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Abstract—Antenna arrays can be made compact when the
spacing between adjacent antennas is reduced to less than half
of the wavelength. This facilitates the deployment of multiple
antennas to communication devices that are limited in their
physical dimensions, yet introduces significant spatial correlation
between the channels as well as antenna mutual coupling. With
careful design of a matching network at the receiver front-end,
the antennas can be decoupled and superior performance can be
achieved as compared to half-wavelength arrays. In this work,
we investigate the design optimization of a multi-antenna receiver
with a compact uniform linear array, where we try to find
the optimal antenna spacing and the number of antennas that
lead to the maximal channel capacity and energy efficiency of
the system. Moreover, we take into account the impact of A/D
conversion with limited precision, which results in a trade-off
between quantization error and power consumption. Simulation
results accentuate the advantage of using small compact antenna
arrays and low bit resolutions for the A/D converters.

I. INTRODUCTION

Multi-antenna communication systems promise significant
improvements in the achievable data rate and reliability over
single-antenna systems [1][2]. In addition to the higher hard-
ware complexity and more energy consumption, the space
required to deploy the multiple antennas impose another lim-
itation on multi-antenna systems, which is even more critical
to portable devices and wireless sensors. It has been common
practice to use half of the wavelength as the spacing between
adjacent antenna elements for linear antenna arrays, which
effectively limits the detrimental impact of spatial correlation
[3][4]. When the antenna elements are moved closer to a spac-
ing below or well below half of the wavelength, pronounced
spatial correlation between the channels as well as antenna
mutual coupling are introduced [5][6]. Contrary to some
previous belief, antenna mutual coupling can be beneficial
given that appropriate impedance matching is employed. In
[7], the authors developed a linear multiport model for multi-
antenna systems which is in consistency with the underlying
physics. Based on this model, an impedance matching network
which decouples the receive antennas in a compact array of
isotrops is derived analytically. The paper further presents
a compact signal model that results from the employment
of the matching networks, which provides the desired level
of abstraction for subsequent information theoretic studies.
Exploiting this theoretical framework, we are able to perform
numerical optimizations on the array configuration including
the antenna spacing and the number of antennas, with the goal

of maximizing the ergodic channel capacity and/or the energy
efficiency of the system. Part of this investigation has been
presented in our previous work [8].

The major new contribution of this paper is to include the
analog-to-digital converter (ADC) into the design optimization
of the multi-antenna receiver. The important role that the
A/D conversion plays in a communication system has called
more and more research attention due to the design goals of
achieving higher and higher data rate, and/or of reducing the
complexity and power consumption of the system. It has been
reported [9] that the ADC consumes a significant amount of
power when operating at high sampling rate and resolution,
hence becoming a bottleneck in the system performance. Based
on the results of capacity degradation with low-precision A/D
conversion [10][11] and the power consumption model of the
ADC [12], we are able to exploit and quantify the trade-
off between quantization loss and power dissipation, which is
governed by the bit resolution that is chosen for the ADC. To
this end, a joint optimization of the compact antenna array and
the subsequent A/D conversion operation can be formulated,
which aims at maximizing the energy efficiency of the system
defined by the number of successfully conveyed information
bits per consumed Joule of energy at the receiver. A number of
questions may arise upon this conception such as, whether and
to which extent will the optimal antenna spacing be influenced
by the limited precision A/D conversion, can the compact array
and low-resolution ADC design be applied at the same time.
In this work we seek the answers to those questions, which are
certainly of interest to real system deployment and operation.

The rest of the paper is organized as follows: in Section II
we introduce the SIMO system model starting from the circuit
theoretic linear multiport model, coming then to the informa-
tion theoretic description of the system which facilitates the
study of the impacts of low-precision A/D conversion, and
finally giving a power consumption model for the receiver.
The energy efficiency of the system is defined in Section III,
and its maximization with respect to the array configuration
and the ADC resolution is formulated and analyzed. Numerical
simulation results are presented in Section IV, where a number
of interesting insight on the design and operation of the system
are given. Lastly, the paper is summarized and concluded in
Section V.

Notations: we use small boldfaced letters to represent vec-
tors, and big boldfaced letters to represent matrices throughout
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the paper. The symbol 1M denotes the identity matrix of
dimension M ×M . For an arbitrary matrix A, AT and AH

stand for the transpose and the Hermitian of A. For a square
matrix A, diag(A) denotes the diagonal matrix with the same
diagonal elements as A.

II. SYSTEM MODEL

We consider a single-input multiple-output (SIMO) system
which employs a uniform linear array of closely spaced receive
antennas. In the first part of this section, we establish the input-
output relationship of the system before quantization by using
circuit theory [7], which captures the essential characteristics
and impacts of the compact antenna array, and then connect
the involved physical quantities with the abstractions that are
commonly used in information theory. In the second part, we
introduce the modeling of the A/D conversion based on the
Bussgang theorem [13][11], which enables us to compute a
lower bound on the ergodic capacity of the quantized channel
as a function of the bit resolution employed by the A/D
converters. Lastly, we discuss the power consumption of the
receiver as dependent on the key design parameters.

A. Multiport model and circuit analysis

The physical modeling of the system before quantization
of the received signal, as demonstrated with Figure 1, is based
on the circuit theoretic concept of linear multiports [7], a
tool of which has been used to bridge the gap between the
physical and information theoretic descriptions of a multi-
antenna communication system. Here we briefly review the
modeling process presented in the aforementioned paper, with
the necessary definitions, derivations, and conclusions.

1) Transmit side: Shown in the very left of Figure 1,
the generation of the transmit signal is modeled by a volt-
age source whose complex voltage envelope is denoted with
vG ∈ C · V. In order to deliver the maximum power to the
transmit antenna, the subsequent impedance matching network
ZMT ∈ C2×2 ·Ω is employed which should guarantee that the
impedance seen at its input is equal to the resistance R that is
connected in serial with the voltage source. With such power
matching strategy, we have

vT =
1

2
vG, Ptx = E

[

Re{v∗TiT}
]

=
E
[

|vG|2
]

4R
, (1)

where Ptx stands for the power that flows into the matching
network, which is equivalently the power delivered to the
transmit antenna given the assumption of a lossless matching
network.

2) Antenna mutual coupling: The mutual coupling between
the transmit and receive antennas is captured by the impedance
matrix ZA ∈ C(M+1)×(M+1) · Ω, which describes the linear
(M + 1) port according to

[

vA
vB

]

=

[

ZAT ZATR

ZART ZAR

] [

iA
iB

]

(2)

≈
[

ZAT 0
T

ZART ZAR

] [

iA
iB

]

. (3)

Notice that in (2), the matrix ZA is partitioned into the transmit
impedance ZAT, the receive impedance matrix ZAR, and the

transimpedance vectors ZART and ZATR. By arguing that the
signal is greatly attenuated when propagating from the trans-
mitter to the receiver, we make the unilateral approximation
in (3) since ||ZATR||F ≪ ||ZAT||F. The direct consequence
that vA = ZATiA implies the independence of the transmitter
from the receiver, thus significantly simplifies our analysis.

3) Receive side: We assume that the antennas in our system
are isotropic radiators for simplicity of the analytical analysis.
Although they do not exist in practice, there are real kinds
of antennas such as short dipoles and half-wavelength dipoles
that come close in performance to the isotropic radiators in our
context. The background radiation picked up by the receive
antennas is modeled by the M voltage sources with complex
voltage envelopes ṽN,1, . . . , ṽN,M , which form the vector ṽN ∈
CM×1 · V. We term this noise as the extrinsic noise so as to
distinguish from the noise caused by the circuit components
of the receiver. Assuming isotropic extrinsic noise, we have
the covariance matrix of ṽN given as

E
[

ṽNṽ
H
N

]

= β̃R2
r (C + κ1M

)

,

where Rr and Rd are the radiation resistance and the dis-
sipation resistance of the antennas, respectively. The scalars

β̃ ∈ R ·A and κ ∈ R are defined as

β̃ =
4kTAB

Rr
, κ =

Rd

Rr
,

where k denotes the Boltzmann constant, TA denotes the noise
temperature of the antennas, and B is the signal bandwidth.
Let the receive antenna elements be enumerated sequentially
with integer numbers 0, 1, . . . ,M−1. Based on the isotropicity
assumption, the matrix C can be derived as

C =









1 j0(d01) j0(d02) j0(d03) · · ·
j0(d10) 1 j0(d12) j0(d13)

. . .
...

. . .
. . .

. . .
. . .









with j0(x) =
sin kx

kx
, k =

2π

λ
,

where λ is the signal wavelength and dij is the distance
between antenna i and antenna j, i, j = 0, 1, . . . ,M − 1.
Note that C is a real-valued matrix with diagonal elements
of unity. For the ULA, the distance between adjacent antennas
is identical. Denoting that uniform spacing with d, we simply
have dij = |i− j|d, which renders the matrix C Toeplitz and
positive definite. When d is multiples of half wavelength, C
reduces to the identity matrix.

At the receive side, an impedance matching network is
employed to decouple the antennas and improve the receive
signal-to-noise ratio (SNR). Let the impedance matrix be
ZMR ∈ C2M×2M · Ω and assume likewise that the matching
network is lossless. The desired matching strategy, the so-
called noise matching, further requires careful modeling of
the intrinsic noise caused by the functional components at
the receiver front-end, among which the low-noise amplifiers
(LNA) have the most important contribution. For each receive
branch, we model the LNA and all subsequent circuitry as a
two port, and use one voltage source and one current source at
the input of the port in order to fully describe the properties of
the intrinsic noise. Let the complex voltage envelopes and the
complex current envelopes at all branches be M -dimensional
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Figure 1. Linear multiport model of a SIMO system

vectors vN and iN, respectively, and the input impedance of
each LNA be equal to R. We define the following covariance
matrices for the intrinsic noise

E
[

iNi
H
N

]

= β 1M ,

E
[

vNv
H
N

]

= βR2
N 1M ,

E
[

vNi
H
N

]

= ρβRN 1M ,

with the noise resistance RN and the noise correlation coeffi-
cient ρ ∈ C given by

RN =

√

E
[

|vN,j |2
]

E
[

|iN,j|2
] , ρ =

E
[

vN,ji
∗
N,j

]

E
[

|vN,j |2
]

E
[

|iN,j|2
] ,

∀j ∈ {0, . . . ,M − 1}. The above definitions are based on the
assumptions that the circuitry in each receive branch possesses
identical statistical properties and that the noise sources are
independent from each other. For ρ 6= 0, the noise voltage
envelope and the noise current envelope originated from the
same amplifier are correlated.

4) Input-output relation: The complex voltage envelopes
vL,1, . . . , vL,M that appear at the loads form the vector vL ∈
CM×1 · V, which, due to the linearity of the circuit, can be
expressed as a linear function of the source voltage envelope

vG with an additive noise term n ∈ CM×1 ·
√
W as

vL = d vG +
√
Rn, (4)

where the scaling of n by
√
R ensures that ||n||2 has the

physical dimension of power. In the meanwhile, excluding
signal generation, the addition of extrinsic as well as intrinsic
noise, we may write for the multiport defined by the impedance
matching network of the transmitter, the transmit and receive
antennas, and the impedance matching network of the receiver
in the noise-free case the following relation

[

vT
vR

]∣

∣

∣

∣

ṽN=0

=

[

ZT 0
T

ZRT ZR

] [

iT
iR

]

.

With power matching at the transmitter and noise matching at
the receiver, we should have

ZT = R,

ZR = Zopt 1M = RN

(

√

1− Im2{ρ}+ j Im{ρ}
)

1M

with optimized ZMT and ZMR, where Zopt is the transformed
antenna impedance that leads to the minimum noise figure
NFmin of each branch of the receiver front-end. It can then be
derived using circuit analysis that

d =

√

R ·Re{Zopt}
2(R+ Zopt)

Re{ZAR}−
1

2ZARTRe{ZAT}−
1

2 ,

n =

√
R

R+ Zopt

(

Zopt iN − vN + FRṽN

)

,

where FR = j
√

Re{Zopt}Re{ZAR}−
1

2 . Interestingly, it can
be noticed that the imaginary parts of ZAR and ZAT do not
play any role here; and for lossy isotropic radiators, we are
able to find their real parts in closed form as

Re{ZAT} = Rr +Rd = Rr(1 + κ),

Re{ZAR} = Rr C +Rd 1M = Rr(C + κ1M ),

which enables the calculation of the covariance matrix of the
noise vector n as

Rnn = E
[

nnH
]

=
RRr β̃NFminRe{Zopt}

|R + Zopt|2
· 1M . (5)

On the other hand, the transimpedance vector ZART can be
expressed as a weighted sum of receive array steering vectors
corresponding to each arriving path, where the weighting fac-
tors have the physical dimension of resistance and are inverse
proportional to the distances that the paths have traveled. For
a correlated Rayleigh fading channel, we can write ZART in
a compact manner as

ZART

Rr

√
1 + κ

=
√
αR

1

2 g, (6)
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where R ∈ CM×M is the so-called receive correlation matrix
with unit diagonal elements, α ∈ R+ resembles the average
gain of the propagation channel, and g ∈ CM×1 contains
i. i. d. standard complex Gaussian distributed elements. The
normalization in (6) renders the right-hand side dimensionless
and the vector d a concise form.

5) Spatial correlation model: Spatial correlation in the
received signals of a multi-antenna system is introduced by
sparse scattering in the propagation environment, and can be
more pronounced when the separation of the receive antennas
is not large enough. Taking into account that the scatterers
and reflectors on the way of propagation posses both different
azimuths and elevations, we employ in this work a 3D spatial
correlation model which is illustrated in Figure 2.

The reference antenna, namely antenna 0, is located at
the origin of the 3D coordinate frame. The receive signal is
assumed to arrive with a group of signal paths where the
central arriving direction is in parallel with the z-axis. Let
the angle of arrival (AoA) be the angle between the ULA-
axis and the direction from which the wavefront is impinging
on the array. Consequently, the end-fire direction refers to the
AoA of 0 degree, whereas the front-fire direction refers to the
AoA of 90 degrees. We further restrict the ULA-axis to lie in
the y-z plane and denote the mean AoA with θ0. Let the angle
deviation of a signal path from the z-axis be θ, and assume it
is continuously distributed on [ 0, ∆θ ]. On the other hand, the
angle between the x-axis and the projection of the signal path
to the x-y plane, denoted with φ, is continuously distributed
on [ 0, 2π ]. In Figure 2, we illustrate one signal path with the
straight red line. The corresponding AoA, denoted with ϕ, can
be obtained via

cosϕ = sin θ sinφ sin θ0 + cos θ cos θ0

using geometry, from which we can directly compute the array
steering vector

a(θ, φ) =
[

1 e−jkd cosϕ · · · e−j(M−1)kd cosϕ
]T

.

Assuming the signals impinge with uniform power density
(constant power per area), the spatial correlation feature of
the antenna array is captured by the matrix

R = ξ

∫ 2π

φ=0

∫ ∆θ

θ=0

sin θ · a(θ, φ)aH (θ, φ) dθdφ,

where the constant scalar ξ ∈ R+ normalizes the diagonal
elements of the matrix to unity. Note that the positive semi-
definite matrix R depends on the antenna spacing d and the
mean AoA θ0 via the array steering vector a, and is also
dependent on the angle spread of the multipath components

indicated by 2∆θ. The matrix R
1

2 as in (6) is a matrix square

root of R, that is, it satisfies R = R
1

2R
1

2
,H.

B. Information theoretic description

Our task now is to make clear the connection between
the circuit theoretic description of the SIMO system (4) and
the following description which is commonly found in the
information theory literature:

y = hx+ θ, (7)

x

y

z

O D

A

A′

θ0

ϕ

φ

θ

Figure 2. Obtaining a 3D spatial correlation model for a ULA of isotrops

where x ∈ C, h ∈ CM×1, and y ∈ CM×1 are termed
as the channel input, the vector of channel coefficients, and
the channel output, respectively. The additive noise is usually
assumed white and zero-mean complex circularly symmetric
Gaussian distributed. The covariance matrix of θ is given as

E
[

θθH
]

= σ2
1M with σ2 = 4kTABNFmin.

The transmit power in this context is conventionally defined as
Ptx = E

[

|x|2
]

. Comparing with (1) and (5), we easily come
to the mapping strategy

x =
vG

2
√
R
, θ =

√
σ2 R

−
1

2

nn n. (8)

Plugging vG as a function of x and n as a function of θ back
into (4), we further obtain, based on the equivalence of (4) and
(7), the following relations:

y =

√

σ2

R
R

−
1

2

nn vL,

h = 2
√
σ2 R

−
1

2

nn d

= ejϕRe{ZAR}−
1

2ZART Re{ZAT}−
1

2

= ejϕ
√
α (C + κ1M )−

1

2R
1

2 g,

where ejϕ = |R+Zopt|/(R+Zopt) contributes merely a phase
shift to all channel coefficients. Consequently, for a SIMO
system with a compact receive antenna array of lossy and
mutually coupled isotrops, we are able to write the input-output
relationship as

y = ejϕ
√
α (C + κ1M )−

1

2R
1

2 g x+ θ, (9)

given that power matching is employed at the transmitter,
noise matching is employed at the receiver, and isotropic
background radiation is received. The key impacts of the
compact antenna array are fully and conveniently reflected
in (9), which lays the basis of the subsequent modeling and
performance optimizations.
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Figure 3. SIMO receiver with linearized quantization operation

C. A/D conversion with limited precision

The received signal y ∈ CM×1 is continuous both in
time and magnitude, and needs to be converted to digital
format before further processing. There are two A/D converters
associated with each antenna to accomplish this, one for
the real part of the signal, and the other for the imaginary
part. We assume that the 2M A/D converters at the receiver
are identical and they employ the same bit resolution for
quantization, that is, the same number of bits to represent one
sample. We denote the bit resolution with b and assume that
b ∈ {1, . . . , bmax}, where bmax is the highest possible bit reso-
lution allowed by the system. By using the Bussgang theorem
[13], we are able to decompose the non-linear quantization
operation as a linear transformation plus an additive noise
which is uncorrelated with the input [11]. To this end, defining

A = (C+κ1M )−
1

2R
1

2 , we have the quantized receive signal
r ∈ CM×1 expressed as

r = (1− ρ)y + e

= (1− ρ)ejϕ
√
αAg x+ (1− ρ)θ + e

△
= h′x+ θ′, (10)

where h′, θ′ ∈ CM×1 as defined indicate the effective channel
vector and the effective noise vector, respectively. The real-
valued scalar ρ stands for the distortion factor of the quantiza-
tion, which is dependent on the bit resolution b and attains the
values given in Table I [14] for distortion-minimizing scalar
quantizers and Gaussian input signals. The quantization error
e and the effective noise θ′ have been shown [15] to possess
the covariance matrices

Ree = ρ(1 − ρ) diag(Ryy)

= ρ(1 − ρ)σ2 diag
(

γAggHAH + 1M

)

,

Rθ′θ′ = (1 − ρ)2Rθθ +Ree

= (1 − ρ)2σ2
(

1M + ρ
1−ρ diag

(

γAggHAH + 1M

))

,

where perfect channel state information (CSI) is assumed and
γ = αPtx/σ

2 denotes the average receive SNR.

Table I.DISTORTION FACTOR ρ FOR DIFFERENT BIT RESOLUTIONS b

b 1 2 3 4
ρ 0.3634 0.1175 0.03454 0.009497
b 5 6 7 8
ρ 0.002499 0.0006642 0.0001660 0.00004151

The mutual information between the channel input x and
the quantized output r achieves the minimum when the effec-
tive noise is Gaussian distributed. In that case, we obtain a
lower bound on the ergodic capacity of the quantized SIMO

channel in bit/sec/Hz as

CL = Eg

[

log2
(

1 + Ptxh
′HR−1

θ′θ′h
′
)]

= Eg

[

log2
(

1 + γ gHAH
(

1M

+ ρ
1−ρ diag

(

γAggHAH + 1M

))−1
Ag

)]

. (11)

This capacity lower bound has been proven tight in the low
SNR regime [11], and we use it here for the design opti-
mization due to the convenience and theoretical performance
limit it provides. Note that CL is a function of the antenna
spacing d and likewise a function of the number of receive
antennas M , where the dependency on the array configuration
is encapsulated by the matrix A.

D. Power consumption of the receiver

For wireless communications over short distances, which
is now more common due to the wide deployment of wireless
local area networks as well as femto- and picocells, power
consumption incurred by the circuits of the transceivers be-
comes non-negligible and even dominant in the total power
consumption of the system [16][17]. We employ here a con-
cise power consumption model for the multi-antenna receiver
which mainly addresses the impact of the number of antennas
and the bit resolution adopted by the ADC. The main con-
tributors to the power consumption of each RF chain of the
receiver include the LNA, the ADC, the mixer, and the receive
filter. Their contribution to the total power consumption of the
system grows linearly with the number of RF chains, which,
in our system design, is equal to the number of antennas. Part
of the baseband processing power might also depend on the
number of antennas, such as those used for channel estimation
[18]. Power consumption of other circuit components and
processing tasks is modeled as a constant c0. Addressing the
trade-off between power and quantization error, we give the
power dissipation of the ADC as a function of the employed
bit resolution b > 0:

PADC = cADC β · 2b,
where cADC is a constant parameter specific to the ADC
design [12]. The expression indicates that the power dissipation
of the ADC is proportional to the signal bandwidth and the
noise power spectral density, and grows exponentially with the
employed bit resolution. The remaining power consumption
of the system that is to be scaled with M is represented
by the constant c2. Consequently, we model the total power
consumption of the receiver in Watt as

P = M
(

2PADC + c2
)

+ c0 = M
(

c1 2
b + c2

)

+ c0, (12)

where c1 = 2cADC β. For the numerical simulations, we take
the values c0 = 0.2 Watt, c1 ∈ {0.01, 0.005} Watt, c2 = 0.05
Watt, bmax = 8, and B = 1 MHz with reference to [17].

III. ENERGY EFFICIENCY MAXIMIZATION

The energy efficiency (EE) of the multi-antenna receiver
under consideration can be measured by the bit / Joule metric,
i.e., the number of successfully received information bits
divided by the correspondingly consumed energy. In our case,
this metric is approximated with the ratio between the lower
bound on the ergodic capacity CL times the signal bandwidth

WSA 2015  •  March 3-5, 2015, Ilmenau, Germany

ISBN 978-3-8007-3662-1 5 ©  VDE VERLAG GMBH · Berlin · Offenbach, Germany



B and the power consumption of the receiver P for better
tractability:

EE : η =
BCL(d, b,M)

P (b,M)
, (13)

where CL and P can be computed according to (11) and (12),
respectively. It can be verified that η has the unit of bit / Joule.

In (13), we have explicitly given the dependency of EE
on the three design parameters: the spacing between adjacent
antennas d, the ADC resolution b, and the number of antennas
M . Let the optimal parameters leading to the best EE be
denoted with d∗, b∗, and M∗. The maximization of EE is a
non-convex problem obviously, since two of the optimization
variables, b and M , are integer-valued. Besides, concavity of
the capacity lower bound CL in d can neither be obtained
due to the oscillation pattern introduced by the sinc function
resided in the coupling matrix C . As a result, we propose to
solve the EE maximization problem by discretizing the domain
of d, and applying exhaustive search algorithms. Notice that
the power consumption P does not depend on the antenna
spacing d, which suggests that d∗ is the capacity-maximizing
antenna spacing and can be obtained as a function of b and M ,
by using one-dimensional search. The joint optimization of b
and M is also not extremely complex, as b is constrained to
a very limited set, and the search for M∗ can be accelerated
by effective section techniques if necessary.

IV. NUMERICAL RESULTS AND ANALYSIS

We perform numerical simulations to learn the optimal
antenna array and ADC configuration given different system
parameters, and present a number of results in this section. To
evaluate the capacity lower bound CL, Monte Carlo simula-
tions are exploited and the results we show in the following
are averaged over 2× 105 independent channel realizations.

A. Capacity-maximizing antenna spacing

As discussed before, the optimal antenna spacing d∗ max-
imizes the lower bound on the ergodic capacity for given M
and b. For the unquantized case, we have learned that d∗ < λ/2
for θ0 = 0, and λ/2 < d∗ < λ for θ0 = π/2. Moreover, for
θ0 = 0, the optimal spacing increases with M and approaches
eventually λ/2 [8]. With Figures 4 and 5 we illustrate the
situation with quantized receive signal, where in the search of
d∗, the stepsize of 0.005λ has been used. The variation of the
capacity lower bound in d is shown in Figure 4 for the end-
fire and front-fire directions, respectively. We see that although
having only coarsely quantized signals leads to significant loss
in capacity, the shape of the curves and the positions of the
peaks and valleys remain very much the same. With different
numbers of antennas and bit resolutions, we have observed
that the optimal antenna spacing is almost independent of the
ADC resolution employed. When comparing the results of
using 1-bit ADC and infinite resolution, some difference in
d∗ can be found, which is yet small enough to be neglected.
In addition, notice that the capacity lower bound in the case
of b = 4 is nearly as good as the true capacity when having
no quantization, which suggests the unnecessariness of using
very high bit resolution for the ADC, and also verifies to some
extent the effectiveness of employing the capacity lower bound.
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Figure 4. Lower bound on ergodic capacity CL in bit/sec/Hz as dependent
on the antenna spacing d (M = 4, γ = 0 dB, κ = 0.01, ∆θ → 0)

Similar to the case without quantization, the optimal an-
tenna spacing is much influenced by the antenna loss factor κ
but very insensitive to the average receive SNR γ, as indicated
by Figure 5(a). Notice that in the case of θ0 = 0, although d∗

approaches λ/2 with increasing M , the difference in capacity
of employing optimized array and half-wavelength array does
not change drastically with M . This can be observed from
Figure 5(b), which emphasizes the necessity of optimizing the
spacing for a compact ULA of all sizes.

B. Energy efficiency maximizing configuration

For a given bit resolution, since the capacity lower bound
increases with reducing rate in M whereas the power consump-
tion grows linearly in M , it can be expected that η as a function
of M first increases and then decreases. The value of M at the
peak position decreases with improving receive SNR as shown
by Figure 6, i.e., with good channel conditions, less antennas
are required for achieving the best energy efficiency, while
with poor channel conditions, more antennas can be deployed.
The bit resolution of the ADC also plays an important role
here, making a joint optimization of M and b requisite.

With optimized d and M , the choice for the bit resolution
that maximizes the EE depends on the average receive SNR:
in general, higher bit resolution can be afforded with good
channel conditions, while coarse quantization is more favorable
with poor channels. The optimized multi-antenna receiver
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Figure 5. Optimal antenna spacing d∗ and lower bound on ergodic capacity
CL as dependent on the number of antennas M (θ0 = 0, ∆θ = π/6)

employs a small number of antennas and low ADC resolution
for the set of parameters we have chosen, as shown in Figure 7,
which demonstrates the advantage of using small compact
antenna arrays when EE is the main performance consideration
while low-cost ADC can be employed at the same time.
Although the optimization results can be different if other
values for the system parameters are taken, the tendency shown
here is representative for the communication scenario under
investigation.

V. CONCLUSION

How to optimally configure the compact antenna array and
the subsequent A/D conversion to achieve the maximal energy
efficiency is the pivot of discussion in this paper. We have
focused on a SIMO receiver with a uniform linear array of
isotrops, and employed the multiport model to analytically
address the impact of antenna mutual coupling. The maximiza-
tion of energy efficiency, approximated by the ratio between a
lower bound on the ergodic capacity of the quantized channel
and the power consumption of the receiver, is formulated with
respect to the optimization of antenna spacing, the number
of antennas, and the ADC resolution. Results from numerical
simulations provide the following conclusions:

- The capacity-maximizing antenna spacing depends
mainly on the antenna loss factor and the mean angle
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Figure 6. Optimizing the number of antennas with fixed bit resolution (θ0 =

0, ∆θ = π/6, κ = 0.01, c1 = 0.01)

of arrival, and is almost independent of the bit reso-
lution employed as well as the average receive SNR.
Optimized compact array significantly outperforms the
half-wavelength spaced array;

- To achieve better energy efficiency, less antennas
should be deployed and relatively higher bit resolution
should be used if the channel condition is good on av-
erage. Otherwise, more antennas are needed while the
system should operate with rather low bit resolutions;

- Using compact antenna arrays with a small number
of antennas and low precision A/D conversion are
two helpful ways to improve the energy efficiency of
a multi-antenna receiver, and they can be effectively
exploited at the same time.
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