
  

  

In tasks which involve contact or require a specific response 
to physical perturbations, position control alone is 
insufficient to achieve the goals of the task. In these cases, 
the robot should have the ability to adapt the impedance for 
different task requirements in order to achieve better 
versatility and robustness. Impedance control is one of the 
most adopted methods controlling the interaction between a 
manipulator and the environment. For redundant 
manipulators, different impedance behaviors can be realized 
for the end-effector and the null-space of the main task [1].  

In this work, we proposed a method to learn variable 
stiffness gains by experience. We build a reinforcement 
learning system to learn the new trajectory and 
corresponding null-space stiffness in robot body based on 
some tasks. In contrast to [3], we use the PoWER algorithm 
[2] in this system. Furthermore we use this system to learn 
the variable stiffness in null-space impedance control so that 
the Cartesian space execution will not be affected.  
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Figure 1: Overview of reinforcement learning system. After initialization, 
the planed trajectory and gain schedules of a Dynamic Movement Primitive 
(DMP) are optimized with respect to a reward function with reinforcement 
learning.  

Null-space impedance control  
  For redundant manipulators it is possible to have some 
joint-space impedance and task-space impedance 
simultaneously by projecting the joint space stiffness in the 
null-space of the Jacobian of the main task.    

† -1
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where †J is the pseudo inverse of the Jacobian, cx&&  is the 
task-space commanded acceleration, N is a ( )n×n  matrix 
which projects joint velocity into the null-space of Jacobian, 
q are the joint variables, dM , dB  and dK  are the desired 
inertia, damping and stiffness matrices respectively.  
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Maintaining the Integrity of the Specifications 
To learn the null-space stiffness, we built a reinforcement 
learning system. The system is shown in Figure 1. The initial 
trajectory is obtained by training Dynamic Movement 
Primitive (DMP). Initial stiffness is set constant. Then we use 
PoWER algorithm to optimize the planed trajectory and 
stiffness according to the reward function. The modified 
trajectory will be updated through 

( ( ) ) ( )T
z z tray g y z bτ α β θ= − − + +&& E  (2) 

 

where y is the modified trajectory on robot body, g is a 
known goal state, 

zα and zβ are constants, τ is a temporal 
scaling factor. θ  is the policy parameter, which is updated by 
PoWER and E  is the exploration noise. 

trab  is nonlinear 
function composed of Gaussian basis functions of the 
trajectory. The stiffness update rule is  

( ( ) )T
p K sti PK b Kα θ= + −& E  (3) 

where PK is the leaned stiffness, θ  and E  share the same 
definition with (2). 

Kα  is a constant. 
stib  is the vector of 

basis functions of stiffness.  
We performed an experiment on a KUKA LWR4+. A 

spherical obstacle is located in the environment. We set the 
reward function so that it leads to good tracking far from the 
obstacle and to avoid obstacle and to decrease stiffness near 
the obstacle. Figure 2 shows the task-space error with 
constant stiffness and learned variable stiffness. One can see 
that with the learned impedance the robot achieved better 
task-space execution. 
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Figure 3: (a) Norm error in task-space. Green line is the task-space error 
with constant stiffness, red line is task-space error with learned variable 
stiffness. (b) Constant null-space stiffness (red line) and learned variable 
null-space stiffness (blue line).  
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