last step, a verification of the optimization of the
components is carried out using a full body-in-white finite-element analysis consider-
ing variation of material parameters.
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Part I

M O D E L S I N S T R U C T U R A L D E S I G N O P T I M I Z AT I O N O F
S PA C E F R A M E S

In the following the structural design optimization process will be de-
scribed in each of its blocks. The following flow chart describes this process

Optimization model

Uncertainty model
xdes

Structural mechanical model

xopt

∇r

f,∇f g,∇g

r

r̃

∇r̃

p̃

Flow of structural design optimization under uncertainty





2
F U N D A M E N TA L S O F S T R U C T U R A L D E S I G N O P T I M I Z AT I O N

Cum enim Mundi universi fabrica sit perfectissima, atque a Creatore sapientis-
simo absoluta, nihil omnino in mundo contingit, in quo non maximi minimive
ratio quæpiam eluceat.1

Leonhard Euler in Methodus inveniendi lineas curvas maximi min-
imive proprietate gaudentes, sive solutio problematis isoperimetrici
latissimo sensu accepti (1744)

Structural design optimization replaces the time intensive trial and improvement cy-
cles that are customary in engineering design: A design is built, either in scale or
in full, and then tested. Improvements are made and it is then rebuilt and retested
(fig. 2.1). These design cycles, which in the past took years, can now be simulated on
a computer in hours, minutes or even seconds. The iterative improvements are con-
trolled by means of mathematical optimization. These algorithms use mathematical
methods to choose the design of the next iteration, thus enabling the consideration
complexity not fathomable by an engineer. Structural design optimization, properly
used, can put a design years ahead of its competition.

Design

Parametric modeling

Simulation

Improvements

Figure 2.1: Design improvement cycle

2.1 mathematical preliminaries

The goal of mathematical optimization is to find a vector of design variables x for
which no lower objective value f can be found that satisfies the inequality constraints

1 As the fabric of the world is most perfect and from the omniscient Creator of the universe, nothing at
all happens in the world in which no relationship of maximum or minimum emerges. I.e.: Nothing ever
occurs without optimization playing a role.

13
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g and equality constraints h while staying within the allowable design domain Xallow,
i.e. in X (between the lower bounds xL and upper bounds xU). This is expressed
mathematically as

find x∗

subject to f (x∗) ≤ f (x) ∀x ∈ X ⊆ Rn

where Xallow =
{
x ∈ Rn | gj (x) ≤ 0, hk (x) = 0, xL

i ≤ xi ≤ xU
i

}
.

(2.1)

In the optimization problems in this work, a notation and nomenclature found in the
following will be used:

minimize f (x) objective function

so that gj (x) ≤ 0 j ∈N [1, p] inequality constraints

and hk (x) = 0 k ∈N [1, q] equality constraints

as well as xL
i ≤ xi ≤ xU

i i ∈N [1, n] bounds

where x =
[
x1 x2 . . . xn

]T
x ∈ Rn vector of design variables

(2.2)

and compacter

min
x∈X
{f (x) |g (x) ≤ 0, h (x) = 0} . (2.3)

As equality constraints h are not used here, they will be not considered or written
below.

2.2 types of structural design optimization

The optimization problems discussed here use structural mechanics as their system
equation and is, thus, defined as structural design optimization. Depending on the
type of design variables, there are four different structural optimization categories:
material, topology, shape and size (fig. 2.2). The concentration in this work is on shape
and sizing optimization.

Material optimization

In material optimization (fig. 2.2a), the material or material properties are varied to
find the optimal application of material. This is understood in structural design op-
timization as algorithm-supported material selection, which is an inherently discrete
problem. Therefore, the design variables must be continualized or the problem must
be handled as an integer programming problem. Continualization of the problem is
possible as shown by Schatz et al. (2014) to avoid the computational effort involved
with using a genetic algorithm (Huber et al. 2010) or nonlinear mixed-integer algo-
rithm (Exler and Schittkowski 2007 as well as Zhang and Baier 2011).
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Materials
1 2 3 4

(a) Material (b) Topology

(c) Shape (d) Size

Figure 2.2: Comparison of structural design optimization types; top: start design, bottom: op-
timal design

Topology optimization

In topology optimization (fig. 2.2b) the optimal placement of material or positioning
of members is found. This results in discrete optimization (i.e. present or not present
and this or that), which has restrictively high computational effort, i.e. number of
evaluations. Therefore, methods have been developed to continualize this discrete
space, e.g. solid isotropic material with penalization (Bendsøe and Sigmund 2003).
The proper topology is critical to further stages of design. Further optimization of
a structure with suboptimal topology results cannot be alleviated through shape or
sizing optimization. This method can be especially helpful in initial design phases to
identify the optimal load paths through a design space (Wehrle et al. 2012 and Sauerer
et al. 2014).

Shape optimization

The outer shape of a structure is to be designed in shape optimization (fig. 2.2c). This
type also includes so-called topography optimization in which the tangent direction
of the nodes is variable. Shape optimization is further divided into geometry and
finite-element based categories. The former utilizes parametric geometry descriptors,
often in a CAD model, as design variables and the latter the position of the node of
the finite-element model. Each method has advantages and disadvantages depending
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on their applications, though, the main compromise is between flexibility of the model
and dimensionality. In this dissertation, the geometry-based approach will be used.

Sizing optimization

Sizing optimization (fig. 2.2d), also known as dimensioning, finds the optimal dimen-
sions of a structure, e.g. the member thickness (with shell models) or cross-sectional
areas (with truss and frame models). Generally in terms of the mechanical analysis
model, the element descriptions are the design variables and not geometric nodal po-
sitions. This allows for a well-conditioned continuous problem, as the responses with
respect to the design variables are continuous through the design space.

2.3 structural design optimization in design development phases

Structural design optimization can be used in all phases of structural design devel-
opment: from the conceptual phase to the finalized design. In this work, the design
development phases of mechanical structures are defined as the following: concept
design, preliminary design and finalized design as follows:

Conceptual design

In this phase of structural design, decisions of discrete nature are met including con-
cept, material and topology. When using optimization, it is thus necessary to use
methods capable of handling discrete design variables. In this phase important deci-
sions are met that can only be changed with enormous effort and costs in later phases.
Structural-mechanical investigations with complex finite-element analysis are avoided
due to the high effort in modeling and simulation.

Preliminary design

In this phase size and shape optimization is carried out to give the dimensions of
the structure being developed. Finite-element analysis is used here, albeit often with
abstract models. Exact material models for specific alloys can be unavailable at this
time. This uncertainty will be handled below.

Final design

At the end of the design development, the details of design are set. Such details include
welds, radii and allowable tolerances, which are analyzed and set for manufacturing
of the structure. High-resolution models necessitate increasing analysis effort, though
many degrees of freedom are fixed reducing the dimensionality of the design problem.
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Initial design

Analysis model

Optimization algorithm

Post-processing of
optimum design

Interpretation of results

xk = x0

f(xk), g(xk), ∇f, ∇g

f∗, x∗, g∗, ∇f∗, ∇g∗
xk+1 = xk

k = k + 1

f∗, x∗, λ, SP

Figure 2.3: Flow chart of an optimization within the optimization model

2.4 optimization model

The optimization model is comprised of the optimization algorithm, objective and
constraint functions (and the system responses contained therein). In the following
section the building blocks of the optimization will be defined and introduced (fig. 2.3
, where x is the design variable vector, g is the constrain vector, f is the objective
function, λ is the vector of Lagrangian multipliers, SP are the shadow prices, k the
iteration and �∗ denotes an optimal value).

2.4.1 Optimization algorithms

The optimization algorithm is the engine of the optimization process driving design
improvement. It receives input of the iteration value for the objective function f

(
xk)

and the constraint function g
(
xk) (and in the cases of first- and higher-order algo-

rithms partial derivatives ∇f
(
xk) and ∇g

(
xk) ) and decides if the optimum has been

reached or the design variables for the next iteration xk+1. Optimization algorithms are
categorized in three families here based on their order: zeroth-, first-, and second-order.
Further explanation and derivation of these algorithms (beyond that of their primary
sources) including examples, are provided by Christensen and Klabring (2009).
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Zeroth-order optimization algorithms

Zeroth-order optimization algorithms are those that do not base the calculation of the
design variables for the following iteration on the first- or second-order design sensitiv-
ities. These include biology-inspired heuristic algorithms such as genetic algorithms,
evolutionary strategies, particle swarm, bee hive, and ant hill. Yang (2010) provides
an up-to-date summary and explanation of these and other algorithms.

First-order optimization algorithms

First-order optimization algorithms rely only on the value of the objective and con-
straint functions of the design and its design sensitivities. The simplest form is the
method of steepest descent. Other methods include sequential linear programming
(SLP), in which the functions are approximated with first-order Taylor approximations.

The method of moving asymptotes (MMA) is an efficient and advanced first-order
algorithm used here. MMA, which was introduced by Svanberg (1987), improves on
the successful algorithm of CONLIN (convex linearization) by Fleury and Braibant
(1986). Both MMA and its predecessor are trimmed for structural optimization, espe-
cially when approximating the constraint functions, which are often reciprocal values,
e.g. stress in a bar where the design variable is the cross-sectional area.

Second-order optimization algorithms

In this research, sequential quadratic programming (SQP), a second-order algorithm,
is used due to its high efficiency for both structural optimization and uncertainty
analysis (§ 4). Specifically NLPQLP (Schittkowski 2013) is used here. The original
code was released as NLPQL by Schittkowski (1985), which has been expanded to its
present form based on the work of Dai and Schittkowski (2008). This is a very robust
algorithm, as the non-monotone line search accommodates computational errors of
objective, constraint functions or their design sensitivities to ensure quick convergence.

2.4.2 Analysis model

The analysis model is comprised of the geometric model and its mechanical, manufac-
turing and uncertainty analysis, described in the following chapters. This includes the
mapping of the optimization variables onto the design variables,

xopt 7→ xdes. (2.4)

This mapping process is generally included in a normalization and denormalization
such that that the optimizer only handles optimization variables between zero and
unity. The analysis model must be calculated with the original design values. They
will be referred to here as simply x̂ and x for the normalized and denormalized, re-
spectively. Other normalization schemes are also possible.
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The analysis of the system maps the design variables onto the system results,

xdes 7→ r. (2.5)

Further, the system responses of the analysis model r must be mapped on the objective
and constraint values, f and g respectively,

r 7→ f (2.6)

and
r 7→ g. (2.7)

Normalization is also critical for the conditioning of the optimization problem. An
upper-bounded constraint is normalized here as

g =
r
c
− 1, (2.8)

and a lower-bounded constraint as

g = 1− r
c

. (2.9)

The analysis model also should provide the gradients in case of use of gradient-
based algorithms (first-order and second-order algorithms), which shall be either of
numerical or analytical nature. Therefore, the complete mapping of the analysis model
is

xopt
Analysis model7→ f , g, ∇xf , ∇xg . (2.10)

This will be further discussed in the next sections, when the specific analysis models
used will be introduced. These include structural analysis and uncertainty analysis.

2.4.3 Design sensitivity analysis

Using first- and second-order algorithms requires the gradients of the objective and
constraint functions with respect to the design variables, defined by ∇f and ∇g, re-
spectively. A comprehensive review has been afforded by Martins and Hwang (2013).
The calculation of the gradients is referred to as design sensitivity analysis. In the
following it is discussed how the sensitivities,

∇f =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]T
(2.11)

∇g =
[

∂g
∂x1

∂g
∂x2

. . . ∂g
∂xn

]T
, (2.12)

are calculated in structural design optimization. Direct sensitivity analysis methods
rely on directly taking the derivatives, while adjoint sensitivity analyses uses a further
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term (adjoint term). The latter have shown to be especially efficient when the number
of design variables nx is higher than the number of constraint functions ng as can be the
case in structural design optimization. Though the implementation of adjoint methods
is outside the scope of this work and sensitivities, when provided, are calculated via
direct methods. Higher-order gradients, such as the Hessian matrix, are typically
not calculated directly in structural design optimization due to computational and
programming effort and, instead, are approximated when needed.

When provided, the sensitivities are given in the form of the partial derivative of
the response with respect to the design variables ∂r

∂xi
, i.e. for the upper-bounded con-

straints gj =
r
c − 1, this is

∂gj

∂xi
=

1
c

∂r
∂xi

, (2.13)

and for lower-bounded constraints gj = 1− r
c ,

∂gj

∂xi
= −1

c
∂r
∂xi

. (2.14)

Analytical sensitivity

In some cases the exact derivatives of the objective function ∂f
∂xi

and constraint functions
∂g
∂x are available. These are often, though, in the form of response sensitivities and, thus,
must be normalized (in agreement with the constraint functions themselves) by using
eqs. 2.13–2.14.

Numerical sensitivity

Numerical gradients are generally calculated in structural design optimization prob-
lems using forward finite differencing. Backward or central differencing can also be
used, albeit the later with significantly more computational effort.

Forward differencing for the sensitivity calculation of some response r with respect
to some design variable xi is defined as

∂r
∂xi

= lim
∆xi→0

r (x+ ∆xi)− r (x)
∆xi

, (2.15)

where ∆xi is the step size for the finite differencing. As ∆xi is defined with a finite
numerical value, this is an approximation

∂r
∂xi
≈ r (x+ ∆xi)− r (x)

∆xi
. (2.16)

Backward differencing and central differencing can be derived analogously. The step
size is chosen in this dissertation between ∆xi = 1 × 10−6 and ∆xi = 1 × 10−2. A
trade-off is performed between increase in the theoretical precision of the gradient by
reducing ∆xi and the precision of the analysis model and possible noise in the function.
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The sensitivities are found using the calculation of nx + 1 evaluations for forward
and backward differencing and 2nx + 1 for central differencing. These methods can,
therefore, be restrictive for high number of design variables. This method, although
exhibiting high computational effort, is generally robust and can be used with gener-
ally any analysis type or software, as long as the structural response is smooth with
respect to the design variables.

Semi-analytical sensitivity

Semi-analytical sensitivities are a mix of the analytical and numerical methods de-
scribed above. An example is when some implicit derivative is not available and is
then approximated via numerical gradients,

∂r (x, p)
∂x

≈ f
(

∆p
∆x

)
. (2.17)

This method can save drastically on the implementation time, as the sensitivity of all
parts does not have to be coded.

2.4.4 Approximation and surrogate model

An approximation can be used instead of systems evaluations of high computational
effort as are often found in structural-mechanical analysis, i.e. finite-element analysis.
Approximation methods are used here for both design optimization as well as uncer-
tainty analysis. Forrester et al. (2008) provide a review of methods of sampling and
approximation, including those used here.

Approximation is a two-step process in which first the system is sampled with high
computational effort using a design of experiments and then these sample points are
used as support points for an approximating function. Further reduction in computa-
tional effort is possible with iterative adaptive sampling and approximation methods
(Xu et al. 2012).

In this work, two methods for design of experiments are used: Latin hypercube and
an extended Latin hypercube with the boundary points of the domain to be modeled.
The latter has shown to function especially well with interpolations with Gaussian pro-
cess inferences, which often show poor quality in the region of the boundary, therefore
increasing the number of sampling points required.

Approximations are categorized in two families: interpolations in which the approx-
imating function must go through the support points and regressions when this is not
a condition. Gaussian process inference interpolations and second-order polynomial
regressions are two methods used in this work and have found broad use in structural
design optimization.
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Polynomial regression

Polynomial regression is often referred to as response surface modeling in the context
of structural design optimization. In this method the complex finite-element analyses
are replaced by simple polynomials, providing the system equations for the optimiza-
tion. This is posed generally as

r = Xβ, (2.18)

where r is the set of responses from a set of samples X, composed of a vector x of each
sample. Solving for the matrix β with least squares gives the model.

The simplest form is a linear approximation, which is defined for some response r
as

ri = β0 + ∑
j

β jxij, (2.19)

where xij are the sample points with i being the sample and j the term of sample.
The quadratic form is slightly more complex due to the mixed terms. This is formu-

lated as follows:
ri = β0 + ∑

j
β jxij + ∑

j
∑

k
β jkxijxik. (2.20)

Once the model β has been established, the approximated value of the response rapprox

at a new design xnew can be found via

rapprox = xnewβ. (2.21)

Gaussian process inference

Gaussian process inference is an interpolation method (also known as Kriging) that
brings together a regression model and a correlation model. Accordingly the approxi-
mation of a response is defined by

rapprox = xnewβ + Z (xnew) , (2.22)

where Z is a correlation function. The ability to interpolate complex functions with
relatively small number of samples has resulted in use of Gaussian process interfer-
ence in structural design optimization considering crashworthiness (Cadete et al. 2005,
Forsberg and Nilsson 2005, Liao et al. 2008 and Xu et al. 2012). Further details and
derivations of Gaussian process inference can be found in Lophaven et al. (2002b) and
Forrester et al. (2008).

2.5 post-processing of structural design optimization

The use of first- and second-order optimization algorithms allow two important post-
processing investigations without further computational effort: optimality and shadow
prices. Both these are based on the Lagrangian function,

L = f (x) + λTg (x) , (2.23)
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and its derivative with respect to the design variables,

∂L

∂xi
=

∂f

∂xi
+ λT ∂g

∂xi
. (2.24)

2.5.1 Optimality

When using first- and second-order algorithms, the optimality can be checked to con-
firm that indeed an optimum has been reached and not stopped due to i.a. algorithm
errors. For unconstrained, unbounded minimization problems, the first-order optimal-
ity criteria is defined as

∂f∗

∂x
= 0 (2.25)

∂2f∗

∂x2 ≥ 0. (2.26)

Optimality of a convex and constrained optimization problem can be proven by the
optimality criteria after Karush (1939) and Kuhn and Tucker (1951), and are referred to
as the Karush–Kuhn–Tucker criteria (KKT). This is necessary and sufficient for convex
optimization problems and necessary for nonconvex problems. As such, this proves
global optimality for the convex case and local optimality in the general case. This is
defined as the following:

Stationary: ∇L (x, λ) = 0

Primal feasibility: g ≤ 0

Dual feasibility: λi ≥ 0 (2.27)

Complementary slackness: giλi = 0

Design feasibility: x ∈ X,

where

∇L (xi, λ) =
∂L

∂xi
=

∂f (xi)

∂xi
+ λT ∂g (xi)

∂xi
= 0, (2.28)

assuming again local convexity (eq. 2.26).
For constrained and bounded problems this criteria must be expanded as introduced

in Karush (1939) and Kuhn and Tucker (1951), where the derivative of the Lagrangian
function with respect to the design variables must be equal to zero. Consideration
of the bounds of the design variables as well as the inequality constraints in g is
crucial, as in structural design optimization the bounds often respresent the limits of
manufacturing and are often one of several active constraints.
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2.5.2 Shadow price

The Lagrangian multipliers have a further meaning as shadow prices. These are re-
ferred to as such, as this is the detrimental price to the objective because of the shad-
ows cast by the constraints. This linearization estimates the change in optimal objective
value due to change in the limits of active constraints.

Assuming that the Lagrangian function is zero at the optimum (eq. 2.28) and rear-
ranging this, this yields

λj = −
∂f∗

∂xi

∂xi

∂gj
. (2.29)

Depending on the formulation of the constraint function, the Lagrangian multiplier is

upper bound, non-normalized gj = r− c: λj = −
∂f∗

∂cj

lower bound, non-normalized gj = c− r: λj =
∂f∗

∂cj
(2.30)

upper bound, normalized gj =
r
c
− 1: λj = −

∂f∗

∂cj
cj

lower bound, normalized gj = 1− r
c

: λj =
∂f∗

∂cj
cj.

This meaning of the Lagrangian multipliers is known as shadow prices and thus de-
fined

SP j =
∂f∗

∂cj
. (2.31)

As the optimization algorithm often returns the Lagrangian multiplier in domain of
the normalized constraint function, this must be denormalized appropriately to give
the shadow price SP j.

Using this linearization at the optimum, it is possible to estimate the value of the
objective function by a loosening of the constraint bound c,

f∗,new = f∗ − ∆cjSP j. (2.32)

This can be an effective tool for accessing the reduction in the objective function,
due to a reposing of the optimization (design) problem, without carrying out further
optimization runs. As this is, though, a linearization (first derivative) and is only valid
locally, i.e. the new objective function f∗,new may not be able to be properly forecast if
large changes in the constraint bound c are investigated.
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2.6 implementation of a software tool for structural design opti-
mization

The package DesOptPy (Design Optimization in Python) was written by the author
for use in structural design optimization for mechanical structures. The goal of this
project was to design a general optimization toolbox for structural design optimization
in which an optimization model can be set up easily, quickly, efficiently and effectively,
allowing the modeling of the optimization problem without difficulty. It is also meant
to be modular and easily expandable. The aspects discussed above have been inte-
grated making it a relatively complete optimization toolbox.

DesOptPy has a variety of optimization algorithms, which are available as this has
a direct connection to pyOpt (Perez et al. 2012), which includes the algorithms in-
troduced in § 2.4.1. Further, a surrogate-based optimization has been implemented.
Here, the Gaussian process inference in scikit-learn (Pedregosa et al. 2011) is uti-
lized, which in turn is a Python implementation of the code DACE, presented by
Lophaven et al. (2002a,b).

This code has been used by Wehrle et al. (2014a,b), yet not published as such. In
addition to this, several theses advised by the author, including Rudolph (2013), Braun
(2014), Richter (2014) and Wachter (2014), have utilized this code. In list. 2.1 an example
of the straightforward and very readable syntax is given by pseudo code. This example
can be easily used as a layout for programming future optimization problems.

Listing 2.1: Syntax of optimization problem with DesOptPy

1 from DesOptPy import DesOpt

2

3 def SysEq(x, gc)

4 # here: system equations

5 f = ...

6 g = ...

7 return(f, g)

8

9 def SensEq(x, gc) # optional

10 # here: sensitivity equations

11 dfdx = ...

12 dgdx = ...

13 return(dfdx, dgdx)

14

15 x0 = ...

16 xL = ...

17 xU = ...

18 gc = ...

19 xOpt, fOpt, SP = DesOpt(SysEq, x0, xU, xL, gc=gc, hc=[], Alg="MMA",

20 SensCalc="FD", DesVarNorm="xLxU", deltax=1e-3,
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21 StatusReport=True, ResultReport=True,

22 OptVideo=False, DoE=False, SBDO=False,

23 Debug=False, PrintOut=True)



3
S T R U C T U R A L - M E C H A N I C A L M O D E L I N G I N S T R U C T U R A L
D E S I G N O P T I M I Z AT I O N

The best material model of a cat is another, or preferably the same, cat.

Arturo Rosenblueth and Norbert Wiener in The role of models in
science (1945)

In this chapter the structural-mechanical analysis and those models necessary to model,
analyze and design a structure as shown in fig. 3.1 are introduced and discussed. First
the preliminaries of structural mechanics will be introduced and this will be followed
by the discretized geometric model, material model and load model. This will be lim-
ited to its use in the design and analysis of aluminum space frame structures. Along
with the geometric model, structural-mechanical analysis is carried out with material
modeling and load modeling (including boundary conditions).

Figure 3.1: A simulated automobile impact

3.1 preliminaries of structural mechanics

The structural design optimization of structures is reliant on the structural-mechanical
analysis. Below, the relevant aspects of structural mechanics will be introduced; fur-
ther details and derivations can be found in i.a. Belytschko et al. (2000), Bonet and
Wood (1997), de Borst et al. (2012) and Hughes (2000).

27
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The mechanics of structures is defined by a system of second-order elliptic partial
differential equations with boundary and initial conditions describing a continuum (in
indicial notation),

σij,j + ρ fi = ρüi in Ω

ui = ûi on ΓD

σij · n = ti on ΓN (3.1)

u0 in Ω

u̇0 in Ω,

and the constitutive equation

σij = Cijklεkl = Cijkluk,l , (3.2)

where σ is the stress, ρ the density, fi the body forces, n the surface normal, u the
displacement, u̇ the velocity, ü the acceleration, C the constitutive relationship, ε the
strain, Ω the spatial domain and Γ (also denoted as ∂Ω) the boundary of domain,
divided into Neumann boundary ΓN and the Dirichlet boundary ΓD. Prescribed terms
due to boundary conditions are represented by �̂, while initial terms are denoted by
�0.

The problem detailed in eq. 3.1, referred as the strong formulation, can be solved with
i.a. the finite-element method using the weak formulation (or variational form). This is
carried out through use of the principle of virtual work,

δπ =

ˆ
Ω

ρüiδui dΩ︸ ︷︷ ︸
δπkin

+

ˆ
Ω

σijδui,j dΩ︸ ︷︷ ︸
δπint

−
ˆ

Ω
ρ fiδui dΩ−

ˆ
Γ

tδui dΓ︸ ︷︷ ︸
δπext

= 0, (3.3)

where δui are virtual displacements, δui,j are virtual strains and δπ is the virtual work,
divided into kinetic, internal and external terms. The virtual work of eq. 3.3 is required
to be stationary. The spatial (mesh) and temporal (discussed below) domains are then
discretized. The resulting matrix representation is discussed in the next section (§ 3.2).

3.2 finite-element analysis

The structural-mechanical analysis is carried out here via the finite-element method.
The structure to be analyzed is discretized spatially in small elements of known shape
and behavior. The geometric and material properties (eqs. 3.2–3.3) of the domain
are mapped to their respective elements. These element matrices are then assembled
to represent their structure counterparts. The governing equations discussed above
(§ 3.1) is the base of the calculation of structural-mechanical analysis.

The governing equations have been further abstracted to be used on more compu-
tationally efficient elements to model structures. The first consideration is the dimen-
sionality of the element. These are the following:
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one-dimensional : bar, beam, cable and spring

two-dimensional : plate, membrane and shell elements

three-dimensional : volume elements.

All of the above can be then mapped onto a three-dimensional manifold to represent
a three-dimensional structure in space.

The procedure of discretizing, i.e. transforming the geometry model into a structural-
mechanical analysis model, is known in finite-element analysis as meshing. Complex
meshing software can also discretize higher-order geometry models into lower-order
structural-mechanical analysis models, e.g. two-dimensional surface model into a one-
dimensional beam model. The boundary conditions in eq. 3.1 are then applied and
this problem is solved using efficient algorithms. The solving process is discussed in
the following.

3.2.1 Force equilibrium

The discretization of the eq. 3.3 using the elements described above results in a system
of equations in matrix form, which are the basis for the structural-mechanical analyses.
The governing force equilibrium equation for mechanical behavior can be defined in
two fashions. The first, stiffness method is formulated as

M (u, t) ü (t) + D (u, t) u̇ (t) + K (u, t) u (t) = f ext (u, t) , (3.4)

where M is the mass matrix, D the damping matrix, K the stiffness matrix, ü the nodal
acceleration vector, u̇ the nodal velocity vector, u the nodal displacement vector and
f ext the external force vector. The second method, the force method is used often in
cases of nonlinearities as it can be more efficient to avoid the assembly of the stiffness
matrix. Here, the internal force f int is used instead of the term of the stiffness matrix
and displacements Ku. The stiffness matrix K is in this case nonlinear with respect to
geometry and material model as well as time. This formulation is

M (u, t) ü (t) + D (u, t) u̇ (t) + f int (u, t) = f ext (u, t) . (3.5)

A compacter notation will be used here, which does not explicitly denote the depen-
dence of time and displacement,

Mü + Du̇ + Ku = f ext, (3.6)

and
Mü + Du̇ = f ext − f int. (3.7)

The damping can often be neglected, resulting in
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Mü + Ku = f ext, (3.8)

and
Mü = f ext − f int, (3.9)

respectively. Eqs. 3.9–3.8 and the forms derived from them will be used throughout to
demonstrate the structural-mechanical system equations.

3.2.2 Linear analysis

Mechanical structures are often designed for static loading conditions and resulting
small deformations not exceeding their linear elastic limit. Therefore, in most cases
of structural design, linear finite-element analysis is sufficient. For linear elastostatic
analysis, the terms of velocity and acceleration are zero, hence eq. 3.7 reduces to the
following:

f ext = Ku. (3.10)

The stress σ in a structure can then be found by

σ = Cε, (3.11)

which is the matrix equivalent of eq. 3.2, C the constitutive or material matrix and ε

linearized engineering strain. Strain is defined by

ε = Bu, (3.12)

where B is the composite of the strain-displacement operator and element transforma-
tion matrices (simplified notation, actually two separate matrices)

The onset of plastic behavior of the material is often considered a design violation
(i.e. constraint) for elastostatic structural design. Therefore, this measure is a common
constraint in structural design optimization. Plastic behavior of many metallic materi-
als is commonly quantified using equivalent stress after Mises (1913), which is defined
as

σe =

√
1
2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 − (σ33 − σ11)

2 + 6
(
σ2

12 + σ2
23 + σ2

31

)]
. (3.13)

In metallic material such as aluminum used here, the denotation of the onset of plastic
deformation occurs when

σe > σy. (3.14)

Some nonlinear effects are still of great consequence and this too can be analyzed.
As the stability of the structure is of utmost importance, this can be shown dynamically
(modal) and statically (buckling) through the following eigenvalue problems:

(K − λM)Φ = 0 (3.15)
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and
(K − λKgeo)Φ = 0, (3.16)

respectively. Here λ is the vector eigenvalues and Φ is the matrix of the corresponding
eigenvectors. In the buckling case, λ is the load factor between the force applied f app

to calculate the geometric stiffness matrix and the force under which the structure
loses stability,

f cr = λ f app. (3.17)

3.2.3 Nonlinear analysis

As linear structural mechanics is a special case, albeit a core of structural design opti-
mization, it is not valid when analyzing crashworthiness and other transient nonlinear
phenomenon. In structural-mechanical analysis there are three categories of nonlinear-
ities:

1. Geometric nonlinearity

2. Constitutive nonlinearity

3. Boundary condition nonlinearity

These are introduced in the following.

Geometric nonlinearity

Geometric nonlinearities refer to large strains and large displacements that occur in a
structure, that no longer allow the linearization of these terms. In linear analysis, a
linearized engineering strain is used; in nonlinear cases, this is no longer valid. This
is depicted in fig. 3.2, in which it is clear to see that there is a divergence of the after
ca. 10% strain. Further, large displacements require a modification of the structural
matrices (i.e. mass M, damping D and stiffness K). In nonlinear analyses, these are
reassembled for every time step, demonstrating the geometric deformation of the prior
steps.
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Figure 3.2: Comparison of linearized engineering strain with true strain

Constitutive nonlinearity

The behavior of a material can be nonlinear in several aspects including nonlinear
elasticity, plasticity, strain rate dependency, damage as well as such time dependent
aspects as creep and deterioration. Generally the constitutive relationship is depen-
dent on the strain, strain rate and or time (as the case with creep),

C (ε, ε̇, t) . (3.18)

In the following the concentration is placed on material behavior including plasticity,
or the nonlinear stress–strain relationship (cf. fig. 3.3). The constitutive relationships
used here will be discussed in § 3.4.

εy

σy

Engineering strain ε
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Figure 3.3: Exemplary stress–strain curve for a nonlinear constitutive relationship
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Boundary condition nonlinearity

A further source of nonlinearities are in the boundary conditions of the problem. The
Neumann and Dirichlet boundary conditions of eq. 3.1 can also be nonlinear. An ex-
ample is Dirichlet boundary condition nonlinearity, commonly present in the analysis
of impact loaded structures: This is found in the following in the form of contact:

u (û) . (3.19)

In this case, the displacements u are dependent of previous displacements û,

3.2.4 Transient analysis

For time-dependent processes, as the case is with impact, the force equilibrium equa-
tion must be integrated with respect to time. This requires temporal discretization
schemes. There are two general methods for this: explicit and implicit time integra-
tion. These two methods will be introduced below, based on de Borst et al. (2012).

Transient nonlinear finite-element analysis with explicit time integration

The displacements are solved typically by using an iterative central differencing. Af-
ter setting of the initial values for displacement u0 and velocity u̇0, the following is
calculated:

u̇ 1
2 ∆t = u̇0 +

1
2

∆tü0, (3.20)

then for each time step (starting at t = 0),

ut+∆t = ut + ∆tu̇t+ 1
2 ∆t. (3.21)

After updating f ext and f int, the acceleration,

üt+∆t = M−1
(

f ext
t+∆t − f int

t+∆t

)
, (3.22)

is calculated. From this, once again the velocity,

u̇t+ 3
2 ∆t = u̇t+ 1

2 ∆t +
1
2

∆tüt+∆t, (3.23)

and the displacement,

ut+ 3
2 ∆t = ut+ 1

2 ∆t + ∆tu̇t+∆t, (3.24)

are calculated. This process is then continued to the end of the simulation time.
The maximum time step ∆t is defined by the Courant–Friedrichs–Lewy condition

(Courant et al. 1928), stating that it must be less than the time of a wave travels through
the smallest finite element. This then dominates the computational effort needed for
analysis and, therefore, necessitates well conditioned discretization of finite elements.
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Transient nonlinear finite-element analysis with implicit time integration

In some cases it is more efficient to use an iterative method that allows for larger time
steps. In implicit time integration after Newmark (1959), the residual R is set equal to
0 and a Newton–Raphson loop is used,

R = Müt+∆t + Du̇t+∆t + f int
t − f ext

t+∆t = 0. (3.25)

After setting u0 and u̇0, the acceleration is calculated,

ü0 = M−1
(

f ext
0 − f int

0

)
. (3.26)

Then for each time step the following is done:

u̇t+∆t = u̇t + ∆t ((1− γ) üt + γüt+∆t) (3.27)

and
ut+∆t = ut + ∆tu̇t +

1
2

∆t2 ((1− 2β) üt + 2βüt+∆t) , (3.28)

where β ∈ [0, 1] and γ is suggested to be 0.5 (Newmark 1959). After updating f ext

and f int, calculating

üt+∆t = M−1
(

f ext
t+∆t − f int

t+∆t

)
. (3.29)

As above, this is continued until the end of the simulation time. This method, in
contrast to the explicit time integration, has the advantage of being independent of the
smallest time step.

3.3 simplified modeling of crash absorbers with analytical relation-
ships

As transient nonlinear finite-element analysis requires high computational effort, its
use can be limited in structural design optimization. Efficient modeling of crash ab-
sorbers, thin-walled, axially loaded compression-columns (fig. 3.4), can be achieved us-
ing analytical methods (Abramowicz and Jones 1984a,b, 1986 and Abramowicz 2003),
in which an empirical-theoretical approach reduces the progressive buckling into ba-
sic collapse elements (fig. 3.5). Through proper triggering, the collapse mode behaves
robustly in this nature and this was verified as such in quasistatic experiments. In
the following these fundamental analytical relationships will be introduced limited to
sections of square cross-sectional geometry.
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(a) Experiment (b) Simulation

Figure 3.4: Thin-walled, axially loaded, crash-absorbing section

b
2b

2

`fold

Figure 3.5: Basic collapse element for one corner (based on figure in Abramowicz and Jones
1984b)
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The desired crushing mode of such crash absorbers can be broken down into a series
of folds. The plastic moment Mo of each fold is defined for a single plastic hinge of a
plot profile as (Abramowicz and Jones 1984b)

Mo = σy
d2

4
, (3.30)

where σy is the yield stress and d is the wall thickness. From the plastic moment, it
is possible to calculate the mean force of the deformation or crushing process. This
requires an empirical value found and is as follows (Abramowicz and Jones 1986):

fmean = 38.12M0

(
b
d

) 1
3

, (3.31)

where b is the width of the fold. Further, from the mean force, the ideal energy
absorption of the section Eideal

abs can be calculated using the effective length leff,

Eideal
abs = leff fmean. (3.32)

The deformation (crushing length) can be then calculated using the energy to be ab-
sorbed Eabs as follows:

u =
Eabs

fmean
. (3.33)

The maximum force is assumed to take place when the impact takes place causing
the entire cross-section to deform plastically. This is an empirical value, though de-
viating from mechanical theory, has shown to work well to approximate the initial
force. When this occurs, the folding of the section begins. Plastic deformation occurs,
therefore, when

fmax = aσy (3.34)

=
(
(b + t)2 − (b− d)2

)
σy.

As the crash absorbing sections in this study include trigger geometry to reduce this
initial force, a knockdown factor is introduced as follows:

fmax,triggered =
fmax

ckd
. (3.35)

The trigger geometry further ensures an initial, proper folding mode. This was done
by indenting two opposite sides (fig. 7.4) such that the progressive buckling would be
initiated with a length of `fold (fig. 3.5). Typical numerical values for the knockdown
factor vary from unity for no effect to two where the half of the cross section has been
compromised. Values higher than two are physically possible but do not make sense
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as the initial force would sink below that of the average, which is inefficient for the
energy absorption.

As proper folding is to be promoted, a progressive local buckling is desired. The
critical stress of elastostatic flat plate (i.e. one side of the square section) is used to
ensure that the plate buckles and, therefore, folds (Timoshenko and Gere 1963),

σcr =
4π2E

12 (1− ν2)

(
d
b

)2

, (3.36)

where here E is the Young’s modulus and ν is the Poisson’s ratio.
To guarantee that the crash absorber does not simply buckle globally (i.e. kink and

break away) when loaded, global buckling is also analyzed using the critical force,

fcr =
π2EI
4`2 , (3.37)

where I is the second moment of area. Although eqs. 3.36–3.37 are a conservative sim-
plification for the dynamic, elastoplastic nature of crushing, this method was utilized
by the author and was shown to work well in both empirical and numerical studies
(cf. Fellner 2013 and Xu 2014).

3.4 constitutive models

The constitutive or material models used in this work will be discussed here. As the
aluminum material used here has shown to be generally strain-rate independent for
the range of strain rates seen here, this will not be considered. The material is also
considered to be isotropic, i.e. uniform material properties in all directions. Other as-
pects such as those of thermomechanical nature have been neglected. The constitutive
equation of material behavior is defined by the constitutive matrix C, which connects
element strains to element stresses (cf. eqs. 3.2–3.11).

In the linear cases here, it is sufficient to describe the material by its elasticity with
the Young’s modulus E, its transverse contraction via the Poisson’s ratio ν and its den-
sity ρ (for dynamics and mass calculation). In the following, deterministic constitutive
models for aluminum alloy AW EN-6060 T6 will be introduced; in the next chapter
uncertain models will be discussed (§ 4).

3.4.1 Linear elastostatic material models

For structures that are designed using linear elastic analysis, linear constitutive models
are used. This model is defined by

• Young’s modulus

• Poisson’s ratio
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Table 3.1: Linear elastostatic model for aluminum alloy AW EN-6060 T6

Property Symbol Value Unit

Young’s modulus E 70, 000 MPa

Poisson’s ratio ν 0.3 −
Yield stress σy 200 MPa

Density ρ 2.693 ×10−9 t/mm3

• yield strength

• density,

and the values of which are found in tab. 3.1.

3.4.2 Nonlinear constitutive models

Three nonlinear constitutive models have been developed for aluminum alloy AW EN-
6060 T6 for use in nonlinear simulations. These three will be explained in the follow-
ing. Material failure (i.e. tearing, ripping etc.) and strain-rate dependency are not
considered here (cf. Morasch et al. 2014).

Bilinear

A bilinear model is the simplest constitutive model for the consideration of plasticity.
A tangent modulus Kα is used to describe the strain hardening, i.e. the plastic zone
after the yield stress has been reached. If the tangent modulus Kα is equal to zero,
i.e. parallel to the x-axis, no strain hardening is present and the material behavior is
referred to as ideal elastoplastic. In addition to the material properties found in the
model for AW EN-6060 T6 in tab. 3.1, the tangent modulus is Kα = 1000 MPa.

Ramberg and Osgood

A parametric constitutive model for material nonlinearity of problems that are static
or of quasistatic nature with hardening is defined by Ramberg and Osgood (1943) as

ε =
σ

E
+ α

σy

E

(
σ

σy

)n

, (3.38)

where α is the strain-hardening constant. Though showing good agreement for small
plastic strains for many aluminum alloys, it is not appropriate for large strains as the
case with crash simulations.
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Table 3.2: Nonlinear model after Hockett and Sherby for aluminum alloy AW EN-6060 T6

Parameter Symbol Value Unit

Saturation stress σS 250 MPa

Plastic stress σpl 50 MPa

Strain-hardening coefficient c 10 −
Strain-hardening exponent n 0.75 −

Hockett and Sherby

A further constitutive relationship was modeled after Hockett and Sherby (1975) to
describe the nonlinear behavior of the aluminum alloy EN AW-6060 T6, which is de-
scribed by the following:

σ = σy + σpl − σple
−cεn

pl , (3.39)

where the stress state σ is dependent on the plastic strain state εpl , yield stress σy,
the maximum plastic stress σpl , the strain-hardening constants c and n, as well as the
exponential function e (≈ 2.7183). Plastic stress is used here to define the difference
between saturation stress σS and yield stress σy,

σpl = σS − σy. (3.40)

The properties for the model after Hockett and Sherby are found in tab. 3.2 (cf. tab. 3.1)
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3.5 design optimization with structural-mechanical analysis

Neglecting equality constraints h and expanding eq. 2.2 to account for the system
equations of structural mechanics, the complete and general structural optimization
problem is

minimize f (x) x ∈ Rn

so that gj (r (x)) ≤ 0 j ∈N [1, p]

xL
i ≤ xi ≤ xU

i i ∈N [1, n]

where x =
[
x1 x2 . . . xn

]T

governed by σij,j + ρ fi = ρüi in Ω

ui = ûi on ΓD

σij · n = ti on ΓN

u0 in Ω

u̇0 in Ω

σij = Cijkluk,l ,

(3.41)

where the system responses r (x) and therefore the constraints g are derived from the
system equations, i.e. u, u̇, ü, σ. In structural design optimization, the mass is typically
the objective function, as it is here. This is a function of the density ρ and the volume
of the body Ω.

The system equations are solved using the finite-element method, which has the
advantage that the sensitivities of the response with respect to the design variables
(or uncertain parameters) are often available. This will be explained in the following
sections.

3.5.1 Design sensitivities in linear elastostatic finite-element analysis

Starting from the basic linear-elastostatic finite-element equations (repeated eqs. 3.10–
3.12)

f ext = Ku

ε = Bu

σ = Cε,

the derivatives with respect to the design variables xi are

∂ f ext

∂xi
=

∂K
∂xi

u + K
∂u
∂xi

(3.42)
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and after reforming,
∂u
∂xi

= K−1
(

∂ f ext

∂xi
− ∂K

∂xi
u
)

. (3.43)

As in most cases (except e.g. where self-weight plays a role) the sensitivity of the
external force with respect to the design variables is zero, this further simplifies to

∂u
∂xi

= −K−1 ∂K
∂xi

u. (3.44)

As will be seen in the next chapter, the uncertainty analyses here use optimization
algorithms and if the uncertain parameter is the external force, the sensitivity with
respect to the uncertain parameter is then

∂u
∂ f ext = K−1. (3.45)

For the stress sensitivities, we begin with the strain sensitivities

∂ε

∂xi
=

∂B
∂xi

u + B
∂u
∂xi

, (3.46)

then using these to find
∂σ

∂xi
=

∂C
∂xi

ε + C
∂ε

∂xi
. (3.47)

Generally this can be written as

∂σ

∂xi
=

∂C
∂xi

Bu︸ ︷︷ ︸
material sensitivities

+ C
∂B
∂xi

u︸ ︷︷ ︸
shape sensitivities

+ CBK−1
(

∂ f ext

∂xi
− ∂K

∂xi
u
)

︸ ︷︷ ︸
sizing or general sensitivities

, (3.48)

showing which terms play a role in which type of optimization: material, shape and
sizing or general. The last referred to as general because the sensitivity of the stiffness
matrix with respect to the design variables ∂K

∂xi
plays a role in material, shape and sizing

sensitivities.

3.5.2 Design sensitivities in transient nonlinear structural-mechanical analysis

Beginning with the equilibrium of the force method (repeating eq. 3.9):

Mü = f ext − f int, (3.49)

the derivative with respect to the design variables xi is

∂

∂xi
(Mü) =

∂

∂xi

(
f ext − f int

)
(3.50)
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and, therefore,
∂M
∂xi

ü + M
∂ü
∂xi

=
∂ f ext

∂xi
− ∂ f int

∂xi
. (3.51)

Rearranging eq. 3.51 to solve for ∂ü
∂xi

results in

∂ü
∂xi

= M−1

(
∂ f ext

∂xi
− ∂ f int

∂xi
− ∂M

∂xi
ü

)
. (3.52)

from which ∂u
∂xi

and ∂u̇
∂xi

can be calculated in the following sections, depending on the
time integration scheme chosen.

3.5.2.1 Sensitivities using the force method with explicit time integration

The derivatives are then found analogously to § 3.2.4. This method was implemented
and verified by Schroll (2013). First, the initialization is performed ∂u0

∂xi
= ∂u̇0

∂xi
= ∂ü0

∂xi
= 0

and

∂u̇ 1
2 ∆t

∂xi
=

∂u̇0

∂xi
+

1
2

∆t
∂ü0

∂xi
. (3.53)

For each time step

∂ut+∆t

∂xi
=

∂ut

∂xi
+ ∆t

∂u̇t+ 1
2 ∆t

∂xi
(3.54)

and then after updating ∂ f ext

∂xi
and ∂ f int

∂xi
, calculating

∂üt+∆t

∂xi
= M−1

(
∂ f ext

t+∆t

∂xi
−

∂ f int
t+∆t

∂xi
− ∂M

∂xi
üt+∆t

)
(3.55)

and
∂u̇t+ 3

2 ∆t

∂xi
=

∂u̇t+ 1
2 ∆t

∂xi
+

1
2

∆t
∂üt+∆t

∂xi
. (3.56)

3.5.2.2 Sensitivities using the force method with implicit time integration

For the sensitivities of the residual R with respect to some variable x is zero:

∂R
∂xi

=
∂

∂xi

(
Müt+∆t + f int

t − f ext
t+∆t

)
= 0 (3.57)

and, therefore,
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∂R
∂xi

=
∂M
∂xi

üt+∆t + M
∂üt+∆t

∂xi
+

∂ f int
t

∂xi
−

∂ f ext
t+∆t

∂xi
= 0. (3.58)

Now we can calculate

∂u̇t+∆t

∂xi
=

∂u̇t

∂xi
+ (1− γ)∆t

∂üt

∂xi
+ γ∆t

∂üt+∆t

∂xi
, (3.59)

ut+∆t = ut + ∆tu̇t + (1− 2β)
1
2

∆t2 ∂üt

∂xi
+ 2β

1
2

∆t2 ∂üt+∆t

∂xi
, (3.60)

and
∂üt+∆t

∂xi
= −M−1

(
∂M
∂xi

üt+∆t +
∂ f int

t
∂xi
−

∂ f ext
t+∆t

∂xi

)
. (3.61)

3.5.3 Summary of sensitivities in nonlinear analysis

Different design optimization and sensitivity analyses have different independent pa-
rameters (here xi). A summary of the sensitivity equations depending on these and
the time integration scheme is provided in tab. 3.3.

The successful use of analytical design sensitivities is shown in § 5, albeit without
the complexities of bifurcations and contact. This, along with the practical aspects
computational effort and memory usage, would need to be investigated before any
assertion to general validity is given.
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Table
3.

3:Sensitives
of

acceleration
w

ith
respect

to
different
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of

independent
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Independent
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xi

N
onlinear

stiffness
m

ethod
N

onlinear
force

m
ethod

G
eneral

∂ü
∂x

i
=

M
−

1 (
d

f ext

∂x
i
−

∂M∂x
i ü
−

∂D∂x
i u̇
−

D
∂u̇
∂x

i −
∂K∂x

i u
−

K
∂u
∂x

i )
∂ü
∂x

i
=

M
−

1 (
∂

f ext

∂x
i
−

∂
f int

∂x
i
−

∂M∂x
i ü )

Shape
∂ü
∂x

i
=
−

M
−

1 (
∂M∂x

i ü
+

∂D∂x
i u̇

+
D

∂u̇
∂x

i
+

∂K∂x
i u

+
K

∂u
∂x

i )
∂ü
∂x

i
=
−

M
−

1 (
∂

f int

∂x
i
+

∂M∂x
i ü )

M
aterial

∂ü
∂x

i
=
−

M
−

1 (
∂M∂x

i ü
+

∂D∂x
i u̇

+
D

∂u̇
∂x

i
+

∂K∂x
i u

+
K

∂u
∂x

i )
∂ü
∂x

i
=
−

M
−

1 (
∂

f int

∂x
i
+

∂M∂x
i ü )

Externalforce
∂ü
∂x

i
=

M
−

1 (
1
−

D
∂u̇
∂x

i −
K

∂u
∂x

i )
∂ü
∂x

i
=

M
−

1 (
1
−

∂
f int

∂x
i )



4
U N C E RTA I N T Y M O D E L I N G I N S T R U C T U R A L D E S I G N
O P T I M I Z AT I O N

Le doute n’est pas une condition agréable, mais la certitude est absurde.1

Voltaire in a letter to Frederick II of Prussia (April 6, 1767)

4.1 uncertainty, robustness and reliability

There is no actual physical phenomenon such as probability or, in this case, fuzziness;
instead they are simply models to represent and understand the effects of lack of
knowledge in decision and analysis.

The world is indeed deterministic: there is only one set of inputs and one set of
outputs for any single event. Consideration of uncertainty allows the representation of
incomplete knowledge. This is relevant for the input parameters, the initial conditions
and even the model, which we use. None of these can be fully known and understood.
It can be that the influence of our lack of knowledge is small, thus allowing us to
forgo its inclusion. Even for well understood phenomena, there are certain levels
of uncertainty in our models. A single structure has a deterministic geometry, load,
material and structural response. Yet determining the exact system inputs for each
structure (in this case geometry, load, and material model) is not always possible and,
therefore, not is the system responses (e.g. stress, buckling force, displacement).

We are going to design a structure to the theoretical optimal geometry, but man-
ufacturing errors, natural variation of loading characteristics and further simplified,
abstract models are used neglecting certain aspects. These are all imperfections to
the “perfect” model of the system and data that we are able to use. The exact degree
of these imperfections is uncertain, though certain bounds can be derived through
empirical engineering knowledge.

Further, the difference between robustness and reliability is defined here as the fol-
lowing: Robustness is the amount that the response varies with respect to the uncer-
tainty of the input. Reliability is the ability of a design constraint to remain nonviolated
considering variation, irrespective of the amount of variation in the input parameters.
It is, therefore, possible that a structure is reliable, yet not robust and vice versa.

1 Doubt is not an agreeable condition, but certainty is an absurd one.

45
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p̃ r̃

(a) Mapping of an uncertain
parameter p̃ onto an un-
certain response r̃

p r̃

(b) Uncertain mapping of a
parameter p onto an un-
certain response r̃

r̃p̃

(c) Uncertain mapping of
an uncertain parameter
p onto an uncertain
response r̃

Figure 4.1: Mapping in uncertain domain

4.2 dealing with uncertainty

Uncertainty analysis is defined by the mapping of uncertain input parameters p̃ onto
uncertain response parameters r̃. The mapping operator 7→ can also itself be uncertain,
designated as ˜7→. This results in three general mappings in uncertain domain (4.1):

p̃ 7→ r̃ (4.1)

p ˜7→ r̃ (4.2)

p̃ ˜7→ r̃. (4.3)

In this work, the concentration will be on a p̃ 7→ r̃ as a deterministic mapping (via
finite-element analysis) is assumed.

4.2.1 Safety factors

Traditionally in engineering design, safety factors γ have been used to deal with such
uncertainty (Elishakoff 2001, 2004 and Choi et al. 2006). Safety factors are empiri-
cally derived “smudge” factors and are defined by the relationship of some structural
response r to its limit c,

γ =
r
c

. (4.4)

A further development of this approach is the use of partial safety factors, which
instead of one global safety factor, assign safety factors directly to the sources of un-
certainty, e.g. to loading and material separately. This factor on the load is referred to
as a partial safety factor and is defined by the ratio of the design load to the maximum
expected load,

fdes = γ f · f , (4.5)

and to the material,
σdes =

σy

γM
. (4.6)

Partial safety factors are typically determined via probabilistic methods.
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r̃2

r̃1

E (r̃)

f (r)

Figure 4.2: Probabilistic robustness comparing two uncertain responses with different vari-
ances yet the same mean

In this approach, robustness has no tangible meaning as the amount that the re-
sponse varies is not ascertained. Reliability is maintained via the safety factor, which
creates a gap between response and limit.

Safety factors are well established methods, understood by designers and easy to
implement in the development process, including structural design process. Further,
use of safety factors typically requires no further computational effort, which is not the
case with the methods introduced below. Though, as they do not ascertain the actual
effect of uncertain input parameters on the system responses, use of safety factors can
lead to over- or underbuilt systems and structures.

4.2.2 Probability theory

Probability theory has become the standard method of dealing with uncertainty in
structural design. In order to better clarify the possibilistic methods, the concentration
of this work, probability will be briefly introduced; further details and explanation
can be found in the literature used for this summary (Elishakoff 1999, Choi et al. 2006,
Maymon 2008 and Lemaire 2014).

Robustness R is often understood in the probabilistic domain as the uncertain re-
sponse’s variance (or standard deviation). Fig. 4.2 demonstrates the comparison of
two system responses with varying variance. Robustness is, thus, the ratio of the vari-
ance of the input parameters to variance of the system response. Other definitions of
robustness can be found defined by Jurecka (2007).

Probability of failure PF is
PF = P (g < 0) , (4.7)

where g is defined as the constraint or state function, here set to be feasible where it
has a value less then zero (cf. eq. 2.2). The probability of failure is then the probability
that the uncertain response r̃ violates the uncertain state limit c̃,

PF = P (c < r) , (4.8)
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c̃r̃

PF

f (r, p)

Figure 4.3: Probabilistic reliability considering exemplary distributions of an uncertain re-
sponse and its state limit

e.g. stress and strength. The probability of failure is the area of this overlap (fig. 4.3)
Reliability is then defined as 1− PF .

Here statistical information is needed for the modeling of the uncertain parameters
(Gaussian, Weibull, etc.). After this is completed, probability of failure and robust-
ness can be calculated by various methods. Typically those used are Monte Carlo
simulations or first-order and second-order reliability methods (FORM and SORM, re-
spectively). Further approximation methods can be used to reduce the computational
effort. As these methods are outside the scope of this work, refer to Elishakoff (1999),
Choi et al. (2006) and Bucher (2009).

4.2.3 Interval theory

Interval and anti-optimization methods (only worst-case side of interval) can be used
in worst-case design of structures. Use of intervals can be attested at least to Archimedes
of Syracuse (ca. 287–212 BC) with his accurate approximation of π, which he achieved
via bounding of the solution.

Intervals are useful to model uncertainty, especially where only bounds of uncertain
parameters are known. An interval parameter is defined by

p̃ =
[

p p
]

, (4.9)

where p and p are the upper and lower bounds of the uncertain parameter, respectively.
The analysis using intervals can be carried out via interval arithmetic or optimization
and anti-optimization to find the minimum and maximum response values. The latter
is utilized here.

Although interval arithmetic is efficient, it can greatly overestimate uncertainty be-
cause of interval dependency problem. This is exemplified via the simple example of
p̃− p̃, which of course is zero. Standard interval arithmetic gives a solution of [p−
p p + p], as the parameters are handled independently. In the system of linear equa-
tions of structural-mechanical analysis, this would then treat e.g. the Young’s modu-
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lus E of every component (every degree of freedom for every element) as indepen-
dent, leading to greatly exaggerated uncertain bounds. Further, a finite-element code
is needed that is able to calculate with interval arithmetic. To avoid both of these
problems, methods based on optimization and anti-optimization can be used. These
methods are not hampered by the interval dependency and can be easily interfaced to
commercial structural-mechanical analysis software. Further details can be found in
Moore et al. (2009), Zhang (2005), Ben-Haim (1994) and Elishakoff et al. (1994).

Variation is measured in intervals as the width of the interval and its normalized
equivalent,

p− p (4.10)

and
p− p

1
2

(
p + p

) , (4.11)

respectively. Interval robustness is then defined as the ratio of variation of the input
parameters to the response. As there can be several uncertain input parameters, these
are summed—revealing the definition of interval robustness as

Rr =
∑
(

p− p
)

r− r
(4.12)

and

R̂r =
∑

p−p
1
2 (p+p)
r−r

1
2 (r+r)

. (4.13)

Reliability is not possible within the context of interval theory. One can only take
into consideration if the interval response violates a constraint, giving a digital zero or
unity response, i.e. possible or not possible. This can also be of interest to the design
engineer as the response is known for all uncertainty.

As intervals are treated here as a specific case of possibility theory, namely p̃ =

int 〈a, b〉, the methods of calculation and evaluation are discussed below in § 4.2.4.

4.2.4 Possibility theory

Possibility theory is an extension of interval theory (cf. § 4.2.3) and is a nontraditional
approach to the imprecise and the uncertain (Dubois and Prade 1988). In the following
section it will be explained the meaning of fuzzy models, or fuzzy numbers, and how
to construct such models for uncertainty. Thereafter, their evaluation process will be
shown.



50 uncertainty modeling in structural design optimization

1

0

µ

pµ=1p
µ=0

pµ=0p
µ=1

Known variation, within tolerances

Possible variation, outside tolerances

Figure 4.4: Meaning of fuzzy number explained

4.2.4.1 Interpretation of fuzziness

A fuzzy number is defined by a membership function using possibility µ varying from
zero to unity, approaching impossible to fully possible. In this dissertation, the under-
standing of possibility has been developed in which known variance is represented
by µ = 1, e.g. through dimensioning tolerances, and worst-case possible variance is
represented by µ = 0. A known variance can be understood as variation in values
within tolerance and possible tolerance as worst case variation, which is outside of
permissible tolerances (fig. 4.4). Other understandings of fuzziness can be found in
Dubois and Prade (1988), Möller and Beer (2004) and Hanss (2005).

The area Ap underneath the membership function,

Ap =

ˆ 1

0
p dµ, (4.14)

indicates the variation possible in a parameter, referred to here as fuzzy uncertainty.
The robustness of a fuzzy system is defined by the ratio of the area Ap of the input pa-
rameters to that of the system response, i.e. fuzzy uncertainty of the input parameters
to the fuzzy uncertainty of the responses, as follows:

Rr =
Ap

Ar
. (4.15)

Generally, systems of interest in structural mechanics have more than one uncertain
input parameter and then the uncertainties (areas) are summed,

Rr =
∑Ap

Ar
. (4.16)

In order to compare the robustness of different structures, the following system ro-
bustness will be used:

Rsys =
∑iRp,i

∑iRr,i
. (4.17)
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Figure 4.5: Possibility of failure with a fuzzy system response and a fuzzy state limit

As the fuzzy numbers can vary greatly in magnitude, a normalization of the fuzzy
number is first carried out by dividing by the midpoint of µ = 1,

ˆ̃p =
p̃

1
2

(
pµ=1 + p

µ=1

) . (4.18)

As robustness serves only of a comparison measure of different configurations of the
same structure (the robustness measure as such with absolute meaning must be further
studied), other measures of robustness are possible, including simply area A (less area
is more robustness).

Failure can also be quantified in the fuzzy domain as possibility of failure ΠF
(fig. 4.5), defined by the maximum possibility where the state limit is violated (i.e. g <

0),
ΠF = max Π (g < 0) . (4.19)

4.2.4.2 Modeling uncertainty with fuzzy numbers

Möller and Beer (2004) suggest defining fuzzy numbers by using linear, polygonal,
Gaussian membership or quadratic functions as the possibilistic membership function.
Further, empirically based statistical models can be supplemented with expert knowl-
edge to also create fuzzy numbers. Fuzzy numbers are assumed here to be convex
(fig. 4.6).

Fuzzy shapes can take on any number of forms. In the following some standard
shapes and their nomenclature are introduced (cf. fig. 4.7).

Singleton membership functions

A precise (deterministic) parameter that has the value a is represented in fuzzy space
by

p̃ = sing 〈a〉 . (4.20)
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Figure 4.6: Example of convex and nonconvex fuzzy numbers

Interval membership functions

Interval values (cf. § 4.2.3) are a further special case of a fuzzy number and are repre-
sented in fuzzy space by

p̃ = int 〈a, b〉 , (4.21)

where a is the minimum and b the maximum.

Triangular membership functions

Triangular fuzzy numbers are one of the most common form to be used in the liter-
ature. These are modeled by a fully possible value b and have an uncertain interval
approaching impossible between the minimum value a and the maximum c, giving
the following fuzzy membership function:

p̃ = tri 〈a, b, c〉 . (4.22)

Trapezoidal membership functions

Trapezoidal fuzzy numbers are used in this work with the interpretation introduced in
§ 4.2.4.1. Having an upper interval between the minimum value b and the maximum
c and the lower interval between a and c, this fuzzy number is defined as

p̃ = trap 〈a, b, c, d〉 . (4.23)

Gaussian membership functions

Possibilistic membership functions can also be borrowed from the probability theory as
in this case with a Gaussian form. Though in the possibilistic context, the membership
functions must be cut-off at certain standard deviation to truncate the fuzzy number.
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Figure 4.7: Examples of shapes of fuzzy membership functions

This can be done for example at ±3σv or ±6σv to avoid having a fuzzy number that
reaches a value of ±∞,

p̃ = gauss
〈

xavg, xσright , xσleft , σcut-off

〉
. (4.24)

Forms of other standard probabilistic membership functions, e.g. Weibull, can also be
used.

Empirical membership functions

It is also possible to use general membership functions. These rely on experience, tests
or are taken from previous uncertainty analyses.

4.3 fuzzy arithmetic

The method of uncertainty analysis using fuzzy numbers based on possibility theory
(Möller 1997 and Wehrle 2008) uses so-called α-level optimization. The first step is
the discretization of the uncertain parameters at certain possibility values between
zero and unity, known as α-levels αk, where k ∈ 1, 2, . . . nα (fig. 4.8). The resulting[

p p
]

αk
gives the uncertain domain in which the maximum and minimum of each

uncertain system response (ri,αk
and ri,αk respectively) are found giving

[
ri ri

]
αk

,
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Figure 4.8: Fuzzy arithmetic with α-level optimization

ri,αk
← min

p∈
[

p p
]

αk

{ri (p)} (4.25)

ri,αk ← max
p∈
[

p p
]

αk

{ri (p)} . (4.26)

The resulting intervals of the uncertain responses are then assembled (Aα) at said levels
of possibility,

r̃i = Aα
k

[
ri ri

]
αk

. (4.27)

4.4 post-processing of uncertainty analysis

As uncertainty analysis with fuzzy and interval arithmetic uses gradient-based algo-
rithms, it is possible to use the method of shadow prices discussed in § 2.5.2. This
research extends these to introduce the term of shadow uncertainty SU for uncertainty
analysis and shadow uncertainty price SUP for optimization under uncertainty.

4.4.1 Shadow uncertainty

As interval- and fuzzy-based uncertainty analysis is carried out using bounded opti-
mization, the Lagrangian multipliers again play a role. Analogously to shadow prices
(§ 2.5.2), this is the shadow cast by the uncertainty on the uncertain response, the func-
tion being minimized and maximized. Likewise, this linearization is used to estimate
the change in the uncertain response due to the change of uncertain parameters.
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The gradient Lagrangian function is defined in this case as

∇L = ∇r (p) + λT∇g (p) (4.28)

∇L = −∇r (p) + λT∇g (p) (4.29)

for the minimization and maximization problem, respectively. As α-level optimization
is bounded but has no nonlinear constraints, g contains only the boundaries of the
uncertain domain p̃: p

j
− pj and pj − pj. As these are typically non-normalized, the

gradients ∂gi
∂pj

are negative unity and unity for the upper and lower bounds, respectively.
The shadow uncertainties are, therefore:

lower-bound response r, lower-bound parameter p
j
: SUij =

∂ri
∂p

j

lower-bound response r, upper-bound parameter pj: SUij = −
∂ri
∂pj

(4.30)

upper-bound response r, lower-bound parameter pj: SUij = −
∂ri

∂p
j

upper-bound response r, upper-bound parameter pj: SUij =
∂ri

∂pj
.

Analogous to shadow prices, the shadow uncertainties are a linearization and the new
lower-bound response is

rnew
i = ri − ∆p

j
SUij (4.31)

rnew
i = ri − ∆pjSUij, (4.32)

and the new upper-bound

rnew
i = ri − ∆p

j
SUij (4.33)

rnew
i = ri − ∆pjSUij. (4.34)

To simplify, pbound
i is used to generalize the upper and lower bound, resulting in

rnew = r− ∆pbound
i SUij. (4.35)

For fuzzy arithmetic this is performed at all α-levels. When assembled this gives then
the gradient of robustness with respect to the bounds of the fuzzy system parameter.

4.4.2 Shadow uncertainty price

The shadow uncertainty price is used when carrying out optimization under uncer-
tainty and is the sensitivity of the optimal value of the objective function with respect
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to the uncertain parameters. As discussed in § 2.5.2, shadow prices are defined de-
pending on the formulation of the constraint function (eq. 2.30). Now we can obtain
the detrimental price of the objective at the optimum due to the shadows cast by the
uncertainty of the system.

Assuming that the constraint function g is active and will stay after a perturbation
in the limit of the optimization constraint c, the gradients of the system response and
the limit with respect to the design variables are equal,

∂rj

∂xi
=

∂cj

∂xi
, (4.36)

resulting in

upper bounded, non-normalized gj = rj − cj: SUP j = −
∂f∗

∂ p̃j

lower bounded, non-normalized gj = cj − rj: SUP j =
∂f∗

∂ p̃j
(4.37)

upper bounded, normalized gj =
rj

cj
− 1: SUP j = −

∂f∗

∂ p̃j
cj

lower bounded, normalized gj = 1−
rj

cj
: SUP j =

∂f∗

∂ p̃j
cj.

Using the definition of shadow uncertainty (eq. 4.30), shadow uncertainty prices are
then defined as

SUPi = ∑ SPiSUij. (4.38)

Again, these can be used in post-processing the result of optimization under uncer-
tainty, to estimate a new objective function for a change in the uncertain parameters

f ∗,new = f∗ − ∆pbound
i ∑ SPiSUij. (4.39)



4.5 optimization under uncertainty 57

4.5 optimization under uncertainty

Consideration of uncertainty in structural design optimization supplements the gen-
eral structural optimization (eq. 3.41) to account for parametrical variation with the
following:

minimize f (x) x ∈ Rn

so that gj (r̃ (x)) ≤ 0 j ∈N [1, p]

as well as xL
i ≤ xi ≤ xU

i i ∈N [1, n]

where x =
[
x1 x2 . . . xn

]T

governed by σ̃ij,j + ρ̃b̃i = ρ̃ ˜̈ui in Ω

ũi = ˜̂ui on ΓD

σ̃ij · ñ = t̃i on ΓN

ũ0 in Ω
˜̇u0 in Ω

σ̃ij = C̃ijkl ũk,l .

(4.40)

Eq. 4.40 shows all parameters of the governing system equations, which is the general
case. As computational effort grows with larger numbers of uncertain parameters to
consider, this set will be reduced by the engineer. An initial parameter study can also
show which uncertainties are critical. The introduced measures of shadow uncertain-
ties and shadow uncertainty prices can assist in this decision.

The formulation of optimization problems under uncertainty can take varying forms
using reliability, robustness or a multiobjective of e.g. mass and robustness. This is set
up depending on the structure being designed and its different design requirements.

4.6 implementation of a software tool for fuzzy uncertainty analy-
sis

The package FuzzAnPy (Fuzzy Analysis in Python) was written by the author to
provide a package for α-level optimization using efficient algorithms. As with Des-
OptPy, a variety of optimization algorithms can be used via pyOpt (Perez et al. 2012),
though NLPQLP (cf. § 2.4.1) was vastly the most efficient. FuzzAnPy can use local and
global optimization techniques with the optional use of surrogate models to further
increase efficiency to solve the minimization and maximization problems eqs. 4.25–
4.26 (cf. fig. 4.9). Although specifically developed for use in structural mechanics and
design optimization, FuzzAnPy is a general solver for fuzzy arithmetic.

Pseudo code is provided in list. 4.1 for an example of an uncertainty analysis using
this code. List. 4.2 shows the integration of FuzzAnPy in DesOptPy for an optimiza-
tion under uncertainty using possibility theory.
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Figure 4.9: Flowchart for uncertainty analysis with fuzzy parameters using α-level optimization
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Listing 4.1: Syntax of uncertainty analysis with FuzzAnPy

1 from FuzzAnPy import FuzzAn

2

3 def FuzzySysEq(p, x, ir):

4 # here: system equations

5 r = ...

6 return(r)

7

8 def FuzzySensEq(p, r, g, x, ir): # optional

9 # here: sensitivity equations

10 drdp = ...

11 return(drdp)

12

13 nAlpha = ...

14 nr = ...

15 pFuzz = ...

16 rFuzz, pOpt, nEval, SU, lambdaR = FuzzAn(FuzzyModel, pFuzz, nr=nr, Alg="NLPQLP",

17 nAlpha=nAlpha, deltax=1e-3,

18 paraNorm=True, para=[], SBFA=False,

19 Surr="Kriging", epsStop=1.0e-4)

Listing 4.2: Syntax of optimization under uncertainty with DesOptPy and FuzzAnPy

1 from DesOptPy import DesOpt

2 from FuzzAnPy import FuzzAn

3

4 def FuzzySysEq(p, x, ir):

5 # here: system equations

6 r = ...

7 return(r)

8

9 def SysEq(x, gc)

10 nAlpha = ...

11 nr = ...

12 pFuzz = ...

13 rFuzz, pOpt, nEval, SU, lambdaR = FuzzAn(FuzzyModel, pFuzz, nr=nr,

14 Alg="NLPQLP", nAlpha=nAlpha,

15 deltax=1e-3, paraNorm=True,

16 para=x, SBFA=False,

17 Surr="None", epsStop=1.0e-4)

18 f = ...

19 g = ...

20 return(f, g)

21

22 x0 = ...

23 xL = ...
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24 xU = ...

25 gc = ...

26 xOpt, fOpt, SP = DesOpt(SysEq, x0, xU, xL, gc=gc, hc=[], Alg="MMA",

27 SensCalc="FD", DesVarNorm="xLxU", deltax=1e-3,

28 StatusReport=True, ResultReport=True,

29 OptVideo=False, DoE=False, SBDO=False,

30 Debug=False, PrintOut=True)



Part II

S T R U C T U R A L - M E C H A N I C A L I N V E S T I G AT I O N S A N D
O P T I M I Z AT I O N S T U D I E S

Wer gegen ein Minimum von Aluminium immun ist, besitzt eine Aluminium-
minimumimmunität.

German tongue twister





5
O P T I M A L D E S I G N O F A N O N L I N E A R T W O - B A R T R U S S U N D E R
U N C E RTA I N T Y U S I N G A N A LY T I C A L D E S I G N
S E N S I T V I T I E S — A N A C A D E M I C E X A M P L E

The first structure to be optimized and analyzed for uncertainty is a two-bar truss
structure (also known as a von Mises truss) having nonlinear material model under
transient loading (fig. 5.1). The deterministic optimization will be carried out using
analytical design sensitivities to show their effectiveness and efficiency. Although a
simple structure, it exhibits the challenges of nonlinearity and stability (snap through)
of larger problems for design optimization and uncertainty analysis.

5.1 design and requirements

The two-bar truss is constructed out of extruded aluminum sections. The truss is
100 mm high and each member has a length ` of 500 mm. A bilinear, elastoplastic ma-
terial model was used for the aluminum material AW EN-6060 T6 (fig. 5.2). The yield
stress σy is assumed to be defined as 200 MPa, the Young’s modulus E as 70000 MPa
and the tangent modulus Kα as 1000 MPa. The force is applied to the top node via a
linear ramping function from ft=0 = 0 kN to the end time of ft=0.001 = 100 kN.

The cross-sectional areas ai of the truss are to be dimensioned for lowest possible
mass, while limiting the vertical displacement uy at 40 mm, which allows for some
displacement but does not allow for a loss of stability (snap through, see below). Fur-

f , uy

a1

x

a2

1© 2©
` `

y

h

Figure 5.1: Two-bar truss
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Kα

Figure 5.2: Bilinear material model for aluminum AW EN-6060 T6

ther, the design limits the horizontal displacement ux at ±2 mm to preserve a general
symmetrical deformation of the structure.

5.2 structural-mechanical analysis

The structural-mechanical analysis was carried out in MATLAB using explicit time
integration. The simulation provides analytical design sensitivities, which were im-
plemented via § 3.5.2. Analytical gradients of the system response displacement with
respect to the cross-sectional area ∂u

∂ai
are calculated and given to the optimization algo-

rithm. Sensitivities with respect to other parameters are also possible, i.e. the uncertain
material parameters discussed below, but not implemented here. The verification of
the analytical sensitivities can be seen in fig. 5.3. Even after the snap through where
numerical instabilities are present, the sensitivities have nearly no deviation.

As the evaluations are very cheap, ca. 1.5 s for each transient nonlinear calculation1,
this served as an excellent benchmark example for the testing and development of the
methods introduced here.

5.3 dimensioning of a two-bar truss

In the following, the design problem formulated above (§ 5.1) is transformed into an
optimization problem and the optimal cross-sectional areas are found. The mass of the
structure is to be minimized while constraining the vertical and horizontal displace-
ments.

1 Dual-core computer with Intel Core i5-3320M at 2.60 GHz
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Figure 5.3: Verification of analytical sensitivities using numerical sensitivities for one design
over the time of one snap through

5.3.1 Optimization problem

The mathematical formulation of the optimization problem for the design problem is
described as follows:

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = m

g1 (x) =
uy

uy,max
− 1

g2 (x) =
ux

ux,max
− 1

g3 (x) =
ux

−ux,max
− 1

x =
[

a1 a2

]T
.

In the following, this problem will be solved using different parameters.
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5.3.2 Optimization results

The start value was chosen to challenge the algorithm and, therefore, a non-symmetrical,
infeasible structural design was chosen in addition to a symmetrical starting design
(cf. tab. 5.1). Using the first-order algorithm MMA with numerical sensitivities via
forward finite differencing, a solution was found in 10 iterations and 30 system evalu-
ations. Starting from a non-symmetrical design resulted in a slightly non-symmetrical
design with a mass of 492.6886 kg. Starting from symmetrical designs resulted in the
symmetrical design of 91.4782 mm² for each bar, resulting, albeit with a difference in
objective function of only 0.0142 kg. The performance of the convergence was similar
regardless of starting point needing between six and ten iterations. In both designs
only the constraint g1 for displacement in y-direction uy is active, though there is some
displacement in x-direction in the non-symmetrical designs and none in the symmet-
rical.

Table 5.1: Details of design variables for optimization with finite differencing

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 97.4820 mm²

2 x2 500.0 10.0 500.0 85.4696 mm²

Utilizing the analytical sensitivities of transient nonlinear finite-element analysis
with explicit time integration, the number of evaluations could be drastically reduced.
Starting from a nonsymmetrical design, MMA needed a third of the number of evalu-
ations, 10 evaluations and 10 iterations, coming to nearly the same design and a mass
of 492.6735 kg. As with finite differencing, starting from symmetrical designs resulted
in symmetrical designs of the same numerical value as above.

Table 5.2: Details of design variables for optimization with analytical sensitivity

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 97.4983 mm²

2 x2 500.0 10.0 500.0 85.4477 mm²

The path of optimization is nearly identical, both showing good convergence be-
havior of objective, constraint and design variables (fig. 5.4). These results provide a
reference to the analysis and optimization under uncertainty of the following sections.
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Figure 5.4: Convergence plots of the dimensioning of the two-bar truss
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5.4 consideration of uncertain material model in the design of the

two-bar truss

Assuming the problem above, yet now an uncertain bilinear elastoplastic material
model is considered. In this model, the yield stress σ̃y as well as Young’s modulus
Ẽ and the tangent modulus K̃α are considered uncertain. The uncertain mapping is
defined as

p̃ 7→ r̃
σ̃y

Ẽi

K̃α

 7→
{

ũy

ũx

}
,

where the uncertain material parameters are modeled with the following trapezoidal
fuzzy numbers (fig. 5.5):

σ̃y = trap 〈175, 190, 210, 225〉 MPa

Ẽ = trap 〈65000, 68000, 72000, 75000〉 MPa

K̃α = trap 〈500, 750, 1250, 1500〉 MPa.

The uncertainty analysis here is performed with FuzzAnPy using NLPQLP and this
considers the material of each bar to be independent. This results in six independent
uncertain parameters being mapped onto two uncertain structural responses. The
shadow uncertainties SU, sensitivities of the uncertain parameters to uncertain responses
∂r̃i
∂ p̃j

, are calculated with FuzzAnPy without further computational effort. These can be
further used in concert with the shadow prices SP of the optimization to give the
shadow uncertainty prices SUP, the sensitivity of the objective function due to uncertain
parameters ∂ f

∂ p̃j
, for possibility-based and robustness optimization.

5.4.1 Uncertainty analysis of the optimal design

An uncertainty analysis is performed with the uncertain material model described
above for the symmetrical and non-symmetrical optimal designs of § 5.3. For the non-
symmetrical optimal design, the uncertainty analysis for displacement results in the
following trapezoidal fuzzy numbers (fig. 5.6):

ũy = trap 〈33.5823, 37.3237, 42.7807, 46.9190〉
ũx = trap 〈−0.8385, 0.2800, 1.8203, 2.9317〉 ,

and the symmetrical optimal design the following (fig. 5.7):
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Figure 5.5: Uncertain material parameters for the two-bar truss
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Figure 5.6: Uncertain structural response for the nonsymmetrical design
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Figure 5.7: Uncertain structural response for the symmetrical design

Table 5.3: Fuzzy uncertainty values of the optimized two-bar truss

Design Aũy Aũx Asys

Nonsymmetrical 9.3960 2.6514 12.0474

Symmetrical 9.3970 2.6559 12.0529

ũy = trap 〈33.5746, 37.3166, 42.7740, 46.9127〉
ũx = trap 〈−1.8858, −0.7705, 0.7705, 1.8858〉 .

It can be seen that the symmetrical design is a better design as it is only slightly out-
side the limit on horizontal displacement, while the nonsymmetrical design violates
the limit by 50%, though, both have nearly the same vertical displacement.

Both designs have a possibility of failure Π (F ) of unity, meaning failure is fully
possible. This is clear as the deterministic displacement is on the border to failure
criteria. Any uncertainty to this design enables the structure to “fail”, here defined
by exceeding 40 mm of vertical displacement and 2 mm of horizontal displacement. In
the next section, we will explore how to design such a structure under uncertainty.

The robustness is also calculated, here by using the nonnormalized area of the
responses—fuzzy uncertainties. Again, robustness in a fuzzy domain is of abstract
nature, yet the numerical value is useful for the comparison of the nonsymmetrical
and symmetrical designs (tab. 5.3). The values of uncertainty quantify the results
discussed above that the variation of the truss is nearly identical.

The algorithm FuzzAnPy required 70 evaluations for a worst-case design, 161 for
two α-levels and 497 for six α-levels. Further, a surrogate-based approach has been
implemented in which one sample is reused for all α-level optimizations for all uncer-
tain responses. For reproducible and robust results for this example, this Gaussian
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process approximation requires a sample size of approximately 100. Afterwards, a
similar number of evaluations for the non-surrogate-based approach is needed on the
computationally inexpensive approximation.

For these two designs the shadow uncertainties SU were calculated. The shadow
uncertainties of the non-symmetrical design are as follows, for vertical displacement
uy:

∂ũy

∂σ̃y,1
= trap 〈1.0376, 1.0793, 1.1450, 1.1894〉 × 10−1

∂ũy

∂σ̃y,2
= trap 〈5.0563, 5.9344, 7.2785, 8.3272〉 × 10−4

∂ũy

∂Ẽ1
= trap 〈8.7823, 8.8878, 8.4101, 8.6318〉 × 10−5

∂ũy

∂Ẽ2
= trap 〈0.9126, 0.9501, 1.0068, 1.0458〉 × 10−1

∂ũy

∂K̃α,1
= trap 〈4.5545, 5.3200, 6.4922, 7.4060〉 × 10−4

∂ũy

∂K̃α,2
= trap 〈7.6841, 7.7883, 7.3341, 7.5372〉 × 10−5,

and for horizontal displacement ux:

∂ũx

∂σ̃y,1
= trap 〈2.8366, 2.9194, 3.0595, 3.1624〉 × 10−2

∂ũx

∂σ̃y,2
= trap 〈1.6437, 1.7050, 1.8130, 1.8952〉 × 10−4

∂ũx

∂Ẽ1
= trap 〈3.2612, 3.2711, 3.1980, 3.2493〉 × 10−5

∂ũx

∂Ẽ2
= trap 〈2.5080, 2.5733, 2.6971, 2.7794〉 × 10−2

∂ũx

∂K̃α,1
= trap 〈1.5076, 1.5384, 1.6014, 1.6491〉 × 10−4

∂ũx

∂K̃α,2
= trap 〈2.9877, 2.9932, 2.9448, 2.9730〉 × 10−5.

As these numbers represent the sensitivity of the uncertain response at discrete
levels of the fuzzy response, they are difficult to decipher in their entirety. These are
also used to calculate shadow uncertainties of the fuzzy robustness, or here fuzzy
uncertainty ∂Ar̃

∂ p̃ , which is more expediant for comparison (tab. 5.4).
Although both these methods are considered efficient for this number of uncertain

parameters, further computational savings can be obtained via analytical design (or
here uncertainty) sensitivities of displacement with respect to the yield strength ∂u

∂σy
,
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Table 5.4: Shadow uncertainties of fuzzy uncertainty with respect to uncertain parameters of
the optimized two-bar truss

Design Nonsymmetric Symmetric
∂Aũy
∂σ̃y,1

2.225× 10−1 2.0916× 10−1

∂Aũy

∂K̃α,1
1.3295× 10−3 1.2597× 10−3

∂Aũy

∂Ẽ1
1.7352× 10−4 1.6259× 10−4

∂Aũy
∂σ̃y,2

1.9581× 10−1 2.0916× 10−1

∂Aũy

∂K̃α,2
1.1888× 10−3 1.2597× 10−3

∂Aũy

∂Ẽ2
1.5175× 10−4 1.6259× 10−4

∂Aũx
∂σ̃y,1

5.9877× 10−2 5.6305× 10−2

∂Aũx
∂K̃α,1

3.5276× 10−4 3.3395× 10−4

∂Aũx
∂Ẽ1

6.4889× 10−5 6.2404× 10−5

∂Aũx
∂σ̃y,2

5.2801× 10−2 5.6305× 10−2

∂Aũx
∂K̃α,2

3.1487× 10−4 3.3395× 10−4

∂Aũx
∂Ẽ2

5.9501× 10−5 6.2404× 10−5
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Young’s modulus ∂u
∂E and tangent modulus ∂u

∂Kα
. The shadow uncertainties are shown

below in context of optimization in concert with shadow prices to give shadow uncer-
tainty prices.

5.4.2 Worst-case optimization problem under uncertain material properties

The mathematical formulation of the optimization problem for the design problem in
which the the constraint is now the worst-case displacement is described as follows:

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = m

g1 (x) =
max

{
ũy
}

uy,max
− 1

g2 (x) =
max {ũx}

ux,max
− 1

g3 (x) =
min {ũx}
−ux,max

− 1

x =
[

a1 a2

]T
.

Using MMA and starting from the same non-symmetrical start design as in the
deterministic case, the optimization takes 10 optimization iterations and 30 uncertain
evaluations for a total of system evaluations of 4158 (84 to 147 system evaluations per
uncertain analysis) to reach the nearly symmetrical optimum design of 99.4048 mm2

and 99.5889 mm2 resulting in a mass of 535.8901 kg. From a symmetrical design it
takes 10 iterations and 30 uncertain evaluations and a total of 3087 system evaluations.

Table 5.5: Details of design variables of worst-case optimization

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 99.4048 mm²

2 x2 500.0 10.0 500.0 99.5889 mm²

The postprocessing of this design optimization shows a shadow price SP for the sen-
sitivity of the mass with respect to the limit of the active constraint, vertical displace-
ment ∂m

∂uy,max
to be -6.8712. The shadow uncertainty of the worst-case of this parameter

with respect to the uncertainty is found in the first column of tab. 5.6.
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Figure 5.8: Convergence of the worst-case dimensioning of the two-bar truss

Table 5.6: Shadow uncertainties and shadow uncertainty prices of active constraint in worst-
case design

Shadow uncertainties ∂ũy
(·) Shadow uncertainty prices ∂my

(·)

(·)
∂σ̃y,1

-1.07261340e-01 7.37014119e-01

(·)
∂K̃α,1

-6.47816254e-04 4.45127504e-03

(·)
∂Ẽ1

-7.92277118e-05 5.44389454e-04

(·)
∂σ̃y,2

-1.07459727e-01 7.38377277e-01

(·)
∂K̃α,2

-6.48860493e-04 4.45845022e-03

(·)
∂Ẽ2

-7.93667093e-05 5.45344533e-04

The quantification of the shadow uncertainties (tab. 5.7) shows that the reduction
in the uncertainty of yield stress is the most critical for the objective function. If the
yield stress of one bar would become 10% more uncertain, the mass would have to be
increased by nearly 3.7 kg (0.7%).
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Table 5.7: Reduction in mass resulting from 10% reduction in uncertainty for the worst-case
design

Reduction of mass

10% reduction of uncertainty in kg %

Yield strength of bar 1 3.6851 0.6877

Tangent modulus of bar 1 0.4451 0.0831

Young’s modulus of bar 1 0.5444 0.1016

Yield strength of bar 2 3.6919 0.6889

Tangent modulus of bar 2 0.4458 0.0832

Young’s modulus of bar 2 0.5453 0.1018

5.4.3 Possibility-based optimization problem under uncertain material properties

In this case, a certain level of possibility of failure will be accepted, namely Π (F ) =
0.2. Failure F is defined by u > umax. This is formulated as follows:

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = m

g1 (x) =
Π
(
F
(
ũy
))

0.2
− 1

g2 (x) =
Π (F (ũx))

0.2
− 1

g3 (x) =
Π (F (−ũx))

0.2
− 1

x =
[

a1 a2

]T
.

Starting from a nonsymmetrical design, the MMA algorithm needed 9 iterations and
27 uncertain analyses for a total of 3381 system evaluations reaching an optimal design
of 99.5025 mm2 for the cross-sectional area of each bar and a mass of 535.9205 kg.
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Table 5.8: Details of design variables of possibility-based optimization

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 99.5025 mm²

2 x2 500.0 10.0 500.0 99.5025 mm²

5.4.4 Robustness optimization problem under uncertain material properties

It is also of interest to maximize the robustness of a structure within the bounds of the
design variables and the structural-mechanical constraints. Robustness is defined as
the ratio of variation of the input parameters to the system response. As the area of
the input parameters remains the same, maximizing the robustness is the equivalent
of minimizing the uncertainty, i.e. summed areas of the responses. This is referred to
here as system uncertainty Asys. The constraints are defined possibilistically as above.
This problem is thus defined as

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = −Asys

g1 (x) =
Π
(
F
(
ũy
))

0.2
− 1

g2 (x) =
Π (F (ũx))

0.2
− 1

g3 (x) =
Π (F (−ũx))

0.2
− 1

x =
[

a1 a2

]T
.

The MMA algorithm required 7 iterations, 21 uncertain evaluations and a total of
10395 system evaluations to come to the design of maximum robustness at 500.0 mm²
for each bar, the upper bound (cf. tab. 5.9). For this optimization problem the robust-
ness maximization is a trivial problem, but it is shown to be more interesting as a
multiobjective problem or for other design problems below.
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Table 5.9: Details of design variables of robustness optimization

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 500.0 mm²

2 x2 500.0 10.0 500.0 500.0 mm²

5.4.5 Multiobjective robustness optimization problem under uncertain material properties

The objective of this optimization is to maximize the system robustness. As the sole
maximization of the system robustness R has a trivial solution of xU , a composite
objective function is formulated as the weighted addition of the system uncertainty via
summed areas of the responses Asys (robustness) and mass m. Again, the constraints
are defined possiblistically as above. This is formulated as

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = γ1Asys + γ2m

g1 (x) =
Π
(
F
(
ũy
))

0.2
− 1

g2 (x) =
Π (F (ũx))

0.2
− 1

g3 (x) =
Π (F (−ũx))

0.2
− 1

x =
[

a1 a2

]T
.

The weights γ1 and γ2 were chosen as 25 and 1 respectively, though other values are
possible depending on the desired compromise between robustness and mass. The
optimization required 10 iterations, 30 uncertain evaluations and 3630 system evalu-
ations, coming to the slightly nonsymmetrical design 100.159 mm² and 98.7786 mm²
(cf. tab. 5.10) for a mass of 535.89 kg.

Table 5.10: Details of design variables of multiobjective robustness optimization

Design
variable

Symbol x0 xL xU x∗ Unit

1 x1 10.0 10.0 500.0 100.159 mm²

2 x2 500.0 10.0 500.0 98.7786 mm²
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Figure 5.9: Convergence of the multiobjective robustness dimensioning of the two-bar truss

5.5 findings and interpretation of results

As this problem has two design variables, it is possible to plot the design domain to
gain further insight on the design problem as well as the importance in considering
uncertainty (fig. 5.10).

The possibility of analytical sensitivities by nonlinear finite-element analysis shows
great speed-up. The generality of this must be investigated, especially concerning
contact and bifurcations. As this is an academic example, the amount of data is small,
which made the implementation in MATLAB feasible. The extent of use of memory
for large examples should be monitored and more efficient implementations analyzed.
Further, extension to the uncertain parameters would lead to drastically fewer system
evaluations for optimization under uncertainty and is, thus, seen as the next step.

Efficient handling of uncertainties within the design optimization framework was
proven. Although requiring more evaluations, this exact “dosage” against uncertainty
is feasible.
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6
D E V E L O P M E N T O F A L I G H T W E I G H T E X T R U D E D A L U M I N U M
F R A M E F O R E L E C T R I C V E H I C L E S — A D E M O N S T R AT O R F O R
S T R U C T U R A L D E S I G N O P T I M I Z AT I O N C O N S I D E R I N G
C R A S H W O RT H I N E S S A N D U N C E RTA I N T Y

The numerical examples that follow are extracted from the Lightweight Extruded

Aluminum Frame (LEAF) developed by the author as a demonstrator for structural
design optimization using a multi-level design philosophy. This reduction of the large
design problem with many design variables into a series of problems each of smaller
dimensionality allowed the use of numerical design optimization and uncertainty anal-
ysis of the subproblems, which will be presented in subsequent chapters. In this chap-
ter the concept LEAF (fig. 6.1) will be introduced.

Figure 6.1: Lightweight Extruded Aluminum Frame

6.1 description of vehicle concept

This lightweight, innovative space frame was drafted to fit in the design envelope of
MUTE (fig. 6.2, tab. 6.1), the electrical vehicle designed and built by the Technische
Universität München. The design utilizes the aluminum-extrusion manufacturing
technologies developed developed within the project Collaborative Research Center

81
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Figure 6.2: Electric vehicle MUTE

SFB – Transregio 10 (Kleiner and Klaus 2003). In the following the conceptional de-
sign of this structure will be discussed.

Table 6.1: Specification data of the electric vehicle concept MUTE

Category Specification

Registration class L7e heavy quadricycle (minicar)

Maximum speed ≥ 120 km/h

Power at wheel 15 kW

Curb weight ≤ 400 kg excluding battery

Energy storage Rechargeable battery and disposable electric
range extender

Drive train Rear-wheel-drive powered by a central
electric motor with torque vectoring

Range ≥ 100 km

Cost Total cost of ownership equal to
contemporary subcompact

6.2 structural design requirements of the automotive frame

The structural design requirements stem from the project MUTE and its European
Community registration class, L7e (heavy quadricycles or microcars). This requires the
vehicle to be lightweight (under 400 kg without the battery), yet has limited passive
safety requirements, which were extended to cover requirements of front, side and
rear impact as well as roll-over.

Foremost in the development of a passenger vehicle structure are the safety require-
ments in regards to vehicular impact: crashworthiness. Here this is further divided
into front impact (100% and 40% overlap), side impact, rear impact and roof crush
(fig. 6.3). Front impact is a case of the American New Car Assessment Program
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(US NCAP) in which the vehicle is crashed against a rigid wall at 56 km/h. The sec-
ond case involving front impact from the European New Car Assessment Program
(Euro NCAP) sees the vehicle impacting a deformable barrier offset 40% at 64 km/h.
The side impact case investigated here is performed with a deformable barrier crash-
ing into the driver side of the vehicle at 50 km/h out of the Euro NCAP test catalog.
The rear impact requirement is carried out using the standard FMVSS 301 and here
a deformable barrier is impacted against a non-moving vehicle at 50 km/h. For these
cases, deformation or intrusion of the structure and occupant acceleration are limited
in order to ensure occupant survival of a road accident. The final crashworthiness
requirement used for this concept is the roof crush test according to FMVSS 216. Here
a roll-over of the vehicle is simulated by applying a load of 1.5 times the curb weight
while limiting the displacement.

To guarantee driving comfort and proper handling, static and dynamic stiffness re-
quirements are applied. Bending stiffness is investigated by applying simple supports
to all four suspension-strut domes, while applying a downward force where both seats
are located (fig. 6.4b). Torsional stiffness is measured by applying simple support to
both rear suspension strut domes and applying an upward and a downward force on
the left and right front suspension-strut domes, respectively (fig. 6.4a). Further, the
first resonance frequency (dynamic stiffness) shall be high enough to ensure comfort
for the vehicle occupants.

Further loads result from suspension of the vehicle and are accounted for by ap-
plying three cases to the four kinematic points of the chassis-frame interface: m©
suspension-strut dome, f© longitudinal control arm and g© the transverse control arm
(fig. 6.5). The following three cases are considered:

1. Brake and pot-hole bump

2. Curve and pot-hole

3. Brake, curve and pot-hole bump.

The structure was to be built a limited number of times and, therefore, complex
tooling was not feasible. Further, the structure is to be cost-effective, to reduce both
prototype costs as well as costs that would be incurred for a possible serial run and
then passed on to consumers.

These structural requirements are to be upheld while the mass of the structure with-
out doors was to be as light as possible, but not more than 120 kg.

6.3 concept of the space-frame structure

The structural design of LEAF culminates from the conceptual analysis of space frames
(fig. 6.6), including topology optimization, the space frame of MUTE as well as the in-
vestigation of the DLR bulkhead space frame (Schöll et al. 2009 and Rudolph 2011).
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56 km/h

(a) Front impact

64 km/h

40%

(b) Offset front impact

Head
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(c) Side impact
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(d) Rear impact

froof

(e) Roof crush

Figure 6.3: Crashworthiness cases considered for LEAF

Further inspiration was drawn from the Audi Space Frame (Paefgen and Leitermann
1994, Leitermann and Christlein 2000 and Christlein and Schüler 2000). As this vehic-
ular frame is for very small production runs and must be cost-efficient, a lightweight
space frame of aluminum extruded sections was selected, the majority of which are
standard cross-sectional geometry. The combined extrusion-curving technology, de-
veloped in the research project Transregio 10, allows for the efficient manufacturing of
the few non-straight elements.
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(a) Torsion stiffness
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(b) Bending stiffness

Figure 6.4: Stiffness cases considered for LEAF

f©g©

m©

f©
g©

m©

Figure 6.5: Chassis case considered for LEAF

(a) Topology optimization (b) MUTE space frame

(c) DLR bulkhead space frame (d) LEAF space frame

Figure 6.6: Concepts considered in the development of LEAF

The structure of LEAF is divided into three performance-based zones: deformation,
safety and chassis zones (fig. 6.7). The deformation zone allows for absorption of
kinematic energy of a vehicular impact via plastic deformation in the front, rear and
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sides of the structure. While allowing intrusion, and with it energy absorption, in the
deformation structure (red), the structural integrity is sustained with the safety zone
(blue). In this region of the structure, there shall be no plastic deformations present in
the case of a vehicular impact. Thus, this zone guarantees the safety of the occupants
in the inopportune event of a crash. The chassis structure is responsible for suspension
loads as well torsional and bending stiffness (green).

Safety structure
Chassis structure

Deformation structure

Figure 6.7: Functional concept of LEAF

The backbone of this concept are the two double-S-shaped sections that run from
the front of the vehicle to the rear (fig. 6.8a). These are the main floor support and
direct crash loads from both the front and the rear into the strong, stiff region beneath
the feet of the occupants. The double-S-shaped sections are connected to each other
with sheeting and transverse sections to ensure structural integrity also in the event of
a side crash. This stiff floor component group further provides the concept with high
bending and torsional stiffness.

Front and rear impacts are absorbed via crash systems made of a transverse member
(bumper) and two longitudinal crash-absorbing sections (fig. 6.8b). These are attached
to the frame at two thick plates at the end of the double-S-shaped sections.

Side impact is absorbed via crash boxes in the floor connecting the double-S-shaped
section to the door-sill section (fig. 6.8c). Further, the lower B-pillar is able to displace
at the bottom at extensive loading (i.e. impact) to allow deformation underneath the
occupant.

The suspension is attached via a simple, yet mechanically efficient frame structure
of sections and sheeting (fig. 6.8d). This structure creates the suspension-strut dome as
well as the interfaces to the longitudinal and transverse control arms. This, in addition
to the wide transverse sections in the roof, provides the frame with excellent torsional
stiffness.
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Double-S-shaped section
Floor transverse

Floor sheeting

(a) Floor assembly
Transverse members

Crash absorbers

(b) Front and rear crash systems

Door beam

A-pillar
Door-sill section

Crash boxes

B-pillar

(c) Side curtain

Suspension-strut domes

Longitudinal control

Transverse control

arm interface

arm interface

(d) Suspension interface

Figure 6.8: Functional assemblies of LEAF
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To further ease manufacturing effort, the vast majority of connections are perpendic-
ular. This reduces cutting and welding of complex joints and therefore, manufacturing
costs and time.

Important to the conception was the structural flexibility for varying vehicle archi-
tectures and drive configurations. The architectural flexibility allows for using the
same topology for one-seat, two-seat and four-seat configurations, albeit with adapted
cross-sectional geometry of the space-frame sections (fig. 6.9).

(a) Single-seat city car (b) Two-seat coupé (c) Four-seat sedan

Figure 6.9: LEAF with different possible vehicle architectures

Beyond the size of the vehicle and the number of occupants, the structure enables
the use of varying drive configurations (fig. 6.10). The development of this structure
was carried out for a vehicular concept with a middle battery and rear-wheel drive,
though it may be advantageous for dynamical and impact performace to have a floor
battery. The LEAF concept is robust enough to allow for a front-mounted internal
combustion engine with front-wheel drive. Further drive configurations such as hub
motors would also be feasible.

(a) Electric with floor bat-
tery

(b) Electric with middle
battery

(c) Internal combustion

Figure 6.10: LEAF with different possible drive configurations

6.4 development process and integration of structural design opti-
mization

After the conceptualization phase, the design of the cross-sectional geometry and wall
thickness of each element is carried out. To develop and optimize the concept further,
a multi-level design philosophy was chosen. In this philosophy, the space frame struc-
ture is divided into three component groups: crash absorbers, front crash system and
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passenger cell (fig. 6.11). Starting with the crash absorbers, analytical relationships
were found to design such impact-absorbing structures without the computational ef-
fort and time of crash simulations with nonlinear finite-element analysis using explicit
time integration. Once these components and their behavior were designed, the com-
ponent group of the front crash system was optimized. Separating the structure into
regions of plastic and elastic deformation allows the passenger cell to be optimized us-
ing linear elastostatic analysis. Further, as this structure is safety relevant, uncertainty
in models were analyzed and integrated in the optimization-supported design pro-
cess. Uncertainty analysis and optimization will be shown in the following numerical
examples, followed by a verification of the structure concept.

Crash absorbers

•Force

•Displacement

Front crash system

•Force

•Displacement

•Acceleration

Passenger cell

•Stress
•Stiffness

Complete structure

•Acceleration

•Frame intrusion

Figure 6.11: Multi-level design philosophy for LEAF (top view)
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O P T I M A L D E S I G N O F E X T R U D E D S E C T I O N S F O R C R A S H
A B S O R B E R S W I T H S I M P L I F I E D M O D E L I N G U N D E R
U N C E RTA I N T Y U S I N G S I M P L I F I E D M O D E L I N G

Extruded aluminum sections are used in the so-called crumple zone of automobiles
for their ability to absorb the energy in a front impact (fig. 7.1). Thin-walled extruded
profiles are lightweight and cost-effective structures. In this chapter, an efficient de-
sign method based on analytic relationships will be shown and used to dimension
such structures, including material uncertainty. In this case, square cross-sectional
geometries will be investigated.

Crumple zone

Crash absorber

fres

Figure 7.1: Crash absorbers shown within the crumple zone of the Audi Space Frame

7.1 cross-sectional shape

For the design of the crash absorbers, a square cross-section geometry has been chosen
due to both structural-mechanical and availability. Varying cross-sectional shapes were
studied including circular, square and hexagonal advised by the author and carried
out by Urban (2012) and Fellner (2013) as well as a shape optimization advised by the
author and carried out by Schulze Frenking (2013) resulting in hexagram (six-pointed
star).

For the shape optimization (Schulze Frenking 2013), a quarter of the structure was
parametrized with a cardinal spline with five control points. This symmetrical para-
metrization of the crash absorber resulted in eight design variables: seven for coordi-
nates of the control points and one for a global tension parameter. This was shown
to be flexible allowing for the limit cases of square to circular cross-section geometry.
The objective function in this study was to maximize the mass-specific energy absorp-
tion. Geometrical constraints were used to guarantee the validity of the shape. As

91
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this shape optimization may indeed be nonconvex, both a second-order algorithm and
evolutionary strategy were used. These, though, resulted in the same general form
(fig. 7.2). Although quite flexible, the use of a cardinal spline limits the possible cross-
sectional shape. From the results, Schulze Frenking 2013 with the author postulated
that the ideal shape has segments of equal length, though remaining thin enough to
buckle locally. One such example is a hexagram (fig. 7.2).

Evolutionary strategy 1

Evolutionary strategy 2

Gradient-based algorithm

Derived

Figure 7.2: Results of shape optimization for cross-sectional geometry of a crash absorber

In a separate study, different cross-sectional shapes were investigated: After the
optimization of circular and hexagonal cross-sectional geometry (wall thickness and
cross-sectional size), a comparison of circular and hexagonal cross-sectional geome-
tries considering uncertain material parameters was carried out by Urban 2012. The
uncertainty of the resulting force due to a 10° crash of each cross-sectional shape can
be seen in fig. 7.3, denoted by the area under the fuzzy number. In can be clearly seen
that the hexagonal cross-sectional geometry is much robuster (less uncertainty) than
the circular.
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(b) Hexagonal cross-sectional geometry

Figure 7.3: Uncertain force response at optimum design

From these studies, it can, therefore, be deduced that the corners, thus forcing local
buckling in the segments, along with the ratio of segment width to wall thickness play
the vital role in the desired structural-mechanical behavior. From this finding also
stems the use of the thinness criterion (eq. 3.36) to ensure proper and robust folding.

As it was decided to use standard cross-section geometry for the LEAF demonstrator,
the hexagonal and hexgram shapes were not used. Instead a compromise between
structural-mechanical behavior and availability was made. This resulted in square
cross-sectional geometry, which is commonly procurable, which like the preferred
shapes has segments of proper thinness and corners to contain the folding. These will
be discussed below using simplified modeling.

7.2 design requirements

The length `, wall thickness d and width b of a crash absorber of square cross-sectional
geometry (fig. 7.4) are to be dimensioned to have a minimum mass and thereby to
absorb a said amount of energy E. This shall be done while limiting a resulting force
fres so that its peak force fpeak does not cause unwanted plastic deformation in the rest
of the structure (here: fallow = 150 kN).



94 optimal design of extruded sections for crash absorbers

fres

E

u

Trigger

`

b

d

Figure 7.4: Schematic of crash-absorbing extruded section with trigger

These structures are to be impervious to global buckling, which would result in
much less energy absorption. This force by which global buckling fcr occurs is defined
by the geometry and is assumed to not play a role as long as it is lower than the peak
force fpeak.

As to warrent proper folding of the crash absorbers, a local criterion is used. This
says that each side of the square tube shall buckle, reaching its critical stress σcr, before
its yield stress σy is reached (here: σy = 200 MPa). This static base, though a simpli-
fication, has shown good results in empirical tests and simulations conducted by the
author.

In order to reduce the initial force, geometrical imperfections (or triggers) are used.
These imperfections not only reduce the initial (and maximum) force fpeak, but instead
also strongly influence the crushing pattern of such absorbers. This aspect is crucial
for properly functioning crash absorbers.

Further, the crushing of the crash tube may not occur to the entire original length `.
The maximum allowed displacement uallow here is limited to a leaving a minimum of
10% of the original length, `

10 .

7.3 mechanical background

In this section analytic models of axially loaded, extruded profiles will be introduced.
This allows the designer to forgo computationally intense numerical methods with
finite-element analysis. Using the relationships introduced in § 3.3, a system of equa-
tions was implemented for the initial design. This allowed for fast calculation and
optimization including uncertainty of these structures.

The design domain of square crash absorbers can be also analyzed to better un-
derstand the problem. By setting one design variable (here: length `) as constant, it
is possible to visualize this design domain with all system equations (fig. 7.5). The
feasible design space is limited to the center of the design domain (here: white).
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Figure 7.5: Design space for a crash-absorbing extruded section at ` = 600 mm

7.4 dimensioning of crash absorbers of square cross-sectional geom-
etry

The design problem of § 7.2 is here formulated as an optimization problem and the
results are discussed.

7.4.1 Optimization problem

The mathematical formulation of the optimization problem for the design problem is
described as follows:

min
x∈X
{f (x) |g (x) ≤ 0} ,
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where

f (x) = m

g1 (x) =
fpeak

fallow
− 1

g2 (x) =
u

uallow
− 1

g3 (x) = 1− fcr

fpeak

g4 (x) =
σcr

σy
− 1

x =
[
d b `

]T
.

In the following this will problem will be solved and discussed.

7.4.2 Optimization results

The start value of the optimization was chosen with a thickness d of 3.0 mm, a width b
of 100 mm and a length of 500 mm. The optimization of the crash absorbers converged
quickly using the algorithm MMA to the general design in three iterations and 24

system evaluations to an optimum of 1.0214 kg. The convergence behavior can be
seen in fig. 7.6, which needed a total of six iterations. The optimal design can be seen
in tab. 7.1, which reduced all dimensions of the starting point slightly.

Table 7.1: Details of design variables for optimization of the crash absorber

Design
variable

Symbol x0 xL xU value x∗

1 x1 3.0 1.0 5.0 2.4033

2 x2 100.0 25.0 150.0 85.4875

3 x3 500.0 300.0 600.0 460.3106

7.5 consideration of uncertain material model in the design of crash

absorbers

The problem above was now considered with an uncertain material model. In this
model, the yield stress σ̃y and Young’s modulus Ẽ are considered uncertain. The un-
certain responses considered here are displacement ũ, peak force f̃peak, critical global
buckling force f̃cr and critical local buckling stress σ̃cr.
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Figure 7.6: Convergence plots of the dimensioning of the crash absorber

The uncertain mapping is defined as

p̃ 7→ r̃

{
σ̃y

Ẽ

}
7→


ũ

f̃peak

f̃cr

σ̃cr

 ,

where the uncertain material parameters are modeled with following trapezoidal fuzzy
numbers (fig. 7.7):

σ̃y = trap 〈175, 190, 210, 225〉 MPa

Ẽ = trap 〈65000, 68000, 72000, 75000〉 MPa.

7.5.1 Uncertainty analysis of the optimal design

Considering the optimal design found above in § 7.4.2, an uncertain analysis was
carried out. This resulted in the following uncertain response:
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Figure 7.7: Uncertain material parameters for the crash absorber

ũ = trap 〈452.6412, 484.9727, 536.0225, 581.9672〉 mm

f̃peak = trap 〈71.9077, 78.0712, 86.2893, 92.4528〉 kN

f̃cr = trap 〈75.8256, 79.3253, 83.9915, 87.4911〉 kN

σ̃cr = trap 〈185.7183, 194.2899, 205.7187, 214.2903〉 MPa,

which required 84 system evaluations for two α-levels and 228 system evaluations for
six α-levels. Here it can be seen that with realistic and relatively small uncertainties
in the material can result in an increase of uncertainty in the system responses, which
would lead to a drastically suboptimal design.

7.5.2 Worst-case optimization of analytical relationships under uncertain material

In order to handle this uncertainty and still provide an optimal design, this must be
integrated again in the design problem. This will be first done with a worst-case
optimization, which is formulated as follows:

min
x∈X
{f (x) |g (x) ≤ 0} ,
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Figure 7.8: Uncertain structural response for the optimal crash absorber
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where

f (x) = m

g1 (x) =
max

{
f̃peak

}
fallow

− 1

g2 (x) =
max {ũ}

uallow
− 1

g3 (x) = 1−
min

{
f̃cr
}

max
{

f̃peak
}

g4 (x) =
max {σ̃cr}
min

{
σ̃y
} − 1

x =
[
d b `

]T
.

From the identical starting design as above, the worst-case optimization converged
again very quickly with the algorithm MMA to the general optimum in three iterations,
finally arriving to a design of 1.4932 kg in four iterations (fig. 7.9). This design is nearly
50% heavier than the deterministic optimum design to accommodate the uncertainty,
which has made the design thicker, wider and longer (tab. 7.2).

Table 7.2: Details of design variables for worst-case optimization

Design
variable

Symbol x0 xL xU value x∗

1 x1 3.0 1.0 5.0 2.7562

2 x2 100.0 25.0 150.0 100.589

3 x3 500.0 300.0 600.0 487.4504

7.5.3 Possibility-based optimization of analytical relationships under uncertain material

As the worst-case design may be too conservative and, therefore, too heavy, in this
case, a certain level of possibility of failure will be accepted, namely Π (F ) = 0.2.
Failure F is defined by r > c. The possibility-based optimization problem is

min
x∈X
{f (x) |g (x) ≤ 0} ,
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Figure 7.9: Convergence plots of the worst-case dimensioning of the crash absorber

where

f (x) = m

g1 (x) =
Π
(
F
(

f̃peak
))

0.2
− 1

g2 (x) =
Π (F (ũ))

0.2
− 1

g3 (x) =
Π
(
F
(

f̃cr
))

0.2
− 1

g4 (x) =
Π (F (σ̃cr))

0.2
− 1

x =
[
d b `

]T
.

As above, using the algorithm MMA converged in four iterations to a lighter design
of 1.3993 kg, or nearly 40% heavier than the deterministic design (fig. 7.10). The design
was somewhat relaxed as seen by the design in tab. 7.3.
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Figure 7.10: Convergence plots of the possibility-based dimensioning of the crash absorber

Table 7.3: Details of design variables for possibilistic optimization

Design
variable

Symbol x0 xL xU value x∗

1 x1 3.0 1.0 5.0 2.7082

2 x2 100.0 25.0 150.0 98.852

3 x3 500.0 300.0 600.0 483.954

7.5.4 Using shadow uncertainty prices for post processing

After the optimization in § 7.5.2 results, the shadow prices SP of the inequality and
side constaints were calculated. As only the second and fourth inequality constraints
are active, only these are displayed in tab. 7.4.
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Table 7.4: Active shadow prices at optimal design of worst case optimization

Shadow price Value Unit

SP2 −2.0929× 10−3 kg/mm

SP4 −1.7023× 10−3 kg/MPa

The shadow uncertainties for the relevant structural responses, displacement u and
σcr are

∂ũ
∂σ̃y

= int 〈−2.8209, −2.3092〉 mm/MPa

∂ũ
∂Ẽ

= int 〈0, 0〉 mm/MPa

∂σ̃cr

∂σ̃y
= int 〈0, 0〉 MPa/MPa

∂σ̃cr

∂Ẽ
= int

〈
2.8572× 10−3, 2.8572× 10−3〉 MPa/MPa.

Now using both shadow prices and shadow uncertainties to give shadow uncertainty
prices, we get the following

∂m
∂σ̃y

= int
〈
−5.7236× 10−3, −4.6854× 10−3〉 kg/MPa

∂m
∂Ẽ

= int
〈
4.8638× 10−6, 4.8638× 10−6〉 kg/MPa.

From these values, it is possible to forecase a reduction in the objective function. For
a 10% reduction of the uncertain intervals

σ̃y = int 〈175, 225〉 MPa

Ẽ = int 〈65000, 75000〉 MPa

to

σ̃y = int 〈180, 220〉 MPa

Ẽ = int 〈66000, 74000〉 MPa,

a reduction in mass is expected of 1.9171% (1.4642 kg) and 0.3258% (1.4879 kg) from
the original 1.4928 kg, respectively for yield stress and Young’s modulus. These values
were then verified with optimization runs with the revised uncertainties to give a mass
of 1.4519 kg and 1.4883 kg, respectively. As both state limit parameters are indepen-
dent with respect to their critical uncertain parameters, the shadow uncertainty prices
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Table 7.5: Comparison of results for the crash absorbers: I. Deterministic optimization, II.
Worst-case optimization, III. Possibility-based optimization

Property Symbol I II III Unit

Objective f 1.0214 1.4932 1.3993 kg

Design variable 1 x1 2.4033 2.7562 2.7082 mm

Design variable 2 x2 85.4875 100.589 98.852 mm

Design variable 3 x3 460.31.06 487.4504 483.954 mm

Possibility of failure Π (F ) 1.0 0.0 0.2 -

give a good forecast of 1.4593 kg when reducing the uncertainty in both. This was
verified as being 1.4455 kg.

Via this method, one can then make judgment calls to carryout provisions to re-
duce the variability of the yield stress as this results in a greater reduction of mass.
Further, cost of such provisions must be ascertained and weighted with the possible
improvements.

7.5.5 Findings

Fast, analytical design methods for crash-absorbing extruded profiles were developed
and validated. These were then used in the design of such crash absorbers, also un-
der material uncertainty. Consideration of uncertainty in material parameters and
interaction between these parameters has been shown to be critical in design and di-
mensioning.

Depending on the level of failure allowed, the design varied from just over 1 kg to
nearly 1.5 kg (tab. 7.5). It is, therefore, important to analyze the uncertainty present in
addition to the allowable uncertainty in a structure. Lastly the post-processing step of
shadow uncertainty prices was carried out to assess this numerically, which showed
the great influence of the uncertainty of yield stress on the cost of mass.
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U S I N G S U R R O G AT E M E T H O D S

Extending on the previous chapter, an assembly of extruded aluminum sections will
be design and optimized. Here the use of surrogate modeling will be shown for
optimization as well as optimization under uncertainty.

8.1 design requirements

As with the crash absorbers of the previous chapter, the front crash system is to be
designed for minimal mass m. Here, the minimum mass is to be found while absorbing
a said amount of energy E, respresenting the velocity and mass of a small electric
vehicle in a front load case (Euro NCAP). This is to be done so that the peak force fpeak
does not exceed a force that would cause unwanted plastic deformation in the rest of
the structure fallow. The energy shall be absorbed in an intrusion u less than uallow.
Lastly, the identical criteria to encourage local buckling is used as above (cf. 7.2).

The load case considered is based on the Euro NCAP front 40% offset (fig. 8.1,
cf. § 6.2). Though, instead of a deformable barrier, which would only deform locally
when being used with space-frame structures—as is the case here with the front crash
system—a rigid barrier is used.

u̇

u

f

Rigid barrier

Figure 8.1: Modified Euro NCAP load case for the front crash system
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dlong

dtrans

htrans

wtrans

blong

ϕlong

κtrans

Figure 8.2: Design variables in top view (left) and back-right view (right)

The design variables are split into two domains (fig. 8.2): the transverse member
(bumper) and the longitudinal members (crash absorbers). As above the width blong
and the wall thickness dlong are variable. In addition to these, the angular orientation
of the crash absorbers ϕlong is to be properly dimensioned. The transverse member
allows for an m-shape via the design variable κtrans. This was chosen to allow for the
isolation of the crash tube of one side in the early phase of impact, thus discouraging
global buckling. Further, the height htrans, width wtrans and wall thickness dtrans of the
bumper are to be found.

8.2 mechanical background and system equations

A rigid wall was used as a reduced barrier was used instead of a deformable barrier
as it better accommodates a space-frame structure. A space-frame structure crashing
into a deformable barrier would result in non-realistic local behavior of the barrier
as the outer skin of the vehicle is not considered. The use of a rigid barrier also
drastically reduces computational time. The finite-element model comprises of 13564

shell elements, 96 beam elements and one mass element to represent the mass of the
complete vehicle (fig. 8.3). The Hockett–Sherby material model (§ 3.4.2) is used for
aluminum, though, no material failure is used for purposes of simplicity. Optimal
trigger geometry is mapped to the model based on the analytical modeling of crash
absorbers (fig. 8.3b, cf. § 3.3). The crash simulation is calculated with the commercial
software LS-DYNA.

A design of experiments is carried out for both the design variables as well as
the uncertain parameters. The all-at-once sampling plan that includes 1010 internal
points within the combined design and uncertain domain via Latin hypercube sam-
pling (§ 2.4.4) and 512 additional points of all corner points of the combined design
and uncertainty domain (29). The corner points are included as this has been shown
to be problematic when approximating with fuzzy analysis, which often utilizes this
part of the uncertain domain. The approximation models for each response are cre-
ated via Gaussian process (Kriging). This uses a quadratic regression along with a
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(a) Meshed front crash system

(b) Detail of trigger geometry and meshing

Figure 8.3: Finite-element model for the front crash system
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squared-exponential correlation function. As single combined sampling was chosen
to better compare the deterministic and fuzzy optimization results.

8.3 dimensioning of crash absorbers of round and square cross-sectional

geometry

The following optimization results are based on a surrogate approach. Gaussian pro-
cess was used for the system approximations based on a single design of experiments
using samples chosen via Latin hypercube.

8.3.1 Optimization

The mathematical optimization problem for the design problem introduced above is

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = m

g1 (x) =
u

uallow
− 1

g2 (x) =
fpeak

fallow
− 1

g3 (x) =
σcr

σy
− 1

x =
[

ϕlong blong dlong κtrans htrans wtrans dtrans

]T
.

Below the optimal solution will be discussed.

8.3.2 Optimization results

For this problem a surrogate-based design optimization approach will be used in
which the response surface is used instead of finite-element analysis. After starting
at a slightly infeasible design, the algorithm MMA converged in 12 iterations to an
optimal design of 5.1181 kg (fig. 8.4).

The optimal dimensions are found in tab. 8.1. The design shows good agreement
the design optimization with analytical models being ca. 0.15 mm thicker and 4 mm
wider. The design, further, demonstrates the ability to isolate the crash absorbers, thus
forming the m-shaped bumper (fig. 8.5). Further, only a slight angle of ca. 2.25° was
used to account for the nonsymmetry of the load case.
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Figure 8.4: Convergence plots of the deterministic optimization of the front crash system

Table 8.1: Details of design variables for deterministic optimization of the front crash system

Design
variable

Symbol xL xU x∗ Unit

1 x1 0 10 2.2616 deg

2 x2 70 150 89.4752 mm

3 x3 1 4 2.5156 mm

4 x4 -50 100 100.0 mm

5 x5 30 50 34.2913 mm

6 x6 30 75 32.3577 mm

7 x7 1 4 1.0 mm

8.4 consideration of uncertain material model in the design of a

front crash system

As above, the material model is now considered to be uncertain. In this model, based
on the Hockett–Sherby model (§ 3.4.2), the yield stress σ̃y, the plastic stress σ̃pl (=
σS − σY) and the strain-hardening constant c̃ are considered uncertain. The uncertain
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Figure 8.5: Optimal geometry for deterministic optimization of the front crash system

responses considered here are displacement ũ, peak force f̃peak, critical global buckling
force f̃cr and critical local buckling stress σ̃cr.

The uncertain mapping for this model is defined as

p̃ 7→ r̃
σ̃y

σ̃pl

c̃

 7→
{

ũ

f̃peak

}
,

where the uncertain material parameters are modeled with following trapezoidal fuzzy
numbers (fig. 8.6):

σ̃y = trap 〈175, 190, 210, 225〉 MPa

σ̃pl = trap 〈55, 60, 65, 70〉 MPa

c̃ = trap 〈10, 11, 12, 13〉 .

8.4.1 Uncertainty analysis of the optimal design

The deterministic optimal design is now investigated using the uncertain material
parameters above. This results in the following uncertain responses:

ũ = trap 〈457.3056, 471.1144, 492.7333, 524.3823〉 mm

f̃peak = trap 〈140.5613, 142.0073, 150.7325, 170.6104〉 kN.

This analysis was completed on the same complete surrogate model discussed above.
The fuzzy numbers of the uncertain responses can be seen in fig. 8.7. Here, the clear
nonlinearity and enhancement of the uncertainty towards the violated region is appar-
ent.
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Figure 8.6: Uncertain material parameters for the front crash system
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Figure 8.7: Uncertain structural response for the optimal front crash system
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8.4.2 Possibility-based design optimization

To deal with the material uncertainty in the design optimization, a possibility-based
design optimization was carried out. As above this was done using surrogate model-
ing with Gaussian process (Kriging). Again a certain level of possibility of failure will
be accepted, namely Π (F ) = 0.2. Failure F is defined by r > c. The formulation of
the possibility-based design optimization problem is then

min
x∈X
{f (x) |g (x) ≤ 0} ,

where

f (x) = m

g1 (x) =
Π (F (ũ))

0.2
− 1

g2 (x) =
Π
(
F
(

f̃peak
))

0.2
− 1

g3 (x) =
Π (F (σ̃cr))

0.2
− 1

x =
[

ϕlong blong dlong κtrans htrans wtrans dtrans

]T
.

The algorithm MMA converged to the optimum in 15 iterations and 120 evaluations to
a design weighing 6.1038 kg. This is nearly 1 kg more or a 20% increase with respect
to the deterministic optimal design.
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Figure 8.8: Convergence plots of the possibility-based optimization of the front crash system

The optimal dimensions are found in tab. 8.2. Once again, the design shows good
agreement with the design optimization with analytical models being ca. 0.07 mm
thicker and 0.5 mm narrower. The design, like in the deterministic case, uses the
ability to isolate the crash absorbers, thus forming the m-shaped bumper (fig. 8.9).
Again, only a slight angle of ca. 2.25° was used to account for the nonsymmetry of the
load case.

Table 8.2: Details of design variables for possibility-based optimization of the front crash sys-
tem

Design
variable

Symbol xL xU x∗ Unit

1 x1 0 10 2.7740 deg

2 x2 70 150 98.3280 mm

3 x3 1 4 2.6072 mm

4 x4 -50 100 100.0 mm

5 x5 30 50 34.5227 mm

6 x6 30 75 43.5128 mm

7 x7 1 4 1.5165 mm
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Figure 8.9: Optimal geometry for possibility-based optimization of the front crash system

8.5 findings

The designs show small differences with the uncertain model being generally dimen-
sioned larger (fig. 8.10). Also, the angle of the longitudinal members are oriented 0.5°
further outward to better avoid any global collapse problems. For this over dimension-
ing, the uncertain design is nearly 1 kg, 20% heavier.

Table 8.3: Comparison of results for the front crash system: I. Determinisitc optimization, II.
Possibility-based optimization

Property Symbol I II ∆ Unit

Objective f 5.1181 6.1038 kg

Design variable 1 x1 2.2616 2.7740 0.5124 deg

Design variable 2 x2 89.4752 98.3280 8.8528 mm

Design variable 3 x3 2.5156 2.6072 0.0916 mm

Design variable 4 x4 100.0 100.0 0.0 mm

Design variable 5 x5 34.2913 34.5227 0. 2314 mm

Design variable 6 x6 32.3577 43.5128 11.1551 mm

Design variable 7 x7 1.0 1.5165 0.5165 mm

Possibility of failure Π (F ) 1.0 0.2 -0.8 -

Figure 8.10: Comparison of deterministic and fuzzy designs: Deterministic design (blue), fuzzy
design (green)
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In this benchmark, the feasibility and value of the surrogate modeling was shown in
using fuzzy methods for the optimization of structures. Although a design of exper-
iments with a large number of samples was used, this can be further reduced in the
future with e.g. adaptive surrogating.





9
C O M PA R I S O N O F R E S U LT S W I T H T H E F U L L S PA C E - F R A M E
S T R U C T U R E

In this chapter, the methods introduced in this dissertation will be validated using the
LEAF space-frame structure in the Euro NCAP front-offset load case as a reference.
First the decomposed design philosophy of the front crash system for the space frame
will be investigated. This will be followed by an analysis of the consequence of the
variation in the material model. The deterministic and fuzzy (possibilistic) optimal
designs of the front crash system will be compared.

9.1 space-frame structure

In § 6, the decomposed design philosophy is discussed in which the passenger cell of
the space frame LEAF was optimized. See Wehrle et al. (2011), Wehrle et al. (2012),
Wehrle (2013) and Braun (2014) for the details on elastostatic design optimization of
the passenger cell, which is outside the scope of the present document. In these works
the optimal thickness of the passenger cell were found using static replacement loads
for the crash load cases via inertia relief. This geometry (fig. 9.1) will be used in the
verification of the optimal results of the front crash system within the decomposed
design development philosophy of LEAF.

The finite-element model of LEAF, comprising of 225471 shell elements, 622 beam
elements and 1667 solid elements (for details see Tischer 2012), is calculated with the
commercial software LS-DYNA. The large components of the structure were modeled

(a) Front-left view (b) Back-left view

Figure 9.1: Optimal wall thicknesses of passenger cell of LEAF
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Figure 9.2: Finite-element model for LEAF

with solid elements with rigid constitutive models; these include the battery (behind
the passenger cell) and the central electric motor (above rear axle).

9.2 validation of decomposed design philosophy

While having excellent agreement in the critical first phase of the crash—crushing of
the energy absorbers—the force–time graph (fig. 9.4) shows a slightly delayed final
force peak. The crushing shows nearly zero deviation (cf. fig. 9.3), which can by ex-
plained by proper design of trigger geometry and longitudinal member. The deviation
of the end of the crash, on the other hand, stems from the s-rail of LEAF deforming
plastically before the force peak occurs at when the tire makes contact with the A-pillar
(cf. fig. 9.3, 0.04–0.06 s). Although the deformation fields of the two models deviate
after 0.08 s, the force level is no longer critical in this region. The resulting plastic
behavior of the forward section s-rail shows no degradation of the structural integrity
of the safety cell in the front crash. A reduction in the allowable intrusion of the front
crash system, however, would allow for a better conditioned decomposition of the de-
sign process, though at the price of a higher mass of both safety cell and front crash
system.

As introduced in § 6 a decomposed design philosophy was used for the development
of LEAF in which the space frame is not to deform plastically. Here the results of the
front crash system (FCS) and the full space-frame LEAF will be compared.
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Figure 9.3: Comparison of between FCS (blue) and LEAF (red) for the deterministic optimal
design at at t = 0.0, 0.02, 0.04, 0.06, 0.08, 0.1 s, top view (left) and left-side view
(right)
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Figure 9.4: Force–time graph of the FCS and LEAF of the deterministic optimal design

9.3 comparison of behavior considering uncertainty considerations

In fig. 9.5, it can be seen that large deformation (plastic behavior) occurs in the s-rail
especially for material model with the lowest values (blue). One can also see that the
upper longitudinal in the front of the vehicle buckles globally for the lowest level of
material, though not in the case of the material model with middle (deterministic) and
high values.

Although the deformation fields are similar between the deterministic and fuzzy
design, in fig. 9.6 one sees drastically less deformation in the transverse member. This
is due to the larger dimensioning resulting from the fuzzy design, which has reduced
generally the deformation in the entire space-frame structure.

9.4 findings and interpretation of results

The proposed design philosophy, also considering optimization has proven itself to
be an efficient and effective method in the development of a vehicle structure using
structural design optimization. For this a step-wise approach was used that allowed a
gradual increase of design variables and computational effort.

The reduction of the deformation is also apparent. Nonetheless, this example does
not highlight the method as if a stability state limit was the active constraint. Here
one would see a drastic change in the system responses from the consideration of
uncertainty. This system remains well conditioned, also in consideration of uncertainty
in the material parameters. This being the case, the integration of DesOptPy and
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Figure 9.5: Comparison of the deterministic optimal design of the front crash system in LEAF
different material properties: low (blue), middle (green) and high (red) at t = 0.0,
0.02, 0.04, 0.06, 0.08, 0.1 s, top view (left) and left-side view (right)
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Figure 9.6: Comparison of the fuzzy optimal design of the FCS in LEAF different material
properties low (blue), middle (green) and high (red) at t = 0.0, 0.02, 0.04, 0.06, 0.08,
0.1 s, top view (left) and left-side view (right)
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FuzzAnPy, allowed for the exact dosing of material due to uncertainty. This would
not have been possible with safety factor methods.





10
C O N C L U S I O N

10.1 summary of findings

In this dissertation, the understanding of structural design optimization under crash-
worthiness and uncertainty has been furthered in several respects. Although with this
come several questions to be further answered and these aspects will be discussed in
this summarizing section.

The dimensioning of crash absorbers with simplified analytical modeling works ex-
cellent for simple cross-sectional areas and the main axial load case. The addition of
the thin-walled criteria for proper crushing—both in simplified analytical and finite-
element modelling, constrained an unrealistic part of the design domain, where the
designs behave nonrobust with respect to varying parameters due to the high wall
thickness. This, thus, allowed for a better conditioned optimization problem. Of
course, if the load case deviates far from the axial load considered, the analytical
methods will fail. This, though, was not shown to be the case in these investigations.

Analytical design sensitivities were implemented for an academic problem, allow-
ing for exact gradients and excellent convergence of the problem. On one hand, this
alleviates the need for finite differencing and the problem in which it entails: compu-
tational effort and gradient problems for noisy responses. On the other hand, though,
many questions must be answered in this regard to gradient calculation with e.g. con-
tact or further the amount of memory such an approach would need for large models.
Nonetheless, this has shown to have potential and can be used to increase efficiency of
both design optimization as well as uncertainty analysis. The use of adjoint methods
may further increase calculation efficiency.

Here, two software packages were developed and integrated for the application of
design optimization under uncertainty with fuzzy methods. The main optimization
toolbox DesOptPy uses efficient, mainly gradient-based algorithms. It, further, in-
creases usability via easy set-up of optimization problems and gives graphical feed-
back to the user (e.g. via the convergence graphs found above). The development and
implementation of uncertainty analysis with FuzzAnPy was carried out for fuzzy and
interval analysis. Analysis with this toolbox is quite efficient due to use of numerical
optimization methods and the introduction of surrogate modeling.

The concepts of shadow uncertainty and shadow uncertainty price were introduced for
the post-processing for uncertainty analysis and optimization under uncertainty using
the Lagrangian multipliers. These are therefore an extension of the idea of shadow
price. These proved to be useful and efficient, especially when using optimization

125
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algorithms for uncertainty analysis. These values allow the connection between uncer-
tainty and their role in the uncertain system response or objective function to allow
an assessment of a compromise between manufacturing tolerances and desired be-
havior. These may also be of use in the probabilistic realm, for instance when using
gradient-based optimization algorithms FORM and SORM for reliability calculation.

Developed as a demonstrator for structural design optimization considering crash-
worthiness, LEAF is a structural-mechanically efficient space-frame body-in-white for
small electric vehicles. Beyond the topics and load cases handled above, this simple,
yet flexible and modular vehicular frame shows potential for application for small
scale production runs.

10.2 discussion

10.2.1 Use of possibility instead of probability

Probability is a well-established methodology for handling uncertainty. Although this
may be the case, possibilistically (i.e. intervals and fuzzy numbers) may be a more
natural way for engineers to think about uncertainty, especially in early design phases.
It is much easier to imagine an interval than a probability density function. Therefore,
when decisions are made at the meeting table, hand calculation or even finite-element
analysis, possibilistic and interval approaches allow for quick analysis. This is espe-
cially the case when no probabilistic data is available. Though the paradigm of prob-
abilistic thought will not be altered by possibilistic methods, it may be a pragmatic
“crutch” for the engineer to think about the problem in these terms.

10.2.2 Computational effort of fuzzy analysis

In this section, a rule of thumb is developed to approximate the computational effort
for a fuzzy analysis. In a fuzzy analysis for each response, one must minimize and
maximize on every α-level. Assuming the use of a gradient-based solver, for the first
maximization and minimization, the algorithm of FuzzAnPy needs typically between
5 and 10 iterations. As the starting value is then intelligently chosen for each subse-
quent maximization and minimization, typically only 1 to 3 iterations are needed.

For finite differencing response the algorithm then needs a number of evaluations
equally

neval = nr̃ · 2[10

FD︷ ︸︸ ︷(
n p̃ + 1

)
+ (nα − 1) 3

(
n p̃ + 1

)
]

= 2nr̃ (nα + 14)
(
n p̃ + 1

)
(10.1)

for a direct fuzzy analysis.
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When design sensitivities are available, the algorithm then needs depending on al-
gorithm between zero to two further evaluations for step-length optimization

neval = nr̃ · 2 [10 (2) + (nα − 1) (3 · 2)]
= 2nr̃ (6nα + 14) (10.2)

For surrogate-based methods, a single sampling is carried out a priori. As the Gaus-
sian process used here utilizes a quadratic regression function, this dictates the mini-
mum number of samples necessary. In addition to this, an oversampling γ is chosen
(here γ ≈ 3) and when the number of uncertain parameters remains small the corners
of the uncertain domain are included. This leads to a sampling size of

neval = γ

(
n p̃ + 1

) (
n p̃ + 2

)
2

without the corners, and

neval = γ

(
n p̃ + 1

) (
n p̃ + 2

)
2

+ 2n p̃

with corners.
From tab. 10.1 it can clearly be decided when which method is efficient to use.

It should be further noted that the use in this work, the gradient-based algorithm
NLPQLP greatly outperformed these forecasted number of evaluations, an example
being the fuzzy analysis of § 7: Using the approximation and values for number of
evaluations needed found above for nr̃ = 4, n p̃ = 2 and nα = 6 would result in 600

evaluations while only 248 are needed. This number greatly relies on the conditioning
of the optimization problem. If the system response is noisy with respect to the un-
certainty parameters, a smoothing response surface shall then be used, e.g. quadratic
approximation.

Parallelization is possible for this type of analysis and the computation effort of
the gradient-based algorithm methods as well as surrogate methods can be greatly
reduced; this, though, was outside the scope of the present work.

10.3 outlook

Although efficient, integration of analytical sensitivity analysis—especially with ad-
joint methods—for uncertainty analysis via α-level optimization would enable a great
deal of uncertain parameters to be investigated. It would especially be of interest to
look into geometric uncertainties in stability analysis, e.g of an axially loaded cylinder.
Geometric uncertainties may play a larger role as their uncertainty is perturbed when
using iterative methods for temporal discretization.

Modern implementations of the finite-element method provide error estimations.
The model error, an uncertain mapping, along with other parametric uncertainty
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Table 10.1: Approximate number of evaluations needed for different problem sizes

nr̃ n p̃ nα

Gradient-
based using

finite
differencing

Gradient-
based using

analytical
sensitivities

Surrogate-
based

without
corners

Surrogate-
based with

corners

1 1 1 40 20 9 11

1 1 6 100 50 9 11

10 10 1 2200 200 198 1222

10 10 6 5500 500 198 1222

100 100 1 202000 2000 15453 *

100 100 6 505000 5000 15453 *

1 100 1 2020 20 15453 *

1 100 6 5050 50 15453 *

10 100 1 20200 200 15453 *

10 100 6 50500 500 15453 *

100 10 1 22000 2000 198 1222

100 10 6 55000 5000 198 1222

10 1000 1 200200 200 1504503 *

10 1000 6 500500 500 1504503 *
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would give the engineer a confidence interval of the numerical simulation. This would
especially be interesting to analyze deviations between simulation and experiment.

Other dynamic applications such as fluid dynamics may be of interest. Here, amongst
other possibilities, efficient, gradient-based algorithms for the analysis of uncertainty
could further help the design engineer in his pursuit of the optimal!
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