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Abstract—In the downlink of a cellular network with channel
state information on a limited number of interference channels,
the intercell interference (ICI) variance at a mobile device can
change unpredictably. This ICI blindness leads to outages or
a waste of resources because the link rate adaptation is based
on an assumed signal to interference plus noise ratio. Different
approaches to deal with ICI blindness have been discussed and
compared with sum rate maximizations. In this paper, we extend
the handling of the ICI blindness problem to fairness opti-
mizations. Fairness scheduling realizes fairness over many time
slots, which includes Round Robin, ThroughPut Fairness and
Proportional Fairness. Algorithms are developed to combine the
ICI robustness methods and fairness criteria and the performance
of the different combinations are compared.

I. INTRODUCTION

Frequency reuse implies orthogonal frequency bands in
neighbouring cells, which leads to small ICI. However, this
technique is very expensive because only a fraction of the
possible rate can be reached in each cell. Therefore, frequency
reuse will not be employed in the forthcoming 5G standard
and the ICI from the neighbouring cells will tremendously
worsen the signal to interference plus noise ratio (SINR) at
the receivers.

In the downlink of an ideal wireless cellular system with
full cooperation, the ICI at each mobile device (MD) can
be known and handled by a central processor. However, this
requires perfect channel state information (CSI) about all
channels including the interference channels. Measuring all
these channels can occupy almost all air time in large systems,
which leaves no time for data transmission. Therefore, the
assumption of full cooperation is unrealistic. There is always
some ICI variance remaining that has to be regarded as noise.

Even if the not measured interference channels stay con-
stant, the ICI variance at a MD can change unpredictably
whenever a base station (BS) in the network changes its
beamforming. A BS doesn’t know the actual ICI or the
supported rates of the MD it is serving. Therefore, BSs use
assumed ICI variances for the beamforming optimization and
link rate adaptation. The mismatch between assumed ICI and
actual ICI leads to the intercell interference blindness problem.
When the actual ICI is larger than the assumed one, the
channel is worse than assumed and the MD cannot decode
the data. The transmission fails and the achieved rate becomes
zero. When the actual ICI is smaller than the assumed one,

the MD can only communicate with the assumed data rate and
some resources are wasted.

The target is to make the system robust against random
changes of the ICI variance. In [1], the gambling method is
proposed to handle the ICI blindness problem. With the gam-
bling method, the ICI mismatch is accepted and a conservative
link rate adaptation is used to deal with the ICI uncertainty.
A backoff factor β is introduced to lower the risk of a failed
transmission. The BSs serve the MDs with modest rates.

It is assumed in the genie method that the ICI at each MD
is simply known [1]. The BSs calculate the beamforming and
the generated ICI iteratively until the resulting ICI converges.
A possibility to make the ICI variance available at the BSs is
to measure it with additional piloting. If the measurements are
limited to a single additional pilot, the method is called the
second pilot, where the BSs can serve the MDs with ICI-aware
rates [2].

Dotzler et al. proposed the covariance shaping method in
[3], where the uncertainty in the ICI is eliminated by imposing
a shaping constraint on the sum transmit covariance. Then the
ICI variances will not change even if the other BSs update their
beamforming. Although the ICI blindness problem is solved,
the shaping constraint reduces the region of achievable data
rates.

The expected rate method operates on the expectation of
the rates to optimize the beamforming and select the link
rate adaptation [4]. Taking the expectation of the rate leads
to a weighted rate in the optimizations. To implement the
expected rate method, the statistics of the ICI at each MD
need to be known, which can be approximated by long term
measurements at the MDs.

Hybrid Automatic Repeat reQuest (HARQ) can also be
used to treat the ICI blindness problem [5]. The ICI blindness
problem can be relaxed such that a transmission is completed
successfully if the data can be decoded with the combination
of several retransmissions.

Up to now, the ICI blindness problem has only been
addressed in sum rate maximizations. However, maximizing
the sum throughput of the system usually ends up with serving
only the MDs with high SINR. As the provider and users of
a cellular network are typically interested in a fair resource
distribution, we focus on the ICI blindness problem in fairness
optimizations in this paper.

The fairness among the users can be realized with schedul-
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ing. With fairness scheduling, the beamforming is still selected
to maximize a weighted sum rate, but the scheduler changes
the weights of the MDs in each time slot according to a
fairness criterion. Round Robin (RR), ThroughPut Fairness
Scheduling (TPFS) and Proportional Fairness Scheduling
(PFS) can be implemented using a fairness scheduler.

In RR, the MDs are served in turn. Each MD gets the same
number of time slots assigned. Under the TPFS criterion, the
MDs with the smallest historical throughput are scheduled,
which leads to equal throughput for each user in the end.
The goal of PFS is to find a balance point between the
sum throughput maximization and equal throughput among
all users [6].

The paper is constructed as follows. Section II describes the
system setup and the assumption about the ICI variance. The
interpretation of and the possible approaches to the ICI blind-
ness problem are shown in Section III. Section IV specifies the
ideas and the objective formulations for the different fairness
criteria. The simulation results and corresponding analysis are
provided in Section V. Last but not the least, Section VI
includes the conclusion and the potential future work.

II. SYSTEM MODEL

We consider the downlink (DL) of a cellular wireless
network where BSs have multiple transmit antennas and each
MD has a single receive antenna. Each cell is a multi-user
multi-input single-output (MU-MISO) channel.

A. Single Cell with random ICI variance

In order to optimize the beamforming and compute the
possible achievable rates for the link rate adaptation, the BSs
need the information of the ICI variances at each MD. The
received ICI variance θ at a MD depends on the interference
channel vectors and the sum transmit covariance matrices of
the interfering BSs. Since measuring all interference channels
is unrealistic in a large scale system, the ICI is split into two
parts—the ICI over known channels and over unknown chan-
nels. For the unknown interference channels, the interference
can only be regarded as noise.

For simplicity, we limit ourself to a scenario with no cooper-
ation among the BSs. Nevertheless, the methods and the results
in this paper can be applied to any type of cooperative scenario
with interference coordination, where each MD is only served
by one associated BS but the BSs try to mitigate the ICI
over measured interference channels. Interference coordination
includes techniques like interference alignment or interference
temperatures [7].

In this paper, it is assumed that there are no measured
interference channels and the transmit processing of the BSs
are unknown to each other. We regard the ICI variance θ as
noise, which means that the supported rate of a MD does not
relate to the interfering BSs. The optimization problem over
the whole network can be split up to individual optimization
problems in each BS, respectively. Therefore, it is sufficient
to look at the signal processing of a single cell.

The BS has N transmit antennas and serves K = |K| single-
antenna MDs, where a MD is specified by the index k. The
vector hk ∈ CN is the channel between the antennas of the
BS and MD k. Q is the sum transmit covariance matrix of
the BS, which is the sum of the covariances of the individual
beamforming vectors. The rate of user k can be expressed as

rk = log

(
1 +

hH
kQkhk∑

k̂>k h
H
kQk̂hk + θk + σ2

k

)
, (1)

where Qk is the covariance of the beamforming vector for user
k and σ2

k is the variance of the thermal noise.
∑
k̂>k h

H
kQk̂hk

is the variance of the intracell interference with dirty paper
coding (DPC) [8]. θk is the ICI variance at MD k.

We assume perfect CSI, which means pilot contamination
and other errors during the channel measurements are ne-
glected. The transmit covariance matrix Qk for user k can be
updated at each time instance. Within the block-fading block
length Tblock, the channels stay constant while the ICI θk can
vary at each time slot. It was shown in [4] that θk can be
approximated by a gamma distribution θk ∼ Γ (ak, bk), where
ak and bk are derived from the 3GPP MIMO urban macro cell
model. It is assumed that the statistics of the ICI measured in
the past are available to the BS. In addition, the SINR at each
MD during the pilot sequences is perfectly known to the BS.

B. ICI Blindness Problem

The actual interference θactual
k and the supported rate ractual

k

at the MD k during the transmission cannot be known in ad-
vance. An assumed ICI variance θassumed

k and the corresponding
assumed rate rassumed

k have to be used for the optimization of
the transmit processing. The mismatch between the assumed
ICI θassumed

k and the true ICI θactual
k leads to the ICI blindness

problem.
After the optimization of the beamforming, the BS assigns

the data rate rassumed
k to user k. If the assumed rate is larger

than the supported rate, MD k cannot decode the data and the
transmission fails. In other words, when the actual ICI is larger
than the assumed ICI, the channel is worse than assumed and
the MD cannot decode the signals successfully. If the assumed
ICI is smaller than the actual ICI, MD k can only communicate
with the assumed rate rassumed

k , but some resources will be
wasted. If the transmission is successful, the achieved rate
rachieved
k does not depend on the actual ICI but on the assumed

ICI. The ICI blindness problem can be formulated as

rachieved
k =

{
rassumed
k , for θassumed

k ≥ θactual
k ,

0, for θassumed
k < θactual

k .
(2)

III. ICI ROBUSTNESS METHODS

The general objective is to maximize the expectation of the
weighted sum rate over the whole system

max
Qk

E

[∑
k

wkr
achieved
k

]
s.t. Qk � 0, tr

(∑
k

Qk

)
≤ P.

(3)
With fairness scheduling, the optimization problems can
always be formulated as a maximum weighted sum rate
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(MWSR) problem, where the weights wk are defined by
different fairness criterion. Taking the ICI blindness problem
into consideration, the performance of different methods is
evaluated by comparing the expected value of the achieved
rates rachieved

k . Different ICI robustness methods use distinct
ideas to deal with the expectation operator.

A. Gambling

One method to deal with the ICI mismatch problem is
conservative gambling [1]. With the gambling method, we just
accept the ICI power mismatch and use a conservative link rate
adaptation. We hope that the actual ICI θactual

k doesn’t differ
too much from the assumed ICI θass.

k :

max
Qk

∑
k

wkrk

∣∣∣
θk=θ

ass.
k

s.t. Qk � 0, tr

(∑
k

Qk

)
≤ P. (4)

The assumed rate depends on the assumed ICI θassumed
k we

choose. The assumed ICI power θassumed
k can be the expected

value of the ICI, the ICI measured in the last time frame
or some predefined value. To lower the risk of a failed
transmission, a backoff β is introduced and the BSs serve
the MDs with modest rates (1−β)rassumed

k . The precoders Qk

are optimized based on the assumed ICI variance θassumed
k and

the common backoff β is applied after the precoders Qk are
selected. The backoff β provides a new degree of freedom in
the system. In our simulation, the backoff β is chosen such
that the objective is maximized

max
β

∑
k

wkr
achieved
k

∣∣∣
θk=θ

assumed
k

s.t. 0 ≤ β ≤ 1. (5)

One disadvantage of the gambling method is that when the
actual ICI is smaller than the assumed ICI, the MDs are only
served with the assumed rates and cannot benefit from the
extra resources. Besides, occasionally the conservative link
rate adaptation fails completely and some users have zero
rates.

Algorithm 1 describes the optimization with the gambling
method. The backoff factor βopt is given and used to calculate
the achieved rates rachieved

k . The calculation of the optimum
precoder Qk in line 2 depends on the utility function.

Algorithm 1 Gambling

Require: weights wk, βopt, ak and bk ∀k
1: Compute assumed ICI θassumed

k ← ak · bk
2: Compute optimum precoder Qk and assumed rates rassumed

k

from (4)
3: rassumed

k ← (1− β)rassumed
k

B. Covariance Shaping

The uncertainty in the ICI can be eliminated with covariance
shaping [3] (a generalization of ’Stabilization’ in [1]). When
the sum transmit covariance matrices of the interfering BSs
are limited, the maximum received ICI at the MDs are known
to the BS after the measurements of the SINR in the piloting

phase. Therefore, the robustness to the unpredictable ICI can
be increased by imposing a shaping constraint on the sum
transmit covariance,

∑
kQk � P

N I .
The optimization problem of (3) can be reformulated as:

max
Qk

∑
k

wkrk s.t. Qk � 0,
∑
k

Qk �
P

N
I. (6)

With the covariance shaping method, all BSs restrict the
sum transmit covariance

∑
kQk to a scaled identity matrix,

so the uncertainty of the ICI over unknown but fix channels is
eliminated. During Tblock, the ICI variances cannot be larger
than the maximum interference θassumed

k when the other BSs
update their beamforming Qk while fulfilling

∑
kQk � P

N I .
The expectation operator in the performance measure (3)
disappears as a result.

Although the shaping constraint reduces the set of feasible
beamforming vectors, we still have the ability to serve the
MDs with adaptive beamforming. Another disadvantage is that
the shaping constraint forces some limits on the eigenvalues
of the sum transmit covariance

∑
kQk. For

∑
kQk with full

rank N , the shaping constraints implies that each eigenvalue
should be smaller or equal to P

N . If the BS serves only K < N
MDs,

∑
kQk will have rank K and only K

N of the transmit
power is used.

For the covariance shaping, the downlink maximization
problem (6) can be solved by transforming it to an uplink
minimax problem [3]. The uplink minimax problem can be
solved using a joint water spilling algorithm similar to Algo-
rithm 1 in [10].

C. Expected Rate

Most optimizations in the literature use the expectation of
the ICI or one ICI realization from a previous step as the
assumed ICI θassumed

k . However, as the rate depends on the
ICI variance with a log function, the expectation of the ICI
variances does not lead to the expectation of the rate. To
counteract this problem, the expected rate method operates
on the expectation of the achieved rates [4]. The objective
function is changed into

max
Qk,θ

assumed
k

EΘk

[∑
k

wkr
achieved
k

]
, (7)

s.t. θassumed
k ≥ 0, Qk � 0, tr

(∑
k

Qk

)
≤ P.

The expected utility for MD k is

EΘk

[
wkr

achieved
k

]
= wkr

assumed
k FΘk

(θassumed
k ), (8)

where FΘk
(θk) is the cumulative distribution function (CDF)

of Θk at MD k. Taking the expectation leads to a maximum
weighted sum rate problem with new weights wexpected

k =
wkFΘk

(θassumed
k ) .

To perform this optimization, the CDFs of the ICI at each
MD need to be available at the associated BS. The CDFs can
be approximated with long term measurements at the MDs.
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Now the sum rate is maximized over both the transmit
covariances Qk and the assumed ICI θassumed

k . The objective (7)
can be solved by an alternating optimization, which optimizes
the precoders Qk and assumed interference θassumed

k in turn
[4]. After taking the average over multiple realizations, it
shows that the expected rates rexpected converge to the achieved
rates rachieved. The cost function for the selection of the
beamforming equals to the performance measure during the
data transmission by taking this expectation. The disadvantage
of this method is that the statistics of the ICI have to be known
to the BS.

IV. FAIRNESS SCHEDULING

Up to now, the ICI robustness methods have only been
discussed for sum rate maximizations. However, maximizing
the sum throughput of the system usually ends up with serving
only the MDs with high SINR. Consequently, the users with
poor channels are starving. As the provider and users of a
cellular network are typically interested in a fair resource
distribution, we focus on the ICI blindness problem in fairness
optimizations in this paper.

The fairness among the users can be realized by assigning
different priority coefficients to the MDs in the optimizations.
The selection of the user priority is based on a compromise
between the maximum possible rates and a fair resource
distribution. Fairness scheduling is implemented by using the
maximum weighted sum rate (MWSR) framework, where the
weights of the MDs are the priority coefficients. The user with
a higher weight is preferred compared to the users with smaller
weights. In our scenario, the beamforming is still selected to
maximize a weighted sum rate, but the scheduler changes the
weights of the MDs at each time slot according to a fairness
criterion.

A. Optimization Framework

In the following, we will transform all problems to a MWSR
problem, which can be represented by

max
Qk

∑
k

wkrk s.t. Qk � 0, tr

(∑
k

Qk

)
≤ P. (9)

The MWSR problem (9) can be solved by an extension of
the covariance-based framework in [9]. Inside the covariance-
based framework, the orthogonally projected scaled gradient
descend is realized with the water-spilling algorithm [9].

According to [6], the general objective function of fairness
scheduling is

max
Qk

E

 ∑
k∈K(t)

(r
(t)
k )α

(R
(t)
k )β

 (10)

s.t. Qk � 0, tr

(∑
k

Qk

)
≤ P, R

(t)
k =

1

t− 1

t−1∑
τ=1

r
(τ)
k .

The transmit covariance matrices have to fulfill the transmit
power constraint tr (

∑
kQk) ≤ P . r(t)k is the data rate poten-

tially achievable by user k at time t and R(t)
k = 1

t−1
∑t−1
τ=1 r

(τ)
k

is the historical average rate of user k. K(t) is the set of users
that are scheduled by the BS at time t. α and β are the factors
that tune the fairness of the scheduler.

Sum Rate Max RR TPFS PFS
α 1 0 0 1
β 0 0 1 1

Table I: α and β original setup

Sum Rate Max RR TPFS PFS
α 1 1 1 1
β 0 0 1 1
K(t) All MDs K(t)

RR K(t)
TPFS All MDs

Table II: α and β with Multi-User Diversity

The values of α and β with the origin setup are shown in
Table I. Typically, the scheduler doesn’t care about the channel
quality of the MDs and serves them in turn under RR. For
TPFS, the scheduler ignores the channel quality and serves the
MDs with the smallest throughput. However, since we want
to exploit multi-user diversity to have larger data rates, the
possible data rates r(t)k are included in the objective function
for RR and TPFS. The active user set K(t) is employed to
specify which two MDs are chosen at each time slot for RR
and TPFS. RR, TPFS and PFS can be implemented with the
selection of the coefficients α, β and the active user set K(t)

in Table II.

B. Round Robin

For round robin (RR), the scheduler assigns a fixed time
block to different users and the MDs are served in turn. The
goal is to achieve resource fairness, where the resource is time
in this case.

Typically one user is served at each time for round robin.
In our simulation, we use a heuristic approximation of round
robin. Two users, rather than one, are served at each time slot
and the multi-user diversity can still be exploited. One general
example of the user rates is shown in Figure 1, where exactly
two MDs have non-zero rates at each time instance.

The objective function is similar to that of the sum rate
maximization, except that the active set K(t)

RR is changing as
shown in Table III.

Time
user number K(1)

RR K(2)
RR K(3)

RR K(4)
RR K(5)

RR ...
1 1 0 0 1 1
2 1 1 0 0 1
3 0 1 1 0 0
4 0 0 1 1 0

Table III: Active user set K(t)
RR

To use the MWSR framework, the scheduling weights of
the MDs are

wRR
k =

{
1, for k ∈ K(t)

RR
0, else.

(11)
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Figure 1: Instantaneous rates of the users with round robin

C. Throughput Fairness

For throughput fairness, the scheduler only serves the users
with the smallest historical throughput. In the end of Tblock,
all MDs have the same throughput and the MDs with poor
channels are served more often. Multi-user diversity is still
kept by serving two MDs at each time slot and K(t)

TPFS is the
set of the two users with the smallest R(t)

k .
The weights for the MWSR problem can be written as

wTPFS
k =

{
1

R
(t)
k

, if k ∈ K(t)
TPFS,

0, else,
(12)

K(t)
TPFS =

{
k1 = argmin

k∈K

(
R

(t)
k

)
, k2 = argmin

k∈K\k1

(
R

(t)
k

)}
.

The rates in Figure 2 and 3 are qualitative results to give
an insight to throughput fairness. For traditional TPFS, one
MD is scheduled each time and the MDs in the cell should
have exactly the same throughput in the end. However, in our
scenario, the two users with the smallest R(t)

k are served in
each time instance, so the MD with the worst channel always
has a smaller throughput than the rest. The multi-user diversity
is influencing the fairness of the throughput, but it increases
the sum rate and the robustness to the case that all users are
starving because one user is not able to communicate at all.

D. Proportional Fairness

The goal of proportional fairness is to find a balance
between maximum system throughput and equal throughput
for all users.

For PFS, K is the whole set of users all the time. In the
end of Tblock, MDs with poor channels have smaller throughput
compared to TPFS, but they are served more frequently than
in the case of maximum sum rate. The scheduling weights in
the MWSR problem are

wPFS
k =

1

Rk
∀k (13)
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Figure 2: Instantaneous rates of the users with TPFS
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Figure 3: Averaged rates of the users with TPFS

With the same parameters as for TPFS in Figure 3, the
performance of PFS is shown in Figure 4. Several time slots
after the initialization, the system converges to the stable
state where the four MDs in the cell are served with the
optimum weights wk = 1

Rk
which maximize

∑
k wkrk. It

should be mentioned that the instantaneous rates of the MDs
may oscillate, jumping among several optimum points of the
objective function. This can be solved with time sharing and
the averaged rates still converge.

E. Combination with ICI blindness

The combination of fairness scheduling and different ICI
robustness methods is done by changing the weights outside
of the MWSR problems. The scheduling for RR, TPFS or
PFS can be applied directly as wrap-around of the MWSR
algorithms with different ICI robustness solutions. The general
idea is shown in Algorithm 2.

The weights worig.
k are the origin priority of MD k. The

weights assigned by the fairness scheduler wsched.
k can be wRR

k ,
wTPFS
k or wPFS

k according to which fairness criterion is adopted.
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Figure 4: Averaged rates of the users with PFS

Algorithm 2 Combine fairness and ICI robustness methods

Require: original weights worig.
k ∀k, Tblock

1: Rk ← 1 ∀k . initialize Rk
2: t← 1 . initialize time counter
3: repeat
4: compute wsched.

k . (11), (12) or (13)
5: wk ← wsched.

k ·worig.
k . combine fairness

6: Compute rassumed
k ∀k . (4), (6) or (7)

7: Rk ← 1
t−1

∑t−1
τ=1 r

(τ)
k . update Rk

8: t← t+ 1 . time counter
9: until t > Tblock

After computing the weights, the optimal covariances Qk and
the assumed rates rassumed

k are calculated by solving the MWSR
problem with different ICI robustness methods (4), (6) or (7).

The time-varying property of fairness scheduling is shown
by the time counter t and the update of the historical average
rate Rk. Fairness scheduling can only realize fairness over
many time slots.

V. SIMULATION RESULTS

In our simulation, the BS is serving K = 4 single-antenna
MDs with an N = 4 transmit antenna array. The origin
weights of the MDs are all ones, which means there is no
predefined preference in serving the MDs. In one realization,
Tblock = 50 time slots are simulated, during which the channel
stays constant while the actual ICI θactual

k can be different in
each time slot. The power limit of the BS is PT = 83 Watt
and the thermal noise at the MD is σ2

n = 8.3× 10−12 Watt.
The channel realizations come from the 3GPP MIMO urban

macro cell model [11]. The center frequency is 2 GHz and
the MDs are uniformly distributed in the cell. The random
actual ICI θactual

k is generated from a gamma distribution θk ∼
Γ (ak, bk), where ak and bk are derived from the same channel
model [4].
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Figure 5: CDF of achieved rates with RR
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Figure 6: CDF of achieved rates with RR (small)

A. Fairness Scheduling

The combinations of different ICI robustness methods and
different fairness scheduling are compared. The CDF of the
average achieved rates of the MDs are plotted. Curves with a
flat slope have a wider range of rates while a steep slope can
be regarded as fair.

The curves of sum rate maximization are used as reference
lines. For sum rate maximization, the expected rate method
performs better than the other two at Ro ≥ 1 while the
covariance shaping method has a much steeper slope at the
rate region Ro ≤ 1. With the covariance shaping method, the
ICI is always known and no MDs have zero rates.

For RR, the expected rate method has better performance
in system throughput than the gambling and the covariance
shaping methods in Figure 5. The curves of the gambling
method and the expected rate method under RR in Figure 6
starts at points around (0, 0.23) because only the time slots are
assigned and there is no special scheduling for MDs with poor
channels. In comparison, the curve of the covariance shaping
method with RR is very steep and touches the origin point,
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Figure 7: CDF of achieved rates with TPFS
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Figure 8: CDF of achieved rates with TPFS (small)
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Figure 9: CDF of achieved rates with PFS
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Figure 10: CDF of achieved rates with PFS (small)

which is the most fair.
Under TPFS, the expected rate method is the best consider-

ing the achieved rates. Since the MDs are scheduled to have the
same throughput in the end and the MDs with bad channels are
served very frequently, the three curves in Figure 7 have steep
slopes. On the one hand, all three methods reach the left border
at points close to the origin in Figure 8, which means most
MDs have non-zero rates under TPFS. On the other hand, the
curves of TPFS touch the top border at rates Ro < 2 because
the MDs with smallest throughput are scheduled all the time.

Under the PFS criterion, all MDs in the cell are served
all the time and the optimum weights wk = 1

Rk
∀k are

different for the three robustness methods. The covariance
shaping method outperforms the other methods in achieving
higher rates in Figure 9. Figure 10 shows that the MDs can
always receive some data with all three methods and few MDs
have zero rates.

Mean Sum Rate RR TPFS PFS
Expected Rate 1.3530 0.8702 0.4231 0.9580

Gambling 1.2688 0.8367 0.3725 0.7406
Covariance Shap. 1.3387 0.4729 0.2019 1.1900

Median Sum Rate RR TPFS PFS
Expected Rate 0.0892 0.4382 0.3262 0.5036

Gambling 0.2050 0.4098 0.2806 0.3765
Covariance Shap. 0.5355 0.1525 0.1169 0.6033

Table IV: Mean and Median achieved rate

Table IV shows the statistics, the mean and median rate
of the MDs of different combinations. On the one hand,
if we fix the PFS criterion, the covariance shaping method
will outperform the other two methods in handling the ICI
uncertainty. If RR or TPFS criterion is chosen, the expected
rate method will have the larger statistics. On the other
hand, when either the covariance shaping or the expected rate
method is employed, PFS achieves the highest rates among
the three fairness criteria.
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B. Fairness Comparison
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Figure 11: CDF of achieved rates with the expected rate
method
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Figure 12: CDF of achieved rates with the expected rate
method (small)

Fixing the expected rate method to improve the system ro-
bustness to ICI uncertainty, the qualitative property of different
fairness criteria can be compared in Figure 11 and Figure 12.
Figure 12 shows the details at rates Ro ≤ 0.8.

In Figure 11, the sum rate maximization has the flattest
slope while the TPFS has the steepest slope. As a balance,
the cdf curve of PFS and RR have median gradient between
TPFS and sum rate maximization.

Figure 12 illustrates the percentage of MDs who receive
almost no data over the time block. For sum rate maximization,
the starting point at (0, 0.4871) implies there are more than
48% MDs have zero rates all the time. Under RR, around
25% MDs in the cell have no service. In contrast, only around
5% MDs are dropped using TPFS or PFS criterion, which

improves dramatically from sum rate maximization. For TPFS
and PFS, the fairness is guaranteed while achieved rates are
smaller as a compromise.

VI. CONCLUSION

Simulation results show the performance of different com-
binations of robustness methods and fairness criteria. If the
ICI robustness approach is fixed, PFS will outperform other
fairness criteria making a good balance between fairness and
system throughput. When the PFS criterion is preferred, the
covariance shaping method leads to the highest rates among
the three ICI robustness methods. When the RR or TPFS
criterion is chosen, the expected rate method performs better
in handling the ICI blindness problem.

The future work can be a further exploration of the ICI
robustness methods. The combination of HARQ and the three
ICI robustness methods can perform better in dealing with
the ICI uncertainty. It is shown that the combination of the
expected rate method with a less restrictive shaping constraint
improves the data rates [12]. Besides, the optimizations where
the fairness is achieved with the beamforming directly are not
discussed yet.
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