CREATING HIDDEN MARKOV MODELS FOR FAST SPEECH BY OPTIMIZED
CLUSTERING

R. Faltlhauser, T. Pfau, G. Ruske
Inst. for Human-Machine-Communication, Munich Univ. of Technology (TUM), Munich, Germany
Faltlhauser@ei.tum.de

ABSTRACT

Previous studies have shown that the recognition accu-
racy often severely degrades at higher speech rates, which
can basically be traced back to two main dimensions:
acoustic and phonemic. Reasons for this effect can be
found in the phonemic field (e.g. elisions) as well as on the
acoustic level: with increasing rates of speech the spec-
tral characteristics are changing. A main obstacle in this
context is the training data, consisting of only a small
fraction of samples, which can be labeled as ’fast’. There-
fore, the effects caused by an increased speech rate often
cannot be completely covered. To meet this problem, in
this paper an optimized clustering process is presented
making efficient use of the available data. Our modified
mixture splitting algorithm with an incorporated cross-
validation step aims at increasing the generalization of
Hidden Markov Models, especially with respect to fast
speech. Experimental results showed a relative decrease
in word error rate of 7.6% for fast speech.

1. INTRODUCTION

The accuracy in speech recognition highly depends on
speech rate. Especially for higher speech rates it can
be observed that recognition performance significantly de-
grades [1]. The reasons that lead to this degradation can
be attributed to two main areas. Generally, speakers tend
to assimilate phonemes or even omit them totally (eli-
sions). Speaking faster, this phonetic problem is more
intense. A common way to approach this problem is to
incorporate pronunciation variants in the training phase
as well as in the recognition phase of a speech recogni-
tion system. Moreover, a different weighting for the pro-
nunciation variants may cover this speech rate dependent
behaviour. The acoustic dimension causes additional ef-
fects, which amplify this degradation. At higher speech
rates the vocal tract no longer reaches the final positions
for certain phonemes [2], leading, for example, to a cen-
tralization of formant frequencies. Hence, the spectral
characteristics will vary with speech rate.

The second problem is far more difficult to be treated.
Speech data which can be labeled as 'fast’ usually amount
only a small fraction of the available training material. In
standard spontaneous speech databases usually about 10
percent can be marked as fast - depending on the defini-
tion of 'fast’. Therefore, the effects caused by increased
speech rate often are not adequately covered by the speech
databases. Table 1 points out the result of this miss-
ing coverage, which is a rather drastic relative increase of
18.5% in word error rate. In this experiment, the test-

ing material was split into 3 sets: slow, medium and fast
speech. This paper especially deals with the effects of
fast speech. Of course, when speaking (very) slowly, most
people tend to hyper-articulate certain words, which may
also deteriorate recognition performance [3]. Since hyper-
articulation is not considered in this paper, slow speech
material is not examined separately.

total fast
word error rate | 37.8% | 44.8 %

Table 1. Word error rates (WER) for entire test
material and fast part separately.

The tagging of the training material was carried out
by means of a rate-of-speech detector based on the ROS
criteria [1]. Further, the models used were trained on the
German Verbmobil Task, i.e. 11355 sentences of about
570 speakers. It is obvious, that recognition rate for fast
speech only is substantially worse than for the whole test-
ing material. In order to verify these findings, a look at
the training score (log likelihood) is quite helpful: it can
be considered as an indicator for the modeling accuracy.
Breaking down the training material into 3 different sub-
sets and quantifying the training score for the fast speech
part yields the following result:

total | med fast
avg. score | -50,8 | -51,1, | -54,4

Table 2. Decline of average training score (log
likelihood).

Table 2 shows significantly worse training scores for the
fast part of the training material which are already occur-
ing during the training phase. Considering the obviously
lower score in the training, it can be concluded that the
difference in recognition performance is basically a prob-
lem of modeling. Two major reasons seem to cause this
effect:

e Training algorithms (ML) do not represent fast
speech (spectra) in placement of gaussians good
enough.

e The balance between model size (usually number of
gaussians) and available training data is even more
delicate for fast speech.

Due to the lack of fast speech data, the effects at higher
speech rates (e.g. formant centralization) cannot be ad-
equately modeled by the training algorithm. This fact

however, could be overcome by gathering more samples
of fast speech. Since this is not always possible in prac-
tice, existing fast speech samples have to be utilized more
effectively instead. In the following a cluster algorithm is
presented which tries to improve recognition performance
by optimizing the generalizing power of models already
at the clustering stage. The algorithm’s main focus lies
in the effective use of crossvalidation data to generate an
adequate number of gaussians for each state of the indi-
vidual Hidden Markov Model.

2. ALGORITHM

Most state-of-the-art recognition systems use Hidden
Markov Models to represent the phonetic units. The mod-
els differ in structure (SCHMMs, CDHMMs, number of
states, possible transitions) and size (number of proto-
types). Modeling the statistical properties of the units,
i.e. the probability density function (PDF) to describe the
feature space is a common characteristic of most struc-
tures. Usually, a superposition of so-called prototypes,
simple statistical functions such as gaussian densities, is
used to achieve this goal. In order to optimize the system
properly, the training algorithms (e.g. ML) for these mod-
els have to rely on initial prototypes. Generating initial
prototypes is a typical task for a clustering process. In
the following, such a clustering process is presented. The
implementation of this algorithm is focused on CDHMMs
with mixture gaussian densities, but the concept of the
algorithm could be applied for other model structures as
well.

In general, the number of gaussians K for each state of
the Hidden Markov Model mostly is chosen constant or
data dependent in a rather unsatisfactory manner. Typi-
cal clustering algorithms take into account only the data
to be clustered itself. With enough gaussian densities,
data can be modeled ideally, but no generalizing power
would be left. The term ’generalization’ characterizes the
ability of models to recognize previously unseen speech
patterns. Generally, a mismatch between available train-
ing data and speech data used to evaluate (or more gen-
erally: to use) the recognizer can be noticed and has to
be taken into account. Every recognizer will be measured
by its performance on 'unknown’ evaluation data. There-
fore, the ultimate goal for the clustering process has to be
to produce a set of gaussians which are able to perform
optimally on unknown speech data. It is necessary to es-
timate the quality of the resulting models’ ability to cover
’unknown’ speech data to reach this aim.

Using crossvalidation data is a common way to rate this
capability [4]. Hence, the available training data has to
be split into two parts:

e Clustering data
e Crossvalidation data

A closer look at the choice of the crossvalidation data

reveals two opposing possibilities:
1. Random selection
2. Preselection

If the crossvalidation data are picked randomly from
the entire fund of training samples, the two sets - cross-
validation and the clustering - will represent the same
source distribution. Hence, an algorithm working on sets

created this way will optimize the modeling of underlying
source distribution. Another way would be to generate
the crossvalidation set by some sort of pre-clustering, for
example by speaker or rate of speech. In this case, the
two sets could be interpreted as data from two possibly
different sources. The second possibility is closer to the
concept of ’estimation’ - with the drawback, that samples
which are used for crossvalidation are completely missing
in the modeling process. Both approaches try to get an
estimate from this intrinsic dissimilarity between crossval-
idation distribution and clustering distribution. If both
distributions are alike, it is probable that data from an
unknown source will also be within this range of similar-
ity. Considering the dissimilarity to be very high, it is
not very sensible to provide the acoustic model with a
large number of gaussians. It is favourable to spend less
gaussians with increased variances instead. The following
algorithm tries to automate this decision and to produce
an adequate number of gaussians for the acoustic model.

Basically, the main algorithm is a combination of a
standard K-means algorithm to revise the cluster-to-
prototype association and a splitting step based on cross-
validation. The idea behind this hierarchical cluster algo-
rithm is to split iteratively normal distributions until an
optimal number of gaussians is reached.The main problem
is to find this optimal number of gaussians to represent the
training material. As mentioned above, the use of cross-
validation data is a possible solution: if the likelihood on
the crossvalidation is no longer increasing, an optimum
has been found. Therefore, the top-down cluster algo-
rithm starts with a single prototype and iteratively adds
new prototypes, which are created by a split of an exist-
ing prototype. To ensure a steady enhancement in the
representation of the training data (given K prototypes)
only S specific prototypes are splitted. In each iteration
those prototypes are searched which yield the highest like-
lihood gain G on the crossvalidation data. In order to get
a realistic impression of the modeling the prototypes are
evaluated as gaussian densities with mixture coefficients
ck- The algorithm can be outlined as follows:

start: K = 1
repeat
calculate means and variances for
K gaussians by means of K-Means algorithm
calculate mixture coefficients
for all gaussians
determine optimal splitting direction
evaluate temporary split: gain G(k)
j = arg max G(k) (in case of S=1)
if 6(j) > T
split gaussian: j
K -> K+8
until G(j) < T
After every splitting iteration the association between
clusters and their prototypes is revised, which is done by
means of a K-Means algorithm. It minimizes iteratively
the distortion measure D(X,K) which applies the com-
mon covariance matrix C:

d(k, ;) = (x; — mg)"C™ (x; — my)

P
D(X,K) = Z min d(k, ;)
j=1

At the end of this reallocation step newly calculated
means and covariance matrices are available. Within this
K-Means process diagonal covariance matrices are calcu-
lated, which are used for the evaluation as gaussian den-
sities. Only at the end of each reallocation step a full
matrix is computed for each cluster. The main reason for
calculating a full matrix lies in the subsequent splitting
step: here a full covariance matrix is needed to compute
an optimal direction for a prototype split. The cluster
split should be performed along the main eigen axis of
the covariance matrix. It determines the direction in fea-
ture space in which the cluster has its widest extension.
The main axis can be computed by means of a principle
components analysis (PCA): it is the eigenvector corre-
sponding to the largest eigenvalue A,q.. of the covariance
matrix.

me — my + (SBAmaz
mg — (SBAmaz

The given mean vector m;, ist temporarily replaced by
the two new mean vectors. Before the split can be evalu-
ated on the crossvalidation data, the position of the two
means has to be revised according to the feature vectors
belonging to cluster k. For the evaluation purpose each
gaussian is weighted with its mixture coefficient cg:

e =Y plas)p(klz;) ~ 5 > p(kla;)
P

using a hard assignment:

1 k=argmingd(k*,z
p(k|w)={ 0 else g ol :

At first, each split is done only tentatively to evalu-
ate its performance on the crossvalidation data. Finally
those S split(s) are accepted and kept, that yield the high-
est likelihood gain on the crossvalidation material. To
achieve optimal performance with respect to modeling ac-
curacy, here only one prototype is splitted per iteration
(S = 1). Increasing S would reduce computation time,
because fewer iterations are performed, at the expense of
worse modeling accuracy. The whole process is iterated
until no further likelihood gain is achieved or the maxi-
mum gain falls below a given threshold T'.

Crossvalidation data is incorporated in two ways:
firstly, it determines the algorithm’s termination point
and secondly it determines the gaussian which is to be
splitted. In this algorithm however, the clustering per-
forms a full search, whether a split should be carried out,
or not. It is quite obvious that the computational load
here is a lot higher than for standard algorithms. But in
the end it provides seed prototypes, that are better re-
lated to the model.

The algorithm itself is self-terminating. Several param-
eters strongly influence the resulting number of gaussians:

e the gain threshold T and

e the number of splits per iteration S
that are performed.

Keeping T konstant, an increased S (S > 1) can pro-
duce a higher resulting number of prototypes.

3. RESULTS
3.1. General

First experiments were carried out to test the algorithm
(Optimized Clustering, OC) itself and to compare it with
a common clustering algorithm (LBG). So the entire data
set was used for clustering: approximately 10 million
frames (VERBMOBIL spontaneous speech database, CDs
1-12), 44 HMM s with 3 to 4 states, segmentation based on
pronunciation variants. For each state the data was ran-
domly split into a crossvalidation set and a set subject to
clustering. Therefore, clustering data and crossvalidation
describe the same source distribution. To train the mod-
els a standard Maximum Likelihood training algorithm
was used.

total fast #Prototypes
WER, LBG 37.8 % | 448 % 8657
WER, OC(1) | 36.3% | 43.3 % 5913
WER, OC(2) | 35.9% | 41.4 % 8498

Table 3. Word error rates after 4 iterations of ML
training, for the total and for the fast material

Table 3 shows a relative decrease in word error rate of
3.3% for the model set OC(1) together with a remarkable
decrease in model size of 31.7%. For the in size equivalent
model set OC(2) even a relative reduction of 7.6% subject
to further adaptation steps is achieved. Different model
sizes can be created by changing the termination thresh-
old T. With model set OC(2) we were able to reduce the
span between recognition performance on fast sentences
and all sentences from 18.5 % relative (LBG) to 15.3%.

Figure 1 shows a sample of the performance (log. like-
lihood scores) of the OC algorithm on the crossvalidation
data during the clustering process. The process is usually
iterated until it reaches the saturation region, i.e. it either
terminates automatically (no further increase in crossval-
idation score) or it can be terminated (T > 0) earlier. An
earlier termination may be favourable for those phonemes,
that have a very low intrinsic variability. In such cases,
the high similarity between data and crossvalidation data
causes the algorithm to produce a too large number of
prototypes. Incorporating further mass constraints in the
splitting step is a possible way to meet this side effect.

Figure 1 shows an increase in crossvalidation score with
an ascending number of gaussian densities. Due to the
fact that the distribution of both data sets, crossvalidation
as well as clustering data, are modeled simultaneously,
there is a constant increase in likelihood to be observed.
An explanation for the improved recognition performance
can be found by comparing the distribution of model sizes.

Table 4 shows the number of prototypes produced by
our OC algorithm in comparison with a standard mass
constrained (number of feature vectors per cluster) LBG
algorithm. The main difference lies in the scattering of
the model size for the individual phonemes. LBG con-
spiciously tends to provide particularly the non-speech
models with a very high number of gaussians. Mainly the
large number of feature vectors available for these mod-
els can be held responsible for this effect. In contrast
thereto, OC produces rather consistent model sizes for
all phonemes (phonemes not listed here are in the same

_50,

_60,

_700 30 60 90 120 150 180

Figure 1. Phoneme /OY/: score (log. likelihood)
as a function of the number of prototypes.

#Prototypes #Frames
Phoneme | LBG | OC(1) | OC(2)
/a/ 227 125 176 256255
Je:/ 169 157 251 188525
/o:/ 94 159 230 93304
/y:/ 20 127 169 13243
/f/ 210 118 178 258732
/i/ 78 140 211 71524
/n/ 673 141 184 600000
/z/ 139 139 211 132901
/s/ 590 138 226 600000
<p:> 1122 162 184 600000
<nib> 927 126 134 600000
TOTAL | 8657 5913 8498

Table 4. Comparison of model size for various
phonemes.

range). Moreover, the high intrinsic variability especially
of the non-speech model <nib> becomes obvious by the
very low increase from 126 to 134 prototypes. Only a
small likelihood gain was achieved through further split-
ting of prototypes. For some phonemes the training data
actually used for clustering was limited to 600k feature
vectors (200k per state), due to computational restric-
tions.

3.2. Adaptation to Fast Speech

One of the main questions was how the outcome of clus-
tering processes can be optimized for fast speech without
having to increase the training corpus. Hence, the sec-
ond application was aimed at the introduction of a fast
speech part as crossvalidation data. The samples belong-
ing to the fast sentences were preselected and gathered
for the crossvalidation corpus.

total fast #Prototypes
WER, OC(3) | 40.9 % | 42.5 % 5020
WER, OC(4) | 383 % | 43.9 % 5020

Table 5. Word error rates after 4 iterations of ML
training, for the total and for the fast material

Both model sets OC(3,4) were identically initialized,

i.e. they share the same initial model set produced by our
OC algorithm. The main difference lies in the choice of
data used for the training algorithm (ML). Set OC(3) was
trained by 4 iterations ML only with the fast speech part
of the training data, whereas for OC(4) the entire data
was used. OC(3) shows a relative reduction in WER of
5.1% for fast speech together with an expected increase in
WER for the whole testing material. For model set OC(4)
only a slight decrease in word error rate was possible, due
to two contradictory adaptations: on the one hand an
initialization with respect to fast speech and on the other
hand the training (ML) step s with the entire data.

4. CONCLUSION

With our approach we have shown the necessity of spend-
ing considerable computing time already at the stage of
initial clustering. Training algorithms often only reach
poor local minima during the training process. This an-
noying fact can, at least partially, be avoided if the seed
models are already optimized. Of course, this optimiza-
tion process is far more time consuming than a simple
fixed (K prototypes) clustering process. Anyway, this ef-
fort has to be only made during the initialization, i.e. as
part of the training phase. A further improvement could
possibly be made by introducing ML reestimation during
clustering to revise the cluster-to-prototype assignment.
However, this would mean a further increase in time con-
sumption, but for the training phase computing time is
usually not a real problem.

Our OC algorithm performs a heuristic search to find a
better optimum. Despite this full search in finding a good
split it remains a greedy algorithm. To circumvent this
problem algorithms can be applied which aim at finding
the global minimum of a distortion measure, such as sim-
ulated or deterministic annealing [5, 6]. However, these
algorithms tend to be as time consuming.

5. ACKNOWLEDGEMENTS

This work was partially funded by the “Deutsche
Forschungsgemeinschaft” (DFG).

REFERENCES

[1] T. Pfau, G. Ruske, ”Creating Hidden Markov Models
for Fast Speech”, Proc. ICSLP 98, paper 255, pp. 205-
208

[2] H. Kuwabara, ”Acoustic and Perceptual Properties
of Phonemes in Continuous Speech as a Function of
Speaking Rate”, Proc. Eurospeech 97, pp. 1003-1006

[3] H. Soltau, A. Waibel, ”On the Influence of Hyperar-
ticulated Speech on Recognition Performance”, Proc.
ICSLP 98, paper 736, pp. 225-228

[4] T. Kemp, ”Data-Driven Codebook Adaptation in
Phonetically Tied SCHMMSs”, Proc. ICASSP 95, pp.
477-479

[6] K. Rose, ”"Deterministic Annealing for Clustering,
Compression, Classification, Regression, and Related
Optimization Problems”, Proc. IEEE, vol. 86, 1998,
pPpP- 2210-2239

[6] K. Rose, E. Gurewitz, G. C. Fox, ”Vector Quanti-
zation by Deterministic Annealing”, IEEE Trans. In-
form. Theory, vol. 38, 1992, pp. 1249-1257

