
SIBASE
Technische Universität München
Chair for IT Security
Workgroup TP 5.1

SIBASE Report
TP 5.1 – AP 5.1.2: Modeling of information-flow restrictions

Paul Muntean, TUM

SIBASE
Technische Universität München
Chair for IT Security
Workgroup TP 5.1

SIBASE Report
TP 5.1 – AP 5.1.2: Modeling of information-flow restrictions

Editor: Paul Muntean (paul@sec.in.tum.de)

Authors: Paul Muntean, TUM

TP Responsible: Paul Muntean
Version: 03. September 2014
Submission date: 29. August 2014

Funded by BMBF under grant number 01IS13020

mailto:wamser@tum.de?subject="SIBASE-Report AP 5.3.1"

Version Date Author Comment
0.1 10.07.2014 P.Muntean Initial version
0.2 14.08.2014 P.Muntean Correction of misspelled English words
0.3 18.08.2014 P.Muntean Formatting improvements
0.4 22.08.2014 P.Muntean Correction of unclear English statements
0.5 25.08.2014 P.Muntean Formatting the comment mapping algorithm
0.6 27.08.2014 P.Muntean General formatting improvements
0.7 29.08.2014 P.Muntean General formatting improvements
0.8 01.09.2014 P.Muntean Added general xText grammar explanations
0.9 02.09.2014 P.Muntean Added general formatting improvements
1.0 03.09.2014 P.Muntean Correction of method header grammar

3

Contents

List of Figures 6

Listings 7

List of Tables 8

List of Acronyms 9

1. Introduction 10
1.1. State of The Art . 10
1.2. Why Do We Need a New Policy Language? 12
1.3. Idea and Contribution . 13

2. Language Design 14
2.1. Challenges and Overview of our Solution . 14
2.2. Annotation Language Design . 17
2.3. Annotation Extraction and Mapping . 19
2.4. Static Analysis . 23

3. Implementation 24
3.1. xText Grammar Implementation . 24

3.1.1. xText Grammar Structure . 24
3.1.2. xText Syntax Graphs . 25
3.1.3. xText Language Grammar . 31

3.2. xText Language Artifacts . 34
3.2.1. Reusable Language Artifacts . 34
3.2.2. Two Click Language Extensibility Work-flow 37

4. Applying the Policy Language 38
4.1. Scenarios . 38

4.1.1. Annotation of C/C++ Libraries . 38
4.1.2. Annotating Trust-Boundaries in Header Files 40
4.1.3. Annotation of UML State Charts . 43
4.1.4. Annotating a Cryptographic Algorithm using UML State Charts 45

5. Conclusions 47

4

Contents

Bibliography 48

A. Comments to function declarations mapping code 50

B. The mwe2 Configuration File 55

C. Policy Language Grammar 59

5

List of Figures

1.1. The software development life cycle with focus on security 10

2.1. Single-line annotation format used for annotating function declarations 17
2.2. Example of a single-line annotation used for annotating a function declaration . 17
2.3. Single-line annotation format used for annotating parameter declarations 17
2.4. Example of a single-line annotation used for annotating a parameter declaration 17
2.5. Multi-line annotation format used for annotating function declarations 17
2.6. Example of a multi-line annotation: function declaration tagged as source,

parameters password, key and type tagged as confidential and sensitive. 18

3.1. The xText de.in.tum.sec project . 24
3.2. Annotation language grammar hierarchy. The blue dotted line encloses annota-

tion entities and the orange dotted line encloses syntax recognition entities . . . 24
3.3. Annotation type syntax graph . 25
3.4. Parameters annotation syntax graph . 26
3.5. Function annotation syntax graph . 26
3.6. Syntax graph with two branches . 26
3.7. Syntax graph with three branches . 27
3.8. Single line annotation syntax graph . 27
3.9. Multi-line annotation syntax graph . 28
3.10. Multi-line annotation tags defined in four syntax graph branches 28
3.11. Method header graph. Parallel lines are used for modeling symbol multiplicity

and recursions. 30
3.12. Atribute definition syntax graph . 31
3.13. Work-flow used for extending the language grammar, generating a new code

infrastructure and annotating textual files . 37

4.1. Library annotation work-flow . 39
4.2. UI text editor proposals list . 40
4.3. Bug report presentation in Eclipse . 42
4.4. UML state chart annotation work-flow . 44

6

Listings

2.1. Example function declarations from stdio.h. The "..." indicate 0 or N blank lines 16

3.1. Usage of a entity rule inside another entity rule 31
3.2. Single-line annotation grammar . 31
3.3. Multi-line annotation entity grammar . 32
3.4. Method header entity grammar . 33
3.5. Expression and EntityRef grammar entities 34
3.6. Atribute definition grammar entity . 34

4.1. Annotated getenv() function declaration . 40
4.2. Annotated printf() function declaration . 41
4.3. Annotated LogonUserA() function declaration 41
4.4. Annotated fprintf() function declaration . 41
4.5. Annotated LogonUserW() function declaration 41
4.6. Annotated fwprintf() function declaration . 41
4.7. Five steps cryptographic algorithm code snippet extracted fromCWE-325. Green

text represents C code comments and no annotations 45

7

List of Tables

2.1. Policy language target types. The target types are used as first element on each
new line of a comment . 18

2.2. The annotation tags presented in the table can be used in combination with the
target tag @function . 18

2.3. The target tags are used to annotate previous or next functions calls in a chain of
function calls . 18

2.4. The annotation tags can be used in combination with the target tag @parameter 18
2.5. ParameterName is used to specify the annotated parameter name and Comment

is used to specify an optional text comment 19

8

List of Acronyms

ANTLR ANother Tool for Language Recognition
API Application Programming Interface
AST Abstract Syntax Tree
ECORE EMF File Extension
EMF Eclipse Modeling Framework
ESC Extended Static Checking
IDE Integrated Development Environment
IE Information Exposure
IF Information Flow
IFC Information Flow Control
IFW Information Flow Weakness
LOC Lines of Code
OCL Object Constraint Language
OS Operating System
SAE Static Analysis Engine
SW Software
UML Unified Modeling Language
xTend EMF File Extension
xText EMF File Extension

9

Chapter 1: Introduction

Figure 1.1.: The software development life cycle with focus on security

Figure 1.1 [1] presents the standard software life-cycle with focus on security. It can be observed
that static analysis tools are usually used only after the code was written. We argue for annotating
other software artifacts (UML models) even in early stages of software development in order
to incorporate security concerns into the software design phase. We present in this chapter the
capabilities, limitations and possible improvements of our annotation language which is used for
annotating UML state charts and source code with focus on information flow restriction.

1.1 State of The Art

The detection of information exposure weaknesses [2] (a subcategory of Information Flow
Weaknesses (IFW)) uses dynamic analysis techniques [3–5], static analysis techniques [6–10],
and hybrid techniques which combine static and dynamic approaches [11]. The static techniques
need to know which parts of the code are sinks (functions which use information provided
as parameters) or sources (functions which provide information in form of return value) and
which variables are tagged and need to be propagated based on the Control Flow Graph (CFG).
A solution for tagging sinks, sources and variables in source code is based on libraries which
contain all needed annotations attached to function declarations. This approach plays an important
role mainly for static analysis bug detection techniques where the information available during
program run-time is not available nor the interaction with the environment can be fully simulated.
Extended Static Checking (ESC) [12] is a promising research area which tries to cope with
the shortage of not having the program run-time information. During extended static analysis
additional information is provided to the static analysis process. This information can be used to
define trust boundaries and tag variables. Textual annotations are usually manually added by the

10

Chapter 1. Introduction

user in source code. At the same time annotations can be automatically generated and inserted
into source code. ESC can be used to eliminate bugs in a late stage of the software project when
code development is finished. Tagging and checking for information exposure bugs during the
design phase would eliminate the potential of implementing software bugs which can only be
removed very costly afterwards. Thus security concerns should be enforced into source code
right after the conceptual phase of the project.
The paper [13] presents five challenges concerning ESC. The last challenge reports of the
annotation as being a very time consuming burden and is therefore disliked by some programming
teams. The authors argue about the fact that annotations can cover design decisions and enhance
the quality of source code. We argue that annotations are necessary in order to do ESC and the
user needs a kind of assistance tool that helps selecting the suited annotation based on the current
context. Thus the annotation burden needed for learning and applying the language should be
reduced. At the same time adding annotations to reusable code libraries reduces even more the
annotation burden since libraries can be reused, shared and changed by software development
teams.
The main limitations of an annotation language used for tagging trust boundaries and variables
in order to detect information flow bugs are in our opinion:
Main Limitation:

1. Annotation languages can not be applied out of the box on both modeling and source code
level for introducing information flow restrictions

Other Limitations:

1. Annotation perceived to be a heavy burden

No language assistant/editor

High burden to learn and use the language

2. Language characteristics

Annotation languages are not easily extensible

Annotation languages tags are hard-coded for a limited set of tags

Annotation languages are not expressive enough

Some annotation languages don’t have library support, thus low reuse

To address the Main Limitation we need to think about how textual annotations can be abstracted
so that these can be used to annotate UML models as well. One possibility is to use graphical
post-its (text boxes in which textual annotations can be directly typed in) or to have a kind of
graphical pallet from which symbols having a one to one mapping to textual annotations can be
selected and attached to different parts of the UML model. This offers the possibility to analyze
the models by generating code and attaching the annotations directly to the code. UML state
charts can be also analyzed by simulating execution and using the annotations as intermediary
states. Also OCL annotations, which were inserted to be interpreted in a user defined way, can
be used for information propagation analysis.
To address point 1 of Other Limitations a language assistant editor is needed on the model and
code level that is context sensitive and that can help to suggest suited annotations. To address
the other limitations from point 2 the language should be built around a code infrastructure that

11

Chapter 1. Introduction

makes the supporting code easily adaptable to changes. The set of tags should be suited and
sufficient for the intended task. The usage of annotations should be possible for any file type in
order to support library reuse.
Annotation languages have made a significant impact on static analysis. For example, Microsoft’s
SAL annotations [14] helped to detect more then 1000 potential security vulnerabilities in
Windows code [15]. In addition, several other annotation languages including FlowCaml[16],
Jif [17], Fable [18], AURA[19] and FINE [20] express IFC related concerns.
However, none of the annotation languages has support for both the modeling and source code
level in order to introduce information-flow restrictions. Most of the effort concerned with
annotating is focused on textual files. We argue for annotating other software artifacts even in
early stages of software development. In our opinion this has the following advantages:

1. Security concerns can be integrated into software design artifacts in an early phase of
development

2. Bridging the communication gap between software security designers and software devel-
opers

3. Increased level of software security and quality

1.2 Why Do We Need a New Policy Language?

The goal of our research was to design an annotation language that can be used for annotating
text files and UML state charts by tagging sinks, sources, trust boundaries, sanitization and
declassification functions. We are aware that there are a lot of other policy languages that could
be used for annotation of text files and UML models but none of them is directly usable right out
of the box for our purpose.
Our policy language design requirements are:

1. The policy language should be used for annotating UML state charts and source code files
in order to restrict certain information flows

2. The policy language should be be integrated as annotation language in the Eclipse IDE
with focus on customizability and extensibility

3. The set of policy language annotation tags should not be fixed

4. The parser for the language should be automatically generated.You do not want to write a
full-blown C/C++ language parser!

5. The parsed annotations should be converted to objects and no string tokenizers should be
used

After taking into consideration all these language requirements we came to the conclusion
that there is no open source policy language that could be used to detect information exposure
weaknesses and API misusage (library functions and system calls) by annotating models and
source code.

12

Chapter 1. Introduction

1.3 Idea and Contribution

Starting from our previous mentioned policy language requirements we designed an xText [21]
based grammar that is used to parse the whole C/C++ 11 language. The C/C++ source code file
extensions (.h, .hh, .hhh, .hxx, .c, .cpp) and UML state chart annotation post-its (graphical boxes
which can be attached to different parts of a UML state chart diagram) can be annotated with
policy language restrictions. From the point of view of the format of the used textual annotation
tags our annotation language is similar with [22, 23]. //@ is used as starting tag for single-line
comments. A multi-line comment is starting with the tag /*@ and ending with the tag @*/.
We obtained an ECORE model (a one to one mapping from our xText grammar to the ECORE
grammar representation) that can be reused for integrating the policy language into an UML
state chart editor. Treating the annotation tags as EObjects opens new possibilities for annotating
UML models.
Our lightweight annotation language (reduced set of annotation tags, extensible and reduced
grammar size) uses recursion for dealing with different expression types and has only 4 top
level entity objects. Multiple nested recursions are used in our grammar recognizing complex
C/C++ expressions. The policy language grammar has about 400 LOC with code comments
included and in our opinion it is very small. Source code generation is also supported by using
xTend, ANTLR and .mwe2 files. With few adaptations we could use our grammar to parse other
programming languages as well.
The result is an extensible policy language and a highly reusable source code implementation
that can easily be used for annotating models and source files.

13

Chapter 2: Language Design

This section discusses the five major challenges having to deal with when detecting information
exposure bugs:

1. converting comments and code into annotations

2. introducing correct annotations into source files

3. annotating UML state charts and source code files

4. dealing with scattered annotations

5. attaching annotations to the appropriate function declarations with the goal of detecting
IE bugs

Section 2.1 presents the five major challenges of our policy language definition and usage and
gives an overview of the solution. Section 2.2 describes the textual tags and their usage. Section
2.3 describes the challenges related to comment extraction and gives a brief overview of the
implementation. Section 3.4 gives a brief overview of possibilities to use our policy language
together with static analysis.

2.1 Challenges and Overview of our Solution

2.1.0.1 Converting Comments and Code into Annotations

The main advantages of using annotations extracted from source code comments are:

1. direct mapping between annotation and source code element (function, variable, etc.)

2. annotations have the same textual representation as source code

3. annotations are human and machine readable

Extracting annotations from comments and code is promising but at the same time it can be
quite challenging. First, comments are ambiguous and written in free form; developers can
express the same meaning using different words, phrases, sentence structure, etc. It is difficult
to automatically and precisely analyze comments in order to extract the correct annotations
from them. Furthermore we want that the annotations added by the user to be accurate and
syntactically correct, as these annotations are intended to be used in the source code in order to
help developers to better understand the analyzed program and to detect information exposure
bugs.

14

Chapter 2. Language Design

To address the above challenges we rely on a fully automated work-flow for generating the policy
language parser. The design work-flow is based on xText grammar. The xText grammar is written
in text format and at the same time has an ECORE representation where every rule from the
grammar is represented as an entity object in a UML class diagram. The language parser can be
used to convert textual comments into an ECORE representation. An ECORE representation of
a comment is a higher level object that can be instantiated and that maps the whole comment
hierarchy into an object oriented hierarchy. An ECORE comment object has fields which can
contain other ECORE objects used to represent parts of the original comment. It can be checked
if the objects are null or if they are instantiated. If they are not null then all the parts of the
top level object can be retrieved and used for example during extended static analysis.

2.1.0.2 Adding Correct Annotations into Source Files

Writing annotations into a source code file seems to be not so complicated at first but from the
beginning the user needs to know the language features and how to use them. At the same time
it is important to add syntactically correct annotations into the source file since these annotations
are used later on. This challenge was of main importance since the textual annotations were
converted afterwards into ECORE objects. The annotations were extracted afterwards from these
complex objects. A syntactically incorrect annotation would not permit the parser to create a
valid object representation.
In order to prevent the insertion of syntactically incorrect comments a text editor is used to add
the comments into a source code file. During typing, the language editor is parsing the whole
file in a closed loop. Based on the current context (current line and column number where the
user is typing) the editor offers the most appropriate annotation proposals. The advantage is that
the user is not overwhelmed by all the possible input elements of the grammar at the same time.
Only elements related to the annotation language are suggested. If the user was typing or adding
something which was not syntactically correct then this added element was highlighted with a red
zig-zag line underneath. At the same time the added language tags were highlighted in the text
file in dark red color and in bold font after typing. This creates a clear visual separation between
annotated code and comments and helps the user to insert syntactically correct annotations.

2.1.0.3 Annotating UML Models and Source Code Files

One of the main challenges which were posed by our language design requirements was the
possibility to annotate both UML models and source code files using the same annotation
language. Thus, avoiding the need of learning a new type of language abstraction for annotating
UML models. This language abstraction could be represented by a graphical pallet where
annotations are represented with symbols which the user can pick and attach to the UML model.
We addressed this challenge by using the same textual policy language on both annotation levels.
As in the source code file the user has a small typing box similar to a post-it where he can type
his annotations and then attach the box to the desired model part. The same error correction and
syntax highlighting mechanisms are available to the user as mentioned in section 2.1.0.2.

2.1.0.4 Dealing with Scattered Annotations

The problem of dealing with scattered annotations can be formulated as the challenge of designing
an efficient parsing algorithm that that can be used to parse whole text files bymapping annotations

15

Chapter 2. Language Design

to source code and skips source code elements that are not annotated.
In the following we present a scattered annotations scenario. This scenario is presented in detail
in section 4.1.2. The five C header files used in this scenario have in total 3886 LOC, including
annotations (stdio.h 950 lines, stdlib.h 969 lines, string.h 648 lines, time.h 421 lines,
wchar.h 898 lines). The five header files contain only six annotations attached to six function
declarations. In this situation we say that the annotations are scattered over less then 1 percent
of the total number of function declarations. In this scenario an efficient technique should be
employed that skips not annotated function declarations and uses a structured file representation
format (AST, ECORE, etc.).
We addressed this challenge by providing the possibility to separately parse header files or other
types of files. We use the term translation unit to denote any type of parsable file (source, header,
etc.). Translation units that are source code files were not analyzed since we decided to not
insert annotations in this type of files at this stage of development. Each analyzed translation
unit was converted to an AST representation. In this way it was possible to get all the contained
annotations separated from the source code. Annotations were directly recognized with no need
of implementation adaptation since they were fully compatible with the C comments syntax.

2.1.0.5 Attaching Annotations to The Right Function Declarations

Listing 2.1: Example function declarations from stdio.h. The "..." indicate 0 or N blank lines

0: / /@ @func t ion s i n k
1: . . .
2: i n t pu t c (i n t , FILE ∗) ;
3: . . .
4: / /@ @func t ion s ou r c e
5: i n t f g e t c (FILE ∗) ;
6: . . .

Between the inserted annotation comment and the function declaration normally there should
be no space or new line so that the function declaration follows directly after the annotation
text. If spaces or new lines are mistakenly inserted between the annotation and the function
declaration or parts of an annotated library don’t conform to annotation best-practice rules then
the analysis should be capable to deal with this as well. The solution is a robust algorithm
used for reading annotations from files. The challenge is to attach the correct annotation to
the function declaration. Normally the annotation should be attached to the following (the first
function declaration which is present on the next text line(s)) function declaration. A correct
mapping for the comments and function declarations presented in listing 2.1 would be that the
comment //@ @function sink should be mapped to int putc(int, FILE *); and that
//@ @function source should be mapped to int fgetc(FILE *);.
This challenge was addressed by developing a parsing algorithm which maps annotations to
function declarations. First, the algorithm has a input list of all the annotations obtained from
each translation unit represented in AST form. Second, the files are rescanned in order to detect
the next function declaration which follows (the first function declaration which is present on
the next text line(s)) directly after the file location (line number) from where the annotation was
extracted. The line number and the file name from where the comment is extracted are known

16

Chapter 2. Language Design

from the previous translation unit parsing process. This avoids confusion when for example the
same comment is introduced twice but attached to different function declarations.
2.2 Annotation Language Design

As we are concerned with tagging trust boundaries and variables for detecting information
exposure weaknesses and API usage errors, we designed annotations in single and multi-line
format. Single-line comments contain less information and are written on one text line. Multi-line
comments are written onmany lines and contain usually more information about the tagged source
code. Figure 2.1 presents the single-line annotation format used to annotate function declarations.
Figure 2.2 presents an example of a single-line annotation format. A single-line annotation can
not replace a multi-line annotation since it can address only one function declaration name or
one parameter at a time. The @ TargetType is explained in Table 2.1. The AnnotationTag
is presented in Table 2.2 and Table 2.4. The ParameterName and Comment are explained in
Table 2.5.

@ TargetType AnnotationTag Comment

Figure 2.1.: Single-line annotation format used for annotating function declarations

//@ @function sink myComment

Figure 2.2.: Example of a single-line annotation used for annotating a function declaration

Figure 2.3 presents the single-line annotation format used to annotate parameter declarations.
Figure 2.4 presents an example of a single-line annotation format.

@ TargetType ParameterName AnnotationTag Comment

Figure 2.3.: Single-line annotation format used for annotating parameter declarations

//@ @parameter parameterName confidential myComment

Figure 2.4.: Example of a single-line annotation used for annotating a parameter declaration

Figure 2.5 presents the multi-line annotation format used to annotate function declarations.
Figure 2.6 presents an example of a multi-line annotation format.

/*@ @TargetType AnnotationTag myComment1
∗ @TargetType ParamterName AnnotationTag myComment2 @∗/

Figure 2.5.: Multi-line annotation format used for annotating function declarations

17

Chapter 2. Language Design

/*@ @function source myComment1
∗ @pre functionName1 myComment2
∗ @post functionName2 myComment3
∗ @parameter password confidential myComment4
∗ @parameter type sensitive myComment5
∗ @parameter key confidential myComment6 @∗/

Figure 2.6.: Example of a multi-line annotation: function declaration tagged as source,
parameters password, key and type tagged as confidential and sensitive.

TargetType Description
@function annotation tag used for function declaration
@pre annotate previous function call name
@post annotate next function call name
@parameter annotation tag used for function parameter name

Table 2.1.: Policy language target types. The target types are used as first element on each new line of a comment

TargetType AnnotationTag Description

@function

sink the function uses the information
source the function provides the information
declassification the function declassifies information
sanitization the function sanitizes information
trust_boundary the function is a trust boundary

Table 2.2.: The annotation tags presented in the table can be used in combination with the target tag @function

TargetType Description
@pre previous function call name
@post next function call name

Table 2.3.: The target tags are used to annotate previous or next functions calls in a chain of function calls

TargetType AnnotationTag Description

@parameter
confidential confidential information tag
sensitive sensitive information tag

Table 2.4.: The annotation tags can be used in combination with the target tag @parameter

18

Chapter 2. Language Design

String Description
ParameterName the tagged parameter name
Comment optional textual comment

Table 2.5.: ParameterName is used to specify the annotated parameter name and Comment is used to specify an
optional text comment

Table 2.1 presents the language annotation tags available in our policy language. The target tag
@function is used to attach a comment to a function declaration. The target tag @parameter
is used to attach an annotation to a parameter name. Table 2.2 and Table 2.4 present the flags
which can be attached to the tag @function and @parameter, respectively. Table 2.5 contains
the strings ParameterName which is the name of the tagged parameter and Comment represents
an optional string comment.
Most of the single-line annotation formats presented in related work [22, 23] begin with the
tag //@ or //*@ and multi-line annotation formats start with the tag /*@ and end with the tag
@*/. This type of comment like annotation formats are used because the user normally wants to
introduce annotations that are at the same time valid language comments. On the other hand it is
quite difficult and potentially not necessary to extend a programming language in order to insert
new syntax elements that need to be compiled too. For supporting ESC it is sufficient to add
annotations as comments into the source code. The annotations need to be parsed afterwards
and interpreted by the static code analysis.
Typically, there are two ways to integrate annotations in software: the first approach is based on
adding annotations into comments so that they are backward compatible. The second approach
is based on adding new language keywords, which can ensure that annotations evolve with the
source code but is not backward compatible (old compilers would not support the new syntax
elements). Either would work for our approach. We choose the first approach for backward
compatibility.

2.3 Annotation Extraction and Mapping

This section describes how the annotations are extracted from the comments. Based on the
parser and the ECORE technology we will describe how annotations will be mapped to function
declarations.

2.3.0.6 Extracting Annotation from Comments

The annotation extraction process from comments consists of two steps: (1) Comment Extraction:
extracting annotations containing comments from the source code files. (2) Annotation Object
Generation: after the textual comments are extracted from source code they have to be converted
to a meaningful ECORE representation.

1. Comment Extraction: Each translation unit (source file) is converted into an AST repre-
sentation. The AST representation is an instantiated object containing all the structure
of the file in a well structured manner. From this structured representation we can get
all comments. The AST object can retrieve all the comments in string format. All the
comments will be put into a map where the key is the function declaration (string format)

19

Chapter 2. Language Design

and the value is the string representation of the comment. The mapping from comments
to function declarations is done by the algorithm 1 .

2. Annotation Object Generation: We use an object representation of each comment attached
to each function declaration. This offers a few advantages in comparison to tokenizing
the string and trying to extract the annotations from the comments. First, the grammar
entities correspond to a one-to-one mapping to an ECORE representation. The ECORE
representation is similar to UML class diagram abstraction. The parser used for parsing the
language is registered with the ECORE model representing the grammar. In this context
registered, means that the parser knows how to convert text comments into the appropriate
ECORE object representation. An ECORE object is a hierarchical instantiation of a textual
comment. It has getter and setter methods for all the attributes contained in the object’s
internal structure. Another characteristic of an ECORE object is that it can be deeply
nested. This means that grammar syntax contains complex entities composed of many
other sub-components (sub-entities) that can be easily represented and managed by an
ECORE object.

2.3.0.7 Comments Mapping to Function Declarations

The original algorithm presented in Appendix A for mapping comments to function declarations
has 135 lines of code. The algorithm 1 presents the basic structure of the mapping algorithm.
The algorithm gets as input a list of translation units (header files, .h file extension) and returns a
map having as key the function declaration in string format (as it was inserted in the C library
file) and as value the string representing the attached textual comment. In a latter step the value
field (currently a string) from the map will be converted to an internal object representation.
The algorithm 1 is performing the mapping in five steps:

1. Step 1: a translation unit file is extracted from the translation unit list.

2. Step 2: all the comments are extracted from the translation unit.

3. Step 3: the comments which are not annotation comments are filtered out.

4. Step 4.a and 4.b: single-line and multi-line comments are handled differently in order to
not mix them up.

5. Step 5: at the end of the main loop, the single-line and multi-line hash maps are merged
into one map.

20

Chapter 2. Language Design

Algorithm 1 Comments to function declaration mapping algorithm
1: function map mapCommentsToFunctionDeclarations(comments)
2: initialize CL← 30; . maximum multi-line comment length
3: initializeMLS ← / ∗@; . multi-line comment beginning string
4: initialize SLS ← //@; . single-line comment beginning string
5: initialize headerfunctionterminator ← ;
6: initialize commentsattributemap;
7: for all comment from comments do . Step 1
8: file← comment;
9: initialize line, headerfunctionterminator ← ;
10: initialize bufferInput← file;
11: initialize commentsmap, methodattributemap;
12: initialize buffer, bufferOut;
13: while line not empty do . Step 2
14: line← bufferInput; . get new line
15: buffer ← line; . add line to buffer
16: buffer ← newline; . add newline to buffer
17: pattern← (”/ ∗@|//@”)
18: matcher ← pattern;
19: if matcher has found then . Step 3
20: bufferOut← line;
21: bufferOut← newline;
22: end if
23: end while
24: initialize singleline← null;
25: initialize nextline1← null;
26: initialize nextline2← null;
27: initialize nextline3← null;
28: initialize nextline4← null;
29: initialize concat← emptystring;
30: initialize linenumber ← 1;
31: initialize temp← 0;
32: initialize commentnumberoflines← 0;
33: while singleline← bufferOut and not empty do
34: if singleline starts MLS then . Step 4.a
35: commentnumberoflines← 0;
36: concat← singleline;
37: nextline1← bufferOut;
38: while nextline1 contains MLS and commentnumberoflines < CL do
39: temp← 1;
40: linenumber ← linenumber + 1;
41: concat← newline+ nextline1;
42: nextline1← bufferOut;
43: commentnumberoflines← commentnumberoflines+ 1;
44: end while
45: if temp equal 1 then
46: commentsmap← linenumber and concat;
47: temp← 0;

21

Chapter 2. Language Design

Algorithm 1 Comments to function declaration mapping algorithm (continued)
48: concat← emptystring;
49: end if
50: while nextline1 remove empty spaces equals emptystring do
51: nextline1← bufferOut;
52: end while
53: if nextLine1 contains headerfunctionterminator then
54: methodattributemap← linenumber and nextline1
55: else if nextline1 doesn’t contain headerfunctionterminator then
56: while nextline1 doesn’t contain headerfunctionterminator do
57: nextline3← bufferOut;
58: nextline1← nextline1 + space+ nextline3;
59: end while
60: methodattributemap← linenumber and nextline1
61: end if
62: end if
63: if singleline contains SLS then . Step 4.b
64: commentsmap← linenumber and singleline;
65: nextline2← bufferOut;
66: if nextline2 not equals emptystring and nextline2 contains ; then
67: methodattributemap← linenumber and nextline2;
68: else
69: while nextline2 equals emptystring do
70: nextline2← bufferOut;
71: end while
72: if nextline2 contains headerfunctionterminator then
73: methodattributemap← linenumber and nextline2;
74: else if nextline2 doesn’t contain headerfunctionterminator then
75: while nextline2 doesn’t contain headerfunctionterminator do
76: nextline4← bufferOut;
77: nextline2← nextline2 + space+ nextline4;
78: end while
79: methodeattributemap← linenumber and nextline2;
80: end if
81: end if
82: end if
83: linenumber ← linenumber + 1;
84: end while
85: for all x from commentsmap do . Step 5
86: p1← commentsmap get the x’th element;
87: p2← methodeattributemap get the x’th element;
88: if p2 doesn’t contain the SLS then . avoid putting single-line comments twice
89: commentsattributemap← p1 and p2; . add single, multi-line func. decl.
90: end if
91: end for
92: end for
93: return commentsattributemap;
94: end function

22

Chapter 2. Language Design

2.3.0.8 Extracting Annotation from UML State Charts

Starting from the requirement that the annotations should be textual and should be attachable to
UML state charts as we generate source code from annotated UML state charts. After we have
generated source code the method of extracting annotations is similar to the one presented in the
previous section.

2.3.0.9 Annotation Usage

After running the algorithm presented in listing 1 we get a map containing headers and comments
mapped together. After this step we convert each comment string value from the previous map
into an ECORE object representation. This object contains all the information previously defined
in the string comment in a structured object oriented way. The resulting hash map containing as
key the function declaration string and as value the ECORE object representation will be used to
tag internal variables and function calls during static analysis, for example.

2.4 Static Analysis

ESC will be used to perform extended static source code analysis. The annotations should be
extracted in advance and attached to variables and functions as the analysis is visiting each node
on a potentially buggy path.

2.4.0.10 Annotation Propagation

Annotation propagation will be based on explicit information flow. Implicit information prop-
agation is also possible. The tags will be attached initially to function parameters and, based
on explicit interference rules, the parameter tags and function tags will be propagated to other
variables and function call parameters as the analysis proceeds sequentially on each path.

2.4.0.11 Annotation Checking and Bug Detection

As previously described the attached tags will be propagated based on explicit information flow
or implicit information flow. At each step of the static analysis the attached annotation is checked
and propagated accordingly to the information inference rules. A bug is detected for example if
a confidential tagged variable is transmitting its tag along an execution path and a trust boundary
is reached by this tagged variable.

23

Chapter 3: Implementation

3.1 xText Grammar Implementation

The implementation of our policy annotation language is based on the code infrastructure offered
by a standard xText Eclipse project. The standard xText Eclipse project is composed of four
sub-projects. The first project outlined in figure 3.1A, contains a Hello World xText file
used for grammar definition and a .mwe2 file used for generating source code for the language
parser, UI text editor and the jUnit test cases. The second project, figure 3.1B, is an SDK
project containing the files: build.properties and feature.xml. The third project shown in
figure 3.1C, contains some jUnit test cases for testing the whole code infrastructure. The fourth
project shown in figure 3.1D, is a stand-alone UI text editor containing the generated language
parser and multiple customisation classes for defining the behaviour of the textual language
editor.

A
B
C
D

Figure 3.1.: The xText de.in.tum.sec project

3.1.1 xText Grammar Structure

Figure 3.2.: Annotation language grammar hierarchy. The blue dotted line encloses annotation entities and the
orange dotted line encloses syntax recognition entities

Figure 3.2 presents the top level structure of our annotation language. Figure 3.2 highlights a clear

24

Chapter 3. Implementation

separation between annotation and syntax recognition entities. Our annotation language follows
a top down definition structure. At the top root node we have the AnnotationLanguage entity
object which is composed of a HeaderModel entity. The HeaderModel entity is composed
of a list of four entity objects. The SingleLineAnnotation and MultiLineAnnotation
entities are responsible for defining the language annotations entities. The MethodHeader and
AttributeDefinition entity objects are needed for C/C++ syntax recognition. During syntax
analysis, all C/C++ language constructs need to be recognisable by the parser since we want
to offer annotation proposals to the user. These proposals are context sensitive regarding the
position of the currently edited syntax line and column. If a C/C++ expression is not properly
recognized by the parser then the proposal mechanism doesn’t work from that location until
the end of the file. This means that proposals are no more suggested to the user and that the
proposals input window doesn’t appear.
We think that our xText based grammar has high potential for extensibility. First, we use a
clear separation between language annotation entities and syntax recognition entities. Second,
our hierarchical language structure offers the possibility to easily add other language elements.
Third, the recursivity rules used in the syntax recognition entities can be used to recognize other
programming languages.

3.1.2 xText Syntax Graphs

The grammar syntax graphs are graphical representations of the grammar entities. This section
presents themain grammar entities from an dynamic perspective whereas in section 3.1.3 the same
grammar entities will be presented from a static perspective. All syntax graphs are integrated in a
parallel execution from left to right. This means that when the language is parsed the components
searched for in the language are read from left to right and in a parallel. Syntax graphs are
used to indicate possible paths for syntax recognition. As previously mentioned the syntax
graphs are useful to get a better understanding about grammar entities and recursions. At the
same time the syntax graphs present the required annotation tags used for trust boundaries (sink,
sources, etc) annotation. Annotation entities are used to define annotation language entities
(single and multi-line annotations) and syntax recognition entities (method header entity and
attribute definition entity) are used to recognize syntax elements. Boxes represent keywords and
lines represent possible execution paths. SYMBOLS represents a list of all supported grammar
symbols for example: %, &, #, $ etc. The characters \n, \s, \r are used to denote line
breack, a space and respectivelly a carriage return. Each syntax graph indicates from left to right
the dynamic recognition process of C/C++ syntax elements.

3.1.2.1 Annotation Type Entities

Figure 3.3.: Annotation type syntax graph

25

Chapter 3. Implementation

Figure 3.3 presents the xText syntax graph for 4 annotation tag categories. It is possible to add
other parameter tags by simply adding them in the appropriate grammar list. For example the
language grammar could be extended to support the annotation of not only function parameters
and function declarations but also interfaces for pre and post function execution restriction.

3.1.2.2 Parameter Annotation Tags

Figure 3.4.: Parameters annotation syntax graph

Figure 3.4 presents the xText syntax graph of two annotation tags used for tagging function
parameters. It is possible to add other parameter tags by simply adding them in the appropriate
grammar list. The resulting syntax graph would have additional boxes represented in parallel
with the already existing two.

3.1.2.3 Function Annotation Tags

Figure 3.5.: Function annotation syntax graph

Figure 3.5 presents the xText syntax graph for 5 annotation tags used for tagging function
declarations. It is possible to add additional function tags by simply adding them in the appro-
priate grammar list. As previously mentioned the syntax graph would contain additional boxes
represented in parallel with the existing ones.

3.1.2.4 Single-line Annotation Entity

Figure 3.6.: Syntax graph with two branches

Figure 3.6 presents a recursion with two if branches. The interior if branch contains on one
branch a block and on the other branch no block. The block represents the empty space. The
interior and exterior branches can be traversed by the parsing algorithm recursively.

26

Chapter 3. Implementation

Figure 3.7.: Syntax graph with three branches

Figure 3.7 presents a recursion with three if branches. This syntax graph appears also as part of
other syntax graphs presented in this section. In all other syntax graphs it has the same meaning
as the one explained in this section. The interior if branch contains on the upper branch no
block and on the lower branch another if branch. The most interior if branch contains two
identical branches. The first upper interior if branch contains the \n symbol and the second
branch contains the \r symbol. Both symbols are not represented in the boxes. The upper branch
is used by the most exterior upper branch during the recursion.

Figure 3.8.: Single line annotation syntax graph

Figure 3.8 presents the xText syntax graph for the single-line annotation entity. The singe-line
annotation entity is used to define single-line comments. The syntax graph has two possible
execution paths on which single-line function or parameter tags can be specified. It is possible
to add other tags by simply adding a new branch in the syntax graph. For example the lan-
guage grammar could be extended to support the annotation of not only function parameters
//@ @parameter, function declarations //@ @function, previous function declarations //@
@pre and post function declarations //@ @post but also interfaces (//@ @interface), etc. The
resulting syntax graph would have additional branches represented in parallel with the already
existing ones. The terminal elements represented on each //@ @function, //@ @parameter,

27

Chapter 3. Implementation

//@ @pre and //@ @post branch represent graphical representations of recursions. ID is a
grammar placeholder for every type of string which is not a terminal symbol. SYMBOLS is a list of
language symbols. SecurityType is a list containing the flags confidential and sensitive.

3.1.2.5 Multi-line Annotation Entity

Figure 3.9.: Multi-line annotation syntax graph

Figure 3.9 presents the xText syntax graph for the multi-line annotation entity. The multi-line
annotation entity is used to define multi-line annotation comments. The multi-line annotations
are composed of function, pre, post and parameter tags and can be defined on more than one text
line. The multi-line annotation entity can be extended to support different types of annotations
by just adding another parallel branch in the syntax graph.

Figure 3.10.: Multi-line annotation tags defined in four syntax graph branches

The implementation details of the FunctionAnnotation entity are highlighted in Figure 3.10.
Each of the four branches begins with one of the tags: @function, @parameter, @pre and @post.
The object FunctionType present on the upper branch contains a static defined list containing
the flags: trust boundary, declassification, sanitization, sink and source. The
object SecurityType is composed of a static defined list containing the flags: sensitive and

28

Chapter 3. Implementation

confidential. The objects SYMBOLS and ID were already described in a previous section. The
recursion element present at the end of each branch is described in section 3.7.

3.1.2.6 Method Header Entity

Figure 3.11 presents the syntax graph of the method header entity. The method header entity
is used to recognize syntax elements representing function declarations. The method header
entity is composed of a series of SYMBOLS, recursions and expressions. The * symbol is used to
denote the fact that a parameter in the list of function declaration parameters could be a pointer.
The Expression entity object is presented in detail in listing 3.5 and is used for recognizing C
expressions. Multiplicity is achieved by traversing the loops (parallel lines) n times. Since we
want to use our annotation language in an object oriented context, too, we decided to name this
entity method header entity and not function declaration entity. This is just a convention that can
easily be changed if needed.

29

Chapter 3. Implementation

Figure 3.11.: Method header graph. Parallel lines are used for modeling symbol multiplicity and recursions.

30

Chapter 3. Implementation

3.1.2.7 Attribute Definition Entity

Figure 3.12.: Atribute definition syntax graph

Figure 3.12 presents the syntax graph of the attribute definition entity. This entity is used for
recognizing any type of C/C++ expression which is not a function declaration or an annotation.
The syntax graph contains one recursion at the beginning after the SYMBOLS object and one at the
and of the branch. Both are presented in figures 3.6 and 3.7. ExpressionAttribute is used
for recognizing the attributes of C expressions. The syntax graph presents the linear structure of
the recognition process used for identifying attributes of C/C++ expressions.

3.1.3 xText Language Grammar

The language grammar of our policy language is defined using the xText grammar. This section
presents the main grammar elements from a static perspective whereas in section 3.1.2 the same
grammar entities were presented from a dynamic perspective. The advantage of a language
grammar written in xText in comparison to an language grammar defined in ANTLR is that
we get a powerful code infrastructure that can be reused right out of the box. First, a language
parser is obtained that is capable of interpreting the language annotations as EObjects (ECORE
representations of grammar entities). Second, a UI text editor is generated that already contains
all the customization points needed for changing its editing behavior. It is not within the scope
of this report to present all elements of our annotation language. We will highlight only the
four entity objects present at the top of our grammar hierarchy. Also, the entity objects used to
construct these top level objects will be briefly presented. In this section we highlight how to
extend our language in order to add new grammar elements. The symbol ? means an optional
syntax element and the symbol * means multiplicity which can be between 0..N.

Listing 3.1: Usage of a entity rule inside another entity rule

0: MyEnt i tyRule :
1: . . .
2: myDe l im i t e rVa r i a b l e = SYMBOLS;
3: . . .
4:) ;

Listing 3.1 presents the usage of the entity rule SYMBOLS inside the entity rule MyEntityRule
through the usage of an assignment. If the user tryes to use an entity rule inside another rule
without the usage of an asignment in order to compose complex syntactical expressions then the
xText autovalidation would complain.

Listing 3.2: Single-line annotation grammar

0: S i n g l eL i n eAnno t a t i o n r e t u r n s S i n g l eL i n eAnno t a t i o n :

31

Chapter 3. Implementation

1: { S i n g l eL i n eAnno t a t i o n } (
2: r e s u l t += ’ / /@ @func t ion ’ f un c t i o nType = Func t ionType
3: ((f i r s t D e l i m i t e r = SYMBOLS)) ? ((nameofTheComment = ID)) ?
4: (’ \ n ’ | ’ \ r ’) ∗
5: | ’ / /@ @parameter ’ p a r ame t e r = ID (’ ’) ?
6: s e c u r i t yT y p e = Secu r i t yType
7: ((f i r s t D e l i m i t e r = SYMBOLS)) ? ((nameofTheComment = ID)) ?
8: (’ \ n ’ | ’ \ r ’) ∗
9: | ’ / /@ @pre ’ p a r ame t e r =ID (’ ’) ?

10: ((f i r s t D e l i m i t e r = SYMBOLS)) ?
11: ((nameComment=ID)) ?
12: (’ \ n ’ | ’ \ r ’) ∗
13: | ’ / /@ @post ’ p a r ame t e r =ID (’ ’) ?
14: ((f i r s t D e l i m i t e r = SYMBOLS)) ?
15: ((nameComment=ID)) ?
16: (’ \ n ’ | ’ \ r ’) ∗
17:) ;

In listing 3.2 the entity object SingleLineAnnotation is used for adding the single-line annota-
tion elements to our annotation language. It returns an object of the same type. The return object
type is used during the creation of EObjects from textual annotations. SingleLineAnnotation
is composed out of the list result. The list result is composed of four branches which are sepa-
rated by the or symbol | present at line 5. The first branch in the list result, present in listing 3.2
at line 2, contains the string ’//@ @function ’ which together with the FunctionType entity
object composes one possible user typed single-line annotation statement. The second branch in
the list result contains the string ’//@ @parameter ’ followed by any type of ID and then an
optional free space (’ ’)?. After (’ ’)? the entity object SecurityType defines a set of two
possible language annotations, confidential or sensitive. All four branches terminate with
an optional ((firstDelimiter = SYMBOLS))? containing the set of all symbols available in
the language. ((nameofTheComment = ID))? is a placeholder for every type of string. At the
end of each branch, lines 4, 9, 12 and 16, the new line or the return xText grammar symbols are
present, (’\n’ | ’\r’)*, with multiplicity 0..N. This offers the possibility to have a new
line or a return symbol defined at the end of a single-line annotation.

Listing 3.3: Multi-line annotation entity grammar

0: Mu l t i l i n eAn n o t a t i o n r e t u r n s Mu l t i l i n eAn n o t a t i o n :
1: { Mu l t i l i n eAn n o t a t i o n } (
2: r u l e += (’ /∗@ ’) ? (’∗ ’) ?
3: f u n c t i o nAn n o t a t i o n = Fun c t i o nAnno t a t i o n
4: (’ \ n ’) ? (’ @∗ / ’) ? (f i r s t D e l i m i t e r = SYMBOLS) ?
5: |
6: (’∗ ’) ’ ’ ’ ’ (’@∗ / ’) (f i r s t D e l i m i t e r = SYMBOLS) ? (’ \ n ’ | ’ \ r ’) ?
7:) ;

The entity object MultilineAnnotation presented in listing 3.3 is used for adding the multi-
line annotation elements to our annotation language. At the beginning of a multi-line annotation
the characters /*@ are needed and at the end of a multi-line annotation the characters @*/ are

32

Chapter 3. Implementation

needed. It returns an object of the same type. This is used during the creation of EObjects from
textual annotations. MultilineAnnotation contains the list rule. The list rule is composed
of two branches which are separated by the or symbol | at line 5. The first branch in the list rule
contains the strings ’/*@ ’, ’* ’ and the functionAnnotation entity object, on line 3. The
first two components are optional because of the ? symbol. The functionAnnotation entity
object presented in the syntax graph 3.10 defines all annotation tags which can be added to multi-
line comments. The first MultilineAnnotation entity branch has three optional elements
at the end of the statement: ’\n’ new line, the string ’ @*/’ and the ((firstDelimiter =
SYMBOLS))? symbol entity meaning that at the end of this statement we can optionally have any
kind of symbol. The second branch in the list rule contains the string (’*’) ’ ’ ’ ’ (’@*/’).
This describes the interior of a multi-line annotation. This is followed by ((firstDelimiter
= SYMBOLS))? and (’\n’ | ’\r’) which are described above.

Listing 3.4: Method header entity grammar

0: MethodHeader r e t u r n s MethodHeader : {MethodHeader } (
1: ((f i r s t D e l i m i t e r = SYMBOLS) ? (’ ’ ? ’∗ ’∗ ’ ’∗ ID ’ ’ ?) ∗
2: s e c o n dDe l im i t e r = SYMBOLS
3: exp += Exp r e s s i o n
4: t h i r d D e l i m i t e r = SYMBOLS)
5: ((f o u r t hD e l i m i t e r = SYMBOLS) ? (ID ?)
6: (f i f t h D e l i m i t e r = SYMBOLS) ? (ID ?)
7: (s i x t h D e l i m i t e r = SYMBOLS) ? (ID ?))
8: s e v e n t hD e l im i t e r = SYMBOLS?
9:) (’ \ n ’ | ’ \ r ’) ? ;
The entity object MethodHeader, shown in listing 3.4, is used for recognizing any kind of C/C++
statement representing a function declaration. It returns an object of the same type. This is used
during the creation of EObjects from textual annotations. The list exp is composed of before
and after components.
As allready mentioned in listing 3.1 the usage of entity rules inside other rules is not possible
in xText without the assignment of an variable to the used rule. In listing 3.4 seven delimiter
variables are used in order to model all possible apperarances of C/C++ function declaration
elements. Function declaration elements are modeled using seven delimiter variables. The values
which can go inside them are at the right of the assignments.
The before components are represented by the elements from line number 1 to 2. We have
an optional SYMBOL, optional space ’ ’, optional ’*’ with multiplicity 0..N, an optional
space ’ ’ with multiplicity followed by an ID and optional space. All these elements except
firstDelimiter have multiplicity 0..N. The inside ? symbol on the first line makes sense since
the ending multiplicity, 0..N, is addressing the whole terminal part of the firstDelimiter and
not individual elements. secondDelimiter = SYMBOLS, line 2, is used to make the language
capable of recognizing any symbol which could follow afterwards.
The list exp contains the entity object Expression and also the thirdDelimiter up to the
seventhDelimiter. The five delimiters are used for handling throw statements declared at the
end of function definitions. Standard C function declarations have throw statements that are
not used. These throw statements are actually only in C++ used. The compiler replaces them
with the appropriate code during code compilation. If a function has more throw statements
then these five delimiters need to be replaced by a more general recursion. This remains at this

33

Chapter 3. Implementation

stage future work. The last part of each delimiter is a series of optional names (ID) and symbols
(SYMBOLS) used to recognize any type of expression which could fit here. The MethodHeader
entity object rule is terminated with an optional new line or return (’\n’ | ’\r’).

Listing 3.5: Expression and EntityRef grammar entities

0: Exp r e s s i o n r e t u r n s Ref :
1: En t i t yR e f (
2: ({ Exp r e s s i o n . r e f = c u r r e n t }
3: (f i r s t D e l i m i t e r += SYMBOLS) t a i l = En t i t yR e f) ∗
4:) ;
5: En t i t yR e f r e t u r n s Ref :
6: { En t i t yR e f } (
7: s e c o n dDe l im i t e r += S p e c i a l E x p r e s s i o n
8:) ∗ ;
Expression presented in listing 3.5 is used inside the MethodHeader entity for recognizing
series of the * symbol. The * symbol is used in method headers for declaring pointer param-
eters. EntityRef is used inside the Expression entity object in order to define a recursion.
SpecialExpression is presented in detail in Appendix C.

Listing 3.6: Atribute definition grammar entity

0: A t t r i b u t e D e f i n i t i o n :
1: { A t t r i b u t e D e f i n i t i o n } (
2: a t t r i b u t e _ d e f += (SYMBOLS) ?
3: (’ ’ ?) ∗ e x t e n s i o n += KeyWord
4: (e x t e n s i o n _2 += E x p r e s s i o nA t t r i b u t e)
5:) (’ \ n ’ | ’ \ r ’) ∗ ;
The entity object AttributeDefinition, listing 3.6, is used for recognizing any kind of C/C++
attributes and definitions. It returns an object of the same type. This entity is used during the cre-
ation of EObjects from textual annotations. AttributeDefinition is the most compact entity
rule used in our grammar but at the same time the most complex one. It is composed of three
lists presented in listing 3.6 at lines 2, 3 and 4: attribute_def, extension and extension_2.
The list attribute_def is composed of the lists: extension and extension_2. The first com-
ponent of attribute_def is an optional SYMBOL and space symbol and then the entity object
KeyWord. KeyWord contains all the language keywords like: define, undef, ifdef, if,
endif, typedef, etc. The second component of attribute_def is the list extension_2
containing the entity object ExpressionAttribute which contains a recursion used for rec-
ognizing C/C++ expressions containing the entity object SYMBOLS and the entity EntityRef
which was previously presented. At the end of AttributeDefinition we have an optional
new line or return (’\n’ | ’\r’) with multiplicity 0..N.

3.2 xText Language Artifacts

3.2.1 Reusable Language Artifacts

Figure 3.1 available on page 24 presents the basic structure of the default xText project. The
standard xText project is designed for code reuse, rapid grammar expandability and it is composed

34

Chapter 3. Implementation

of 4 sub-projects. The grammar can be extended by editing the .xtext file and code can be
generated by editing the .mwe2 file.
Both files are contained in the .mydsl subproject. The user can generate new code by first editing
the .xtext file and then recompiling it by pressing the sub-menu Run As->Generate xText
Artifacts and then optionally he can edit the .mwe2 file. Code can be generated by pressing Run
As->MWE2 Workflow. The last step generates code in the sub-projects .mydsl, mydsl.tests
and mydsl.ui. The code generated in these sub-projects can be internally or externally used in
other Eclipse projects. We will describe the code generated in each sub-project.

3.2.1.1 Parser Infrastructure

The code generated in de.in.tum.sec.mydsl can be reused as stand-alone code or can be inte-
grated into other Eclipse plug-in infrastructures and used during run-time. We used the second
approach to integrate the generated code into our existing SAE [24] engine. The generated code is
composed of 13 packages containing a fixed number of classes depending mostly on the number
of entity objects contained in the xText language grammar. The packages contain classes for stand-
alone (only one run after the Run button is pressed) and run-time (as you type the annotations) run-
ning. For running the code as stand-alone the class MyDslStandaloneSetup should be used. For
running the code during run-time (in closed loop) the class MyDslRuntimeModule should be used.
Also, entity classes representing each entity object from the xText language grammar are contained
in the 13 packages and interfaces used to map the entity objects hierarchy defined by the gram-
mar into code. The packages contain the classes MyDslAntlrTokenFileProvidertoken and
MyDslParser which extends the class AbstractAntlrParser. The InternalMyDslLexer
and InternalMyDslParser have all the lexing and parsing rules hard-wired inside and two
files. The file InternalMyDsl.g contains grammar rules and the file InternalMyDsl.tokens
contain the language tokens.
The class MyDslSemanticSequencer is used for creating semantic sequences from the context
and a semantic object. The MyDslSyntacticSequencer is used for instantiating matching rules
for all the rules defined in the grammar. MyDslGrammarAccess is used for accessing grammar
rules and a AbstractMyDslValidator which can be extended for adding language validation
rules. MyDslFormatter is used for configuring the language formatting. MyDslGenerator is
used for code generation. MyDslScopeProvider is used for doing some actions based on the
current language scope. MyDslValidator is used for adding validation functionalities to the
language. A model folder contains the generated ECORE model of the whole xText language
grammar. We reused all the 13 packages in our SAE engine code infrastructure. The class
MyDslRuntimeModule was used to integrate the language parser into our existing infrastructure.

3.2.1.2 jUnit Tests

The package de.in.tum.sec.mydsl.tests contains two generated classes. The first class
MyDslInjectorProvider implements the interface IInjectorProvider and the interface
IRegistryConfigurator. The interfaces are used to obtain an injector instance from the
GlobalRegistries class contained in org.eclipse.xtext.junit4.GlobalRegistries.
The second class MyDslUiInjectorProvider implements the interface IInjectorProvider
used for obtaining an injector instance from the MyDslActivator class. The injector instance
is used together with com.google.inject.Injector to write test cases for unit testing the

35

Chapter 3. Implementation

generated code infrastructure. The classes are used in order to get an injector instance.

3.2.1.3 xText UI Editor

The code generated in de.in.tum.sec.mydsl.ui package is a stand-alone Eclipse plug-in
used for annotating text files. It contains 14 packages from which 4 packages contain only
.xtend files used for code generation customization. MyDslUiModule extends the abstract class
AbstractMyDslUiModule and contains only the constructor method. The constructor method
calls super(plug-in) in the superclass. AbstractMyDslUiModule extends DefaultUiModule
and contains some binding methods. MyDslExecutableExtensionFactory is used to get
the plug-in bundle and the plug-in injector singleton instance. The assist package contains
AbstractMyDslProposalProviderwhich extends TerminalsProposalProvider. It is used
for the definition of rule completion.
The MyDslParser class presented in section 3.2.1.1 extends AbstractContentAssistParser
and represents the main parser class used by the editor. PartialMyDslContentAssistParser
extends MyDslParser and provides an AbstractInternalContentAssistParser object in
order to get language elements. Copies of the InternalMyDslLexer, InternalMyDslParser,
InternalMyDsl.g and InternalMyDsl.tokens are presented in the section 3.2.1.1.
MyDslActivator is the activator class for this plug-in project. The MyDslProposalProvider
class is used for filtering proposals which the user gets to see when the user presses CTRL+Space.
MyDslDescriptionLabelProvider is used for customizing the language labels.
The MyDslOutlineTreeProvider is used for getting the outline of the current position of the
mouse cursor when typing the annotations and based on this information it is possible to do some
operations on the language. MyDslQuickfixProvider is used for providing quick-fixes. The
MyDslProposalProvider class is used for filtering the proposed language elements so that we
get only the comment entities which are relevant for annotation definition.

3.2.1.4 Parser Code Integration

In the class ProgramStructureFacade a new object of type AnnotationExecution is instan-
tiated having an array list as parameter containing IASTTranslationUnit objects. The instance
object IASTTranslationUnit is the AST representation of a source or header file. This offers
the possibility to analyze annotations contained in C source or header files. Currently we annotate
only header files. In the future we plan to be capable to add annotations also inside method
bodies. As a consequence source files need to be handled as well. The AnnotationExecution
constructor instantiates a TranslationunitMapper object which maps the annotation to the
corresponding C header definitions. In the same constructor an AnnotationParser instance is
created and used to map the previously obtained annotation map to objects. This means that the
raw string comment is converted to an EObject representation containing the whole language
hierarchy as this was defined in the language grammar. Afterwards each object representing
a comment is inserted into a map having the annotation header raw string as the key and the
EObject comment as the value. An EObject comment object can be of type FunctionComment
or ParameterComment.

36

Chapter 3. Implementation

3.2.2 Two Click Language Extensibility Work-flow

Figure 3.13 presents the steps needed to extend the language grammar and how to generate the
parser code infrastructure and the the UI text editor presented in the previous section.

Right click the .xtext file

Edit the .xtext file

Open a file

Annotate file using
the UI text editor

Edit the .mwe2 file(optional)
Right click the .mwe2 file

Reuse the Parser
Code Infrastructure

Generate Xtext
Artifacts

Generate
MWE2Workflow

1

Start the UI text editor

2

4

6

3

5

7Eclipse JDT Instance

 Second Eclipse Instance

8

Figure 3.13.: Work-flow used for extending the language grammar, generating a new code infrastructure and
annotating textual files

The user has the possibility to easily extend the language by first editing the .xtext grammar file
and then right clicking on the same file indicated in figure 3.13 with 1 and generating the xText
artifacts indicated with number 2 . Afterwards the user can edit the .mwe2 file indicated with
number 3 and generate code indicated with number 4 . Number 5 indicates the parser code
infrastructure generation and the code updating for the UI text editor. Number 6 indicates the
starting of the UI text editor. Number 7 indicates the launch of a second Eclipse instance. The
user can edit the header files contained for example in a library and reuse the files during static
analysis. Number 8 indicates this process which can be repeated iteratively. The process is
repeated in order to extend the language grammar and generate new code infrastructures.

37

Chapter 4: Applying the Policy Language

4.1 Scenarios

This section presents two scenarios where our policy language was used. We mainly present
the possibilities to annotate text files contained in an arbitrary library and UML state charts.
The goal of presenting these two scenarios is to give a sense in which domains and how our
annotation language can be used. We emphasize the types of user input possibilities and briefly
explain how the annotations are extracted and used during static analysis.

4.1.1 Annotation of C/C++ Libraries

Figure 4.1 presents the work-flow for annotating C header files contained in an arbitrary library.
As indicated in step 1 the user annotates the getenv() function declaration contained in
stdio.h file and the printf() function declaration contained in the stdlib.h file. After
annotating the files, the comments are extracted from the header files indicated in step 2 . In step
3 comments are mapped to function declarations. Here the comments are associated to function
declarations. After mapping the comments to function declarations the annotations are converted
into EObjects corresponding to the entity objects specified by the grammar. Number 4 indicates
the static analysis step in which the annotation objects are used in order to tag parameters or trust
boundaries. Number 5 indicates a bug report if a bug was detected.

38

Chapter 4. Applying the Policy Language

//
@

 @
fu

nc
tio

n

@
*/

//
@

 @
pa

ra
m

et
er

@
fu

nc
tio

n
@

pa
ra

m
et

er
co

nf
id

en
tia

l
de

cl
as

ifi
ca

tio
n

sa
ni

tis
at

io
n

se
ns

iti
ve

si
nk

so
ur

ce
tr

us
t_

bo
un

da
ry

/*
@

 @
fu

nc
tio

n
so

ur
ce

*
@

pa
ra

m
et

er
 _

_n
am

e
co

nf
id

en
tia

l @
*/

ex
te

rn
 c

ha
r

*g
et

en
v

(_
_c

on
st

 c
ha

r
 *

__
na

m
e)

 _
_T

H
R

O
W

 _
_n

on
nu

ll
((

1)
)

__
w

ur
;

1

U
se

r
In

p
u

t
P

ro
p

o
sa

ls

st
d

io
.h

 /
*@

 @
fu

nc
tio

n
si

nk
 *

 @
pa

ra
m

et
er

 _
_f

or
m

at
 c

on
fid

en
tia

l @
*/

 e
xt

er
n

in
t

pr
in

tf
(_

_c
on

st
 c

ha
r

*_
_r

es
tr

ic
t

__
fo

rm
at

,
..

.)
;

st
d

lib
.hA
n

n
o

ta
te

d
 L

ib
ra

ry

 fw
p

ri
n

tf
()

fp
ri

n
tf

()

U
I T

ex
t

E
d

it
o

r
C

o
m

m
en

ts

E
xt

ra
ct

io
n

C
o

m
m

en
ts

 M
ap

p
in

g

to
 F

u
n

ct
io

n
 H

ea
d

er
s

S
ta

ti
c

A
n

al
ys

is
B

u
g

 R
ep

o
rt

2
3

4
5

C
om

m
en

t
3

C
om

m
en

t
1

C
om

m
en

t
2

C
om

m
en

t
N

F
un

ct
io

n
H

ea
de

r
1

F
un

ct
io

n
H

ea
de

r
2

F
un

ct
io

n
H

ea
de

r
3

F
un

ct
io

n
H

ea
de

r
M

T
1

T
2

Figure 4.1.: Library annotation work-flow

39

Chapter 4. Applying the Policy Language

4.1.2 Annotating Trust-Boundaries in Header Files

For annotating the trust boundaries in header files we created an Eclipse workspace where
we imported the UI language text editor and our IF checker, both as Eclipse plug-ins. We
started one of the plug-ins. We imported the test programs contained in the test cases CWE-526
[25] (Information Exposure Through Environmental Variables), CWE-534 [26] (Information
Exposure Through Debug Log Files) and CWE-535 [27] (Information Exposure Through Shell
Error Message) as separate C/C++ projects into the Eclipse CDT workspace. As a second Eclipse
instance was started containing the previously imported test programs.
We created a copy of the C standard library containing some of the header files used by the
selected test programs. The folder was imported as a virtual folder into the workspace. This
offers the advantage that it is not necessary to physically copy the folder into each test case.
In the background the UI text editor plug-in was running in the second Eclipse instance. By
double clicking on one of the files (only files with a supported file extension e.g. ".h", ".hpp", etc.
can be annotated) contained in one of the projects the UI language text editor pops up a message
window offering the possibility to parse the context of the selected file.
By positioning the mouse cursor above the function declaration and pressing CTRL+Space a
pop-up menu which is shown in figure 4.2 offers the annotations available in that context.
The user doesn’t need to know the exact syntax of the policy annotation language. The user only
has to select the desired annotation tags from the list.

/*@
//@ @function
@*/
//@ @parameter
@function
@parameter
@pre
@post
confidential
declassification
sanitization
sensitive
sink
source
trust_boundary

Figure 4.2.: UI text editor proposals list

The function declarations getenv() and printf() available in the files stdio.h and stdlib.h,
respectively, were annotated. These function declarations represent the trust boundaries of the
test programs contained in the test case CWE-526. The added annotations are highlighted in
listing 4.1 and listing 4.2 with green color.

Listing 4.1: Annotated getenv() function declaration

0: /∗@ @funct ion s ou r c e
1: ∗ @parameter __name c o n f i d e n t i a l @∗ /

40

Chapter 4. Applying the Policy Language

2: ex tern char ∗ ge t env (__con s t char
3: ∗__name) __THROW __nonnu l l ((1)) __wur ;

Listing 4.2: Annotated printf() function declaration

0: /∗@ @funct ion s i n k
1: ∗ @parameter __ fo rma t c o n f i d e n t i a l @∗ /
2: ex tern i n t p r i n t f (__ con s t char ∗ _ _ r e s t r i c t __format , . . .) ;

The test cases CWE-534 andCWE-535 contain the trust boundaries: LogonUserA(), LogonUserW(),
fprintf() and fwprintf(). The trust boundaries (sources) LogonUserA() and LogonUserW()
contained in the Windows OS header file windows.hwere annotated. Since this header file is not
available under Ubuntu OS we created the header file dummyHeader.h containing the annotated
function declarations. Also, the trust boundaries (sinks) fprintf() contained in stdio.h and
fwprintf() contained in the wchar.h were annotated. The annotations are highlighted in
listings 4.3, 4.4, 4.5 and 4.6 with green color.

Listing 4.3: Annotated LogonUserA() function declaration

0: /∗@ @funct ion s ou r c e
1: ∗ @parameter password c o n f i d e n t i a l @∗ /
2: i n t LogonUserA (
3: char ∗username ,
4: char ∗domain ,
5: char ∗ password ,
6: i n t LOGON32_LOGON_NETWORK,
7: i n t LOGON32_PROVIDER_DEFAULT,
8: HANDLE pHandle) ;

Listing 4.4: Annotated fprintf() function declaration

0: / /@ @func t ion s i n k
1: ex tern i n t f p r i n t f (
2: FILE ∗ _ _ r e s t r i c t __s t ream ,
3: __con s t char ∗ _ _ r e s t r i c t __format , . . .) ;

Listing 4.5: Annotated LogonUserW() function declaration

0: /∗@ @funct ion s ou r c e
1: ∗ @parameter password c o n f i d e n t i a l @∗ /
2: i n t LogonUserW (
3: char ∗username ,
4: char ∗domain ,
5: char ∗ password ,
6: i n t LOGON32_LOGON_NETWORK,
7: i n t LOGON32_PROVIDER_DEFAULT,
8: HANDLE pHandle) ;

Listing 4.6: Annotated fwprintf() function declaration

41

Chapter 4. Applying the Policy Language

0: / /@ @func t ion s i n k
1: ex tern i n t f w p r i n t f (
2: __FILE ∗ _ _ r e s t r i c t __s t ream ,
3: __con s t wcha r_ t ∗ _ _ r e s t r i c t __format ,
4: . . .) ;

After the annotation process we run the previously mentioned IF checker on each of the test cases
separately. In the first step all the files available in one project are parsed. In the second step
an algorithm creates the mappings between annotation and function declarations. Our mapping
algorithm is capable of associating annotations and function declaration even when they are
separated by multiple empty lines. The annotations and function declarations are put into a
map. The IF checker is based on header function models. Each function model has a static field
containing the function declaration from the header files. The function model execute method
checks, if the function annotation map contains the statically defined function as the key. If this is
the case then an EObject is retrieved from the map and all annotations are used in the execute()
method. The annotations extracted from the EObject are used to tag a function model as a
trust-boundary or to tag confidential variables. Annotation extraction from EObjects is done
by querying, annotationObject.getTrustBoundary(), the object about the values stored
in his attribute fields. In this way we avoided hard coding the function declaration models into
the execute() method but rather having the initialization done in the header files as function
annotations.

Figure 4.3.: Bug report presentation in Eclipse

Bug reports are issued when a previously annotated variable as confidential or sensitive is sent
to a function by calling it. The function call represents the passing of a confidential/sensitive
variable over a trust-boundary. The numbers 1 , 2 and 3 in figure 4.3 indicate the analyzed
test program, the bug report and the bug location (line number) in a file.

42

Chapter 4. Applying the Policy Language

4.1.3 Annotation of UML State Charts

Figure 4.4 presents the steps needed to annotate an UML state chart and and detect bugs during
static analysis.
Steps 1a and 1b represent the input methods that can be used to annotate UML state charts.
In 1a , the user has a pallet with symbols which have the same significance as the language
annotation tags, shown in step 1b . The only difference between the two methods is that the
pallet represents a higher level of abstraction regarding the input technique.
With the input technique shown in step 1b , the user user can edit the UML state chart by
providing grammar annotation elements proposed from the pop-up menu. This input method is
similar to the one presented in the first scenario. Numbers 2a , 2b , 2c , 2d and 2e represent
attached annotations to functions. After the annotation process is done there are two possible
ways to proceed. First, in the upper branch in step 3a the header source files are generated
from the UML state charts and are then analyzed in scenario 1. Numbers 4 , 5 , 6 and 7
represent comment extraction, comment mapping, static analysis and bug report generation,
respectively. Second, in the lower branch in step 3b , static code analysis is done by simulating
the execution of a state chart. Comments don’t need to be extracted or mapped since they are
already attached and mapped to the state chart. During the state chart simulation process tags
attached to symbolic variables and are propagated. When a tainted function call is triggered it
is checked if the previous function has the same name as current function tag. The previous
function name is stored in the current target tag "@pre previousFunctionName". If the check
is not true then a bug report is issued. This is indicated with number 4b .

43

Chapter 4. Applying the Policy Language

//@
 @

fu
nc

tio
n

@

*/
//@

 @
pa

ra
m

et
er

@
fu

nc
tio

n
@

pr
e

@
po

st
@

pa
ra

m
et

er
co

nf
id

en
tia

l
d

ec
la

si
fic

a
tio

n
sa

ni
tis

at
io

n
se

ns
iti

ve
si

nk
so

ur
ce

tr
us

t_
bo

un
da

ry

G
ra

m
m

ar

P
ro

p
o

sa
ls

U
I T

ex
t

E
d

it
o

r

C
o

m
m

en
ts

E

xt
ra

ct
io

n
C

o
m

m
en

ts
 M

ap
p

in
g

to

 F
u

n
ct

io
n

 H
ea

d
er

s
S

ta
ti

c
A

n
al

ys
is

B
u

g
 R

ep
o

rt

5

C
om

m
en

t 3

C
om

m
en

t 1

C
om

m
en

t 2

C
om

m
en

t N

F
un

ct
io

n
H

ea
de

r
1

F
un

ct
io

n
H

ea
de

r
2

F
un

ct
io

n
H

ea
de

r
3

F
un

ct
io

n
H

ea
de

r
M

T
1

T
2

/*

 A
qu

ire
 a

 C
on

te
xt

 *
/

C
ry

pt
A

cq
ui

re
C

on
te

xt
()

S
ta

te
 C

h
ar

t
S

im
u

la
ti

o
n

 /*
@

 @
fu

nc
tio

n
si

nk
 *

 @
pr

e
 C

ry
pt

C
re

at
eH

as
h

 *
 @

po
st

 C
ry

pt
D

er
iv

eK
ey

 @
*/

.h
 H

ea
de

r
fil

es

A
n

n
o

ta
te

d
 U

M
L

 S
ta

te
 C

h
ar

t

+

fu
n

ct
io

n
<

-
 p

re
->

 p
os

t
*

pa

ra
m

et
er

-

co
nf

id
e

nt
ia

l
@

 d
ec

la
si

fic
a

tio
n

%
 s

an
iti

sa
tio

n
$

 s
e

ns
iti

ve
!

 s
in

k

 s
o

ur
ce

||
 t

ru
st

_
bo

u
nd

ar
y

S
ym

b
o

l P
al

le
t

6

Ta
in

t
V

ar
ia

b
le

P

ro
p

ag
at

io
n

4b
3b4

C
o

d
e

G
en

er
at

io
n

U
I E

d
it

o
r

3a

1b1a

/*
 C

re
a

te
 h

as
h

ha
nd

le
 *

/

C
ry

pt
C

re
at

eH
as

h(
)

/*
 H

as
h

th
e

in
pu

t s
tr

in
g

*/

C
ry

pt
H

as
hD

at
a(

)

/*
 D

er
iv

e
an

 A
E

S
 k

ey
 *

/

C
ry

pt
D

e
riv

eK
ey

()

/*
 E

nc
ry

pt
 th

e
 p

ay
lo

ad
 *

/

C
ry

pt
E

nc
ry

pt
()

 /
*@

 @
fu

nc
tio

n
si

nk
 *

 @
pr

e
 -

 *
 @

po
st

 C
ry

pt
C

re
at

eH
as

h
@

*/

 /*
@

 @
fu

nc
tio

n
si

nk
 *

 @
pr

e
C

ry
pt

A
cq

ui
re

C
on

te
xt

 *
 @

po
st

 C
ry

pt
H

as
hD

at
a

@
*/

 /*
@

 @
fu

nc
tio

n
si

nk
 *

 @
pr

e
C

ry
pt

H
as

hD
at

a
 *

 @
po

st
 C

ry
pt

E
nc

ry
pt

 @
*/

 /*
@

 @
fu

nc
tio

n
si

nk
 *

 @
pr

e
 C

ry
pt

D
er

iv
eK

ey
 *

 @
po

st
 -

 @
*/

2a 2b 2c 2d 2e

7

Figure 4.4.: UML state chart annotation work-flow

44

Chapter 4. Applying the Policy Language

4.1.4 Annotating a Cryptographic Algorithm using UML State Charts

We selected CWE-325 [28] (Missing Required Cryptographic Step) because we wanted to detect
API misusage bugs by remodeling a cryptographic algorithm using UML state charts. When
software does not implement a required step (a required step means in this context a step that an
algorithm has to perform so that it conforms to its predefined order of steps) in a cryptographic
algorithm it results in a weaker encryption than advertised by that algorithm. Listing 4.7 presents
a code snippet contained in a text program extracted from CWE-325. Our goal is to detect
misusage of APIs by checking if the neighbouring function calls in a chain of function calls
match the annotation tags previously attached to the function declarations.

Listing 4.7: Five steps cryptographic algorithm code snippet extracted from CWE-325. Green text represents C code
comments and no annotations

0: /∗ Copy p l a i n t e x t i n t o pay load b u f f e r ∗ /
1: memcpy (pay load , PAYLOAD, pay loadLen) ;
2: /∗ Aqui re a Con t ex t ∗ /
3: i f (! C ryp tAcqu i r eCon t ex t (&hCryptProv , NULL,
4: MS_ENH_RSA_AES_PROV, PROV_RSA_AES , 0)) {
5: break ;
6: }
7: /∗ FIX : A l l r e q u i r e d s t e p s a r e p r e s e n t ∗ /
8: /∗ Cr e a t e hash hand l e ∗ /
9: i f (! C ryp tC rea t eHash (hCryptProv , CALG_SHA_256 ,

10: 0 , 0 , &hHash)) {
11: break ;
12: }
13: /∗ Hash t h e i n p u t s t r i n g ∗ /
14: i f (! CryptHashData (hHash , (BYTE∗) hashData ,
15: s t r l e n (hashData) , 0)) {
16: break ;
17: }
18: /∗ Der ive an AES key from t h e hash ∗ /
19: i f (! Cryp tDer iveKey (hCryptProv , CALG_AES_256 ,
20: hHash , 0 , &hKey)) {
21: break ;
22: }
23: /∗ Enc ryp t t h e pay load ∗ /
24: i f (! C ryp tEnc ryp t (hKey , 0 , 1 , 0 , pay load ,
25: &payloadLen , s i z e o f (pay load))) {
26: break ;
27: }

After attaching annotations to the UML state chart code can be generated or the execution of
the state chart can be simulated as described in section 4.1.3. The annotations can be used in
the same manner as is done for header files. This can be achieved by generating source code
from the annotated UML state charts. A state can be converted to a function declaration and the
annotation post-it can be converted to annotation text attached to the function declaration. The

45

Chapter 4. Applying the Policy Language

next steps are similar to the ones presented in Section 4.1.2.
We remodeled the code snippet presented in listing 4.7 with UML state charts and annotated
each function call. We have annotated each function contained in figure 4.4 with the tag sink
and we attached the tags @pre and @post containing the previous function call name and the
next function call name. In order to detect API misusage bugs it is needed to check from the first
function call in the chain of function calls if the previous function name is the same with the
one stored in the @pre tag. Additionally the @post tag can be checked if the next function call
name is the same as the one stored in the @post tag. If there is a mismatch regarding the @pre
or @post tag then the checking algorithm is stopped and a bug report is issued. It is possible
that there are other function calls or code between the algorithm function calls. Thus, it is not
sufficient to look only at the previous node or the next node when checking the @pre and @post
tags on an execution path. It is necessary to look back and forward in the whole current context.
Thus, this is a necessary and sufficient condition since the function calls of the cryptographic
algorithm manipulate only local variables.
If the annotations are used as presented in figure 4.4 on the lower branch indicated with 3b and
4b then the post-it boxes containing the annotations can be interpreted as final states. These
final states can be executed just before one of the annotated states is executed. In this way the
annotation is used before a state is about to be executed. Another possibility is to integrate
the post-it annotation inside or after the annotated state in order to specify internal UML state
execution restrictions or post UML state execution restrictions.

46

Chapter 5: Conclusions

The policy language presented in this report is intended to be used for annotating UML state charts
and source code files with the goal of annotating sinks, sources, trust boundaries, sanitization
and declassification functions. The language should allow or disallow certain information flows
or information flow volumes.
Briefly the main challenges faced during the design and implementation phase of our language
are presented in the report. We successfully implemented a policy language based on xText that
can be used on the modeling level and also on the source code level of an application. Language
editors are presented and we give a brief overview of two scenarios for language usage.
The language implementation is based on generality and can be easily integrated into other IDEs.
We would like to emphasize the fact that our language is lightweight and is suited for large
projects as well as for scenarios where an extended set of annotation tags is needed.
We conclude that a successful annotation language in the general sense should only pose a
minimal learning and usage burden on the user. The annotation tags should rather be chosen
based on the current context. The user should not have to search through a long list of possible
annotation tags. The language should be flexible in the sense that the set of annotation tags
should be easily extendable and the code supporting infrastructure (parser, lexer, etc.) should be
automatically generated rather than written by hand. In this sense we present a simple work-flow
that guarantees that the language can easily be extended regarding the previous two mentioned
perspectives. In our opinion the annotation process itself should be automated by propagating
annotations without the need of human intervention. At this stage this still remains future work.
Concluding, we’d like to emphasize that we developed a policy language that can easily be used
right out of the box for annotating different types of artifacts in two design phases of a software
project (design and coding) by providing a suitable policy language and tools to introduce security
concerns in order to detect information exposure bugs.

47

Bibliography

[1] B. Chess and G. McGraw, “Static Analysis for Security ,” IEEE Security & Privacy,
November/December 2004.

[2] Mitre, “CWE-200: Information Exposure ,” tech. rep., Mitre,
http://cwe.mitre.org/data/definitions/200.html, accessed on July 2014.

[3] J. S. Fenton, “Memoryless subsystems,” Computer Journal, vol. 17, pp. 143–147, May
1974.

[4] A. Sabelfeld and A. Russo, “From dynamic to static and back: Riding the roller coaster of
information-flow control research ,” Proceedings of Andrei Ershov International Conference
on Perspectives of System Informatics, pp. 352– 365, 2009.

[5] T. Avgerinos, S. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic Exploit Genera-
tion,” Proceedings of the Network and Distributed System Security Symposium (NDSS 11),
February 2011.

[6] M. Guarnieri, P. E. Khoury, and G. Serme, “Security vulnerabilities detection and protec-
tion using Eclipse ,” ECLIPSE-IT 2011, 6th Workshop of the Italian Eclipse Community,
September 2011.

[7] D. Volpano, G. Smith, and C. Irvine, “A sound type system for secure flow analysis,”
Journal of Computer Security, vol. 4, no. 3, pp. 167–187, 1996.

[8] V. Simonet, “The Flow Caml System: documentation and user’s manual ,” tech. rep.,
INRIA, July 2003.

[9] X. Xiao, N. Tillmann, M. Fahndrich, J. de Halleux, and M. Moskal, “Transparent Privacy
Control via Static Information Flow Analysis ,” tech. rep., Microsoft, August 2011.

[10] A. C. Myers, “JFlow: Practical Mostly-Static Information Flow Control,” Proceedings of
the 26th ACM Symposium on Principles of Programming Languages (POPL ’99), January
1999.

[11] S. Moore and S. Chong, “Static analysis for efficient hybrid information-flow control ,” CSF
’11 Proceedings of the IEEE 24th Computer Security Foundations Symposium, pp. 146–160,
2011.

[12] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe, “Extended Static Checking ,”
Compaq SRC Research Report 159, 1998.

48

Bibliography

[13] K. R. M. Leino, “Extended Static Checking: a Ten-Year Pesrsective,” Proceeding Informat-
ics - 10 Years Back. 10 Years Ahead, pp. 157–175, January 2001.

[14] Microsoft, “MSDN run-time library reference - SAL annotations.”
http://msdn.microsoft.com/en-us/library/ms235402.aspx. Microsoft.

[15] T. Ball, B. Hackett, S. Lahiri, and S. Qadeer, “Annotation-based property checking for
systems software,” tech. rep., Microsoft, May 2008.

[16] V. Simonet, FlowCaml in a nutshell. In G. Hutton, ed. APPSEM-II, 2003.

[17] S. Chong, A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic, “Jif: Java + information
flow,” July 2006. Software release.

[18] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language for enforcing user-defined
security policies ,” In S&P, 2008.

[19] L. Jia, J. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and S. Zdancewic, “Aura: A
programming language for authorization and audit ,” ICFP, 2008.

[20] N. Swamy, J. Chen, and R. Chugh, “Enforcing Stateful Authorization and Information
Flow Policies in FINE ,” In proceedings of ESOP 2010: 19th European Symposium on
Programming, March 2010.

[21] Eclipse, “xText Documentation,” tech. rep., Eclipse, iTemis,
http://www.eclipse.org/Xtext/documentation.html, accessed on July 2014.

[22] D. S. Rosenblum, “A practical approach to programming with assertions,” IEEE Transac-
tions on software engineering, vol. 21, January 1995.

[23] D. S. Rosenblum, “Towards a method of programming with assertions ,” ACM, 1992.

[24] A. Ibing, “SMT-Constrained Symbolic Execution for Eclipse CDT/Codan ,” Workshop on
Formal Methods in the Development of Software, 2013.

[25] Mitre, “CWE-526: Information Exposure Through Environmental Variables ,”
http://cwe.mitre.org/data/definitions/526.html.

[26] Mitre, “CWE-534: Information Exposure Through Debug Log Files ,”
http://cwe.mitre.org/data/definitions/534.html.

[27] Mitre, “CWE-535: Information Exposure Through Shell Error Message ,”
http://cwe.mitre.org/data/definitions/535.html.

[28] Mitre, “CWE-325: Missing Required Cryptographic Step,”
http://cwe.mitre.org/data/definitions/325.html.

49

Appendix A: Comments to function declarations
mapping code

0: pub l i c c l a s s T r a n s l a t i o n u n i tMap p e r ex tends ASTCommenter{
1: /∗ ∗ The map . ∗ /
2: pub l i c HashMap< I n t e g e r , S t r i n g > map = new HashMap< I n t e g e r ,

S t r i n g > () ;
3: /∗ ∗ The l i s t . ∗ /
4: pub l i c S t r i n gB u f f e r t h e L i s t = n u l l ;
5: /∗ ∗ The a l l f i l e s c o n t e n t . ∗ /
6: pub l i c S t r i n g a l l f i l e s c o n t e n t =n u l l ;
7: /∗ ∗ The comments method a t t r i b u t e map . ∗ /
8: HashMap<S t r i n g , S t r i n g > commentsMethodAt t r ibuteMap = n u l l ;
9: /∗ ∗ The maximum mu l t i l i n e comment l e n g t h . ∗ /

10: p r i v a t e s t a t i c f i n a l i n t maximumMulti l ineCommentLength = 30 ;
11: /∗ ∗ The Con s t a n t m u l t i L i n e S t a r t i n g S t r i n g . ∗ /
12: p r i v a t e s t a t i c f i n a l S t r i n g m u l t i L i n e S t a r t i n g S t r i n g = " /∗@" ;
13: /∗ ∗ The Con s t a n t mu l t i L i n eB e g i n n i n g S t r i n g . ∗ /
14: p r i v a t e s t a t i c f i n a l S t r i n g mu l t i L i n eB e g i n n i n g S t r i n g = "∗ @"

;
15: /∗ ∗ The Con s t a n t s i n g l e L i n e S t a r t i n g S t r i n g . ∗ /
16: p r i v a t e s t a t i c f i n a l S t r i n g s i n g l e L i n e S t a r t i n g S t r i n g = " / /@"

;
17: /∗ ∗ The Con s t a n t newLine . ∗ /
18: p r i v a t e s t a t i c f i n a l S t r i n g newLine = " \ n " ;
19: /∗ ∗ The Con s t a n t emp t yS t r i n g . ∗ /
20: p r i v a t e s t a t i c f i n a l S t r i n g emp t yS t r i n g = " " ;
21: / / t h i s i s needed i n o r d e r t o have a f t e r each p a r ame t e r comma

an empty space
22: /∗ ∗ The Con s t a n t space . ∗ /
23: p r i v a t e s t a t i c f i n a l S t r i n g space = " " ;
24: /∗ ∗ The Con s t a n t h e a d e r F un c t i o nT e rm i n a t o r . ∗ /
25: p r i v a t e s t a t i c f i n a l S t r i n g h e a d e r F un c t i o nT e rm i n a t o r = " ; " ;
26: /∗ ∗
27: ∗ I n s t a n t i a t e s a new p a r s e r commenter .
28: ∗ /
29: pub l i c T r a n s l a t i o n u n i tMap p e r () {

50

Appendix A. Comments to function declarations mapping code

30: commentsMethodAt t r ibuteMap = new HashMap<S t r i n g , S t r i n g > ()
;

31: }
32: /∗ ∗
33: ∗ Gets t h e comments .
34: ∗ @param commentsL is t t h e comments l i s t
35: ∗ @return t h e comments
36: ∗ @throws IOExcep t ion S i g n a l s t h a t an I /O e x c e p t i o n has

o c c u r r e d .
37: ∗ /
38: pub l i c synchronized HashMap<S t r i n g , S t r i n g > getComments (

A r r a yL i s t < IASTTran s l a t i o nUn i t > commentsL i s t) throws
IOExcep t i on {

39: P a t t e r n p a t t e r n ;
40: Matcher ma tche r ;
41: f o r (IASTT r an s l a t i o nUn i t a s t : commentsL i s t) {
42: MyLogger . l o g _ p a r s e r (" Ana lyz ing t r a n s l a t i o n u n i t : "+ a s t .

g e tCon t a i n i n gF i l e n ame ()) ;
43: / / commentLis t = a s t . getComments () ;
44: S t r i n g a l l H e a d e r F i l e C o n t e n t s = new S t r i n g (a s t .

g e t O r i g i n a t i n g T r a n s l a t i o nU n i t () . g e tC o n t e n t s ()) ;
45: S t r i n gB u f f e r s t r i n g B u f f e r = new S t r i n gB u f f e r () ;
46: S t r i n gB u f f e r s t r i n gB u f f e r A n n o t a t i o n = new S t r i n gB u f f e r ()

;
47: S t r i n g l i n e ;
48: HashMap< I n t e g e r , S t r i n g > commentsMap = new HashMap<

I n t e g e r , S t r i n g > () ;
49: HashMap< I n t e g e r , S t r i n g > me thodAt t r i bu t eMap = new

HashMap< I n t e g e r , S t r i n g > () ;
50:
51: / / V a r i a b l e b u f f e r e dRe ad e r p a r s e s t h e heade r f i l e i n

s t r i n g fo rma t
52: Buf f e r edReade r b u f f e r e dRe a d e r = new Buf f e r edReade r (new

S t r i n gRe a d e r (a l l H e a d e r F i l e C o n t e n t s)) ;
53: whi le ((l i n e = bu f f e r e dRe ad e r . r e a dL i n e ()) != n u l l) {
54: s t r i n g B u f f e r . append (l i n e) ;
55: s t r i n g B u f f e r . append (newLine) ;
56: /∗ Thi s p a r t p a r s e s t h e code which i s a n n o t a t e d wi th

our a n n o t a t i o n
57: ∗ /
58: p a t t e r n = P a t t e r n . compi l e (" /∗@ | / /@") ;
59: matche r = p a t t e r n . ma tche r (s t r i n g B u f f e r) ;
60: i f (ma tche r . f i n d ()) {
61: s t r i n gB u f f e r A n n o t a t i o n . append (l i n e) ;
62: s t r i n gB u f f e r A n n o t a t i o n . append (newLine) ;
63: }

51

Appendix A. Comments to function declarations mapping code

64: }
65: S t r i n g a l l C o n t e n tO f F i l eW i t hAnno t a t i o n =

s t r i n gB u f f e r A n n o t a t i o n . t o S t r i n g () ;
66: / / v a r i a b l e b u f r e a d e r r e ad t h e s t r i n g l i n e by l i n e
67: Buf f e r edReade r bu fReade r = new Buf f e r edReade r (new

S t r i n gRe a d e r (a l l C o n t e n tO f F i l eW i t hAnno t a t i o n)) ;
68: S t r i n g s i n g l e L i n e = n u l l ;
69: S t r i n g nex tL i n e1 = n u l l ;
70: S t r i n g nex tL i n e2 = n u l l ;
71: S t r i n g nex tL i n e3 = n u l l ;
72: S t r i n g nex tL i n e4 = n u l l ;
73: S t r i n g con c a t = emp t yS t r i n g ;
74: i n t l i n eNo = 1 ;
75: i n t temp = 0 ;
76: i n t commentNumberOfLines = 0 ;
77: /∗ ∗ Thi s p o r t i o n c r e a t e t o HashMaps . One f o r comments and

o t h e r f o r methods and a t t r i b u t e
78: ∗ /
79: whi le ((s i n g l e L i n e =bufReade r . r e a dL i n e ()) != n u l l) {
80: / / add ing m u l t i l i n e comments
81: i f (s i n g l e L i n e . s t a r t sW i t h (m u l t i L i n e S t a r t i n g S t r i n g)) {
82: commentNumberOfLines = 0 ;
83: con c a t += s i n g l e L i n e ;
84: nex tL i n e1 = bufReade r . r e a dL i n e () ;
85: / / a vo id r e a d i n g comments l o n g e r t h en a g iven s i z e
86: whi le (n ex tL i n e1 . c o n t a i n s (mu l t i L i n eB e g i n n i n gS t r i n g)

&& commentNumberOfLines < maximumMulti l ineCommentLength) {
87: temp = 1 ;
88: l i n eNo ++;
89: con c a t += newLine+ nex tL i n e1 ;
90: nex tL i n e1 = bufReade r . r e a dL i n e () ;
91: commentNumberOfLines ++;
92: }
93: i f ((temp == 1)) {
94: commentsMap . pu t (l ineNo , c on c a t) ;
95: temp = 0 ;
96: con c a t = emp t yS t r i n g ;
97: }
98: whi le (n ex tL i n e1 . t r im () . e q u a l s (emp t yS t r i n g)) {
99: nex tL i n e1=bufReade r . r e a dL i n e () ;
100: }
101: / / pu t s i n g l e l i n e f u n c t i o n d e c l a r a t i o n s
102: i f (n ex tL i n e1 . c o n t a i n s (h e a d e r F un c t i o nT e rm i n a t o r)) {
103: methodAt t r i bu t eMap . pu t (l ineNo , n ex tL i n e1) ;
104: / / pu t mu l t i− l i n e f u n c t i o n d e c l a r a t i o n s
105: } e l s e i f (! n ex tL i n e1 . c o n t a i n s (

52

Appendix A. Comments to function declarations mapping code

h e a d e r F un c t i o nT e rm i n a t o r))
106: whi le (! n ex tL i n e1 . c o n t a i n s (h e a d e r F un c t i o nT e rm i n a t o r

)) {
107: nex tL i n e3 = bufReade r . r e a dL i n e () ;
108: nex tL i n e1 = nex tL i n e1 . t r im () + space + nex tL i n e3

. t r im () ;
109: }
110: / / pu t t h e f u n c t i o n d e c l a r a t i o n p a r t i n t h e map
111: methodAt t r i bu t eMap . pu t (l ineNo , n ex tL i n e1 . t r im ()) ;
112: }
113: / / add ing s i n g l e l i n e comments
114: / / t h e r e w i l l be on ly one s i n g l e l i n e comment added
115: / / t h e one t h a t i s j u s t b e f o r e t h e f u n c t i o n d e c l a r a t i o n
116: / / t h e o t h e r ones w i l l be om i t t e d
117: i f (s i n g l e L i n e . c o n t a i n s (s i n g l e L i n e S t a r t i n g S t r i n g)) {
118: commentsMap . pu t (l ineNo , s i n g l e L i n e) ;
119: nex tL i n e2 = bufReade r . r e a dL i n e () ;
120: / / a vo id p u t t i n g b l ank spaces , s e a r c h f o r t h e ;

symbol
121: i f (! n ex tL i n e2 . t r im () . e q u a l s (emp t yS t r i n g) &&

nex tL i n e2 . c o n t a i n s (" ; ") ;
122: methodAt t r i bu t eMap . pu t (l ineNo , n ex tL i n e2) ;
123: }
124: e l s e {
125: / / a vo id p u t t i n g a b l ank l i n e i n t o t h e map
126: whi le (n ex tL i n e2 . t r im () . e q u a l s (emp t yS t r i n g))
127: nex tL i n e2 = bufReade r . r e a dL i n e () ;
128: }
129: / / pu t s i n g l e− l i n e f u n c t i o n d e c l a r a t i o n s
130: i f (n ex tL i n e2 . c o n t a i n s (h e a d e r F un c t i o nT e rm i n a t o r)) {
131: methodAt t r i bu t eMap . pu t (l ineNo , n ex tL i n e2) ;
132: / / pu t mu l t i− l i n e f u n c t i o n d e c l a r a t i o n s
133: } e l s e i f (! n ex tL i n e2 . c o n t a i n s (

h e a d e r F un c t i o nT e rm i n a t o r))
134: whi le (! n ex tL i n e2 . c o n t a i n s (h e a d e r F un c t i o nT e rm i n a t o r

)) {
135: nex tL i n e4 = bufReade r . r e a dL i n e () ;
136: nex tL i n e2 = nex tL i n e2 . t r im () + space + nex tL i n e4

. t r im () ;
137: }
138: / / pu t t h e f u n c t i o n d e c l a r a t i o n p a r t i n t h e map
139: methodAt t r i bu t eMap . pu t (l ineNo , n ex tL i n e2 . t r im ()) ;
140: }
141: }
142: l i n eNo ++;
143: }

53

Appendix A. Comments to function declarations mapping code

144: / / System . ou t . p r i n t l n (commentsMap +" \ n ") ;
145: / / System . ou t . p r i n t l n (me thodAt t r i bu t eMap +" \ n ") ;
146: /∗ ∗ Combine two HashMaps i n t o one map wi th comments and

m e t h o d _ a t t r i b u t e p a i r s
147: ∗ /
148: f o r (I n t e g e r x : commentsMap . keySe t ()) {
149: S t r i n g y1 = commentsMap . g e t (x) ;
150: S t r i n g x1 = me thodAt t r i bu t eMap . g e t (x) ;
151: / / removing non−v a l i d f u n c t i o n d e c l a r a t i o n s
152: / / bo th s i n g l e and mu l t i− l i n e comments a r e added t o t h e
153: / / commentsMethodAt t r ibuteMap
154: i f (! x1 . c o n t a i n s (s i n g l e L i n e S t a r t i n g S t r i n g))
155: commentsMethodAt t r ibuteMap . pu t (x1 , y1) ;
156: }
157: }
158: re turn commentsMethodAt t r ibuteMap ;
159: }
160: }

54

Appendix B: The mwe2 Configuration File

This source code is used for generating the reusable code infrastructure. The green highlighted
text in this section represents usual Java code comments and it doesn’t represent annotation
language comments.

0: module de . i n . tum . s e c . mydsl . GenerateMyDsl
1: impo r t o rg . e c l i p s e . emf .mwe . u t i l s .∗
2: impo r t o rg . e c l i p s e . x t e x t . g e n e r a t o r .∗
3: impo r t o rg . e c l i p s e . x t e x t . u i . g e n e r a t o r .∗
4: va r grammarURI = " c l a s s p a t h : / o rg / x t e x t / example / mydsl / MyDsl .

x t e x t "
5: / / l i s t o f s u p po r t e d f i l e e x t e n s i o n s by t h e e d i t o r
6: va r f i l e E x t e n s i o n s = "h , hh , hhh , hxx , c , cpp , C , Cpp"
7: va r p ro jec tName = " de . i n . tum . s e c . mydsl "
8: va r r u n t im e P r o j e c t = " . . / ${ pro jec tName } "
9: va r g en e r a t eX t e ndS t ub = t r u e

10: va r encod ing = "UTF−8"
11:
12: Workflow {
13: bean = S t a nd a l o n eSe t u p {
14: s c a nC l a s s P a t h = t r u e
15: p l a t f o rmU r i = " ${ r u n t im e P r o j e c t } / . . "
16: / / The f o l l ow i n g two l i n e s can be removed , i f Xbase i s no t used

.
17: r e g i s t e rG e n e r a t e dEP a c k a g e = " org . e c l i p s e . x t e x t . xbase .

XbasePackage "
18: r e g i s t e rG e nMod e l F i l e = " p l a t f o rm : / r e s o u r c e / o rg . e c l i p s e . x t e x t .

xbase / model / Xbase . genmodel "
19: }
20:
21: component = D i r e c t o r yC l e a n e r {
22: d i r e c t o r y = " ${ r u n t im e P r o j e c t } / s r c−gen "
23: }
24:
25: component = D i r e c t o r yC l e a n e r {
26: d i r e c t o r y = " ${ r u n t im e P r o j e c t } / model "
27: }
28:

55

Appendix B. The mwe2 Configuration File

29: component = D i r e c t o r yC l e a n e r {
30: d i r e c t o r y = " ${ r u n t im e P r o j e c t } . u i / s r c−gen "
31: }
32:
33: component = D i r e c t o r yC l e a n e r {
34: d i r e c t o r y = " ${ r u n t im e P r o j e c t } . t e s t s / s r c−gen "
35: }
36:
37: component = Gene r a t o r {
38: p a t hR t P r o j e c t = r u n t im e P r o j e c t
39: p a t hU i P r o j e c t = " ${ r u n t im e P r o j e c t } . u i "
40: p a t h T e s t P r o j e c t = " ${ r u n t im e P r o j e c t } . t e s t s "
41: pro jec tNameRt = pro jec tName
42: pro jec tNameUi = " ${ pro jec tName } . u i "
43: encod ing = encod ing
44: l a nguage = auto− i n j e c t {
45: u r i = grammarURI
46:
47: / / J ava API t o a c c e s s grammar e l emen t s (r e q u i r e d by s e v e r a l

o t h e r f r a gmen t s)
48: f r agmen t = grammarAccess . GrammarAccessFragment auto− i n j e c t {}
49:
50: / / g e n e r a t e s Java API f o r t h e g e n e r a t e d EPackages
51: f r agmen t = e co r e . EMFGeneratorFragment auto− i n j e c t {}
52:
53: / / t h e o l d s e r i a l i z a t i o n component
54: / / f r agmen t = p a r s e T r e eC o n s t r u c t o r . P a r s eT r e eCon s t r u c t o r F r a gmen t

au to− i n j e c t {}
55:
56: / / s e r i a l i z e r 2 . 0
57: f r agmen t = s e r i a l i z e r . S e r i a l i z e r F r a gm e n t auto− i n j e c t {
58: g e n e r a t e S t u b = f a l s e
59: }
60:
61: / / a custom Resou r c eFa c t o r y f o r use wi th EMF
62: f r agmen t = r e s o u r c e F a c t o r y . Re sou r c eFac t o r yF r agmen t auto− i n j e c t

{}
63:
64: / / The a n t l r p a r s e r g e n e r a t o r f r agmen t .
65: f r agmen t = p a r s e r . a n t l r . X t e x tAn t l rGen e r a t o r F r a gmen t auto−

i n j e c t {
66: o p t i o n s = {
67: b a c k t r a c k = t r u e
68: }
69: / / e x e c u t i o n t imeou t
70: a n t l r P a r am = "−Xconve r s i o n t imeou t " a n t l r P a r am = " 10000 "

56

Appendix B. The mwe2 Configuration File

71: }
72:
73: / / Xtend−based API f o r v a l i d a t i o n
74: f r agmen t = v a l i d a t i o n . Va l i d a t o r F r a gmen t auto− i n j e c t {
75: / / composedCheck = " org . e c l i p s e . x t e x t . v a l i d a t i o n .

Imp o r tU r iV a l i d a t o r "
76: / / composedCheck = " org . e c l i p s e . x t e x t . v a l i d a t i o n .

NamesAreUniqueVal ida to r "
77: }
78:
79: / / o l d s cop i ng and e x p o r t i n g API
80: / / f r agmen t = s cop i ng . Impor tURIScopingFragment au to− i n j e c t {}
81: / / f r agmen t = e x p o r t i n g . SimpleNamesFragment au to− i n j e c t {}
82:
83: / / s c op i ng and e x p o r t i n g API
84: f r agmen t = s cop i ng . Impor tNamespacesScop ingFragment auto− i n j e c t

{}
85: f r agmen t = e x p o r t i n g . Qua l i f i edNamesFragmen t auto− i n j e c t {}
86: f r agmen t = b u i l d e r . B u i l d e r I n t e g r a t i o n F r a gm e n t auto− i n j e c t {}
87:
88: / / g e n e r a t o r API
89: f r agmen t = g e n e r a t o r . Gene r a t o rF r agmen t auto− i n j e c t {}
90:
91: / / f o rm a t t e r API
92: f r agmen t = f o rm a t t i n g . Fo rma t t e rF r agmen t auto− i n j e c t {}
93:
94: / / l a b e l i n g API
95: f r agmen t = l a b e l i n g . L ab e l P r ov i d e rF r a gmen t auto− i n j e c t {}
96:
97: / / o u t l i n e API
98: f r agmen t = o u t l i n e . Ou t l i n eT r e eP r o v i d e r F r a gmen t auto− i n j e c t {}
99: f r agmen t = o u t l i n e . Qu i ckOu t l i n eF r agmen t auto− i n j e c t {}
100:
101: / / q u i c k f i x API
102: f r agmen t = q u i c k f i x . Qu i c k f i xP r ov i d e r F r a gmen t auto− i n j e c t {}
103:
104: / / c o n t e n t a s s i s t API
105: f r agmen t = c o n t e n t A s s i s t . Con t e n tA s s i s t F r a gmen t auto− i n j e c t {}
106:
107: / / g e n e r a t e s a more l i g h t w e i g h t An t l r p a r s e r and l e x e r t a i l o r e d

f o r c o n t e n t a s s i s t
108: f r agmen t = p a r s e r . a n t l r . X t e x tAn t l rU iGene r a t o r F r a gmen t auto−

i n j e c t {
109: o p t i o n s = {
110: b a c k t r a c k = t r u e
111: }

57

Appendix B. The mwe2 Configuration File

112: / / e x e c u t i o n t imeou t
113: a n t l r P a r am = "−Xconve r s i o n t imeou t " a n t l r P a r am = " 10000 "
114: }
115:
116: / / g e n e r a t e s j u n i t t e s t s u p p o r t c l a s s e s i n t o Gene r a t o r #

p a t h T e s t P r o j e c t
117: f r agmen t = j u n i t . J u n i t 4F r a gmen t auto− i n j e c t {}
118:
119: / / rename r e f a c t o r i n g
120: f r agmen t = r e f a c t o r i n g . Refac torElementNameFragment auto− i n j e c t

{}
121:
122: / / p r o v i d e s t h e n e c e s s a r y b i n d i n g s f o r j a v a t y p e s i n t e g r a t i o n
123: f r agmen t = t y p e s . TypesGene ra to rF r agmen t auto− i n j e c t {}
124:
125: / / g e n e r a t e s t h e r e q u i r e d b i n d i n g s on ly i f t h e grammar i n h e r i t s

from Xbase
126: f r agmen t = xbase . XbaseGene ra to rF ragmen t auto− i n j e c t {}
127:
128: / / p r o v i d e s a p r e f e r e n c e page f o r t emp l a t e p r o p o s a l s
129: f r agmen t = t emp l a t e s . Code t emp l a t e sGene r a t o rF r agmen t auto−

i n j e c t {}
130:
131: / / p r o v i d e s a compare view
132: f r agmen t = compare . CompareFragment auto− i n j e c t {}
133: }
134: }
135: }

58

Appendix C: Policy Language Grammar

This .xtext file contains the whole grammar of our policy language. The green highlighted text
in this section represents usual Java code comments and it doesn’t represent annotation language
comments.

0: grammar de . i n . tum . s e c . mydsl . MyDsl wi th
1: org . e c l i p s e . x t e x t . common . Te rm ina l s
2:
3: /∗ ∗ [xText Grammar d e s c r i p t i o n . Logger]
4: [Othe r n o t e s : used f o r add ing a n n o t a t i o n s t o
5: . h , . hh , . hhh , . hxx , . c , . cpp , .C and . Cpp f i l e s "]
6: Thi s grammar i s i n t e n d e d t o be used f o r a n n o t a t i n g t h e
7: above ment ioned heade r f i l e s .
8: @author Pau l Muntean
9: @version Rev i s i o n : 0 . 3

10: Date : 14 . 05 . 2014
11: Hour : 18 : 10 : 15 PM
12: ∗ ∗ /
13: g e n e r a t e myDsl " h t t p : / /www. x t e x t . o rg / example / mydsl / MyDsl "
14:
15: /∗ ∗
16: ∗ @Annotat ionLanguage : t op r o o t node of t h e a n n o t a t i o n

l anguage
17: ∗ /
18: Anno ta t i onLanguage :
19: e l emen t += HeaderModel∗
20: ;
21:
22: /∗ ∗
23: ∗ @Sing l eL ineAnno t a t i on : e n t i t y used f o r s i n g l e− l i n e

a n n o t a t i o n s
24: ∗ @Mul t i l i n eAnno t a t i o n : e n t i t y used f o r mu l t i− l i n e

a n n o t a t i o n s
25: ∗ @MethodHeader : e n t i t y used f o r r e c o g n i z i n g any k ind of C /C

++ he ad e r s
26: ∗ @At t r i b u t eD e f i n i t i o n : e n t i t y used f o r r e c o g n i z i n g any k ind

of v a r i a b l e d e f i n i t i o n
27: ∗ /

59

Appendix C. Policy Language Grammar

28: HeaderModel :
29: h e a d e r s += S i n g l eL i n eAnno t a t i o n
30: | M u l t i l i n eAn n o t a t i o n
31: | MethodHeader
32: | A t t r i b u t e D e f i n i t i o n
33: ;
34:
35: /∗ ∗
36: ∗ @At t r i b u t eD e f i n i t i o n : e n t i t y used f o r r e c o g n i z i n g any k ind

of s t a t em e n t which b eg i n s wi th t h e symbol #
37: ∗ /
38: A t t r i b u t e D e f i n i t i o n :
39: { A t t r i b u t e D e f i n i t i o n } (a t t r i b u t e _ d e f += (SYMBOLS) ? (’ ’ ?) ∗

e x t e n s i o n += KeyWord (e x t e n s i o n _2 += E x p r e s s i o nA t t r i b u t e))
40: (’ \ n ’ | ’ \ r ’) ∗
41: ;
42:
43: /∗ ∗
44: ∗ @Exp r e s s i o nA t t r i b u t e : a t r i b u t e o f t h e A t t r i b u t e D e f i n i t i o n
45: ∗ /
46: E x p r e s s i o nA t t r i b u t e r e t u r n s Ref :
47: En t i t yR e f (({ Exp r e s s i o n . r e f = c u r r e n t }
48: (s ymbo l s _ a t t r += SYMBOLS) t a i l = En t i t yR e f) ∗)
49: ;
50:
51: /∗ ∗
52: ∗ @MethodHeader : t h i s r e c o g n i z e s any k ind of method h e ad e r s
53: ∗ /
54: MethodHeader r e t u r n s MethodHeader :
55: {MethodHeader } (
56: ((f i r s t D e l i m i t e r = SYMBOLS) ? (’ ’ ? ’∗ ’∗ ’ ’∗ ID ’ ’ ?) ∗
57: s e c o n dDe l im i t e r = SYMBOLS exp += Exp r e s s i o n
58: t h i r d D e l i m i t e r = SYMBOLS)
59: ((f o u r t hD e l i m i t e r = SYMBOLS) ? (ID ?)
60: (f i f t h D e l i m i t e r = SYMBOLS) ? (ID ?)
61: (s i x t h D e l i m i t e r = SYMBOLS) ? (ID ?))
62: s e v e n t hD e l im i t e r = SYMBOLS?
63:) (’ \ n ’ | ’ \ r ’) ?
64: ;
65:
66: /∗ ∗
67: ∗ @Express ion : used f o r r e c o g n i z i n g e x p r e s s i o n s i n s i d e a

MethodHeader
68: ∗ : i t c o n t a i n s one r e c u r s i o n d e f i n e d on t h e

c u r r e n t e n t i t y o b j e c t Exp r e s s i o n . r e f = c u r r e n t
69: ∗ /

60

Appendix C. Policy Language Grammar

70: Exp r e s s i o n r e t u r n s Ref :
71: En t i t yR e f (({ Exp r e s s i o n . r e f = c u r r e n t } (symbols += SYMBOLS)
72: t a i l = En t i t yR e f) ∗)
73: ;
74:
75: /∗ ∗
76: ∗ @Enti tyRef : @Express ion c o n t a i n s @Enti tyRef , t h i s i s a l i s t

o f e n t i t y s
77: ∗ /
78: En t i t yR e f r e t u r n s Ref :
79: { En t i t yR e f } (e n t i t y += S p e c i a l E x p r e s s i o n) ∗
80: ;
81: /∗ ∗
82: ∗ @IDSpace : c o n t a i n s a l e f t r e c u r s i o n on t h e c u r r r e n t
83: ∗ : used f o r i d e n t i t y f i n g e x p r e s s i o n s wi th a space i n

f r o n t
84: ∗ /
85: IDSpace :
86: En t i t yR e f ({ IDSpace . l e f t = c u r r e n t } (’ ’) ∗
87: r i g h t = S p e c i a l E x p r e s s i o n) ∗
88: ;
89:
90: /∗ ∗
91: ∗ @Spec i a lExp r e s s i on : e x p r e s s i o n s c o n t a i n i n g s t a r s
92: ∗ /
93: Sp e c i a l E x p r e s s i o n :
94: { E n t i t y } (r u l e s += ID
95: | ’ ∗∗ ’ ((name0 = SYMBOLS) ?) (ID) ?
96: | name1 = SYMBOLS(
97: name2 = SYMBOLS) ? (
98: name3 = SYMBOLS) ? (
99: name4 = SYMBOLS) ? (ID) ?
100: | INT
101:)
102: ;
103:
104: /∗ ∗
105: ∗ @SpaceID : used f o r r e c o g n i z i n g s p a c e s f o l l owed be ID
106: ∗ /
107: SpaceID :
108: {SpaceID } (exp r += (’ ’) ∗ ID ?) ∗
109: ;
110:
111: /∗ ∗
112: ∗ @Mul t i l i n eAnno t a t i o n : used f o r add ing m u l t i l i n e a n n o t a t i o n s
113: ∗ /

61

Appendix C. Policy Language Grammar

114: Mu l t i l i n eAn n o t a t i o n r e t u r n s Mu l t i l i n eAn n o t a t i o n :
115: { Mu l t i l i n eAn n o t a t i o n } (
116: r u l e += (’ /∗@ ’) ? (’∗ ’) ?
117: f u n c t i o nAn n o t a t i o n = Fun c t i o nAnno t a t i o n
118: (’ \ n ’) ? (’ @∗ / ’) ? (name0 = SYMBOLS) ?
119: |
120: (’∗ ’) ’ ’ ’ ’ (’@∗ / ’) (name1 = SYMBOLS) ? (’ \ n ’ | ’ \ r ’) ?
121:)
122: ;
123:
124: /∗ ∗
125: ∗ @Func t ionAnno ta t i on : used f o r f u n c t i o n a n n o t a t i o n s
126: ∗ /
127: Fun c t i o nAnno t a t i o n r e t u r n s Fun c t i o nAnno t a t i o n :
128: { Fun c t i o nAnno t a t i o n } (
129: r e s u l t += ’ @func t ion ’ f un c t i o nType = Func t ionType
130: ((name0 = SYMBOLS)) ?
131: ((nameComment = ID)) ?
132: (’ \ n ’ | ’ \ r ’) ?
133: / / s u p po r t e d w i t h ou t space b e f o r e c o n f i d e n t i a l and s e n s i t i v e
134: | ’ @parameter ’ p a r ame t e r = ID
135: (name0 = SYMBOLS) ?
136: s e c u r i t yT y p e = Secu r i t yType
137: ((name1 = SYMBOLS)) ?
138: ((nameComment = ID)) ?
139: (’ \ n ’ | ’ \ r ’) ?
140: / / f o r a n n o t a t i n g p r e and po s t f u n c t i o n s
141: | ’@pre ’ p a r ame t e r =ID (name0 = SYMBOLS) ?
142: ((name2 = SYMBOLS)) ?
143: ((nameComment = ID)) ?
144: (’ \ n ’ | ’ \ r ’) ?
145: | ’@post ’ p a r ame t e r =ID (name0 = SYMBOLS) ?
146: ((name3 = SYMBOLS)) ?
147: ((nameComment = ID)) ?
148: (’ \ n ’ | ’ \ r ’) ?
149:
150:)
151: ;
152:
153: /∗ ∗
154: ∗ @Sing l eL ineAnno t a t i on : used f o r add ing s i n g l e l i n e

a n n o t a t i o n s
155: ∗ /
156: S i n g l eL i n eAnno t a t i o n r e t u r n s S i n g l eL i n eAnno t a t i o n :
157: { S i n g l eL i n eAnno t a t i o n } (
158: r e s u l t += ’ / /@ @func t ion ’ f un c t i o nType = Func t ionType

62

Appendix C. Policy Language Grammar

159: ((name0 = SYMBOLS)) ?
160: ((nameComment = ID)) ?
161: (’ \ n ’ | ’ \ r ’) ∗
162: / / s u p po r t e d w i t h ou t space b e f o r e c o n f i d e n t i a l and s e n s i t i v e
163: | ’ / /@ @parameter ’ p a r ame t e r = ID (’ ’) ?
164: s e c u r i t yT y p e = Secu r i t yType
165: ((name1 = SYMBOLS)) ?
166: ((nameComment = ID)) ?
167: (’ \ n ’ | ’ \ r ’) ∗
168: / / f o r a n n o t a t i n g p r e and po s t f u n c t i o n s
169: | ’ / /@ @pre ’ p a r ame t e r = ID (’ ’) ?
170: ((name2 = SYMBOLS)) ?
171: ((nameComment = ID)) ?
172: (’ \ n ’ | ’ \ r ’) ∗
173: | ’ / /@ @post ’ p a r ame t e r = ID (’ ’) ?
174: ((name3 = SYMBOLS)) ?
175: ((nameComment = ID)) ?
176: (’ \ n ’ | ’ \ r ’) ∗
177:)
178: ;
179:
180: /∗ ∗
181: ∗ @Annotat ionType : a n n o t a t i o n t y p e s
182: ∗ : a n n o t a t i o n s can add r e s whole f u n c t i o n s o r p a r ame t e r s o f a

f u n c t i o n
183: ∗ /
184: enum Anno ta t i onType :
185: f u n c t i o n
186: | p a r ame t e r
187: ;
188:
189: /∗ ∗
190: ∗ @FunctionType : a n n o t a i o n s t y p e s f o r f u n c t i o n s
191: ∗ /
192: enum Func t ionType :
193: d e c l a s i f i c a t i o n
194: | s a n i t i s a t i o n
195: | s i n k
196: | s o u r c e
197: | t r u s t _ b o u n d a r y
198: ;
199:
200: /∗ ∗
201: ∗ @Secur i tyType : a n n o t a t i o n s t y p e s f o r p a r ame t e r s
202: ∗ /
203: enum Secu r i t yType :

63

Appendix C. Policy Language Grammar

204: c o n f i d e n t i a l
205: | s e n s i t i v e
206: ;
207:
208: /∗ ∗
209: ∗ @KeyWord : l i s t o f C /C++ keywords
210: ∗ /
211: KeyWord r e t u r n s KeyWord :
212: {KeyWord } (
213: r u l e = ’__BEGIN_DECLS ’
214: | ’__BEGIN_NAMESPACE_STD ’
215: | ’__BEGIN_NAMESPACE_C99 ’
216: | ’__END_DECLS ’
217: | ’__END_NAMESPACE_STD’
218: | ’__END_NAMESPACE_C99 ’
219: | ’__USING_NAMESPACE_STD ’
220: | ’ d e f i n e ’
221: | ’ i f n d e f ’
222: | ’ unde f ’
223: | ’ i f d e f ’
224: | ’ i f ’
225: | ’ i n c l u d e ’
226: | ’ i n c l u d e _ n e x t ’
227: | ’ pragma ’
228: | ’ e l s e ’
229: | ’ e l i f ’
230: | ’ e r r o r ’
231: | ’ t y p e d e f ’
232: | ’ c l a s s ’
233: | ’ e n d i f ’
234: | ’ s o u r c e ’
235:)
236: ;
237:
238: /∗ ∗
239: ∗ @SYMBOLS : a l l a v a i l a b l e C /C++ symbols
240: ∗ /
241: SYMBOLS: {SYMBOLS}
242: (symbols += ’ , ’
243: | ’ . ’
244: | ’ . . ’
245: | ’ . . . ’
246: | ’ x ’ / / don ’ t know what t h i s
247: / / symbol i s , i t i s i n math . h
248: | ’ ; ’
249: | ’ ’

64

Appendix C. Policy Language Grammar

250: | ’∗ ’
251: | ’∗ ’
252: | ’ [’
253: | ’] ’
254: | ’ \ n ’
255: | ’ (’
256: | ’) ’
257: | ’>> ’
258: | ’<< ’
259: | ’> ’
260: | ’< ’
261: | ’ ^ ’
262: | ’+ ’
263: | ’− ’
264: | ’ / ’
265: | BackSlash
266: | ’%’
267: | ’ | ’
268: | ’−> ’
269: | ’<− ’
270: | ’= ’
271: | ’ ? ’
272: | ’ ! ’
273: | DoubleQuote
274: | S i ng l eQuo t e
275: | ’ : ’
276: | ’&’
277: | ’~ ’
278: | ’ # ’
279: | CURLY_OPEN
280: | CURLY_CLOSE
281: | INT
282: | name0=KeyWord
283: / / used t o bypas s t h e r e s e r v e d xText keyword
284: / / s o u r c e can be used as a f u n c t i o n c a l l
285: / / i n C /C++ he ad e r s o r s o u r c e f i l e s
286:)
287: ;
288:
289: /∗ ∗
290: ∗ @S t r u c tD e f i n i t i o n
291: ∗ : used f o r i d e n t i f y i n g s t r u c t s
292: ∗ : t h i s i s f u t u r e work .
293: ∗ : Th i s can o p t i o n a l l y be used i n t h e f u t u r e
294: ∗ : when {} i s removed as mu l t i− l i n e
295: ∗ : comment and t h e body of t h e s t r u c t w i l l be a v a i l a b l e

65

Appendix C. Policy Language Grammar

296: ∗ /
297: S t r u c t D e f i n i t i o n :
298: ’ t y p e d e f ’ ID (name0=SYMBOLS) name1=ID CURLY_OPEN
299: a t t r += ID∗
300: CURLY_CLOSE (name2=SYMBOLS) name3=ID (name4=SYMBOLS) ?
301: ;
302:
303: /∗ ∗
304: ∗ @SingleQuote
305: ∗ : d e c l a r a t i o n o f ’ and avo i d i n g o v e r r i d i n g t h e t e rm i n a l

STRING
306: ∗ /
307: S ing l eQuo t e :
308: MY_STRING
309: ;
310:
311: /∗ ∗
312: ∗ @DoubleQuote
313: ∗ : d e c l a r a t i o n o f " and avo i d i n g o v e r r i d i n g t h e t e rm i n a l

STRING
314: ∗ /
315:
316: DoubleQuote :
317: STRING
318: | DOUBLE_DQ_STRING
319: ;
320:
321: /∗ ∗
322: ∗ @BackSlash
323: ∗ : d e c l a r a t i o n o f \ and a vo i d i n g o v e r r i d i n g t h e t e rm i n a l

STRING
324: ∗ /
325: BackSlash :
326: STRING
327: | MY_BACKSLASH
328: ;
329:
330: /∗ ∗
331: ∗ @MY_BACKSLASH : doub l e b a c k s l a s h
332: ∗ /
333: t e rm i n a l MY_BACKSLASH: ’ \ \ ’ ;
334:
335: /∗ ∗
336: ∗ @DQ_STRING : doub l e quo t e d e c l a r a t i o n
337: ∗ /
338: t e rm i n a l DOUBLE_DQ_STRING : " ’ \ " ’ ~ (’ \ " ’) ∗ ’ \ " ’ " ;

66

Appendix C. Policy Language Grammar

339:
340: /∗ ∗
341: ∗ @SQ_STRING : s i n g l e quo t e d e c l a r a t i o n
342: ∗ /
343: t e rm i n a l DOUBLE_SQ_STRING : " ’ \ ’ ’ ~ (’ \ ’ ’) ∗ ’ \ ’ ’ " ;
344:
345: /∗ ∗
346: ∗ @CURLY_OPEN : open c u r l y b r a c k e t d e c l a r a t i o n
347: ∗ /
348: t e rm i n a l CURLY_OPEN: ’ { ’ ;
349:
350: /∗ ∗
351: ∗ @CURLY_CLOSE : c l o s e c u r l y b r a c k e t d e c l a r a t i o n
352: ∗ /
353: t e rm i n a l CURLY_CLOSE: ’ } ’ ;
354:
355: /∗ ∗
356: ∗ @MY_STRING : mod i f i ed s t r i n g t e rm i n a l s , i t a l l ows any k ind
357: ∗ of symbols i n s i d e t h e s i n g l e and doub l e q u o t a t i o n marks \
358: ∗ /
359: t e rm i n a l MY_STRING : ’ " ’ (’ \ \ ’ | ! (’ \ \ ’ | ’ " ’)) ∗ ’ " ’
360: | " ’ " (’ \ \ ’ | ! (’ \ \ ’ | " ’ ")) ∗ " ’ "
361: ;
362:
363: /∗ ∗
364: ∗ @SL_COMMENT : a l l s t r i n g s which f o l l ow / / | | | | }
365: ∗ w i l l be a s i n g l e l i n e comment
366: ∗ /
367: t e rm i n a l SL_COMMENT : ’ / / ’ ! (’@’) ! (’ \ n ’ | ’ \ r ’) ∗ (’ \ n ’ | ’ \ r ’) ∗
368: / / ’} ’ can o p t i o n a l l y be used t o d i s a b l e

t h e
369: / / method bod i e s t o g e t h e r wi th mu l t i− l i n e
370: / / l i n e {} comment
371: / / | ’} ’ ! (’ \ n ’ | ’ \ r ’) ∗ (’ \ n ’ | ’ \ r ’) ∗
372: ;
373:
374: /∗ ∗
375: ∗ @ML_COMMENT :@/∗ mul t i− l i n e comment e x c l u d i n g @ from i n s i d e
376: ∗ : { } mu l t i− l i n e comment
377: ∗ /
378: t e rm i n a l ML_COMMENT : ’ /∗ ’ ! (’@’) −> ! (’@’) ’ ∗ / ’
379: ! (’ \ n ’ | ’ \ r ’) ∗ (’ \ n ’ | ’ \ r ’) ∗
380: / / ’{ ’ −> ’} ’ can o p t i o n a l l y be used

o p t i o n a l
381: / / t o d i s a b l e t h e method bod i e s t o g e t h e r
382: / / w i th s i n g l e l i n e { comment

67

Appendix C. Policy Language Grammar

383: / / | ’{ ’ −> ’} ’ (’ \ n ’ | ’ \ r ’) ?
384: ;

68

	List of Figures
	Listings
	List of Tables
	List of Acronyms
	Introduction
	State of The Art
	Why Do We Need a New Policy Language?
	Idea and Contribution

	Language Design
	Challenges and Overview of our Solution
	Annotation Language Design
	Annotation Extraction and Mapping
	Static Analysis

	Implementation
	xText Grammar Implementation
	xText Grammar Structure
	xText Syntax Graphs
	xText Language Grammar

	xText Language Artifacts
	Reusable Language Artifacts
	Two Click Language Extensibility Work-flow

	Applying the Policy Language
	Scenarios
	Annotation of C/C++ Libraries
	Annotating Trust-Boundaries in Header Files
	Annotation of UML State Charts
	Annotating a Cryptographic Algorithm using UML State Charts

	Conclusions
	Bibliography
	Comments to function declarations mapping code
	The mwe2 Configuration File
	Policy Language Grammar

