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Abstract—Line-of-sight (LOS) delay estimation in multipath
scenarios is a central problem in global navigation satellite
systems (GNSS). Deterministic channel models can be used to
describe the multipath environment, but this usually requires the
estimation of several nuisance parameters. In order to avoid this
effort, stochastic channel models can be used. In this case the mul-
tipath statistics have to be estimated. Besides tackling the problem
of multipath mitigation by exploiting the spatial diversity of LOS
and multipath, polarization diversity also offers opportunities to
improve the estimation performance. State-of-the-art GNSS use
right-hand-circular-polarization (RHCP) transmit antennas and
GNSS receivers use RHCP receive antennas. Due to multipath
reflections, the signals also contain left-hand-circular-polarization
(LHCP) signals, and using the LHCP antenna output, can
provide an additional performance gain if the channel is modeled
properly. Thus, in this paper we model and discuss exploitation
of the GNSS dual-polarization channel. Using a dual-polarization
model that accounts for antenna cross-talk and signal reflections
intensifies the problem of computational complexity for determin-
istic multipath models. Therefore, we propose a correlated path
(CP) model that describes the temporal correlation between the
LOS and multipath signals in a stochastic way. Besides providing
a significant reduction in model complexity, the CP model avoids
model order estimation and a decision on the actual LOS delay
from the estimation results, which is a problem if the LOS and
multipath signals are highly correlated.

I. INTRODUCTION

Many signal processing applications rely on exact
channel estimates. Multiple input multiple output (MIMO)
communication systems use angle-of-arrival (AOA)
estimates to apply beamforming, which improves the
system performance. In mobile communication systems the
channel response is measured for equalization. In GNSS LOS
delay estimates are used to determine the position of a receiver.

GNSS exploit the fact that the propagation time between
transmitter and receiver can be estimated by correlating the
received signal with a local replica of the transmitted signal.
As the propagation delay is proportional to the distance
between transmitter and receiver, the receiver’s position can
be determined by triangulation. One severe problem in GNSS
is the reception of different replicas additional to the LOS
signal. These replicas occur from reflections and can lead to
high performance losses if not considered in the estimation
process. In the literature different solutions for the multipath
mitigation problem have been discussed.

The space-alternating generalized expectation-maximization
(SAGE) algorithm [1] is a well known algorithm for the

estimation of LOS and multipath delays with spatially
unstructured models. Unstructured models employ a general
spatial signature that is independent of the AoA. If the
AoA of the LOS is also of interest, a spatially structured
model that includes the AoA dependency has to be used. An
additional estimation of the AoA of the LOS and multipath
signal can lead to a performance gain with respect to spatially
unstructured models. In [2] an estimation algorithm for a
spatially structured model is proposed, while [3] combines
the SAGE algorithm with a spatially structured model. The
latter method has the drawback of rather high computational
complexity. [4] proposes a two-step approach for single-
polarization antennas, which first estimates the delays in a
spatially unstructured model with the SAGE algorithm and
then uses the extended invariance principle (EXIP) to estimate
the AoA and update the estimates of the time delay. In
this case a two-dimensional search over the delay and AoA
regime can be replaced by two one-dimensional searches
which reduces the computational complexity.

All of these methods have in common that the multipath
delays and AoA are modeled as deterministic parameters
which have to be estimated. As the multipath parameters are
often unimportant for the application, significant computation
time is spent on the estimation of nuisance parameters.
Therefore, other approaches model the multipath signal as
a stochastic process which requires an estimation of the
multipath statistics. In [5], [6] the multipath components are
modeled as colored noise which is independent of the LOS.
Nevertheless, especially for small delay differences between
LOS and multipath signal, this assumption can be inaccurate.

The deterministic models mentioned above assess the
problem of multipath mitigation by exploiting the spatial
diversity of the LOS and multipath signal. However, especially
in cases of highly spatially correlated LOS and multipath,
spatial diversity methods are not able to separate the
impinging signals. In these cases the signal polarization can
be used to separate the signals. State-of-the-art GNSS use
RHCP transmit antennas. Circular polarization signals can be
produced by using two crossed linear polarization antennas
which transmit the same signal with a 90◦ phase shift. For
angles of reflection greater than the Brewster angle, the
rotation of the circular polarization reverses, i.e. a RHCP
signal becomes a LHCP signal and vice-versa. Therefore, for
an odd number of reflections, the multipath signal is a LHCP
signal and if the receiver has a RHCP antenna it rejects
the LHCP multipath signal [7]. GNSS circular polarization
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receive antennas usually have only a RHCP output while the
LHCP output is terminated with 50Ω and not used. However,
polarimetry can be used to achieve a polarization gain [8], [9]
if both the RHCP and LHCP outputs are used. For this dual
polarization processing the multipath signal model has to be
supplemented by additional parameters. In [10] a model for
the circular polarization multipath environment in GNSS has
been derived, although the additional parameters increase the
computational complexity for deterministic multipath models.
Another problem is how to include the additional information
into existing models [9], [11], especially if non-ideal receivers
are used.

In the work at hand we propose a new signal model for
the multipath propagation problem with a dual-polarization
antenna array, which describes the LHCP signals as additional
channels in the multi-antenna model. As the model exploits
the correlation between LOS and multipath signals and
performs a rank-one approximation of the multipath’s spatial
signatures [12, p. 601], it is called the correlated path
(CP) model. The CP model combines the statistical and
deterministic approaches mentioned above and leads to a
significant reduction of parameters to estimate. In particular,
the number of parameters to estimate is constant, even
for a high number of multipath signals. In comparison to
deterministic multipath estimators a model order estimation
is not needed. Model order estimation, e.g. with the Akaike
information criterion [13] or minimum description length
criterion [14] can be inaccurate for highly correlated LOS and
multipath signals. Moreover, common deterministic multipath
estimation techniques do not separate the LOS from the
multipath delays and determining the actual LOS delay can
be a problem. On the other hand the CP model yields only the
LOS delay. In order to reduce computational complexity, the
CP model is estimated in a two step approach. This consists
of a maximum-likelihood (ML) estimator followed by the
EXIP, which further helps to reduce computational complexity.

The paper is organized as follows. In Section II a model for
the dual-polarization channel is introduced that accounts for
propagation effects and receiver characteristics. In Section III
the CP model is introduced, in which the correlation between
the LOS and multipath signals is described. In Section IV
a two-step estimator for the LOS delay and AoA is derived
for the CP model. The first step is a ML estimator which
is similar to the one for the single path model, and in the
second step the EXIP is used to refine the delay estimate and
calculate the AoA. In Section V the estimation performance
of dual-polarization estimation with the CP model is evaluated
with the help of simulation results.

A. Notation

In this paper we define scalars, column vectors and matrices
with lower case letters, lower case bold letters and upper
case bold letters, respectively. The transposition and Hermitian
(complex conjugation and transposition) of a matrix A are
denoted AT and AH, while the Moore-Penrose pseudo inverse
is given by A+. tr (A) returns the trace of A while the
Euclidian norm of a vector a is defined as ‖a‖.

c(t)

τ0, γ0

τl, γl

αR,l, αL,l

s
(φ
,θ

)

...

[
yR(t)
yL(t)

]
RHCP
LHCP

Figure 1. Channel model for the received signal

II. DUAL-POLARIZATION CHANNEL MODEL

Consider the scenario illustrated in Figure 1. The satellite
transmits a signal c(t) ∈ R. A dual-polarization M -antenna
receiver with RHCP output signal yR(t) ∈ CM and LHCP
output signal yL(t) ∈ CM receives one LOS signal and L
signals due to multipath reflections. The LOS signal has a
time-delay τ0 ∈ R and the l-th multipath signal has a time-
delay τl ∈ R. The base-band representation of the received
signal can be denoted by[
yR(t)
yL(t)

]
= y = b0c (t− τ0) +

L∑
l=1

blc (t− τl) + η (t) , (1)

where bl ∈ C2M denotes the spatial signature of the l-th
path and η(t) is temporally white additive Gaussian noise
with spatial covariance matrix Cη . The parameters of (1) are
collected together as

ξMP,u =
[
τ T, bT

0, b
T
1 . . . , b

T
L

]T ∈ C(L+1)(2M+1), (2)

with τ = [τ0, . . . , τL]
T∈RL+1. As the spatial signatures bl are

not described by physical or geometric quantities (1) will be
referred to as the spatially unstructured signal model. However,
in [4] it has been shown that a spatially structured signal
model, which parametrizes the wavefront based on a model of
the receive array response, is beneficial for the estimation of
the LOS delay τ0. The array response depends on the azimuth
AoA φl ∈ R and the elevation AoA θl ∈ R of each received
signal. In general, the array response is different for the
RHCP and LHCP channel. Additionally, the isolation between
RHCP and LHCP input channels (cross-polar isolation) is finite
for real receivers. Therefore, the RHCP receive signal also
contains LHCP signal power and vice-versa. In the following
sR,c (φl, θl)∈CM and sL,c (φl, θl)∈CM are the vectors of the
co-polar embedded patterns of the RHCP and LHCP antennas,
which is the array steering vector a (φl, θl) for isotropic
antennas. The vectors sR,x (φl, θl)∈CM and sL,x (φl, θl)∈CM
correspond to the cross-polar embedded patterns of the RHCP
and LHCP antennas. For isotropic antennas sR,x (φl, θl) =
sL,x (φl, θl) = sxa (φl, θl) with cross-talk coefficient sx. The
cross-talk is often assumed to be in the range of -20 dB and
therefore negligible. Nevertheless, especially for low-elevation
scenarios, the cross-talk is likely to be in the range of -5 dB
or more and can have a significant influence on the receive
signal and on the estimation performance.
In GNSS the satellite transmits only a RHCP signal. Therefore,
the LOS receive signal contains only RHCP power. It is often
assumed that the multipath signals contain only LHCP power
as the multipath tends to change its polarization for reflection
angles larger than the Brewster angle. However, in general
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the reflected signal will contain RHCP and LHCP power. The
scalars αR,l ∈ C and αL,l ∈ C account for the magnitude
and phase of the RHCP and LHCP signal of the l-th path after
reflection. They depend on the angle of reflection, the reflector
material and the number of reflections [10]. Using the above
descriptions, the spatially structured dual polarization model
can be described by

bl =


γ0

[
sR,c (φ0, θ0)

sL,x (φ0, θ0)

]
for l = 0

γl

[
αR,lsR,c (φl, θl) + αL,lsR,x(φl, θl)

αL,lsL,c (φl, θl) + αR,lsL,x (φl, θl)

]
for l = 1 . . . L

. (3)

While the LOS signal is RHCP only, the multipath signal is a
weighted sum of a RHCP and LHCP signal and both have to
be considered in the multipath spatial signature. Equation (3)
is parametrized by

ξMP,s =
[
τ T,γT,φT,θT,αT

R,α
T
L

]T ∈ C(4(L+1)+2L), (4)

where γ = [γ0, . . . , γL]
T ∈ CL+1 contains the complex

magnitudes which account for path loss and antenna gain and
φ = [φ0, . . . , φL]

T ∈ RL+1 and θ = [θ0, . . . , θL]
T ∈ RL+1

contain the azimuth and elevation AoA. The vectors αR =
[αR,1, . . . , αR,L]

T ∈ CL and αL = [αL,1, . . . , αL,L]
T ∈ CL

contain the complex reflection coefficients.

III. CORRELATED PATH MODEL

The optimum estimator for τ0 in the structured multipath
model is the maximum-likelihood (ML) estimator which es-
timates all parameters in (4). However, this estimator has to
perform a model order estimation and must determine the ac-
tual LOS delay from all other multipath delays. Moreover, this
estimator has to cope with a number of nuisance parameters.
To avoid these problems, we propose the CP model in the
following. The CP model describes the temporal correlation
between the LOS and multipath signal as

ρi = E [c (t− τ0) c (t− τi)] (5)

to divide the multipath into a part correlated and a part
uncorrelated with the LOS. Additionally, we assume

E [c (t− τ1)] = E [c (t− τ0)] (6)
E [c (t− τ1) c (t− τ1)] = E [c (t− τ0) c (t− τ0)] = 1. (7)

In the case of only one multipath, i.e. L = 1, the multipath
signal can be decomposed:

b1c (t− τ1) = ρ1b1c (t− τ0) +
√

1− ρ1b1u1(t), (8)

where u1(t) is an arbitrary stochastic process with zero mean
and variance one. In the case of many multipaths, i.e. L > 1,
the multipath signal can be decomposed as

L∑
l=1

blc (t− τl) =
L∑
l=1

ρlblc (t− τ0) +
L∑
l=1

√
1− ρ2

l blul(t).

(9)
In the following we assume that the multipath components are
closely spaced in time and therefore are highly correlated, i.e.
ρ ≈ ρ1 ≈ . . . ≈ ρL. Therefore the multipath signal can be
expressed by the rank-one approximation

L∑
l=1

blc (t− τl) ≈ ρbCPc (t− τ0) +
√

1− ρ2bCPu (t) . (10)

(10) is the unstructured CP model with parametrization

ξCP,u =
[
τ0, b

T
0, b

T
CP, ρ, σ

2
η

]T ∈ C(3+4M), (11)

where σ2
η is the spatial noise power and the received signal is

y = (b0 + ρbCP) c (t− τ0) +
√

1− ρ2bCPu(t) + σηη (t) . (12)

Using (3), the structured CP model parametrization is

ξCP,s =
[
τ0, γ0, φ0, θ0, b

T
CP, ρ, σ

2
η

]T ∈ C(6+2M). (13)

Note, that (13) does not incorporate the structured multipath
parameters φl, θl,αR and αL.

IV. PARAMETER ESTIMATION

In the following, we assume that the received signal is
sampled with a sampling rate fs = 2B, where B is the receiver
bandwidth, and N samples are collected in a matrix such that

Y = [y [Ts] ,y [2Ts] , . . . ,y [NTs]] ∈ C2M×N . (14)

A. Estimation of the Unstructured Model

Without loss of generality, we assume that the receiver
noise is spatially i.i.d. Gaussian noise and therefore Cη =
σ2I2M . As we assume that Cη is known by measurement this
can be achieved by pre-whitening [15, p. 44]. The optimum
estimator for (11) is the ML estimator which maximizes the
probability density function (pdf) p(Y |ξCP,u). In the following
we assume u(t) as temporally white Gaussian as in GNSS
applications ση >>

√
1− ρ2 and therefore the influence of

u(t) is small in comparison to η(t). Additionally, this allows
us to employ the simple ML estimator

ξ̂CP,u = arg max
ξCP,u

1

πMNdet (CCP (ξCP,u))
N

(15)

·exp
(
−tr
(
(Y−Mu (ξCP,u))

H
C−1

CP (ξCP,u) (Y−Mu (ξCP,u))
))

with mean and covariance matrix

Mu (ξCP,u) = (b0 + ρbCP) cT (τ0) (16)
CCP (ξCP,u) =

(
1− ρ2

)
bCPb

H
CP + σ2

ηI2M , (17)

where c (τ0) = [c (Ts − τ0) , . . . , c (NTs − τ0)]
T.

1) Derivation of the ML-Estimator: An equivalent problem
to (15) is given by the maximization of the log-likelihood
function l (Y |ξCP,u) = log(p(Y |ξCP,u)):

ξ̂CP,u = arg max
ξCP,u
−N log det (CCP (ξCP,u)) (18)

−tr
(
(Y −Mu (ξCP,u))

H
C−1

CP (ξCP,u) (Y −Mu (ξCP,u))
)
.

For the spatial signatures b0 and bCP, (18) can be solved using
the derivative of the log-likelihood function [16, p.563]. Setting
the derivative of (18) with respect to b0 to zero
∂l(ξCP,u|Y )

∂b0
= 2C−1

CP (ξCP,u)
(
Y − (b0 − ρbCP) cT(τ0)

)
c(τ0) = 0 (19)

and solving for b0 yields the estimate

b̂0 =
Y c(τ0)

‖c(τ0)‖2
− ρbCP. (20)
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Inserting (20) into (18) and taking the derivative with respect
to bCP yields

∂l (ξCP,u|Y , )|b0=b̂0

∂bCP
=−2N

(
1− ρ2

)
C−1

CP (ξCP,u) bCP (21)

+2
(
1−ρ2

)
C−1

CP (ξCP,u)B(τ0)C−1
CP (ξCP,u)bCP,

where the matrix

B (τ0) =
(
Y − Y c(τ0)cT(τ0)

‖c(τ0)‖2

)(
Y − Y c(τ0)cT(τ0)

‖c(τ0)‖2

)H
(22)

is equivalent to the ML estimate of the noise covariance matrix
CCP,u. Setting (21) to zero and inserting (17) we get

bCPb
H
CP=

B(τ0)
N − σ2

ηI2M

1− ρ2
. (23)

A reasonable solution for bCP can be found by an eigenvalue
decomposition in which λmax denotes the maximum eigenvalue

of
B(τ0)
N −σ2

ηI2M
1−ρ2 . The estimate of bCP is therefore given by

b̂CP
(
ρ, σ2

η

)
= vmax. (24)

Inserting (24) into (18) and transforming into a minimization
problem allows to formulate the final optimization problem[
τ̂0, ρ̂, σ̂

2
η

]
= (25)

arg min
τ,ρ,σ2

η

N log det
((
σ2
ηI2M +

(
1− ρ2

)
b̂CP

(
ρ, σ2

η

)
b̂CP

(
ρ, σ2

η

)H
))

+tr
(
B(τ0)

(
σ2
ηI2M +

(
1− ρ2

)
b̂CP

(
ρ, σ2

η

)
b̂CP

(
ρ, σ2

η

)H
)−1

)
,

which has to be solved jointly for τ̂0, ρ̂ and σ̂2
η . In the following

a closed form solution for the case that all eigenvalues of the
receiver noise covariance matrix Cη are equal is presented.

2) Solution for Uniform Eigenvalues of Cη: In the case
of uniform eigenvalues λη for Cη before pre-whitening and
‖bCP‖2 = 1, the largest eigenvalue of (23) is λ−1

η while all
other eigenvalues are zero in the ideal case. This allows a
closed form expression for σ2

η and ρ to be determined.
Considering the matrix (23) we notice that it is of the form
X = Z − αIM , where

Z =
B (τ0)

N (1− ρ2)
(26)

α =
σ2
η

1− ρ2
. (27)

The eigenvalues of X are in general given by [15, p. 31]

λX,i = λZ,i − α. (28)

Therefore, the following system of equations holds

λ−1
η =

λB,1
N (1− ρ2)

−
σ2
η

1− ρ2

0 =
λB,i

N (1− ρ2)
−

σ2
η

1− ρ2
for i = 2 . . . 2M. (29)

Let λB,1 ≤ λB,2 ≤ . . . ≤ λB,2M be the sorted eigenvalues of
B(τ̂0). (29) can be solved by

[
σ̂2
η

1− ρ̂2

]
=


N Nλ−1

η

N 0
...

...
N 0


+ 

λB,1
λB,2
...
λB,2M

 (30)

in the minimum mean-squared error (MMSE) sense. Inserting
(30) into (25) yields the solution for τ̂0

τ̂0 = arg min
τ0

(
N log det

((
σ̂η(τ̂0)2I2M +

(
1− ρ̂(τ̂0)2

) (31)

·b̂CP
(
ρ̂(τ̂0), σ̂η(τ̂0)2

)
b̂CP

(
ρ̂(τ̂0), σ̂η(τ̂0)2

)H
))

+ tr
(
B(τ0)

(
σ̂η(τ̂0)2I2M +

(
1− ρ̂(τ̂0)2

)
b̂CP

(
ρ̂(τ̂0), σ̂η(τ̂0)2

)
b̂CP

(
ρ̂(τ̂0), σ̂η(τ̂0)2

)H
)−1

))
which can for example be found with a line-search algorithm.

B. Estimation of the Structured Model

While improving the estimation performance for τ0, a
structured model also yields the AoA of the LOS. The pa-
rameters of the structured model (13) can be calculated using
EXIP [4], which allows the structured parameters ξCP,s to be
derived from the unstructured estimates ξ̂CP,u:

ξ̂CP,s = arg min
ξCP,s

[
ξ̂CP,u − f (ξCP,s)

]T
W
[
ξ̂CP,u − f (ξCP,s)

]
, (32)

where W is the Fisher information matrix (FIM) of (12)

[I (ξCP,u)]ij = E

[
∂2l (Y |ξCP,u)

∂ξCP,u∂ξT
CP,u

]
. (33)

EXIP performs a Taylor approximation of ξCP,s around ξ̂CP,u.

C. Real-valued Parametrization

We transform the parametrizations of (11) and (13) to their
real-valued equivalents by applying

a ∈ C2M×1 →
[
Re (a)
Im (a)

]
∈ R4M×1, (34)

i.e. each complex number is split into its real and imaginary
part. σ2

η and τ0 are decoupled in the FIM and therefore σ2
η

has no impact on the EXIP estimate of τ0. The resulting
parametrizations for EXIP are given by

ξ̄CP,s =
[
τ0,Re (γ0) , Im (γ0) , φ0, θ0,Re (bCP)

T
, Im (bCP)

T
, ρ, σ2

η

]T
∈ R(7+4M)×1 (35)

ξ̄CP,u =
[
τ0,Re (b0)

T
, Im (b0)

T
,Re (bCP)

T
, Im (bCP)

T
, ρ, σ2

η

]T
∈ R(3+8M)×1. (36)

The mapping function from the structured to the unstructured
parametrization ξ̄CP,u = f

(
ξ̄CP,s

)
is

ξ̄CP,u = f
(
ξ̄CP,s

)
(37)

=

[
τ0, ρ,Re (bCP)

T
, Im (bCP)

T
,

([
Re (s (θ0, φ0)) −Im (s (θ0, φ0))
Im (s (θ0, φ0)) Re (s (θ0, φ0))

] [
Re (γ0)
Im (γ0)

])T
]T

.

In order to simplify the notation, parameters which are mapped
one-to-one are denoted

ξ̄u,1 = ξ̄s,1 =
[
τ0, ρ,Re (bCP)

T
, Im (bCP)

T
]T
, (38)

while the parameters which are mapped with a function are

ξ̄u,2 = f
(
ξ̄s,2
)

=

[
Re (s (θ0, φ0)) −Im (s (θ0, φ0))
Im (s (θ0, φ0)) Re (s (θ0, φ0))

] [
Re (γ0)
Im (γ0)

]
= S

[
Re (γ0)
Im (γ0)

]
, (39)

i.e. ξ̄s,2 = [Re (γ0) , Im (γ0) , φ0, θ0]
T in the following. Addi-

tionally, W ˆ̄ξu,i,
ˆ̄ξu,j

= [Iu (ξu)]ξ̄u,i,ξ̄u,j

∣∣∣
ˆ̄ξu,i,

ˆ̄ξu,j

denotes the respec-

tive sub-matrices of the weighting matrix W .
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1) Solution of the EXIP Equation: The real-valued opti-
mization problem is given by

ˆ̄ξCP,s = arg min
ξ̄s,1ξ̄s,2

[
ˆ̄ξCP,u − f

(
ξ̄CP,s

)]T
W
[

ˆ̄ξCP,u − f
(
ξ̄CP,s

)]
. (40)

After solving (40) with respect to ˆ̄ξs,1 we obtain

ˆ̄ξs,1 =

[
ˆ̂τ0, ˆ̂ρ,Re

(
ˆ̂
bCP

)T
, Im

(
ˆ̂
bCP

)T
]T

= ˆ̄ξu,1 +

(
ˆ̄ξu,2 − S (θ0, φ0)

[
Re (γ0)
Im (γ0)

])T

W ˆ̄ξu,2,
ˆ̄ξu,1
W−1

ˆ̄ξu,1,
ˆ̄ξu,1
. (41)

Note, that the second part of (41) behaves like a correction
term for the unstructured estimate ˆ̄ξu,1. Inserting (41) into (40)
and solving with respect to [Re (γ0) , Im (γ0)]

Tyields[
Re (γ̂0)
Im (γ̂0)

]
=
(
ST (θ0, φ0)ΠS (θ0, φ0)

)−1
ST (θ0, φ0)Π ˆ̄ξu,2, (42)

where the matrix Π denotes the Schur-complement of W

Π = W ˆ̄ξu,1,
ˆ̄ξu,1
−W ˆ̄ξu,1,

ˆ̄ξu,2
W−1

ˆ̄ξu,2,
ˆ̄ξu,2
W T

ˆ̄ξu,2,
ˆ̄ξu,1
. (43)

Inserting (41) and (42) into (32), we can formulate the follow-
ing final optimization problem[
φ̂0, θ̂0

]T
= arg min

φ0,θ0,

ˆ̄ξT
u,2

(
Π−ΠTS (θ0, φ0) (44)

·
(
S (θ0, φ0)

T
ΠS (θ0, φ0)

)−1

S (θ0, φ0)
T
Π

)
ˆ̄ξu,2.

Equation (44) is a non-linear optimization problem which

provides the estimates
[
φ̂0, θ̂0

]T
. Inserting these into (42)

results in the estimate for the amplitudes [Re (γ0) , Im (γ0)]
T.

Inserting (44) and (42) into (41) yields the estimate ˆ̄ξs,1 and
therefore a refined estimate for the LOS delay τ0 and the other
parameters of the spatially unstructured model. With EXIP we
get a closed form solution for all structured parameters except
[φ0, θ0]

T. In order to determine the azimuth and elevation
angle, a search over (44) has to be performed. One possible
method is to use a two-dimensional line-search algorithm over
the domain of [φ0, θ0]

T. A method that includes a closed form
solution for centro-symmetric ULAs is given in [4].

V. SIMULATION RESULTS

We assume a GPS C/A code with chip duration Tc =
997.52 ns, bandwidth B = 1.023 MHz and Nd = 1023 chips
per code period as transmit signal c(t). The receive array is a
2 × 2 URA with λ/2 spacing, illustrated in Figure 2. It has
a 10 dB separation between RHCP and LHCP channel, i.e.
sx = 0.1. The noise is spatially white Gaussian, i.e.Cη = I2M

and the RHCP channel signal-to-noise ratio (SNR) is

SNR = C/N0 − 10 log10 (2B) + 10 log10 (Nc) , (45)

with carrier-to-noise density C/N0 = 46 dB-Hz and number
of observed code periods Nc = 400. During the observation
interval, the channel parameters are assumed to be constant
and the received signal is generated by applying (2) and (3).
In the following, the estimation performance of the CP model
is evaluated in different scenarios. In all scenarios the LOS
azimuth AoA is φ0 = 108◦ while the elevation is θ0 = 72◦

x

y

zenith

λ/2

λ/2

θ

φ

antenna element
incident wave

Figure 2. Antenna array orientation
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Figure 3. Performance in dependency of the multipath elevation angle θ1

from the zenith. As a measure for the estimation performance
of the CP model we employ the RMSE of the estimate τ0

RMSE =

√√√√ 1

NMC

NMC∑
i=1

(τ0 − τ̂0)
2
, (46)

after applying EXIP. For comparison we also consider the
RMSE if a single path (SP) model [5] is used for parameter
estimation. This is equivalent to ρ = 0. Therefore, the noise
covariance matrix E

[
ηspη

H
sp

]
= Cηsp has to be estimated.

Additionally, the Cramér Rao lower bound (CRLB) of a
hypothetical approach that estimates the multipath (MP) model
(4) is shown.

A. Spatial Correlation Dependency

First, we evaluate the influence of the spatial correlation
between the LOS and one multipath signal

R (b0, b1) = bH
0 b1 (47)

on the estimation performance. Figure 3 shows the RMSE
and CRLB of the LOS delay estimate τ̂0 over the multipath
elevation angle θ1 for ∆τ = τ1 − τ0 = 0.6Tc. The estimation
performance for all estimators follows the spatial correlation
R (b0, b1). In the case of low elevation, i.e. θ1 approximately
90◦ or −90◦, using dual polarization in combination with the
CP model is most beneficial for the estimation performance.
This is due to the fact, that for a high spatial correlation, the
LOS and multipath signal are not spatially separable. Dual
polarization here introduces an additional dimension which
helps to separate the LOS and multipath signal and therefore
improves the estimation performance.
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Figure 5. Performance in dependence of the mean delay difference ∆τ̄

B. Delay Difference Dependency

Figure 4 shows the RMSE and CRLB for the estimate
of τ0 for different delay differences ∆τ for the case of one
multipath signal with φ1 = 72◦ and θ1 = −84◦, i.e. where
the LOS and multipath are highly spatially correlated. Again,
dual polarization estimation is in general beneficial for the
estimation of τ0. Estimation with the CP model has a slightly
better performance than estimation with the SP model in the
case of ∆τ ≈ 0.5Tc.
Figure 5 shows the RMSE and CRLB of the estimate τ̂0 for
L = 6 multipath signals over the mean delay difference ∆τ̄ =
1
L

∑L
l=1 τl−τ0. For the multipath delays τl−τl+1 = 0.01Tc ∀ l

holds. The mulitpath azimuth AoAs are φ1 = 72◦ while the
elevation AoAs θl are approximately 90◦ or −90◦. Therefore,
the LOS and multipath are highly spatially correlated. In this
scenario dual-polarization in general has better performance
than single-polarization estimation. Especially for ∆τ̄ ≈ 0.5Tc
the CP model outperforms the SP model.

VI. CONCLUSION

We have assessed the problem of multipath mitigation
with dual polarization estimation. We have introduced a dual
polarization multipath model which comprises polarized wave
propagation effects and dual polarization receive array prop-
erties. In order to reduce the number of model parameters
for dual polarization signal processing, the CP model was
introduced. The CP model describes the temporal correlation
between the LOS and multipath signal and can efficiently
be estimated in a two-step approach. We have shown that
dual polarization estimation can outperform single polarization

estimation in GNSS scenarios. Especially in cases where LOS
and multipath signal are highly spatially correlated, dual po-
larization estimation can add an additional degree of freedom
which allows one to separate the LOS from the multipath
signal. In the case of several multipath signals the CP model
achieves a higher estimation performance than the SP model.
In order to get closer to the multipath CRLB, an estimation
of the full multipath model can be performed. However, in
this case different problems arise. As in single-polarization
scenarios, the model order has to be estimated and the LOS
delay has to be determined from all estimated delays. Due to
the dual-polarization model, the reflection coefficients of every
multipath also have to be estimated, an issue that is avoided
with the CP model. Due to these problems a real multipath
estimator will also not always achieve the multipath CRLB.
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