Finite-Length Scaling of Convolutional LDPC Codes

Markus Stinner, Pablo Olmos
markus.stinner@tum.de, olmos@tsc.uc3m.es

Motivation

- Capacity-reaching LDPC codes exist
- The optimal parameters are known for long block lengths - Finite-length scaling laws are conjectured for regular codes

Can we calculate the scaling laws for

even more structured ensembles?

- Which design criteria hold for finite block lengths?

(1) Choose a simple $(1, r)$ protograph
(2) Couple L protographs to a spatially coupled protograph

(3) Lift the coupled protograph with the "copy-and-permute" operation (similar connections of several copies are randomly permuted to obtain larger girths)
The convolutional-like band matrix \mathbf{H} consists of submatrices $\mathbf{H}_{i, j}$ which are permutation matrices for edge permutations:
$\mathbf{H}=\left(\begin{array}{llllllll}\mathbf{H}_{0,0} & \mathbf{H}_{0,1} & & & & & \\ \mathbf{H}_{1,0} & \mathbf{H}_{1,1} & \mathbf{H}_{0,0} & \mathbf{H}_{0,1} & & & \\ \mathbf{H}_{2,0} & \mathbf{H}_{2,1} & \mathbf{H}_{1,0} & \mathbf{H}_{1,1} & \mathbf{H}_{0,0} & \mathbf{H}_{0,1} & \\ & & \mathbf{H}_{2,0} & \mathbf{H}_{2,1} & \mathbf{H}_{1,0} & \mathbf{H}_{1,1} & \\ & & & & \mathbf{H}_{2,0} & \mathbf{H}_{2,1} & \ddots\end{array}\right)$

[^0]
(q, a, L) SC-ARA Construction

ARA graphs with message and accumulator nodes are coupled and terminated. The message node is connected to q check nodes.

- low error floor for the uncoupled graph
- linearly growing minimum Hamming distance

SC-TAR4JA Construction

TAR4JA structures are coupled by spreading some edges to the following block. This scheme includes punctured nodes.

- excellent decoding threshold

Peeling Decoding

Fvariable nodes are erased after the transmission over a binary erasure channels (BEC), they can be iteratively restored using the known part of the code graph. The decoding can only proceed as long as check
nodes with only 1 unknown edge remain in the residual graph. This sed as stability criterion.

- τ : Decoding iterations normalized by M
- $\hat{c}_{1}(\tau)$: Sum of mean of deg-1 check nodes normalized by M $\hat{c}_{1}(\tau) \doteq \frac{1}{M} \sum_{i=1}^{m} R\left(\mathbf{0}_{\sim i}, \tau\right)$
- $\delta_{1}(\tau)$: Variance of deg-1 check nodes of all processes $\operatorname{Var}\left[c_{1}(\tau)\right]=\frac{1}{M} \delta_{1}(\tau)=\frac{1}{M} \sum_{i=1}^{m} \sum_{b=1}^{m} \delta_{0 \sim i, 0 \sim b}$
- $\phi_{1}(\tau, \zeta)$: process covariance with time
$\phi_{1}(\tau, \zeta) \doteq \mathbb{E}\left[c_{1}(\tau) c_{1}(\zeta)\right]-\hat{c}_{1}(\tau) \hat{c}_{1}(\zeta)$

Mean Evolution of Deg-1 Check Nodes

$\sigma_{1}(\tau)$ for the ensembles $(3,6,100)_{\mathcal{P}},(3,6,100),(4,8,100)_{p}$ and $(4,8,100)$

${\hat{c_{1}}}_{1}(\tau)$ for the ensembles (q, a, L) SC-ARA, TARUJA and $(4,8,100)_{\mathcal{P}}$

Finite-length Scaling Conjecture [4]
Scaling law for LDPC codes using an iterative erasure decode

$$
P^{*} \approx 1-\exp \left(-\frac{\left(\epsilon L-\tau^{*}\right)}{\mu_{0}(M, \epsilon, l, r)}\right)
$$

$\left(\epsilon L-\tau^{*}\right)$ is the duration of the steady-state phase. The average survival time μ_{0} during the steady-state phase depends on $\hat{c}_{1}(\tau), \delta_{1}(\tau)$.

Finite length scaling predictions (solid lines and simulated erroor rate (dashed lines)
for different SC-LDPC codes with $L=100$ and $M=4000$.

- The $(4,8)_{p}$ code outperforms the other structures.

Matching Codes

P^{*} is dominated from M and $\gamma / \sqrt{\delta_{1}^{\approx}}$ depending on the codes. We exploit this to match the performance of a code with another code ensemble.

$(4,8)_{p}$ codes matched to $(3,6)_{p}$ ensembles with $M=2000$ and $M=4000$.

Increasing Chain Lengths

For large L, P^{*} scales linearly with L which is exploited for the performance prediction.

References

[1] M. Lentmaier, G. P. Fettweis, K. S. Zigangirov, and D. J. Costello "Approaching Capacity with Asymptotically Regular LDPC Codes," Proc. In
Theory and Applicat. Workshop (ITA), pp. 173-177, 2009. IOntinel H. 173-177, 2009. [Online].
L. Galager, "Low-Density Parity-Check Codes," IEEE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21-28, Jan. 1962. [Online].
[3] S. Kudekar, T. J. Richardson, and R. L. Urbanke, ""hresthold Saturation via the BEC," in Proc. IEEE Int. Symp. Inf. Theory (ISIT). IEEE, 2011, pp. 84-688. [Online
M. Stinner and P. M. Oimos, "Analyzing Finite-engenth performance
Protograph--ased Spatially Coupled LPPC Codes" in Proc ITE rotograph-based Spatially Coupled LDPC Codes," in Proc. IEEE Int. Symp.
Inf. Theoory (ISIT), 2014.

Institute for
Communications Engineering

[^0]: - Systematic encoding is possible
 - The MAP threshold can be reached with iterative belie propagation (BP) decoding [3]

