
Technische Universität München
Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Object-Oriented Programming through the Lens of
Computer Science Education

Marc-Pascal Berges

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. Johann Schlichter

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Peter Hubwieser

2. Univ.-Prof. Dr. Torsten Brinda, Universität Duisburg-Essen

Die Dissertation wurde am 07. April 2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 02. Juli 2015 angenommen.

Abstract

In recent years, the importance of the object-oriented paradigm has changed signifi-
cantly. Initially it was mainly used in software engineering, but it is now being used more
and more in education. This thesis applies methods of educational assessment and
statistics to object-oriented programming and in doing so provides a broad overview of
concepts, teaching methods, and the current state of research in this field of computer
science.

Recently, there have been various trends in introductory courses for object-oriented
programming including objects-first and objects-later. Using current pedagogical
concepts such as cognitive load theory, conceptual change, and self-directed learning
in the context of this work, a teaching approach that dispenses almost entirely of
instruction by teachers was developed. These minimally invasive programming courses
(MIPC) were carried out in several passes in preliminary courses in the Department
of Computer Science at the TU München. The students were confronted with a small
programming task just before the first lecture. Using worksheets that were based on
the objects-first approach, the essential object-oriented programming concepts were
presented with brief explanations. A student tutor was set aside to support each group.

The results of the courses have been investigated in various ways. First, changes in
conceptual knowledge with concept maps were collected. Second, the program code
that was produced was examined. Among other things, we evaluated which concepts
were implemented by the novice programmers. The combination of these two methods
of investigation provides a link between knowledge and ability. It turns out that there are
concepts in programming that can be applied before a classification or representation
in existing knowledge structures takes place. The correlation of these results with the
personal data collected such as gender, school experiences or previous programming
knowledge leads to a detailed picture of the skills and abilities of participating students.

Additionally, the psychometric approach of item response theory was applied to the
program code. This methodology provides an opportunity to evaluate programming
abilities on the basis of programming tasks embedded in small or large projects. The
basic idea is that items are created representing observable structural elements in the
program code. Based then on the code items applied on the data of the MIPC course,
a valid dataset was examined with reference to the Rasch model.

A graphical illustration is introduced to visualize the definitions of the concepts covered
in the course. The so-called concept specification map (CSM) connects concepts
by their definitions. Since there are seldom "complete" definitions in a single place
in textbooks, CSM considers specifications of concepts in a larger area. By linking
the individual specifications, an overview is achieved of how a specific concept is
defined in a given textbook. Furthermore, these important dependencies for teaching
are discussed and an example of a qualitative analysis of textbooks is presented.

Zusammenfassung

In den letzten Jahren hat sich die Bedeutung des objektorientierten Paradigmas ganz
erheblich gewandelt. Anfangs wurde es vorwiegend in der Softwaretechnik angewandt,
inzwischen geschieht dies aber auch mehr und mehr in der Lehre. Die vorliegende
Arbeit wendet geisteswissenschaftliche und statistische Methoden auf die objektorien-
tierte Programmierung an und liefert dadurch einen breiten Überblick über Konzepte,
Lehrmethoden und die aktuelle Forschung in diesem Bereich der Informatik.

Speziell zur Einführung in die objektorientierte Programmierung gibt es in den letzten
Jahren verschiedene Strömungen wie objects-first und objects-later. Unter Anwendung
aktueller didaktischer Konzepte wie der Cognitive Load Theory, Conceptual Change
und Self-Directed Learning entstand im Rahmen dieser Arbeit ein Lehrkonzept, das
nahezu komplett auf Instruktion durch Lehrpersonen verzichtet. Diese sog. Mini-
mally Invasive Programming Courses (MIPC) wurden in mehreren Durchläufen im
Rahmen der Vorkurse der Fakultät für Informatik an der TU München durchgeführt.
Dabei wurden die Studierenden bereits vor der ersten Vorlesung mit einer kleinen
Programmieraufgabe konfrontiert. Mithilfe von Arbeitsblättern, die sich am Ansatz
objects-first orientieren, wurden die zur Lösung notwenigen Konzepte der objektorien-
tierten Programmierung mit kurzen Erklärungen vorgestellt. Zur Unterstützung wurde
jeder Gruppe ein studentischer Tutor zur Seite gestellt.

Die Ergebnisse der Kurse wurden auf verschiedenste Weise untersucht. Zum einen
wurden die Veränderungen von konzeptuellem Wissen mit concept maps erhoben.
Außerdem wurde der produzierte Programmcode untersucht. Dabei wurde u.a. ausgew-
ertet, welche Konzepte die Programmieranfänger umgesetzt haben. Die Verbindung
dieser beiden Untersuchungsmethoden liefert einen Zusammenhang zwischen Wissen
und Können. Dabei wird erkennbar, dass es Konzepte in der Programmierung gibt, die
angewendet werden können, bevor eine Einordnung beziehungsweise Repräsentation
in vorhandene Wissensstrukturen stattfindet. Die Korrelation dieser Ergebnisse mit den
erhobenen Personendaten wie zum Beispiel Alter, Geschlecht, Schulerfahrung oder
Vorkenntnisse in der Programmierung zeigt ein ausführliches Bild der Fähigkeiten und
Fertigkeiten der teilnehmenden Studierenden. Zudem lässt sich die Frage beantworten,
ob es verschiedene Arten von Programmieranfängern gibt.

Des Weiteren wird der psychometrische Ansatz der Item-Response Theorie auf Quell-
code angewendet. Dieses Vorgehen ermöglicht es Programmier- bzw. Codierfähigkeiten
auf der Basis von in Projekten eingebundenen Programmieraufgaben zu evaluieren.
Die grundlegende Idee hinter dem Verfahren ist die Generierung von Items, die struk-
turelle Elemente des Programmcodes repräsentieren. Auf Basis der Quellcodes aus
den MIPC-Kursen wurde ein gültiges Item-Set im Sinne eines Rasch-Modells ermittelt.

Um die in einem Kurs behandelten Konzepte umfassend zu definieren und in einen
Zusammenhang zueinander zu bringen, wird eine spezielle graphische Veranschau-
lichung eingeführt. Die sog. Concept Specification Map (CSM) verbindet Konzepte

durch ihre Definitionen. Da es in Lehrtexten selten “vollständige‘” Definitionen an einer
einzigen Stelle gibt, berücksichtigt die CSM Spezifikationen von Konzepten in einem
größeren Textabschnitt. Durch die Verknüpfung der einzelnen Spezifikationen ergibt
sich ein Überblick, wie bestimmte Konzepte im jeweiligen Lehrbuch definiert werden.
Außerdem werden dadurch auch wichtige Abhängigkeiten für die Lehre aufgezeigt. Am
Beispiel einer qualitativen Textbuchanalyse werden die Einsatzmöglichkeiten vorge-
führt.

Acknowledgments

The work on a thesis is an interesting and challenging task. First and foremost, it is a
big trial for oneself. None of this would be possible without the support of many. So, I
want to thank those people at the very beginning.

First, I want to thank Prof. Dr. Johann Schlichter for heading the examination committee.
Furthermore, I thank Prof. Dr. Torsten Brinda, my second supervisor, for his patience,
his advice, and the fast evaluation.

A thesis cannot be written without the assistance of very pleasant colleagues. I want to
thank you all for the stimulating discussions. Namely, Alexander Ruf and Dino Capovilla,
who accompanied me for a long time, should be mentioned here. A very special thanks
to Andreas Mühling who was always there to listen to my ideas and to criticize them.
The work with him on the gap between knowledge and abilities was very interesting.
Additionally, the theoretical clarification of the methods around item response theory
and cluster analysis made a huge contribution to the success of this work.

To write a thesis without supervision is not possible at all. But, supervision is not the
only necessity during the writing process. In Germany we have the word "Doktorvater"
which perfectly describes my supervisor Prof. Dr. Peter Hubwieser. During the last
seven years, he has supported me in all my endeavors. It was and is a great pleasure
to work with him. Without his encouragement, especially during the end of the writing
phase, this thesis would have never been finished.

Last but not least I have to thank my wife. As I have written in the beginning of these
acknowledgments, a thesis is a great adventure and a big trial for oneself. Without
her support and the patience, I would not have written these lines. Thank you for
everything.

Contents

1 Introduction 1
1.1 Problem Setting and Motivation . 1
1.2 Research Questions . 2
1.3 Methodology and Structure . 5

2 Computer Science Background 9
2.1 Small History of the Object-Oriented Paradigm and the Corresponding

Programming Languages . 9
2.2 Different Views of Object Orientation . 18

2.2.1 A Definition of Object Orientation by its Fundamental Concepts . . 21
2.2.1.1 Object . 22
2.2.1.2 Class . 23
2.2.1.3 Method . 23
2.2.1.4 Message Passing . 23
2.2.1.5 Encapsulation . 24
2.2.1.6 Polymorphism . 24
2.2.1.7 Inheritance . 25
2.2.1.8 Abstraction . 26

2.2.2 Taxonomies of Object Orientation 26

3 Educational Background 31
3.1 Constructivism . 31
3.2 Social Cognitive Theory . 33

3.2.1 Self-Regulation . 34
3.2.2 Self-Efficacy . 35

3.3 Self-Directed Learning . 37
3.4 Cognitive Load Theory . 38
3.5 Knowledge Organisation . 41

3.5.1 Knowledge as Theory . 41
3.5.2 Knowledge as Elements . 43

4 Methodological Background 47
4.1 Concept Maps . 47

4.1.1 Principles Underlying Concept Maps 47
4.1.2 Application of Concept Maps . 49

4.2 Cluster Analysis . 53
4.2.1 Hierarchical Cluster Analysis . 54
4.2.2 Partitioning Cluster Analysis . 56
4.2.3 Model-Based Clustering . 57

4.3 Item Response Theory . 57
4.3.1 The Logistic Models . 57

4.3.2 Parametric Tests for Model Fitting 60
4.3.2.1 Martin-Löf Test . 60
4.3.2.2 Graphical Model Proof . 61
4.3.2.3 Likelihood Ratio Test . 62
4.3.2.4 Wald Test . 62

4.3.3 Nonparametric Tests . 63
4.3.3.1 Test for Homogeneity . 64
4.3.3.2 Test for Local Stochastic Independence 64

4.4 The Latent Trait Model . 65

5 Object-Oriented Programming in an Educational Context - A Literature
Review 69
5.1 Object Orientation in Introductory Programming Courses 69

5.1.1 A Suitable Educational “Paradigm” for Introducing Object Orientation 71
5.1.1.1 When to Introduce the Object-Oriented Notions? 72
5.1.1.2 What is the Most Suitable Order for Introducing Program-

ming Notions Related to Object Orientation? 74
5.1.2 An Appropriate Language for an Introductory Programming Course 77

5.2 Object Orientation in Competency Models 79
5.2.1 Competency Model of Object Interaction 79
5.2.2 Competency Model on Informatics Modeling and System Compre-

hension (MoKoM) . 81
5.3 Object Orientation in National and International Education Standards and

Computer Science Curricula . 81
5.3.1 The ACM/IEEE Joint Task Force Computer-Science Curriculum . . 82
5.3.2 Curriculum of the Bachelor Degree in Computer Science at the

Technische Universität München 85
5.3.3 General Assessment Guidelines (EPA) in Computer Science . . . 86
5.3.4 Educational Standards of the Computer Science Teachers Associ-

ation (CSTA) . 86
5.3.5 Educational Standards of the German Society for Computer Sci-

ence (GI) . 88
5.3.6 Curricula of German Grammar Schools 90

5.3.6.1 The Grammar School in North Rhine-Westphalia 90
5.3.6.2 The Bavarian Gymnasium 92

5.4 Summary . 97

6 Visualizing the Basic Concepts of Object-Oriented Programming 99
6.1 Related Work . 99
6.2 Concept Specification Maps . 100
6.3 Concept Specification Maps of Textbooks 104
6.4 Object Orientation in Textbooks of Introductory Courses 106

6.4.1 Structures in Introductory Textbooks 111
6.4.2 Representation of the “Quarks” in the Textbooks 114

6.5 Threats to Validity . 121
6.5.1 Missing Intercoder Reliability and Agreement 121
6.5.2 Large Concept Specification Maps 121

6.6 Summary . 123

7 Novices’ Object-Oriented Programming Knowledge and Abilities 125
7.1 Related Work . 126

7.1.1 Minimally Invasive Education . 126
7.1.2 Introductory Programming Courses 127
7.1.3 Novice Programmers . 129
7.1.4 Conceptual Knowledge . 133
7.1.5 Program Code Evaluation . 135

7.2 Minimally Invasive Programming Courses 136
7.3 A Preliminary Course for the Introduction into Computer Science 138

7.3.1 Prerequisites for the Courses . 138
7.3.2 Design of the Course . 140

7.3.2.1 Gathering the Appropriate Topics for the Course 141
7.3.2.2 Design of the Course Material 142

7.4 Data Gathering . 148
7.5 Analysis of Novice Programmers’ Knowledge and Abilities 160

7.5.1 Differences in the Program Code 160
7.5.2 Development of Knowledge . 173

7.5.2.1 Previous Programming Knowledge 174
7.5.2.2 Posterior Programming Knowledge 180
7.5.2.3 Knowledge Development 183

7.5.3 Misconceptions . 187
7.5.4 Difference Between Knowing and Doing 193
7.5.5 Common Questions . 196

7.6 Evaluation of Program Code using Psychometric Models 198
7.7 Threats to Validity . 207
7.8 Summary . 210

8 Conclusion 213
8.1 Summary . 213
8.2 Further Research . 216

8.2.1 Further Work on Concept Specification Maps 216
8.2.2 Further Work on Evaluating Novice Programmers’ knowledge and

abilities . 216

A Concept Specification Map (CMS) 219
A.1 Abelson - Structure and Interpretation of Computer Programs 219
A.2 Deitel - How to Program Java . 220
A.3 Eckel - Thinking in Java . 221
A.4 Flanagan - Java in a Nutshell . 222
A.5 Sedgewick - Introduction to Programming in Java 223
A.6 CSM - All books . 224

B Minimally Invasive Programming Courses (MIPC) 225
B.1 Worksheets MIPC . 226

B.1.1. Worksheet 1 . 226
B.1.2. Worksheet 2 . 229
B.1.3. Worksheet 3 . 233
B.1.4. Worksheet 4 . 237

B.2 Specifications of the Worksheets . 241
B.3 Questionnaire MIPC . 242

B.4 Concept Map Questionnaire MIPC . 244
B.5 Report Form for the Participant Questions 247
B.6 Code Examples . 248

B.6.1 Example for The Mastermind Task 248
B.6.2 Example for The Ballsportmanager Task 251
B.6.3 Example for The Kniffel Task . 262

B.7 Concept Maps . 289
B.7.1 List of 2-rated associations of programming novices in the pre-test 289
B.7.2 List of 0-rated associations of programming novices in the pre-test 291
B.7.3 List of 2-rated associations of programming novices in the post-test 294
B.7.4 List of 0-rated associations of programming novices in the post-test 302

B.8 Student Questions . 306

C Translations 315

References 326

List of Tables 351

List of Figures 353

1 Introduction

1.1 Problem Setting and Motivation

Technology that is related to computer science is changing very fast. While it was
difficult to get access to a computer several years ago, it is now common to have access
to computers and the internet wherever you are and whenever you want. Furthermore,
children of today are accustomed to using computers, as well as the concepts related
to computer science, in their daily lives.

“Today, I have a computer in my pocket that is more than 100,000 times
faster and has 10,000,000 times more memory than a ZX81. It is con-
nected to every other computer on the planet and can access virtually
every piece of human knowledge ever created, nearly instantaneously.
The pace of change in computing is extraordinary.”(Crow 2014)

In this time of change the demands on the educational system are higher than ever.
For this reason there have been a huge variety of attempts in recent years to change
computer science education. In the Bavarian grammar school a compulsory subject
based on the notions of object orientation has been introduced (Hubwieser 2012). Great
Britain introduced a computer science subject in schools (The Royal Society 2012).
The biggest associations for computing and computer science education have revised
their curricula to face the new challenges in computer science subjects (ACM/IEEE-CS
Joint Task Force on Computing Curricula 2013). Furthermore, associations that focus
on computer science education – such as teacher associations (Computer Science
Teachers Association (CSTA)) or working groups of national computing associations
(Gesellschaft für Informatik (GI)) – have introduced new standards. Additionally, there
are some first competency models that try to define a measurement for education in
computer science.

In the 1990s there was a paradigm shift in programming notions in industry. The
time before was characterized by procedural programming notions. Since this shift,
the object-oriented paradigm has become state of the art, although there were many
discussions of whether or not object orientation was only coming up for a moment (see
for example, Broy and Siedersleben 2002; Jähnichen and Herrmann 2002). Transfer of
the paradigm shift in education can be dated about ten years later after the millennium.

“[T]he shift was reality and programming instructors could no longer vac-
illate or attempt to ignore it. Action was demanded to begin the work of
fleshing out the new paradigm and learning how to work within it. The
only questions raised concerned what does this mean for the introductory

2 1 Introduction

course, how can this be done in my course? Most faculty are [...] willing to
change and desiring be up-to-date. They know, however, that the paradigm
shift means more than changing programming languages. [...] We should
all be encouraged by the fact that the problems of teaching introductory
programming from the object perspective are recognized, that a variety
of strategies are being explored, and by the promise that the revolution
will quickly produce a flood of new and better pedagogical aids.” (Mitchell
2000, p. 105)

According to Mead et al. (2006), “[t]eaching programming has three basic components:
curriculum, pedagogy, and assessment” (p. 182). As mentioned above, the curriculum
and pedagogical aspects are based on a broad theory published in literature. The
assessment aspects are also investigated in many studies. However, most of them
have their origins in software engineering or questionnaires on concepts underlying the
programming skills. In particular, the programming tasks are important for educational
purposes. The knowledge and abilities of novice programmers are especially of great
interest.

“Programming is a very useful skill and can be a rewarding career. In
recent years the demand for programmers and student interest in pro-
gramming have grown rapidly, and introductory programming courses
have become increasingly popular. Learning to program is hard however.
Novice programmers suffer from a wide range of difficulties and deficits.”
(Robins et al. 2003, p. 137)

The observations of Robins et al. (2003) are the motivation for this thesis. According
to them, the variety of novice programmers’ previous knowledge is very diverse. The
investigations that are provided in the upcoming chapters present methodologies
to analyze the heterogeneity among novice programmers’ knowledge and abilities.
Furthermore, the notions of object orientation are systematically investigated and a
new methodology of displaying the interdependencies of the underlying notions is
introduced. For this purpose an experimental introductory course based on several
notions that employ the social cognitive learning theory of Bandura (1977, 1986) are
introduced and investigated. The experimental course was a preliminary course before
the first semester started.

1.2 Research Questions

After presenting the general motivation for this thesis, the research questions are
addressed. They follow the need to investigate novice programmers’ knowledge and
abilities to address the previously mentioned problems. So, this thesis can be divided
into three parts. After presenting a theoretical framework for my studies in the first part,
an overview is given on computer science education and the representation of object
orientation and object-oriented programming within this field. This leads to the first two
research questions which are answered in Chapter 5:

1.2 Research Questions 3

RQ1: Which facets and concepts of object orientation and/or object-
oriented programming are covered by common curricula, standards,
and competency models?

Usually, educational planning processes are guided by certain documents,
for example standards and curricula. As computer science education is
quite a new subject in relation to the established subjects such as mathe-
matics or natural science, there is still a lot of change in those documents.
In addition, the formal definition of competencies in computer science edu-
cation is in the early stages. Since this thesis concentrates on computer
science education and especially object-oriented programming, examples
of the documents mentioned before are analyzed on their coverage of
object-oriented concepts.

RQ2: How is object orientation or object-oriented programming taught?
What teaching approaches are applied or proposed, and what are
their characteristics?

Another important aspect in computer science education is the strategy
of introducing specific topics, particularly programming aspects. As the
relevance of object orientation for introductory programming courses has
grown during the last decade with the paradigm shift, different approaches
have been investigated and discussed in a broad manner. But, which
strategies could prevail in educational practice?

There are a lot of concepts related to object orientation. This provides a serious
challenge for both the learners and the instructors. Textbooks for introductory courses
face this challenge in a very special way. Each course and each instructor has their
own way of introducing object-oriented concepts. To determine if the structure of the
course and the structure of the corresponding literature or course materials fit together,
the following two research questions have to be answered in Chapter 6:

RQ3: How to represent logical interdependencies between the con-
cepts of object orientation?

Only a minority of textbooks contain a summary of clear definitions of the
concepts used within the texts, or even give an overview how the concepts
are related to each other. To compare course materials and other litera-
ture, a methodology for representing definitions in a clear and comparable
way has to be developed. Furthermore, the term of definition is mostly
not suitable for literature. In most cases, there are only specifications of
concepts spread over the complete text.

RQ4: What interdependencies exist among the object-oriented con-
cepts in different textbooks?

As novice programmers may use textbooks intensively, the textbooks of
introductory courses have to fit the conceptual structure of the course.
Concerning the literature that is recommended for introductory courses,
differences and structures are shown to demonstrate the method of graph-
ically representing the conceptual structure.

4 1 Introduction

Besides structuring concepts around object-oriented programming, investigating the
knowledge and the abilities of novice programmers are central concerns of this thesis.
New approaches for categorizing and evaluating novice programmers’ knowledge and
abilities are the main purpose of the investigations. Marginally, the investigation of an
extreme course design agrees with this research. All these aspects meet at the last
few research questions that will be answered in Chapter 7:

RQ5: How to teach object-oriented programming to novices with
minimal instruction by a tutor and a great amount of self-directed
learning?

By minimizing instruction, an attempt is made to determine which concepts
are used first in relation to the participants’ previous knowledge. In con-
trast to investigations on the impact of a course design, which follows a
specific order of the topics, in the courses underlying this investigation the
participants chose their own order according to the theory of self-directed
learning.

RQ6: How to evaluate knowledge and abilities of novice program-
mers?

By using the statistical method of cluster analysis, groups are identified in
the novice programmers’ knowledge and abilities and the differences be-
tween these groups concerning their programming knowledge and abilities
are investigated.

RQ7: Is there a difference between understanding the concepts of
programming and applying them?

There is evidence that in programming it is possible to apply certain con-
cepts without understanding them. By conducting a test on the knowledge
of novice programmers and assessing their programming abilities at the
same time, this suspicion is investigated.

RQ8: How to investigate the psychometric constructs that are rele-
vant for programming by evaluating program code?

In classical test theory (CTT) program code can be analyzed to find ev-
idence for the abilities of programmers. But, the questions have to be
posed directly. Instead, in item response theory (IRT) only the probability
of a right answer is of interest. To examine the programming ability in its
complexity, programming cannot be investigated by small programming
tasks. In fact, programming is a latent procedure with many involved
psychometric constructs. A programming task contains a lot of implicit
items that have to be solved in order to successfully complete the task.
The results of the items that have been solved can be found in the resulting
programs.

1.3 Methodology and Structure 5

1.3 Methodology and Structure

This thesis is based on several research methodologies. These are introduced in
the following chapters. Here, the structure and a small description of the content is
provided.

Chapters 2-4: Theories underlying the investigations
In the chapters on theoretical background, the notions and theories underlying the
studies conducted in this thesis are presented. This implies the notions and concepts
of object orientation and the development of the corresponding paradigm. Furthermore,
some educational theories that were important for designing the experimental course
setting for my investigations are shown. These are the cognitive load theory and the
theories concerning self-directed learning. Additionally, the conceptual change theory
is presented as it is important for understanding how programming notions are learned
and can explain the difficulties of the paradigm change in programming. In addition
to the underlying theories, there are several methodologies applied during the data
analysis. Concept mapping is presented as a methodology to externalize knowledge
structures. Furthermore, the statistical methodology of cluster analysis is presented.
Finally, a theoretical framework for the psychometric approach of item response theory
(sometimes called latent trait theory) is provided.

Chapter 5: Representation of object orientation in an educational context
After introducing the object-oriented notions and their development, the representation
of object-oriented programming in standards, curricula, and competency models is
the main focus. Exemplary literature is reviewed and presented. For the educational
methodologies, a broad variety of literature throughout the last decade is examined
and the main results are presented. Here, the first two research questions (RQ1 and
RQ2) are answered.

Chapter 6: A graphical representation of concept specifications
A method for representing the main concepts and their definition of specification in
a text is presented. After defining a graphical representation, this is applied on two
different kinds of literature. The first example is a single paper that defines in a very
clear way the basic concepts of object orientation. This demonstrates how to present
the provided concepts in a compact way (answer to RQ3). The second example is
based on a semi-automatic text analysis. In a first step, text passages containing
a specific keyword are examined from a given text. The rating (coding) process is
done with regard to the qualitative text analysis of Mayring (2010). Here, the research
question addressing the representation of object-oriented concepts in textbooks (RQ4)
is answered.

Chapter 7: Evaluation of novice programmers’ object-oriented programming
abilities and their corresponding knowledge
Here, an experimental introductory course about object-oriented programming is evalu-
ated. The design of the course is based on the theory of self-directed learning and tries
to avoid instruction during the programming task. The given materials are structured
and investigated with help from the graphical representation method introduced in this

6 1 Introduction

thesis (answer to RQ5). In addition, knowledge of the participants is assessed by
evaluating concept maps (answer to RQ7). Furthermore, the programming abilities are
measured with a new approach based on the item response theory conducted on the
programs (answer to RQ8). Additionally, a cluster analysis on the programs produced
provides differences within the novice programmers’ knowledge and abilities. This
answers research question RQ6.

Chapter 8: Conclusion
The final chapter provides ideas for future investigations. Questions that arose during
the investigations of this thesis are presented. Furthermore, the presented investi-
gations are summarized. More precisely, the research questions presented in the
previous section are checked to determine whether the provided studies could answer
them. Conclusions on all results are drawn.

Appendix:
Excerpts from the course materials and the resulting products are given in the appendix.
Additionally, the graphic representation of the textbook analysis is shown in the ap-
pendix due to space reasons.

1.3 Methodology and Structure 7

The following graphical scheme represents the content and structure of this thesis.
Each chapter is displayed with its major content. For the chapters related to theoretical
background, the theories are displayed as ellipses. The research presented in this
thesis is shown as squares in the related chapters. Additionally, for each chapter the
corresponding research questions are shown. The scheme is presented after each
chapter. The content of the preceding chapter is in color, while the rest of the thesis is
in gray color.

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

2 Computer Science Background

As mentioned in the introductory chapter, the research that was conducted for this
thesis is based on theories from different fields. This first chapter introduces theories
and concepts from the field of computer science. In particular, the concepts underlying
object-orientation and the theory of the paradigm shift in programming are presented in
this chapter. In Chapter 6, methodology for a systematic display of the object-oriented
concepts is introduced. Additionally, the theory in this chapter is the underlying basis
for the experimental courses of Chapter 7.

2.1 Small History of the Object-Oriented Paradigm and
the Corresponding Programming Languages

“[The] term object-oriented programming is derived from the object concept
in the Simula 67 programming language.” (Nygaard 1986, p. 128)

The early definitions of object orientation in literature are mostly based on object-
oriented programming. In this section the historical development of the paradigm and
the concepts are shown. Furthermore, the history of object-oriented programming
languages is related to the development of the paradigm.

Although there are many different paradigms in literature, there is, according to Mitchell
(2000), only one paradigm shift according to the definition of Kuhn (1996). Kuhn
introduced the notion of a paradigm as an achievement or theory that fulfills two
characteristics. First, the theory is “unprecedented to attract an enduring group of
adherents away from competing modes of scientific activity”. Second, it is “sufficiently
open-ended to leave all sorts of problems for the redefined group of practitioners to
resolve” (p. 10).

Additionally, Kuhn defined the shift between two paradigms. Triggered by a crisis when
a problem cannot be solved with the predominant paradigm, the scientific group tries to
find solutions or work-arounds within the paradigm. If the effort for the work-arounds
rise, the old paradigm is replaced by a new one that fulfills the definition of a paradigm
for the new set of problems (cf. Kuhn 1996, pp. 77).

As a result of the difficulties with programming low-level machine languages, higher-
level languages and the imperative paradigm were introduced in the late 1950s. The
imperative paradigm is based on the idea of a step-by-step execution model of com-
mands and statements. The order of the execution is controlled by control statements.

10 2 Computer Science Background

Additionally, declarative statements provide a name to a value, thereby creating vari-
ables. A synonym for the imperative paradigm is the procedural paradigm. Although
they are used as synonyms, there is the slight difference of added functions or pro-
cedures, respectively (cf. Jana 2005; Minarova 2013). A model of the procedural
programming is displayed in Figure 2.1

Figure 2.1: Procedural programming model (Jana 2005, p. 7)

In addition to the imperative procedural paradigm several other paradigms were
introduced during the 1960s, for example the functional paradigm or the logical
paradigm. The functional paradigm is based on functions. More precisely, all com-
putations are done by calling or applying functions. In difference to the imperative
paradigm, here, the result of one computation is the input for the next one. The logical
paradigm is based on axioms, inference rules, and queries. New facts are derived from
known facts by applying the given rules. As mentioned at the beginning of this section
the imperative procedural paradigm is the first programming paradigm. It attracts a
reasonable number of programmers (cf. Jana 2005).

In the 1980s, the invention of computers that were affordable for many people caused
an increased effort in the development of graphical user interfaces. Additionally, the
software crisis that was induced by the necessity for more security in software led to
conflicts with the procedural paradigm that was common in that time (cf. Luker 1989).
The result was the structured paradigm which is a subset of the procedural paradigm.

According to the definition of a paradigm shift by Kuhn (1996), the shift took place in the
early 1990s. In addition to the problems mentioned above, the need of re-usability of
program code and the increasing number of embedded systems made a work-around
within the procedural paradigm more difficult and therefore caused the shift to the
object-oriented paradigm (cf. Luker 1989, 1994). This paradigm is based on the
notion of communication between objects as unit of data and behavior (cf. Jana 2005).
A model of the object-oriented paradigm is displayed in Figure 2.2

Interestingly, it took about ten years until the shift found its way from industry into
education. Another ten years later the shift in education is complete and nearly every

2.1 Small History of the Object-Oriented Paradigm... 11

Figure 2.2: Organization of data and behavior (function) in object-oriented programming
(Kedar 2007, p. 171)

university is teaching the object-oriented paradigm as the introduction into computer
science (cf. Luker 1989, 1994).

The change in ideas is illustrated by Henderson-Sellers (1992). As an example, a
model of a counter is presented in both paradigms. The focus is on the shift in the
view on functionality. While the procedural counter needs a definition and initialization
of the counter variable followed up by a loop that modifies the counter and checks
the probable range violation, the object-oriented counter is simply modeled with the
needed functionality and is used as it is. The implementation itself is hidden in the
counter object and is irrelevant to the user (cf. Henderson-Sellers 1992, p. 44).

The object-oriented paradigm was developed by multiple people over a long period
of time (cf. Capretz 2003, p. 1). In fact, the development of object orientation and
especially the notion of objects started in the 1960s, together with the development of
the discipline itself.

The development of languages can also be seen as an indicator for the paradigm shift.
As with other notions, object orientation is also bound to the development of specific
programming languages. But, which languages can be called object-oriented and why?
Stroustrup (1988) gives quite a simple answer: “A language is said to support a style
of programming if it provides facilities that makes it convenient (reasonably easy, safe,
and efficient) to use that style. A language does not support a technique if it takes
exceptional effort or exceptional skill to write such programs; it merely enables the
technique to be used” (p. 2).

12 2 Computer Science Background

The very first object-oriented programming language known is Simula; developed
by Ole-Johan Dahl and Kristen Nygaard (cf. Capretz 2003, p. 3). Its development
started in 1962 and ended with Simula67 in 1967. Nevertheless, the development has
continued and Simula is still active in some special environments (cf. Black 2013, p. 4).
In Simula67 the central role of objects and classes was introduced. Resulting from the
success of the language, the notions of object, class, and inheritance became widely
accepted.

“The main impact of Simula 67 has turned out to be the very wide ac-
ceptance of many of its basic concepts: objects, but usually without own
actions, classes, inheritance, and virtuals, often the default or only way
of binding ‘methods’ (as well as pointers and dynamic object genera-
tion).” (Dahl 2002, p. 86)

A sample code for class definition, object instantiation, and inheritance is presented in
Listing 2.1.

Listing 2.1: Sample code in Simula67
Class Rect (Width, Height); Real Width, Height;

! Class with two parameters;
Begin

Real Area, Perimeter; ! Attributes;

Procedure Update; ! Methods;
Begin
Area := Width * Height;
Perimeter := 2*(Width + Height)

End of Update;

Boolean Procedure IsSquare;
IsSquare := Width=Height;

Update; ! Life of rectangle started at creation;
End of Rect;

Simula has been followed up by several languages that support the notion of object
orientation on different levels. The first language that made the term “object-oriented”
prominent was Smalltalk (cf. Capretz 2003, p. 2; Rentsch 1982, p. 51). It was invented
in the 1970s under the leadership of Alan Kay and contains some major ideas that
emphasize the object-oriented characteristic. In Smalltalk all elements are objects;
more precisely, there are no primitive data types. The communication between objects
is realized according to the concept of data encapsulation and information hiding. The
only possibility for communication is sending and receiving messages. Additionally, the
objects have their own memory space that is only accessible within the object itself.
Finally, every object is an instance of a class that holds the shared behavior for its
instances (cf. Kay 1993, p. 19). A sample code with all these concepts is presented in
Listing 2.2.

2.1 Small History of the Object-Oriented Paradigm... 13

Listing 2.2: Sample code in Smalltalk
Class Smalltalk.Rect

Superclass: Core.Object
Type: none
Instance variables: Area Perimeter Width Height

Rect class methods for ’instance creation’
width: aWidth height: aHeight
|temp|
temp := self new width: aWidth height: aHeight.
temp Update.
^temp

Rect methods for ’accessing’
height: aHeight
Height := aHeight

width: aWidth
Width := aWidth

Rect methods for ’updating’
IsSquare
^Width=Height

Update
Area := Width * Height.
Perimeter := 2 * (Width + Height).

Following the first object-oriented languages, in the 1980s several improvements to the
languages have been implemented and new ideas have been included. The language
Eiffel was developed in the 1980s by Bertrand Meyer.

“Eiffel is a language and environment intended for the design and imple-
mentation of quality software in production environments. The language
is based on the principles of object-oriented design, augmented by fea-
tures enhancing correctness, extendibility and efficiency; the environment
includes a basic class library and tools for such tasks as automatic con-
figuration management, documentation and debugging.” (Meyer 1987a,
p. 85)

The handling of multiple inheritance was a new contribution to programming languages.
The correct treatment through renaming and the introduction of assertion and invariant
mechanisms supported this basic object-oriented feature. Furthermore, it was the first
programming language that introduced static typing in an object-oriented language (cf.
Meyer 1987a, p. 94). Listing 2.3 presents a small class definition in the language Eiffel.

In the 1980s C++ was invented by Bjarne Stroustrup (Stroustrup 1994). It is based on
the procedural programming language C and “was designed to support data abstraction,
object-oriented programming, and generic programming in addition to traditional C
programming techniques” (Stroustrup 2003). The major change to C is the introduction
of the class concept. Based on this, the concepts inheritance and generalization are
added as well. Again, like in Eiffel, multiple inheritance is possible. Additionally, there

14 2 Computer Science Background

Listing 2.3: Sample code in Eiffel
class RECT
create

Make

feature{NONE} --constructor
Make(aWidth, aHeight: REAL)

do
Width := aWidth
Height := aHeight
Update()

end

feature
Width : REAL
Height : REAL
Area : REAL
Perimeter : REAL

feature
Update

do
Area := Width * Height
Perimeter := 2 * (Width + Height)

end
IsSquare : BOOLEAN

do
Result := Width=Height

end
end

are functions and methods supporting the two paradigms (cf. Sebesta et al. 2013,
pp. 108). An example of a class definition is presented in Listing 2.4.

Based on the procedural language Pascal (Wirth 2002a,b), another group of languages
supporting procedural elements, as well as object-oriented notions, was developed in
the time before the paradigm shift. Again, the object-oriented notions of object, attribute,
and method were added to an existing language. In the 1980s Borland developed
Turbo Pascal with object-oriented additions and later Delphi for Windows platforms.
The basic language underlying Delphi is called Object Pascal. Listing 2.5 presents a
small class definition in Object Pascal.

Finally, Java was developed in the mid-1990s. The language was derived from C++.
Most concepts of C++ were implemented in Java. Yet, some were modified to make
the language more reliable (e.g., references). Other concepts were not implemented
(e.g., multiple inheritance). In Java all functionality is bound to either an object or
a class. Methods can only be accessed through the corresponding class or object.
Although Java does not support multiple inheritance in a direct way, interfaces provide
restricted substitute (cf. Sebesta et al. 2013, pp. 111). While in its first years Java was
mainly used on the internet, now “Java is widely used in [the] IT industry and academic
environments” (Vujošević-Janičić and Tošić 2008, p. 73). Listing 2.6 presents a small
sample class.

2.1 Small History of the Object-Oriented Paradigm... 15

Listing 2.4: Sample code in C++
class Rect {

public:
void Update();
Rect(double aWidth, double aHeight);
bool IsSquare();

private:
double Height,Width,Area,Perimeter;

};

Rect::Rect(double aWidth,double aHeight) {
Height = aHeight;
Width = aWidth;

}

void Rect::Update() {
Area = Width*Height;
Perimeter = 2 * (Width + Height);

}

bool Rect::IsSquare() {
return Width==Height;

}

In addition to the languages described in this section, there are many more program-
ming languages for all existing programming paradigms and programming styles.
Several overviews try to provide an almost complete genealogy of programming lan-
guages. For example, there are lists1 and graphical overviews23 of the development of
programming languages on the internet. Figure 2.3 presents an overview of all previous
described languages. It is adopted from (Zuse 1999). The languages described above
are in cyan color.

Some important features of the languages introduced above are displayed in Table 2.1
(adopted from a similar overview of Hristakeva and Vuppala (2009)).

Characteristic Language

Smalltalk Eiffel C++ Object Pascal Java

Object orientation Pure Pure Hybrid Hybrid Hybrid
Typing Dynamic Static Static Static Static

Inheritance Single Multiple Multiple Singe Single
(Extended)

Method overloading No No Yes Yes Yes

Table 2.1: Important feature of the presented object-oriented programming languages

1http://people.ku.edu/˜nkinners/LangList/Extras/langlist.htm - last access: 09.12.2014
2http://www.levenez.com/lang/ - last access: 09.12.2014
3http://oreilly.com/pub/a/oreilly/news/languageposter_0504.html - last access: 09.12.2014

16 2 Computer Science Background

Listing 2.5: Sample code in Object Pascal
type
Rect = object

Width: double;
Height : double;
Area : double;
Perimeter : double;
constructor init(aWidth, aHeight : double);
procedure Update;
function IsSquare : boolean;
end;

constructor Rect.init(aWidth, aHeight : double);
begin
Width := aWidth;
Height := aHeight;
Update();
end;

procedure Rect.Update;
begin
Area := Width*Height;
Perimeter := 2 * (Width + Height);
end;

function Rect.IsSquare : boolean;
begin
result := Width=Height;
end;

begin

end.

Listing 2.6: Sample code in Java
public class Rect{

private double Width;
private double Height;
private double Area;
private double Perimeter;

public Rect(double aWidth, double aHeight){
this.Width = aWidth;
this.Height = aHeight;
Update();

}

public void Update(){
this.Area = this.Width * this.Height;
this.Perimeter = 2 * (this.Width + this.Height);

}

public boolean IsSquare() {
return this.Width==this.Height;

}
}

2.1 Small History of the Object-Oriented Paradigm... 17

P
la

nk
al

kü
l (

19
45

)

P
L/

1
(1

96
5)

19
50

19
65

19
55

19
45

S
N

O
B

O
L

(1
96

3)

S
N

O
B

O
L

4
(1

96
9)

IC
O

N
(1

98
4)

B
A

S
IC

 (1
96

4)

Tr
ue

B
A

S
IC

(1
98

9)

Q
ui

ck
b

as
ic

(1
98

8)

V
is

ua
l B

as
ic

 3
(1

99
0)

V
is

ua
l B

as
ic

 4
(1

99
5)

S
ho

rt
-C

od
e

(1
94

9)

FO
R

TR
A

N
 0

(1
95

5)

FO
R

TR
A

N
 6

6

FO
R

TR
A

N
 9

0
(1

99
0)

FO
R

TR
A

N
 I

(1
95

6)

FO
R

TR
A

N
 II

(1
95

8)

FO
R

TR
A

N
 7

7

S
p

ee
d

co
d

in
g

(1
95

4)

A
N

S
I C

O
B

O
L

(1
96

8)

FL
O

W
M

A
TI

C
(1

95
3)

A
N

S
I C

O
B

O
L

(1
97

4)

A
N

S
I C

O
B

O
L

(1
98

5)

C
 (1

97
2)

A
N

S
I C

(1
98

9)

B
C

P
L

(1
96

9)

C
P

L
(1

96
3)

B
 (1

97
0)

C
2.

0+
+

(1
98

6)

C
3.

0+
+

(1
99

0)

S
IM

U
LA

 6
7

(1
96

7)

S
IM

U
LA

 1
(1

96
4)

A
P

L
(1

96
2)

S
m

al
lta

lk
(1

98
0)

S
m

al
lta

lk
(1

97
6)

S
m

al
lta

lk
(1

97
4)

S
m

al
lta

lk
(1

97
2)

S
m

al
lta

lk
(1

97
8)

A
LG

O
L

58
 (1

95
8)

A
LG

O
L

60
 (1

96
0)

A
LG

O
L

68
(1

96
8)

A
LG

O
L

W
(1

96
6)

P
A

S
C

A
L

(1
97

0)

M
od

ul
a-

2
(1

98
0)

O
b

er
on

-2
(1

99
2)

P
R

O
LO

G
 0

(1
97

2)

P
R

O
LO

G
 1

(1
97

3)

D
iv

er
se

P
R

O
LO

G
V

er
si

on
en

LI
S

P
 (1

95
9)

19
95

19
75

M
od

ul
a-

3
(1

99
3)

FO
R

TR
A

N
 IV

(1
96

2)

19
60

C
O

B
O

L
(1

96
0)

M
A

TH
-M

A
TI

C
(1

95
7)

19
70

E
iff

el
 (1

99
2)

C
O

M
TR

A
N

(1
95

9)

19
85

19
90

JA
V

A
(1

99
5)

19
80

E
U

K
LI

D
(1

97
7)

V
is

ua
l B

as
ic

 6
(1

99
8)

C
op

yr
ig

ht
: H

or
st

 Z
us

e,
 1

99
8

C
on

cu
rr

en
t

P
A

S
C

A
L

(1
97

5)

C
O

M
M

O
N

 L
IS

P
(1

98
4)

S
C

H
E

M
E

 (1
97

5)

J
(1

99
1)

E
LA

N
(1

97
5)

M
E

S
A

(1
97

8)

A
D

A
 8

3
(1

98
3)

A
D

A
 9

5
(1

99
5)

D
el

ph
i

(1
99

5)

O
b

je
ct

 P
as

ca
l

(1
98

6)

F
ig

ur
e

2.
3:

O
ve

rv
ie

w
of

th
e

hi
st

or
y

of
pr

og
ra

m
m

in
g

la
ng

ua
ge

s
(a

do
pt

ed
fr

om
(Z

us
e

19
99

,
p.

6)
–

la
ng

ua
ge

s
de

sc
rib

ed
in

th
is

th
es

is
ar

e
in

cy
an

co
lo

r

18 2 Computer Science Background

2.2 Different Views of Object Orientation

Obviously, object-orientation plays an important role for this thesis. Therefore, this
term has to be thoroughly clarified. Many different definitions or specifications of object
orientation can be found in the literature. Unfortunately, it turned out that there are
several substantially different views of object orientation that cannot be integrated into
one “mainstream” perception. In his overview of the history of the object-oriented
approach, Capretz (2003) described several of these views:

“To some, the concept of object was merely a new name for abstract data
types; each object had its own private variables and local procedures,
resulting in modularity and encapsulation. To others, classes and objects
were a concrete form of type theory; in this view, each object is considered
to be an element of a type which itself can be related through sub-type
and supertype relationships. [...] [O]bject-oriented software systems
were a way of organizing and sharing code in large software systems.
Individual procedures and the data they manipulate are organized into a
tree structure. Objects at any level of this tree structure inherit behavior
of higher level objects; inheritance turned out to be the main structuring
mechanism which made it possible for similar objects to share program
code.” (Capretz 2003, p. 2)

In the following the most prominent views of object orientation are summarized. Starting
with the early definitions by Dahl and Nygaard (1966), several examples from different
sources are presented here to demonstrate the variety.

Dahl and Nygaard (1967) introduced the notions of classes and objects in the context
of the development of Simula. They stated that the “class concept introduced is a
remodeling of the record class concept proposed by Hoare. [...] A prefix notation
is introduced to define subclasses organized in a hierarchical tree structure. The
members of a class are called objects. Objects belonging to the same class have
similar data structures” (p. 159). Additionally, they introduced the notion of inheritance
on a class level and the combination of data and objects that belong to a class.

Meyer (1987b) pointed out an important difference between the object-oriented pa-
radigms and other programming styles. While the latter regard data as passive, the
object-oriented paradigm focuses on active objects that operate on their own data (cf.
Meyer 1987b, p. 53).

Later, Meyer (2009) defined seven concepts that have to be implemented to fulfill
the requirements of object-oriented paradigm: object-based modular structures, data
abstraction, automatic memory management, classes, inheritance, polymorphism and
dynamic binding, and multiple and repeated inheritance. This definition is compre-
hensive, although it is more a definition of object-oriented languages than of object
orientation in general. Furthermore, it emphasizes the software development process
as follows:

“The object-oriented approach is ambitious: it encompasses the entire
software lifecycle. When examining object-oriented solutions, you should

2.2 Different Views of Object Orientation 19

check that the method and language, as well as the supporting tools,
apply to analysis and design as well as implementation and maintenance.”
(p. 22)

Another approach for defining object orientation was conducted by Wegner (1990). His
definition is built hierarchically from the concept of object, adding the concepts of class
and inheritance and is based on the classification of programming languages. The
first group of languages is object-based. By adding the concept class, the remaining
languages are called class based. The last and most restrictive language group
includes the object-oriented languages with the introduction of inheritance.

“Object-based, class-based, and object-oriented languages are progres-
sively smaller language classes with progressively more structured lan-
guage requirements and more disciplined programming methodology.
Object-based languages support the functionality of objects but not their
management. Class-based languages support object management but
not the management of classes. Object-oriented languages support object
functionality, object management by classes, and class management by
inheritance.” (Wegner 1990, p. 26)

In the end it can be summarized as: object-oriented = objects+classes+inheritance.

A definition that is neither focused on languages nor on object in particular was the
one by Blair (1991). He defined four dimensions of object-oriented systems, not only
languages. They were all based on object-oriented computing as a special kind of
abstraction:

“Encapsulation is defined as the grouping together of various properties
associated with an identifiable entity in the system in a lexical and
logical unit, i.e. the object. Furthermore, access to the object should
be restricted to a well-defined interface.” (p. 111)

“Classification is the ability to group associated objects according to com-
mon properties. Various classifications can be formed representing
different groupings in the system. All objects within a particular group-
ing will share all the common properties for that grouping but may
have other differences.” (p. 111)

“Polymorphism implies that objects can belong to more than one clas-
sification. Classifications can therefore overlap and intersect. Thus
it is possible for two different classifications to share common be-
haviour.” (p. 111)

“Interpretation is defined as the resolution of polymorphism. In polymor-
phic environments, it is possible for a particular item of behaviour
to have several different meanings depending on the context. It is
therefore the task of interpretation to resolve this ambiguity and to
determine the precise interpretation of an item of behaviour.” (p. 112)

20 2 Computer Science Background

Another point of view was presented by Hares and Smart (1994). Object orientation
was shown in the perspective of its benefits for database development and software
design. The authors focused on the improvement that the new paradigm provided.

“Object orientation is the technology that is replacing today’s database and
programming technology for the design and development of computerized
application systems, the technology that some regard as the ultimate
paradigm for the modeling of information, be that information or logic.”
(Hares and Smart 1994, p. 1)

According to a description of all major concepts related to object orientation, Hares and
Smart (1994) presented a graphical overview of the concept of objects in general and
information hiding or encapsulation in particular (see Figure 2.4).

Figure 2.4: Graphical representation of the concepts object and encapsulation (Hares
and Smart 1994, p. 43)

In the early 1990s, Rumbaugh (1991), Jacobson (1992), and Booch (1994) introduced
object-oriented modeling techniques. Later on, these different approaches were inte-
grated into the unified modeling language (UML). The first version4 was published in
1997. In the context of UML the following view of object orientation was formulated:

“In [the object-oriented] approach, the main building block of all software
systems is the object or class. Simply put, an object is a thing, generally

4http://www.omg.org/cgi-bin/doc?ad/97-08-11 - last access: 19.02.2015

2.2 Different Views of Object Orientation 21

drawn from the vocabulary of the problem space or the solution space;
a class is a description of a set of common objects. Every object has
identity (you can name it or otherwise distinguish it from other objects),
state (there’s generally some data associated with it), and behavior (you
can do things to the object, and it can do things to other objects, as well).”
(Booch et al. 1999)

2.2.1 A Definition of Object Orientation by its Fundamental
Concepts

Apparently, there is a broad variety of views of object orientation. But how should
object orientation be understood in the context of this thesis? It seems natural to solve
this problem by properly defining the most important concepts of object orientation.
But how find these most important concepts? For this purpose, Armstrong (2006)
investigated many sources of literature. She searched for the keyword “object-oriented
development” and found 239 sources. 88 of those asserted that a specific set of
concepts characterized the object-oriented approach. These 88 specific sets were
evaluated, counting the relative frequencies of the addressed concepts. The result is
displayed in Table 2.2.

It turned out that eight of these concepts were mentioned in more than 50% of the
sources: Inheritance, Object, Class, Encapsulation, Method, Message Passing, Poly-
morphism, and Abstraction. Honoring this particular importance, she called these eight
concepts the “quarks of object-oriented development” (Armstrong 2006). Concerning
the particular importance of the “quarks”, it seems reasonable to select these concepts
as foundation of object orientation in this thesis.

The next subsections describe and define these eight “quarks”. Please note that
this is done in logical order, not according to the order of Armstrong (2006). The
interdependencies of the concepts are discussed in Chapter 6.

22 2 Computer Science Background

Concept Count Pct. Concept Count Pct.

Inheritance 71 81% Object Model 4 5%
Object 69 78% Reuse 3 3%
Class 62 71% Cohesion 2 2%
Encapsulation 55 63% Coupling 2 2%
Method 50 57% Graphical 2 2%
Message Passing 49 56% Persistence 2 2%
Polymorphism 47 53% Composition 1 1%
Abstraction 45 51% Concurrency 1 1%
Instantiation 31 35% Dynamic Model 1 1%
Attribute 29 33% Extensibility 1 1%
Information Hiding 28 32% Framework 1 1%
Dynamic Binding 13 15% Genericity 1 1%
Relationship 12 14% Identifying Objects 1 1%
Interaction 10 12% Modularization 1 1%
Class Hierarchy 9 10% Naturalness 1 1%
Abstract Data Type 7 8% Safe Referencing 1 1%
Object-Identity Independence 6 7% Typing 1 1%
Collaboration 5 6% Virtual Procedures 1 1%
Aggregation 4 5% Visibility 1 1%
Association 4 5%

Table 2.2: Results of the text analysis presented by Armstrong (2006)

2.2.1.1 Object

The name-giving concept of object orientation was introduced in Simula67. According
to this, the idea of the concept object is related to a representation of the real world.

“In effect, an object-oriented program is a description or simulation of
an application. The objects in the program are the entities in the simula-
tion.” (Sethi 2003, p. 253)

The dualism of object as a data carrier and something that executes actions (cf. Arm-
strong 2006, pp. 124) is also pointed out by Blair (1991): “An object is an encapsulation
of a set of operations or methods which can be invoked externally and of a state which
remembers the effect of the methods” (p. 26).

More precisely, the state of an object is defined by the values of its attributes (cf.
Christensen 2005; Rentsch 1982). Other concepts related to objects that can be found
in literature are instance and class. Instance is a synonym and class is the higher-level
structure.

2.2 Different Views of Object Orientation 23

2.2.1.2 Class

According to Booch et al. (1999), “a class is a description of a set of common objects”.
All instances of a class share the same kind of data, even if they differ in their state
(data values). In turn, according to Blair (1991, p. 29) “a class is a template from which
objects may be created. It contains a definition of the state descriptors and methods
for the object”.

Additionally, in many definitions the concept of class is also used as a data type for the
corresponding object (cf. Christensen 2005).

“Similar objects, objects with common properties, are grouped into a class.
A class can be thought of as the type of an object.” (Sethi 2003, p. 257)

Some definitions even emphasize class as the most important concept in the object-
oriented approach. Precisely, abstraction – introduced in Section 2.2.1.8 – is the central
concept and class is the realization of it.

“In fact, ‘object-oriented’ is really a misnomer because what we really
should be talking about is ‘class-oriented,’ since the essence of the object-
oriented technique is actually the class. [...] So classes and abstract
data types are actually central to the object-oriented approach, the ab-
stract data type essentially being the formal specification of the object
class.” (Henderson-Sellers 1992, p. 34)

2.2.1.3 Method

The implementation of the behavior of an object is called a method. Nevertheless, a
method is nothing but a procedure strictly bound to an object. According to Armstrong
(2006) a method is “a way to access, set or manipulate an object’s information”, while
according to the definition of Blair (1991), methods are the only possibility to change
the state of an object.

2.2.1.4 Message Passing

As mentioned above, the activity and communication of and between objects is one
of the fundamental idea of object orientation. This is enabled by the mechanisms of
message passing. According to Armstrong (2006, p. 126) message passing is “the
process by which an object sends data to another object or asks the other object to
invoke a method”.

Rosson and Alpert (1990) emphasize the communication aspect of message passing.
“Central to [object-oriented programming] OOP is the metaphor of communicating
objects.[...] All computation in an OOP system takes place as a result of message
sending; all objects share the ability to send and respond to message” (Rosson and
Alpert 1990, p. 355).

24 2 Computer Science Background

Sethi (2003) summarizes important aspects of message passing. A “message to an
object corresponds to a procedure call; messages can carry parameters. In response
to a message, the object executes a method, which corresponds to a procedure body; it
returns an optional result. The result, if any, will itself be an object of some class” (Sethi
2003, p. 258).

2.2.1.5 Encapsulation

In the literature, encapsulation is defined as a collection of data that is only accessible
through well defined processes. Additionally, there are definitions only focusing on
the grouping of data and the corresponding functionality (cf. Deitel and Deitel 2012,
p. 49) and those that focus on the well defined accessibility of that data (cf. Henderson-
Sellers 1992, p. 19). The balance between readability of code and the encapsulation
of data in single classes is a central topic of this concept (cf. Eckerdal et al. 2006).

“In any class in any language there is what is usually known as a private
part and a public part - the private part is where information is hidden
(that’s usually the implementation of the functionality and the attributes
(the variables)); and the public part is the statement, the names, of the
functions that this object will respond to messages about; in other words,
that can be used by a client object.” (Henderson-Sellers 1992, p. 60)

Besides the encapsulation of data and functionality, Henderson-Sellers (1992) states
that the well defined access is defined by an interface concept. So, only the neces-
sary functionality for changing the data is provided through an interface. The data
itself cannot be changed from the outside of an object (cf. Henderson-Sellers 1992,
p. 60). This fact is often called information hiding and is also used as a synonym for
encapsulation.

2.2.1.6 Polymorphism

Blair (1991) postulates polymorphism to be “one of the most characteristic features
of object-oriented systems” (Blair 1991, p. 35).

According to Armstrong (2006), “polymorphism is defined as: the ability of different
classes to respond to the same message and each implement the method appropri-
ately” (Armstrong 2006, p. 126).

Cardelli and Wegner (1985) listed different aspects of polymorphism. They distinguish
between universal and ad-hoc polymorphism. Universal polymorphism, as well as ad-
hoc polymorphism, is again differentiated into two types. The first type is parametric and
inclusion polymorphism; the second type is overloading and coercion. The definitions
are summarized by Blair (1991).

2.2 Different Views of Object Orientation 25

Parametric polymorphism “In parametric polymorphism, a single function (coded
once) will work uniformly on a range of types. It is possible that the function will
operate on all types but more likely the types will be required to exhibit some
common structure.” (p. 82).

Inclusion polymorphism “Inclusion polymorphism also allows a function to operate
on a range of types” (p. 83). In fact, this means that any method of the superclass
is applicable in the subclass. For this reason, this type of polymorphism is strongly
related to inheritance (see Section 2.2.1.7).

Overloading “Overloading allows a function name to be used more than once with
different types of parameter. [...] The typing information of the parameters will
then be used to select the appropriate function” (p. 81).

Coercions “Languages supporting coercion have certain in-built mappings (coer-
cions) between types. If a particular context demands one type and a different
type is provided, then the language will look to see if there is an appropriate
coercion” (p. 81).

2.2.1.7 Inheritance

The concept of inheritance plays a central role in most definitions of object orientation.
It was introduced with the development of Simula67 (cf. Dahl and Nygaard 1967).
According to Armstrong (2006) inheritance is “a mechanism that allows the data
and behavior of one class [(superclass)] to be included in or used as the basis for
another class [(subclass)]” (Armstrong 2006). In the subclass the original attributes and
methods can be changed by overriding (cf. Sebesta et al. 2013, pp. 545). By this way,
inheritance supports code reuse on the one hand, and on the other hand, provides
the feature to build class hierarchies.

“Inheritance classifies classes in much the [same] way [that] classes
classify values. The ability to classify classes distinguishes object-oriented
programming from traditional programming languages by providing greater
classification power and conceptual modeling power.” (Wegner 1989,
p. 26)

The question of which application is really useful is discussed by Hu (2011). A study on
the difficulties concerning the application of inheritance was conducted by Daly et al.
(1996) and showed that most problems are related to understanding program codes.

A special problem in this context is multiple inheritance. If a class is derived from more
than one class and at least two superclasses provide the same data or functionality,
there must be a mechanism to uniquely define which data or which functionality can
be used by the subclass. There are languages that provide multiple inheritance such
as C++, while others, such as Java, do not. Whether multiple inheritance is used in a
language is a choice between the advantages and disadvantages and depends on the
field in which the language is mainly used (cf. Sebesta et al. 2013, pp. 551).

26 2 Computer Science Background

2.2.1.8 Abstraction

The fundamental concept of abstraction underlying object orientation is the last “quark”
of Armstrong (2006). According to her, abstraction is “the act of creating classes to
simplify aspects of reality using distinctions inherent to the problem” (Armstrong 2006).
By this way, object orientation enables us to model parts of our world in a natural way.
Consequently, this real-world modeling approach was one of the central aspects that
led to the paradigm shift from imperative procedural programming to object-oriented
programming (cf. Quibeldey-Cirkel 1994).

Further, Armstrong (2006) summarizes:

“Data abstraction is possible in classical development, but it is enforced in
the [object-oriented] OO approach. Many authors define abstraction in a
generic sense as a mechanism that allows us to represent a complex reality
in terms of a simplified model so that irrelevant details can be suppressed in
order to enhance understanding. Others have conceptualized abstraction
as the act of removing certain distinctions between objects so that we can
see commonalities.” (Armstrong 2006)

2.2.2 Taxonomies of Object Orientation

Besides her literature analysis Armstrong (2006) introduced, a new taxonomy of object
orientation. It is based on the “quarks” examined from literature (see Section 2.2.1).
For the taxonomy (see Table 2.3), the concepts mentioned above are grouped in two
constructs: structure and behavior.

The concepts relating to structure “are focused on the relationship between classes and
objects and the mechanisms that support the class/object structure. [...] In essence a
class is an abstraction of an object. The class/object encapsulates data and behavior
and inheritance allows the encapsulated data and behavior of one class to be based
on an existing class” (p. 127).

The second construct “behavior” combines the concepts related to the communication
of objects. So, “[m]essage passing is the process in which an object sends information
to another object or asks the other object to invoke a method. Polymorphism enacts
behavior by allowing different objects to respond to the same message and implement
the appropriate method for that object” (p. 127).

2.2 Different Views of Object Orientation 27

Construct Concept Definition

Structure

Abstraction Creating classes to simplify aspects of reality
using distinctions inherent to the problem.

Class A description of the organization and actions
shared by one or more similar objects.

Encapsulation Designing classes and objects to restrict access
to the data and behavior by defining a limited
set of messages that an object can receive.

Inheritance The data and behavior of one class is included
in or used as the basis for another class.

Object An individual, identifiable item, either real or
abstract, which contains data about itself and
the descriptions of its manipulations of the data.

Behavior

Message Passing An object sends data to another object or asks
another object to invoke a method.

Method A way to access, set, or manipulate an object’s
information.

Polymorphism Different classes may respond to the same mes-
sage and each implements it appropriately.

Table 2.3: Object-oriented taxonomy presented by Armstrong (2006)

In addition to the definition of a taxonomy, Armstrong (2006) cited two older object-
oriented taxonomies. The taxonomy of Rosson and Alpert (1990) contains four ele-
ments that characterize the object-oriented design process. Basically, these elements
are:

Communicating objects: includes the concepts of object, message passing, and
method.

Abstraction: includes the concepts of information hiding, encapsulation, data abstrac-
tion, and polymorphism.

Shared behavior: includes the concepts of inheritance, class, and instance.

Designing with objects: includes the concept of object modeling.

Henderson-Sellers (1992) summarize the basis of object-oriented systems in a triangu-
lar relationship. The concepts of encapsulation and information hiding, classification
and abstract data types, and polymorphism through inheritance build the nodes, and
are based on the consensus of a literature review on object-orientation (cf. Henderson-
Sellers 1992, p. 19). A graphical overview is presented in Figure 2.5

28 2 Computer Science Background

Figure 2.5: Object-oriented triangle by Henderson-Sellers (1992)

2.2 Different Views of Object Orientation 29

Relevance for this thesis

The experiments described in the following chapters are all related to object orientation.
Chapter 5 gives an insight into the educational base (e.g., curricula and standards) of
computer science. Here, the focus is on object-orientation. Although the text analysis
in Chapter 6 can be applied on any topic, in this thesis it has been conducted on text-
books related to the introduction into object orientation or object-oriented programming,
respectively. The experimental courses and studies on programmers in Chapter 7, are
also associated with object orientation. For this reason, a summary view has been
given on the development of the object-oriented programming paradigm in the last
view paragraphs. In addition, the following chapters refer to the definition of object
orientation, which was presented in the previous sections.

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

3 Educational Background

The second chapter of the theoretical background for this thesis summarizes the
educational theories that are taken into account in the experimental settings described
in Chapter 7.

3.1 Constructivism

The elementary learning theory underlying the experimental courses introduced in
Chapter 7 is the theory of constructivism. “Constructivism is a broad term with philo-
sophical, learning and teaching dimensions, but it generally emphasizes the learner’s
contribution to meaning and learning through both individual and social activity”(Bruning
et al. 2011, p. 215). The theory is mainly based on the work of Piaget (1929) and Vygot-
sky (1962). Basically, there are two principles that characterize the theory, especially in
contrast to the learning theories of behaviorism and cognitivism.

“Knowledge is not passively received but actively built up by the cognizing
subject;

The function of cognition is adaptive and serves the organization of the ex-
periential world, not the discovery of ontological reality” (Glasersfeld 1989b,
p. 162).

The main assumption is that skills and knowledge of an individual are gained through
interactions with people and situations (cf. Maturana and Varela 1980, p. 49). This
implies that the learner is regarded as an active creator in the learning process. The
role of the teacher changes to a kind of mentor who supports the learning process by
providing learning materials and creating different learning situations.

According to Schunk (2011), constructivism is not a single viewpoint, but rather provides
different perspectives on the acquisition of knowledge (see Table 3.1).

Similar to the conceptual change theory described in Section 3.5, the provided inputs
should be in conflict to the present cognitive structures of the students to enforce
accommodation and assimilation. These cognitive restructuring processes depend
on equilibration, the “central factor and the motivating force behind cognitive devel-
opment” (Schunk 2011, p. 236). According to Piaget (1929), every individual tries to
find a state of mind where the cognitive structures are equivalent to the environment.
Therefore, we can fit the environmental (external) reality to our cognitive structures
(assimilation) or vice versa (accommodation) (cf. Glasersfeld 1989a, pp. 126).

32 3 Educational Background

Perspective Premises

Exogenous The acquisition of knowledge represents a reconstruction of
the external world. The world influences beliefs through ex-
periences, exposure to models, and teaching. Knowledge is
accurate to the extent it reflects external reality.

Endogenous Knowledge derives from previously acquired knowledge and not
directly from environmental interactions. Knowledge is not a
mirror of the external world; rather, it develops through cognitive
abstraction.

Dialectical Knowledge derives from interactions between persons and their
environment. Constructions are not invariably tied to the external
world nor wholly the workings of the mind. Rather, knowledge
reflects the outcomes of mental contradictions that result from
one’s interactions with the environment.

Table 3.1: Overview of the different perspectives on constructivism (Schunk 2011)

As a consequence of these restructuring processes, the role of the teaching person has
to change. This is taken into account in the experimental setting described in Chapter
7.

“If, then, we come to see knowledge and competence as products of
the individual’s conceptual organization of the individual’s experience,
the teacher’s role will no longer be to dispense ‘truth’, but rather to help
and guide the student in the conceptual organization of certain areas of
experience. Two things are required for the teacher to do this; on the
one hand, an adequate idea of where the student is and, on the other, an
adequate idea of the destination.” (Glaserfeld 1983)

Another theory associated to the constructivism theory that had an influence on the
experimental setting is the theory of cognitive apprenticeship. Here, students work
together with experts in a authentic working situation.

“So the term apprenticeship helps to emphasize the centrality of activity in
learning and knowledge and highlights the inherently context-dependent,
situated, and enculturating nature of learning.” (Brown et al. 1989, p. 39)

Therefore, teachers promote the learning process first by “making explicit their tacit
knowledge or by modeling their strategies for students in authentic activity. Then,
teachers and colleagues support [the] students’ attempts at doing the task. And finally
they empower the students to continue independently” (Brown et al. 1989, p. 39). More
precisely, the cognitive apprenticeship process can be divided into four phases:

“Modelling involves showing an expert carrying out a task so that students can
observe and build a conceptual model of the processes that are required to
accomplish the task.

3.2 Social Cognitive Theory 33

Coaching consists of observing students while they carry out a task and offering
hints, scaffolding, feedback, modelling, reminders, and new tasks aimed at
bringing their performance closer to expert performance.

Scaffolding refers to the supports the teacher provides to help the student carry
out a task.

Fading consists of the gradual removal of supports until students are on their
own”. (Collins et al. 1989, pp. 481)

These steps were explained to the peer tutors who guided the participants through the
experimental courses described in Chapter 7.

3.2 Social Cognitive Theory

Bandura (1986) investigated several social influences on the learning process. Ac-
cording to the “Social Learning and Imitation Theory” of Miller and Dollard (1941) he
first introduces the “Social Learning Theory” (Bandura 1977). Later, Bandura (1986)
revised his theory. Basically, in “the social cognitive view people are neither driven
by inner forces nor automatically shaped and controlled by external stimuli. Rather,
human functioning is explained in terms of a model of triadic reciprocality in which
behavior, cognitive and other personal factors, and environmental events all operate as
interacting determinants of each other” (Bandura 1986, p. 18). In detail, he described
five capabilites that affect the learning of persons.

The symbolizing capability enables people to understand an manage their environ-
ment. “People process and transform passing experiences by means of verbal, imaginal
and other symbols into cognitive models of reality that serve as guides‘for judgment
and action. It is through symbols that people give meaning, form, and continuity to
the experiences they have had. Symbols serve as the vehicle of thought” (Bandura
1989, p. 9). Additionally, symbolizing capability enables people test possible solutions
in thought, rather than solve problems solely by performing actions and suffering the
consequences of missteps (cf. Bandura 1989).

The forethought capability is the “ability to bring anticipated outcomes to bear on
current activities [...]. It enables people to transcend the dictates of their immediate
environment and to shape and regulate the present to fit a desired future. In regulating
their behavior by outcome expectations, people adopt courses of action that are likely
to produce positive outcomes and generally discard those that bring unrewarding or
punishing outcomes” (Bandura 2001, p. 7).

The vicarious capability enables people to learn from models instead through the
effects of one’s actions. In fact, humans “have evolved an advanced capacity for
observational learning that enables them to expand their knowledge and skills on the
basis of information conveyed by modeling influences. Indeed, virtually all learning
phenomena resulting from direct experience can occur vicariously by observing people’s
behavior and its consequences for them” (Bandura 1989, p. 21).

34 3 Educational Background

The self-regulatory capability enables people to make causal contribution to their
own motivation and actions “by arranging facilitative environmental conditions, recruiting
cognitive guides, and creating incentives for their own efforts” (Bandura 1986, p. 20).

Finally, the self-reflective capability enables “people judge the correctness of their
predictive and operative thinking against the outcomes of their actions, the effects
that other people’s actions produce, what others believe, deductions from established
knowledge and what necessarily follows from it” (Bandura 2001, p. 10).

All these capabilities enable human beings to learn on the basis of the social cognitive
theory and its derivations, such as the self-directed learning. The following sections
describe the self-regulatory capability in detail and the influence of the theory on
self-efficacy.

3.2.1 Self-Regulation

According to Bandura (1986) self-regulation is an interaction of personal, behav-
ioral, and environmental processes. It “refers to self-generated thoughts, feelings,
and actions that are planned and cyclically adapted to the attainment of personal
goals”(Zimmerman 2000a, p. 14). Basically, self-regulatory processes are, according to
Zimmerman (2000a), divided into three cyclic phases. The fourthought phase involves
task analysis processes and self-motivation sources. Self-efficacy beliefs (see Section
3.2.2 are central sources of motivation (cf. Bandura 1997).

As the influence of actions and behavior on the learning process is a central issue in the
self-related learning theory, it is important for the learner to observe their own actions
and behavior. When complex facets need to be learned, there are many different
factors that compete for attention. To be successful in self-observation, it is important
for individuals to be aware of what they are doing (cf. Bandura 1986, pp. 336).

The aspect of self-observation is related to the facet of self-motivation in a very strong
way. Changes in actions and behavior are influenced by the amount of self-set goals
that are involved. Furthermore, self-observation depends on several factors. So, there
is a temporal proximity, which means that changes in behavior are more effective if
they are related to the present and not to the past (cf. Zimmerman 2000a, pp. 26).

Additionally, feedback has to be performed informatively. If the ideas of how one is
doing something are quite vague, or when there is no clear evidence of progress,
self-observation is unclear.

“Immediate self-observation provides continuing information and thus the
best opportunity for self-evaluation to influence the behavior while it is still
in progress.” (Bandura 1986, p. 338)

In addition to the facets mentioned above, motivation for and valence of the behavior is
important for the self-regulative process. Furthermore, success or positive alteration of
actions and behavior is more effective than punishment or negative feedback.

3.2 Social Cognitive Theory 35

Self-observation is the basis for self-directed reactions and learning processes, but
without a comparative function there would be no change in actions or behavior. These
comparisons are very individual and depend on personal standards, which are built by
several social influences.

The comparison of other standards against an internal standard is quite difficult, as in
most cases there is no accurate criterion. According to Bandura (1986) there are four
types of comparisons.

Normative comparison is the comparison of the own ability to regular activities
or standard norms based on representative groups. They are used to determine
one’s relative standing. Therefore, it is important that the compared normative
group is typical for the individual that is comparing themself. Atypical groups
lead to misjudgment in their own abilities.

Peer group comparison is the comparison with those who seem to have similar
abilities. Here, the comparison is difficult, as the individual is choosing the level
of comparison with regard to the group. For example, surpassing “those known
to be of lesser ability has dubious merit. For this reason, people ordinarily choose
to compare themselves with those whom they regard as similar or slightly higher
in ability” (Bandura 1986, p. 347).

Self-comparison describes the continual comparison of the current actions or
behaviors to former ones. Based on this comparison, people raise their internal
standards after a success and decrease them after a failure. In general, referring
to the self-comparison of personal challenges rather than to social comparison
with others is regarded as more positive.

Collective comparison means that the group performance is evaluated and not
the individual’s performance. Their own achievement is put into relation with the
group’s accomplishment.

3.2.2 Self-Efficacy

Perceived self-efficacy is defined by Bandura (1986) as the judgment of one’s capability
to accomplish a certain level of performance. Additionally, as most outcomes have their
origin in actions, there is a dependency between behavior and the expected outcome;
or, with regard to thought, the outcomes that people anticipate depend on the person’s
judgment of how well they can perform in a given situation (cf. Bandura 1986, p. 392).

As people tend to avoid situations that exceed their abilities and rather face situations
they suppose they can handle, self-efficacy has a strong influence on the development
of abilities. “The efficacy judgments that are the most functional are probably those
that slightly exceed what one can do at any given time” (Bandura 1986, p. 394).

According to Zimmerman (2000b, p. 83), the level of self-efficacy refers to its depen-
dence on the difficulty of the particular task. Furthermore, generality pertains to the
transferability of self-efficacy beliefs across activities. The strength of perceived efficacy
is measured by the amount of one’s certainty about performing a given task.

36 3 Educational Background

Self-efficacy also has a strong influence on the amount of time an individual will spend
on a problem. If self-doubts are a problem, it is more likely that an individual will give
up facing difficulties that cannot be resolved in a short time. Another aspect is the
influence of self-efficacy on the judgment of failures. A person who perceives low
self-efficacy, judges a failure as a deficit in their own ability, while someone with a high
self-efficacy will judge it as an insufficient effort (cf. Zimmerman 2000b, pp. 83).

Problems related to the introduction into computer science are strongly related to the
different facets of self-efficacy. Several studies have investigated the influence of
self-efficacy and have addressed developing measures for it (Giannakos et al. 2012;
Ramalingam et al. 2004; Compeau and Higgins 1995).

Information on self-efficacy is acquired from different sources, which are described
in the following list provided by Bandura (1986, pp. 399). However, the list does not
provide any assessment of a self-efficacy level.

Performance attainments: When failure is unrelated to the effort since the failure oc-
curs quite early in the problem solving process, the degree of influence depends
on the former level of self-efficacy of the individual. Enhanced self-efficacy can
be generalized to other fields than where it was acquired.

Vicarious experience: If people from a peer group perform successfully, self-efficacy
is increased. Again, the former level of perceived efficacy has an influence on
the sensitivity of the change. Hence, the kind of external information that is used
to evaluate the actions or behavior has an effect on vicarious experience.

Verbal persuasion: Telling an individual that they are able to solve a given task
increases self-efficacy. Here, the discrepancy between positive effects of encour-
aging and the negative effects of discouraging are bigger than it is at performance
attainments or vicarious experience. The effect of verbal persuasion is strongly
related to motivational aspects, as “those who have been persuaded of their
inefficacy tend to avoid challenging activities and give up quickly in the face of
difficulties” (Bandura 1986, p. 400).

Psychological state: Here, the focus lies on the general feeling of an individual.
For example, fear has a strong influence on self-efficacy. People who are
afraid of a given task perform worse than those who are delight in solving the
problem. Furthermore, “fear reactions generate further fear through anticipatory
self-arousal” (Bandura 1986, p. 401).

Besides the self-efficacy of individuals, there is self-efficacy of groups. This collective
efficacy has its roots in self-efficacy of the members of the enclosing group (cf. Bandura
1986, p. 449).

As mentioned by Zimmerman (2000b), self-efficacy is multidimensional. It is dependent
on the topic that the efficacy belief is related to. Because of this, self-efficacy can only
be expressed in relation to a specific topic or context. Furthermore, self-efficacy is
related to the future and is assessed before performance.

3.3 Self-Directed Learning 37

3.3 Self-Directed Learning

According to Knowles (1975, p. 14), the theory of self-directed learning can be regarded
as an agglomeration of different aspects of learning by self-instruction. Self-directed
learning is based on social cognitive learning (see Section 3.2). The facets of self-
observation, self-efficacy, and others mentioned above are used in this theory. This
is because it follows, in general, the human psychological development. We are, at
first, dependent on parents and then through growing up become independent of adult
influences.

Knowles (1975) defines self-directed learning as a description of “a process in which
individuals take the initiative, with or without the help of others, in diagnosing their
learning needs, formulating learning goals, identifying human and material resources
for learning, choosing and implementing appropriate learning strategies, and evaluating
learning outcomes” (Knowles 1975, p. 18).

Despite the implication of most labels, self-direct learning is not learning in isolation.
On the contrary, in most cases self-directed learning takes place in groups with the
help of teachers, tutors, or other mentors (cf. Knowles 1975, p. 18).

The main difference between self-directed learning and a teacher-centered strategy
is that the learner themself decides what and how topics should be learned, whereas
in a teacher-centered strategy the teacher is responsible for this. More precisely, the
orientation to learning a specific topic is the result of previous conditioning and is task-
or problem centered. Therefore, learning experiences should be organized as projects
with tasks and problems to be solved (cf. Knowles 1975, pp. 20).

Basically, as the learner is responsible for the topics and methodology of learning, the
role of the teacher or tutor in self-directed learning has to be redefined. The teacher
mostly assumes the function of a facilitator in the learning process. According to
Knowles (1975), several areas have to be taken into account when preparing and
organizing the topics. First, in a basic step the students have to understand that they
are applying self-directed learning and because of that have to be aware of the basic
principles of this theory. Another very basic element is the role of the teacher-student
relation. As the teacher is regarded as a facilitator, the students have to be enabled to
accept the situation. Furthermore, they have to be encouraged to work together in a
collaborative manner.

Additionally, setting learning goals and defining a learning plan, which is a central tool
in self-directed learning, have to be specified. Also contained in these areas are the
processes for making unknown resources available to the students. Setting goals is an
important step in self-directed learning, as the learning goals should be achieved in a
constructive process.

A central purpose of the self-directed learning theory is that the learning activities are
elected by the students with the availability of a teacher to help them as needed. At the
end there can be an evaluation of the learning outcomes from the self-directed learning,
as it is known by the teacher-centered approach (cf. Knowles 1975, pp. 34).

38 3 Educational Background

Figure 3.1: Dimensions of self-directed learning (Garrison 1997, p. 22)

In addition to the setting of the learning environment described above, Garrison (1997)
defines three dimensions in self-directed learning (see Figure 3.1). Self-management
includes the definition of learning outcomes, management of the learning resources,
and the availability of support. It undertakes the control function in the self-directed
learning process. Self-monitoring comprises the cognitive and metacognitive abilities of
the learners. For successful self-directed learning the learners must be able to observe
and review their own learning process. Finally, motivation is the key dimension for
successful self-directed learning.

3.4 Cognitive Load Theory

The general assumptions of the cognitive load theory are based on the widely accepted
ideas of human cognitive architecture (cf. Sousa 2006). Additionally, the mental
representation of information as schemes builds the background for the theory (cf.
Gerjets et al. 2009, p. 44; Sweller 1989, p. 458).

“Although schemas are stored in long-term memory, in order to construct
them, information must be processed in working memory. Relevant sec-
tions of the information must be extracted and manipulated in working
memory before being stored in schematic form in long-term memory. The

3.4 Cognitive Load Theory 39

ease with which information may be processed in working memory is a
prime concern of cognitive load theory.” (Sweller et al. 1998, p. 259)

Cognitive load is either a result of the intrinsic nature of the learning materials or its
presentation. Furthermore, cognitive load theory is strongly related to instructional
design.

“Cognitive load theory is concerned with the manner in which cognitive re-
sources are focused and used during learning and problem solving. Many
learning and problem-solving procedures encouraged by instructional for-
mats result in students engaging in cognitive activities far removed from
the ostensible goals of the task. The cognitive load generated by these
irrelevant activities can impede skill acquisition.” (Chandler and Sweller
1991, p. 294)

Cognitive load theory differentiates between three sorts of cognitive load: intrinsic load,
germane load, and extraneous load (cf. Sweller et al. 1998, p. 259; Clark et al. 2005,
p. 9) (see Table 3.2).

According to the cognitive load theory, the three sorts of load are additive. Clark
et al. (2005) recommend a balancing of the different loads through instructional design.
When adopting instructional designs the balance of extraneous and germane loads are
important as an increase in the extraneous load leads, in most cases, to a decrease in
the germane load (cf. Sweller et al. 1998, p. 259).

The basic idea underlying the cognitive load theory is the strong influence of the
instructional material on the learning process. The physical barriers that limit the
learners’ cognitive processes are faced by avoiding extraneous cognitive load (cf.
Gerjets et al. 2009, p. 43). The introduction of worked examples is proposed as a
solution to address this problem (cf. Sweller 1989, p. 463). Furthermore, the importance
of avoiding mutually referring information in instructional materials is emphasized,
because it splits the attention of the learner (cf. Chandler and Sweller 1991, p. 296).
Combining information in different representations in the learning material is the main
source of problems as it produces cognitive load that is irrelevant for schema building.
The more the relevant information is presented in one source, the easier it is learned
(cf. Sweller 1989, pp. 464).

The measurement of cognitive load is very difficult as cognitive processes cannot be
measured in a direct way. Nevertheless, Sweller (1988, p. 272) proposes measuring
cognitive load through computational models of problem solving strategies. These
models imply different types of measure. On the one hand, there are the number of
statements in the working memory. On the other hand, Sweller (1988) defines a produc-
tion system in a computational model as “a set of inference rules that have conditions
for applications and actions to be taken if the conditions are satisfied” (p. 264). The
number of productions, the number of cycles needed to solve the problem, and the
total number of conditions are introduced as a measure for cognitive load.

40 3 Educational Background

Load
type

S
ource

C
ognitive

processes
E

ffecton
learning

Intr insic
C

L
D

om
ain

com
plexity

(elem
ent

interactivity)x
priorknow

ledge
N

ecessary
to

hold
interacting

elem
ents

active
in

w
orking

m
em

ory
in

parallel
H

arm
fulin

that
a

too
high

in-
trinsic

C
L

m
ay

cause
cognitive

overload
E

xtraneous
C

L
P

oor
instructionaldesign

Irrelevant
to

schem
a

construction
and

autom
ation

H
arm

ful,ineffective

G
erm

ane
C

L
S

upportive
instructional

de-
sign

R
elevant

to
schem

a
construction

and
autom

ation
H

elpful,effective

Table
3.2:O

verview
ofthe

differentlevels
ofcognitive

load
(C

L)
theory

(G
erjets

etal.2009,p.43)

3.5 Knowledge Organisation 41

3.5 Knowledge Organisation

Anderson (2005) described conceptual knowledge in the following way.

“When we store an experience in memory, we do not record every detail,
as a physical recording would. We keep some of the information and
drop other details. [...] Other abstractions are possible. For instance, we
can abstract from specific experiences to general categorizations of the
properties of that class of experiences. This sort of abstraction creates
conceptual knowledge involving categories.” (p. 154)

Another definition of conceptual knowledge was given by Anderson and Krathwohl
(2009). They distinguished two parts of declarative knowledge: factual and conceptual
knowledge. They have “reserved the term Factual Knowledge for the knowledge of
discrete, isolated ‘bits of information’ and the term Conceptual Knowledge for more
complex, organized knowledge forms” (p. 42). Complementary, they introduced two
additional kind of knowledge: procedural and metacognitive knowledge. According
to them, procedural knowledge “is the ‘knowledge of how’ to do something” (p. 52)
and metacognitive knowledge “is knowledge about cognition in general as well as
awareness of and knowledge about one’s own cognition” (p. 55).

A comparison of the two different definitions by Anderson (2005) and Anderson and
Krathwohl (2009) shows that factual knowledge can be represented by propositions,
conceptual knowledge by propositional networks, semantic networks or schemata.
Here, “[p]ropositions represent the atomic units of meaning and can be used to encode
the meaning of sentences and pictures” (Anderson 2005, p. 169).

The theory of conceptual change is based on two different views of knowledge represen-
tation. Özdemir and Clark (2007) give an overview of the different theories, focusing
on the two representation perspectives “knowledge as theory” and “knowledge as
element”.

3.5.1 Knowledge as Theory

The perspective “knowledge as theory” is based on the notions of accommodation
and assimilation (Piaget 1952) and Kuhn’s paradigm shift in science (Kuhn 1996).
Assimilation “incorporates all the given data of experience within the [mental] frame-
work” (Piaget 1952, p. 6). In contrast, accommodation means the transformation of the
mental framework (cf. Piaget 1952, p. 7). As mentioned in Section 2.1, the paradigm
shift theory of Kuhn (1996) assumes that a given mental framework is only replaced if
there is a need for it, which means that new ideas cannot be integrated into the present
framework. So, the perspective “knowledge as theory” assumes that if “a learner’s
current conception is functional and if the learner can solve problems within the existing
conceptual schema, then the learner does not feel a need to change the current con-
ception. Even when the current conception does not successfully solve some problems,
the learner may make only moderate changes to his or her conceptions. [...] In such

42 3 Educational Background

cases, the assimilations go on without any need for accommodation. It is believed that
the learner must be dissatisfied with an initial conception in order to abandon it and
accept a scientific conception for successful conceptual change” (Özdemir and Clark
2007, p. 352).

The changing process can take place in two different modes. The first one is called
weak restructuring (Carey 1985, pp. 186) or conceptual capture (Hewson 1981),
depending on the literature. This mode is applied if the learner is able to solve some
problems with his given theory, while some other problems cannot be solved with
his present knowledge. Because of that, only some moderate changes are applied.
The second mode is called strong restructuring (Carey 1985, pp. 186) or conceptual
exchange (Hewson 1981), depending on the literature. The learner applies this mode
if there is a dissatisfaction with his present conceptual knowledge on the given topic,
especially if the learner is not able to solve the given problems they face.

Posner et al. (1982) provide four criteria that need to be fulfilled to make conceptual
change possible.

1. “There must be dissatisfaction with existing conceptions. Scientists and students
are unlikely to make major changes in their concepts until they believe that less
radical changes will not work. Thus, before an accommodation will occur, it is
reasonable to suppose that an individual must have collected a store of unsolved
puzzles or anomalies and lost faith in the capacity of the current concepts to
solve these problems” (p. 214).

2. “A new conception must be intelligible. The individual must be able to grasp
how experience can be structured by a new concept sufficiently to explore the
possibilities inherent in it” (p. 214).

3. “A new conception must appear initially plausible. Any new concept adopted
must at least appear to have the capacity to solve the problems generated by its
predecessors. Otherwise it will not appear a plausible choice. Plausibility is also
a result of consistency of the concepts with other knowledge” (p. 214).

4. “A new concept should suggest the possibility of a fruitful research program.
It should have the potential to be extended, to open up new areas of inquiry”
(p. 214).

The above mentioned idea of conceptual change has a strong influence on misconcep-
tions in learning.

“Misconceptions are [...] only inaccurate beliefs; misconceptions organize
and constrain learning in a manner similar to paradigms in science. In
other words, prior conceptions are highly resistant to change because
concepts are not independent from the cognitive artifacts within a learners’
conceptual ecology.” (Özdemir and Clark 2007, p. 352)

Furthermore, Posner et al. (1982) suggest that the conceptual ecology, the current
concepts of an individual, has a strong influence on the accommodation process
during conceptual change. They distinguish between different determinants of the

3.5 Knowledge Organisation 43

accommodation’s direction. First, failures in concepts, called anomalies, are determi-
nants of accommodation. Analogies and metaphors can suggest new ideas, while
epistemological commitments such as explanatory ideals or general views empha-
size the accommodation. Last, metaphysical beliefs and concepts and connections
to knowledge in other fields determine the accommodation (cf. Posner et al. 1982,
pp. 214).

Another notion of cognitive processes related to knowledge change has been discussed
by Özdemir and Clark (2007). The assimilation and accommodation process during
conceptual change can appear in different forms. If the old and the new concept are
fundamentally different, a replacement process takes place. Additionally, conceptual
change takes place by splitting the old concept into several new concepts or integrate
two old concepts into one new concept. These processes can be observed especially
in investigations on children’s knowledge structures (cf. Özdemir and Clark 2007).

According to the knowledge-as-theory perspective, even children form such theories of
knowledge. As the main focus of this thesis is the investigation of novice programmers’
knowledge and ability, the knowledge structure of novices in general is of special
interest. Each novice owns their own “theory” that comes from daily experiences.
These conceptions are the base for any learning process the novices are involved in
(cf. Özdemir and Clark 2007, p. 354).

Nevertheless, the intention of the learner towards the learning content is important for
enabling a change in the cognitive processes (cf. Duit and Treagust 2003, p. 672). As
Duit and Treagust (2003) emphasize, conceptual change does not mean any exchange
of given knowledge structures, but rather is a restructuring of knowledge during the
learning process of a specific concept. In most cases the teacher tries to find a teaching
approach that does not fit the learner’s conceptual model. The resulting dissatisfaction
leads to a refinement or assimilation of the new model. Some studies have shown
that the old conceptual model does not disappear completely, but stays active in some
context and is, therefore, a source of misconceptions (cf. Duit and Treagust 2003,
p. 673).

3.5.2 Knowledge as Elements

The perspective “knowledge as elements” is also common in conceptual change theory,
but far less influential. The students’ understanding is regarded as a collection of inde-
pendent elements. These elements are built from daily experiences and interactions
with the real world. During the learning process the loose connections between the
elements are revised and new elements are connected to former ones. From this
perspective conceptual change is an evolutionary process rather than a replacement
process as in the knowledge-as-theory perspective (cf. Özdemir and Clark 2007).

According to diSessa (1993), knowledge elements are called phenomenological primi-
tives (p-prims). Each p-prim is self-explanatory. As the name implies, they are based
on real world interpretations.

44 3 Educational Background

“Roughly speaking, p-prims are about the ‘size’ and complexity of words,
although in several senses they are clearly smaller and simpler than words.
In the first sense, lexical items often have clusters of meanings; [...] P-
prims are, by contrast, more comparable to a single sense of a word; they
are the smallest, context-invariant mental activations.” (p. 191)

The evolutionary process mentioned above is explained by the change in functionality
of a p-prim. While they first have to be self-explanatory, later on they have to “defer to
much more complex knowledge structures” (p. 115). It is possible that a p-prim refers
to various phenomena. During the process of gaining expertise, the priorities of the
p-prims in a knowledge cluster change.

“Following the theory sketch, I describe these changes as shifting priorities,
which may gradually relocate a knowledge element within the knowledge
system.” (p. 142)

Based on this theory, misconceptions are seen as individual components that have to
be revised and reconnected in a more proper way. In accordance with the knowledge-
as-theory perspective, naive knowledge is regarded as highly resistant to change,
which is important in novices’ education (cf. Özdemir and Clark 2007, pp. 354).

3.5 Knowledge Organisation 45

Relevance for this thesis

The investigations presented in Chapter 7 are undertaken in the context of an intro-
ductory programming course. For that reason several preliminary assumptions were
presented in the Sections 3.1-3.3. The educational background of the courses is based
on the notions of constructivism (Section 3.1), social cognitive theory (Section 3.2), and
self-directed learning (Section 3.3). Furthermore, the notions of cognitive load theory
(Section 3.4) were considered during the development of the course materials (Section
7.3).

The investigations on knowledge (Section 7.5.2) and misconceptions (Section 7.5.3)
require an understanding of knowledge organization (Section 3.5). For example, the
resistance of novices’ prior knowledge to change is a serious problem in education.
Instruction often can only achieve a replacement of former knowledge in a special
context. To perform conceptual change in a broad sense, students have to be enabled
to reorganize their knowledge (cf. Özdemir and Clark 2007).

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

4 Methodological Background

This chapter focuses on the methods needed for the data analysis in this thesis. Cluster
analysis is applied to find similar and/or different groups (Sections 7.5.1-7.5.2). Item
response theory is applied to evaluate the students’ program code that was produced
during the experimental courses. In this section only the theoretical background of
the methodologies is presented. The application of the presented methodologies on
the data is shown in the corresponding sections in Chapter 7. Before introducing the
analysis methodologies, the theory underlying the concept maps is introduced. This
technique allows representation of the students’ knowledge structures and is applied in
Chapter 7.

4.1 Concept Maps

In addition to the products of programming, the differences between knowledge of
programming concepts and their application in the program code are investigated
(see Section 7.5.4). For that reason, a technique that represents knowledge in an
appropriate way was needed. One quite elaborate technique is the drawing of concept
maps, which has been investigated in many different fields of research.

“Concept mapping is a graphic technique for representing ideas, helping
to think, solving a problem, planning a strategy or developing a process.
Concept mapping means connecting different concepts of the subject and
constructing relations by compiling the map.” (Dahncke and Reiska 2008,
p. 1)

4.1.1 Principles Underlying Concept Maps

In many subject domains concept maps have long been established as a teaching and
assessment tool. Going back to Novak and Ausubel’s theory of meaningful learning
(cf. Novak 2002; Novak and Cañas 2008), there have been many alterations to the
original concept mapping technique. For example, in contrast to the original description
of a “good” concept map, a concept map does not usually need to be hierarchically
organized anymore (cf. Ruiz-Primo et al. 1998).

Originally, concept maps were applied to express cognitive knowledge structures and
especially conceptual change (see Section 3.5 and Novak and Cañas 2008, p. 3). In
contrast, this technique is also valuable in the context of competencies.

48 4 Methodological Background

“Concept interrelatedness is an essential property of knowledge, and
one aspect of competence in a domain is well structured knowledge. A
potential instrument to capture important aspects of this interrelatedness
between concepts is concept maps.” (Ruiz-Primo 2000, p. 31)

Essentially, concept maps are labeled, directed graphs with nodes representing con-
cepts and edges symbolizing associations between these concepts. The labels of two
incident nodes together with the label of the connecting edge form an association – the
basic element of a concept map. For example, “Concept Maps - represent - Organized
Knowledge”. The comprehensive concept map in Figure 4.1 illustrates the structure of
concept maps in general.

Figure 4.1: Comprehensive concept map that describes the structure of concept maps
(Novak and Cañas 2008, p. 2)

As the central element of a concept map is a concept, this term has to be defined in
a proper way. Novak and Cañas (2008) “define concept as a perceived regularity in
events or objects, or records of events or objects, designated by a label. The label for
most concepts is a word, although sometimes we use symbols such as + or %, and
sometimes more than one word is used” (p. 1).

Additionally, the other main element in a concept map, the proposition of two or more
concepts, is defined by Novak and Cañas (2008) as “statements about some object or
event in the universe, either naturally occurring or constructed. Propositions contain
two or more concepts connected using linking words or phrases to form a meaningful
statement. Sometimes these are called semantic units, or units of meaning” (p. 1).

4.1 Concept Maps 49

To stimulate the construction of a map on a specific topic, a focus question is usually
posed. This question helps participants focus on the main purpose of the concept
map that is being drawn. Additionally, concepts can be proposed with or without any
initial connections. Alternatively, maps are created from scratch. Each method provides
advantages and disadvantages and has to be chosen with regard to the research
goal. Besides the focus question, it is important to define a context for the concept
map because conceptual structure that should be represented by the map is strongly
dependent on a given context. Otherwise, the resulting map can represent a concept
with the same label but a different meaning (cf. Novak and Cañas 2008, p. 11).

In this thesis concept maps are applied to compare the declarative knowledge and its
application in a practical task (see Sections 7.5.3-7.5.4). Generally, the relationship
between concept maps and application is investigated by Edmondson (2005).

“The quality of students’ propositional knowledge relates directly to their
ability to apply that knowledge to problems presented in a classroom and
beyond.” (p. 30)

4.1.2 Application of Concept Maps

“Concept mapping may be used to identify conceptual understanding of
programming concepts. Also concept mapping can be used to represent
understanding of an area of knowledge. It can be used as a planning
tool and assessment tool for the teacher and as a means of collaborative
sharing of knowledge.” (Jakovljevic 2003, p. 311)

When considering concept maps as an assessment tool, the reliability and validity
aspects have to be taken into account. Regarding the reliability of concept maps,
according to Albert and Steiner (2005), all maps constructed by a person should
represent the same model of knowledge every time. Additionally, there are reliability
concerns about the scoring and evaluation of concept maps. A proper measure for
this purpose is the coefficients of intercoder reliability such as those proposed by
Mayring (2010) and Krippendorff (2004). Besides the reliability of the scoring, the
validity of the assessment has to be proven for each task. Albert and Steiner (2005)
distinguish two sorts of validity: content and application validity. Content validity can be
checked by using empirically collected maps. For comparing of the collected maps,
scoring methods such as those described by Ruiz-Primo et al. (1998) can be used.
The application validity can be proven by comparing the concept maps of a given task
with another observation that is independent from the concept mapping task (cf. Albert
and Steiner 2005, pp. 3).

Furthermore, the explicit teaching of concept mapping techniques is emphasized in
literature. The participants of any concept mapping task have to learn how to draw
concept maps in advance (cf. Ozdemir 2005, p. 142; Ruiz-Primo et al. 1998, p. 14). A
precise strategy for introducing concept mapping is presented by Novak and Gowin
(1989, pp. 24).

50 4 Methodological Background

However, the assessment itself can consist of various student activities: The student
can be asked to draw a concept map or to complete a given basic map.

“There is a variety of ways such maps may be produced. For instance, a
map may be constructed by the evaluator based on student responses to
an activity such as an interview or a word association task. Alternatively,
students may be asked to construct a concept map themselves using
pencil and paper.” (McClure et al. 1999, p. 477)

The directedness of a concept mapping task expresses the degree of freedom the
participant who creates the map has in choosing concepts and relations. When
constructing a map, the list of concepts and/or the list of possible edge labels can
be restricted or not. An overview of the various tasks related to the directedness (cf.
Ruiz-Primo 2000, p. 34; Ruiz-Primo et al. 2001, pp. 261) can be seen in Figure 4.2. A
comparison of different methods can be found in the work of Ruiz-Primo (Ruiz-Primo
and Shavelson 1996; Ruiz-Primo et al. 2001; Yin et al. 2005).

Figure 4.2: Various concept mapping tasks and their degree of directedness (Ruiz-
Primo 2000, p. 35)

Concerning those methods, there are also many other useful measures that can be
found in literature; for example, Shavelson and Ruiz-Primo 2005; Albert and Steiner
2005; Goldsmith and Davenport 1990. For the assessment process, there are different
suitable evaluation methods.

4.1 Concept Maps 51

Intuitive: The concept maps are only evaluated on an intuitive level with regard to the
number of concepts or the structure.

“Intuitive evaluation is suitable for giving advice on learning with the
aid of concept maps. The advisor or researcher is able to view the
maps of the subjects and, on the basis of intuitive impressions (size,
structure and correctness of individual propositions), evaluate the
range of the subject’s knowledge. An intuitive evaluation can only be
performed with small, clear concept maps. This kind of evaluation is
not very suitable for comparative studies because the results are only
intuitive and depend to a large extent on the respective interviewer
(advisor).” (Dahncke and Reiska 2008, p. 2)

Semi-quantitative: For evaluation the propositions can be rated and the valid ones
are counted. Nevertheless, in this method all information is manually evaluated.

“Semi-quantitative evaluation can be used for assessing small concept
maps and for small numbers of maps. With this type of evaluation,
several simple variables are calculated (number of all the propositions,
number of correct propositions). Since everything has to be evaluated
manually, this type of evaluation is very time-consuming and therefore
not suitable for evaluating large numbers of concept maps.” (ibid.)

Computer-aided quantitative: If concept maps are digitalized, a computer-aided
quantitative evaluation is possible. The criteria stay the same, but the evaluation
process can be automated.

“Computer-aided quantitative evaluation can also be used for large
maps and large numbers of maps. Before evaluation can be carried
out on a computer, the information from the concept maps must be
entered into the computer. Special computer programs can be used
for this in order to reduce the time involved and input errors, yet it is still
too time-consuming for using in everyday school life. Computer-aided
quantitative evaluation is very suitable for using in research.” (ibid.)

Quantitative by computer: For quantitative evaluation of the concept maps, the con-
cept maps need to be constructed in the computer itself. It is well suited for
large assessment. Nevertheless, computer assessment of concept maps needs
suitable support by programs that enable the user to gather the assessment
maps, as well as analyze the given maps. The editor CoMapEd5 and CoMaTo6,
an analysis package for GNU R, provide the necessary functionality (cf. Mühling
and Hubwieser 2012; Mühling 2014).

“Quantitative evaluation by computer is the most efficient type of
evaluation. This type of evaluation can, however, only be carried out
if the concept maps are created on the computer itself. This type of
evaluation rules out human input errors. It is suitable for using with a

5http://ddi.in.tum.de/comaped - last access 09.12.2014
6http://cran.r-project.org/web/packages/comato/index.html - last access 09.12.2014

52 4 Methodological Background

large number of maps and comprehensive maps as well. It is the only
type of evaluation which, apart from using in research, is also suitable
for using in schools as far as the time factor is concerned.” (Dahncke
and Reiska 2008, p. 2)

In addition to these very general methods for concept map analysis, single concept
maps can be scored straightforward. For the holistic scoring, an expert is asked to rate
the complete map within a given range of values considering the overall understanding
of the person creating the map. Again, the common problems such as reliability and
validity that are associated with a scoring process have to be taken into account.

The structural scoring method rates the structure of the complete map, which should
be hierarchical. But, in the meantime the constraint of a hierarchical structure has been
proven to be ambiguous (cf. Ruiz-Primo et al. 1998). So, other structural purposes
have to be scored. For example, pre-defined structural elements containing specific
concepts can be scored higher than others. A study detecting those elements was
conducted by Hubwieser and Mühling (2011b). The concept relations method simply
scores the relations on given criteria. For example, correct relations are rated with 1,
wrong with 0, and those that are neither correct nor wrong with 0.5. Hubwieser and
Mühling (2011c) present a study that applies this scoring technique.

The similarity scoring is a quantitative scoring method that uses similarity measures for
graphs in general calculates an index for the similarity of a given map to a master map
that was created by an expert in advance. For example, similarity can be calculated
with

1

n

n∑
i=1

| (Si ∩ Ti)
(Si ∪ Ti)

|,

where S is the set of concepts related to a given concept i in the investigated map and
T is the set of concepts that are related to the corresponding concept in the master
map (cf. Keppens and Hay 2008).

Another quantitative methodology is proposed by Ifenthaler (2006). By using concept
maps, he developed methodology to analyze mental models and their externalization.
SMD technology (structure, matching, deep structure) is based on analyzing methods
of the general graph theory. For the analysis, externalizations of the participants’ mental
models are evaluated concerning different criteria.

• The surface structure is defined for the qualitative and quantitative analysis of
the individual mental models. The qualitative analysis is based on a simple visual
comparison of the externalizations (e.g., concept maps). For the quantitative
analysis of each map, the number of propositions is calculated. These numbers
are compared among all individuals.

• For the matching structure structural indices of the graph theory are used for
classifying the mental models (i.e., the diameter or the complexity of a graph).
The matching structure is calculated as the shortest way between the most
distant nodes on the graph.

4.2 Cluster Analysis 53

• The deep structure describes semantic similarity. Therefore, the investigated
representation of the mental model is compared to a reference model by the
similarity measure of Tversky (cf. Ifenthaler 2006, pp. 45; Ifenthaler 2010).

Another qualitative method concerning the structure of maps classifies the structure
into several categories such as spokes, chains, and nets. Again, the structure gives a
hint about the grade of integration of the expressed knowledge in the mental model of
the participant. Yin et al. (2005) extend the original types for their study.

A brief description and investigation on the validity, reliability, and efficiency of the
described methods can be found in publications by Keppens and Hay (2008); McClure
et al. (1999); Ruiz-Primo and Shavelson (1996); Shavelson and Ruiz-Primo (2005).

In addition to the discussed application of concept maps for assessment, Kern and
Crippen (2008) used the mapping technique as an evaluation in the development of
scientific understanding. They conducted a longitudinal study with their students to
show the assimilation and accommodation processes during their lessons.

“In a relatively short period of time, teachers can glean the following by
viewing student concept maps: prior knowledge, misconceptions, and the
acquisition and accommodation of new knowledge as maps are modified
over time.” (Kern and Crippen 2008, p. 33)

4.2 Cluster Analysis

A common method for finding homogeneous groups in data is cluster analysis. This
requires a vector of the concept score results to be built for each individual. The
cluster analysis is based on a measure of how different or similar these vectors are.
More precisely, the differences between the objects of one cluster are as small as
possible, while the differences between objects of different clusters are as big as
possible. The distances are calculated according to a specific distance measure (cf.
Bortz and Schuster 2010, p. 453).

There are several distance metrics for calculating the differences or the similarities.
Only some of them are appropriate for all scale levels. For dichotomous data, Bortz
and Schuster (2010) list different metrics. First they introduce a similarity coefficient
S, which can be calculated directly from the contingency table. Another coefficient
includes the similarity in the negative or 0-rated values. The values of the simple
matching coefficient (SMC) again reach from 0 to 1.

In addition to the similarity coefficients for nominally scaled variables, a coefficient is
introduced to handle interval scaled variables. For these variables the Euclidean metric
can be calculated (cf. Bortz and Schuster 2010, pp. 454).

Ordinal scaled variables are difficult to handle. Some coefficients need the data to
be re-scaled or treated by using rang correlation coefficients. Another option is the
coefficient of Gower, which is described below.

54 4 Methodological Background

Gower (1971) introduced a general coefficient for similarity. Therefore, a definition of
similarity is given.

“Two individuals i and j may be compared on a character k and assigned
a score sijk, zero when i and j are considered different and a positive
fraction, or unity, when they have some degree of agreement or similarity.”
(Gower 1971, p. 858)

The calculation of sijk is described for several data types that are interpreted as
characters. First, Gower (1971) presents a quantity called δijk that expresses whether
a character k can be compared for two objects i and j. It is equal to 1 if a comparison is
possible; 0 otherwise. Accordingly, treatment of non-existing values is possible. For all
compared characters there is the following formula expressing the similarity coefficient:

Sij =

∑ν
k=1 sijkδijk∑ν
k=1 δijk

The sijk is calculated depending on the type of character. For dichotomous data it
equals 1 if the character is present in both objects i and j, otherwise 0. If the character
is absent in both objects, the value of δijk is set to 0 and by definition the value of sijk
is also set to 0. For qualitative characters (multiple levels, not ordered), sijk is set to 1 if
the two object i and j are equal in the kth character; otherwise 0. The last assignment
of sijk concerns quantitative characters (multiple levels, ordered). Here, the characters
k have values x1 to xn for a sample with n individuals. sijk is set to 1−|xi−xj |

Rk
where

Rk is the range of k either in the total population or only in the sample. If xi and xj are
equal, sijk is set to 1. If they are at the opposite sides of the range, it is set to 0. For
values in between, sijk is a fraction. For all three types, the coefficient values range
between 0 and 1, where 1 means equality and 0 means maximal difference (cf. Gower
1971, pp. 860).

In Section 7.5.1, cluster analysis is applied on the program code that was produced
by novice programmers in an experimental introductory course. The clusters are
calculated with the GNU R software7. For the analysis methods described in the
next two sections, there are two packages that are either included (stats) or can be
integrated into the software (cluster described by Maechler (2013)).

4.2.1 Hierarchical Cluster Analysis

For hierarchical cluster analysis, a hierarchy of clusters is built either by starting from
one cluster for each case and combining similar or different clusters into a bigger one
(agglomerative), or by starting with one cluster for all cases and dividing based on
criteria of similarity or difference (divisive). A disadvantage of this methodology is the
fact that the assignment of an item to a cluster is fixed during the process. Once the
item is assigned it can only be combined with other items to form a new cluster; but,
the old assignment is still valid. For this reason it is recommended that the results of a

7GNU R project: http://www.r-project.org - last access 10.12.2014

4.2 Cluster Analysis 55

hierarchical cluster analysis be proven or refined by using a non-hierarchical cluster
analysis as described in the next subsection.

The fusion of the clusters can be conducted by several different strategies. Single
Linkage selects two clusters (A and B) where the distance D between all object pairs
is minimal. Each distance d between the objects is calculated pairwise. The method is
valid for all distance metrics. A disadvantage of this method is the possible appearance
of chaining effects when combining the clusters.

Complete linkage considers the furthest neighbors (max distance D) of the objects
of a pair of clusters (A, B). Accordingly, the two clusters are combined where this
maximal distance is minimal. As with the single linkage criterion, here all distance
metrics can be used.

D(A,B) = max
a∈A,b∈B

{d(a, b)}

Average linkage is a strategy that is located between the complete and single linkage
strategies concerning the clustering criteria. For this criterion the average distances
of all objects of the clusters (A, B) are calculated pairwise. The two clusters with the
lowest average distance are combined. According to the calculation of an average
value the criterion is only appropriate for metrics that allow the building of average
values.

The clustering process can be represented graphically by a dendrogram. A dendrogram
is a tree diagram that displays the scale of distances and the objects. Two objects or
groups of objects are bound together if they build a cluster. Each change of the cluster
is shown by a new connection of objects and clusters. The dendrogram can be drawn
in either a vertical or horizontal direction (cf. Bartholomew 2008, pp. 25). Figure 4.3
shows on the left side a table of sample data and on the right side the corresponding
dendrogram. The two clusters (1, 2, 3) and (4, 5, 6, 7) are obvious in the data.

Figure 4.3: Sample data with the corresponding dendrogram (Bartholomew 2008, p. 27)

56 4 Methodological Background

4.2.2 Partitioning Cluster Analysis

In contrast to the hierarchical cluster analysis, in partitioning cluster analysis an initial
clustering is defined and then improved upon by changing the items of the clusters.
For each step the costs concerning the distance metric are calculated. The step with
the lowest cost is the basis for the next step. If no more changes can be made, the
algorithm finishes. This strategy leads to a fix and a priori defined number of clusters.
Nevertheless, the number of clusters is limited by the fact that each cluster must contain
at least one element. Additionally, each element belongs to one cluster (cf. Kaufman
and Rousseeuw 1990).

For the clusters, the algorithms tend to find the optimal partition of the data. As this
problem is again very intensive regarding the resources, heuristical algorithms are
used in most cases. Another difficulty with regard to the starting partition is that it
has an influence on the final separation of the data. Because of this, the selection of
the starting partition has to be plausible. Often, a hierarchical cluster analysis is first
conducted on the data, with the partitioning analysis being used only for revising the
results of the first analysis (cf. Bortz and Schuster 2010, p. 461). Alternatively, there
are several formal techniques for detecting the optimal number of clusters in advance
(cf. Everitt 2011, p. 126).

A general procedure for partitioning clustering is expressed by the “hill-climbing” algo-
rithm introduced by Rubin (1967).

• Choose a proper starting partition with k clusters.

• Calculate the cluster criterion.

• Shift each person into a different cluster and re-calculate the partitioning criterion.
The person stays in the new cluster if there is a maximum increase.

• Repeat steps two and three until there is no change in the partitioning criterion.

For detecting local maximums and minimums within the partitioning criterion, work-
arounds with different starting partitions are used (cf. Moosbrugger and Frank 1992).

The k-means algorithm is one representative of the hill-climbing algorithms. Here, the
cluster criterion is based on the mean value of the dissimilarity measure of a group
(cf. Everitt 2011, pp. 121). A comparison of different metrics applied on the k-means
method for partitioning cluster analysis is described by Kumar and Annie (2012).

The medoid algorithm works with a representative of the objects in a cluster. This
representative is calculated by minimizing the distance metric within a cluster; the
resulting object is called a medoid. The cluster algorithm based on medoids is called
Partitioning Around Medoids (PAM) (cf. Kaufman and Rousseeuw 1990). A com-
parison of different partitioning cluster analysis methods, especially for binary data, is
presented by Li (2005).

4.3 Item Response Theory 57

4.2.3 Model-Based Clustering

The model-based clustering methods all assume the underlying data to be normally
distributed (cf. Fraley and Raftery 2000). For these methods there is also a package for
GNU R. It is called mclust (Fraley et al. 2012). The algorithms underlying this clustering
method are described in detail by Everitt (2011, pp. 187). As the data collected in the
experiments are all dichotomous, there is no normal distribution. For this reason, the
model-based clustering could not be applied.

4.3 Item Response Theory

The classical test theory assumes that a person’s psychometric construct can be
directly measured. Furthermore, disregarding errors each person achieves a specific
score for that construct. But, as errors occur in a test, only a observed score can be
measured. Classical test theory concerns the relations between the true score, the
observed score, and the error of a person (cf. Novick 1966).

In contrast to the classical test theory, item response theory (IRT) assumes a psycho-
metric construct to be latent and only observable through responses on items that are
solved by a specific probability related to the person’s ability. In general, item response
theory assumes that the difference between a person’s ability and the difficulty of an
item is a predictor for the probability of an individual’s response (cf. Rasch 1980). The
probability of answering an item in the correct way can be expressed by a function of
the item difficulty (β) and the person’s ability (θ)

P (X = 1|θ, β) = f(θ, β)

4.3.1 The Logistic Models

The logistic model calculation is based on the transformed logit function:

p(z) =
ez

1 + ez

where z has to be specified more exactly.

As mentioned above, the probability of solving an item is determined by the difference of
a person’s ability θ and the difficulty of the item (β). This leads to a formula representing
the probability of a response of 1 as a function of item and person parameter.

p(xj = 1|θ, βj) =
e(θ−βj)

1 + e(θ−βj)
(4.1)

p(xj = 1|θ, βj) is the probability of a response of 1 on the jth item with regard to a
person parameter θ and the item difficulty βj .

58 4 Methodological Background

The first and simplest form of the test models related to the item response theory is
a model where only one parameter is to be estimated. This model only differs in the
difficulty of the items and is called the 1PL model. Additionally, it is assumed that
the latent variable is one dimensional. If the interest is only in fitting a logit function
to empirical data, it is necessary to change the discrimination value α of the item
characteristic curve (ICC) to better fit the data. Nevertheless, for the 1PL model the
discrimination value has to be the same for all ICCs of the investigated items. Including
the discrimination value into Equation 4.1 leads to the general formula describing the
1PL model.

p(xj = 1|θ, α, βj) =
eα(θ−βj)

1 + eα(θ−βj)
(4.2)

For α = 1 the model is called the Rasch model. While the 1PL model fits the model to
the data, the Rasch model assumes a fixed value for α and because of that tries to fit
the data to a given model (cf. Ayala 2009, pp. 14).

Besides the restriction on one parameter, there are several other model restrictions
related to the Rasch model. First, the resulting person and item parameters are versatile.
Thus, the complete set of parameter values can be shifted without changing the
probability of solving an item. Because of that, comparing of the person’s parameters
among different tests is not applicable. The convention of fixing one item to a specific
value is the addition of all values to 0 (cf. Rost 2004, p. 121).

k∑
i=1

βi = 0

A very strong restriction for the Rasch model is the fact that the items have to be
locally stochastically independent. Thus, the probability of solving one item has to be
independent of the solution of a previous item. The independence is assumed only for
a given person parameter (cf. Strobl 2010, p. 18).

In addition, the Rasch model has to fulfill specific objectivity. In particular, the compari-
son of two persons has to be independent of the item. It is irrelevant if the basis for the
comparison is an easy or a difficult item. This restriction is fulfilled by parallel ICCs and
the model formula that the Rasch model is based on.

Finally, the most important restriction concludes the one dimensionality of the item and
person parameters. The latent variable can only measure one psychometric construct.

A great advantage of the Rasch model is that if the model is valid, there are sufficient
statistics for both the items and persons. The person parameter can be estimated by
the number of solved items while ignoring which concrete items are solved. The same
can be done with the item parameters.

All the formulas above only operate on given parameters. In reality, these parameters
have to be estimated. There are two major methods for parameter estimation in the
Rasch model. Both are based on the maximum likelihood estimation. The two methods
differ in estimating all parameters together in one step or in two successive steps. The

4.3 Item Response Theory 59

formula underlying the methods is the likelihood function for one person i and all items
j = 1, ...,m

Lui(θi, β) =
eriθi−

∑m
j=1 uijβj∏m

j=1(1 + eθi−βj)

where ri are the marginal scores, uij are the scores of the item and person, and β and
θ are the corresponding parameters for the item and the person.

A method that estimates person and item parameters in one step is called the joint
maximum likelihood estimation (JMLE). As the items, as well as the persons, are
stochastically independent, the likelihood function is the product of the probabilities
for all items and persons. As there has to be an estimation of a parameter for each
person, the number of parameters to be estimated increases when adding more data to
the model. As parameter estimation becomes better when the data increases and the
consistency of the estimation decreases with the number of estimations, this method is
rarely applied.

Other methods estimate the parameters one after another. The conditional maximum
likelihood estimation (CMLE) only estimates the item parameters. For this purpose
a conditional likelihood function for the sufficient statistic of the marginal scores ri is
calculated:

h(u|r, β) = e−
∑m

j=1 sjβj∏n
i=1 γri(β)

where γri(β) is the elementary symmetric function of degree ri. The likelihood function
is logarithmized, differentiated, and equaled to 0. As it is impossible to calculate the
parameters directly, an iterative, computer-aided method is chosen. After estimating
the item parameters, the person parameters are estimated in a second step based on
the item parameters. The bias that occurs due to the estimated parameters is ignored.
A disadvantage of this method is that the ability of persons solving all or no items
cannot be estimated. Nevertheless, the person parameters can be extrapolated even
though the test is too easy or difficult for the given individual.

Another method to estimate the parameters one after another is the marginal maxi-
mum likelihood estimation (MMLE). For this method a distribution of the marginals
must be assumed. In general, the normal distribution is used, but this can be invalid if
the normal distribution is not appropriate for the investigated population. After multiply-
ing the density function to the likelihood function, the resulting function is integrated
over θ.

Lu(β) =

∫
P (u, θ|β)dθ

Lu(β) does not contain any person parameter and, therefore, the item parameters can
be estimated with the common method of maximizing the likelihood. Similar to the
CMLE method, the MMLE estimates the person parameters by using the estimated
item parameters, ignoring the bias (cf. Strobl 2010, pp. 28).

In addition to the 1PL model and its special case the Rasch model, there are other
models that, as a commonality, do not require the presumptions of the 1PL model. In
the 2PL model – also called the Birnbaum model – a second parameter δ is introduced

60 4 Methodological Background

for each item. It describes the gradient of an item. The result of this is that the
item characteristic curves can intersect each other and there is no longer specific
objectivity. As the marginals are not sufficient statistics anymore, the conditional
maximum likelihood estimation does not work for the 2PL model. Instead, the marginal
maximum likelihood estimation is used. The Birnbaum model is described by the
following formula, which introduces the parameter δj for α in Equation 4.2:

P (uij = 1|θi, βj , δj) =
eδj(θi−βj)

1 + eδj(θi−βj)

If the model considers the influence of solving the item by chance or guessing, a third
parameter must be introduced. This leads to the 3PL model:

P (uij = 1|θi, βj , δj , γj) = γj + (1− γj) ·
(

eδj(θi−βj)

1 + eδj(θi−βj)

)

4.3.2 Parametric Tests for Model Fitting

In item response theory there are two main goals of the model application. On the one
hand, a set of homogeneous items that measure a specific number of psychometric
constructs is of interest. On the other hand, the goal is to create a measurement
framework that fits well. For these reasons there are several model tests that can be
applied on the the models. Here, only tests for the Rasch model are presented.

The parametric tests verify the model for sub-populations. The Martin-Löf test is a
test for item homogeneity. Furthermore, tests for model fitting are presented. As
the parametric tests are based on approximately χ2-distributed statistics, they can
only be applied if the number of possible response patterns is much smaller than
the investigated population. For that reason in Section 4.3.3 nonparametric tests are
introduced that are based on the Monte-Carlo method. These tests work on small
sample sizes, as can be found in the experiments for this thesis described in Section
7.6.

4.3.2.1 Martin-Löf Test

The Martin-Löf test checks the uni-dimensionality of the items. Basically, the test is
based on the assumption that if the items are one dimensional, the likelihood of the
item parameters of the complete item set are the same as in two separated item groups.
The basis for the test statistic is the likelihood for all possible person scores. The
probability for a specific person score is the relative frequency.

LG =
k∏
r=0

(nr
n

)nr

4.3 Item Response Theory 61

Here, n is the number of participants, nr is the number of participants with a score of r,
and k is the number of possible scores in the test. In addition, the relative frequencies of
the person score as a combination of person scores in the two item sets are calculated.

L(1)(2) =
k∏
t=0

k∏
u=0

(n{tu}
n

)n{tu}

Again, n is the number of participants. For each score, all possible separations of the
value into partial scores u and t are used for the calculation. For the test statistic the
likelihood of the subtests is set into relation to the likelihood of the complete test. As
the difficulty level of the items in the subset could be different, the result of that division
is weighted by the ratio of the likelihoods of the item parameters for the complete test
(0) and the subsets (1, 2).

TML = 2ln

(∏
t

∏
u

(n{tu}
n

)n{tu}∏
r

(
nr

n

)nr
·
L
(1)
C · L

(2)
C

L
(0)
C

)

The test statistic is assumed to have an asymptotic χ2 distribution with k1 · k2 − 1
degrees of freedom. k1 and k2 are the number of items in the two compared item sets
(cf. Koller et al. 2012, pp. 90). The restriction of the asymptotic distribution requires a
large enough dataset (cf. Verguts and De Boeck 2000, p. 78). Davier (1997) proposes
an absolute frequency of 5 for each cell of the table with all combinations of sub scores;
in total (k1 + 1)(k2 + 1) · 5 datasets. More precisely, this is only a minimum as all cells
have to have the same probability (cf. Davier 1997, p. 31).

In most cases, especially in pilot studies such as the one presented in Section 7.6, the
number of datasets is much smaller. For that reason there are nonparametric model
tests that are based on the Monte-Carlo method. They are described in Section 4.3.3.

4.3.2.2 Graphical Model Proof

The graphical model proof (GMP) is a test for how the estimated parameters represent
observed data. Concretely, if the model is valid the estimated parameters should be
the same in two sub-groups of the investigated population; or, if all parameter values of
both groups are plotted, they should be located on the diagonal of the plot. If the item
is not located on the diagonal and the confidence interval in both directions (confidence
area) does not intersect the diagonal either, the item does not fit the model and it has
to be excluded from the test (cf. Strobl 2010, pp. 39).

The separation into different groups has to be iterated with different criteria. In theory
all possible separations must be tested. In practice a specific level of certainty has to
be reached by testing appropriate subgroups. For example, if the test is used for finding
differences in gender, a separation on gender purposes can be done. In general, if
information on the population is gathered and not included in the test, this information
can be used for separation of the groups.

62 4 Methodological Background

4.3.2.3 Likelihood Ratio Test

Similar to the GMP the likelihood ratio test (LRT) compares the model fit of subgroups
of the population. Contrary to the graphical method, the LRT can compare more than
two groups. In contrast to direct comparison of the estimated parameters for each
subgroup, for the LRT the likelihood is calculated for the estimated parameters of each
group and for the complete population. Afterwards, the likelihoods are compared. If the
the likelihoods are equal, the estimated parameters fit the model in the subgroups, as
well as in the complete population and the model is assumed to be valid. Otherwise, it
would be better to estimate the parameters for each group and build different models.

The fitting is calculated by using a ratio of the likelihoods of the estimated parameters:

LR =
Lu(r, β̂)∏K

k=1 Luk
(rk, β̂k)

where u are the answers on the items, r are the marginals, K is the number of groups,
and β̂ are the estimated parameters. If the model is valid, the likelihood for the complete
population is the same as the product of the likelihood of the subgroups and, therefore,
the likelihood ratio (LR) has the value of 1. If there are differences in the groups, the
likelihood of the single groups is bigger since the model for the subgroups fit the data
better and results in a likelihood ratio smaller than 1. To calculate the significance, the
LR has to be transferred into another statistic T = −2lnLR, which is χ2 distributed
with (K − 1) · (m− 1)− (m− 1) degrees of freedom. If the values for T are large, the
resulting small p-values cause a significant violation of the model fit (cf. Strobl 2010,
pp. 41; Fischer and Molenaar 1995, pp. 86). Again, as mentioned in Section 4.4, the
population has to be big enough in comparison to the dataset as the χ2 distribution can
only be assumed for relatively large datasets.

4.3.2.4 Wald Test

The Wald test is another test for model fitting that is based on the idea of separating
the population into two groups. In contrast to the LRT, the standard Wald test operates
on an item level. The separation can be based on different criteria, such as gender
or others. Again, comparisons of the estimated parameters have to be proven in
several steps. In theory all possible separations have to be checked. The formula for
calculating the Wald test for an item j is:

Wj =
(β̂j,1 − β̂j,2)2

σ̂2
j,1 + σ̂2

i,2

with β̂ representing the estimated item parameters and σ̂ are the variations of the
estimations of both groups. To obtain a test statistic we calculate:

T = sign(β̂j,1 − β̂j,2)
√
Wj

4.3 Item Response Theory 63

where the function sign calculates the sign of the expression. So, if β̂j,1 < β̂j,2 the
function returns −, otherwise +. The test statistic T is normally distributed and has
a two sided rejection region. This results in an invalid model for very small and very
big values of T. In addition to the standard Wald test for item parameters, there is a
variation that proofs the model fit for the complete items in one step. Nevertheless, the
standard Wald-test makes it possible to identify items that violate the model in general,
but the violation of single model assumptions cannot be identified (cf. Strobl 2010,
pp. 44; Fischer and Molenaar 1995, pp. 89).

4.3.3 Nonparametric Tests

The nonparametric tests for the Rasch model are based on a Markov Chain Monte-
Carlo algorithm. It was first introduced by Ponocny (2001) and improved by Verhelst
(2008). The algorithm is especially suitable for small sample sizes. Basically, the lack
of data is reduced by simulating data matrices that have equal row sums than the
estimated dataset. For that purpose two columns of the original matrix are randomly
chosen. Afterwards, the rows with different values ({0, 1} or {1, 0}) are randomly
changed. This procedure leads to a new matrix with equal margins. As the algorithm
needs the matrices to be independent of the initial matrix and to occur with the same
probability, not all simulated matrices can be used for the calculation. More precisely,
for purposes of independence a predefined number of matrices are simulated, but
skipped. The first matrix included in the test is the first after this burn-in period. Due to
the fact that only two columns are changed in every step, the resulting matrices would
be very similar. Because of that a step size is defined. So, every simulated matrix
within this step size is skipped and only the last one in included in the test. Thus, for a
step size of 32 and a burn-in period of 100 in total 100 · 32 + 100 · 32 = 6400 matrices
are simulated, but only 100 effective matrices are used (cf. Koller and Hatzinger 2013,
pp. 4).

There is a test statistic for a global test on homogeneity and local stochastical inde-
pendence. For the global test statistic, the phi correlation between all pairs of items
is calculated for the original matrix. The test statistic is the sum of the differences
between the correlations of the original matrix and the corresponding average item
pair correlations of the simulated matrices. The model test then calculates the relative
frequency of all test statistics of the simulated matrices with a higher value than the
one of the original matrix. If the result is significant, there is a violation either in ho-
mogeneity or in the locally stochastical independence (cf. Koller and Hatzinger 2013).
As mentioned before, the main goal of the investigations presented in Section 7.6 is
the examination of a homogeneous itemset. Because of that, the test for homogeneity
is presented in the next subsection. Additionally, the resulting items are proven to fit
a Rasch model and to build a proper test framework for the examined psychometric
construct. For that purpose a nonparametric test for local stochastic independence is
presented at the end of this section.

64 4 Methodological Background

4.3.3.1 Test for Homogeneity

A violation in homogeneity can be assumed if there are too few response patterns that
are equal ({0, 0} or {1, 1}). The test statistic is calculated by summing up the equal
response patterns for each person v for the investigated items i and j.

T1m(A) =
n∑
v=1

δijv where δijv =

{
1, if xvi = xvj ,
0, if xvi 6= xvj .

(4.3)

According to the global test, the test statistic is calculated for all simulated matrices (As).
In the end, the significance is calculated as the relative frequency of all test statistics of
the simulated matrices (nsim) that are lower than the test statistic of the original matrix
(A0).

p =
1

nsim

nsim∑
s=1

ts where ts =

{
1, if Ts(As) ≤ T0(A0),
0, else.

So, the test compares the observed test statistic with simulated test statistics. If
the simulation results in more unequal item pairs, the observed items have a higher
probability of being homogeneous (cf. Koller and Hatzinger 2013).

4.3.3.2 Test for Local Stochastic Independence

The assumption of local stochastic independence has two facets. On the one hand, for
a proper test, the response patterns of the items are not allowed to be too similar. With
regard to two items, this can be expressed by the number of equal response patterns.
The test statistic presented in Equation 4.3 is suitable for that purpose as well. For a
better identification in Section 7.6 it is renamed to T1. Nevertheless, the model test
has to be modified. In contrast to the assumption of homogeneity, violation of the local
stochastic independence is expressed by too many equal response patterns.

p =
1

nsim

nsim∑
s=1

ts where ts =

{
1, if Ts(As) ≥ T0(A0),
0, else.

(4.4)

On the other hand, violation of the local stochastic independence can be a result of a
learning effect within the items; participants learn from a certain answer on a previous
item how to solve another. As Equation 4.3 counts the patterns {0, 0} and {1, 1}, the
test statistic is not appropriate for this purpose, because the learning has no effect on
the response pattern {0, 0}. For this reason, only those patterns that are both answered
correctly are summed.

T1l(A) =
n∑
v=1

δijv where δijv =

{
1, if xvi = xvj = 1,
0, else.

4.4 The Latent Trait Model 65

Again, the model test presented in Equation 4.4 can be used. As mentioned above,
all these tests have in common that a model violation can be assumed if the test is
significant.

4.4 The Latent Trait Model

The latent trait model (LTM) is a special kind of factor analysis. It can handle di-
chotomous data that often occurs while modeling logistic models in the sense of item
response theory (see Section 4.3). As the common item response theory models such
as the one described above work on ordinal or better dichotomous data, mostly with
missing data, the common factor analysis does not work (cf. Bond and Fox 2007,
p. 252; Ayala 2009, p. 44).

“Whenever one factor analyzes a correlation matrix derived from binary
data, there is possibility of obtaining artifactual factor(s) that are related to
the nonlinearity between the items and the common factors. These ‘factors
of curvilinearity’ have sometimes been referred to as ‘difficulty’ factors and
are not considered to be content-oriented factors.” (Ayala 2009, p. 44)

This was also mentioned by McDonald and Ahlawat (1974); “Hence the common
factor analysis of a covariance matrix from a large enough sample of binary variables
conforming to the linear model with t latent traits (distinct ‘content factors’) should yield
just t common factors, no more, whether or not the difficulties vary” (McDonald and
Ahlawat 1974, p. 87).

To avoid the problems of difficulty factors a non-linear factor analysis such as the one
introduced by McDonald (1965) should be applied. An application of this is shown by
Ayala (2009).

According to Bartholomew (2008), the task of building a latent trait model for binary
data has the following objectives:

1. To explore the interrelationships between the observations.

2. To explain the interrelationships with a small number of latent variables, if possi-
ble.

3. To assign a score to each individual for each latent variable on the basis of the
given responses.

The basis for all latent trait models on binary data is a data matrix with a response
vector (see Section 4.3) for each individual. The columns contain a 1 if the answer to
the corresponding question is “yes,” “right,” or something equivalent; otherwise they
contain 0.

Besides the binary data matrix, there is a more compact way of displaying the data.
The occurrences of the response patterns in the data are summed up in a table. For
p variables there are 2p possible response patterns. If p is large in comparison to the

66 4 Methodological Background

number of investigated individuals n (approximately 2p ≥ 5n), there are several patterns
that do not occur in the table. This discrepancy makes the calculation of model fitting
difficult for small populations and many investigated variables (cf. Bartholomew 2008,
pp. 209).

For this purpose Bartholomew (2008) introduced a goodness-of-fit test that is based
only on response patterns. In particular, he proposes two test statistics that compare
the observed frequencies of the response patterns to the estimated frequencies that
are expected under the model. So, basically the tests measure the closeness of the
observed data and the estimated parameters.

The log-likelihood ratio test statistic is based on the logarithm of the ratio of the observed
frequency of the response patterns O(r) and the expected frequency E(r).

G2 = 2

2p∑
r=1

O(r)loge
O(r)

E(r)

where p is the number of items and r represents a response pattern.

Alternatively, the Pearson chi-square test statistic can be applied.

X2 =
2p∑
r=1

(O(r)− E(r))2

E(r)

If the model is valid, both test statistics have an approximate χ2 distribution with
2p−p(q+1)−1 degrees of freedom with p for the number of items and q for the number
of factors. As mentioned above, this is only true for large datasets in comparison to the
total number of participants. In particular, each pattern should occur at least five times
(cf. Verguts and De Boeck 2000, p. 78).

4.4 The Latent Trait Model 67

Relevance for this thesis

In this thesis concept maps are applied to evaluate conceptual knowledge of students
at the start of their studies in computer science. First, the knowledge representation of
novice programmers is investigated with regard to knowledge development during an
experimental course (Section 7.5.2). Additionally, concept maps are applied to detect
misconceptions in the knowledge representation of novice programmers (Section 7.5.3).
Finally, the knowledge representation is compared to the program code produced during
the experimental programming course (Section 7.5.4). In addition, cluster analysis is
applied when investigating novice programmers’ knowledge and misconceptions. Here,
both presented clustering methodologies are applied. The model-based clustering was
used in the publications but figured out to be invalid as described in Section 4.2.3.

In Chapter 7, a new application of item response theory is introduced. In Section 7.6
the item response theory is applied on the program code. For that purpose a set of
items is defined that could be answered by analyzing the provided program code of
participants of an experimental course. In contrast to a classic item response theory
assessment, the items are not posed directly to the participants, but are implicitly
contained in the underlying programming task. The presented model tests were applied
to find a homogeneous itemset. Finally, the model-fitting tests were applied to present
an evaluation of novice programmers’ abilities.

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

5 Object-Oriented Programming in an
Educational Context - A Literature
Review

After introducing the theory underlying this thesis, representations of object orientation
in computer science education are provided. More precisely, an overview of the
development and present studies of object orientation in introductory programming
courses is presented. Additionally, language examples and their evaluation, as well
as the selection process, are described in Section 5.1.2. Generally, the questions are
answered, how object orientation or object-oriented programming is taught, and what
teaching approaches are applied or proposed (RQ2).

Besides the educational representation in introductory courses for computer science
and programming, there are representations of object-oriented concepts in the literature
that is related to computer science education. So, in the second part of this chapter the
occurrence of object orientation is investigated in recent competency models (Section
5.2), as well as in national and international educational standards and curricula
(Section 5.3). The literature analysis shows, therefore, how object orientation and
object-oriented programming are represented in common curricula, standards, and
competency models (RQ1).

5.1 Object Orientation in Introductory Programming
Courses

The question of why programming should be taught was investigated in a study on
the pedagogical content knowledge on programming. Besides several other questions
that are mentioned below, this central one was asked as well. One possible answer is
that it is a powerful tool for learning problem-solving and design or thinking strategies.
Another aspect is communication, because programming requires a thinking about how
to tell a machine what you want it to do (cf. Saeli et al. 2011, pp. 77).

Another investigation on the role of programming in computing education was conducted
by Schulte (2013). He summarized educational characteristics of programming and
discussed programming and the goals of education. In detail, the following list points
out his summary:

70 5 Object-Oriented Programming in an Educational Context

• “A basic requirement of programming is automation.”

• “Programming is a special type of interaction with the computer, connected with
the loss of direct manipulation and the need to use an abstract notation.”

• “Programming includes coping with complexity in a specific form.”

• “A program addresses not only the computer as ‘reader’, but also (and prob-
ably even more) human reader, programming therefore includes aspects of a
communication process.”

• “As there is often no clear path between the problem and the solution, program-
ming includes a creative process of seeking and finding solutions.” (Schulte
2013, p. 20)

According to the role of programming in general, the development of object-orientation
in introductory programming courses and the current state is presented. In an overview
article on different programming paradigms in an educational context, Luker (1989)
stated that, “[w]e should cast our vote for this style of programming [object-oriented
programming], because it is a natural one. The language should enforce the use of
objects, as do SMALLTALK and BETA” (p. 256). Five years later, the situation had
changed slightly.

“Today, it is impossible to avoid the term [object-oriented], it appears in
nearly every book, journal and magazine which relates to computer soft-
ware, and yet, while they rush to embrace it, many computer professionals
and educators still do not understand what object orientation means. [...]
However, if we fail to make a successful shift to the ‘new’ paradigm, its
promise will remain unfulfilled.” (Luker 1994, S. 56)

Mitchell (2000) summarizes the paradigm shift in industry and tries to explain why
it is difficult to integrate the “new” paradigm into computer science education. He
proposes the following four guidelines for introducing the object-oriented paradigm. He
suggests that students do not favor any specific problem-solving methodology, that
there are differences between teaching approaches connected to the procedural or
object-oriented paradigm, and that students’ former programming experiences have to
be taken into account. Finally, the last statement has the strongest influence and has
found its way into several publications: “The paradigm shift to objects first impacts the
entire curriculum” (Mitchell 2000, p. 103).

Kölling (1999a) describes the influence of the shift on computer science education as
follows: “For a long time, object-oriented programming was considered an advanced
subject that was taught late in the curriculum. This is slowly changing: more and more
universities have started to teach object orientation in their first programming course.
The main reason for doing this is the often cited problem of the paradigm shift” (p. 1).

The most important change that came along with the paradigm shift, and has a very
strong influence on education, is the change in view on processes. While in the
procedural paradigm one process is responsible for the functionality of the complete
program, in the object-oriented paradigm the objects act on their own as far as possible.
This implies that in the procedural view records are changed by procedures from the

5.1 Object Orientation in Introductory Programming Courses 71

outside, while in the object-oriented view, objects call methods to initiate the change of
the values of an object. In particular, in the object-oriented paradigm, processes are
bound directly to the objects (cf. Vujošević-Janičić and Tošić 2008, p. 71; Hubwieser
2007b, p. 209; Temte 1991, p. 75). Another major change in perspective concerns the
implementation of variants. The object-oriented paradigm enables polymorphism. This
encapsulates the conditional selection of the control flow depending on the “type” of
the acting element (cf. Garrigue 1998, 2000).

Finally, another difficulty has to be considered when introducing object-oriented no-
tions. Objects are implemented by references or pointers in almost all programming
languages. More precisely, an object is only an allocated part in computer memory with
a pointer or reference pointing on it. For students it is hard to learn if two references
point to the same object. When switching from the procedural paradigm to the object-
oriented paradigm, this understanding is crucial as the changing of values is different.
While in the procedural paradigm access to a variable affects only the variable that is
being addressed, in the object-oriented paradigm references related to other attributes
could be affected as well (cf. Hubwieser 2006, p. 10).

The following subsection provides an overview on the methodology of introducing the
basic concepts of programming in general and object orientation in particular. There
is a large amount of investigation on different approaches. Shall the object-oriented
concept be taught first or later? Is the modeling aspect first or is it the programming
aspect?

The second important aspect is related to the language and environment in which to
apply the concepts that are being taught in the introductory course. There are several
types of languages or environments, each with advantages and disadvantages, which
have to be taken into account when planning the course.

“The use of a language or environment designed for introductory pedagogy
can facilitate student learning, but may be of limited use beyond CS1.
Conversely, a language or environment commonly used professionally
may expose students to too much complexity too soon.” (ACM/IEEE-CS
Joint Task Force on Computing Curricula 2013, p. 43)

5.1.1 A Suitable Educational “Paradigm” for Introducing Object
Orientation

“Object Orientation [OO] is sometimes regarded as an advanced topic that
is hard to teach. This might be true if you teach it to students who have a
background in another programming paradigm, but our experience is that
OO is ideal to use as a first paradigm.” (van Roy et al. 2003, p. 270)

There are many sources describing the methodology of introducing the object-oriented
paradigm in an introductory course. Most of them comprise the different approaches of
“objects-first” or “objects-later”. But, what are the differences and is it really important to
distinguish the two? Here, an overview on the topic is presented, but no evaluation is

72 5 Object-Oriented Programming in an Educational Context

given on the different ways. Besides the pure approaches, there are other methodolo-
gies for introducing programming. This affects the different aspects of object orientation
in general (modeling or programming) and the time of introducing specific programming
concepts in particular. Figure 5.1 gives an overview on all these approaches. Modeling
includes the introduction of all modeling aspects. Object or Class imply the introduction
of the concepts of object and class, whereas, Object-oriented programming includes
the programming notions of the object-oriented paradigm. Finally, Algorithm/Control
structures includes the notions of algorithms and their implementation including control
structures.

models-first obj
cla

objobjects-first
OOP-first cla

modelling (mod)
object (obj)
class (cla)
object-oriented programming (oop)
algorithm/control structures (acs)

objobjects-first
OOP-later cla

objects-later obj
cla

strictly-objects-first
OOP-first

strictly-objects-first
OOP-later

introduction of the notions

obj cla acs oop

acs oop

obj cla oop acs

mod oop

oop acs

acs oop

Figure 5.1: Overview of the different educational “paradigms” for introducing object
orientation and the corresponding programming notions

5.1.1.1 When to Introduce the Object-Oriented Notions?

Lewis (2000) figured out one of the central aspects if you are talking about object
orientation and the way to learn it. “A distinction must quickly be made between initially
writing classes that define objects, and using objects defined by preexisting classes.
[...] The evaluation of any approach should focus on file presentation of the underlying
model” (p. 246).

Based on this study, Bennedsen and Schulte (2008) asked over 700 teachers about
their understanding of objects-first. Their answers are categorized into three categories:

Using objects: “At the beginning of the course, the student uses objects implemented
beforehand. When the student has understood the concept object, he moves on
to defining classes by himself. Focus is on usage before implementation” (p. 23).

5.1 Object Orientation in Introductory Programming Courses 73

Creating classes: “The student both defines and implements classes and creates
instances of the defined classes. Focus is on the concrete-creative part of
programming” (p. 23).

Concepts: “This involves the teaching of the general principles and ideas of the
object-oriented paradigm, focusing not just on programming but on creating
object-oriented models in general. Focus is on the conceptual aspects of object
orientation” (p. 23).

There are three common sequences of objects-first courses. Two of them use objects
first and then create classes and introduce concepts in different orders. The third
variant simply creates classes that are followed by introduction of the concepts (cf.
Bennedsen and Schulte 2008, p. 23).

Diethelm (2007) introduced a stricter version of the objects-first approach. She states
that most problems with object orientation – and especially the modeling aspect – lie in
the use of classes instead of objects. Another aspect mentioned by Diethelm (2007)
is an approach that applies modeling techniques for introducing the object-oriented
notions. This approach is called models-first. Based on this idea, objects are first
modeled on their own and then classified. Both modeling and programming should
focus on objects rather than classes. This approach of Diethelm (2007) is called
strictly-objects-first.

The objects-later methodology for learning object orientation also emphasizes the
modeling aspect. In contrast to the objects-first approach, it starts with algorithmic
concepts including control structures and introduces object modeling after that. The
problems and effects of the objects-later approach has been discussed in literature,
especially at the beginning of the change to the object-oriented paradigm; for example,
see (DeClue 1996).

In several publications the objects-later approach – with the paradigm shift from proce-
dural to the object-oriented paradigm – is said to be very difficult and not applicable in
introductory courses (cf. Saeli et al. 2011, p. 80).

A synonym for the objects-first approach is introduced with the notion of starting with an
object-oriented design. The modeling of objects is the first step when introducing object
orientation. Furthermore, concepts like inheritance, polymorphism, and generalization
are introduced by design (cf. Adams and Frens 2003).

An investigation of the predictors for success in an object-first course showed that the
common predictors such as previous experience in programming and mathematics –
which have an influence in an object-later course – have no influence. In their study
they built a model with seven predictors for success and investigated those that had
the smallest influence on the variance in a linear regression model. Besides previous
programming experience and knowledge and abilities in mathematics, gender influ-
ences were measured. The influence of gender does not differ in the two approaches
(cf. Ventura 2005).

Most courses have now changed to an objects-first approach, which is either more or
less strict. Nevertheless, there were and are several reservations in the object-oriented
approach. At the beginning of the paradigm shift in education, Decker and Hirshfield

74 5 Object-Oriented Programming in an Educational Context

(1994) listed the top ten reservations and attempted to discuss whether the restric-
tions are true or just fear of new things. In the end, they recommend an objects-first
approach, even though it suffers reservations (cf. Decker and Hirshfield 1994). In a
study published ten years later, an indirect comparison of the two main approaches
described above was conducted. Decker (2003) investigated the performance of two
student groups in an object-oriented CS2 course. The first group had an introductory
course according to the objects-first approach, while the second group started with the
procedural paradigm in the very beginning (objects-later). The group that used objects
from the beginning performed better in the more advanced object-oriented concepts,
although the second group was also introduced to the object-oriented concepts. Fur-
thermore, the algorithmic performance was equal in both groups, which suggests that
both approaches are successful in the procedural topics (cf. Decker 2003).

An application of the objects-first approach with emphasis on the modeling aspects
of object orientation is implemented in the Bavarian Gymnasium8 (cf. Hubwieser
2007a). After the introduction of the basic object-oriented notions using standard office
applications, object-oriented programming is introduced by first introducing control
structures and then object-oriented concepts (see Section 5.3.6.2). The different
notions for introducing object-oriented programming forms the content of the next
section.

5.1.1.2 What is the Most Suitable Order for Introducing Programming Notions
Related to Object Orientation?

One possible approach which is based on “programming-first” is presented by Alphonce
and Ventura (2002). In this approach object orientation is introduced by design. They
mention that they have tried to solve the weaknesses of the “OOP-first” approach that
is mentioned in the ACM/IEEE curriculum of 2001 (CC2001).

“All introductory approaches discussed in CC2001 have distinct strengths
and weaknesses. The programming-first approach suffers from other
weaknesses beyond the ones quoted above. CC2001 notes that it has
endured because of some significant strengths, notably that students are
equipped with programming skills in their first year, and that subsequent
courses can leverage these skills in their curricula and can also hone these
skills.” (Alphonce and Ventura 2002, p. 70)

They stick very close to the Unified Modeling Language (UML). They describe the
importance of design as follows:

“In early programming assignments students are given a design, expressed
in UML, along with a skeletal solution. The students’ task is to supply
their own code to complete an implementation of the given design. In later
assignments students are supplied with a plain-language description of

8Gymnasium is the Bavarian grammar school. It is a very specific type of school. For that reason it is
labeled with the German word “Gymnasium” or the plural word “Gymnasien”.

5.1 Object Orientation in Introductory Programming Courses 75

the requirements, from which they must develop a design, expressed in
UML, before they begin writing code.” (Alphonce and Ventura 2002, p. 72)

The first general decision that has to be made is about the order of programming
and modeling. Bennedsen and Caspersen (2004) present a model-first approach.
They start with the modeling of classes and objects in a programming task just before
writing a single line of code. The programming concepts are introduced later on in
a cascading approach. This emphasizes that object orientation is not just another
solution or technology for programming issues.

Based on the paper of Alphonce and Ventura (2002), Bennedsen and Caspersen (2004)
introduce an objects-first course with a strong emphasis on the modeling aspects, which
includes conceptual modeling in the programming introduction.

“The starting point is a class and properties of that class. One of the
properties of a class can be an association to another class; consequently
the next topic is association. This correlates nicely to the fact that associa-
tion (reference) is the most common structure between classes (objects).
Composition is a special case of association; composition is taught in the
next round of the spiral. The last structure to be thoroughly covered is
specialization. Specialization is the least common structure in conceptual
models, and it bridges nicely to the second half of the course where the
focus is on software quality and design.” (Bennedsen and Caspersen
2004, p. 478)

According to the abstraction levels for the interpretation of UML class model, they find
three advantages of the inclusion: a systematic approach to programming, a deeper
understanding of the programming process, and the focus on general programming
concepts instead of language constructs in a particular programming language (cf.
Bennedsen and Caspersen 2004).

Another example of an iterative approach that is based on modeling and design aspects
was conducted by Hadar and Hadar (2007). They switch between abstract modeling
sessions and concrete implementation sessions in an iterative way. With this approach
they try to emphasize the abstract thinking tasks. The change of the modeling and
programming tasks should prevent having to choose one of the abovementioned
approaches (cf. Hadar and Hadar 2007).

After deciding about the position of programming in the course, the order of program-
ming concepts can also be different. Ehlert (2012) discusses one of the most central
questions about object-oriented programming in computer science education. He
provides an overview of the typical concepts of the introduction of object-oriented
programming (OOP) and their order within the course (Ehlert and Schulte 2009b).
These topics include notions of both programming paradigms and cover the main items
of the object-oriented “quarks” (see Section 2.2): objects and classes, data types,
variables and attributes, constants, methods and procedures, control structures, and
inheritance and associations. An overview of the different order is shown in Table 5.1.

76 5 Object-Oriented Programming in an Educational Context

OOP-first OOP-later

Classes and objects Data types (incl. variables,
constants)

Attributes (incl. data types) Control structures
Methods (including control
structures)

Procedures

Inheritance Classes and objects
Association Inheritance and association

Table 5.1: Comparison of the topics of the OOP-first and OOP-later approaches and
their order of introduction, (cf. Ehlert and Schulte 2009a)

Ehlert (2012) states that OOP-first concentrates on the same topics as OOP-later. The
only difference is their order.

The main difference of both teaching approaches is the sequential order
of topics. Both approaches focus more in programming as in the modeling,
without giving up the modeling9.

Ehlert (2012) investigates possible differences in the two approaches – OOP-first and
OOP-later – concerning the outcome related to when object-oriented programming
is introduced. The result is that there are no significant differences between the two
approaches. The only factor differentiating the outcome is the personal preference of
the teacher.

No significant differences between the OOP-first approach and the OOP-
later approach were observed or measured regarding the learning gain
of pupils / students (p-values for the nine requested topics are between
0.18 and 0.83). OOP-later students had a (significantly) better subjective
experience in the relevant fields (“school”, “subject” and “topic”) as well
as in the dimensions of experience (emotional, cognitive and motivational
experience)9.

Besides the small sample size, another difficulty in the work of Ehlert (2012), as
with others in the literature on the topic, is the missing distinction of objects-first or
objects-later and OOP-first or OOP-later. While the first approaches relate to the
notions of objects and classes and their position in an introductory course, the second
two approaches are related to the programming aspects of object orientation such
as inheritance and polymorphism, as well as the method and attribute concept (cf.
Diethelm 2007, p. 22).

9Translated by the author from German. The original source is listed in Appendix C

5.1 Object Orientation in Introductory Programming Courses 77

5.1.2 An Appropriate Language for an Introductory Programming
Course

Knudsen and Madsen (1988) focus on the fact that learning to program in an object-
oriented manner is more than learning a new language that is object-oriented. Never-
theless, in the last few years a large variety of languages have been developed.

“The use of ‘safer’ or more managed languages and environments can
help scaffold students’ learning. But, such languages may provide a level
of abstraction that obscures an understanding of actual machine execution
and makes is difficult to evaluate performance trade-offs. The decision as
to whether to use a ‘lower-level’ language to promote a particular mental
model of program execution that is closer to the actual execution by the
machine is often a matter of local audience needs.” (ACM/IEEE-CS Joint
Task Force on Computing Curricula 2013, p. 43)

At the start of implementing the paradigm change in the early 1990s, there were only a
few object-oriented languages that were applicable for educational purposes. This is
why in the first years languages from industry that had mostly procedural roots were
used. With time more explicit educational languages and environments were developed.
DeClue (1996, p. 233) provides an overview of the languages that were found in the
very beginning.

As the programming environments are mostly related to a specific language in a strong
manner, they will be investigated in combination with each other. A first set is taken
from industry and the selection is substantiated with the necessity to prepare students
for industries’ needs (Pears et al. 2007, p. 207). A second group provides either a
subset of a common industrial language or an environment for one of those languages
that is especially designed for educational purposes. Another set of languages is
developed only for educational reasons. Most of those languages provide a graphical
programming environment that is often related to a kind of gaming.

The category of languages with industrial roots are historically related to the develop-
ment of the programming paradigm. So, the first set of languages has its origins in
the “pre-shift” times (cf. Fleury 2000). Lewis (2000) presents in his paper on the myth
about object orientation two widely spread languages in introductory courses. The first
language is C++, which is a hybrid language (see Section 2.1).

“The hybrid nature of C++ is one of the problems that educators have with
the decision to make C++ the language of choice taught in high schools
for Advanced Placement credit.” (Lewis 2000, p. 248)

The other language is Java and is the most widely spread language (Pears et al. 2007).
Even if the design of Java tend to be object-oriented, it is not a pure OO-language. “The
existence of primitive types is one reason. [...] More important, the requirement that all
methods be defined as part of a class does not automatically lead to an object-oriented
design. Procedural abstraction could be allowed to dominate, destroying the conceptual
elegance of a proper design” (Lewis 2000, p. 248).

78 5 Object-Oriented Programming in an Educational Context

Furthermore, there are languages designed especially for the object-oriented pro-
gramming paradigm, but unlike C++, Java or recently C# they have not found broad
application. A famous candidate, which has its role in industry, but was designed with
education in mind, is Smalltalk of Allan Kay (cf. Wren 2007, p. 10). Another candidate
of this set is Eiffel of Bertrand Meyer. There are several other languages that are less
famous. One recent example is Grace, which was developed especially for novice
programmers and is purely object oriented (cf. Black 2013).

Another set of languages includes those that are related to one of the above, but mostly
only with a subset of concepts. BlueJ is based on Java, but omits the main-method
concept. In contrast, all objects are either constructed by another object or by the
user in the development environment (cf. Bergin et al. 2005; Kölling and Rosenberg
2001, 1996; Kölling et al. 2003). Another candidate of this set is the Java version
of Karel the Robot, which was designed in the 1980s and focused on the current
programming paradigm in the given time (cf. Bergin et al. 2005). A comparison of
Karel J Robot and BlueJ is described by Borge (2004). An alternative, especially for
the first contact with object orientation in the very beginning of an introductory course,
is a Java library that provides simple geometric objects that can be displayed in an
easy way. Furthermore, there is a simple “sandbox” application for the first tries of the
students. After becoming familiar with the objects, attributes, and methods that are
provided by the library, simple applets using the library can be implemented by the
students on their own. The “ObjectDraw” library is described in detail by Bruce et al.
(2001).

In the set of languages that are designed for educational purposes, there are some
languages that are only applied in a few courses and others that are applied around
the world. Nearly all examples have in common that they provide a kind of setting, like
a game or movie, where objects can interact with each other or with the environment.
The capabilities of interaction and the kind of objects vary strongly through the different
languages. While a language such as Alice provides a 3D environment and a huge set
of possible objects and interactions (cf. Sattar and Lorenzen 2009), Robot Karol has
only a few objects and a limited scenery where the robot can act. Another difference in
the languages is in the programming itself. While Robot Karol has its own languages
for programming, Scratch or Alice provide pre-defined programming elements that can
be altered and combined.

An investigation of an introductory course based on Alice as programming language
pointed out some observations that give a good impression of the notion of this set of
programming languages. Cooper et al. (2003) observed a strong contextualization of
objects and classes. This emphasize the notion that object-oriented programming is
implementing objects of the real world. Furthermore, the notion of encapsulation is
emphasized, because the objects can be moved in the environment, but the spatial
coordinates are not accessible in a direct way. In addition, this fact points out the
sense of message passing between objects. Nevertheless, the environments of this
set provide the used control structures for selection and, therefore, hide any syntax.
The syntax problems are kept out, which is an advantage in the beginning, but has to
be considered in the later educational process (cf. Cooper et al. 2003, p. 193).

5.2 Object Orientation in Competency Models 79

Another classification of programming languages and its education is conducted by
Kelleher and Pausch (2005). They introduce a taxonomy for introductory programming
languages based on the languages’ notions and basic features. Furthermore, an exam-
ple is given for each element in the taxonomy. The list of programming languages and
environments is completed by a list of the programming concepts that are implemented
in the languages (cf. Kelleher and Pausch 2005, pp. 59).

In advance of the development of the BlueJ system mentioned above, Kölling (1999b)
investigated environments and languages around object orientation that were common
in the 1990s. He defines seven criteria for a programming environment to be suitable
for novices and the object-oriented paradigm: ease of use, integrated tools, object
support, support of code reuse, learning support, group support, and availability (cf.
Kölling 1999b). Additionally, Kölling (1999a) defines a set of requirements for an
educational programming language. He states that programming “languages are not
good or bad per se; they are good or bad for a specific purpose” (Kölling 1999a, p. 3).
The requirements (clean concepts, pure object orientation, safety, high level, simple
object/execution model, readable syntax, no redundancy, small, easy transition to other
languages, support for correctness assurance and suitable environment) are checked
for the most common object-oriented programming languages C++, Java, Eiffel, and
Smalltalk. The results of these investigations led to the development of BlueJ.

5.2 Object Orientation in Competency Models

Although there is a long tradition in publishing educational standards and recommen-
dations of curricula in computer science, there is a lack of competency models. In
fact, there is no model that is empirically founded and well established in research.
Weinert (2001) defines competency as “a roughly specialized system of abilities, profi-
ciencies, or skills that are necessary to reach a specific goal. This can be applied to
individual dispositions or to the distribution of such dispositions within a social group
or an institution” (Weinert 2001, p. 45). In recent years, there are several efforts to
develop competency models. The models that have been developed are at different
stages of completion. The MoKoM-project, which covers competencies for informatics
modeling and system comprehension is almost finished. Another model by Bennedsen
and Schulte (2006) is just a suggestion and not yet implemented or even validated.
These two projects mentioned are described in a more detailed way in the following
subsections. The facets related to object orientation are of special interest.

5.2.1 Competency Model of Object Interaction

In 2006 Bennedsen and Schulte introduced a theoretical base for measuring the
understanding of object interaction. This model was revised in 2013 (Bennedsen and
Schulte 2013). Although the title suggests a competency model, only a taxonomy model
is presented in the paper. In fact, there is no relation to any definition of competency at

80 5 Object-Oriented Programming in an Educational Context

all. Nevertheless, the defined hierarchy of developing expertise in the understanding of
object interaction is tested and validated.

The first version in 2006 contained four levels in the hierarchy: interaction with objects,
interaction with object structures, interaction on dynamic object structures, and interac-
tion on dynamic polymorphic object structures. In the revision in 2013 the concept of
polymorphism, which was the focus of the first version, was excluded due to concentra-
tion on the basic concepts that are necessary for executing object-oriented programs.
The following list presents the revised categories and their descriptions.

Interaction with objects “The student can understand simple forms of interactions
between (a couple of) objects, such as method calls and creation of objects
(including simple method calls to initialize an object like adding objects to a
container in the beginning). The student is aware that the results of method calls
depend on the identity and state of the object(s) involved. The objects do not
change state” (Bennedsen and Schulte 2013, p. 13).

Interaction on object structures “The student is able to comprehend a sequence of
interactions, in which the history of changes has to be taken into account. Inter-
action is dynamically changing a structure of objects including iteration through
object structures. The structure is created and changed explicitly via creations,
additions and deletions” (Bennedsen and Schulte 2013, p. 13).

Interaction on dynamic object structures “The student knows the dynamic nature
of object structures, understands the overall state of the structure and is aware
of reference semantics. The student takes into account that the interaction on
the structure or elements of it can lead to side-effects (e.g. implicit changes in
the structure). E.g. several elements in a structure refer to the same object, so a
change in one reference has effects on others” (Bennedsen and Schulte 2013,
p. 13).

The last hierarchy level including polymorphism is dropped out as the concept is
excluded in general.

Besides the taxonomy of the understanding of object interaction, Bennedsen and
Schulte (2006) introduced a test instrument to validate the model. The test on the initial
model led to the exclusion of polymorphism. Nevertheless, the taxonomic character of
the model could be proved. A broad test of the revised instrument has not yet been
applied, but the model has been proven on a small sample.

Although Bennedsen and Schulte (2013) tried to define a competency model, they do
not refer to any common definition of competency. Furthermore, as the authors state
themselves, the design of the hierarchy levels is just one alternative out of many others.
This results in difficulties in putting each possible example in the right category. In
addition, the test instrument faces the same difficulties as former ones. It includes
concepts in the assessment items that are not meant to be tested anyway. The use of
given classes such as ArrayList make the test instrument very specific for a special
population.

5.3 OO in Nat. and Internat. Standards and Curricula 81

5.2.2 Competency Model on Informatics Modeling and System
Comprehension (MoKoM)

The MoKoM project started the development of a competency model for computer
science in 2009. More precisely, MoKoM focuses on informatics modeling and system
comprehension. Development of the model was conducted in two major steps. For the
first step, a model was derived on a theoretical basis. For that purpose, expert papers
and computer science curricula were investigated (Kollee et al. 2009; Magenheim
2005; Magenheim, Nelles, Rhode, Schaper, Schubert and Stechert 2010; Schubert
and Stechert 2010). According to the theoretical approach, the existing model was
refined by expert interviews based on the critical incident theory (cf. Magenheim,
Nelles, Rhode and Schaper 2010). Linck et al. (2013) describe the final version of
the model. In the last step the model has been applied in secondary schools with a
developed assessment tool (cf. Neugebauer et al. 2014).

The MoKoM-model consists of five major competency dimensions: system application
(K1), system comprehension (K2), system development (K3), dealing with system com-
plexity (K4), and non-cognitive skills (K5). All these dimensions have sub-competencies
below the first level and some of those have a third level.

The dimensions, sub-competencies, and the third dimension related to object orientation
are listed below.

K3.4.1 Know & apply object-oriented terminology

K3.4.2 Execute object-oriented decomposition

K3.4.3.2 Develop object diagrams

K3.4.3.4 Develop analysis class diagrams

K3.5.4.1 Develop design class diagrams

K3.6.1 Know & use object-oriented programming

K3.6.2.2 Transform class diagrams to source code

Although the model mainly covers modeling aspects, the object-oriented programming
is explicitly mentioned. Nevertheless, the object-oriented modeling is the main focus.

5.3 Object Orientation in National and International
Education Standards and Computer Science
Curricula

From a conceptual view, as in Section 2.2, a definition of some basic concepts is useful.
These could be the quarks by Armstrong (2006) or the threshold concepts of Eckerdal
et al. (2006). Relating those basic concepts to education leads to something such as
the “Trucs” of Meyer (2006) and Pedroni (2009). By adding teaching implications that

82 5 Object-Oriented Programming in an Educational Context

do not correspond to a specific course, something similar to the fundamental ideas of
Schwill (1994) arise. The fundamental ideas shall enable the students to face changes
in the subject of computer science where paradigm changes are quite common.

“Only these fundamentals seem to remain valid in the long term and enable
students to acquire new concepts successfully during their professional
career in that these concepts will often appear to be just further devel-
opments or variants of subjects already familiar and then are accessible
more easily using ideas learned before.” (Schwill 1994, p. 1)

A set of observable learning objectives such as those of Anderson and Krathwohl
(2009) are provided in national and international standards. Here, two candidates
are presented that focus on the representation of object orientation, and especially
object-oriented programming.

Besides the representation of object orientation in educational standards on computer
science, their implementation in national and international curricula is of interest. As
stated in Section 2.1, development of an object-oriented paradigm started in industry
and it took a long time until it started to have an influence in education. A first try was
published by Pugh et al. (1987). They investigated the benefits of including object-
oriented concepts in existing courses. In this work of the late 1980s, object orientation
was still only an additional approach for the present paradigm. A few years later Meyer
(1993) suggested starting with object orientation early in the curriculum and providing
the other approaches afterwards. In the following subsections, the most extensive
international curriculum in computer-science education, published by an ACM/IEEE
joint task force (ACM/IEEE-CS Joint Task Force on Computing Curricula 2013), and the
implementation of object orientation are presented. Furthermore, a representative of a
university curriculum for the bachelor degree in computer science is presented in this
thesis. As the experiments presented in Chapter 7 only took place at the TU München,
that curriculum was chosen (Technische Univerisät München 2014). In addition, the
focus lies on the representation of object orientation in secondary education. For
that purpose both a national and an international representative of computer-science
educational standards are scrutinized. Furthermore, the general guidelines for the
Abitur in computer science (Einheitliche Prüfungsanforderungen (EPA) Informatik)
(Ständige Kultuministerkonferenz 2004)) of the Kultusministerkonferenz (KMK) and two
national curricula for computer science in secondary education are analyzed. First, the
Bavarian curriculum (Bayerisches Staatsministerium für Unterricht und Kultus 2004)
was chosen because there is a compulsory subject in computer science. Second, the
curriculum of North Rhine-Westphalia (Ministerium für Schule und Weiterbildung des
Landes Nordrhein-Westfalen 2014) was chosen because it is one of the most current
curricula and the state has the most citizens in Germany.

5.3.1 The ACM/IEEE Joint Task Force Computer-Science
Curriculum

The last volume for the computer-science curriculum was published in 2001. A revision
of this version was published in 2008. Based on this new version, a complete new

5.3 OO in Nat. and Internat. Standards and Curricula 83

volume of guidelines was developed during the last years with several drafts. The final
version was published in 2013. Similar to the volumes before, the new volume has
a revised body of knowledge and introduces several examples for courses that are
implementing the curriculum.

There are 18 knowledge areas that form the knowledge body of the curriculum. These
knowledge areas are not supposed to form particular courses in a curriculum. More
precisely, most courses will pick topics from several knowledge areas. To provide
advice on which topics should be covered by all students and which topics should be
reserved for special courses, the topics are identified by a certain level. They are either
“core” or “elective” and if they are core elements they can be “tier1” or “tier2”. If they
are tier1 core, they should be covered by all students. Tier2 core should be covered by
almost every student and additionally the elective elements should be provided, but do
not have to be covered by all students. Nevertheless, only covering the core elements
is not sufficient for an undergraduate degree.

Besides the knowledge areas, a sub categorization is conducted. The knowledge
units provide topics and learning outcomes, which have certain mastery levels that are
borrowed from Bloom’s taxonomy. These mastery levels are: familiarity, usage, and
assessment (cf. ACM/IEEE-CS Joint Task Force on Computing Curricula 2013).

The coverage of object orientation in the knowledge areas or knowledge units can be
seen in the following lists. The first list displays the topics related to object orientation
and the corresponding knowledge areas and knowledge units. The bold topics are
the knowledge units with the corresponding knowledge areas. Each item of the list is
accompanied by the page number – in ACM/IEEE-CS Joint Task Force on Computing
Curricula (2013) – in parentheses. Additionally, the level is added in square brackets
and for the learning outcomes the mastery levels are supplied.

Information Management/Data Modeling

• Object-oriented models [Core-Tier2] (p. 114)

Programming Languages/Object-Oriented Programming

• Object-oriented design [Core-Tier1] (p. 157)

– Decomposition into objects carrying state and having behavior

– Class-hierarchy design for modeling

• Definition of classes: fields, methods, and constructors [Core-Tier1] (p. 157)

• Subclasses, inheritance, and method overriding [Core-Tier1] (p. 157)

• Dynamic dispatch: definition of method-call [Core-Tier1] (p. 157)

• Subtyping [Core-Tier2] (p. 157)

– Subtype polymorphism; implicit upcasts in typed languages

– Notion of behavioral replacement: subtypes acting like supertypes

– Relationship between subtyping and inheritance

84 5 Object-Oriented Programming in an Educational Context

• Object-oriented idioms for encapsulation [Core-Tier2] (p. 157)

– Privacy and visibility of class members

– Interfaces revealing only method signatures

– Abstract base classes

• Using collection classes, iterators, and other common library components [Core-
Tier2] (p. 157)

Programming Languages/Basic Type Systems

• Generic types (parametric polymorphism) [Core-Tier2] (p. 159)

– Comparison with ad hoc polymorphism (overloading) and subtype
polymorphism

Programming Languages/Advanced Programming Constructs

• Object-oriented abstractions: Multiple inheritance, Mixins, Traits, Multimethods
[Elective] (p. 163)

System Development Fundamentals/Algorithms and Design

• Fundamental design concepts and principles [Core-Tier1] (p. 169)

– Abstraction

– Encapsulation and information hiding

The second list displays the learning outcomes related to object orientation and the
corresponding knowledge areas and knowledge units.

Information Management/Data Modeling

• Describe the main concepts of the OO model such as object identity, type
constructors, encapsulation, inheritance, polymorphism, and versioning.
[Core-Tier2, Familiarity] (p. 114)

Programming Languages/Object-Oriented Programming

• Design and implement a class. [Core-Tier1, Usage] (p. 157)

• Use subclassing to design simple class hierarchies that allow code to be reused
for distinct subclasses. [Core-Tier1, Usage] (p. 157)

• Correctly reason about control flow in a program using dynamic dispatch. [Core-
Tier1, Usage] (p. 157)

• Compare and contrast (1) the procedural/functional approach (defining a function
for each operation with the function body providing a case for each data
variant) and (2) the object-oriented approach (defining a class for each
data variant with the class definition providing a method for each operation).
Understand both as defining a matrix of operations and variants. [Core-
Tier1, Assessment] (p. 157)

5.3 OO in Nat. and Internat. Standards and Curricula 85

• Explain the relationship between object-oriented inheritance (code-sharing and
overriding) and subtyping (the idea of a subtype being usable in a context
that expects the supertype). [Core-Tier2, Familiarity] (p. 157)

• Use object-oriented encapsulation mechanisms such as interfaces and private
members. [Core-Tier2, Usage] (p. 157)

Programming Languages/Basic Type Systems

• Discuss the differences among generics, subtyping, and overloading. [Core-
Tier2, Familiarity] (p. 159)

The curriculum covers nearly all facets of object orientation. Here, object-oriented
programming is contained within the document. It is even a knowledge unit within the
programming languages knowledge area. Nevertheless, the modeling aspect still has
serious priority.

5.3.2 Curriculum of the Bachelor Degree in Computer Science at
the Technische Universität München

In addition to the very general and broad curriculum of the ACM/IEEE Joint Task Force,
a university curriculum and its implementation of object orientation is analyzed in this
section. The setting of Technische Universität München (TUM) was chosen for the
analysis and the mandatory courses were retained. In general, only the bachelor
degree has such courses. The master’s degree consists only of elective courses. The
bachelor curriculum of TUM contains 11 mandatory courses that are distributed over
six semesters. Each course is described within the curriculum with its content and
definitions of the corresponding learning outcomes.

The first course containing object-oriented concepts is the “Introduction into Computer
Science 1” (IN0001). Here, objects, classes, methods, inheritance, abstraction,
and polymorphism are introduced. The participants are enabled to solve algorithmic
problems, and simple distributed and concurrent programs in Java or a similar object-
oriented programming language.

In addition to IN0001, there is a practical course “Fundamentals of Programming (Exer-
cises & Laboratory)” (IN0002), which is based on the concepts of IN0001. Furthermore,
the participants are enabled to get along with Java or a similar object-oriented pro-
gramming language. They can develop small applications on their own using basic
computer-science concepts.

All the other courses cover non-object-oriented concepts of computer science. Interest-
ingly, TUM introduces object-oriented notions at the very beginning. Nevertheless, a
more detailed view on the course materials shows that the introduction process follows
an objects-later or at least an OOP-later approach according to Section 5.1.1.

86 5 Object-Oriented Programming in an Educational Context

5.3.3 General Assessment Guidelines (EPA) in Computer Science

After having looked at a representative of higher education, secondary education
will be addressed next. The first investigated document is the general assessment
guideline (Einheitliche Prüfungsanforderungen (EPA) Informatik) for the A-levels. It
was conducted by the German Kultusministerkonferenz (KMK) in 1989 and revised in
2004. Basically, the EPA consists of two parts. The first part comprises the written and
oral exams. The first part also contains a brief description of the observable learning
objectives that form the basis for the exams. The second part provides several task
examples.

The only object-oriented observable learning objectives are related to the modeling
aspects. Nevertheless, there are competencies such as the ability to implement
graphical user interfaces that focus on object-oriented programming. The provided
task examples clarify the needed concepts. Again, the basic concepts of object,
class, attribute, and method are emphasized. A concrete definition of object-oriented
programming competencies is missing.

5.3.4 Educational Standards of the Computer Science Teachers
Association (CSTA)

An international approach for defining a standard for computer science education is
provided by the Computer Science Teachers Association (CSTA), which is associated
with the Association for Computing Machinery (ACM) (The CSTA Standards Task Force
2011). Over a couple of years, a set of competencies was defined that should be
included in the teaching of computer science. In contrast to the national standards
of the German Society for Computer Science (Gesellschaft für Informatik; GI), the
CSTA standards address all school levels including the primary school. The goal of
the standards is “to be coherent and comprehensible to teachers, administrators, and
policymakers” (The CSTA Standards Task Force 2011, p. 1).

The standards are organized in two dimensions. The first dimension distinguishes the
students based on their age level. Three different age levels are defined. The first
level starts with elementary school students who should be introduced to fundamental
concepts. Grades six to nine are grouped in level 2. They “begin using computational
thinking as a problem-solving tool” and “begin to appreciate the ubiquity of computing
and the ways in which computer science facilitates communication and collaboration”
(The CSTA Standards Task Force 2011, p. 8). The third level (grades 9 to 12) focuses
on the application of concepts and the creation of real-world solutions.

The second dimension defines content areas that are called strands. In the standards
five strands are mentioned: computational thinking, collaboration, computing practice,
computers and communication devices, and community, global, and ethical impacts.
An overview can be seen in Figure 5.2.

5.3 OO in Nat. and Internat. Standards and Curricula 87

Figure 5.2: Overview on the computer science strands of the CSTA standards (The
CSTA Standards Task Force 2011, p. 10)

There are observable objectives formulated as a competency facet for every strand
and level. The objectives directly related to object orientation are mentioned below.
Thus, the lists contain the objectives for each level according to the definition above.

For the very early students of level 1, there are no objectives that are related to object
orientation.

The students of level 2 will be able to:

• “Analyze the degree to which a computer model accurately represents the real
world.” (p. 16)

• “Understand the notion of hierarchy and abstraction in computing including
high-level languages, translation, instruction set, and logic circuits.” (p. 16)

These objectives are related in an abstract manner. They are associated with computa-
tional thinking in general. However, as abstraction is one of the key concepts of object
orientation (see Section 2.2), it is mentioned in this section assuming a relation to this
concept in both objectives.

The students of level 3 will be able to:

• “Use predefined functions and parameters, classes and methods to divide a
complex problem into simpler parts.” (p. 18)

• “Discuss the value of abstraction to manage problem complexity.” (p. 18)

• “Decompose a problem by defining new functions and classes.” (p. 21)

88 5 Object-Oriented Programming in an Educational Context

• “Use tools of abstraction to decompose a large-scale computational problem
(e.g., procedural abstraction, object-oriented design, functional design).” (p. 21)

In addition to definitions of the standards given by the CSTA (The CSTA Standards
Task Force 2011), a lot of examples are given to illustrate activities for applying the
standards in schools.

Generally, the standards do not scope object orientation in a specific way. Only parts of
computational thinking can be related to some concepts of object orientation. Similar
for the national standards, the only aspect of object orientation is the modeling one.
Object-oriented programming is, again, only a tool that is not mentioned at all. Only in
the activities and the extra courses added to the third level are the programming issues
a topic.

5.3.5 Educational Standards of the German Society for Computer
Science (GI)

The educational standards for computer science in secondary education were pub-
lished in 2008 by the German Society for Computer Science (Gesellschaft für Informatik
(GI) 2008). The standards were developed to ensure up to date and accurate education
of computer science in schools, and to address computer-science teachers, as well
as administrative deciders and teachers’ instructors. Development of the standards is
based on national and international educational standards in other subjects. Addition-
ally, general teaching principles are taken into account. Originally, the standards were
published in German. If not noted, the English translations are taken from (Brinda et al.
2009).

The GI standards are divided into two main parts. The first part covers the concepts,
while the second part includes processes applicable to computer science. The content
section itself is again divided into five sections: information and data, algorithms,
languages and automata, informatics systems, and finally informatics, man and society.
The processes are also divided into five sections: model and implement, reason and
evaluate, structure and interrelate, communicate and cooperate, and represent and
interpret. The sections are related pairwise, as presented in Figure 5.3.

According to the dimensional separation of computer science, the observable learning
objectives are listed for each section; first, some objectives for all levels, followed by
some that are only for levels five to seven and eight to ten.

As this thesis addresses the concepts around object orientation, only the objectives
related to this topic will be presented.

5.3 OO in Nat. and Internat. Standards and Curricula 89

Figure 5.3: Overview of the concepts and process dimensions of the educational stan-
dards for computer science of the GI, (Brinda et al. 2009, p. 289)

In the content dimension there is no objective directly related to object orientation,
which should be observable at all levels. But, in levels five to seven the students

• understand the terms “class”, “object”, “attribute”, and “attribute value” and apply
them10.

• understand the manipulation capabilities for attribute values of objects in age-
appropriate applications and reflect how they support the presentation of infor-
mation10.

• represent the objects of the respective application in a suitable form10.

Again, the process dimension does not contain objectives for all levels. In contrast to
the content dimension, there are objectives for both levels that are presented in the
following two lists. The first list covers the levels five to seven, while the second list
covers levels eight to ten.

The students:

• identify objects in informatics systems and identify attributes and their values10.

• create charts and graphs to illustrate simple associations between real-world
objects10.

The students:

• develop object-oriented models for simple issues and represent them with class
diagrams10.

10Translated by the author from German. The original source is listed in Appendix C

90 5 Object-Oriented Programming in an Educational Context

Besides the formulation of the observable learning objectives, in the last part of the GI
standards a variety of examples for each section are given. Additionally, the intentions
underlying the objectives are explained in a detailed way.

In total, the focus of object orientation in these standards lies on the modeling aspects.
Implementation of these models is excluded in the text. All programming aspects in the
standards are related to algorithm implementation.

5.3.6 Curricula of German Grammar Schools

In addition to the educational documents previously presented, examples of national
secondary school curricula are presented. In Bavarian Gymnasien there is a compul-
sory subject for computer science. Additionally, North Rhine-Westphalia, the state with
the most citizens, is included in the investigation.

5.3.6.1 The Grammar School in North Rhine-Westphalia

The curriculum for secondary education in North Rhine-Westphalia (NRW) is one of
the most current. It is oriented on competencies. In contrast to the Bavarian curriculum
described in the Section 5.3.6.2, computer science in NRW is not a mandatory subject,
but an elective subject in higher secondary education. Basically, the curriculum defines
an overall subject competency that can be divided into two parts. First, there are
competency areas that contain the basic dimensions of the processes in the subject.
Furthermore, there are areas of knowledge that define the basic concepts. These two
facets lead to the competency expectations that are based on observable applications.
The competency and knowledge areas are displayed in Figure 5.4.

The curriculum contains two competency levels. The first level is called the introduction
stage (Einführungsphase). After gained competencies have been developed, the
students enter a new level, the qualification stage (Qualifikationsphase), where the
former competencies should be improved and new ones gathered. The knowledge and
competency areas stay the same.

In the introduction stage only the knowledge area “data and their structure” contains the
basic concepts of object orientation. Similar to all of the other documents investigated,
the modeling aspects are the focus. Nevertheless, implementation of classes in a
non-specified programming language is a competency that students should gather.
Additionally, they should be able to use predefined documented class libraries. The
complete knowledge area is displayed in the following list. The competency areas
are added by an abbreviation in parentheses for argue (A), model (M), implement (I),
represent and interpret (D), and communicate and cooperate (K).

5.3 OO in Nat. and Internat. Standards and Curricula 91

Figure 5.4: Overview of the competency and content areas of the NRW curriculum in
computer science at higher secondary education facilities – Translated by
the author from German. The original source is listed in Appendix C

The students

• identify objects, their properties, their operations and their relationships in the
analysis of simple problems (M),

• model classes with their attributes, methods and associations (M),

• model classes using inheritance (M),

• assign simple data types, object types, or linear data structures to attributes,
parameters, and return values of methods (M),

• assign a visibility to classes, attributes, and methods (M),

• represent the state of an object (D),

• graphically represent the communication between objects (M),

• represent classes, associations and inheritance in diagrams (D),

• document classes by description of the functionality of the methods (D),

• analyze and explain an object-oriented modeling (A),

• implement classes in a programming language including documented class
libraries (I)11.

11Translated by the author from German. The original source is listed in Appendix C

92 5 Object-Oriented Programming in an Educational Context

Within the qualification stage, object orientation is again only represented in the knowl-
edge area “data and their structure”. Similar to the introductory stage, the focus is
on modeling aspects. The following list presents the competencies of the subsection
“objects and classes”. Those that are the same as above should be improved, while the
others should be gathered for the first time.

The students

• identify objects, their properties, their operations and their associations in the
analysis of problems (M),

• graphically represent linear and non-linear structures and explain them (D),

• model classes with their attributes, methods and associations specifying multi-
plicities (M),

• model abstract and non-abstract classes using inheritance by specializing and
generalizing (M),

• assign simple data types, object types, and linear and nonlinear data structures
to attributes, parameters, and return values of methods (M),

• use possibilities of polymorphism in the modeling of appropriate problems (M),

• assign a visibility to classes, attributes, and methods (M),

• represent classes and their associations in diagrams (D),

• document classes (D),

• analyze and explain object-oriented modeling (A),

• implement classes in a programming language including documented class
libraries (I)12.

5.3.6.2 The Bavarian Gymnasium

In 2004 the Bavarian state introduced computer science as a subject for all Gymnasium
students in grades six and seven and for students in grades nine and ten who chose the
science and technology track. The courses in computer science are elective courses
for students in the final grades (cf. Hubwieser 2012).

The courses and the underlying curriculum are based on object-oriented modeling.

“From the point of view of general education it seems that among all
themes of informatics it is object oriented modelling that promises the most
benefit for the students. Thus we chose it as the central theme of our
course.” (Hubwieser 2006, p. 2)

12Translated by the author from German. The original source is listed in Appendix C

5.3 OO in Nat. and Internat. Standards and Curricula 93

This leads to a partitioning of the learning process into three steps. In the first two
grades, the general concepts of object orientation and especially of the modeling
aspects are introduced. Therefore, the students model standard software documents in
an object-oriented manner. In the middle two grades, students concentrate on modeling
the real world by using database systems and others. Finally, the students should
apply object-oriented programming to simulate their models. The final two grades are
for specialization as they are only elective and address students with great interest
in computer science. The implementation of this methodology can be seen in the
corresponding textbooks; for example, Frey et al. 2004; Hubwieser 2007c, 2008a, 2009,
2010.

According to the ideas of Hubwieser (2012), a curriculum for the subject was conducted.
Now, the topics and observable learning objectives mentioned in this curriculum, which
can be found at the Bavarian state institute for school quality and educational research
in Munich13, will be presented.

In Table 5.2, parts of the curriculum (Bayerisches Staatsministerium für Unterricht und
Kultus 2004) that are related to object orientation are presented. For a better orientation
in the original text, the section number for each item is mentioned in the first column.

The topics of the curriculum cover the basic concepts of object orientation, as pointed
out in Section 2.2. Besides conceptual knowledge, application of the concepts to
examples from the context of the students is the main focus of the curriculum. At the
end of grades nine to eleven the students apply their knowledge on a bigger project,
mostly in teamwork.

Mühling et al. (2010) conducted an investigation on the application of the curriculum.
Additionally, the main ideas and examples for the topics, especially those related to
object-oriented programming, is described by Hubwieser (2006, 2007a).

Section Text passage

NT 6.2.2 Considerations about the structure of graphs lead to the object-oriented
perspective. The students recognize that each of the graphics objects has
certain properties and is associated with a class of similar objects.
• Objects of a vector graphic: attribute, attribute value, and method

• Description of similar objects by class: line, rectangle, ellipse, text
box

Table 5.2: Text passages related to object-oriented concepts in the curriculum of the
Bavarian Gymnasium (Translated by the author from German. The original
source is listed in Appendix C) - continued on next page

13http://www.isb.bayern.de - last access 10.12.2014

94 5 Object-Oriented Programming in an Educational Context

Section Text passage

NT 6.2.3 The understanding of these concepts is deepened in practical work with
word processing software; it is shown that individual objects can be as-
sociated with each other. The students recognize that many everyday
connections can also be described by relations between objects, so these
terms have a more general meaning.

• Improve the representation of information by changing the appropri-
ate attribute values

• The contains-association between objects; design of object and
class diagrams

NT 6.2.4 Various animations, such as presentation software provides for the design,
help students to understand the principle of the method.

NT 6.2.5 They realize that hierarchical orders are enabled by the contains-
association between objects of the same class.

• Advanced application of the contains-association: folder containing
folders

NT 7.2.1 The students will learn that content relationships between documents may
lead to networked structures, for which a hierarchical representation is not
enough.

• The association ‘refers to’ between objects

Inf 9.2 They realize that the structure of classes and their associations can be
represented very clearly in class diagrams. To take advantage of the model
and check its usefulness, they implement it with a relational database
system.

• Object (entity), class, attribute and value range

• Associations between classes, cardinality, graphical representation

• Implementation of objects, classes, and associations in a relational
database system: data set, table, range of values, concept of keys

Table 5.2: (contd.) Text passages related to object-oriented concepts in the curriculum
of the Bavarian Gymnasium (Translated by the author from German. The
original source is listed in Appendix C) - continued on next page

5.3 OO in Nat. and Internat. Standards and Curricula 95

Section Text passage

Inf 10.1.1 By using a suitable development environment for object-oriented modeling
the students repeat and clarify the known terms and notations of the
object-oriented perspective with simple examples. This will clarify that
objects essentially represent a unit of attributes and methods.

• Object as a combination of attributes and methods

• Graphical representation of classes and objects, description of static
associations through object or class diagrams

Inf 10.1.2 The students learn to describe the changes of objects using states and
transitions, as well as to document with state diagrams. By implementing
these state models in object-oriented programs, they set the states by
values of attributes (variables) and assign method calls to the transitions.

• State of objects: Determination by states of attributes, state transi-
tion by value assignment

• Life cycle of objects from the instantiation to initialization to release

Inf 10.1.3 The students recognize that essential processes of a system are based on
communication between its objects. For the full description, the dynamic
associations between objects or classes have to be learned in addition to
the already learned static ones. For this purpose, the young people get
to know appropriate graphical notations and develop possibilities for the
implementation of these associations in a programming language.

• Communication between objects by calling methods; Interaction
diagrams; Data encapsulation

• Implementation of the contains-association, references to objects

Inf 10.2 Young people use hierarchical structures to order their realm of experience.
They realize that these often can be represented through a special kind
of association between the classes of a model. The students learn the
concept of inheritance and apply it. In particular, they deal with the
possibility of increasing specialization by changing inherited methods.

• Generalization and specialization by super- or subclasses, repre-
sentation in class diagrams, inheritance

• Polymorphism and overriding methods

Table 5.2: (contd.) Text passages related to object-oriented concepts in the curriculum
of the Bavarian Gymnasium (Translated by the author from German. The
original source is listed in Appendix C) - continued on next page

96 5 Object-Oriented Programming in an Educational Context

Section Text passage

Inf 11.1.1 A first implementation with an array quickly shows the limits of this static
solution and leads the youth to a dynamic data structure such as the simply
linked list. They learn its principle functionality, as well as the recursive
structure and apply the concept of reference on objects. The youth realize
that the recursive structure of the list suggests a recursive algorithm for
many of its methods. They understand that a universal applicability of
the class list is only possible if attention is paid on a clear separation of
structure and data.

• Implementation of a simply linked list using references by a suitable
software pattern (composite); Implementation of the methods to
add, find, and delete

Table 5.2: (contd.) Text passages related to object-oriented concepts in the curriculum
of the Bavarian Gymnasium (Translated by the author from German. The
original source is listed in Appendix C)

5.4 Summary 97

5.4 Summary

The last sections have shown the application of object-oriented notions in an educational
context. Examination of the items on object orientation in national and international
standards has shown that the programming aspect is of minor interest. The majority of
the items cover the modeling aspects of object orientation.

National and international curricula are developed based on the standards for computer
science. Again, the representation of object-oriented programming is investigated.
The extensive curriculum of the ACM/IEEE joint task force includes object-oriented
programming, as well as modeling. The national curricula of the Bavarian and North-
Rhine Westphalian grammar schools are examples for concrete curricula in secondary
education. Again, the modeling aspects are in the foreground, especially in the first
grades. Nevertheless, the implementation aspects are introduced. All these analyses
emphasize the modeling aspects. Object-oriented programming is only seen as a tool
for implementing the corresponding models (see Section 5.3).

According to the curricula and standards, the competency models that are introduced
first in computer science also have an emphasis in object-oriented modeling (see
Section 5.2). In summary, common curricula, standards, and competency models
cover the modeling aspects of object orientation in most cases. In contrast, object-
oriented programming is only mentioned as a side effect or as a tool for implementing
object-oriented models. The basic concepts of object orientation mentioned in Section
2.2 are covered in almost all investigated documents. This provides the answer to RQ1,
which facets and concepts of object orientation and/or object-oriented programming
are covered by common curricula, standards, and competency models.

RQ2 inquires how object orientation or object-oriented programming is taught, and what
teaching approaches are applied or proposed. The different educational approaches
for introducing object orientation focus mainly on the programming aspects. First,
there are the educational “paradigms” for the introductory courses. Mainly, there
are two different types. The first type, “objects-first” and its derivations, handle object
orientation as something different from the former programming paradigm and, because
of that, introduce it independently at the very beginning of the course. The notions
of object, attributes, and methods are the most important concepts. In the meantime,
this approach is seen as state of the art in computer science education. On the other
hand, there is the “classical” procedural or “objects-later” approach that regards object
orientation as an extension of the procedural paradigm and, because of that, starts
with the common imperative procedural notions (see Section 5.1.1).

The last and most controversial aspect of object orientation in an education context is
the question of which language is the most suitable. The literature review conducted
in Section 5.1.2 shows that there is a large amount of different languages available
for an introductory course. The most suitable choice depends on the purpose the
language has to fulfill. The setting of the course and its participants also have a strong
influence. All kinds of languages including “industrial” languages, educational subsets,
or languages especially designed for education have advantages and disadvantages.
Which of them is the most appropriate for a given course cannot be generalized.

98 5 Object-Oriented Programming in an Educational Context

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Minimally Invasive
Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

Th
eo

ry
R

es
ea

rc
h

Q
ue

st
io

ns

6 Visualizing the Basic Concepts of
Object-Oriented Programming

In this chapter, a graphical representation of the associations between concepts is
introduced. These concept specification maps show the concepts related to a topic, on
the one hand, and their relations among each other, on the other hand (RQ3).

Additionally, an application of these maps is shown. Therefore, an analysis of the
textbooks from the introductory courses at several universities is presented (RQ4). The
method of information visualization and the results of the analysis are also shown in
(Berges and Hubwieser 2012, 2013).

6.1 Related Work

A broad study on textbooks was conducted by Raadt et al. (2005) who investigated the
content of textbooks that are used in universities in Australia and New Zealand. They
first conducted a pilot study to figure out which text features are important.

“The content of each text was divided into chapter content, language
reference, glossary, bibliography and index. The size of these elements
was measured in complete pages. Within each chapter, the proportion
occupied by exercises and examples can be separated from other chap-
ter content. For the purposes of comparison, an example is seen as a
complete, continuous item of source code. Exercises contained within a
chapter and at the end of a chapter were measured together. Exercises
range from reflective questions, which may consist of a single line of text,
through to projects which may occupy several pages.”(Raadt et al. 2005)

Furthermore, they investigated correspondence of the textbooks to the ACM/IEEE
curriculum 2003.

Quite a new study conducted by Börstler et al. in 2009 focused on examples in
textbooks. They examined a list of 13 textbooks that are commonly used in introductory
courses. Besides investigating the examples, Börstler et al. (2009) built categories for
the books by classifying them into “object-oriented” or “traditional” approaches.

Pedroni (2009) investigated the so called “Trucs” which were introduced by Meyer
(2006). The Testable, Reusable Units of Cognition (Trucs) were defined for “teaching a
class on the topic, writing a textbook or course notes, defining a standard curriculum,
preparing exam questions, assessing job candidates’ claims that they master the topic,

100 6 Visualizing the Basic Concepts of Object-Oriented Programming

and in general to compare and consolidate educators’ understanding of the area”(Meyer
2006). The application of “Trucs” for teaching a class on a specific topic is the content
of the thesis of Pedroni. She developed a graph for the dependencies between the
“Trucs” and the parts of them, the “notions”. On the one hand, these graphs are “a
resource for students with programming experience, which supports them in relating
preexisting knowledge to the course contents” (Pedroni 2009, pp. 60).

In addition to helping students, the dependencies between Trucs and notions support
teachers “in designing their course by helping check prerequisite violations, identify
missing topics,and adapt the teaching to common misconceptions of [the] novice
programmer” (Pedroni 2009, p. 61).

Similar to the “Trucs” Steinert (2010) investigated learning objectives in computer
science. He conducted an analysis of several educational sources like curricula or
assessment tasks. For that reason he introduces a graphical representation of the
included learning objectives. The learning objectives are separated into a cognitive
and a knowledge dimension according to the taxonomy of Anderson and Krathwohl
(2009). Furthermore, interdependencies between the learning objectives are illustrated.
Learning objectives can be connected with a strong primacy relation, which expresses
one objective to be prerequisite for the corresponding. Additionally, there are weak
primacy relations, which express a didactical precedence (cf. Steinert 2010, p. 40).

6.2 Concept Specification Maps

A methodology to extract concepts and their interdependencies among each other
from a certain text is presented here. For the purpose of obtaining an overview of
the concepts related to object orientation, object-oriented programming, and object-
oriented design, a graphical representation of the concepts and their interdependencies
is introduced. These maps can be applied with any topic and their concepts and
interdependencies extracted from any kind of literature, even course materials. A
similar approach is presented in Section 6.1. However, the introduced methodology of
the “Trucs and notions”-graph of Pedroni et al. (2008) is based on a normative basis of
concepts that are related to each other by experts.

The first idea is to clarify the structure of definitions, as in educational literature there
are only vague specifications rather than exact definitions of the kind: “One concept
consists of or contains other concepts”. The final version of the map is based on both
kinds, the exact definitions and the vague specifications. Later in this chapter only
“specifications,” meaning exact definitions of the kind above, and softer specifications
that are distributed though the text are spoken of.

In the map all definitions or specifications of a concept are symbolized by circles that
are connected by a bold line to the specified concept, and by outgoing arrows to the
specifying concepts. For better readability the items are enumerated. This allows for
the referencing of nodes in the text. Furthermore, in most cases the items consist of
more than a few words. The “connection-structure” expressed by the circle would have
to be much bigger and the complete map would grow to an unreadable format.

6.2 Concept Specification Maps 101

A sample is shown in the following sentence and in Figure 6.1. It was extracted from a
textbook during the analysis described below and was selected due to the fact that it is
quite simple in its structure.

(12) “A class is a collection of fields that hold values and methods that
operate on those values.” (Flanagan 2005)

The concepts field and method are specifying the concept class. The number (12) in
the circle in Figure 6.1 corresponds to the one in parenthesis in the specification above.

Figure 6.1: Example of a specification node (12) with one specified concept (class) and
two specifying concepts (field and method)

In Section 2.2, the “quarks” of object orientation that were identified by Armstrong
(2006) built the skeleton of concepts related to object orientation. As mentioned,
she found eight concepts, which she defined as the “quarks” of object orientation:
inheritance, object, class, encapsulation, method, message passing, polymorphism,
and abstraction. For all these concepts there is a short section where several definitions
are shown. Each of these sections ends with a combined definition of the given concept.
The text analysis of the “quarks” definitions (cf. Armstrong 2006) is shown in the list
below as a sample for the process of building the map. The specified concept is in bold
letters and the specifying concepts are in italic typeset. The numbers that identify the
specification later in the graphical representation are added in parentheses at the end
of each specification. As the specifications are embedded in the text, a beginning is
added for each sentence and indicated in square brackets. For reasons of formatting
and clarifying the elements, no citations for the statements are used, although they are
cited from Armstrong (2006).

102 6 Visualizing the Basic Concepts of Object-Oriented Programming

[Inheritance is] a mechanism that allows the data and behavior of one class to
be included in or used as the basis for another class. (1)

[An object is] an individual, identifiable item, either real or abstract, which
contains data about itself and descriptions of its manipulations of the data. (2)

[A class is] a description of the organization and actions shared by one or more
similar objects. (3)

[Encapsulation is] a technique for designing classes and objects that restricts
access to the data and behavior by defining a limited set of messages that an
object of that class can receive. (4)

[A method is] a way to access, set or manipulate an object ’s information. (5)

[Message passing is] the process by which an object sends data to another
object or asks the other object to invoke a method . (6)

[Polymorphism is defined as] the ability of different classes to respond to the
same message and each implement the method appropriately. (7)

[Abstraction is] the act of creating classes to simplify aspects of reality using
distinctions inherent to the problem. (8)

These definitions were used to build a sample map, which is shown in Figure 6.2.

The maps are structured in a hierarchical manner starting with the concept inheritance.
For the design of the maps, the yEd-editor14 was used. It has the ability to structure the
graph with a breadth-first search, starting with the first concept such as object-oriented
programming and design or as in the example with inheritance.

As the maps illustrate concepts and their specifications and relation to each other in a
text, they are called concept specification maps (CSM).

14http://www.yworks.com - last access 10.12.2014

6.2 Concept Specification Maps 103

F
ig

ur
e

6.
2:

S
am

pl
e

co
nc

ep
ts

pe
ci

fic
at

io
n

m
ap

of
th

e
“q

ua
rk

s”
de

fin
iti

on
s

by
A

rm
st

ro
ng

(2
00

6)
–

ar
ro

w
s:

“s
pe

ci
fy

in
g”

-
bo

ld
lin

e:
“s

pe
ci

fie
d”

104 6 Visualizing the Basic Concepts of Object-Oriented Programming

6.3 Concept Specification Maps of Textbooks

The ideas presented above led to the graphical representation of the concepts included
in textbooks. In contrast to the textbook analysis presented in Section 6.1, the maps
should be as simple as possible. Because of that the presented investigation con-
centrates on the text and did not include any information on the didactic that could
be included in the text. Due to the topic of this thesis, the investigation focuses on
concepts related to object-oriented programming and design in computer science ed-
ucation although, of course, the methodology is applicable to any topic in computer
science and beyond.

The first step for creating the maps is the extraction of text passages from the selected
literature. Therefore, a simple algorithm is applied for the detection of given concepts.
First, the given text is divided into sentences by splitting the text at each full stop. In an
automatic step all those sentences with a given word are extracted. Additionally, two
sentences in front of and behind it are added to one text passage. The given concept
is highlighted with a bold typeset.

In a second step that has to be done manually, all the text passages are rated. They
are either “relevant” (1) or “irrelevant” (0) for the further analysis. A text passage is
rated as 1 if the given concept is specified in a closer way within it. That means there
is either a concrete definition of the given concept or there is a description or further
explanation of the concept. For example, all parts that are necessary for a concept are
described.

Table 6.1 shows a few examples of rated text passages. The rating is added to each
item in the second column. The specified concept is written in capital letters and
according to the automatic step in bold typeset. The specifying concepts are in italic
typeset and the main sentence is in typewriter typeset. In the conducted textbook
analysis, the concepts are extracted into separate columns, but here are included and
emphasized by a different typeset due to readability reasons.

6.3 Concept Specification Maps of Textbooks 105

Text passage Rating

These difficulties become even greater when we allow the possibility of
concurrent execution of programs. The stream approach can be most
fully exploited when we decouple simulated time in our model from the
order of the events that take place in the computer during evaluation. We
will accomplish this using a technique known as delayed evaluation. We
ordinarily view the world as populated by independent
OBJECTS, each of which has a state that changes over
time. An object is said to “have state” if its behavior is influenced by its
history. A bank account, for example, has state in that the answer to the
question “Can I withdraw $ 100 ?” depends upon the history of deposit and
withdrawal transactions. (Abelson et al. 1996)

1

Java programs are written by combining new methods and classes that you
write with predefined methods and classes available in the Java Applica-
tion Programming Interface (also referred to as the Java API or Java class
library) and in various other class libraries. Related classes are typically
grouped into packages so that they can be imported into programs and
reused. You ’ll learn how to group your own CLASSES into
packages in Chapter 8. The Java API provides a rich collection of
predefined classes that contain methods for performing common mathemat-
ical calculations, string manipulations, character manipulations, input/out-
put operations, database operations, networking operations, file process-
ing, error checking and many other useful operations. Familiarize yourself
with the rich collection of classes and methods provided by the Java API
(java.sun.com/javase/6/docs/api/). (Deitel and Deitel 2012)

0

These problems will likely be solved because the potential value of increased
software reuse is enormous. Classes normally hide the details of their imple-
mentation from their clients. This is called INFORMATION HIDING.
As an example, let us consider the stack data structure introduced in Section
6.6. Recall that a stack is a last-in , first-out (LIFO) data structure – the last
item pushed (inserted) on the stack is the first item popped (removed) from
the stack. (Deitel and Deitel 2012)

1

Table 6.1: Sample text passages with the rating (specifying text passage: 1 - otherwise:
0) and corresponding concepts marked by a different typeset (specified
concept: bold - specifying concepts: italic)

106 6 Visualizing the Basic Concepts of Object-Oriented Programming

For selecting the concepts there are two different options. First, if the concepts are
known before the start of the analysis, all relevant concepts can be analyzed at once.
The nodes of the concept specification maps are then known before and the analysis
concentrates on the edges in the map. A variation of this method is to include concepts
that are connected to the given concepts, but are not analyzed in the investigation.
This variation has been conduced on the “quarks” in the sample at the beginning of
this chapter.

The second methodology is an iterative procedure. The analysis starts with an initial
concept such as object orientation or inheritance. In the first step only the text passages
related to this concept are analyzed. During the investigation the list of specifying
concepts lead to the new items to be analyzed. The procedure ends either when there is
a kind of saturation or if an a-priori defined level is reached. For example, the concepts
are limited to a specific programming paradigm such as object-oriented programming.
The procedure would finish with the concepts that are necessary for object-oriented
programming, but are related to the procedural paradigm. Which method is chosen
depends on the goals of the investigations. This methodology has the advantage that
the concepts included in the map are all related to the initial concept. Nevertheless,
there is also a serious disadvantage as concepts related to the topic in general, but
not directly connected to the initial concept, are not found and are, therefore, excluded
from the analysis.

After analyzing all text passages, a list of the relevant elements (those that contain
either a specifying or a specified concept) and the corresponding concepts are created.
Additionally, all items are ordered by the specified concept and enumerated. In the last
step of data gathering, all specifications with the same concept list are combined to
one item. For this purpose the reduced text passages are concatenated and the items
in the table are renumbered.

Then, in a final step, the concept specification map is created on the basis of the
gathered list. Each item in the final table becomes a “specification node” and the
concepts are added as “concept nodes”. The edges are drawn based on the type of
concepts they connect to the specification.

6.4 Object Orientation in Textbooks of Introductory
Courses

Due to the fact that in recent years nearly every introductory course addresses object
orientation, textbooks regarding the concepts of object orientation and object-oriented
programming that are recommended in those introductory courses are analyzed. To get
a normative base for the comparison, courses are selected that provide a first contact
to object-oriented programming for their participants. Every course recommends a list
of textbooks to help the students get into the field of programming. As Armstrong stated
in her paper on the “quarks” of object orientation, one “reason that learning OO is so
difficult may be that we do not yet thoroughly understand the fundamental concepts
that define the OO approach”(Armstrong 2006, p. 123).

6.4 Object Orientation in Textbooks of Introductory Courses 107

Besides the differences in teaching methodologies and the different aspects of object
orientation in computer science education (see Section 5.1), textbooks “are an important
component of teaching introductory programming. They are a major source of example
programs and also work as a reference for how to solve specific problems” (Börstler
et al. 2009, p. 127).

For extracting concepts from textbooks, a representative list of books that are recom-
mended and used in introductory courses has to be built. To avoid arbitrariness in
the selection of the introductory courses, first the universities are selected on a nor-
mative base. In the first attempt the search focused on the nine technical universities
of Germany, namely RWTH Aachen, TU Berlin, TU Braunschweig, TU Darmstadt,
TU Dresden, Universität Hannover, Universität Karlsruhe, TU München and the TU
Stuttgart. For the selection of the textbooks, the introductory courses on object-oriented
programming, which provide the first contact to the object-oriented paradigm, are
analyzed. All textbooks that are recommended by the course leaders are listed in Table
6.2. The number in the last column is the total number of recommendations within the
courses. The list contains German books, as well as English books.

To be able to compare the results with international universities, the German books are
excluded and a list is formed with those that are either written in English or have at least
an English translation. The list concludes with only three books that are recommended
in at least two universities.

Due to this small sample size, the list of universities were expanded and, therefore,
more introductory courses are included in the investigation. For that reason, the QS
World University Ranking 201115 was taken as a basis for the university list. The
“top-ten” of the ranking for Engineering and Technology faculties were added. The final
list of all 19 universities is shown in Table 6.3. They are in alphabetical order.

Following the analysis of all the introductory courses of the resulting 19 universities,
the result is a list of 19 textbooks, which are shown in Table 6.4. The first five books,
highlighted in a gray color, are recommended by more than one introductory course
and are, therefore, used in the investigation.

For the analysis of the textbooks, the methodology chosen is incremental and finishes
at a previously defined level for creating the concept specification maps. For every
book, the three concepts of object orientation, object-oriented programming, and object-
oriented design are combined to one common starting point in each map. From this
initial concept, all concepts are investigated that belong to the object-oriented paradigm.
The decision whether a concept belongs to the paradigm or not is made on the basis
of the theoretical background described in Section 2.2. With the results of the analysis
partly presented in (Berges and Hubwieser 2013), an example of interpreting the
constructed concept specification maps (CSM) is given. The complete maps can be
seen in Appendix A. There are different kinds of results. First, there are results based
on the pure analysis of the textbooks, statistical values, as well as an analysis of the
structure of the produced concept specification maps. A further set of results is based
on the comparison of the textbook analysis with the analysis of the “quarks” that was
conducted as an example when introducing the maps in general.

15http://www.topuniversities.com - last access 10.12.2014

108 6 Visualizing the Basic Concepts of Object-Oriented Programming

Author Title #

Eckel, B. Thinking in Java 3
Abelson, H. and Sussman,
G.J.

Structure and Interpretation of Computer
Programs

2

Sedgewick, R. and Wanye, K. Introduction to programming in Java 2
Ullenboom, Ch. Java ist auch eine Insel 2
Krüger, G. Javabuch 2
Schiedermeier, R. Programmieren in Java 2
Deitel, H. and Deitel, P. How to program Java 1
Flanagan, D. Java in a Nutshell 1
Bishop, J. Java gently 1
Bloch, J. Effective Java 1
Felleisen, M. How to Design Programs 1
Sebesta, R.W. Concepts of Programming Languages 1
Mitchell, J.C. Concepts in Programming Languages 1
Broy, M. Informatik1. Programmierung und

Rechnerstrukturen
1

Gumm, H.P. and Sommer, M. Einführung in die Informatik 1
Pepper, P. Programmieren Lernen 1
Ratz, D. and Scheffler, J. Grundkurs Programmieren in Java 1

Echtle, K. and Goedicke, M. Lehrbuch der Programmierung mit Java 1
Mössenböck, H. Sprechen Sie Java? 1
Küchlin, W. and Weber, A. Einführung in die Informatik 1
Doberkat, E.-E. and Dißmann,
S.

Einführung in die objektorientierte
Programmierung mit Java

1

Table 6.2: Textbooks recommended in introductory courses at the German technical
universities

6.4 Object Orientation in Textbooks of Introductory Courses 109

Name Country

RWTH Aachen (RWTH) GER
University of California, Berkeley (UCB) USA
TU Berlin (TUB) GER
TU Braunschweig (TUBS) GER
Massachusetts Institute of Technology (MIT) USA
University of Cambridge (CAM) UK
TU Darmstadt (TUD) GER
TU Dresden (TUDR) GER
Leibniz Universität Hannover (LUH) GER
Karlsruhe Institute of Technology (KIT) GER
Imperial College London (ICL) UK
TU München (TUM) GER
California Institute of Technology (Caltech) USA
Tsinghua University (TU) CN
National University of Singapore (NUS) SG
Stanford University (STAN) USA
Universität Stuttgart (UST) GER
The University of Tokyo (UT) JP
ETH Zurich (ETH) CH

Table 6.3: Selected universities as the base for the textbook analysis

110 6 Visualizing the Basic Concepts of Object-Oriented Programming

Author Title #

Eckel, B. Thinking in Java (Eckel 2006) 4
Abelson, H. and Sussman,
G.J.

Structure and Interpretation of Computer
Programs (Abelson et al. 1996)

2

Sedgewick, R. and Wayne K. Introduction to programming in Java
(Sedgewick and Wayne 2008)

2

Deitel, H. and Deitel, P. How to Program Java (Deitel and Deitel
2012)

2

Flanagan, D. Java in a Nutshell (Flanagan 2005) 2
Bishop, J. Java gently 1
Bloch, J. Effective Java 1
Felleisen How to design Programs 1
Sebesta, R. W. Concepts of Programming Languages 1
Mitchell, J. C. Concepts in Programming Languages 1
Roberts, E. The Art and Science of Java 1
Stroustrup, B. The Design and Evolution of C++ 1
Meyers, S. Effective C++ 1
Meyers, S. Effective STL 1
Meyers, S. More Effective C++ 1
Gamma, E., Helm,R. ,
Johnson, R. & Vlissides, A.

Design patterns: elements of reusable
object-oriented software

1

Bloch, J. & Gafter, N. Java puzzlers 1
Barnard, D.T; Holt, R.C. and
Hume J.N.P.

Data structures: an object-oriented approach 1

Meyer, B. Touch of class 1

Table 6.4: Final list of textbooks that are used by or recommended to the students in
the investigated introductory programming courses

6.4 Object Orientation in Textbooks of Introductory Courses 111

6.4.1 Structures in Introductory Textbooks

As mentioned above, text passages are extracted from the books and rated with 1 if
they contain a specification of a particular concept. The first concept investigated in
each book is “object-oriented programming” combined with “object-oriented design”.
Overall, 36460 text passages were examined. The ratio of 1-rated elements to all
passages is 0.4% to 0.7%. A statistical overview of all five books can be seen in Table
6.5.

Book # text
passages

1-rated
elements

1-rated
frequency

Abelson et al. (1996) 839 4 0.5%
Deitel and Deitel (2012) 18726 69 0.4%
Eckel (2006) 9222 35 0.4%
Flanagan (2005) 5729 37 0.6%
Sedgewick and Wayne (2008) 1944 13 0.7%

Table 6.5: Statistical overview (number of text passages, number of 1-rated elements,
frequency of 1-rated items) on all five books

The second column displays the absolute number of text passages investigated for a
book. This number depends on the structure of the book related to the concepts of ob-
ject orientation. As the incremental methodology for creating the concept specification
map is chosen, the number of investigated text passages is related to the number of
concepts that are used to specify object orientation. It is possible that some concepts
are not involved in the investigation due to the fact that they are not directly related to
object orientation.

The third column displays the absolute number of 1-rated elements, while the relative
numbers are in the last column. They are independent from the detailedness of the
concepts around object orientation, but are a measure of the amount of examples,
language-related text passages, or how compact the specifications are.

As can be seen in Table 6.5, the ratio of 1-rated text passages is almost the same for all
books. Despite that, the number of text passages differs a lot. This may result from the
fact that this analysis was started with the concept object-oriented programming and
design. If a book specifies a lot of concepts that are related to object orientation, a lot
more text passages have to be analyzed. Therefore, the total number of text passages
can be a first indicator of how much object orientation is in a book. This is seen in the
books that were investigated. The book by Abelson et al. (1996) is known to be a book
that is addicted to the imperative procedural paradigm, whereas the book of Deitel and
Deitel (2012) is related to the object-oriented paradigm (cf. Börstler et al. 2009).

Besides the simple statistics on the amount of investigated text passages, the concept
specification maps give an overview on the structure of the books related to a given
topic. In this case, the structure of object orientation is outlined. Table 6.6 displays

112 6 Visualizing the Basic Concepts of Object-Oriented Programming

which concepts are referred to in order to specify the term “object-oriented programming
and design”. Therefore, the nodes that are connected directly to the node with this
concept had to be analyzed. In Table 6.6 the first column contains the author by which
the book is identified and the second column shows all of the relevant concepts.

Book Concepts

Abelson et al. (1996) class, inheritance, state
Deitel and Deitel (2012) class, composition, encapsulation, inheritance, ob-

ject, polymorphism, visibility
Eckel (2006) class, composition, data abstraction, inheritance,

message, object, polymorphism, reference
Flanagan (2005) class, encapsulation, field, information hiding, in-

heritance, method, object

Sedgewick and Wayne (2008) object, reference

Table 6.6: Concepts defining “object-oriented programming and design” directly

As a specification in the sense of the concept specification maps does not mean that
there is one explicit definition with all the given concepts in it, the nodes that are directly
connected to a node are of special interest. Most of the specifications examined in
this investigation were collected from all through the textbook. This means that there
is more than one chapter or section in the textbook that addresses the given topic.
If we assume that students learn the concepts of object-oriented programming and
design with the selected textbook, the directly connected concepts also have to be well
understood.

In selecting a book for an introductory course to object orientation, the concepts
related to object orientation are important. The different educational methodologies for
introducing object orientation need several concepts in a different order for teaching
(see Section 5.1.1). The dependencies resulting from the chosen methodology and
selected concepts can be found in the concept specification map of the recommended
literature. One indicator, especially for the number of concepts, is the total amount of
relevant text passages. Another indicator is the number of concepts in direct connection
to object-oriented programming and design.

Apart from this, Table 6.6 shows that the first four books appeal to almost the same
concepts. Particularly, class and inheritance are connected in all these books to object-
oriented programming and design. The first three books in Table 6.6 also have object
in common. These three concepts are the first three “quarks” defined by Armstrong
(2006). These concepts can, therefore, be seen as the most important concepts in
object-oriented programming.

Another important indicator of a suitable textbook for an introductory course is the
way object orientation is defined or specified; for example, with the concepts class or
object. This implies different didactical methodologies for introducing object-oriented
programming, which are shown in Section 5.1.1.

6.4 Object Orientation in Textbooks of Introductory Courses 113

To compare textbooks with the situation in the course concerning the content, it is
not only of interest how the main topic is introduced in the textbook but also which
concepts related to this topic are the main ones. So, in addition to the concepts
that specify object-oriented programming directly, the concepts that have the most
specifying concepts and those which specify the most concepts are also examined in
this investigation. These concepts ought to be the central concepts in relation to the
given topic.

The investigation of the five textbooks leads to a characterization of the books con-
cerning object orientation. According to Deitel and Deitel (2012) and Sedgewick and
Wayne (2008), class is the concept that is specified the most, whereas Eckel (2006)
emphasizes object, Flanagan (2005) method, and Abelson et al. (1996) state. These
results reflect the pure statistics on the text passages introduced above. The first three
books are oriented on objects, the book by Flanagan (2005) is mainly a reference that
has its focus on methods, and the last book is related to the imperative procedural
paradigm.

The other interesting group of concepts that are in the main focus of a book in relation
to a topic contains those that specify many other concepts. In the example of the five
books that were investigated, these concepts and the number of related concepts can
be found in the following list. For each book the specific concept and the number of
connections to other concepts are on one line.

Eckel (2006): object - 9 edges
Deitel and Deitel (2012): object - 15 edges
Flanagan (2005): method - 6 edges
Abelson et al. (1996): state and variable - 2 edges
Sedgewick and Wayne (2008): method - 4 edges

The last investigation of textbook structure and the corresponding content structure
that was conducted on the five example textbooks addresses the related concepts to
a specific topic. In contrast to the last investigations where the edges are the focus,
the nodes and concepts related to “object orientation” are counted. Table 6.7 presents
an overview of these results. In the second column there are the number of nodes
and in the third column the number of specified concepts with the number of specified
“quarks” in parentheses. The concepts object-oriented programming and design are
not counted. An analysis related to the “quarks” is the content of the next subsection.

Book # Nodes # Concepts

Deitel and Deitel (2012) 41 18 (7)
Eckel (2006) 35 17 (5)
Flanagan (2005) 28 17 (5)
Sedgewick and Wayne (2008) 14 11 (3)
Abelson et al. (1996) 4 6 (1)

Table 6.7: Number of nodes (specifications) and concepts in each book

114 6 Visualizing the Basic Concepts of Object-Oriented Programming

Again, the ranking of the books is based on the absolute number of nodes and concepts
and reflects the results of the investigations that are described above. The equality in
the number of concepts of the first three books (Eckel 2006; Deitel and Deitel 2012;
Flanagan 2005) is striking. They all consist of 17 or 18 concepts. The intersection of
the lists of concepts leads to nine concepts: object-oriented programming and design,
method, object, class, encapsulation, inheritance, argument, parameter, and variable.
The last three concepts expand the list of the “quarks”. Except for the first, the others
cover the concepts defined by Armstrong (2006). It can, therefore, be concluded that
these books have in common a kind of a core of object-oriented programming and
design. The exact representation of these core concepts is the content of the next
subsection.

6.4.2 Representation of the “Quarks” in the Textbooks

In addition to the pure structure analysis that was conducted in the section above, how
the textbooks correspond to a topic such as object orientation is investigated. For
the purpose of rating textbooks with regard to their usability in a specific context, a
comparison of the content of textbooks to a given set of concepts is important. In the
example of the five selected and investigated textbooks, this is done on the basis of
the core concepts of object orientation. As considered above, the investigation by
Armstrong (2006) resulted in a list of definitions of object orientation. These “quarks”
are seen here as the core concepts of object orientation, since they are conducted
from a broad literature analysis. A concept specification map on the specifications
given by Armstrong (2006) is created by constructing a sample map in Section 6.3 with
the non-iterative methodology. All of the integrated concepts are connected to object
orientation by design. Nevertheless, the explicit node “object-oriented programming
and design” is not included in the map. This map and the maps of the textbook analysis
are the basis for the following investigation. To be able to compare the maps with each
other, some modifications in the naming of the nodes have to be applied. Therefore, the
concepts of message and message passing as well as data abstraction and abstraction
are considered to be the same. The short forms are only abbreviations of the longer
node names. By applying the modifications, the node identifiers of the intersection of
the nodes of both kinds of maps are the same.

For the concept specification map of the “quarks” (see Figure 6.2) the specifications of
the object-oriented concepts presented by Armstrong (2006) are taken. For matching
the “quarks” and the concepts from the textbooks, only the concept nodes are matched.
The specifications and, therefore, the corresponding nodes are not considered in the
process. The original figure of the “quarks” map is shown in dark-gray and builds the
basis for the matching maps. If a concept is specified in a textbook and is related to
object orientation directly or by other concepts, it is highlighted in blue. The restriction
that it is connected with object orientation in one or another way results from the
textbook analysis, as only concepts that are in relation to object orientation are included
in the analysis. The edges that are contained in the textbook maps, are colored in
black. If there is an exact match of a node it is colored green, otherwise it is colored red
if there are edges that could not be matched, or colored gray if there is no matching.

6.4 Object Orientation in Textbooks of Introductory Courses 115

A node is matching in an exact way if all the edges can be matched and there are no
edges without a match connected to the node. The resulting concept specification
maps are shown in Figures 6.3 to 6.7.

The book by Eckel (2006) covers all concepts except polymorphism, encapsulation,
and data abstraction (Figure 6.5). The textbook by Flanagan (2005) lacks the concepts
of message passing, polymorphism, and abstraction. The other “quarks” are covered
in Figure 6.6. In the book by Deitel and Deitel (2012), only the concept abstraction is
missing (Figure 6.4). Sedgewick and Wayne (2008) and Abelson et al. (1996) both
cover the concept object (Figure 6.7 and Figure 6.3). Furthermore, Sedgewick and
Wayne (2008) cover the concepts method and class. Only the two books by Eckel
(2006) and Flanagan (2005) need the concept data for specification of the “quarks”
concepts.

Only the specification of class with object can exactly be found in the textbooks. Most
specifications can partially be matched. Obviously, the books with only a few matched
concepts have only little matches in the edges. On the other hand, the books with a lot
of matching concepts also provide a lot of matching edges.

If the “quarks” are considered to be the essence of object-oriented programming, the
concept specification maps can be used as an overview for matching of the most
relevant concepts. The investigated textbooks can be divided into two groups. The
textbooks of Deitel and Deitel (2012), Eckel (2006), and Flanagan (2005) have a high
degree of matching of the concepts defined as “quarks”. However, in the textbooks by
Sedgewick and Wayne (2008) and Abelson et al. (1996), the concept object-oriented
programming and design is present, but the main related concepts are not specified.

Matching the concept nodes of the maps is done here with an overview map of the
main concepts of a specific topic. This is only an example and can, of course, be
applied on course materials or other educational literature. For this reason, the concept
specification maps are an appropriate tool for finding material that matches the content
of a course or textbook, and it can be applied for measure given materials concerning
their fit to a specific topic.

116 6 Visualizing the Basic Concepts of Object-Oriented Programming

F
igure

6.3:M
atched

conceptspecification
m

ap
ofthe

“quarks”
ofobjectorientation

and
(A

belson
etal.1996)

-
(gray

color:
no

m
atching

-
black

edges,blue
concepts:

m
atching

-
red

node:
no

exactm
atching

-
green

node:
exactm

atching)

6.4 Object Orientation in Textbooks of Introductory Courses 117

F
ig

ur
e

6.
4:

M
at

ch
ed

co
nc

ep
ts

pe
ci

fic
at

io
n

m
ap

of
th

e
“q

ua
rk

s”
of

ob
je

ct
or

ie
nt

at
io

n
an

d
(D

ei
te

la
nd

D
ei

te
l2

01
2)

-
(g

ra
y

co
lo

r:
no

m
at

ch
in

g
-

bl
ac

k
ed

ge
s,

bl
ue

co
nc

ep
ts

:
m

at
ch

in
g

-
re

d
no

de
:

no
ex

ac
tm

at
ch

in
g

-
gr

ee
n

no
de

:
ex

ac
tm

at
ch

in
g)

118 6 Visualizing the Basic Concepts of Object-Oriented Programming

F
igure

6.5:M
atched

conceptspecification
m

ap
ofthe

“quarks”
ofobjectorientation

and
(E

ckel2006)
-

(gray
color:

no
m

atching
-

black
edges,blue

concepts:
m

atching
-

red
node:

no
exactm

atching
-

green
node:

exactm
atching)

6.4 Object Orientation in Textbooks of Introductory Courses 119

F
ig

ur
e

6.
6:

M
at

ch
ed

co
nc

ep
ts

pe
ci

fic
at

io
n

m
ap

of
th

e
“q

ua
rk

s”
of

ob
je

ct
or

ie
nt

at
io

n
an

d
(F

la
na

ga
n

20
05

)
-

(g
ra

y
co

lo
r:

no
m

at
ch

in
g

-
bl

ac
k

ed
ge

s,
bl

ue
co

nc
ep

ts
:

m
at

ch
in

g
-

re
d

no
de

:
no

ex
ac

tm
at

ch
in

g
-

gr
ee

n
no

de
:

ex
ac

tm
at

ch
in

g)

120 6 Visualizing the Basic Concepts of Object-Oriented Programming

F
igure

6.7:M
atched

conceptspecification
m

ap
ofthe

“quarks”
ofobjectorientation

and
(S

edgew
ick

and
W

ayne
2008)

-
(gray

color:
no

m
atching

-
black

edges,blue
concepts:

m
atching

-
red

node:
no

exactm
atching

-
green

node:
exactm

atching)

6.5 Threats to Validity 121

6.5 Threats to Validity

During the development process of the concept specification map – and especially
during the textbook analysis – several problems occurred. Some of them could be
solved immediately, but others remain due to different reasons. Particularly, the
problems corresponding to the qualitative analysis methodology and the problems with
large concept specification maps are enlightened in a more detailed way.

6.5.1 Missing Intercoder Reliability and Agreement

The rating of the text passages to create a concept specification map depends on the
person who is rating the passages. Usually, the coding has to be done by more than
one person. While the procedure described in Section 6.3 is very time consuming
(for the five books it took nearly two weeks), there were no resources to obtain a
second coding for the text passages. If a second rating of the text passages had been
conducted, it would have been necessary to calculate an intercoder reliability coefficient.
Over 36000 text passages were rated and at least 25% of the rated documents should
have been coded twice. Due to restricted resources, it was not possible to find anyone
to analyze the nearly 10000 passages.

6.5.2 Large Concept Specification Maps

In addition to the separate analyses of the five textbooks, a common concept specifica-
tion map of all the books was formed. For this purpose the list of all 1-rated passages
are combined and the duplicates removed, using the same methodology as for the
optimization during the analyses of the books. For the textbook example, this results in
a complex map with 27 concepts and 98 specification nodes. The map, which can also
be seen in Appendix A, is only an example for a very complex map. It illustrates that
it is possible to create such maps, but there are problems with the layout if there are
too many concepts in the map. Although the concept specification maps give a good
overview on the concepts in a given text, a complex map is hard to interpret. In most
cases it is only possible to illustrate the rough structure. The part displayed in Figure
6.8 shows that there are many edges connected to three concepts. In Appendix A it
can be seen that these concepts are object, method, and class, which emphasizes
the character of the selected books. A possible solution for the problem could be the
union of the specification nodes on a defined set of rules to reduce the number of
edges. Another approach that could enable the union process is the splitting of the
specification nodes in binary associations of concepts. After that, all equal edges
with their specification nodes are combined. The mapping of the new nodes to the
original nodes could be managed by adding numbers for the split ones, like it is done
for sub-paragraphs in a text.

122 6 Visualizing the Basic Concepts of Object-Oriented Programming

F
igure

6.8:P
artofa

large
conceptspecification

m
ap

6.6 Summary 123

6.6 Summary

According to research question RQ3, the sections above have shown an approach
for displaying content structures in texts. Concept specification maps systematically
show specifications and definitions of a given topic and their interdependencies. The
methodology enables analysis of the content of teaching resources such as textbooks
or course material. Besides generally introducing the methodology, two examples
are shown to find evidence for interdependencies among object-oriented concepts
in different textbooks (RQ4). First, a textbook analysis was conducted on textbooks
recommended for introductory courses in universities around the world. According to
the topic of this thesis, the suitability of the textbooks to object-oriented concepts was
investigated. As the results show, there are slight differences among the books. For
example, the main focus of the textbooks can be seen in the maps.

Another application is the comparison of concepts provided in a text to a normative
basis as the “quarks” of Armstrong (2006). Although the maps enable an overview of
the concepts of a given text, there are still problems with the investigations of large text
elements. The maps, as they are presented, become very confusing when many con-
cepts are involved. Furthermore, the qualitative analysis process and the surroundings
of the calculation of the intercoder reliability are very labor intensive. Nevertheless, in
the next chapter the methodology of the concept specification maps is applied on the
course material of an introductory programming course.

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

124 6 Visualizing the Basic Concepts of Object-Oriented Programming

7 Novices’ Object-Oriented
Programming Knowledge and
Abilities

In recent years there has been a paradigm-shift to object-oriented programming in
computer science education which has had several consequences.

“The paradigm shift means that topics that have for years been considered
‘advanced’ and relegated to senior courses will now be presented as
fundamental ideas to freshmen. Today proponents of objects call for
objects first – anything less is counter productive.” (Mitchell 2000, p. 99)

When Mitchell wrote his paper the discussion of whether or not there is a paradigm
shift had reached its end (see Section 2.1).

In the meanwhile, most courses have adopted the paradigm shift; new educational
material is introduced, textbooks on object orientation are widespread, and new pro-
gramming languages – especially for educational purpose – are being developed. The
difficulties for introductory programming courses caused by the shift are described
by Manaris (2007). Hubwieser (2007a, 2008b) has explained the difficulty of learn-
ing to program regarding the object-oriented paradigm in relation to the level in the
taxonomy of Anderson and Krathwohl (2009). Hubwieser (2008b) “pointed out why
it is so difficult for students to understand even simple OO-programs: firstly because
the learning objectives easily reach the most difficult category (D6) of the taxonomy
(creating meta-cognitive knowledge e.g. by learning different programming strategies)
in this taxonomy. Secondly because there is a big number of objectives that has to be
reached before the first program can be really understood” (Hubwieser 2008b, p. 143).

Nevertheless, by now almost all introductory courses have implemented the shift. But,
how can programming abilities be assessed in this new paradigm and how do novice
programmers face their first assignments? At the start of the 2008 winter term we
introduced a new programming course just before the first semester to find new options
of evaluating novice programmers’ knowledge and abilities. Therefore, we reduced
instruction for freshmen to a very low level. The focus of the investigations was on the
representation of cognitive knowledge through concept maps (see Section 4.1) and the
programm code produced by the participants. The basic notions underlying the course
design are related to the question about how to teach object-oriented programming
in educational environments with little instruction from a tutor, and a great amount of
self-directed learning (RQ5).

126 7 Novices’ Object-Oriented Programming Knowledge and Abilities

In particular, the development of knowledge of the novice programmers and especially
their misconceptions are investigated in Sections 7.5.2, 7.5.3, and 7.5.5. These
sections, together with Section 7.5.1, present an answer to the research question of
how to evaluate knowledge and abilities of novice programmers (RQ6).

Additionally, in Section 7.5.4 the differences between the knowledge of programming
concepts and their implementation are investigated. This proposes an answer to
the question of whether there is a difference between understanding the concepts of
programming and applying them (RQ7).

Lastly, in Section 7.6 the program code is evaluated with item response theory (see
Section 4.3). Here, the focus lies on the question whether it is feasible to find a
homogeneous itemset that is generated out of the resulting program code (RQ8).

The results of this chapter are published in (Berges and Hubwieser 2010), (Hubwieser
and Berges 2011), (Berges et al. 2012) , and (Berges and Hubwieser 2015).

7.1 Related Work

In this section an overview of different related work is given. For this purpose several
investigations found in the literature are presented. The related work is grouped by
the different investigations executed on the novice programmers. Below, the results
of program code analysis (Section 7.5.1), investigations on conceptual knowledge
(Sections 7.5.2-7.5.4), and an application of the item response theory on program code
(Section 7.6) are shown. These are also the three main categories for the related work.
Additionally, the related work on self-directed learning and introductory programming
courses in general is presented.

7.1.1 Minimally Invasive Education

In the mid-1980s there were investigations of learning on complex technical devices
without any instruction. This so-called instruction-less learning paradigm was de-
scribed by Shrager and Klahr (1986). The participants of the study should handle
a programmable computer-controlled toy. They were given some description of the
functionality of the toy, but no verbal description or help. Similar to our study, Shrager
and Klahr (1986) wanted to investigate the results that the participants produced when
left on their own. They recorded a verbal protocol of the participants’ thinking. In the
end they found that all participants could handle the toy and had, therefore, learned
something about the toy without any instruction.

A study on a variation of self-directed learning was conducted by Rieman (1996). Based
on exploratory learning that is related to the instruction-less learning paradigm used
in the investigation described above, the learning processes of office program users
were investigated. The activities of the participants were documented by a diary study.
Additionally, Rieman (1996) performed structured interviews to get more information

7.1 Related Work 127

on the learning strategies of the participants. The results of the study showed that
exploratory learning without any material is problematic. Participants need help from
materials such as documentations or manuals. Another important result expressed in
Rieman’s study is that participants only learn the aspects they need for a specific task.

An application of the social cognitive theory and especially the self-directed learning
is shown by Dangwal and Mitra (2005). Based on the theory of constructivism (see
Section 3.1) Mitra (2000) introduced “minimally invasive education”. Here, instruction
is only provided when it is required or desirable. Additionally, the duration of instruction
is as small as possible.

“Intervention points can be detected by monitoring learner progress. Such
points occur when the learner is observed to have reached a plateau and is
doing similar tasks again and again. At this point intervention consists of a
demonstration of some new application or capability of the PC followed by
discovery learning by the learner. Another type of intervention point occurs
when learners are seen to be collectively developing an incorrect concept.
At such points, the instructor needs to point out the incorrectness of their
understanding through demonstration, and not through direct instruction.
This should be followed by a phase of rediscovery, if necessary guided by
an instructor.” (Mitra 2000, p. 19)

Under the leadership of Sugata Mitra, computer kiosks that are accessible to the
public were installed in southern India. Children could use the computer without any
instruction. The results of this “Hole-in-the-Wall” project are described in detail by
Mitra (2000) and Dangwal and Mitra (2005). In this thesis, this idea was transferred to
programming skills in general.

A non-traditional lecture that was quite similar to the courses that the following inves-
tigations are settled in, is presented by Isomöttönen et al. (2013). They emphasized
learning by programming (doing) and gave, in general, no instruction. More precisely,
they introduced implementation sessions and support sessions followed by feedback
sessions for reviewing the produced code. Participation in the programming sessions is
voluntary, but specific help is provided in the sessions. To evaluate their course design,
they posed a questionnaire to the participants. The results cover our findings on the
self-assessment of the learning gain.

7.1.2 Introductory Programming Courses

Pedroni and Meyer (2010) proposed organizing the specific subject domain knowledge
of object-oriented programming in Trucs (Testable, Re-usable Units of Cognition), which
are described in detail in Section 6.1. For the application of the so called Truc-notion
graphs in computer science, Pedroni chose an introductory programming course. To
construct the graph and the corresponding course she set out the following criteria:

“Developing a domain model (with its Trucs, notions, and links) and a
course model (with its lectures and underlying notions) entails various

128 7 Novices’ Object-Oriented Programming Knowledge and Abilities

subtasks: (1) define the concepts and skills that the Trucs should repre-
sent and identify the associated notions; (2) construct the links between
notions resulting in a Truc-notion graph, create concise Truc descriptions
by producing the contents of technical sections such as summary, role,
applicability, benefits, and pitfalls, and collect common confusions and
sample questions; (3) create course models as sequences of lectures
each covering a series of notions.” (Pedroni 2009, p. 56)

The model shows the interdependencies of the concepts with several types of connec-
tions; one if a Truc requires another, one if it refines another, and one if it depends
on another. For application of the Trucs of object orientation in an introductory pro-
gramming course, she built a set of “28 Trucs ranging from procedural programming
concepts such as Conditional and Loop to object-oriented concepts such as Inheritance
and simple data structures as for example Linked list” (Pedroni 2009, p. 65). Each
Truc owns a description, examples, and common confusions. The Trucs and notions
combined by relations form a restricted skeleton for the learner. This contradicts what
we want to show in our course model, because as Pedroni states in her thesis, it is
quite difficult:

“[...] finding a starting point where no prerequisites are necessary, [...]
presents challenges in ensuring that the entire subject area is covered and
in sequencing the concepts without prerequisite violations.” (Pedroni 2009,
p. 151)

This major problem of all courses inspired us to design a course where the participants
select their individual starting point. Each participant can profit from their unique set of
prerequisites without any influence of instruction.

Bruce et al. (2004) published a study based on semi-structured interviews. They
conducted a phenomenological study on how students learn to program, which led to
five categories describing the process of learning to program.

Following “the act of learning to program is experienced as following the set structure
of the unit in order to ‘get through’. When going about learning to program this
way, a student’s primary intent is to keep up with set assignments. Where marks
are to be gained, students will focus on those tasks. Time might be seen as the
major factor in determining whether or not the student successfully completes the
unit. Students going about learning to program this way are significantly affected
by the structure of the course and the way the material is presented” (p. 148).

Coding “the act of learning to program is experienced as learning to code. Students
going about learning to program this way see learning the syntax of the pro-
gramming language as central to learning to program. They are driven by their
belief that they need to learn the code in order to program. This may involve
rote learning. As in Category 1 [following], time is a major factor because of the
amount of syntax that needs to be learned or practiced in order to get through the
course. This may lead to frustration. Students going about learning to program
this way may desire extra guidance towards specific solutions and examples of

7.1 Related Work 129

code. Time taken to explore concepts and discover their own solutions may be
seen as wasted” (p. 149).

Understanding and Integrating “the act of learning to program is seen as learning
to write programs through understanding and integrating the concepts involved.
When going about learning to program this way students see understanding as
integral to learning. They seek understanding of a ‘bigger picture’ over the small
tasks they are undertaking as part of coursework. It is not enough to type in the
code and ‘see if it works’, rather these students seek to understand what they
have done in order to affect the particular outcome” (p. 150).

Problem Solving the act of “learning to program is experienced as learning to do
what it takes to solve problems. When going about learning to program this way
the student begins with a problem and sets out to discover the means to solve
that problem. The understanding that is sought in Category 3 [understanding
and integrating] is a fundamental component of this category. As in Category 3,
understanding is obtained through adopting a ‘big picture’ perspective, or trying
to see the problem and the program as part of a broader context” (p. 152).

Participating or Enculturation the act of “learning to program is experienced as
learning what it takes to be a part of the programming community. Understanding
what it means to learn to program encompasses the way that programmers
think as well as what a programmer actually does. The previous focal elements
of syntax, semantics and the logic of the programs are acknowledged in this
category, but the essence of what it means to learn to program extends to the
actual programming community” (p. 153).

After defining the categories out of the semi-structured interviews, Bruce et al. (2004)
gave some implications of these categories for teaching and learning. In particular, they
gave an answer to the question of how students can be helped on their way of learning
to program. These ideas were considered when we constructed our introductory
courses described in this chapter.

In the meantime many institutions offer an introductory programming course with a
preceding course. These courses have a lot of different goals and use different contents
and methodologies (cf. Dierbach et al. 2005; Edmondson 2009; Faessler et al. 2006;
Gill and Holton 2006; Vihavainen et al. 2011).

7.1.3 Novice Programmers

An early study on the difficulties for novice programmers was conducted by Bonar
and Soloway (1983) in the early 1980s. They interviewed several participants of their
introductory course. The course was based on the procedural paradigm with the
programming language Pascal. Nevertheless, the results are still valid.

“We find it quite interesting that novices seem to understand the role or
strategy of statements more clearly than the standard semantics.” (Bonar
and Soloway 1983, p. 12)

130 7 Novices’ Object-Oriented Programming Knowledge and Abilities

Similar results to those from this thesis are presented in an early study by Perkins et al.
(1988). They identified different types of novice programmers by applying the method
of clinical studies. For that purpose, they documented results in a measurement of the
time for programming relative to the time of thinking. The both extremes are called
“stoppers” and “movers”. The “stoppers” became stuck in thinking about the problem
they faced, while the “movers” implemented without any thinking. Another way of
differentiating the novice programmers is by their attitude towards bugs:

“Some novices seem to take the inevitable occurrence of bugs in stride,
while others become frustrated every time they encounter a problem.
The former seem to recognize that mistakes are part of the process of
programming, part of the challenge. They study their bugs and try to use
the information they gain. The latter students appear to view bugs more
as reflecting on the value of their performance. For them, programming
mistakes are so obvious - they show up on the screen as incorrect output
or in a program that will not run or gets stuck in the middle.” (Perkins et al.
1988, p. 267)

Additionally, Perkins et al. (1988) propose solutions for helping students get into
programming more easily. First, “close tracking” means that the students should
read the implemented code from the perspective of the computer and analyze exactly
what each single line represents. Nevertheless, accurate “close tracking is a mentally
demanding activity. It requires an understanding of the primitives of the language
and the rules for flow of control. In addition, as the student proceeds through the
code, the student must map its effects onto changes in what might be called a ‘status
representation’, specific to the problem” (Perkins et al. 1988, p. 269). The second
method gathered from the documentation is called “tinkering”. The students write some
code and then apply small changes to the code in the hope of making it run-able.
Last, “breaking problems down” is not only a challenge concerning programming, but a
general method in the field of problem solving. As Perkins et al. (1988) found in their
documentation, most students do not even recognize that they have to break a problem
down. And if they recognize it, they are not able to find suitable chunks (cf. Perkins
et al. 1988, p. 274).

The self-assessment of the previous knowledge is important for our research on novice
programmers. Bergin and Reilly (2005a) try to figure out factors for success in a
programming course. They asked their students for assessments of their programming
experience and their non-programming computer experience. They investigated the
students and separated the students into groups with and without previous experience.
However, no “significant differences were found between students with or without previ-
ous programming experience or between students with or without non-programming
computer experience and performance module” (Bergin and Reilly 2005a, p. 413).
In contrast, the investigations of this thesis for understanding programming-related
concepts show an alignment in the knowledge of participants with and without any
previous knowledge in programming.

An early study by Bonar and Soloway (1985) shows that novice programmers prepare
plans to implement their programs. The freshmen define bug generators as the process
to bridge the gap in their programming knowledge. “Thus, in writing a program, a

7.1 Related Work 131

novice will encounter such a gap and be at what we have called an impasse. In order
to bridge these gaps, the novice uses patches. By their very nature, these patches are
likely to be incorrect” (Bonar and Soloway 1985, p. 140).

Besides the investigation of Bonar and Soloway (1985), Pea (1986) classified language-
independent conceptual bugs of novice programmers. “These misunderstandings [...]
have less to do with the design of programming languages than with the problems
people have in learning to give instructions to a computer” (p. 26). The bugs found in
program code gathered in many years of Logo programming courses are classified into
three categories: parallelism bugs, intentionality bugs, and egocentrism bugs.

Parallelism bugs are underlain by “the assumption that different lines in a program
can be active or somehow known by the computer at the same time, or in parallel”
(p. 27).

Intentionality bugs describe bugs “in which the student attributes goal directedness
or foresightedness to the program and, in so doing, ‘goes beyond the information given’
in the lines of programming code being executed when the program is run” (p. 29).

Last, “[e]gocentrism bugs are those where students assume that there is more of
their meaning for what they want to accomplish in the program than is actually present
in the code they have written” (p. 30).

All these categories have one “superbug” in common. The students assume a kind of
hidden mind in the programming language that can interpret the ideas the programmer
had when writing the code.

Spohrer and Soloway (1986) tried to figure out two common perceptions about mis-
conceptions. They found that there are only a few bug types that lead to the majority
of students’ misconceptions and most misconceptions have no relationship to the
language, but are of general purpose.

Putnam et al. (1988) also investigated students’ misconceptions on the basis of inter-
views that were related to a programming test. They list misconceptions for several
elementary programming concepts like assignments, input or output statements or
loop, and conditional constructions.

Another early investigation of the difficulties related to learning to program is published
by du Boulay (1988). After introducing general areas of difficulties, du Boulay introduces
several examples of misapplied analogies for array or other data structures (cf. du
Boulay 1988).

A general study on problems novice programmers have to face is published by Robins
et al. (2001). After defining and explaining of programming levels such as novices
and experts, they conducted a study on an introductory course. Teaching assistants
were asked to fill in a checklist on common difficulties the students struggled with. In
our investigation we also asked the tutors to document the questions the participants
asked.

A broader investigation on misconceptions, especially in programming, was conducted
by Clancy (2004). He describes extensively several different types of misconceptions
that can occur during programming introduction. After a general literature review on

132 7 Novices’ Object-Oriented Programming Knowledge and Abilities

the term of misconception, different causes for misconceptions are given; for example,
over- and under-generalization of knowledge transferred from language, mathematics,
or former programming experiences. Another cause of misconceptions by novices
might be a confused computational model.

“A high-level language provides procedure and data abstractions that make
it a better problem solving tool, but which hide features of the underlying
computer from the user. These abstractions, especially if they have no
real-life counterparts, can prove quite mysterious to the novice.” (Clancy
2004, p. 90)

Examples for these abstractions are the input statements, constructors, and destructors,
or the construct of recursion. For this thesis, the method of drawing concept maps is
applied for finding misconceptions focusing on the knowledge misconceptions and,
because of that, mainly on the over- and under-generalization of knowledge.

Another part of the study that Clancy (2004) published investigates the influence of
a learner’s attitude toward learning to program. He provides several comments from
students, which show common beliefs or attitudes.

“Some students expressed the belief that arrays of records made the
programs containing them difficult for people to read [Quote from
student] S11 : ‘It looks like too much is happening, you know, when you
first read the program. Oh, no! Arrays! Records! Everything else!’ ...
Experts, on the other hand, advocated the use of such data structures as
arrays of records, and explained that they were expected as an alternative
to freezing the program to work with a fixed number of individual variables.”
(Clancy 2004, p. 94)

There are several investigations about the problems and difficulties that novice pro-
grammers have. Hanks et al. (2004) investigates the advantages and disadvantages of
pair programming concerning the problems that occur during an introductory course.
The general publication by Robins et al. (2006) on problems encountered during in-
troductory computer-science courses built the basis for the investigations conducted
by Hanks (2007). Lahtinen et al. (2005) provide a list of programming concepts as
well and asked students and teachers in a survey to express their self-assessment on
the difficulties they had when learning the programming concepts. They found that
the “most difficult programming concepts were recursion (C4), pointers and references
(C6), abstract data types (C9), error handling (C11) and using the language libraries
(C12)”. (Lahtinen et al. 2005, p. 16)

Another interesting result that Lahtinen et al. (2005) found was that the students’
difficulty level with the concepts is lower than the level of the teachers, which has strong
implications on teaching. A similar study was conducted by Milne and Rowe (2002) a
few years earlier. They assume the difficulties to result from “the lack of understanding
by the students of what happens in memory as their programs execute. Therefore, the
students will struggle in their understanding until they acquire a clear mental model of
how their program is ‘working’—that is, how it is stored in memory, and how the objects
in memory relate to one another” (Milne and Rowe 2002, p. 63).

7.1 Related Work 133

Another list of misconceptions is presented by Holland et al. (1997). In contrast to the
list of Robins et al. (2006), the list of Holland et al. (1997) only contains misconceptions
related to objects. Additionally, Holland et al. provide examples to avoid or encounter
the misconceptions.

Sajaniemi et al. (2008) present another way to obtain representations of the understand-
ing or misconceptions that students have. They let the participants of an introductory
course draw a picture of the program state at a specific moment. The drawings were
analyzed in a qualitative manner by coding the concepts of interest. Besides the
information that concepts could be put in correct associations, the information of incor-
rectly associated concepts is of interest. Sajaniemi et al. (2008) found two groups of
“errors”; those that are misconceptions related to object orientation and those that are
misconceptions of the studied Java program (cf. Sajaniemi et al. 2008, p. 23). The
results that the visualization of the knowledge grows during a course match our results
found in the representation of knowledge with concept maps.

7.1.4 Conceptual Knowledge

Above all of the comparisons of theoretical methodologies, introduced in Section 4.1,
Keppens and Hay (2008) introduced three applications of some of the methods with
the purpose of introducing them into programming. “Firstly, the closeness index and
linkage analysis were suggested as suitable assessment methods for determining
a student’s understanding of a programming language’s basic concepts. Secondly,
chain-spoke-net differentiation was put forward as an effective method to evaluate a
student’s awareness of software libraries. Thirdly and finally, a qualitative simulation-
based approach was proposed to assess a student’s model building ability” (Keppens
and Hay 2008, p. 41).

The study on concept maps most related to the one presented here was conducted
by Sanders et al. (2008). They investigated several introductory courses into object-
oriented programming in different countries. Based on the concepts that Armstrong
(2006) proposed as the “quarks” of object orientation (for a detailed description see
Section 2.2.1), as well as some misconceptions they found in literature, they asked
their students to draw concept maps on the basis of the two given concepts “class”
and “instance”. The resulting maps were analyzed by normalizing the edge labels and
concatenating the concepts in the nodes and the labels on the edges to sentences.
These sentences were investigated with the method of qualitative text analysis. In
the end they found that most students have problems relating “class,” “instance,” and
“object” in the proper way. The other common problem that they wanted to investigate
could not be found in the maps. The relations of “data” and “behavior” to “class” were
done in a proper way by most of the students. In addition to these and several other
results on different concepts of object orientation, Sanders et al. (2008) found that
“making concept maps seems to be a useful exercise” (Sanders et al. 2008, p. 336).

In my investigation of the students’ concept maps (see Section 7.5.2), similarities are
found to the results of Sanders et al. (2008).

134 7 Novices’ Object-Oriented Programming Knowledge and Abilities

“Our analysis confirmed earlier research indicating that students do not
have a firm grasp on the distinction between ‘class,’ ‘object,’ and ‘instance’.
Earlier results suggested that some students think of classes as just being
data storage (like arrays or structs); we found that while many students do
connect classes with data, even more make the connection to behavior.”
(Sanders et al. 2008, p. 336)

Besides the detection of cognitive knowledge by drawing concept maps, Renumol
et al. (2010) investigated cognitive processes by applying a qualitative text analysis of
transcribed verbal protocols of students programming. Renumol et al. (2010) divided
the participants of the study into two groups. The one group they called the “effective”
participants since they could realize the programming questions with only a small effort.
The other group they called the “ineffective” group since they needed a great effort
for solving the problem. Both groups were analyzed by a verbal protocol that was
coded initially with 34 cognitive processes. During the analysis, eight further cognitive
processes were found: confusion, hypothesis, interrogation, iteration, monitoring,
recollection, recurrence, and translation. According to the findings in this thesis,
confusion represents an interesting new cognitive process.

“It is a CP[cognitive process] which creates a disordered mental state.
It prompts the mind to switch randomly and/or quickly between various
concepts or decisions, due to lack of clarity in thinking. Confusion can
occur when a subject lacks order in thinking as some new data or knowl-
edge does not assimilate with the existing data or knowledge. It can also
be due to lack of relevant knowledge or failure in applying the acquired
knowledge when needed. Confusion blocks or diverges the path to an
objective.” (Renumol et al. 2010, p. 14)

Furthermore, the study by Renumol et al. (2010) supports our findings on the differences
in the cognitive level when programming.

“Based on the analysis, it has been observed that programming is an
interplay of lower and higher CPs[cognitive processes] and needs various
cognitive skills. The results show the importance of human factors in
the programming process. Amalgamation of so many CPs increases the
processing load to the brain and makes the programming process difficult
and complex to learn and practice.” (Renumol et al. 2010, p. 17)

Another study was conducted by Hubwieser and Mühling (2011a) on non-major com-
puter science students. Four concept maps were gathered during an introductory
course. These maps were evaluated and compared to expert maps and were investi-
gated by structure. Hubwieser and Mühling (2011a) described two interesting results.
First, the “ruggedness of the maps has been increasing [...] over the course. This
might indicate that students are learning in a way that favors creating clusters of new
knowledge instead of integrating it into an existing model, confirming the knowledge-
as-elements perspective of the Conceptual Change theory” (Hubwieser and Mühling
2011a, p. 377).

7.1 Related Work 135

Second, they investigated the number of correct edges and associations between
concepts. In the course they investigated, there was an increase in the knowledge
gained. The development of knowledge is also part of the investigation described in
the sections below.

In a second investigation on a non-major course, Hubwieser and Mühling (2011b)
searched for patterns in concept maps that were used quite frequently by the students.
Those “knowpats” were extracted from the concept maps the students drew during the
semester. After a reduction of the maps to undirected graphs, they were found by using
the AcGM algorithm, which detects subgraphs. An adaption of the algorithm to concept
maps leads to a method for finding frequently used subgraphs in the maps of students.
In the presented investigation of conceptual knowledge of students the same scoring
method of Hubwieser and Mühling (2011b) was applied.

In another study Hubwieser and Mühling (2011c) investigated conceptual knowledge in
a longitudinal way. They let the students of a non-major introductory course draw con-
cept maps during the semester. After rating the maps of all four tests and normalizing
the labels of the edges, they found that the participants were only using a very small
set of labels. Mainly, only contains and has were used in the maps.

7.1.5 Program Code Evaluation

Hansen (2009) analyzed a student survey about the engagement and frustrations in
programming projects that accompanied their computer-science introductory courses.
The participants were asked to fill in a survey on how engaging or frustrating a course
assignment was. Furthermore, Hansen (2009) introduced a metric for assignments by
defining “niftiness” as the subtraction of frustration from engagement. As the score
ranges from 0 to 10 for both values, scores from -10 to 10 for niftiness are possible.
After evaluating a couple of projects they introduce the niftiest and the least nifty
projects with given reasons for their score (cf. Hansen 2009).

Literature provides different scoring methods for object-oriented source code. Börstler
et al. (2008) proposed three categories according to several criteria for evaluating
object-oriented example programs. Sanders and Thomas (2007) introduced a check-
list for scoring object-oriented programs by investigating concepts and misconceptions
in object-oriented programming. Truong et al. (2004) built a framework for static
code analysis of students’ programs. They summarized common poor programming
practices and common logic errors from literature and a survey conducted on teaching
staff and students. The framework works on a XML basis and enables the students to
receive feedback on their programs and rate the code automatically.

Currently, there are several code-testing tools that have been developed for educational
purposes. Most of them work online based on several platforms. In contrast to the
tools introduced by Drasutis et al. (2010) and Vihavainen, Vikberg, Luukkainen and
Pärtel (2013), for example, a method of code evaluation based on the item response
theory is introduced. This method is currently manual, but that can in the future be
automatized. The automatic testing or scoring of code produced in response to an

136 7 Novices’ Object-Oriented Programming Knowledge and Abilities

assignment is difficult. Kemkes et al. (2006) investigated the scoring of the International
Olympiad in Informatics. They score the code with 1 if it runs successfully on a given
set of input data; otherwise, it is scored with 0. They argue that “current practice yields
tests with too little diversity of difficulty – too difficult for most and too easy for a few –
and hence with poor discrimination among the majority of contestants” (Kemkes et al.
2006, p. 230). Alternatively, in Section 7.6 a method is presented to evaluate code
on the basis of the item response theory (see Section 4.3) simply by the presence of
syntax elements in the code.

Syntax elements were also the field of investigation for Luxton-Reilly et al. (2013).
Those authors investigated differences in the correct solutions of the students. They
defined a taxonomy for that purpose that distinguishes the code on the distinct themes
of structure, syntax, and presentation. Structure means different control flow in the
code, while syntax means differences in the code with the same control flow structure.
Finally, presentation means variation in the identifier names or number of whitespaces,
for example. In contrast to our investigation based on the item response theory,
Luxton-Reilly et al. (2013) evaluated the code on a structural level.

7.2 Minimally Invasive Programming Courses

In the past, most computer science learning was done with little self-instruction or
self-directed learning. The contact to computers was limited to organizations that could
afford a computer; later on there was one computer for a whole family and it was mostly
used for information and communication technology(ICT) purposes. Even in 2003,
Robins et al. (2003) stated:

“Most novices learn to program via formal instruction such as a computer
science introductory course (‘CS1’). This sets the topic of novice learning
and teaching in the context of an extensive educational literature. Current
theory suggests a focus not on the instructor teaching, but on the stu-
dent learning, and effective communication between teacher and student.”
(Robins et al. 2003, p. 156)

This is supported by Feldgen and Clua (2003) who took change of motivation into
account by introducing web and game programming into their introductory programming
courses. But, how does learning to program work in times of the internet and a broad
distribution of technical devices in society?

In an attempt to answer this question we investigate students who attempt to learn
programming on their own. To simulate a self-instructional environment, we constructed
introductory programming courses with little direct instruction. The participants are left
on their own with nothing but the course materials and a peer tutor. The idea of this
teaching concept is based on Sugata Mitra’s “Hole-in-the-Wall” project and his “minimal
invasive” instruction that was described in Section 7.1.1. The influence of any kind of
teacher (including peer tutors) on the learning process should be as little as possible.
A prerequisite for handling these “minimally invasive programming courses” is small
group sizes so that there is a good tutor to group ratio with regard to the mentoring.

7.2 Minimally Invasive Programming Courses 137

Although students are put in groups, each student works individually on his/her own
assignments according to the ideas of Turkle and Papert (1990). This was done
because we wanted to investigate the individual learning outcomes and the limitations of
self-directed learning in an introductory object-oriented programming course. However,
the students were actively encouraged to talk with each other. These interactions and
those with the tutor who originates from the peer-group of students should reinforce
the advantages of learning to program in peer groups, as mentioned by Vihavainen,
Vikberg, Luukkainen and Kurhila (2013), Cottam et al. (2011) or Hanks et al. (2009).
Nevertheless, the role of the tutor is quite unique and, is demonstrated in the results of
the experiments below (see Section 7.5). With the assistance of a tutor in the presented
study, an attempt is made to counter the problems – concerning the absence of an
effective computer model – that were mentioned by Ben-Ari (1998) in his paper on
constructivism in computer-science education.

“The computer science student is faced with immediate and brutal feed-
back on conclusions drawn from his or her internal model. More graphically,
alternative frameworks cause bugs. Computer science is unlike school
physics: intuition and manipulative facility are not sufficient for passing
a course, and the consequences of misconceptions are immediately ex-
posed.” (Ben-Ari 1998, p. 259)

The minimal amount of instruction and the advantages of peer tutoring should strengthen
the comfort level of students. A study on the influence of comfort level and motivation
on success in programming shows a significant positive correlation (cf. Bergin and
Reilly 2005b). Although the study was conducted on a very small group of students,
the results emphasize the importance of countering the fears of novice programmers.
Additionally, the motivation aspect can be negotiated, as participants join voluntarily.
The idea of the minimally invasive programming courses faces these facts and tries to
give students the option of solving the problems on their own.

This leads to a learning situation that is characterized by Boytchev (2011) as “wild
learning”. Boytchev (2011) explained the basic idea underlying the courses as follows:

“When we give a toy to a child, we just show quickly how it is used.
Then the child continues to play with the toy and to explore its functions.”
(Boytchev 2011, p. 1)

The results of the paper are far from being generally transferable, but the idea of letting
a novice programmer simply explore the new “toy” of programming is worth mentioning
and the success could be reproduced during the subsequent courses, as can be seen
in Section 7.5.1.

The didactic methodology underlying the minimally invasive programming courses
contradicts most studies that focus on learning to program. Börstler and Sperber (2010)
described two ways of didactic methodologies. Both are based on instruction. In the
next section a setting for a small sample course implementing the minimally invasive
idea is shown and the results, which are presented in the relevant sections, show that
this idea also works well.

138 7 Novices’ Object-Oriented Programming Knowledge and Abilities

7.3 A Preliminary Course for the Introduction into
Computer Science

There have been several suggested solutions for the problems occurring with teaching
how to program (see related work in Sections 7.1.2 and 7.1.3), but up to now there
has been no general solution solving the problem in all its facets. Contrarily, the
omni-presence of computer media in our society has the effect that the population
of freshmen at universities studying computer science is more heterogeneous than
ever. The reasons for choosing to study informatics at university are as varied as there
are programming languages the prospective students may know. In his pilot study on
the observations “that many students who enroll for a first computer science course
do so with some very limiting misconceptions of what the discipline entails”(Greening
1998, p. 145), Greening (1998) found various reasons for why students study computer
science. Although two thirds of the participants of the study enrolled for computer
science because of their personal interest in gaining important skills, there were those
who enrolled only for logistical or career advantage reasons.

Additionally, in his study Greening (1998) asked for the expected first-year programming
language. He expected a majority of students to answer with “Pascal” or “BASIC,” but
two thirds of the students were unable to answer even this very basic question. About
20% gave a reasonable answer and about 13% answered with a non-programming
language or other misconceptions.

In autumn 2008, we began offering a new course before the first semester began; the
aim was to make the different groups of freshmen more homogeneous. In this course
we provide a short introduction to object-oriented programming and decrease the fear
of programming itself. The following description of the course was first presented in
(Berges and Hubwieser 2010).

Before introducing the course with its prerequisites and the course design, a definition
of a novice programmer by Winslow (1996, p. 18) is presented. A novice programmer

• lacks an adequate mental model of the area,

• is limited to a surface knowledge of the subject or has fragile knowledge (some-
thing the student knows but fails to use when necessary),

• uses general problem solving strategies (copy and paste),

• tends to approach programming through control structures,

• uses a line-by-line, bottom-up approach to problem solving.

7.3.1 Prerequisites for the Courses

The necessity for the installation of the course arises from the German lecture system
at universities. During the semester there are mainly lectures with very little time for
practical work. Nevertheless, it is possible for students to study computer science

7.3 A Preliminary Course for the Introduction into Computer Science 139

without any prior programming knowledge. This implies that students without such prior
knowledge should also somehow be accommodated. For this purpose we developed
and installed specific programming courses that take place before the start of the
first semester (cf. Hubwieser and Berges 2011). Further on the courses are called
“preprojects” due to their assignment character.

To explain how we set up the course, the prerequisites of prospective students at the
TU München first have to be looked at. There were about 300 to 400 freshmen in the
relevant study paths in the years from 2008 to 2010. In 2011, there were about 600 new
students because the first run of the eight-year lasting Gymnasium in Bavaria ended.
Together with the end of the nine-year lasting Gymnasium in Bavaria, this caused two
age groups to finish school at the same time.

In the first three runs in the years 2008 to 2010 the majority of participants had only a
few previous contacts to concepts in computer science; only a minority had previous
knowledge of object-oriented concepts. However, since 2011 with the introduction
of object-oriented concepts in Bavarian school (cf. Hubwieser 2006, 2012, Section
5.3.6.2) most participants now have contact with object-oriented concepts, while only
the minority has no experience at all.

All of the programming beginners were invited to voluntarily join our course. They were
sent their invitation together with their enrollment material. After that they had to enroll
to the course, giving a self-assessment of their previous knowledge.

Participation rates in the preprojects from 2008 through 2011 are shown in Table 7.1.
Actually, 40 to 70% of each age group participated in our courses.

Year Enrollments Prospective students

2008 200 (67%) 298
2009 136 (49%) 279
2010 170 (42%) 404
2011 228 (40%) 570

Table 7.1: Number of preproject’s absolute and relative enrollments between 2008 and
2011

To get the courses included into the already existing preliminary program that takes
place during the weeks just before the start of the winter-term, the design had to be
discussed within the department. Because of this, we had to adapt our course to the
main introductory course. This had an impact on the design of the course including
the programming language and the concepts described in the course materials. The
demand that no concepts of the introductory course should be instructed in detail by
the preprojects had a strong influence. However, it supported our goal to give as little
instruction as possible. The consequences of these demands on the course design
are discussed in the next subsection.

140 7 Novices’ Object-Oriented Programming Knowledge and Abilities

7.3.2 Design of the Course

Group homogeneity is important for enhancing individual learning as stated by Pinto
(2012). Although the students were assigned to groups, they were asked to solve
their assignments on their own. This was done to allow for the individual learning gain
to be investigated. As described in the previous section, students of different study
paths were invited to participate in the course. The students ranged from majors to
non-majors in informatics. Within these different study paths further differences were
noted in the students’ previous knowledge, which resulted from the different school
backgrounds (Schulte and Magenheim 2005). Therefore, the separation on the basis
of self-assessed previous knowledge seems to be the best way to get the required
homogeneity.

The purpose of self-directed learning in a group requires similar prerequisites (see
Section 3.2). The idea of learning in peer groups enforces the need for homogeneity.
Within the registration process for the course all students were asked to self-assess
their prior programming experience according to one of three levels:

(1) I have no experience at all.

(2) I have already written programs.

(3) I have already written object-oriented programs.

Based on this information, the groups were composed to be as homogeneous as
possible. The demands of the programs the students had to master differed according
to their level of programming experience.

As mentioned in the subsection above, the department had many limitations that had
to be taken into account when organizing the courses. The limitation with the most
influence was the time slot available for the course. Only two weeks were allocated
for the course. In addition, only five adequate rooms with at most 20 working places
were available. Another restriction was that no student who wanted to participate in the
course could be refused.

Based on these restrictions, a course was implemented that took two and a half days.
Each half day was three hours. The projects the students had to manage were adjusted
to this time slot.

For organizational reasons (working spaces in the rooms) and for adequate mentoring,
the students were divided into small groups of 10-12 individuals. Each group was
coached by a tutor who was usually an experienced student from the fifth or higher
semester. As peer tutoring affects the motivation of students in a positive way (Wigfield
et al. 2012; Carter et al. 2011), the comfort level is generally increased by building small
groups and assigning a peer tutor. Although this is the biggest predictor (cf. Wilson and
Shrock 2001), the tutors were advised to help the students with practical tips or explain
the worksheets or the IDE, but were strictly told to not give any instruction beyond this
to avoid a bigger influence of the tutors on the results. Besides the tutor, students had

7.3 A Preliminary Course for the Introduction into Computer Science 141

access to instructional sites on the internet. The documentation of Java 616 and the
online version of the book “Java ist auch eine Insel”17 were recommended.

7.3.2.1 Gathering the Appropriate Topics for the Course

Another restriction placed by the department on the course was that no concepts of the
introductory course into object orientation and object-oriented programming could be
taught in detail. As it was our intention to offer no direct instruction, this did not pose a
problem. Nevertheless, a selection of concepts had to be made. The main concepts
of object orientation are discussed in Section 2.2. However, not all concepts can be
taught on a freshmen level. Due to the very short time period available for each group,
we decided to reduce the course to the very basic concepts. The grammar school
textbooks in Bavaria were used as a basis for this reduction (Frey et al. 2004; Hubwieser
2007c, 2008a, 2009, 2010). According to the comparison of the “objects-first” and the
“objects-later” strategies of Ehlert and Schulte (2009a) (see Section 5.1.1), and the
corresponding list of object-oriented concepts that form a typical teaching sequence
leading to the ability of object-oriented programming (classes and objects – attributes
(incl. data types) – methods (incl. control statements) – inheritance – association),
we designed our worksheets implementing this sequence. The items inheritance and
association were omitted, because we did not expect the students to understand them
without instruction. Ehlert and Schulte (2009a) argued that arrays are one of the most
difficult concepts of programming in general. Nevertheless, arrays are mentioned
on the worksheets without explaining the underlying details such as references. The
participants were thought to get along with the object-oriented concepts such as object,
class, method, attributes, and data encapsulation, as well as the concepts that are
necessary for implementing control structures such as conditional statements or loops.
Additionally, the input and output from and to the console and the main-method are
included as relevant topics.

Due to the department’s restrictions we had to use Java as the programming language,
although there are several known didactic difficulties. In particular, there are several
concepts in Java that cause a high intrinsic cognitive load (see Section 3.4). For
example, the fact that simple types are not regarded as classes or the concepts related
to the main-method (cf. Kölling 1999a). In addition to the programming language,
the programming environment was also given by the department. The participants
should have seen Eclipse at least once. According to didactic guidelines (see Section
5.1.2; Kölling and Rosenberg 1996; Kölling et al. 2003), we suggested using the
BlueJ-IDE18 to develop and test the first objects and classes. For the participants who
assessed themselves to be without any previous programming knowledge, this choice
provides the capability to get into object orientation more easily. After the first steps,
the students had the choice to continue their project work using the Eclipse-IDE19. It
was recommended that the second group also use BlueJ first and then Eclipse. Since

16http://docs.oracle.com/javase/6/docs/api/index.html - last access 10.12.2014
17http://openbook.galileocomputing.de/javainsel/ - last access 10.12.2014
18http://bluej.org - last access 10.12.2014
19http://www.eclipse.org - last access 10.12.2014

142 7 Novices’ Object-Oriented Programming Knowledge and Abilities

the second group state previous knowledge in programming in general, the switch from
one platform to the other was conducted much earlier. For the third group we omitted
BlueJ and the participants started with Eclipse from scratch. Additionally, they were
introduced to NetBeans, especially for building graphical user-interfaces.

Due to the fact that students should actively construct their knowledge and abilities, the
programming course design represents an application of the constructivistic approach
(Hadjerrouit 1999; Section 3.1). The assignment that each student received contained
a description of a small programming project for them to work on from scratch. As the
previous knowledge in the groups differ, each project focused on different concepts
related to different levels of previous knowledge. Every project was open-ended to
prevent the more experienced students of each group from becoming bored.

The first level students were asked to program a “Mastermind” game. The main idea of
this project was to create a class, use objects, declare attributes, and use the concepts
of assignment and method call. At the end of the project, arrays and the declaration of
methods constituted the final goals.

The second level group had to implement a tool for managing results from a sports
tournament (e.g., a football league). Besides very simple algorithmic thinking, the focus
of this group lay in the application of chance. To organize the upcoming data, fields
and other data structures are important.

The group of the third level had to program a version of the dice game “Yahtzee”. The
main focus here lay in the use of class hierarchies, advanced data structures, and
algorithmic thinking.

7.3.2.2 Design of the Course Material

All assignments and the main concepts that are useful during the programming process
are put together on worksheets according to the idea of minimally invasive programming
courses. In total, the participants of the preprojects got four worksheets that are related
to each other. The topics of the worksheets are based on the concepts introduced
in the didactic methodology of objects-first (see Section 5.1.1) and on the concepts
underlying the compulsory subject in Bavarian Gymnasien (cf. Hubwieser 2012). There
are different investigations of learning objectives that are related to the textbooks for
this type of school (cf. Steinert 2010; Hubwieser 2008b). Hubwieser (2008b) listed
the concepts contained in the textbook related to object-oriented programming and the
concepts involved in the learning process. Due to the small time slot for the courses
and the limitation of the worksheets in the current investigation only a small part of
the concepts are included. Notably, the state of an object is omitted. Furthermore, the
understanding of references and generalization are eliminated from the worksheets in
order to handle the content within the short time slot. Most of the concepts mentioned
in the textbook are reduced to a very basic level. The complete worksheets can be
seen in Appendix B.1. If the students had been presented with a textbook, as done in
the regular introductory course of the first term, the students would have hardly been
able to figure out what information is relevant for their projects. Using the worksheets,
we were able to define exactly what information the students would receive.

7.3 A Preliminary Course for the Introduction into Computer Science 143

The first sheet described the task itself and the programs used. Each task is presented
by a small project description (see Table 7.2). Additionally, the students receive an
initial short overview of the course. In addition to the programming environments
mentioned above, ObjectDraw20 is introduced as a tool for graphically exploring objects,
attributes, and methods. Furthermore, StarUML21 as a tool for object-oriented modeling
is described.

Level Description

Easy (1) Mastermind
A player fixes at the beginning a 4-figure numeric code that is composed
from ten digits. Another player tries to find out the code. Therefore, he
puts a numeric code of the same kind as a question. On each turn the
guesser gets the information how many elements he has guessed right
and how many are in the right position, or how many digits were right, but
not in the right position. The goal of the game is to guess the code as
fast as possible, but in twelve steps at most.

Mid (2) Sports Administration Tool
In this project the results of a sports game (e.g., soccer) should be
recorded and evaluated. The program should provide the option to record
a game result and print out a table. A game is always played by two teams
and ends with a result. Whether a game can end undecided, depends on
the type of sport. The teams contain a fixed number of players.

Difficult (3) Kniffel/Yahtzee
The known game Kniffel or Yahtzee is one of the most sold dice games in
the world. For the play one needs five dice. In every round one may throw
the dice up to three times. Besides, one may put the dice aside that "fit"
and throw the remaining ones again. After the third throw, at the latest,
one must decide which field one wants to value with the result. There are
two blocks on which one can put down the result. The first block is the
"collective block." Here the dice with the suitable numbers are added and
put down on the suitable field. If the sum of the points of all six fields is
bigger than 63, a bonus of 35 points is added. The second block contains
the fields "three of a kind," "four of a kind," "full house," "small street,"
"big street," "Kniffel/Yahtzee," and "chance". When you have "three of a
kind" or "four of a kind," all eyes count. For "full house" you get 25 points,
for the "small street" 30 and for the "big street" 40 points. There is the
highest score (50) for the "Kniffel/Yahtzee". All eyes can be put down on
"chance." The winner is the player who achieved the most points from
both blocks and the bonus.

Table 7.2: Description of the project’s tasks with the corresponding levels of previous
knowledge (1-3)

20http://www.pabst-software.de/doku.php/programme:object-draw:start - last access 10.12.2014
21http://staruml.sourceforge.net/en/ - last access 10.12.2014

144 7 Novices’ Object-Oriented Programming Knowledge and Abilities

The second sheet introduces the basic concepts of object orientation: object, class,
attribute, and method. It emphasizes the concepts of data encapsulation and informa-
tion hiding, which students should adhere to as early as possible. All the concepts
are illustrated by geometric objects and their graphical representations. The ideas
are based on the textbook used by the Bavarian Gymnasien (Frey et al. 2004). The
graphical representations are shown in Figures 7.1-7.3.

The third sheet presents the implementation of those concepts in Java. The concepts,
inspired by (Müller and Weichert 2011), are described by text, as well as by syntax
diagrams. Although the cognitive load theory (see Section 3.4) emphasizes the need
for compact information representation to avoid extraneous load, the information is
presented in plain text, as well as in a diagram. Nevertheless, the diagrams, as well
as the textual description, contain all necessary information. So, the participants can
choose the information representation by their personal preference. A sample is shown
below. First, the textual description is given and then the graphical equivalent.

Class:
A class is initiated with the key word class, followed by the class identifier,
which is usually capitalized. Enclosed by curly brackets, follows the class
body with attributes, constructors and methods.

In addition, a small sample code is presented on the sheet. It only contains the basic
structure of a Java class and the most common types of comment. The sample code
makes the orientation within the code easier for the novice programmers.

The last sheet presents the concept of algorithms and the control structures (sequence,
conditional statement, loop). Therefore, we introduce two different algorithm modeling
techniques to enable the freshmen to get a graphical representation of their developed
algorithms. First, we introduce structograms, which are closer to code than others.
This technique is especially useful for participants who already have experience in
programming. As a second modeling technique we introduce control flow charts,
which provide quite an intuitive method of presenting algorithms. For both charts we
only introduce the basic modules for the main concepts of programming: statement,
sequence, iteration, and conditional statement. The description of the charts on the
worksheets can be seen in Appendix B.1.

7.3 A Preliminary Course for the Introduction into Computer Science 145

triangle1 : TRIANGLE

(a) Representation of objects

triangle2 : TRIANGLEtriangle1 : TRIANGLE

class TRIANGLE

(b) Representation of building classes out of objects

Figure 7.1: Graphical representation of objects and classes on the worksheets

(a) Representation of the dot notation for attributes (b) Representation of the dot notation for methods

Figure 7.2: Graphical representation of the dot notation

triangle1 : TRIANGLE

triangle1 : TRIANGLE

triangle1.turn(90)

triangle1 : TRIANGLEtriangle1 : TRIANGLE

triangle1.flipHorizontal()

Figure 7.3: Graphical representation of the effects of methods on objects

146 7 Novices’ Object-Oriented Programming Knowledge and Abilities

After introducing the modeling aspects, we introduce the concepts for implementing
algorithms in Java. In addition to the control structures of iteration and conditional
statement, we introduce methods for input and output. The output is conducted via the
standard output on the console. As the input in Java is difficult (cf. Mössenböck 2014,
p. 315), we use the input framework22 of Hanspeter Mössenböck. The class provides
methods for reading values of different data types directly from the console simply by
including the file In.java in the project.

The basic object-oriented concepts of the worksheets are presented in Figure 7.4.
The concept specification map (see Section 6.2) shows the interdependencies of the
concepts we introduced during the course. Obviously, the concept object has a central
role. It specifies most of the other concepts. For detailed specifications expressed by
the numbered circles see Appendix B.2.

Besides suitable materials and the most important concepts, selection of a suitable
development environment is very important. We suggest that the students for their first
programming steps use BlueJ due to the reasons mentioned by Bergin et al. (2005).
BlueJ provides a simple sample project that uses geometric figures such as squares,
circles, or triangles. The students are asked to explore the object-oriented concepts by
working with these objects. After their first steps in object orientation, they are asked
to build a model of their small project and implement it in BlueJ. Towards the end of
the course, the students have a choice to switch over to Eclipse. When doing so, they
are advised to use the main-method of Java to run the project. Students who complete
their assignments in a short time are given an extra task by the tutoring student. The
participants are encouraged to build a simple graphical user-interface for their project.
Again, the tutors are asked to not provide direct instruction, but to give advice where
the relevant information can be found.

As we wanted to investigate the development of novice programmers’ knowledge and
abilities we decided to let the participants work on their own. Hanks (2007) conducted
a study on pairing novice programmers with the result that while “pair programming
has been shown to provide many pedagogical benefits to students who are learning to
program, it appears that pairing students still struggle with the same types of problems
as students working by themselves” (Hanks 2007, p. 162). Nevertheless, students who
work together get stuck less than students who work alone. For this reason, we utilized
the tutoring system to help students over their first serious hurdles at the beginning
of the course. With this approach we were also able to gather data representing the
ability and knowledge development of each student.

22http://ssw.jku.at/JavaBuch/#InOut - last access 10.12.2014

7.3 A Preliminary Course for the Introduction into Computer Science 147

F
ig

ur
e

7.
4:

C
on

te
nt

sp
ec

ifi
ca

tio
n

m
ap

fo
r

th
e

ba
si

c
ob

je
ct

-o
rie

nt
ed

co
nc

ep
ts

of
th

e
w

or
ks

he
et

s
pr

es
en

te
d

du
rin

g
th

e
co

ur
se

148 7 Novices’ Object-Oriented Programming Knowledge and Abilities

7.4 Data Gathering

During the four runs of the preprojects we gathered a lot of data from the participants.
This section shows what data was collected and how. Data gathering can be divided
into three parts. Data was first collected during the enrollment procedure for the course.
The second part of the data was collected through a survey at the end of each course.
The third type of data was gathered through the evaluation of the “products” that the
participants produced during the course; for example, concept maps or program code.

Before the course started, students enrolled and had to complete a short survey on their
personal data. Because the students of the course were divided into homogeneous
groups with regard to their prior programming experience, they had to self-assess their
programming skills when they registered for the course, as described in the preceding
section. In addition to the previous-knowledge level, the students were asked for
information about their study path. The information about the knowledge level was
mandatory, whereas indicating their study path was voluntary.

The second survey, which the students had to fill in, took place after each run of
the course. The survey was completed with pen and paper. In each run, except
the run in 2008, the results of the survey could be connected to the other results by
identifying each participant with a number. The questionnaire was divided into five sets
of questions.

The first questions covers personal data. This includes questions on gender (male/
female) and age (under 20, 20-25, and over 25 years). Furthermore, we once
again asked for the study path giving the options computer science, economical
computer-science, biological computer-science, computer science for teaching,
or others. With the next questions we assigned the students to a specific group by
asking them for the time slot (1-4) of their course and for a self-assessment of their
previous knowledge (1-3, as described in Section 7.3.2). The last two questions of this
set covers their previous computer science education and the origin of the participant.
The possible answers for the education question included intensive course, basic
course, compulsory subject, elective subject, or none. The answers for the last
question can be the abbreviations of the German federal states or an open answer
when it’s a foreign country.

The second set of questions asked for attitude towards the organization of the course.
We asked about the time of announcement, the organization in general, and the
schedule of the course. In the 2011 winter term we added a question about satisfaction
with the size of the group. Each question was answered on a scale of one to five. The
questions around organizational purposes are excluded in further research and were
only for evaluation of the courses.

The third set of questions covers satisfaction of the worksheets. On a scale of five,
the following questions had to be answered. The first question covers the amount of
information on the worksheet (high to low), the second question gathers the under-
standability on the information of the worksheets (good to bad). The last question
referred to how detailed the worksheets were (not detailed to too detailed). The fourth

7.4 Data Gathering 149

question set was related to the peer tutor. The first question gathers information about
the helpfulness of the tutor. The answers were given on a scale from very helpful to
not helpful at all. Another question asked whether the help from the peer tutor was
understandable. Again, question sets three and four were not used in the investigations.
The third question set was posed only for evaluation reasons. Contrary, the results
of the fourth set are not surprising. The tutor was assessed as being helpful and the
help was also understandable. This was reported by almost all participants. Thus, the
answers provided no additional information on the population.

The last and most interesting category covers the self-assessment of the knowledge the
participants had gained during the course. The first question asked if the participants
had learned something in general during the course. The scale ranged from “a lot” to
“very little”. The second question investigates the self-assessment of their knowledge
of Java after the preprojects. The participants assessed their abilities on a scale from
“not present” to “program on my own”. The last question gathers the understanding
of the concepts of object orientation. The students assessed themselves on a scale
of “understand” to “not understand at all”. In general, the participants could answer
on a rating scale from 1 to 5 with the ranges described above. Although, the labels of
the steps between the endings are not presented in the survey, they are assumed to
be clear for all participants. Resulting from this, the answers to the questions can be
assumed to be interval scaled, although they are originally ordinal scaled. In contrast
to the first two questions, the answers to the last question were coded from 5 to 1
to have the same direction of low to high in the comparative analysis and graphical
representation.

In a small section at the end of the survey the students were asked for a small open
feedback on the course. A sample questionnaire of the 2011 winter term can be seen
in Appendix B.3.

Besides the survey, we collected all the program codes that the participants produced
during the course (for examples, see Appendix B.6). The size of the code samples
range from only a few lines of code to several classes with code for a GUI. For
gathering the source lines of code (SLOC), a toolkit23 from the University of Southern
California was used. It is based on a measurement framework that was published by
Park et al. (1992). More precisely, only the logical SLOC is applied. Logical SLOC
intend to measure statements. Furthermore, they are not sensitive to format and
style conventions. On the other side, they are dependent on the language used. The
counting rules for Java can be found in Table 7.3. The SLOC were counted for each file
produced by the participants of the course. Afterwards, if there were different versions
of the same project, only the most complete version was included in the investigation.
The other versions were dropped out. In a last step, the total number of logical SLOC
was counted for each participant.

23http://csse.usc.edu/ucc_wp/ - last access 10.12.2014

150 7 Novices’ Object-Oriented Programming Knowledge and Abilities

No. Structure Order
of prec.

Logical SLOC rules Comments

R01 “for,” “while,”
“foreach,” or “if”
statement

1 Count once “While” is an indepen-
dent statement.

R02 do {...} while (...);
statement

2 Count once Braces {...} and semi-
colon ; used with this
statement are not
counted.

R03 Statements end-
ing with a semi-
colon

3 Count once per state-
ment, including empty
statements

Semicolons within “for”
statements are not
counted. Semicolons
used with R01 and R02
are not counted.

R04 Block delimiters,
braces {...}

4 Count once per pair
of braces {..}, except
where a closing brace
is followed by a semi-
colon, i.e. }; or an open-
ing brace comes after a
keyword “else”.

Braces used with
R01 and R02 are not
counted. Function
definition is counted
once since it is followed
by {...}.

R05 Compiler direc-
tive

5 Count once per direc-
tive

Table 7.3: Logical SLOC counting rules (Park et al. 1992)

For the analysis of the code we examined a list of concepts for the concept maps
described below. In a first run on the data of the 2009 winter term, we simply gathered
the concepts mentioned on the worksheets. The implementation of the concept
descriptions of the worksheets was the main focus. To find the concepts in the code,
several “code items” were examined. If an item could be found in the code, the code
was 1-rated for this concept. This first item set can be seen in the following list:

C1) Order of attributes, constructors, and methods in class definitions: On the
second sheet we presented a code sample that showed the correct order of
attributes, constructors, and methods in a class definition.

C2) Initialization of attributes with default values in the constructor: All at-
tributes were set to a default value; arrays were initialized.

C3) Constructors with parameters: In the section about constructors on the work-
sheet, the possibility of overloading a constructor was shown.

C4) Initialization of attributes with default values: We stressed the initialization
of all attributes before they were used.

7.4 Data Gathering 151

C5) Return values of methods: Did the students use the “return” statement to pass
values from methods or did they only operate on global variables?

C6) Parameters of methods: Did the students use input parameters or operate on
global variables or attributes?

C7) Access modifiers of methods: Not all methods have to be public. Did the
students mark some of them as private?

C8) Arrays: Did the students use arrays?

C9) Self reference by “this”: Using the same name for attributes and parameters
in methods can improve the readability of the code. Did the students use “this” in
constructors or methods?

C10) Main-method: At the beginning of the preprojects the students used BlueJ. This
IDE allows the direct interactive call of methods without implementing a “main”
method. At the end of their work, the students were asked to execute their
programs without the usage of BlueJ, so they had to implement a “main”-method.

C11) Conditional statement: The students should use the “if” construct with “else”
when necessary (instead of two separated “if” constructs).

C12) “While-do” repetition: “While-do” is the first form of repetition that was ex-
plained on the worksheets.

C13) “Do-while” repetition: The “Do-while” repetition was presented on the work-
sheets after “While-do”.

C14) “For” repetition: The “for” repetition was the last form of repetition on the
worksheet. The students should use this type if the total amount of repeats is
already known before the first one starts.

As these items are related to the “implementation” of the worksheets and not with
implementation of programming concepts in general, a revision of the concept list and
corresponding “code items” was completed after the first run. Of course, there are
many ways in which program codes can be analyzed. As we are interested in the
relation to the collected concept maps, we tried to conceive a systematic approach
to help us identify whether or not a concept is included and actually applied in the
program code of a given project. Problems that could occur are expressed in Section
7.1.5.

In addition to the concepts extracted from the worksheets, we included the list of the
“quarks of object-oriented development” presented by (Armstrong 2006). Besides the
study of Armstrong (2006) and the list presented here, there are several other studies
presenting lists of concepts or topics related to object orientation. Goldman et al. (2008)
list three main topics (programming fundamentals, discrete math, and logic design)
that are built from a Delphi process. They interviewed experts for concepts that are
important for an introductory course. The experts rated their concepts with regard to
importance and difficulty. As the final list mainly contains topics that are to be taught
in an introductory course, the list is not applicable to this investigation since a list of

152 7 Novices’ Object-Oriented Programming Knowledge and Abilities

concepts is needed. Nevertheless, some topics can be either mapped directly (for
example, inheritance) or indirectly (for example, object and class).

Tew and Guzdial’s study 2010 on a validated assessment of programming concepts
tried to define a test for fundamental concepts based on multiple choice questions. The
selection of the concepts is based on a document analysis of different types of texts
including textbooks and the ACM/IEEE curriculum (see description in Section 5.3.1).
Tew and Guzdial (2010) finally introduced a list of ten concepts related to an introductory
computer-science course that are not dependent on a specific language. If this list
is compared to the one underlying our investigation, exact matches such as arrays,
selection statement and parameters are found. Other concepts are given more detail
than we in our study, such as the loop statements that were divided into definite and
indefinite loops. Contrarily, others are summarized to a fundamental top category such
as fundamentals including variables or assignments. An additional general category,
object-oriented basics, contains class, methods, and similar concepts.

The selected concepts have to fulfill two preconditions. First, they have to be expressible
in the externalization of cognitive knowledge. So, there has to be a theoretical basis for
the concept that has an interdependency on other concepts. In contrast, the concepts
have to be observable in the program code. This is why some “quarks” have been
changed; for example, polymorphism to overloading. Others such as object orientation
are kept or split up in a “cognitive” and “observable” instance, such as it was done with
data encapsulation and access modifier. The complete list of the concepts can be seen
in the following Table 7.4, while the complete questionnaire for the assessment of the
concept maps can be found in Appendix B.4.

Abbr. Concept Abbr. Concept Abbr. Concept

AM access modifier CO constructor ME method
AR arrays DE data encapsulation OB object
AG assignment DT data type OO object orientation
AC association IN inheritance OP operators
AT attribute IS initialization OV overloading
CL class IT instance PA parameter
CS conditional statement LO loop statement ST state

Table 7.4: List of the identified programming concepts

In the present study no classical knowledge test could be formulated to evaluate
more than the conceptual knowledge of the participants; that is, the concepts that the
participants really applied in their programming. To evaluate the program code of the
participants, a methodology had to be found to perform a code analysis based on
concepts related to programming. Because of that, items are formulated that can be
rated if the concept is implemented. However, as a concept can be implemented in
different ways, a complete match of all ways how the concepts can be implemented in
the program code must first be found.

7.4 Data Gathering 153

For the code analysis, possible applications of the concepts are investigated first. For
example, the concept constructor can be present in the form of using a constructor
(i.e., by creating an object) or in the form of defining a constructor. According to this
procedure, the properties for every concept that is observable in the code are identified
and it is shown that the respective concept is applied. Afterwards, these properties are
categorized and each category represented by an item that can be rated with yes/no
(1/0) while analyzing the programming code.

Some of the concepts have to be excluded from the beginning due to different reasons:
object orientation, class, data type and instance. The first exclusion is because in the
context of Java, object orientation is present by design. The next two exclusions occur
because the use of Eclipse makes it impossible to distinguish between “implementation
by the student” and “implementation forced by the IDE”. Finally, the last is excluded
because it is included in the concept object.

In the end there are 39 code items. Some turned out to be trivial, as they are 1-rated in
nearly all datasets. For example, the concept method consists of the two categories
using a method and defining a method. However, nearly every project used a method,
because they were all using the input method to read values from the console.

In Table 7.5 all the items are shown that, from here on, are called “code items”. The
abbreviations indicate which concept the item relates to, which is shown in Table 7.4.
Additionally, for every item the criteria for the 1-rating of the code is shown. Table 7.5
represents a variation of the table presented in (Berges et al. 2012).

ID Code item Criteria for 1-rating

The code contains...

IN1 ...inheritance from existing classes The keyword extend can be found in
the code combined with an existing class
such as JFrame.

IN2 ...a manually created inheritance
hierarchy

The keyword extend can be found in the
code combined with a class that is defined
within the project.

ME1 ...a method call There is a method call in code, except the
standard output to the console.

ME2 ...a method declaration There is any method declaration in the
code. Static methods are excluded.

ME3 ...a return value in a method The keyword return can be found in the
code.

AG1 ...an assignment There is an assignment of a value to an
attribute or variable.

Table 7.5: List of code items with the criteria for 1-rating - continued on next page

154 7 Novices’ Object-Oriented Programming Knowledge and Abilities

ID Code item Criteria for 1-rating

The code contains...

CO1 ...a declaration of a new construc-
tor

There is a declaration of a constructor
that is not the empty standard constructor
provided by Java itself.

CO2 ...a call of a constructor The keyword new in combination with a
class name can be found in the code.

ST1 ...a possibility to save the state of
an object

There are attributes defined in the code.

ST2 ...a possibility to change the state
of an object

There are methods declared in the code.

ST3 ...a possibility to use the state of
an object

The attributes’ values of an object are ac-
cessed either directly or with the help of
methods

AC1 ...an association between classes There are attributes or variables in the
code that have a non-primitive data type.

AC2 ...any use of associations between
classes

The values of attributes or variables with
non-primitive data types are used in the
code.

DE1 ...attributes with a visibility other
than public or default

There are the keywords private or
protected in the code.

OP1 ...an assignment operator There is a single = in the code.
OP2 ...any logical operators There is one of the following operators in

the code: &, &&, |, || or !.
OP3 ...any other operators, apart from

the assignment or logical operators
There are operators such as +, -, % in the
code.

AR1 ...an array with pre-initialization There is an array declaration with prede-
fined values in the code.

AR2 ...an array without pre-initialization There is an array definition without initial-
ization in the code.

AR3 ...any access of the elements of an
array

There is a variable or attribute name fol-
lowed by [#] (# is a number) in the code.

AR4 ...an array initialization with new The keyword new combined with a data
type and [#] (# is a number) can be found
in the code.

AR5 ...methods of the class Arrays The word Arrays can be found in the
code.

Table 7.5: (contd.) List of code items with the criteria for 1-rating - continued on next
page

7.4 Data Gathering 155

ID Code item Criteria for 1-rating

The code contains...

IS1 ...an explicit initialization of the at-
tributes

To all the attributes an initial value is as-
signed either directly in the declaration or
within the constructor.

PA1 ...a method call with parameters A method with parameters is called in the
code, except the standard output of Java.

PA2 ...any method declarations with pa-
rameters

There is a method declaration in the code
that contains parameters.

PA3 ...a method where the parameters
are used in the method body

There are methods where the parameters
are used within the method body. For
example, their values are assigned to at-
tributes.

AT1 ...attributes There is a declaration of attributes in the
code.

AT2 ...an access to attributes of other
classes

Either the attributes of an object of an-
other class or methods of an object of an-
other class that access foreign attributes
are used in the code.

AT3 ...an access to the attributes of
their own class

The values of the attributes are used
within the code.

CS1 ...an if-statement without else There is the keyword if in the code and
no else.

CS2 ...an if-statement with else There are the keywords if and else in
the code.

CS3 ...a switch-statement There is the keyword switch in the code.
OB1 ...a declaration of any object at-

tribute or variable
There are attributes of variables with a
non-primitive data type in the code.

OB2 ...any use of a declared object The attributes or variables with non-
primitive data types are used in the code.

OB3 ...a reference to its own object us-
ing this

There is the keyword 7this in the code.

OV1 ...a declaration of an overloaded
method

A method is declared at least twice. The
method can either be one of the partici-
pant’s or one of the predefined Java meth-
ods.

OV2 ...any use of an overloaded method There is a call of a method in the code
that is overloaded. The standard output is
excluded.

Table 7.5: (contd.) List of code items with the criteria for 1-rating - continued on next
page

156 7 Novices’ Object-Oriented Programming Knowledge and Abilities

ID Code item Criteria for 1-rating

The code contains...

LO1 ...loops There are the keywords for or while in
the code.

AM1 ...the access modifiers public, pri-
vate, or protected

There are the keywords public,
private, or protected in the code.

Table 7.5: (contd.) List of code items with the criteria for 1-rating

The list of the code items provides a straight-forward mapping of concepts to code
items. However, a concept may be typically related to more than one item, but any
item belongs to exactly one concept. To get an average score for the application of
a concept, which is represented by a set of code items, suitable formulas have to be
found. Basically, there are five ways how a concept is represented by several items.
Because of that, we could derive five different formulas for the combination of the item
scores.

(1) The concept is assumed to be applied if at least one of the corresponding code
items is scored with 1. The scores of the code items are combined by a Boolean
OR-function.

(2) The concept can be divided into several components and each component is
represented by one code item. The score for the concept is calculated as the
average over the scores of the code item.

(3) There is a clear hierarchy between two items (e.g., to use a parameter of a
method, you have to declare a method with parameters first). It turned out that
in these cases the most suitable score for the concept is also the average over
both items.

(4) Again, there is a hierarchy between the items of a concept. In contrast to (3),
one item is so important for the implementation of the concept that the concept
gets the value 1 if the item is implemented. The second item has a lower priority
and the concept is rated with 0.5 if only this item is implemented.

(5) There is a very strong relationship between items of a specific concept. In this
case all items must be fulfilled. In this case, the scores of the items are combined
by a logical AND operation.

By using these five methods (in rare cases a sequential combination of them), we
finally derived a mapping from the scores of the code items belonging to a single
concept to a value between 0 and 1. This can be regarded as a score that indicates the
implementation of this concept in the program code. The complete list of the formulas
can be seen in Table 7.6.

7.4 Data Gathering 157

Concept Formula

AM AM1
AR OR(AR1,AR2,AR4)/2+OR(AR3,AR5)
AG AG1
AC (AC1+AC2)/2
AT (AT2+(AT1+AT3)/2)/2
CS OR(CS1,CS2,CS3)
CO IF(CO1,1,IF(CO2,0.5,0))
DE DE1
IN OR(IN1,IN2)
IS IS1
LO LO1
ME (ME1+ME2+M3)/3
OB (OB1+OR(OB2,OB3))/2
OP (OP1+OP2+OP3)/3
OV IF(OV1,1,IF(OV2,0.5,0))
PA (PA1+(PA2+PA3)/2)/2
ST ST1/2+OR(ST2,ST3)/2

Table 7.6: List of the formulas to calculate the score of the programming concepts

In addition to the raw programming abilities that the freshmen have or acquire during
the course, we wanted to explore the differences between knowing and doing in
programming. Therefore, we gained concept maps to externalize the conceptual
knowledge. The concept maps – which are based on a list of pre-defined concepts
–are drawn on paper and then digitalized with the yEd-Editor.

The questionnaires are, again, numbered so that all results can in the end be combined.
In the first step the students are asked to choose whether they know a concept or
not. The aim of this is to make them remember and reflect on the concepts in order
that they avoid simply guessing of associations. If they know a concept, they should
give an answer on how they gained the knowledge thereof. The possible answers
are: “known before,” “known by the tutor,” “known by own inquiry,” “known from any
other source”. The questionnaires for the pre- and the post tests are the same. On the
second page the freshmen were given an example map, because we were unable to
teach the students how to draw a concept map as required in theory (see Section 4.1).

After digitalizing the concept maps, a list of associations was formed –represented by
an edge and the two connected concepts. A score was also assigned to each concept
association triplet according to the following scheme:

158 7 Novices’ Object-Oriented Programming Knowledge and Abilities

• If the association is a correct statement, it is scored with 2.

• If the association forms a statement that is clearly wrong or the meaning of the
statement could not be understood, it is scored with 0.

• If none of the above two conditions apply, the association is scored with 1.

Edges with no label were excluded from the analysis altogether. The grading scheme
was validated by having three experts grade a randomly chosen subset of the edges
after having explained the grading scheme to them. For intercoder reliability, Krippen-
dorff’s alpha coefficient (cf. Krippendorff 2004, 2011) is calculated. The value is 0.62
for the reliability measured between all raters. A further analysis shows that the most
deviations occur between the grades 2 and 1. For that reason, edges with a grade of 1
are skipped in the following analysis.

In theory, our data for each participant should consist of four parts. We collected two
concept maps (one drawn before and one after the course) and a questionnaire with
basic personal data and the prior knowledge. Additionally, we have the source code of
the programs that were written by the students during the course.

Nevertheless, the gathered data based on the minimally invasive programming courses
is quite different over the years. Therefore, not all datasets are comparable to each
other. An overview of the different data gathered from each student during the courses
is shown in Table 7.7

Year Personal
Data

Program
Code

Pre
Concept

Map

Post
Concept

Map

Student
Questions

2008 Y Y N N N
2009 Y Y N N N
2010 Y Y Y Y Y
2011 Y Y Y N N

Table 7.7: Overview of the data gathered from each student over the years

In the first year we gathered the personal data independently from the program code.
Therefore, no linking between the results is possible. The code is evaluated only for
testing purposes. The same is done with the personal data. In all later runs the results
are combined by a numerical identifier. The information we examined from each run is
taken to improve data gathering in later runs. Linking of the results is done after the
first run. Identification of the tutor for each participant is done after the second run
when we realized that the tutor could have a strong influence on the results.

For the various investigations that were done on the minimally invasive programming
courses, different sets of data are needed. Table 7.8 presents the number of possible
datasets. In the first column the number of datasets, where the program code could
be mapped to the personal data in the survey are shown – data needed in Section

7.4 Data Gathering 159

7.5.1. The second column presents the students who have a concept map for previous
knowledge, a concept map drawn after the course, and personal data – data needed
in Sections 7.5.2 and 7.5.3. The third column shows the number of datasets where a
concept map drawn at the end of the course, the personal data, and the program code
are present – data needed in Section 7.5.4. The last column contains the datasets with
program code – data needed in Section 7.6.

Year Code of Novices Knowledge of
Novices

Differences
Knowing/Doing

Code Evaluation

2008 0 0 0 0
2009 92 0 0 93
2010 103 82 89 112
2011 128 0 0 145

Table 7.8: Number of possible datasets for the different investigations over the years

One of the major problems in the investigation of the first two runs is the fact that the
effect the peer tutor had on the results could not be reliably determined. Therefore,
each tutor participated in at least two groups: one consisting of students with previous
knowledge and one of students without. To find the influence of the tutor in the results,
each tutor was assigned a color. The questionnaires of the students in each group was
then in the color of the corresponding tutor.

Besides the results of the participants themselves, data about the complete groups
were gathered. In the first run in the 2008 winter term, some groups were filmed. This
was done to view the process of a participant in programming a project like the given
one. Four groups with different previous knowledge levels were filmed. The group was
filmed with a wide scope since there was only one camera. When the video sequence
was analyzed, it was quite difficult to see what a single student was doing. Because of
this, video filming of the groups was not pursued.

Another investigation performed on the whole group focused on the questions that the
participants asked the tutors. Therefore, the tutors were requested to write a report of
all questions they were asked. To map the questions to previous knowledge, the tutors
wrote down the identifier of the student posing the question. Additionally, they had to
write down their type of response. The options were “answering by a hint,” “answering
by introducing a part of the code,” or “answering by recommending further information
like the Java reference”. For the last answer type three options were given: “Java ist
auch eine Insel (book),” “Java documentation/reference,” and “Help in the Java-IDE
(Eclipse)”. The report form can be seen in Appendix B.5.

In the 2010 winter term, 392 questions in total were collected. They are all digitalized
with the number of the asking student, the question, and a coding of the type of answer.
All answers, including the three options of type three are coded with 0 or 1. The
complete vector of types is treated as a binary number and converted to a decimal
number in the range of 0 to 31.

160 7 Novices’ Object-Oriented Programming Knowledge and Abilities

In the next step the questions are rated on their relation to the project/worksheets (1)
or to programming aspects (2). The extraction of the 0-rated (kind of nonsense) and
1-rated questions lead to a list of 182 questions (see Appendix B.8). In addition to the
categories that are on the report form, the previous knowledge of the asking participant
has been added. Furthermore, each question is coded with the main concept (see
Table 7.4) the question relates to.

7.5 Analysis of Novice Programmers’ Knowledge and
Abilities

The next subsections describe the results of different aspects related to novice pro-
grammers’ knowledge and abilities. Besides the investigation of program codes,
externalizations of cognitive knowledge through concept maps build the basis for this.
More precisely, differences in the program codes of novice programmers are investi-
gated (Section 7.5.1). Furthermore, development of knowledge (Section 7.5.2) and
misconceptions (Section 7.5.3) during a course, as well as the differences between
knowledge of a concept and its application in the program code (Section 7.5.4), are
investigated. Additionally, in the next section, the evaluation of the program code with
the psychometric methodology of the item response theory is introduced (Section 7.6).
All these experiments provide an answer to the research questions of how to evaluate
novice programmers’ knowledge and abilities (RQ6, RQ7, and RQ8).

7.5.1 Differences in the Program Code

During the introductory courses that were based on the idea of minimally invasive
programming courses, participants produced program code. As these code fragments
have only a little influence from instruction – due to the course design – they are predes-
tined for evaluating differences in novice programmers’ coding abilities. The presented
research provides an approach for this, based on cluster analytic methodologies (see
Section 4.2). The first analysis shown in (Hubwieser and Berges 2011) was improved
one year later (Berges et al. 2012).

The first investigation of the program codes of 2009 that was published in (Hubwieser
and Berges 2011) only focused on the implementation of concepts of the course
materials. In contrast, the investigation of the program code for this thesis focusses on
the concepts gathered during the 2010 and 2011 courses. As mentioned in Section
7.4 the score for the implementation of a concept is calculated out of the code items.
The investigation described in this section concentrates on the novice programmers.
Therefore, only the datasets of those participants without any previous knowledge are
included. Starting with 323 datasets with programming code and personal data from
the survey, all datasets are eliminated in which the previous knowledge is not in group
one (“No previous programming knowledge”). The resulting 141 datasets still include
those who have studied computer science in school. With the aim of investigating

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 161

the students with absolutely no previous knowledge, the datasets with any contact
to computer science in school are eliminated. This leads to the final 108 datasets
analyzed in this thesis. The number of projects spreads over the years: 40 projects in
2009, 41 projects in 2010, and 27 projects in 2011.

In a first step the code items are investigated on their own. For each of the code items
(see Table 7.4), the relative frequency of application in the program code is calculated.
This calculation is first conducted on all datasets together and then separately for the
years 2009 to 2011. The resulting values range from 0 to 1 with an average on all
items of 0.57. The increasing order of the items in Figure 7.5 is only chosen to improve
readability.

First, the mean scores of the different code items are analyzed. Looking at those items
that have a mean value of less than 0.1 reveals that the two items of the concepts
inheritance and overloading are below this line. This is not surprising as these concepts
are not introduced on the worksheets and the investigated population has no previous
knowledge. Another item below this line is CS3. Again, this is not a surprise, because
the switch-statement that is the topic of the item is neither introduced on the sheet
nor is it useful in the “Mastermind” project. The last two items that have a mean value
below 0.1 are those related to the concept array. The first one is AR1, which covers the
pre-initialization of an array. As we only see the code in its final state, it is possible that
the pre-initialization was removed when implementing a constructor or a main-method.
Over two thirds (68%) of the participants that have not applied any pre-initialization
of arrays have defined their own constructor in the code. The last item is AR5, which
covers the pre-defined class Arrays to handle operations on arrays. This is quite a
useful but difficult way to operate on arrays. Nevertheless, there were some participants
who looked up the needed sources to apply the class, for example, for sorting the array.

On the other hand, there are code items that have a mean value of more than 0.9.
Obviously, there are again items that are trivial because they are described exactly
on the worksheets. The first trivial item corresponds to the standard output of Java.
Although the method System.out.println() is static, it is a method call with parameters.
Because of that, the item PA1 is implemented in almost every project and can be seen
as trivial in this context. The second trivial item is the method call itself. Because the
standard output is given as an idiom on the worksheet, it is excluded from the analysis
of the method calls. Other methods that are applied are those for the input. As nearly
every project contains an input of values, there is a relative frequency of 0.92 for ME1.
Another set of quite trivial items covers the concept of operators. The assignment
operator is used in almost every project (OP1 and AG1). Other operators (OP3) such
as arithmetic operators are also used in most projects. The most interesting item that
has a mean value above 0.9 is the item that is related to the conditional statement
(CS1). The simplest form without an alternative (CS1) is applied in 94% of the projects.
The conditional statement with an alternative (CS2) is only applied in 78%, although it is
convenient to use it in the code. Obviously, the correct implementation of an alternative
is more complicated than the serial application of the conditional statement, as it was
done in most of the cases when no alternative was implemented.

162 7 Novices’ Object-Oriented Programming Knowledge and Abilities

F
igure

7.5:R
elative

frequencies
of

the
code

item
s

over
allstudent

projects
(red)

and
those

from
the

years
2009

(blue),
2010

(green),and
2011

(nude)

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 163

Next, the items are investigated that have a mean value above the total mean value
of 0.57. There are 24 items above and 15 below the mean value line. If we divide the
items on their belonging to the programming paradigms, there are 11 items for the
procedural paradigm (AG1, OP1, OP2, OP3, AR2, AR3, AR4, IS1, CS1, CS2, LO1),
nine items for the object-oriented paradigm (ME1, ME2, CO1, CO2, AT1, AT3, OB1,
OB2, AM1), and four items for both paradigms (ST1, ST2, ST3, PA1). Looking at the
relative frequencies, 79% of the items are related to the procedural paradigm, 44% of
the items for the object-oriented paradigm, and 71% of the mixture-items are above the
mean. Concentrating on the “pure” items, it is obvious that the procedural paradigm is
implemented more often. This is clearly caused by the course design. Although the
participants were encouraged to design a model first, most of them started coding from
scratch. In most cases, they either implemented one class with one method in BlueJ or,
if they started with Eclipse from the beginning, they implemented only a main-method
including all the code.

After analyzing the code items for all years, some differences among the participants
within the years became evident. In 2009 we have more items over or under the
quantiles of 90% or 10% (see Figure 7.5). In contrast to the analysis on all years, there
are more method declarations in the code (ME2). Also, the items related to the state
of an object (ST1, ST2, ST3) could be 1-rated in more than 90% of the projects. The
logical operators are used quite often in the code (OP2). Furthermore, the access
(AT3) and declaration (AT1) of attributes is more common than in the overall mean.
Last, there are more loops (LO1) and access modifiers (AM1) in the code. Obviously,
the participants are more extreme in their application of programming concepts as they
have more items with a mean value below 0.1. In particular, there are fewer associations
between classes (AC1, AC2). The participants seem to apply more concepts than the
average, which is emphasized by the higher total mean value of 0.61. In the dataset of
2009, there are again 79% of the procedural items and 67% of the mixed items, but
only 53% of the object-oriented items above the mean. Nevertheless, the concepts
related to object orientation are applied more often. Comparing the implementation
within the years, the concepts above the overall mean are implemented more often,
while the concepts below the overall mean are implemented less.

In 2010, the same items have a mean value over 0.9 than in the overall case. Contrary
to this case, slightly more inheritance is used in the code, so the item IN1 is above the
0.1 line. The concept of overloading is applied more often, so the two corresponding
items are above the last 10% as well. In contrast to the overall case, there are fewer
associations in the code (AC1). The total mean value is nearly the same as it is in
the overall case (56%). In general, fewer items are over the mean line; 79% of the
procedural items and 67% of the mixture items. For the object-oriented items, only 31%
are over the total mean. Although there are fewer items in the quantiles, the object
orientation of the code in this turn is worse than the average of all turns, based on the
concepts implemented. To summarize, object-oriented concepts are applied less, but,
on the other hand, the concepts are more advanced.

While the top 10% of the items only contain four concepts, the last 10% of the items
equal the overall case. In 2011 there are fewer projects with a method call and fewer
application a conditional statement. The total mean value is only 53%, which means

164 7 Novices’ Object-Oriented Programming Knowledge and Abilities

that in an average case the participants without any previous knowledge and with no
education in computer science at school implement fewer concepts than in the previous
two turns.

When comparing the years the application of the concepts become more equal. While
in 2009 most concepts are above 90% or below 10%, in 2011 most items are distributed
around the overall mean. In general, the advanced object-oriented items are located
below 10% for all three years. Furthermore, the items related to object orientation are
used less than those related to the procedural paradigm. Regarding the project de-
scriptions, the assignments do not encourage the use of object orientation. Additionally,
the use of BlueJ with its capability to execute each method on their own discourages
the distribution of the functionality on several methods, and because of that, the notion
of object orientation in general.

To emphasize the findings of the code items a comparison to the self-assessment
of the novice programmers is conducted. In Figure 7.6 the mean values of the self-
assessment on the learning gain are presented. Figure 7.7 shows the average assess-
ment of Java knowledge, whereas Figure 7.8 shows the assessed knowledge of object
orientation. Each of the figures is a bar chart with a set of bars for each year and one
bar for all years. Each set is divided into three parts for the two groups of the cluster
analysis presented below and one for all participants. The scale of the y-axis reaches
from one to five with a mean value of 3 instead of 2.5, because the answers to the
questions could not have a value below one.

2009

2010

2011

all

1 2 3 4 5

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

Figure 7.6: Average values of the novice programmers’ self-assessment of the Learning
Gain

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 165

2009

2010

2011

all

1 2 3 4 5

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

Figure 7.7: Average values of the novice programmers’ self-assessment of the Java
knowledge

2009

2010

2011

all

1 2 3 4 5

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

cluster1

cluster2

all participants

Figure 7.8: Average values of the novice programmers’ self-assessment of the OO
knowledge

166 7 Novices’ Object-Oriented Programming Knowledge and Abilities

In addition to the average values of the implemented concepts that are lower in the turn
of 2011, the assessment of the object-oriented knowledge is lower than the average
(see all participants in Figure 7.8). Also, the assessment of the learning gain and the
Java knowledge is lower in 2011 (see all participants in Figures 7.6 and 7.7). The
average value of the years 2009 and 2010 are nearly the same and vary around the
total average, while the value of 2011 is lower than the other two years and lower than
the average (see all participant in Figures 7.6-7.8).

After evaluating the code items on their own, focus is changed to the values for the
concepts calculated by the formulas listed in Table 7.6. As described in Section 7.4,
the items of each concept are put together and the result normalized to fit the range of
0 to 1. Some of the concepts have a strictly binary value of 0 or 1, while others have
specific values in between. Nevertheless, the scale level of all categories is ordinal
given that 1 is better than 0. By applying a cluster analysis, the novice programmers’
abilities are investigated based on their implementation of the programming concepts.

For this purpose, two homogeneous groups are searched in the results based on the
methodologies described in Section 4.2. First, the standard k-means method of GNU
R is calculated. The results are skipped, however, because the cluster sizes between
the two groups are very different. The same occurs when applying the k-medoids
method “Partitioning Around Medoids (PAM)”. Because the hierarchical methods have
the advantage that the separation of the clusters can be done after the analysis, the
groups are split on the basis of these methodologies.

As two clusters are needed with a distribution of the items of almost 1:2, the standard
method of GNU R for the hierarchical analysis named hclust is chosen. Here, the
linkage methods of Section 4.2 were all applied. The complete linkage method provided
the most suitable cluster sizes. The resulting dendrogram (hierarchy tree) can be seen
in Figure 7.9. Resulting from the hierarchical analysis and a separation on the highest
distance level, the 108 datasets are divided into two groups. The first group includes
40 datasets and the second group 68.

For each group and category (concept) the mean value is calculated. As all items
for one concept add up to 1, the mean values again range from 0 to 1. The results
are shown in Figure 7.10. On the x-axis the concepts are listed by the abbreviations
given in Table 7.4. For the sake of clarity, they are reordered into algorithmic and
object-oriented groups. First, there are the concepts that belong to algorithm thinking,
which are followed by the object-oriented concepts. The y-axis shows the mean values
of the given range.

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 167

D
is

ta
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Participants

Figure 7.9: Dendrogram of the cluster analysis with a hierarchical clustering algorithm
resulting in two clusters (red and blue)

To examine the differences between the groups, the code items belonging to a specific
concept are investigated. Therefore, the concepts that have different mean values
are sought. For some of the concepts this is obvious; for example, array (AR) or
object (OB). Nevertheless, for some concepts it is not that obvious. For this reason
the p-values of a Welch two sample t-test for the mean values of each concept are
calculated to obtain a statistically proven list of concepts to investigate. The hypotheses
for the test are:

H0 : µ1 = µ2 : The mean values of the two groups are equal for a specific
concept.
H1 : µ1 6= µ2 : The mean values of the two groups are not equal for a
specific concept.

In Table 7.9 the differences between the mean values and the corresponding p-values
are shown. All concepts with a p-value smaller than 0.01(**) are considered significant,
excluding the concepts with only one code item: inheritance (IN), method (ME), state
(ST), association (AC), array (AR), parameter (PA), attribute (AT), object (OB).
Obviously, the largest differences are found for the concepts of object orientation.
The differences for the procedural concepts are much lower and in most cases the
differences are not even significant.

168 7 Novices’ Object-Oriented Programming Knowledge and Abilities

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

Mean−Value

2

2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

0.0

0.2

0.4

0.6

0.8

1.0
assignment(AG)

operator(OP)

array(AR)

initialization(IS)

cond. statement(CS)

loop(LO)

state(ST)

parameter(PA)

inheritance(IN)

method(ME)

constructor(CO)

association(AC)

encapsulation(DE)

attribute(AT)

object(OB)

overloading(OV)

access modifier(AM)

F
igure

7.10:D
ifferentgroups

(m
ore

im
plem

ented
concepts

(1)
vs.

less
im

plem
ented

concepts
(2))

ofnovice
program

m
ers

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 169

Concept Difference Concept Difference

µ1 − µ2 p µ1 − µ2 p

AG 0.01 0.32 ME 0.27** 1.13e-06
OP 0.04 0.17 CO 0.14* 0.02
AR 0.34** 1-25e-05 AC 0.43** 1.59e-07
IS 0.15 0.08 DE -0.37** 1.97e-04
CS 0.09* 0.01 AT 0.38** 5.51e-12
LO 0.18** 1.51e-03 OB 0.47** 6.05e-12
ST 0.21** 1.86e-04 OV 0.14* 0.03
PA 0.18** 3.74e-04 AM 0.22** 4.67e-05
IN 0.2** 3.37e-03

Table 7.9: Differences between the mean values of the two clusters and the corre-
sponding p-values (∗ < 0.05, ∗∗ < 0.01) of the Welch two sample t-test on
µ1 = µ2

Each of these remaining concepts is split up into its code items. In Figures 7.11 to
7.14 the occurrence of the items in the code is displayed for each cluster. Additionally,
the frequency of participants that did not implement any item of the given concept is
presented. On the x-axis the code items are displayed for both clusters, while the y-axis
shows the relative frequency of the occurrence in the code.

To find differences in the items, the independence is calculated for two items each,
in comparison with the two clusters. If there is a significant difference that is not
resulting from the two clusters, there should be no correlation between the items. For
this purpose, an χ2-test is conducted on all item pairs in a specific concept. Here, all
differences are presented that are significant to a p-value of 0.05(*). Furthermore, a
Welch two-sample t-test is provided to find significant differences between the clusters,
restricted to those participants that did not implement any of the items of a specific
concept. The results of the tests are presented in the following list (t-test) and tables
(χ2-test).

Inheritance
mean value difference for “no items”:
0.2** (p-value: 0.002)

no implementations of any item in clus-
ter 2

Method
mean value difference for “no items”:
0.03
(p-value: 0.188)

ME1 ME2 ME3

ME1 1 0.452 0.002**
ME2 1 0.014
ME3 1

170 7 Novices’ Object-Oriented Programming Knowledge and Abilities

State
mean value difference for “no items”:
0.21** (p-value: 4.51e-05)

ST1 ST2 ST3

ST1 1 0.801 0.857
ST2 1 0.944
ST3 1

Association
mean value difference for “no items”:
0.55** (p-value: 1.12e-08)

AC1 AC2

AC1 1 0.455
AC2 1

Array
mean value difference for “no items”:
0.34** (p-value: 6.26e-06)

AR1 AR2 AR3 AR4 AR5

AR1 1 0.235 0.236 0.279 0.26
AR2 1 0.99 0.806 0.619
AR3 1 0.813 0.616
AR4 1 0.572
AR5 1

Parameter
mean value difference for “no items”:
0.04* (p-value: 0.042)

PA1 PA2 PA3

PA1 1 0.089 0.046*
PA2 1 0.782
PA3 1

Attribute
mean value difference for “no items”:
0.19** (p-value: 8.61e-05)

AT1 AT2 AT3

AT1 1 1.532e-04** 0.967
AT2 1 1.824e-04**
AT3 1

Object
mean value difference for “no items”:
0.41** (p-value: 1.41e-09)

OB1 OB2 OB3

OB1 1 0.552 0.0981
OB2 1 0.627
OB3 1

First, there are concepts that only differ in the value of any implemented items. The
pairwise comparison of the items show no significant difference, except for the fact
that the participants of cluster 2 implemented the items less often. All representatives
of this group are shown in Figure 7.11. The underlying concepts are attribute (AT),
association (AC), state (ST), object (OB), and inheritance (IN).

Interestingly, inheritance (IN) was only implemented by participants of cluster 1. For
this reason no χ2-test could be applied. However, the differences between the clusters
are obvious (see Figure 7.11(d)). Concerning object (OB) and state (ST), only in
cluster 2 were there participants who did not implement any of the underlying items.
The pairwise comparison shows no significant difference (seen in Figures 7.11(c) and
(e)). The other two concepts, array (AR) and association (AC), have participants who
did not implement any of the items in both clusters. However, the mean values differ
significantly. The χ2-test is hardly applicable for either concept since the frequencies

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 171

for some items are very low. This is the reason why a pairwise comparison is difficult
to interpret (see Figures 7.11(a) and (b)).

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none
AR1

AR2
AR3

AR4

AR5

none

AR1

AR2
AR3

AR4

AR5

(a) array (AR)

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none
AC1

AC2

none

AC1 AC2

(b) association (AC)

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

ST1

ST2 ST3

none

ST1

ST2 ST3

(c) state (ST)

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

IN1

IN2

none

IN1 IN2

(d) inheritance (IN)

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

OB1
OB2

OB3

none

OB1

OB2

OB3

(e) object (OB)

Figure 7.11: Relative frequencies of the code items separated by the two clusters
(cluster 1, cluster 2) only differing in the participants not implementing any
item

172 7 Novices’ Object-Oriented Programming Knowledge and Abilities

Additionally, the underlying items of the concept method (ME) have significant dif-
ferences between the two clusters concerning the pairwise comparison of the items.
In contrast, the mean values of the participants not implementing any item do not
differ significantly. In general, only a few participants implemented none of the items.
Concerning the pairwise comparison, cluster 1 differs in the use of a return value in the
methods (ME3). The call (ME1) and the declaration (ME2) of methods are used in the
same way in both clusters (see Figure 7.12).

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

ME1
ME2

ME3

none

ME1

ME2

ME3

Figure 7.12: Relative frequency of the 1-rated code items for the concept method (ME)
in relation to the participants of each cluster (cluster 1, cluster 2)

Last, the concepts parameter (PA) and attribute (AT) have significant differences in
both tests. In both clusters, attributes are declared (AT1) and accessed in their own
class (AT3) in the same way. But, the access of attributes of other classes through
direct access or methods (AT2) differs, obviously (see Figure 7.13). Additionally, cluster
1 contains no participants who did not implement any of the underlying items.

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

AT1

AT2

AT3

none

AT1

AT2

AT3

Figure 7.13: Relative frequency of the 1-rated code items for the concept attribute (AT)
in relation to the participants of each cluster (cluster 1, cluster 2)

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 173

Similarly, the method call (PA1) with parameters is implemented in both groups. But,
the method declaration with parameters (PA2) and the use of the declared parameters
in the method body (PA3) is implemented less in cluster 2 compared to PA1 (see Figure
7.14).

cluster1 cluster2

re
l.

fre
qu

en
ci

es

0.0

0.2

0.4

0.6

0.8

1.0

none

PA1

PA2 PA3

none

PA1

PA2
PA3

Figure 7.14: Relative frequency of the 1-rated code-items for the concept parameter
(PA) in relation to the participants of each cluster (cluster1, cluster2)

Concerning the comparison of the concepts related to object orientation (for example,
object, method, or attribute) with those related to the procedural paradigm (for example,
array, loop, or conditional statement), it can be stated that the first cluster is more
familiar with the concepts of object orientation. This corresponds to the results of
the self-assessment on the understanding of object orientation (see Figure 7.8). For
all runs the value of the self-assessment of cluster 1 is higher (but not significant
(p=0.27)) than cluster 2. In all turns between 2009 and 2011 there is a difference, but
not significant. Nevertheless, the data gives strong advice that the members of cluster
1 assess themselves better in the understanding of object orientation and implement
more of the concepts in a more detailed way than the members of cluster 2.

Regarding the self-assessment (see Figure 7.7) of the general programming abilities
in Java, we can see that there is no significant (p=0.3) difference between the two
clusters in the question on the knowledge of Java. This corresponds mainly to the
general programming concepts that belong to the procedural paradigm.

Despite the differences shown in the code, in the self-assessment there are no signifi-
cant differences regarding the learning gain (see Figure 7.6).

7.5.2 Development of Knowledge

A second investigation on the novice programmers is related to the development of their
knowledge about object orientation and programming (see Section 7.1.4 for related
work). Therefore, the results of the investigation of the concept maps drawn in the 2010

174 7 Novices’ Object-Oriented Programming Knowledge and Abilities

term are compared. As there was only a previous test in 2011 – due to organizational
reasons – these results cannot be included.

Before the start of the courses in the 2010 winter term, the participants were asked to
draw concept maps on their knowledge of object orientation and programming. The
concept list, as well as the analysis methodology, are described in Section 7.4. To
investigate the development of the knowledge on object orientation and programming
of novice programmers, we start with a list of 595 associations drawn by all participants
in the pre-test. In a first step all associations that are not rated as completely correct (2)
are eliminated. Since the interest for this thesis is only in evaluating the knowledge of
novice programmers, all datasets that did not fit the pattern “no previous knowledge in
programming (1)” and “no prior education in computer science (5)” are excluded. This
results in a list of 30 associations (out of 16 concept maps) that are shown in Appendix
B.7.1.

For comparing the pre- and post-tests of novice programmers, those datasets that
contain results of both will be used. Again, all those associations that are drawn by
students without any previous knowledge are considered. The resulting list of 221 valid
(2-rated) associations can be found in Appendix B.7.3.

7.5.2.1 Previous Programming Knowledge

Before analyzing the knowledge development of novice programmers, the previous
understanding of those concepts are looked at. As the edges of the maps have no
direction, each item of the list in Appendix B.7.1 is investigated twice (60 edges in total).

First, the concepts that are associated in more than 10% of the 30 edges are inves-
tigated. These are mainly the basic concepts of object orientation. Besides class,
method, attribute, and object, there is only the concept data type. In Table 7.10 these
five concepts are listed with their associations. The number in parenthesis shows how
much association between the given concepts is drawn in the maps.

Concept Associations

class object(3), association(1)
method object(2), attribute(1), operator(1), conditional statement(1)
data type object(2), attribute(1), parameter(1)
attribute object(6), inheritance(1), assignment(1), method(1), data type(1)
object attribute(6), class(3), method(2), data type (2), state(2), association(1),

object orientation(1), constructor(1)

Table 7.10: Concepts with more than three associations drawn by novice programmers
in the pre-test and their associated concepts

The connection between object and attribute seems to be intuitive, even for novice
programmers. The second most drawn association is between object and class. Again,

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 175

there seems to be an intuitive understanding of this association. Nearly all of the
associations that are drawn more than once in the 16 maps connect the concept of
object in a specific way. In the knowledge structure of the novice programmers, the
concept of object seems to be very important. Obviously, this results from the intuitive
understanding of object orientation, which is investigated in detail below.

The edges of the concept maps can be grouped together. Again, the direction of the
edge is not of interest. Two edges are assumed to be in the same group when they
combine the same concepts. Figure 7.15 shows the grouped map. All the concepts
that are part of the concept maps of the novice programmers are included in the map.
The edges are weighted by the number of their appearances. The weight of the edges
is represented by the thickness of the lines. Singularities are left out as the concept
mapping technique is not applicable for individual analysis (see Section 4.1)

Figure 7.15: Combined graph of the 2-rated associations of the novice programmers in
the pre-test – the thicker the line, the more connections have been found
between the concepts

Obviously, there are only edges connected to the concept of object that are not a
singularity. The method of drawing concept maps before the start of a course can
give a good impression on how to start into object-oriented programming. Hence,
the method can support the selection of suitable didactic methods, as mentioned in
Section 5.1.1. Nevertheless, there were only sparse concept maps drawn by the
novice programmers. The small number of maps that could be investigated has to be
considered. The results only provide a clue for intuitive understanding of object-oriented
notions.

176 7 Novices’ Object-Oriented Programming Knowledge and Abilities

In Table 7.11, all edge groups are shown that appear in more than one concept map.
In addition to the concepts, the normalized edge labels are shown.

Concept 1 Concept 2 Edge label

object class assigns, belongs to, defines
object method works on, consists of
object state has, is in
object data type is, has
object attribute has, owns, defines

Table 7.11: Mostly drawn edges by novice programmers in the pre-test

As mentioned in the above paragraph, all edges have a connection to the concept
object. The intuitive understanding that was expressed by the participating novice
programmers is interesting:

Object belongs to class

Class defines object

Method works on object

Object consists of method

Object has state

Object is data type

Object owns attribute

If these items are compared with the basic concepts of Section 2.2, all items except
inheritance and polymorphism are contained in the list. Some of the participants even
have an idea of the concept of the state of an object.

A last investigation on the knowledge examined in the pre-test examines the self-
assessment. Starting with the assumption that we have three categories, the partici-
pants had to self-assess their previous programming knowledge. The participants are
clustered by the partitioning cluster analysis algorithm “Partitioning Around Medoids
(PAM)” (see Section 4.2). The data basis for the clustering is once again a table with
1 for a concept and participant if there is a valid connection to this concept in the
corresponding concept map of the pre-test. Figure 7.16 shows which partition of the
cluster corresponds to which knowledge category. For example, 40% of cluster 2 is in
category 1, 40% in category 2, and 20% in category 3. In general, assigning clusters
to the self-assessment category is clear for clusters 1 and 3, as it can be expressed by
a correlation of 0.71 (Spearman’s rank correlation). If the second cluster is included in
the correlation analysis, the coefficient decreases to 0.54.

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 177

rel. frequencies

c1
c2

c3
c1

c2
c3

c1
c2

c3

no
 e

xp
er

ie
nc

e
(1

)
al

re
ad

y
pr

og
ra

m
m

ed
 (2

)
al

re
ad

y
O

O
 (3

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig

ur
e

7.
16

:P
ar

tit
io

ni
ng

of
cl

us
te

rs
fr

om
th

e
pr

e-
te

st
on

le
ve

ls
of

pr
ev

io
us

kn
ow

le
dg

e

178 7 Novices’ Object-Oriented Programming Knowledge and Abilities

Because clustering itself only provides a partitioning of a given dataset, the characteris-
tics of the clusters found in the data have to be examined. In Figure 7.17 the relative
frequency of the appearance of a concept in the pre-test is drawn for each group. The
groups without any pre-knowledge (1) and with experience in object-oriented program-
ming (3) can be clearly separated. In general, group 3 – which assessed themselves
as experienced – can externalize more correct rated edges in a concept map than
those without any experience. The externalization of the knowledge related to object
orientation is interesting. Cluster 3 has high values (> 0.75) for the concepts instance,
class, method, parameter, object, inheritance, and constructor.

As described above, the classification of cluster 2 is more difficult than clusters 1 and 3.
This can be justified. For most concepts the relative frequencies of the appearance of a
concept in the concept maps are located between the values of the other two clusters.
Nevertheless, there are exchanges in the order for the concepts state, association,
attribute, assignment, and object. But, only the two concepts attribute and object have
a significant difference. Thus, in general, clustering of the externalization represents
the self-assessment in the correct way.

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 179

1
1

1
1

1

1

1
1

1

1

1
1

1
1

1
1

1
1

1
1

1

rel. frequency

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2
3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

F
ig

ur
e

7.
17

:R
el

at
iv

e
fr

eq
ue

nc
y

of
in

cl
ud

ed
co

nc
ep

ts
in

th
e

pr
e-

te
st

fo
r

ea
ch

cl
us

te
r

(c
1

to
c3

)

180 7 Novices’ Object-Oriented Programming Knowledge and Abilities

7.5.2.2 Posterior Programming Knowledge

In contrast to the previous test, the grouped concept map resulting from the post-test
contains more concepts that are associated in several ways. Again, the concept
inheritance is missing. According to the previous test, the most edges associate
object, class, and attribute. The most associated concept is object followed by class.
An overview of the combined concept map is presented in Figure 7.18. Here, all
associations among the concepts that are not singular are shown. The thickness of the
lines represents the number of edges between two concepts in relation to the number
of concept maps. Thus, the thicker the line the more concept maps contain an edge
between the given concepts.

Figure 7.18: Grouped concept map of the 2-rated association of the novice program-
mers in the post-test – the thicker the line, the more connections have
been found between the concepts

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 181

The comparison of Figure 7.15 and Figure 7.18 shows that there is an increase in the
represented knowledge. An interesting difference is that the edges between object
and data type are not present anymore. The development of the novice programmers’
knowledge is investigated in more detail in the next subsection.

After illustrating the novice programmers’ expressed knowledge in the post-test, the
comparison of this knowledge to the presented learning materials is of interest. Here,
two graphical representations are compared. In Figure 7.4, a concept specification
map (CSM) of the worksheets is shown. As the concept maps have, in general,
no direction, the connections between the concepts in the CSM and the grouped
concept map presented in Figure 7.18 are compared. All the connections except
method and encapsulation can be found in the post-test of the novice programmers.
The numerous connections of the concept object in the CSM are represented in the
concept maps as well. Furthermore, the CSM shows strong connections among
the object-oriented concepts object, class, and attribute. Again, this is found in the
knowledge representation. Thus, the concepts of the learning materials and their
interdependencies can be found in the concept maps of the participants without any
previous knowledge.

Another interesting fact is the difference in knowledge after the course between the
novice programmers and the other groups. The average scoring of the novice pro-
grammers are compared with the other participants in the post-test. Obviously, the
two lines in Figure 7.19 are quite similar. The goal of the pre-courses – which is to
make participants of a programming introductory course more homogeneous with
respect to their programming knowledge – is achieved. More precisely, there are only a
few concepts with a significant difference in the representation of the knowledge on
programming concepts. The only significant differences are in the concepts where no
knowledge gain between the pre- and post-tests of the novice programmers took place
(Figure 7.20 in the next subsection). The concepts with a p-value (in parentheses) lower
than 0.01 by a two-sided Welch t-test include instance (0.002), initialization (0.003),
and inheritance (0.0006).

182 7 Novices’ Object-Oriented Programming Knowledge and Abilities

p

p
p

p
p

p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

rel. frequencies

r

r

r

r
r

r

r
r

r

r

r

r

r

r

r

r

r

r

r

r

r

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.19:M
ean

values
for

each
conceptin

the
post-testseparated

by
the

novice
(p

)rogram
m

ers
and

the
(r)est

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 183

7.5.2.3 Knowledge Development

As the theory underlying concept maps (see Section 4.1) does not allow conclusions
that are related to missing associations or for an individual, the mean values are
calculated for each concept over all participants without any previous knowledge and
with no background in computer science education in school. The mean values can
be seen in Figure 7.20 where the b-line shows the values of the pre-test and the
e-line those of the post-test. In this case, the mean values express how many novice
programmers have appropriate associations of programming concepts in mind.

For a further investigation of the knowledge on specific concepts, the list of concepts
is reduced. For this reason, only those concepts that have a significant development
between the pre- and the post-test are included. For this purpose a Welch t-test is
applied to the values. The resulting differences in the mean values and the correspond-
ing p-values) are shown in Table 7.12. To gather the concepts that have a significant
difference, only those with a p-value less than 0.01(**) are considered. These concepts
include class, method, data encapsulation, attribute, object, access modifier, and
constructor.

Concept Difference Concept Difference

µ1 − µ2 p µ1 − µ2 p

ST 0.17 0.07 AT 0.4** 1.54e-03
AC 0.03 0.65 CS 0.13 0.09
IT 0 1 OO 0.23* 0.02
CL 0.6** 3.58e-07 AG 0.07 0.46
ME 0.63** 3.39e-08 OB 0.47** 1.27e-04
DE 0.4** 1.35e-04 OV 0.13* 0.04
OP 0.03 0.65 IN -0.03 0.56

AR 0.07 0.31 LO 0.2* 0.01
DT 0.13 0.17 AM 0.27** 2.93e-03
IS 0 1 CO 0.43** 9.05e-05
PA 0.23* 0.01

Table 7.12: Differences between the mean values of the concepts expressed in the
pre- and the post-test by the novice programmers and the corresponding
p-values (∗ < 0.05, ∗∗ < 0.01) of the Welch two sample t-test on µ1 = µ2

184 7 Novices’ Object-Oriented Programming Knowledge and Abilities

b
b

b

b
b

b
b

b
b

b
b

b

b
b

b

b

b
b

b
b

b

rel. frequency

e

e
e

e
e

e

e
e

e

e

e

e

e

e

e

e

e

e

e
e

e

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.20:M
ean

values
for

each
conceptin

the
testatthe

(b
)eginning

and
atthe

(e)nd
ofthe

course
concentrating

on
the

novice
program

m
ers

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 185

First, the concepts with the biggest knowledge gain are those that are closely connected
to object orientation. Seven of the 12 concepts related to object orientation have a
significant difference in the mean values, while none of the mixed or procedural
concepts are significantly different. Besides contributing to the first programming
experiences, the course has the goal of providing first insights into the object-oriented
programming paradigm. Obviously, this goal is achieved as there is a major knowledge
change (according to the theory of conceptual change (Section 3.5)) in the population
of the novice programmers. Interestingly, the knowledge about conditional statement
and loop did not increase much, although these concepts had to be applied a lot during
the programming task.

In addition to the development of knowledge, a closer inspection on the differences
between the two tests can be done. In Figure 7.21 there are bars that show the
differences between the two tests. The value of each concept and participant of the
pre-test is subtracted from the corresponding value in the post-test. An increase in
knowledge about a concept between the pre- and the post-tests leads to the number of
1. A concept is 0-rated if there is no change, and rated with -1 if there is a decrease in
knowledge. The green bars show the average increase, while the red bars show the
mean values of the decrease for each concept.

The main aspect is that there are more edges drawn to new concepts than concepts
that are not connected anymore. In general, very few edges are removed. This could
be due to different reasons. One reason could be the very low previous knowledge
level – there were not that many edges that could be removed. On the other hand, the
major gain in knowledge representation lies in the concepts explained in detail on the
worksheets. The concepts that remain connected or unconnected are method, data
encapsulation, overloading, loop, access modifier, and constructor. The concepts of
the pre-test (line b) in Figure 7.20 nearly all have mean values below 0.1. Only the
concept method has a higher mean value (0.13).

Looking at the added edges, the differences between the concepts are much clearer.
There are concepts where only a few valid edges are added (below 20% of the maps):
association, instance, operators, array, initialization, conditional statement, assign-
ment,overloading, and inheritance. These concepts are either from the procedural
paradigm or are the advanced object-oriented concepts. Again, this matches the
impression of the comparison of the pre- and post-tests. The concepts where valid
edges are added in more than 50% are class and method. If the range is widened to
40%, the concepts attribute, object, and constructor are included. Thus, the added
edges are mainly in relation to the object-oriented paradigm.

186 7 Novices’ Object-Oriented Programming Knowledge and Abilities

rel. frequenciesrel. frequencies

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.21:R
elative

frequencies
of

differences
betw

een
the

pre-
and

the
post-test

for
each

concept
draw

n
by

the
novice

program
m

ers
(green:

Increase
–

red:
D

ecrease)

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 187

7.5.3 Misconceptions

According to the investigation on the development of knowledge, the examination of
the representations of misconception follows the same methodology. Again, the results
of the concept maps drawn by the participants of the preprojects (see Section 7.3) are
taken for analysis. For the misconceptions, the associations rated with 0 are taken into
account. If a participant drew a 0-rated connection between two concepts the map is
rated with 1 for this concept; otherwise, it is rated 0. The gained matrix forms the basis
for the following analysis.

To compare the mean values from concepts of the pre- and the post-tests, we only take
those datasets into account that contain a pre-test as well as a post-test (30 datasets).
As only the misconceptions of the novice programmers without any previous knowledge
and with no computer science education in school are of interest, we eliminated all
datasets that do not fit these criteria. The resulting list contains 156 associations; 58
for the pre-test and 98 for the post-test. The complete list of the 0-rated associations of
the novice programmers can be seen in Appendix B.7.2 for the pre-test and Appendix
B.7.4 for the post-test.

For examination of the misconceptions, the mean values are calculated for all concepts.
These values express how many of the participants have a misconception of a specific
concept. Figure 7.22 shows the mean values for the concepts on the y-axis. On
the x-axis the concepts are shown with their abbreviations. The line marked with b
presents the pre-test and the line marked with e shows the values of the post-test. A
significant increase (p-value smaller than 0.05) based on the pre-test can be found
for the following concepts with the p-value in parenthesis: method (0.01), initialization
(0.04), attribute (0.03), access modifier (0.04), and constructor (0.04). The same is
done for the decreasing concept assignment (0.01).

The associations connecting concepts with misconceptions in more than 20% of the
maps in the pre-test are categorized to find common misconceptions. These concepts
are: class, operator, data type, parameter, assignment, object, and loop. Obviously,
there are more misconceptions related to the procedural paradigm than those related
to the object-oriented paradigm. According to the results found in Section 7.5.2, there
is an intuitive understanding of object orientation that the novice programmers can
express.

188 7 Novices’ Object-Oriented Programming Knowledge and Abilities

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b
b

rel. frequency

e
e

e

e

e

e

e
e

e

e

e

e
e

e
e

e

e

e

e

e
e

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.22:D
evelopm

entofthe
m

isconceptions
in

the
conceptm

aps
draw

n
by

novice
program

m
ers

atthe
(b

)eginning
and

atthe
(e)nd

ofthe
course

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 189

Another interesting group of concepts are those that have misconceptions in more than
20% of the maps in the post-test. These concepts are: class, method, initialization,
parameter, attribute, conditional statement, object, and loop. In contrast to the pre-test,
misconceptions related to object orientation increased. Basically, there are two different
explanations. First, the novice programmers get in touch with the object-oriented
concepts for the first time during the course. Before the course their knowledge of
object orientation is only very basic and intuitive. After the course the new concepts
related to object and class are not always associated in a proper way. Second, growth
of knowledge occurs with an increase in misconceptions, as described below.

Although the worksheets concentrate on the object-oriented concepts, all the concepts
that have a significant increase in misconceptions are strongly related to object ori-
entation; whereas the only significant decrease in misconceptions is for a procedural
concept.

A closer look on the 0-rated associations to class and object show that in the pre-test
there are five misconceptions (number of occurrences in parentheses): parameter and
attribute are mixed up (5), assignment and initialization are mixed up (3), object is an
element of class (2), operator and method are mixed up (1), and object and class are
mixed up (2).

In contrast, in the post-test there are four misconceptions (again with the number of
occurrences in parentheses): object is element of class (8), object and class are mixed
up (4), attribute and attribute value are mixed up (2), and parameter and attribute are
mixed up (3).

Regarding these two lists a development of the misconceptions can be found. Fun-
damentally, there is an increase in the misconception that an object is contained in
a class. Furthermore, the concepts of object and class are mixed up. Instead, the
mixture of parameter and attribute decreases.

Besides class and object, the most misleading concept for students who are new to
programming seems to be parameter followed by attribute and method. Regarding
this group, mixing of the concepts attribute and parameter is the misconception that is
expressed the most in the investigated maps. This can be observed in both the pre-test
and the post-test.

Figures 7.23 and 7.24 show the comparison of the concepts connected with 2-rated
edges and the concepts with 0-rated edges for the pre- or post-tests.

190 7 Novices’ Object-Oriented Programming Knowledge and Abilities

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

0
0

rel. frequency

2
2

2

2
2

2
2

2
2

2
2

2

2
2

2

2

2
2

2
2

2

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.23:C
om

parison
ofthe

concepts
connected

w
ith

2-rated
edges

and
concepts

w
ith

0-rated
edges

in
the

pre-test

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 191

The differences between knowledge and misconception in the pre-test are of a wider
range (see Figure 7.23). With a significance level of 0.05 there are six concepts with a
significantly lower level of knowledge than the level of misconceptions: operators (0.04),
data type (0.03), parameter (0.01e-02), object orientation (0.02), object (0.01), and loop
(0.03e-01). It is noteworthy that for the concept attribute the significant difference is in
the other direction. Here, there are more maps with a “correct” (2-rated) connection than
maps with a “wrong” (0-rated) connection. There is obviously an intuitive understanding
of the concept. A closer look at the associations related to attribute show that almost
all associations are connections to object with the normalized label has. On the other
hand, there is the misconception of mixing up attribute and parameter in only a few
maps.

Generally, in the post-test the distribution of misconceptions follows the distribution
of knowledge (see Figure 7.24). So, whenever students know more about certain
concepts, they also make more mistakes in that area. This may partially be caused
by prominent concepts in the course material that students feel obligated to include in
their concept map, but the trend is rather obvious. Interestingly, the concepts with the
biggest differences are all related to the object-oriented paradigm. In particular, they
all have fewer representations of misconceptions than of knowledge (class, method,
data encapsulation, attribute, object orientation, object, and constructor). For the other
concepts, the differences are either small (for example, assignment, data type, or state)
or the concepts have even more representations of misconceptions than of knowledge
(for example, conditional statement, loop, or operator). As the materials of the course
give an introduction into the object-oriented paradigm, the increase in knowledge is not
surprising. Nevertheless, the differences between the concepts that have a theoretical
basis on the worksheets are represented with more knowledge in the concept maps.

192 7 Novices’ Object-Oriented Programming Knowledge and Abilities

0
0

0

0

0

0

0
0

0

0

0

0
0

0
0

0

0

0

0

0
0

rel. frequencies

2

2
2

2
2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

state(ST)

association(AC)

instance(IT)

class(CL)

method(ME)

encapsulation(DE)

operator(OP)

array(AR)

datatype(DT)

initialization(IS)

parameter(PA)

attribute(AT)

cond. statement(CS)

object−orientation(OO)

assignment(AG)

object(OB)

overloading(OV)

inheritance(IN)

loop(LO)

access modifier(AM)

constructor(CO)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.24:C
om

parison
ofthe

concepts
connected

w
ith

2-rated
edges

and
concepts

w
ith

0-rated
edges

in
the

post-test

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 193

7.5.4 Difference Between Knowing and Doing

The maps provide an externalization of the students’ knowledge related to the topics of
the course, whereas the code items provide a measurement of the students’ program-
ming abilities. The main focus of this subsection, is with finding a connection between
students’ knowledge and the program code they produced, as well as investigating
what influence any prior knowledge has. For combining the results of the knowledge
analysis with the analysis of the program code, a measure indicating whether or not
a student “knows” something about a concept is needed. As described in Section
7.4, the following basic measure was derived for this. If the concept map of a student,
for a given concept owns an incident edge with a score of 2, it is assumed that the
student “knows” something “correct” about the concept and the concept is scored with
1; otherwise with 0.

This is clearly a very basic measure and one might expect that the percentage of
maps fulfilling this criterion for a given concept is very large. However, as the concept
maps are rather small and sparse, it works well in practice. Using this measure, two
characteristic vectors for each concept map is achieved; for each concept a 1/0 score
indicates whether or not the map fulfills the criterion for that concept. Thus, averaging
the components of those vectors for each concept over all maps gives an estimator for
the probability that the students know something about that concept or that they have a
misconception about it.

By applying the scoring scheme to all concepts (see Section 7.4) on all code items of
the concepts used in the concept maps, it is possible to compare the program code
that indicates the application of the concepts to the concepts in the maps; this indicates
how well a concept is understood by the students. The results of this comparison are
shown in the Figures 7.25 and 7.26. For the post-test we plot the mean values of how
well the students understood a concept (k) in contrast to the score obtained from their
implementation of this concept (a).

The results in Figure 7.25 for students without prior experience fall into three categories:

(1) The two values are high and close together. This indicates concepts that, on
average, are understood well and implemented well. The core concepts of object-
oriented programming (attribute, method, and object) fall into this category.

(2) The two values are low and close together. This is the opposite of category 1.
Association, overloading, and inheritance belong to this category, which are the
more advanced object-oriented programming-related concepts.

(3) There is a gap between the two values. This includes all the concepts that are
related to procedural programming, as well as the more “technical” concepts
such as arrays and access modifiers.

Students with prior knowledge (see Figure 7.26) show almost exactly the same distri-
bution along the concepts; however, the gap is not as pronounced in all of the cases.

194 7 Novices’ Object-Oriented Programming Knowledge and Abilities

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

Mean−Value

k

k

k

k

k

k

k

k

k
k

k

k
k

k
k

k
k

access modifier(AM)

array(AR)

assignment(AG)

association(AC)

attribute(AT)

cond. statement(CS)

constructor(CO)

encapsulation(DE)

inheritance(IN)

initialization(IS)

loop(LO)

method(ME)

object(OB)

operator(OP)

overloading(OV)

parameter(PA)

state(ST)

0.0

0.2

0.4

0.6

0.8

1.0

F
igure

7.25:C
om

parison
ofthe

code
item

s
and

the
conceptm

aps
in

the
post-testofthe

students
w

ithoutprior
know

ledge.
Line

a
show

s
the

m
ean

values
ofthe

concepts
in

our
code

analysis.
Line

k
show

s
the

m
ean

values
ofthe

sam
e

concepts
in

the
conceptm

aps
ofthe

post-test.

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 195

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a
a

Mean−Value

k

k
k

k

k

k

k

k

k
k

k

k
k

k
k

k
k

access modifier(AM)

array(AR)

assignment(AG)

association(AC)

attribute(AT)

cond. statement(CS)

constructor(CO)

encapsulation(DE)

inheritance(IN)

initialization(IS)

loop(LO)

method(ME)

object(OB)

operator(OP)

overloading(OV)

parameter(PA)

state(ST)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig

ur
e

7.
26

:C
om

pa
ris

on
of

th
e

co
de

-it
em

s
an

d
th

e
co

nc
ep

t-
m

ap
s

in
th

e
po

st
-t

es
to

ft
he

st
ud

en
ts

w
ith

pr
io

r
kn

ow
le

dg
e.

Li
ne

a
sh

ow
s

th
e

m
ea

n-
va

lu
es

of
th

e
co

nc
ep

ts
in

ou
r

co
de

an
al

ys
is

.
Li

ne
k

sh
ow

s
th

e
m

ea
n-

va
lu

es
of

th
e

sa
m

e
co

nc
ep

ts
in

th
e

co
nc

ep
tm

ap
s

of
th

e
po

st
-t

es
t.

196 7 Novices’ Object-Oriented Programming Knowledge and Abilities

It is interesting to note that there are concepts of object orientation in both of the first
groups. This clearly shows that several object-oriented concepts (like inheritance) are
seemingly harder to grasp than the rest. The students actually are able to understand
and apply the basic concepts of object orientation after the course. However, this has
to be seen in relation to the actual programming project that the students were asked
to do: While an experienced programmer would certainly use inheritance for the task
at hand, it can also be solved using very little or no inheritance. This is reflected in
the fact that the students with prior knowledge were also not good at implementing
inheritance, but knew “something” about it.

Next, we take a closer look at the serious difference between the representation of
knowledge and its implementation in the code of the third group of concepts such as
conditional statement and loop. These concepts do not fit directly into the paradigm of
object orientation. Both concepts are implemented quite often in the code, but are not
often correctly integrated in the concept maps. As mentioned above, the majority of the
concepts have their origin in the object-oriented paradigm. Thus, it is quite difficult to
find the correct association for them, which may explain the low value in the concept
maps. However, it may just as well show that “understanding” concepts is not a trivial
task and that it takes considerably more time than learning to apply them. This is
supported by the fact that there are relatively more misconceptions for those concepts
in the post-test (see Section 7.5.3).

This indicates the inherent difficulty in learning object-oriented programming. There are
several groups of concepts that are all needed for the creation of an object-oriented
program, but those groups of concepts are showing radically different results even for
those students who had prior programming experience. There is a group of concepts
that is understood and applied well, a group that is only applied well, and a group that
is neither understood nor applied well.

Finally, there is an interesting observation on two very similar concepts; state, on the
one hand, and attribute on the other. As the state of an object is defined by its attributes,
nearly identical values are expected. This basically holds true for the implementation.
But, looking at the results of the knowledge post-test, a big difference in the values can
be seen. Here we clearly have the case of a concept that is being implemented by the
students, but not understood. It is not surprising that the students do not fully grasp the
concept of state transitions of objects after this particular course.

7.5.5 Common Questions

During the 2010 term the tutors were asked to record the questions they were asked
by the participants. The questions are categorized by their content, their relation to
programming, and the type of answer the tutor gave. To analyze the common questions
that the participants asked the tutors during the preprojects, the questions gathered
using the method described in Section 7.4 are first grouped by the concepts provided
in Table 7.4, as well as two additional categories for syntax errors (syntax) and other
relations such as graphical user interfaces (other).

7.5 Analysis of Novice Programmers’ Knowledge and Abilities 197

In addition to categorizing the questions by concepts, the questions are grouped by
the type of answer that was given by the tutors. Because of the binary coding of the
answers, 32 categories evolved for the five possible choices since all permutations are
valid. The tutors could have given answers that belong to multiple types.

After the general categorization of the questions described above, the questions
from the novice programmers without any previous knowledge or computer science
education in school are investigated. From the 182 questions we gathered during
the course, 89 questions are from novice programmers. To analyze the questions,
the representatives of the categories were counted. Table 7.13 shows the relative
frequencies for all participants and for the novice programmers by category.

Abbr. Category Rel. frequency Abbr. Category Rel. frequency

All Novices All Novices

AM access modi-
fier

0.022 0.011 IT instance 0 0

AR array 0.104 0.045 LO loop state-
ment

0.066 0.045

AG assignment 0.005 0 ME method 0.088 0.124
AC association 0.049 0.045 OB object 0.093 0.124
AT attribute 0.033 0.034 OO object orienta-

tion
0 0

CL class 0.044 0.034 OP operators 0.033 0.045
CS conditional

statement
0.049 0.079 OV overloading 0 0

CO constructor 0.049 0.056 PA parameter 0.027 0.034
DE data encapsu-

lation
0 0 ST state 0 0

DT data type 0.071 0.045 SY syntax 0.049 0.056
IN inheritance 0.005 0 OT other 0.164 0.157
IS initialization 0.049 0.067

Table 7.13: Relative frequencies of the questions by category for all participants and
for the novices group only

While the questions in general mainly cover the concepts of method, object, and array,
the novice programmers did not ask many questions on the concept array. The category
with the highest relative frequencies in both groups is other.

The distribution of the questions of all participants differs only slightly from the distri-
bution of the novice programmers. There is a non-significant difference between the
basic concepts of object orientation (such as method or object – which are contained in

198 7 Novices’ Object-Oriented Programming Knowledge and Abilities

more questions from the novices) and more complex concepts (such as array – which
are contained in more questions from all the participants).

Comparing the misconceptions from Section 7.5.3, a correlation is shown between
the relative number of questions posted to the tutor and the relative frequency of
misconceptions in the concept maps. For all participants the correlation is 0.58 and
for the novices alone it is 0.64. This could be an indicator that the tutors’ answers
were partly confusing. The correlation is weaker (0.35) between the questions and the
expressed knowledge (see Section 7.5.2) in the concept maps.

The report form of the questions the participants posed to the tutors give a clue of
what was happening during the course. According to the fact that the answer could be
given using different types of answers, the relative frequency add up to more than 1.
As Table 7.14 shows, for all participants two thirds of the questions were answered by
a hint, while almost all of the remaining questions were answered by simply showing
the appropriate code. On the other hand, the novices’ questions were answered in
equal parts by showing the appropriate code or presenting a hint. The simplest form of
help by pointing to the reference or the IDE’s integrate help is barely used. Additionally,
rarely is help provided by recommending the proper chapter in the online book. The
Java reference, which was only used in the groups with previous knowledge, was
recommended a few times.

Answer type Rel. frequencies

All Novices

hint 0.615 0.584
code 0.423 0.517
rec. book 0.016 0.011
rec. reference 0.06 0.022
rec. IDE-doc 0.11 0

Table 7.14: Relative frequencies of the questions by answer type for all participants
and the novice group only

7.6 Evaluation of Program Code using Psychometric
Models

As mentioned in Section 4.3, the item response theory is a common methodology
that is applied in human sciences for measurements. Usually, a test with several
evaluated items is conducted on a specific population. Afterwards, the items are
checked and parameters are calculated for the items and for the individuals of the
test. As programming, in general, is a complex task and refers to several cognitive
(and, therefore, latent) processes, the item response theory is applicable. In this

7.6 Evaluation of Program Code using Psychometric Models 199

section a new view on the evaluation of program codes is presented. Generally,
small programming tasks on a specific concept or code element are provided to the
participants of a programming or coding assessment. But, if the coding ability – in the
sense of a competency – must be evaluated, the tasks have to be more complex. The
interdependencies of different structure elements within a program code are of interest.

The code items defined in Section 7.4 can be seen as a partition of the observable
abilities needed for programming. During the preprojects the students were asked to
implement a small project on the basis of an assignment that did not include explicit
questions on programming. Nevertheless, the resulting program code contains the
responses to these questions. This is the reason why the code items can be assumed
to be the questions posed to the participants, even though they were not. The items
are adhered to, although they do not cover all concepts that would be assigned to the
programming ability, because the items are based on the concepts extracted from the
worksheets that are, again, the basis for the programming tasks.

All items are rated with either “yes” (1) or “no” (0), which leads to a dichotomous vector
for each participant. The resulting matrix is the basis for a latent trait model. Generally,
there are two major goals related to latent trait analysis. The first goal that has to be
achieved is the finding of a homogeneous itemset. So, either the number of latent
constructs is examined, or the itemset is reduced to fit a previous defined number of
latent constructs. In the latter case, this is usually only one construct if the number of
constructs of the complete itemset is unknown. The second goal is then to examine a
valid test framework that fits the assumed latent trait model. In this investigation, for
example, the item list is fitted to a Rasch model. The model is chosen because it is the
simplest model, if the preconditions are fulfilled. As mentioned below in Section 7.7, the
programming ability of a person is not uni-dimensional. Nevertheless, the investigation
is concentrated on the code items that were defined for the novice programmers’
investigation.

“Whether the questions, for example, use a multiple-choice, open-ended,
true-false, forced-choice, or filled-in-the-blank response format is irrelevant.
All that matters is that the data analyzed are dichotomous and that the
assumptions are tenable. The appropriateness of the model to the data is
a fit issue.” (Ayala 2009, p. 22)

After defining the code items and examining the program code, there are 350 datasets.
As some of the model-fitting tests (see Section 4.3.2) need separation criteria, only
the datasets with a survey are included in the investigation. This results in 321 final
datasets.

In a first step, all items that are related to the same structural element as others are
eliminated. For example, both ST1 and AT1 need a variable declaration in the code
to be 1-rated. More precisely, this affects the items AG1, ST1, ST2, ST3, and OB1.
So, for each structural element there is unique set of items.

As all the tests that rely on dividing the population or item set into two parts need
differing items in both parts of the population, the trivial items are removed in advance.
An item is said to be trivial if either almost all or almost none of the participants are rated

200 7 Novices’ Object-Oriented Programming Knowledge and Abilities

with (1). For that reason a limitation level of 0.01 is defined for this study. In particular,
this affects only the item OP1, which covers the use of an assignment operator.

Due to the large number of items at the beginning, the calculation of an exact test
on homogeneity is not possible (for example, the Martin-Löf test described in Section
4.3.2.1 or test statistics provided by Bartholomew (2008) (see Section 4.4)). Because
of that, the quasi-exact tests of Section 4.3.3 are applied. First, the item set is reduced
to those items that are homogeneous. More precisely, the resulting items have to be
uni-dimensional. According to Section 4.3.3, the modified test statistic T1m is applied
on the data.

Starting with the 33 items after the exclusion process, all items that violate the ho-
mogeneity criterion are eliminated. Therefore, the T1m statistic is iteratively applied
to the item set. This is necessary as the nonparametric tests operate on a set of
simulated matrices that are dependent on the result matrix (see Section 4.3.3). After
the elimination of several items, the result matrix changed.

In the first run the items DE1, OP2, IS1, AR5, CS2, CO1, AR4, CS3, OV1,
AR1, PA2, PA3, ME2, and IN1 violate the homogeneity presumption. The selection
criteria for which items are eliminated is the frequency of the violating items. Thus,
DE1 has the most violations, while IN1 has the least. In general, all pairs of violating
items are listed and the items are removed from that list one by one until the list is
empty; then, no violations are left. Afterwards, a new set of simulated matrices is
calculated based on the new item set. The second run results in elimination of AR3,
AR2, LO1, OB3, ME1, AC2, AT1, AT3, ME3, PA1, and AC1. Once again, the
items are ordered by their number of violations. After a third and fourth elimination run,
the items AM1 and CS1 are removed from the item set. In the end the remaining items
are homogeneous.

Now, as the item set has been reduced to six items, the exact tests of Section 4.3.2 can
be applied for justifying the nonparametric tests. The Martin-Löf test (Section 4.3.2.1)
is conducted on the resulting item set. Here, the p-value is 0.66. Thus, the items are
assumed to be homogeneous. After that, the two test statistics presented in Section
4.4 are calculated. For the general goodness-of-fit test statistic G2, a value of 62.1 is
the result. Additionally, the χ2 test statistic X2 results in a value of 139.4. Both are not
significant for 13 degrees of freedom to a level of 0.05 in the χ2-distribution. Again, the
H0-hypothesis is rejected and the items are assumed to be homogeneous.

Following the test on homogeneity, the test statistic T1 is applied to find the items that
violate local stochastic independence in the way of being too similar in their results.
Actually, only the item OB2 is dependent on another item and is, therefore, eliminated
from the results set. Last, the learning aspect of the local stochastic independence is
tested with the test statistic T1l. Here, no item violates the presumption.

The resulting item set with the items IN2, CO2, OP3, AT2, and OV2 is valid with
regard to the presumption of the Rasch model. After validating the presumptions of the
Rasch model, fitting of the data and a valid model are calculated for the given data.

The likelihood-ratio test (see Section 4.3.2.3) has a p-value of 0.50 for the first pre-
knowledge splitting criterion (pre-knowledge level 1 vs. pre-knowledge levels 2&3).

7.6 Evaluation of Program Code using Psychometric Models 201

The test is not significant and, because of that, the model is assumed to be valid. In
other words, the data fits the model. A look at the Wald test (see Section 4.3.2.4)
for the items also shows no significant model violations (p<0.05). For both tests we
have to assume a vector that splits the population into two parts. As mentioned in
Section 4.3.2, theoretically all possible splittings have to be tested. In reality, this is
not applicable. For this reason students’ self-assessments of the previous knowledge
(pk) concerning programming is chosen as a separator and, additionally, gender is
chosen to find differences. Regarding the students’ previous knowledge, to get two
groups two levels are put together and compared with a third level. Table 7.15 shows
all the p-values for the different splitting criteria. Gender as a separation criterion is not
applicable as only 19% of the participants were female. As mentioned by Koller and
Hatzinger (2013, p. 99), the two groups should be almost of equal size.

Item Previous knowledge Gender

Level 1 vs. 2&3 Level 2 vs. 1&3 Level 3 vs. 1&2

IN2 0.72 0.84 0.9 n.a
CO2 0.55 0.91 0.29 n.a
OP3 0.3 0.73 0.12 n.a
AT2 0.56 0.78 0.62 n.a
OV2 0.13 0.35 0.37 n.a

Table 7.15: The p-values of the Wald-test for different splitting criteria

Regarding the gender aspect, a closer look at the different items with separated
participant groups show the violations in the model fit. For that reason, all items are
split by gender. Afterwards for each group the items are tested if they are trivial. Due
to the small group size of the female participants, a ratio of 0.01 is too small as it
is less than one person. Because of that, the limit is set to 0.02, which means that
at least one person has to have a different answer than the others. The problem
occurs with the item OP3, where there is less than 0.02 different answers for the female
group. Additionally, the item IN2 has a value of only 0.03 for the female participants.
Nevertheless, this is not critical for the test. All other items have a distribution between
the answers of 0.3 and 0.7 (CO2 and OV2) and 0.5 for both groups (AT2).

The graphical model check plot (see Section 4.3.2.2) shows the item parameters with
separation of the two groups (see Figure 7.27). The separation criterion underlying this
plot is the splitting of the previous knowledge between those without any and those
with previous experience. Here, the two groups are almost of equal size with 180 to
141 participants in the corresponding groups. Again, the plot shows the difference
between the easiest and the most difficult, on the one hand, and the other items, on
the other hand. The confidence areas of those two items are much bigger than those
of the other items. This is the result of triviality of the items (many 1-ratings and almost
no 0-ratings or vice versa).

202 7 Novices’ Object-Oriented Programming Knowledge and Abilities

Figure 7.27: Graphical model check for all items in the Rasch model

As described in Section 4.3.1, the Rasch model is a one-parametric test model where
the items only differ in their level of difficulty. To show that another model with more
estimated parameters does not fit better, a two-parametric test model is calculated and
both models compared. All model comparison coefficients such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC) (Burnham and Anderson 2002)
have almost the same values. The two-parametric model provides no advantage by
introducing an additional parameter. Nevertheless, Figure 7.28 shows that there are
differences in the discrimination of the ICCs and that there are even two items that
seem to intersect. AT2 and OV2 are very narrow for a high probability. The person
parameters differ slightly between the two models, but the order of the items stays the
same.

After fitting the dataset to a valid Rasch model, the next paragraphs present the results
of the model. In Figure 7.29 the item characteristic curves for all items that are included
in the model are shown. According to the definition of the Rasch model, they only differ
in their level of difficulty. This is expressed in the figure by a shift on the x-axis, which
shows the latent parameter on a scale of -10 to 10. All curves are parallel and only
differ in the value of the latent parameter at the probability of 50% for rating a code
item with “yes” (1). The probability that an individual with a specific value of the latent
parameter has solved a specific item is drawn on the y-axis.

7.6 Evaluation of Program Code using Psychometric Models 203

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latent Dimension

P
ro

ba
bi

lit
y

to
 S

ol
ve

OP3
CO2
AT2
OV2
IN2

Figure 7.28: Item characteristic curves (ICC) of all items included in the 2PL model

By definition, the item parameters sum up to 0. The items OP3 and IN2 have values of
-5.4 and 5.0, respectively. The item that is closest to the average of 0 for the investigated
population is AT2 (0.84). The use of attributes of other classes, either direct or by
using a method, indicate participants with an average ability in coding, concerning the
investigated items. Interestingly, all items except AT2 and OV2 have the same distance
between each other. In general, Figure 7.29 presents a ranking of the items. The
simplest item is OP3, which represents the use of arithmetic operators. The underlying
concept is simple to code and all projects need calculations. As a result, the position
within the items is not surprising. The next concept in the ranking is CO2, which indicates
the use of a constructor or an initialization of an object. Again, the underlying concept
is easy, but the basic object-oriented notions have to be implemented as well. Next, the
items AT2 and OV2 indicate the use of interrelations between classes. As mentioned
above, the first one represents the use of foreign methods and attributes. The second
one represents the use of overloaded methods. Regarding the last item IN2 (use of
an own class hierarchy), these two items represent more advanced concepts of object
orientation. Thus, the item set contains representatives of simple coding concepts that
can be related to the procedural paradigm, as well as representatives of advanced
object-oriented notions.

204 7 Novices’ Object-Oriented Programming Knowledge and Abilities

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latent Dimension

P
ro

ba
bi

lit
y

to
 S

ol
ve

OP3
CO2
AT2
OV2
IN2

Figure 7.29: Item characteristic curves (ICC) of all items included in the Rasch model

In addition to the plot of the item characteristic curves, a ranking of the items by difficulty
can be seen in detail in Figure 7.30. The figure is divided into two parts, sharing the
x-axis where the latent parameter is shown on a scale from -5 to 5. The lower part of
the figure shows the item parameter for each item. The items are placed in ascending
order by the value of their item parameter. The upper part of the figure shows the
distribution of the person parameters on the latent dimension. The mean value of the
person parameters is 0.11; the median is -0.92.

In general, if the Rasch model is valid, the marginals of the underlying dataset are a
sufficient statistic. Because of that, each possible person score is related to a person
parameter (see Figure 7.31). For mathematical reasons the parameters for the margins
0 and 5 cannot be estimated, but have to be interpolated. An overview of the person
parameters and their distribution can be seen in Table 7.16.

7.6 Evaluation of Program Code using Psychometric Models 205

IN2

OV2

AT2

CO2

OP3

−5 −4 −3 −2 −1 0 1 2 3 4 5
Latent Dimension

●

●

●

●

●
ttx

Person
Parameter

Distribution

Figure 7.30: Item parameters ordered by difficulty and the distribution of person
parameters

Figure 7.31: Correlation of the person parameters to the raw score

206 7 Novices’ Object-Oriented Programming Knowledge and Abilities

Marginal
score

Person
parameter

Frequency

All Pre-knowledge
level 1

Pre-knowledge
level 2&3

0 -7.08 0.01 0.03 0
1 -3.91 0.18 0.28 0.09
2 -0.92 0.33 0.35 0.32
3 1.37 0.24 0.26 0.23
4 3.65 0.21 0.08 0.31
5 5.97 0.03 0.01 0.04

Table 7.16: Frequencies of the values of person parameters using the Rasch model,
as well as the marginal scores

Actually, there is a medium correlation (0.42) between the self-assessment of the
students’ previous knowledge and their person parameters (p-value� 0.01). Regarding
gender of the participants, females (-0.13) have a lower – but not significant – average
person parameter than male students (0.26). On the other hand, the self-assessment
has a significant difference (p-value� 0.01) in the person parameters. The students
with previous knowledge have a mean value of 1.06, while those without any previous
knowledge have a mean value of -0.93.

In addition to students’ previous knowledge and their gender, lines of code are another
measurement that can be conducted on the program code (see Section 7.4). In
particular, the projects differed a lot in their complexity. There were projects with only a
few lines of code (min. 6 LOC) and some with more than one thousand lines of code
(max. 1330 LOC) containing a GUI and other features . The mean value of project
size regarding the lines of code is 212.7 LOC. Figure 7.32 shows the distribution of the
project sizes in box plots for all participants, with and without previous knowledge. For
all participants, the median is 129 LOC, while the first quartile is 73 LOC and the third
is 275 LOC. Furthermore, the projects developed by those with previous knowledge
have significantly (p-value� 0.01) more lines of code. The mean value for those with
pre-knowledge is 253.2 LOC versus 160.7 LOC for those without pre-knowledge.

Regarding the person parameters of the Rasch model, there is no correlation (0.07) to
the lines of code. For that purpose the lines of code have been grouped together to
form four groups at the quartiles of the distribution.

Validation of the Rasch model is quite difficult. In contrast to the formal validation
that is described above, validating whether the items really measure the programming
ability as the latent dimension is hard to proof. In fact, the items only cover a part of
programming ability as some concepts that are not mentioned in the material for the
preprojects are missing. Additionally, the facet of problem solving that is a huge part of
the programming ability cannot be assessed by a simple structural analysis. There are

7.7 Threats to Validity 207

more threats to the validity of the presented research, which form the content of the
next section.

Figure 7.32: Box plots of the lines of code for the different previous-knowledge groups

7.7 Threats to Validity

Brooks (1980) published work on the problems of studying programmer behavior. The
aspects mentioned by Brooks are now discussed for the presented investigations.
The first issue mentioned includes choosing the participants of the study. On the
one hand, the participants should be representative for the population that is being

208 7 Novices’ Object-Oriented Programming Knowledge and Abilities

investigated. In the presented investigation this is not important since the results are
not extended to generality as the experimental setting is very specific. On the other
hand, the participants should be uniform with regard to their characteristics and abilities.
This issue is fulfilled in that the participants are all starting with their first semester.
Nevertheless, the participants did differ substantially in their previous knowledge and
ability. However, as the study is conducted with different groups that are themselves
homogeneous, and the fact that differences are found between those groups, there is
no problem with the investigated population.

The second issue mentioned by Brooks (1980) is the choice of materials that are
distributed during the experimental course. He mentions that the material should have
a relation to the real-world. The program code produced during the courses have only
a very limited number of lines with regard to real-world projects. However, as the study
mainly focuses on novice programmers, this does not have to be taken into account.
To address the problem of the large amount of available textbooks (see Section 6.4)
with all their advantages and disadvantages, the students are provided with particular
material that contains the required information. This possibly had an influence on the
results found. But again, this chapter should only show options of evaluating novice
programmers’ knowledge and abilities without generalizing the results found in the
investigated population. On the other hand, if the students had not received particular
materials, it would not have been possible to control the input that the students received.

The last issue addressed in Brooks’s paper (Brooks 1980) is the selection of an
appropriate measure. In the presented results there are three different types of measure.
The first one is the program code analysis. Here, the composition of simple code items
to concepts is worth a discussion. As no literature shows similar ways of doing a
code analysis, the composition had to be performed based on experts. A deductively
composed concept list would have been better. A further problem is the code items
themselves. Whether or not they really enclose all necessary aspects of programming
constructs could not be proven. Nevertheless, the method is the main focus in this
thesis. An interesting topic for future research is the validation of a general scoring
system for program codes that is based on code items (see Section 8.2).

Besides the code items, concept maps are used to investigate the representation of
cognitive knowledge of the participants. While concept maps are a proven tool, there
are still some open questions about how to apply them in order to get the best possible
results from students. The list of concepts have a major impact on the results. When
asking students to draw concept maps, the introduction given to them has a major
impact on the results. We provided the students with an exemplary concept map
(not related to CS) that was a little different from the usual concept maps, because it
had rather complex edge labels (almost complete sentences). To a great extent, the
students tried to replicate this kind of concept map in their own map. Therefore, it would
probably be best to provide the students with several examples that show a wide range
of possible concept map applications, so that they are free to choose which way best
expresses their knowledge. Additionally, it seems worthwhile to think about limiting the
possible edge labels to a predefined set. Doing so would simplify using the edge labels
as part of the analysis. As described by Hubwieser and Mühling (2011c), it seems like

7.7 Threats to Validity 209

a set of 10-15 edge labels would suffice when taking into account what the most typical
labels of the students have been.

The most interesting measure introduced in this thesis is the application of item
response theory on the program code. The first and major problem is the one-
dimensionality of the latent dimension. In a wider range we can state that all im-
plementations of the concepts together form a part of the programming ability a novice
programmer can have. However, looking at the different concepts, there are surely
different aspects. There are concepts that are really difficult (such as arrays) and there
are concepts that are less difficult, but the programmer has to recognize its benefit for
a better programming code. Therefore, there is an obvious second dimension where its
influence on the programming ability has to be investigated in future work (see Section
8.2).

Another problem we had when constructing the items after the code had been written
and the courses had taken place, was the dependence of some concepts to the
assignment that each participant had received. Some assignments forced specific
concepts such as inheritance, while others did not. Due to the results of the tests
we had to exclude some concepts that would have been interesting to investigate in
a further way. Therefore, in a future run of an assessment of programming abilities
applying item response theory, the assignments have to be chosen in a proper way so
that no concept has to be excluded due to the abovementioned reasons.

210 7 Novices’ Object-Oriented Programming Knowledge and Abilities

7.8 Summary

The evaluation of novice programmers’ knowledge and abilities is an important topic in
computer science education. The investigations of this very special group of participants
of programming courses were conducted in a special setting minimizing the influence
of instruction on the participants, as well as on the results. The minimally invasive
programming courses are a useful setting for investigating freshmen. By minimizing the
influence of instruction and increasing the amount of self-directed learning, the novice
programmers could be purely investigated (RQ5). As the results show, knowledge
gain is high even when there is no direct instruction. Another important result from
the presented investigations of novice programmers’ knowledge and abilities is the
gap between knowing and doing in programming. Cluster analysis (Sections 4.2) is a
good method for finding homogeneous groups and differences in knowledge of novice
programmers. Even if the programmers have the same previous knowledge, there are a
lot of differences in the development of the programming ability in general (see Section
7.5.1), as well as differences in knowledge gained on concepts related to programming
(see Section 7.5.2) or the misconceptions in that knowledge (see Section 7.5.3).
Depending on the direction of the course that builds the setting for the investigation,
there is a difference among the paradigms. However, no significant results could be
found to support that object-oriented programming is more difficult than the rest. On
the basis of the given material, it is not surprising that the concept maps of the post-test
tend to have more associations with the concepts related to object orientation. The
section on common questions (see Section 7.5.5) presents a methodology to gather the
information about what really bothers the novice programmers and where the difficulties
for this specific group are. All investigations addressing the knowledge and abilities of
freshmen show a variety of methods that can be applied for this purpose and answer
research question RQ6. According to research question RQ7, the differences between
knowing and applying concepts related to object-oriented programming (Section 7.5.4)
were investigated. It turned out that the novice programmers could apply concepts
without being able to integrate them in a concept map (see Section 4.1). Nevertheless,
there is one problem with programming at all; the rating of code is very difficult. The
application of the psychometric methods of the item response theory on program
code (see Section 7.6) provides an capability to rate the code as well as the concepts
underlying it. With a valid Rasch model for a set of code items, it is possible to
simply count the implemented items in the code. More precisely, the method enables
the investigation of the psychometric constructs that are relevant for programming,
especially, the coding ability (RQ8). In later research automatic testing and rating of
code should be possible. Further ideas about this topic that are not part of this thesis
are presented in Section 8.2.

7.8 Summary 211

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Minimally Invasive
Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

Th
eo

ry
R

es
ea

rc
h

Q
ue

st
io

ns

8 Conclusion

8.1 Summary

Chapter 5 shows that object orientation is present in all kinds of literature related to
educational basics such as standards, curricula, and competency models. Contrary,
object-oriented programming is often seen only as a tool and not as a topic itself.
Because of this, the representation of programming aspects is rather low. As men-
tioned in the section on further research, the development of a competency model
for programming in general and object-oriented programming in particular is one of
the challenges that have to be faced in the next years (RQ1). The question on the
proper methodology for introducing object orientation in an introductory course can be
seen as answered. Based on the conceptual change theory, a paradigm change from
the procedural to the object-oriented paradigm is very difficult. Because of that, the
objects-early approach is the one that has the lowest difficulty level and can be seen
as state of the art. Nevertheless, in literature the implementation of this approach is
still discussed and there is no consensus on the first language and environment (RQ2).

The second aspect of this thesis was to find a graphical representation for the concepts
of a specific topic and their interdependencies. The representation is especially useful
for definitions and specifications that are spread over a textbook or course materials. In
Chapter 6 the concept specification maps are introduced for that purpose (RQ3). The
small investigation on the textbooks that are recommended for introductory courses
around the world presented an application of the methodology. One result of this
analysis is that the three main textbooks are to a large extent similar. But, in detail,
small differences can be found, which can have an effect on the learning process;
especially the relations among the main concepts of object orientation (object, class,
method, and attribute). Some of the books associate the advanced concepts with
object, class, or method. This can have a direct influence on the learning process
(RQ4).

The minimally invasive programming courses (see Chapter 7) showed that object-
oriented programming can be taught with little instruction. The courses are an excellent
basis for research on novice programmers’ knowledge and abilities as the course
materials can be controlled in a better way than in a normal introductory course.
Nevertheless, there are some difficulties in the course design; for example, influence
of the tutors. Even with instruction not to instruct the participants, the exact influence
was not traceable. The self-directed learning approach was successful concerning the
self-assessment of the participants (RQ5). Additionally, the analysis of the produced
program code showed several results. The items constructed out of the given material

214 8 Conclusion

made it possible to conduct several methodologies on the code. First, the cluster
analysis of the novice programmers’ programming abilities is an applicable approach
for finding differences within the population. For example, this can be used for providing
different learning strategies to the examined groups. Additionally, faults in the instruction
or course materials can be found if no group applied a specific concept that should
have been used for the solution (RQ6).

The second analysis conducted on the programming results was the comparison of the
knowledge of object-oriented programming concepts and the abilities expressed by the
successful application of the code items. This analysis showed that there are several
concepts that are applied, but cannot be included in a knowledge structure on object
orientation. Furthermore, this combination of cognitive knowledge theory and code
analysis provides a useful tool for finding and especially identifying misconceptions in
the programming process (RQ7).

The most important result of this thesis is the proof that the application of the item
response theory and especially the Rasch modeling on program code is applicable.
After construction of implicit items out of the results produced by the participants of
the minimally invasive programming courses, a suitable item set was calculated. After
checking the homogeneity and the rejection of some items due to fitting reasons, a
set of items could be included in a logistic model. Because the courses were not
designed for that reason, the results cannot be generalized. However, the basic idea is
a success. If the programming task is designed for that purpose and the groups can be
compared with each other, and the whole model is proven by several populations, this
work can provide a clue for the development of a competency model for object-oriented
programming (RQ8).

Finally, the developed course design, the representation of concept structures in course
materials and literature, and the basic notions of a proven evaluation tool will not solve
the major problem of object-oriented programming. “Few computing educators of any
experience would argue that students find learning to program easy. Most teachers
will be accustomed to the struggles of their first year students as they battle in vain to
come to grips with this most basic of skills and many will have seen students in later
years carefully choosing options so as to minimize the risk of being asked to undertake
any programming” (Jenkins 2002, p. 53).

Although the paradigm shift has reached computer science education, the problems
remain in the missing compulsory subject in most countries. Generally, another
problem cannot be solved. The absence of proven methodologies makes it hard
to find generalizable results either for teaching or for evaluation reasons. Most research
is still on methodology. This thesis gives an overview on the state of object orientation
in education and provides a look at object orientation through the lens of computer
science education with some new implications from other subjects like the humanities.
Nevertheless, there are several options for further research that are described in the
last section.

8.1 Summary 215

Chapter5: Object-Oriented Programming
in an Educational Context

Chapter6: Visualizing the Basic Concepts of
Object-Oriented Programming

Chapter7: Evaluation of Novices' Object-Oriented
Programming Knowledge and Abilities

Th
eo

ry
R

es
ea

rc
h Minimally Invasive

Programming Courses

Analysis of Novice Programmers'
Knowledge and Abilities

Evaluation of Source Code

Concept Specification Maps

Object Orientation in Textbooks

Object Orientation in
Introductory Programming Courses

Object Orientation in
Competence Models

Object Orientation in
Standards and Curricula

Chapter2: Computer Science Background

History of
Object-Oriented

Paradigm

Basic Concepts of
Object Orientation

Chapter3: Educational Background

Constructivism Social Cognitive
Theory

Self Directed
Learning

Knoweldge
Organization

Cognitive Load
Theory

Chapter4: Methodological Background

Cluster Analysis

Item Response
Theory Concept Maps

RQ1: Which facets and concepts of object
orientation and/or object-oriented programming

are covered by common curricula, standards,
and competence models?

RQ2: How is object orientation or object-oriented
programming taught? What teaching approaches

are applied or proposed, and what are their
characteristics?

RQ3: How to represent logical interdependecies
between the concepts of object orientation?

RQ4: What interdependencies exist among the
object-oriented concepts in different textbooks?

RQ5: How to teach object-oriented programming
to novices with minimal instruction by a tutor and

a great amount of self-directed learning?

RQ6: How to evaluate knowledge and abilities
of novice programmers?

RQ7: Is there a difference between understanding
the concepts of programming and applying them?Q

ue
st

io
ns

RQ8: How to investigate the psychometric constructs
that are relevant for programming by evaluating

program code?

216 8 Conclusion

8.2 Further Research

8.2.1 Further Work on Concept Specification Maps

The concept specification maps were presented to provide an overview on the various
concepts around object orientation. Additionally, they were applied to analyze the
working materials of the minimally invasive programming courses.

For textbook or working material analysis, the maps have to be enhanced. The
development of methodology to find intersections within the maps is of great interest.
By applying such methodology, a quantitative analysis of materials could be done
based on concept specifications. Generally, the quantitative analysis can be enhanced.
This would propose some capabilities to compare courses or materials.

Another interesting aspect for future research on the concept specification maps is
the combination of the specification in the maps with an ontology such as the one
presented by Hubwieser and Bitzl (2010). If the ontology promotes time relations
between the concepts, the resulting map can propose wrong orders of the material or
difficulties during learning based on the materials given.

In addition to improving the maps, another aspect that is only a side effect of Chapter
6 is the systematic analysis of course materials proposed in introductory courses.
Even the small investigation conducted in this thesis showed a broad variety in the
recommended literature. An analysis of the textbooks and their fitting to the provided
concepts during the course would be an interesting research area to improve the
introductory courses and give an empirical founded recommendation of additional
materials for a specific topic. These recommendations can be given on the level of one
concept by using the concept specification maps.

8.2.2 Further Work on Evaluating Novice Programmers’
knowledge and abilities

Several ideas for analyzing and categorizing novice programmers’ knowledge and
abilities and object-oriented program code in general are shown in Chapter 7. These
ideas provide several possibilities for further research.

The code items that are the basis for the cluster analysis and the analysis based on the
item response theory have to be investigated more closely. The concepts examined
from the course materials were the basis for the items. But, there are further concepts
related to programming in general, especially if other programming paradigms, such as
the functional paradigm are taken into account. Furthermore, the creation of the items
out of the concepts has to be validated.

The Rasch modeling of the program code shows interesting aspects. As shown in
Section 7.6, the modeling does work, but, as expressed in Section 7.7, the selection of
the tasks needs some improvement. Based on a more extensive list of items, creation
of suitable tasks for a proven assessment tool should be possible. All the difficulties

8.2 Further Research 217

mentioned in Section 7.7 have to be taken into account for further research in this
area. Nevertheless, for moving towards competency models such as those presented
in Section 5.2, a tool to evaluate students’ programming abilities is very important.

Additionally, there are several code items that had to be excluded from the dataset due
to model violations. In future research it is important to find a way to either include
the concepts by identifying other code items or extend the investigated population.
Hubwieser and Mühling (2014) present an implementation of the latent trait analysis for
finding homogeneous item sets in a pool of items. Nevertheless, as there are numerous
combinations in this thesis’ item list of 34 items, the approach has to be improved to
handle all permutations. After that, an investigation of all homogeneous itemsets that
are included in the item list is an interesting area for further research.

Regarding the programming abilities, the role of computational thinking and especially
problem solving for the programming task, is of great interest. Here, investigating
the involved cognitive processes and their modeling is a serious challenge for further
research. More precisely, further research should aim to explore a multi-dimensional
model displaying all facets of programming. For that purpose, the research presented
in Section 7.6 conducts the basic approach.

Furthermore, the correlation of knowledge and abilities in programming purposes is
another interesting facet of this thesis. The ability facets can be measured with an
improved model similar to the one presented in Section 7.6. The aspect of knowledge
assessment through concept maps was investigated in detail by Mühling (2014).

Another aspect of the comparison of knowledge and abilities is the relation to the
taxonomy of Fuller et al. (2007) – as for some concepts, the ability to apply them
and the ability to interpret them are very different. The taxonomy is based on the
revised taxonomy of Bloom (Anderson and Krathwohl 2009). The cognitive process
dimension is divided into two dimensions. The first dimension represents the abilities
by “producing” cognitive processes; the other dimension represents the knowledge by
“interpreting” cognitive processes. The two dimensions are thought to be orthogonal.
Further research may be able to focus more on that taxonomy in order to obtain further
evidence of its validity in object-oriented programming.

A Concept Specification Map (CMS)

A.1 Abelson - Structure and Interpretation of
Computer Programs

220 A Concept Specification Map (CMS)

A.2 Deitel - How to Program Java

A.3 Eckel - Thinking in Java 221

A.3 Eckel - Thinking in Java

222 A Concept Specification Map (CMS)

A.4 Flanagan - Java in a Nutshell

A.5 Sedgewick - Introduction to Programming in Java 223

A.5 Sedgewick - Introduction to Programming in Java

224 A Concept Specification Map (CMS)

A.6 CSM - All books

226 B Minimally Invasive Programming Courses (MIPC)

B Minimally Invasive Programming
Courses (MIPC)

B.1 Worksheets MIPC

Technische Universität München

Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Programmier-
projekte

Prof. Dr. Peter Hubwieser
Marc Berges Vorprojekte WS10/11

Blatt 1
Allgemeine Hinweise und

Einführung in die
Übungsplattformen

I. HINWEISE
• Im Laufe des Projektes erhalten Sie vier Übungsblätter. Die Blätter enthalten jeweils

die notwendigen theoretischen Grundlagen, sowie die Teilaufgaben zur Erstellung des
Gesamtprojektes.

• Es werden drei verschiedene Projekte zur Auswahl gestellt. Diese unterscheiden sich im
Umfang und im Schwierigkeitsgrad.

• Die Übungsblätter sollen einzeln in einem selbst gewählten Tempo bearbeitet werden.

II. ENTWICKLUNGSWERKZEUGE

Im Laufe des Projektes werden Sie verschiedene Programme benutzen müssen. Um den
Einstieg zu erleichtern, sollen diese hier kurz vorgestellt werden. Im Aufgabenteil dieses
Blattes können Sie sich dann mit den einzelnen Werkzeugen vertraut machen.

BlueJ:
Als Entwicklungsumgebung für Java wird in dieser Veranstaltung BlueJ verwendet. Der
Vorteil dieser Entwicklungsumgebung liegt in der guten Übersicht über die verwendeten
Klassen. Es werden nicht nur die Klassen an sich dargestellt, sondern auch die
Assoziationen zwischen ihnen. Durch die Möglichkeit Objekte mit Mausclicks zu erzeugen
eignet sich BlueJ vor allem für die ersten Erfahrungen mit Objektorientierung.

StarUML:
StarUML ist ein Modellierungswerkzeug zum Erstellen von Klassendiagrammen. Diese
werden für die Modellierung des Projektes gebraucht. Mit Hilfe von Vorlagen und
Drag&Drop lassen sich die Diagramme sehr einfach zusammenbauen.

ObjectDraw:
Mit ObjectDraw lassen sich einfache Grafiken auf Basis von Grafikobjekten erstellen.
Diese Umgebung dient besonders dazu das Konzept von Objekten und Klassen zu
verdeutlichen.

Eclipse:
Eclipse ist eine sehr umfangreiche Entwicklungsumgebung für Java und andere
Programmiersprachen. Durch die Fülle an Funktionen ist sie als Einstiegsumgebung nicht
geeignet. Nach einiger Programmiererfahrung lässt sich allerdings sehr komfortabel damit
arbeiten.

B.1 Worksheets MIPC 227

III. PROJEKTAUSWAHL

Es werden folgende Projekte zur Auswahl gestellt:

1. Mastermind (leicht)
Ein Spieler legt zu Beginn einen vierstelligen geordneten Zahlencode fest, der aus
den zehn Ziffern zusammengesetzt ist. Ein weiterer Spieler versucht den Code
herauszufinden. Dazu setzt er einen gleichartigen Zahlencode als Frage. Auf jeden
Zug hin bekommt der Ratende die Information, wie viele Elemente er in Ziffer und
Position richtig gesetzt hat, bzw. wie viele zwar in der Ziffer, nicht aber in der Position
übereingestimmt haben. Ziel des Spiels ist es, so schnell wie möglich, jedoch in
höchstens zwölf Schritten, den Code zu erraten.

2. Ballsportmanager (mittel)
In diesem Projekt sollen die Ergebnisse einer Ballsportart angelegt und ausgewertet
werden können. Fußball würde sich als Sportart anbieten, es ist aber auch jede
andere Sportart mit mehreren Spielern und einem Punkteergebnis möglich. Im
Ballsportmanager sollen die Spiele angelegt und eine Ergebnistabelle ausgegeben
werden können. Ein Spiel wird immer von zwei Mannschaften bestritten und endet mit
einem Punkteergebnis. Ob ein Spiel unentschieden enden kann, hängt von der
Sportart ab. Die Mannschaften bestehen aus einer festen Anzahl an Spielern, zu
denen auch die Reservespieler zählen.

3. Kniffel (schwer)
Das bekannte Spiel Kniffel oder Yahtzee ist eines der meisterverkauften Würfelspiele
der Welt. Für das Spiel benötigt man fünf Würfel. In jeder Runde darf man bis zu drei
Mal hintereinander würfeln. Dabei darf man Würfel, die „passen“ zur Seite legen und
die restlichen neu werfen. Spätestens nach dem dritten Wurf muss man sich
entscheiden, welches Feld man mit dem Ergebnis bewerten will. Es gibt zwei Blöcke,
in die man das Ergebnis eintragen kann. Der erste Block ist der „Sammelblock“. Hier
werden die Würfel mit der passenden Augenzahl zusammengezählt und in das
entsprechende Feld eingetragen. Ist die Summe der Punkte aller sechs Felder größer
als 63, wird ein Bonus von 35 Punkten hinzugezählt. Der zweite Block beinhaltet die
Felder „Dreierpasch“, „Viererpasch“, „Full House“, „Kleine Straße“, „Große Straße“,
„Kniffel“ und „Chance“. Beim „Dreier-„ und „Viererpasch“ zählen alle Augen. Für das
„Full House“ gibt es 25 Punkte, für die „Kleine Straße“ 30 und für die „Große Straße“
40 Punkte. Die höchste Punktzahl (50) gibt es für den „Kniffel“. In „Chance“ können
alle Augen eingetragen werden. Gewonnen hat derjenige, der aus den beiden
Blöcken und dem Bonus die meisten Punkte erzielt hat.

IV. AUFGABEN

1. Starten Sie das Programm „ObjectDraw“ und machen Sie sich mit der Umgebung
vertraut.

2. Mit Hilfe der Klassen Rechteck, Linie und Kreis lässt sich in ObjectDraw ein
Fußballplatz mit Spielern zeichnen. Beobachten Sie die Veränderungen in den
Objektkarten. Dazu muss das Analysatorfenster geöffnet sein.

3. Starten Sie die Entwicklungsumgebung BlueJ und laden Sie das Beispielprojekt
„Shapes“. Dieses ist im Ordner „Examples“ im BlueJ-Verzeichnis zu finden.

4. Mit „Shapes“ lassen sich verschiedene grafische Objekte erzeugen und anzeigen.
Legen Sie sich eine Reihe von Objekten an und experimentieren Sie mit diesen,
indem Sie Farbe, Form und ähnliches ändern.

228 B Minimally Invasive Programming Courses (MIPC)

Technische Universität München

Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Programmier-
projekte

Prof. Dr. Peter Hubwieser
Marc Berges

Vorprojekte WS10/11

Blatt 2
Klassen, Attribute, Methoden

und Objekte

I. THEORIE

Auf dem ersten Blatt haben Sie bereits Objekte und Klassen kennen gelernt. Aber was
steht hinter diesen beiden Begriffen? In diesem Abschnitt sollen die wichtigsten Aspekte
der beiden Konzepte kurz erklärt werden. Im Anschluss daran beginnen Sie mit der
Umsetzung des Projektes.

Objekt:
Unsere „reale Welt“ besteht aus Objekten. Alles was wir sehen kann als Objekt bezeichnet
werden. Wenn diese Objekte elektronisch repräsentiert werden sollen müssen einige
Dinge beachtet werden. Als Beispiel soll hier ein blaues Dreieck betrachtet werden. Um
von einem konkreten Objekt sprechen zu können, müssen wir dem Computer mitteilen
welches Objekt gemeint ist. Dafür ist ein eindeutiger Bezeichner notwendig. In unserem
Beispiel lautet der Bezeichner „Dreieck1“. Ein Objekt hat einen bestimmten Zustand, der
durch seine Eigenschaften bestimmt ist. Diese Eigenschaften werden Attribute genannt.
Der Zustand eines Objektes lässt sich über Methoden ändern.

Attribut:
Attribute bezeichnen die Eigenschaften eines Objektes. Sie beschreiben den Zustand des
Objektes. Dieser wird durch die Attributwerte festgelegt. In unserem Beispiel ist das
Attribut farbe mit dem Attributwert blau belegt. Andere Attribute wären z.B. seitenlaenge,
winkel1, winkel2, winkel3. Die Werte der Attribute lassen sich über Methoden ändern. Um
klar zu machen, von welchem Attribut welches Objektes mit welchem Wert man spricht,
gibt es eine kurze Schreibweise, die sog. Punktnotation:

dreieck1.farbe = blau

Objektbezeichner Attributbezeichner Attributwert

dreieck1 : DREIECK

B.1 Worksheets MIPC 229

Methode:
Mit Hilfe von Methoden lassen sich die Attributwerte von Objekten verändern. Sie dienen
aber auch dazu zwischen Objekten zu kommunizieren oder Operationen auszuführen. Um
einer Methode Eingabewerte zu übergeben, können Argumente, sog. Parameter
angegeben werden. Als Schreibweise wird wieder die Punktnotation verwendet. Dem
Methodenname folgt dabei die Parameterliste in einer Klammer. Sind keine Parameter
notwendig, bleibt die Klammer leer, muss aber mit angegeben werden, um den
Unterschied zu den Attributen sicher zu stellen.

dreieck1.drehen(90)
dreieck1.spiegelnHorizontal()

Klasse:
Um festzulegen, welche Attribute ein Objekt haben kann ist es notwendig, die Objekte mit
gleichen Attributen (aber in der Regel unterschiedlichen Attributwerten)
zusammenzufassen. Mehrere gleichartige Objekte werden in einer Klasse beschrieben. Im
Beispiel mit dem blauen Dreieck ließen sich mehrere Dreiecke zu einer Klasse Dreieck
zusammenfassen. Sie alle haben die gleichen Attribute, aber unterschiedliche
Attributwerte. In der Klasse befindet sich also eine Art Konstruktionsplan für die
entsprechenden Objekte. Die Klasse ist keine Menge von Objekten und kann daher auch
ohne Objekte existieren. Auf Blatt1 haben Sie dies bereits erfahren können. Im Projekt
„Shapes“ sind beim Öffnen die Klassen „Circle“, „Canvas“, „Square“ und „Triangle“
vorhanden. Über den Aufruf des Konstruktors wurden dann Objekte der jeweiligen Klasse
erzeugt, die genau die vorgegebenen Attribute und Methoden der Klasse enthalten. Der
Konstruktor ist eine spezielle vordefinierte Methode. Mit ihm wird ein Objekt einer Klasse
erzeugt.

dreieck1 : DREIECK

dreieck1 : DREIECK

dreieck1.drehen(90)

dreieck1 : DREIECKdreieck1 : DREIECK

dreieck1.spiegelnHorizontal()

Objektbezeichner Methodenbezeichner Parameterliste

230 B Minimally Invasive Programming Courses (MIPC)

Das Prinzip der Datenkapselung:
Das zentrale Prinzip der Objektorientierung ist das Prinzip der Datenkapselung. Das heißt,
dass die Attribute und die zugehörigen Werte eines Objektes von außen (also von
anderen Objekten) nicht sichtbar sind. Die Attributwerte können nur mit Hilfe von
Methoden geändert werden. Dadurch kann sichergestellt werden, dass Attributwerte nur
auf geeignete Art und Weise geändert werden können. Objektorientierte
Programmiersprachen stellen entsprechende Zugriffsmodifikatoren zur Verfügung, um
private und öffentliche Attribute und Methoden zu kennzeichnen. Private
Attribute/Methoden sind nur im eigenen Objekt sichtbar. Öffentliche Attribute/Methoden
können von außen aufgerufen und gesehen werden. In Java werden private
Attribute/Methoden mit private und öffentliche mit public gekennzeichnet.

Darstellung von Klassen:
Eine übersichtliche Darstellung von Klassen lässt sich mit einem Klassendiagramm
realisieren. Angelehnt an die Sprache UML werden Klassen als Rechtecke dargestellt, die
in drei Teile geteilt sind. Im oberen Teil steht der Bezeichner der Klasse. Darunter folgt die
Liste der Attribute mit dem Datentyp, den das Attribut hat. Der Datentyp schränkt die
Werte ein, die ein Attribut annehmen kann. Die Attributwerte haben in einer Klasse
natürlich nichts zu suchen. Zusätzlich werden vor dem Attributbezeichner die
Zugriffsrechte angegeben. Für private schreiben wir ein Minus, für public ein Plus. Im
untersten Teil werden die Methoden mit Parameterliste und eventuellem Rückgabetyp
angegeben. Auch hier werden die Zugriffsrechte durch ein Minus, bzw. Plus
gekennzeichnet. Will man einen Zusammenhang zweier Klassen darstellen, werden die
Klassen durch eine einfache Linie verbunden. Auf der Linie steht der Bezeichner der
Assoziation. Die Richtung wird durch einen Pfeil (am Computer durch „größer“, bzw.
„kleiner“) dargestellt.

dreieck2 : DREIECKdreieck1 : DREIECK

Klasse DREIECK

Auto

-linkesVorderrad: Rad
-rechtesVorderrad: Rad
-linkesHinterrad: Rad
-rechtesHinterrad: Rad

+fahren()

Rad

-luftDruck: Integer

+getLuftDruck(): Integer
+setLuftDruck(druck: Integer)

enthält >

B.1 Worksheets MIPC 231

II. AUFGABEN

1. In BlueJ gibt es die Möglichkeit auf erstellte Objekte mit Hilfe der Punktnotation
Einfluss zu nehmen. Aktivieren Sie die Funktion „Code Pad“ im Menü „View“ und
versuchen Sie die Farbe und Form ihrer Objekte zu verändern, indem sie die
Methoden mit Hilfe der Punktnotation aufrufen.

2. Lesen Sie sich die Aufgabenstellung auf Blatt1 aufmerksam durch und versuchen
Sie die beteiligten Objekte mit Ihren Attributen zu identifizieren. Erstellen Sie eine
Liste mit den Objekten.

3. Versuchen Sie nur aus der Liste in Aufgabe2 die benötigten Klassen zu
verallgemeinern.

4. Öffnen Sie ein neues Projekt in StarUML und zeichnen Sie Ihre ermittelten Klassen
in das Diagramm.

5. Überlegen Sie sich, mit welchen Attributen Sie die Klassen charakterisieren wollen
und fügen Sie sie in Ihr Klassendiagramm ein.

6. Im nächsten Schritt müssen die Assoziationen zwischen den Klassen dargestellt
werden. Zeichnen Sie diese in Ihr Diagramm ein.

7. Zur Vervollständigung des Modells fehlen noch die Aktionen, die die Objekte
ausführen können. Überlegen Sie sich welche Methoden die einzelnen Klassen
enthalten sollen und vervollständigen Sie Ihr Modell.

232 B Minimally Invasive Programming Courses (MIPC)

Technische Universität München

Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Programmier-
projekte

Prof. Dr. Peter Hubwieser
Marc Berges

Vorprojekte WS10/11 Blatt 3

Umsetzung in Java

I. THEORIE
Klasse:
Eine Klasse wird mit dem Schlüsselwort class eingeleitet. Darauf folgt der
Klassenbezeichner. Dieser wird üblicherweise groß geschrieben. In geschweiften
Klammen eingeschlossen folgt der Klassenrumpf mit Attributen, Konstruktoren und
Methoden.

Konstruktor:
Der Konstruktor dient zum Erstellen von Objekten. Er ist die erste Methode, die aufgerufen
wird, wenn das Objekt erstellt wird. Als erstes steht der Klassenbezeichner. Darauf folgen
die Parameterliste in runden Klammern und die Anweisungen in geschweiften Klammern.
Jede Anweisung muss mit einem Strichpunkt von der nächsten getrennt werden.

Attribute:
Attribute werden in Java in folgender Reihenfolge deklariert. Zuerst steht der
Zugriffsmodifikator. Daran anschließend folgt der Datentyp. Als letztes folgt der
Attributbezeichner, der üblicherweise mit einem kleinen Buchstaben beginnt. Um eine
bessere Übersichtlichkeit zu gewährleisten, beginn jedes Teilwort mit einem
Großbuchstaben. Will man dem Attribut einen Standardwert zuweisen, ist dies im
Anschluss an den Attributbezeichner möglich.

Methoden:
Die Methodendeklaration in Java ist wie folgt aufgebaut. Soll die Methode einen
Rückgabewert bereitstellen ist der Datentyp der Rückgabe zu Beginn der Deklaration

class Klassenbezeichner

public

private

{ }

Attributdeklaration

Konstruktordeklaration

Methodendeklaration

Klassenbezeichnerpublic { }

Anweisungen

()

Parameterliste

Datentypprivate ;Attribut-/Variablenbezeichner

B.1 Worksheets MIPC 233

aufzuführen. Ansonsten wird mit dem Typ void angezeigt, dass keine Rückgabe zu
erwarten ist. Danach folgt der Methodenbezeichner. Auch dieser wird wie die Attribute
üblicherweise mit einem Kleinbuchstaben begonnen. Jedes Teilwort beginnt dann wieder
mit einem Großbuchstaben. Nach dem Namen folgen die Parameterliste in runden und die
Anweisungen der Methode in geschweiften Klammern. Ist im Methodenkopf ein
Rückgabewert definiert worden, muss im Methodenrumpf eine explizite Rückgabe mit der
return-Anweisung erfolgen. Mit dem Schlüsselwort return, gefolgt vom eigentlichen
Rückgabewert, wird die Methode beendet. Nachfolgender Code wird nicht mehr
berücksichtigt. Methoden können auch gleich heißen, müssen sich dann aber in der
Parameterliste unterscheiden. Diesen Fall nennt man überladen. Dies ist auch bei den
Konstruktoren möglich.

Zugriffsmodifikatoren:
In Java ist es möglich verschiedene Sichtbarkeitsbereiche für Attribute, Klassen und
Methoden zu definieren. Die zwei wichtigsten sind private und public. Mit private
versehene Attribute, Methoden oder Klassen sind nur innerhalb der Klasse sichtbar. Von
außerhalb kann darauf nicht zugegriffen werden. Dieser Modifikator ist vor allem für die
Kapselung in der Objektorientierung wichtig. Mit public werden die entsprechenden
Elemente von außen sichtbar gemacht.

Datentypen:
In Java gibt es drei Arten von Datentypen. Zum einen die sog. primitiven Datentypen.
Dazu zählen unter anderem die ganzen Zahlen (int), Fließkommazahlen (double),
Zeichen (char) und Wahrheitswerte(boolean). Die zweite Gruppe leitet sich direkt von
diesen Datentypen ab. Es sind die sog. Wrapper-Klassen. Dieses sind die
objektorientierten Varianten der primitiven Datentypen. Bis auf int und char bleiben die
Typbezeichner gleich, werden aber groß geschrieben. Für int lautet die entsprechende
Wrapper-Klasse Integer, für char ist es Charakter. Die dritte Art sind die Objekttypen.
Dabei kann jede Klasse als Datentyp verwendet werden. Der bekannteste Vertreter dieser
Gruppe ist die Zeichenkette, also der Datentyp String.

Felder:
Java bietet die Möglichkeit Felder mit bekannter Länge und von einem Datentyp
anzulegen. Dabei ist es egal, ob es sich um primitive Datentypen oder Objekttypen
handelt. Die Deklaration der sog. Arrays erfolgt über das Anfügen von eckigen Klammern
nach dem Datentyp. Um das Feld nutzen zu können, muss die Länge definiert sein. Dies
kann gleich bei der Variablendeklaration, oder auch später geschehen. Der Syntax dafür
ist eine Zuweisung gefolgt vom Datentyp und eckigen Klammern, in die die Länge
eingetragen wird. Die Elemente können mit dem Attributbezeichner gefolgt von eckigen
Klammern, die den Index des Elements enthalten, aufgerufen werden. Der Index startet
bei 0.

Rückgabetyp

public

private

{ }

Anweisungen

Methodenbezeichner ()

Parameterliste

45

0

23

1

2

2

67

3

4

4

Integer[] a

Index:

234 B Minimally Invasive Programming Courses (MIPC)

Wertzuweisung:
Für die Wertzuweisung schreibt man den Attributbezeichner gefolgt von = und dem Wert,
der zugewiesen werden soll. Es ist auch möglich, einen weiteren Attributbezeichner oder
eine Zelle eines Feldes anzugeben. Java verwendet dann automatisch den Attributwert.

Klassenbezug this:
Mit this kann auf die eigene Klasse Bezug genommen werden. Dies ist besonders dann
nützlich, wenn in einer Methode die Parameter denselben Bezeichner haben, wie Attribute
der Klasse. Um dann klar darzustellen, welcher Bezug wie hergestellt werden soll, muss
this eingesetzt werden.

II. BEISPIELKLASSE

/**
 * Write a description of class TestClass here.
 *
 * @author (your name)
 * @version (a version number or a date)
 */

public class TestClass
{
 // Attribute

 private int beispielAttribut; //Der Datentyp ist int
 private int[] beispielArray;

 /*
 * Dies ist ein mehrzeiliger Kommentar vor dem Konstruktor
 */

 //Der Konstruktor trägt denselben Namen wie die Klasse

 public TestClass()
 {

// Im Konstruktor können z.B. die Attribute mit Initialwerten
//versehen werden
//mit this wird auf das eigene Objekt verwiesen

 this.beispielAttribut = 0;
 this.beispielArray = int[5];
 this.beispielArray[0] = 2;
 }

 /**
 * Dies ist ein Kommentar im JavaDoc-Format
 *
 * @param y a sample parameter for a method
 * @return the sum of x and y
 */

;Attribut-/Variablenbezeichner = neuer Attributwert

Methodenaufruf
this ;

Attributname

.

B.1 Worksheets MIPC 235

 public int beispielMethode(int y)
 {
 //die Methode liefert die Summe von beispielAttribut und dem
 // Produkt der ersten Zelle des Arrays und y zurück,
 //die vorher in eine lokale Variable gespeichert wurde

 int produkt = this.beispielArray[0] * y;

 int summe = this.beispielAttribut + produkt;
 return summe;
 }

 public int getBeispielAttribut()
 {
 return this.beispielAttribut;
 }
}

III. AUFGABEN

1. Öffnen Sie BlueJ und legen Sie ein neues Projekt an.
2. Mit der Schaltfläche „Neue Klasse“ lassen sich neue Klassen erzeugen. Legen Sie

die Klassen aus Ihrem Modell an.
3. Im nächsten Schritt müssen die Attribute hinzugefügt werden. Öffnen Sie dazu die

entsprechende Klasse mit einem Doppelklick und fügen Sie die Attribute vor dem
leeren Konstruktor ein.

4. Als weiterer Schritt sollen nun die Methoden ergänzt werden. In einem ersten
Schritt werden dazu die Methodenköpfe mit leeren Methodenrümpfen geschrieben.
Bei den Methoden mit Rückgabewerten müssen Sie eine return-Anweisung mit
angeben.

5. In einem letzten Schritt programmieren Sie bitte die get- und set-Methoden aus.
Dazu schreiben Sie bitte in den get-Methoden den Rückgabewert und in den set-
Methoden die Zuweisung der Attributwerte.

236 B Minimally Invasive Programming Courses (MIPC)

Technische Universität München

Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Programmier-
projekte

Prof. Dr. Peter Hubwieser
Marc Berges

Vorprojekte WS10/11

Blatt 4
Algorithmen und
Kommunikation

I. THEORIE
Algorithmus:
Algorithmen beschreiben das eindeutige Vorgehen zum Lösen eines Problems. Dabei
werden Eingaben in einer endlichen Zahl von Schritten in eine Ausgabe gewandelt. Das
klassische Beispiel ist das Kochrezept, wo man die Zutaten als Eingabe und das fertige
Gericht als Ausgabe hat. In der Informatik funktioniert das Definieren von Algorithmen auf
ganz ähnliche Art und Weise. Zuerst muss das Problem klar dargestellt werden. Dann
muss geklärt werden, was die Eingabegrößen sind. Dann wird das Vorgehen in kleinen
Schritten beschrieben. Am Ende steht die Ausgabegröße. Um Algorithmen graphisch
darzustellen, gibt es mehrere Möglichkeiten. Zwei davon sollen hier kurz dargestellt
werden. Die erste Möglichkeit ist das Struktogramm. Dabei werden alle Elemente eines
Algorithmus als Blöcke dargestellt, die ineinander verschachtelt werden können. Folgende
Blöcke sind möglich:

Anweisung

wiederhole n mal

Sequenz

while Bedingung

Sequenz

Anweisung 1

Anweisung 2

Anweisung 3

.

.

.

Anweisung n

Bedingung

true false

Sequenz 1 Sequenz 2

einfache Anweisung Sequenz

Wiederholung mit fester Anzahl

Wiederholung mit Bedingung
bedingte Anweisung

B.1 Worksheets MIPC 237

Die zweite Möglichkeit ist das Ablaufdiagramm. Hier sind folgende Elemente zu
verwenden:

Methodenaufruf:
Beim Aufruf von Methoden wird die Punktnotation verwendet. Zuerst kommen der Attribut-
bzw. Variablenbezeichner, dann der Methodenbezeichner und schließlich die
Parameterwerte, die übergeben werden sollen. Diese müssen in der richtigen Reihenfolge
angegeben werden. Soll eine Methode der eigenen Klasse aufgerufen werden, kann der
Attribut- bzw. Variablenbezeichner weggelassen, oder durch this ersetzt werden.

Start

Ende

Anweisung

Bedingung

Ein-/Ausgabe

Standardblöcke

Anweisung 1

Anweisung 2 Anweisung 2Anweisung 1

Bedingung
true false

Folge von Anweisungen Anweisung mit Bedingung

Anweisung mit Schleife

Bedingung

Anweisung

false

true

Methodenbezeichner ;

ParameterwerteAttribut-/Variablenbezeichner .

()

238 B Minimally Invasive Programming Courses (MIPC)

Erzeugen von Objekten:
Um mit Attributen oder Variablen von Objekttypen arbeiten zu können, müssen diese
Objekte zuerst erzeugt werden. Dies geschieht, indem dem Attribut oder der Variablen
eine neues Objekt zugewiesen wird, das mit dem Operator new, gefolgt vom
Klassennamen und den durch den Konstruktor geforderten Parameterwerten in runden
Klammern, erzeugt wird. Eine Ausnahme bildet der Objekttyp String, bei dem kein Objekt
explizit erzeugt werden muss. Dies geschieht automatisch, wenn dem Attribut bzw. der
Variablen eine Zeichenkette zugewiesen wird.

main-Methode:
Um ein Programm außerhalb von BlueJ starten zu können ist es nötig, eine Methode zu
definieren, die beim Start ausgeführt wird. Dies ist in Java die main-Methode. Ist diese in
einer Klasse enthalten, kann die Klasse ausgeführt werden. Die main-Methode hat immer
den gleichen Rumpf. Der Inhalt kann dann individuell angepasst werden. Unter anderem
können hier die ersten Objekte erzeugt werden und der Ablauf des Programms definiert
werden.

if-Anweisung:
In Java wird eine Fallunterscheidung durch das if-Konstrukt dargestellt. Es gibt zwei
Varianten. Eine mit und eine ohne Alternative. Wenn keine Alternative vorgesehen ist, wird
der entsprechende Teil einfach weggelassen. Die if-Anweisung startet mit dem
Schlüsselwort if. Darauf folgend steht die Bedingung in runden Klammern. Die Bedingung
muss ein boolscher Ausdruck sein, d.h. er muss mit wahr oder falsch zu beantworten sein.
Nach der Bedingung kommen die durchzuführenden Anweisungen in geschweiften
Klammern. Ist eine Alternative gewünscht, steht jetzt das Schlüsselwort else gefolgt von
den Anweisungen der Alternative wieder in geschweiften Klammern.

Schleifen:
Java bietet drei verschiedene Schleifenarten. Die erste ist die Wiederholung mit
Anfangsbedingung. Bei dieser Schleifenart wird die angegebene Bedingung zu Beginn
eines jeden Durchlaufs geprüft. Ist die Bedingung erfüllt, werden die Anweisungen der
Schleife ausgeführt. Ist sie nicht erfüllt, ist die Schleife beendet. Die Wiederholung wird mit

Klassenbezeichnernew ;

Parameterwerte

()

public)(static void main String[] args

Anweisungen{ }

Bedingungif Anweisung() { }

else Anweisung{ }

B.1 Worksheets MIPC 239

dem Schlüsselwort while eingeleitet. Darauf folgen die Bedingung in runden Klammern
und die Anweisungen der Schleife in geschweiften Klammern. Die zweite Schleife ist die
Wiederholung mit Endbedingung. Sie ist ähnlich aufgebaut wie die erste Schleife, die
Bedingung wird jetzt allerdings erst am Ende des Schleifendurchlaufs geprüft. Ist die
Bedingung erfüllt, kommt es zu einem weiteren Durchlauf. Ist sie es nicht, ist die Schleife
beendet. Diese Schleife beginnt mit dem Schlüsselwort do, gefolgt von den Anweisungen
in geschweiften Klammern. Am Ende steht das Schlüsselwort while, gefolgt von der
Bedingung in runden Klammern. Die letzte Schleife ist die Wiederholung mit fester Anzahl.
Genau genommen ist es nur eine abkürzende Schreibweise der Wiederholung mit
Anfangsbedingung. Die for-Schleife beginnt mit dem Schlüsselwort for. In der darauf
folgenden runden Klammer stehen folgende Elemente in fester Reihenfolge. Zuerst wird
eine Schleifenvariable initialisiert. Von einem Strichpunkt getrennt folgt dann die
Bedingung, die zum Ende der Schleife führt. Das letzte Element in der Klammer gibt den
Ausdruck an, mit dem die Schleifenvariable nach jedem Schritt angepasst werden soll.
Nach dieser runden Klammer folgen die Anweisungen in geschweiften Klammern.

Operatoren:
Java stellt eine ganze Reihe von Operatoren zur Verfügung. Zunächst einmal seien die
mathematischen Operatoren genannt. Die Addition und Subtraktion werden ganz normal
mit + und – dargestellt. Die Multiplikation wird durch *, die Division durch / repräsentiert.
Zusätzlich gibt es eine Möglichkeit, den Rest einer Division mit % zu berechnen. Als
Kurzschreibweisen für das Erhöhen bzw. Verringern einer ganzen Zahl gibt es die
Operatoren ++ und --. Die Zuweisung ist wie schon im letzten Blatt erwähnt mit =
umgesetzt. Eine weitere große Gruppe bilden die logischen Operatoren. Hier ist an erster
Stelle der Vergleichsoperator == zu erwähnen. Die Größenvergleiche werden ganz normal
durch <, <=, >= und > umgesetzt. Ungleich wird mit != dargestellt. Der Operator ! bildet die
Verneinung. && verknüpft zwei logische Ausdrücke mit UND, || zwei Ausdrücke mit
ODER.

Bedingungwhile Anweisungen() { }

Bedingungdo Anweisungen (){ } while

Initialisierungfor

Anweisungen

(;

{ }

Bedingung ; Anpassung)

while-Schleife

do-while-Schleife

for-Schleife

;

240 B Minimally Invasive Programming Courses (MIPC)

Standardausgabe:
Um eine Textausgabe auf der Konsole zu bewerkstelligen, gibt es in Java die
Standardausgabefunktion. Der Syntax lautet System.out.println(), wobei in die runden
Klammern der Ausgabetext geschrieben werden muss.

Benutzereingabe:
Die Benutzereingabe ist in Java nur schwer möglich. Um den Vorgang der Eingabe zu
vereinfachen gibt es eine Klasse In.java. Hier werden diverse Methoden zu Verfügung
gestellt, mit denen die unterschiedlichsten Werte eingelesen werden können. Die
häufigsten Aufrufe sollen hier kurz erwähnt werden: In.readBoolean() – In.readChar() –
In.readDouble – In.readInt() – In.readString.

II. AUFGABEN

1. Ermitteln Sie die Algorithmen Ihres Projektes. Überlegen Sie sich dazu für alle
Methoden, die nicht nur Attributwerte setzen oder zurückgeben, was diese machen
sollen. Schreiben Sie sich zu jedem Schritt, den die Methode durchführen soll einen
kurzen Satz auf. Bei Wiederholungen oder Bedingungen empfiehlt es sich mit
Zeilennummern zu arbeiten.

2. Nehmen Sie die Beschreibungen aus Aufgabe 1 und erstellen Sie jeweils ein
Strukogramm oder ein Ablaufdiagramm.

3. Anhand der Beschreibungen und Diagramme aus den letzten beiden Aufgaben
lassen sich die gewünschten Funktionen gut in Java umsetzen. Vervollständigen
Sie nun Ihren Quelltext und probieren Sie die einzelnen Methoden mit BlueJ aus.
Wenn Fehler auftreten, machen Sie sich Gedanken, wie Sie den Fehler möglichst
schnell finden können.

4. Damit das Programm auch ohne BlueJ laufen kann ist es nötig die Hauptklasse mit
einer main-Methode auszustatten. Schreiben Sie eine solche Methode und führen
Sie das Programm von der Konsole aus. Informationen dazu können Sie im Internet
recherchieren.

5. Wenn Ihr Programm sicher läuft, fehlt ihm nur noch ein passendes Gewand. Wenn
Sie noch Zeit haben, versuchen Sie doch einmal eine Benutzeroberfläche zu
erstellen. Auch hier kann die Internetrecherche weiterhelfen.

Ausdruck

System.out.println ;()

B.2 Specifications of the Worksheets 241

B.2 Specifications of the Worksheets

Id Specification Specified
Concept

Specifying
Concepts

1 Ein Objekt hat einen bestimmten Zustand, der durch
seine Eigenschaften bestimmt ist. Diese Eigen-
schaften werden Attribute genannt. Der Zustand
eines Objektes lässt sich über Methoden ändern.

Objekt Zustand
Attribut
Methode

2 Attribute bezeichnen die Eigenschaften eines Ob-
jektes. Sie beschreiben den Zustand des Objektes.
Dieser wird durch die Attributwerte festgelegt.

Attribut Objekt
Zustand

3 Die Werte der Attribute lassen sich über Methoden
ändern

Attribut Methode

4 Mit Hilfe von Methoden lassen sich die Attributwerte
von Objekten verändern

Methode Objekt
Attribut

5 Sie dienen aber auch dazu zwischen Objekten zu
kommunizieren oder Operationen auszuführen.

Methode Objekt

6 Um einer Methode Eingabewerte zu übergeben, kön-
nen Argumente, sog. Parameter angegeben werden

Methode Parameter

7 Um festzulegen, welche Attribute ein Objekt haben
kann ist es notwendig, die Objekte mit gleichen
Attributen (aber in der Regel unterschiedlichen At-
tributwerten) zusammenzufassen. Mehrere gleichar-
tige Objekte werden in einer Klasse beschrieben

Klasse Objekt
Attribut

8 In der Klasse befindet sich also eine Art Konstruk-
tionsplan für die entsprechenden Objekte. Die
Klasse ist keine Menge von Objekten und kann da-
her auch ohne Objekte existieren.

Klasse Objekt

9 Der Konstruktor ist eine spezielle vordefinierte Meth-
ode. Mit ihm wird ein Objekt einer Klasse erzeugt.

Konstruktor Methode
Objekt
Klasse

10 Das zentrale Prinzip der Objektorientierung ist das
Prinzip der Datenkapselung. Das heißt, dass die
Attribute und die zugehörigen Werte eines Objektes
von außen (also von anderen Objekten) nicht sicht-
bar sind. Die Attributwerte können nur mit Hilfe
von Methoden geändert werden. Dadurch kann
sichergestellt werden, dass Attributwerte nur auf
geeignete Art und Weise geändert werden können.

Daten-
kapselung

Attribut
Objekt
Methode

11 Der Konstruktor dient zum Erstellen von Objekten.
Er ist die erste Methode, die aufgerufen wird, wenn
das Objekt erstellt wird.

Konstruktor Objekt
Methode

242 B Minimally Invasive Programming Courses (MIPC)

B.3 Questionnaire MIPC

Umfrage zu den Vorprojekten

Wintersemester 2010/11

Personendaten:

Geschlecht: männlich weiblich

Alter: unter 20 20 – 25 über 25

Studiengang: Informatik Wirtschaftsinformatik Bioinformatik

 LA Informatik anderer:_____________________

Block: 1 2 3 4

Vorkenntnisse: ohne schon programmiert schon objektorientiert programmiert

Schulausbildung Leistungskurs Grundkurs Pflichtfach Wahlfach keine
Informatik:

Herkunft/ BE BB BW BY HB HH HE MV NDS NRW
Bundesland: RP SA SH SL SN TH Ausland:__________________

Veranstaltung:

Fanden Sie die Ankündigung rechtzeitig?

rechtzeitig zu spät/früh

Wie fanden Sie die Organisation?

gut schlecht

Waren Sie mit dem Ablauf zufrieden?

zufrieden nicht zufrieden

Wie haben Sie die Gruppengröße empfunden?

zu groß zu klein

Blätter:

Wie haben Sie den Informationsgehalt der Arbeitsblätter empfunden?

hoch niedrig

Wie verständlich waren die Informationen auf den Arbeitsblättern?

gut schlecht

Wie ausführlich fanden Sie die Arbeitsblätter?

nicht ausführlich zu ausführlich

bitte wenden!

46

B.3 Questionnaire MIPC 243

Tutor:

Wie hilfreich fanden Sie die Anwesenheit eines Tutors?

sehr gar nicht

Waren die Erklärungen des Tutors verständlich?

verständlich nicht verständlich

Selbsteinschätzung:

Haben Sie in den Vorprojekten etwas gelernt?

viel wenig

Wie schätzen Sie Ihre Javakenntnisse nach den Vorprojekten ein?

nicht vorhanden selbstständiges Programmieren

Haben Sie das Konzept der Objektorientierung verstanden?

verstanden nichtverstanden

Kommentare, Kritik, Vorschläge zu den "Vorprojekten" :

Vielen Dank und viel Erfolg in Ihrem Studium

244 B Minimally Invasive Programming Courses (MIPC)

B.4 Concept Map Questionnaire MIPC

Technische Universität München
Fakultät für Informatik

Fachgebiet Didaktik der Informatik

167

Prof. Dr. Peter Hubwieser
Marc Berges

Vorprojekte WS10/11 Fragebogen zur
Objektorientierung

Vortest

WAS IST OBJEKTORIENTIERUNG?
1. Aufgabe
In der untenstehenden Tabelle finden Sie Konzepte und Begriffe aus dem Bereich der
Objektorientierung. Bitte geben Sie in der nachfolgenden Begriffstabelle an, ob Sie den
jeweiligen Begriff kennen, d.h., ob Sie ihn ggf. erklären oder definieren könnten

Bitte zeichnen Sie dann auf dem 2. Blatt ein Begriffsnetz aus den Begriffen, die Sie in der
Begriffstabelle als bekannt angekreuzt haben. Falls Sie jeweils zwei der gezeichneten
Begriffe in Verbindung bringen können, zeichnen Sie diese Verbindung als Pfeil zwischen
diesen Begriffen ein, allerdings nur, wenn Sie dafür auch einen Bezeichner angeben
können. Es müssen nicht alle eingezeichneten Begriffe zueinander in Beziehung stehen.

2. Begriffstabelle
 bekannt
Begriff unbekannt vorher durch

Tutor
durch

Recherche
durch

Sonstiges
Zustand
Assoziation
Instanz
Klasse
Methode
Datenkapselung
Operatoren
Felder
Datentyp
Initialisierung
Parameter
Attribute
Fallunterscheidung
Objektorientierung
Zuweisung
Objekt
Überladen
Vererbung
Wiederholung
Zugriffsmodifikator
Konstrukor

B.4 Concept Map Questionnaire MIPC 245

3. Beispiel für ein Begriffsnetz

Beispiel aus Kern, C and Crippen K.J.: Mapping for Conceptual Change, The Science Teacher, September 2008

246 B Minimally Invasive Programming Courses (MIPC)

Bitte deutlich schreiben!!! «Zahlen»

4. Ihr Begriffsnetz zur Objektorientierung
Verwenden Sie bitte nur die Begriffe, die sie als bekannt angekreuzt haben. Geben Sie zu
jeder gezeichneten Verbindungskante einen Bezeichner an.

B.5 Report Form for the Participant Questions 247

B.5 Report Form for the Participant Questions

Technische Universität München

Fakultät für Informatik
Fachgebiet Didaktik der Informatik

Prof. Dr. Peter Hubwieser
Marc Berges

Vorprojekte WS10/11 Protokoll Studentenfragen

PROTOKOLL STUDENTENFRAGEN
Bitte alle Fragen der Studenten protokollieren. Für Fragen aus der Liste reicht die
Nummer. Bitte geben Sie möglichst genau an, wie auf die Frage geantwortet wurde.
Erklärung der Spalten:

Tipp: Als Antwort wird eine Lösungsidee genannt.
Code: Als Antwort wird Java-Code selber in das Programm geschrieben oder

dem Teilnehmer detailliert genannt.
Hinweis: Als Antwort wird ein Hinweis auf weiterführende Texte gegen.

 Antwort durch
Frage Tipp Code Hinweis NR

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

Java Insel
Doku
IDE-Hilfe

248 B Minimally Invasive Programming Courses (MIPC)

B.6 Code Examples

B.6.1 Example for The Mastermind Task

/**
* Bitte geben Sie Ihren Mastercode ein!

*/
public class Master
{

int[] code;

public Master(){
code = new int[4];

}
public void CodeErstellen()
{

for (int i=0;i<4;i++)
{

System.out.print ("Master, geben Sie die "+i+". Zahl (zwischen 0
und 9, aber keine doppelt) Ihres Codes ein: ");

code[i] = In.readInt();
}

}

public int[] getcode(){
return code;

}
}

/**
* Spielercodeeingabe und Abgleich mit Mastercode.

*/

public class Spieler
{

int[] code;

public Spieler()
{

code = new int[4];
}

public static void main (String[] args)
{

System.out.println ("Moegen die Spiele beginnen!");
System.out.println ("Der Master gibt zuerst seinen Mastercode ein.");
System.out.println ("Dann ist der Spieler an der Reihe\nund muss

innerhalb von 12 Zuegen diesen Mastercode erraten!");

Spieler michael = new Spieler();
Master sepp = new Master();
sepp.CodeErstellen();
michael.aufMasterZugreifen(sepp);

}

B.6 Code Examples 249

public void aufMasterZugreifen (Master master)
{
int count = 0;

while ((code[0] != master.code[0] || code[1] != master.code[1] || code[2]
!= master.code[2] || code[3] != master.code[3]) && count < 12)

{
count++;
for (int i=0;i<4;i++)
{

System.out.print ("Spieler, geben Sie die "+i+". Zahl (zwischen 0
und 9, aber keine doppelt) Ihres Codes ein: ");

code[i] = In.readInt();
}

if (code[0] == master.code[0])
{

System.out.println ("Die 1. Zahl stimmt ueberein.");

}
else
{

if (code[0] == master.code[1] || code[0] == master.code[2] ||
code[0] == master.code[3])

{
System.out.println ("Die 1. Zahl ist zwar vorhanden, aber

nicht an der richtigen Stelle.");
}
else
{

System.out.println ("Die 1. Zahl ist nicht vorhanden.");
}

}

if (code[1] == master.code[1])
{

System.out.println ("Die 2. Zahl stimmt ueberein.");

}
else
{

if (code[1] == master.code[0] || code[1] == master.code[2] ||
code[1] == master.code[3])

{
System.out.println ("Die 2. Zahl ist zwar vorhanden, aber

nicht an der richtigen Stelle.");
}
else
{

System.out.println ("Die 2. Zahl ist nicht vorhanden.");
}

}

if (code[2] == master.code[2])
{

System.out.println ("Die 3. Zahl stimmt ueberein.");

250 B Minimally Invasive Programming Courses (MIPC)

}
else
{

if (code[2] == master.code[0] || code[2] == master.code[1] ||
code[2] == master.code[3])

{
System.out.println ("Die 3. Zahl ist zwar vorhanden, aber

nicht an der richtigen Stelle.");
}
else
{

System.out.println ("Die 3. Zahl ist nicht vorhanden.");
}

}

if (code[3] == master.code[3])
{

System.out.println ("Die 4. Zahl stimmt ueberein.");

}
else
{

if (code[3] == master.code[0] || code[3] == master.code[1] ||
code[3] == master.code[2])

{
System.out.println ("Die 4. Zahl ist zwar vorhanden, aber

nicht an der richtigen Stelle.");
}
else
{

System.out.println ("Die 4. Zahl ist nicht vorhanden.");
}

}

if (count == 12 && (code[0] != master.code[0] || code[1] != master.code[1]
|| code[2] != master.code[2] || code[3] != master.code[3]))

{System.out.println ("GAME OVER!!!");}

if (code[0] == master.code[0] && code[1] == master.code[1] && code[2] ==
master.code[2] && code[3] == master.code[3])

{System.out.println ("Sie haben in "+count+" Zuegen gewonnen!");}

if (count<12 && (code[0] != master.code[0] || code[1] != master.code[1] ||
code[2] != master.code[2] || code[3] != master.code[3]))

{int difference = 12 - count;
System.out.println ("Sie haben noch "+difference+" Versuche!");}

}
}
}

B.6 Code Examples 251

B.6.2 Example for The Ballsportmanager Task

import java.io.IOException;

public class Ballmanager {

/**
* Teilnehmernummer 2

*/

public static String[] mannschaftsArray = new String[100];
public static int mannschaftsIndex = 0; //Legt den Index fuer die

Array-Positionen der Mannschaften fest.
//Gleichzeitig die Anzahl der Mannschaften im Array.

public static Spiel[] Spielarray = new Spiel[99]; //Hier werden die
einzelnen Spiel-Objekte gespeichert.

public static int spielIndex = 0; //Legt den Index fuer die
Array-Positionen der Spiel-Objekte fest.

//Gleichzeitig die Anzahl der Spiele im Array.

public static String mannschaftsName;
public static String[][] rowData = new String[99][99];

public static void main(String args[])
{

new Oberflaeche("Ballsportmanager");

int x = 0;
while (x<100) //Inhalt der Arrays gleich null setzen.
{

mannschaftsArray[x] = null;
x++;

}
/* System.out.println("Hallo Welt. Ballsportmanager

gestartet. Zunaechst muessen mindestens zwei Mannschaften
hinzugefuegt werden.\nErste Mannschaft erstellen, bitte
den Namen eingeben:");

In.close();
mannschaftsName = In.readLine();
mannschaftsArray[mannschaftsIndex] = mannschaftsName;

System.out.println("Mannschaftsname der ersten
Mannschaft: ’"+mannschaftsName+"’. Die Mannschaft
wurde gespeichert.\nGeben Sie eine weitere
Mannschaft an:");

mannschaftsIndex++;
In.close();

mannschaftsName = In.readLine();
mannschaftsArray[mannschaftsIndex] = mannschaftsName;
System.out.println("Mannschaftsname der zweiten

Mannschaft: ’"+mannschaftsName+"’. Die Mannschaft
wurde gespeichert.\nWeiter:");

mannschaftsIndex++;
In.close();

*/

try {

252 B Minimally Invasive Programming Courses (MIPC)

new SpieleLaden();
}

catch (IOException e)
{

// TODO Auto-generated catch block
e.printStackTrace();

}
try {

new MannschaftLaden();
} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
}

}

import java.io.FileInputStream;
import java.io.IOException;
import java.util.StringTokenizer;

public class MannschaftLaden {

public MannschaftLaden() throws IOException
{

byte zeichen;
String text ="";
String dateiName = "mannschaften.gme";
FileInputStream leseStrom = new FileInputStream(dateiName);
do{

zeichen = (byte)leseStrom.read();
text += (char)zeichen;

} while (zeichen !=-1);

//System.out.println(text);
StringTokenizer tokenizer = new StringTokenizer(text, "&");

int i = tokenizer.countTokens();
for (int a=0; a<(i-1); a++)
{

Ballmanager.mannschaftsArray[a]=tokenizer.nextToken();
Ballmanager.mannschaftsIndex++;

}
leseStrom.close();

}
}

import java.io.FileOutputStream;
import java.io.IOException;

public class MannschaftSpeichern{

public MannschaftSpeichern() throws IOException {

FileOutputStream schreibeStrom = new FileOutputStream("mannschaften.
gme");

for (int i=0; i < Ballmanager.mannschaftsIndex; i++)
{

B.6 Code Examples 253

String text = Ballmanager.mannschaftsArray[i]+"&";
for (int j=0; j < text.length(); j++)
{

schreibeStrom.write((byte)text.charAt(j));
}

}

schreibeStrom.close();
}

}

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class neueMannschaft extends JFrame implements ActionListener{

Container cp;
JButton buttonOK;
JTextField tField;

public neueMannschaft(String titel) //Konstruktor
{

super(titel);
//Uebergibt Fenstertitel an den

ensprechenden JFrame-Konstruktor.
setSize(400, 100);

setVisible(true);
//Macht Fenster sichtbar

cp = getContentPane(); //Container, um
Festnerinhalt aufnehmen zu koennen.

cp.setLayout(new FlowLayout());

tField = new JTextField(16);
cp.add(tField);

buttonOK = new JButton("Mannschaft eintragen");
buttonOK.addActionListener(this);

cp.add(buttonOK);

}

@Override
public void actionPerformed(ActionEvent e) {

Object obj = e.getSource();

if (obj == buttonOK)
{

Ballmanager.mannschaftsName = tField.getText(); //
Mannschaftsnamen aus Textfeld holen.

Ballmanager.mannschaftsArray[Ballmanager.
mannschaftsIndex] = Ballmanager.mannschaftsName;
//Mannschaftsnamen ins Mannschaftsarray schreiben

Ballmanager.mannschaftsIndex++;
try {

new MannschaftSpeichern();

254 B Minimally Invasive Programming Courses (MIPC)

} catch (IOException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();

}
this.dispose();

}
}

}

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
import java.io.IOException;

public class neuesSpiel extends JFrame implements ActionListener{

Container cp;
JButton buttonOK;
JComboBox auswahlHeim;
JComboBox auswahlGast;
JComboBox auswahlspielerHeim;
JComboBox auswahlspielerGast;
JComboBox auswahlToreHeim;
JComboBox auswahlToreGast;
JLabel doppelpunkt;
JLabel doppelpunkt1;
JLabel text;

String heim ="";
String gast ="";
String toreHeim;
String toreGast;
String spielerHeim;
String spielerGast;

public neuesSpiel(String titel) //Konstruktor
{

super(titel);
//uebergibt Fenstertitel an den

ensprechenden JFrame-Konstruktor.
setSize(480, 270);

setVisible(true);
//Macht Fenster sichtbar

cp = getContentPane(); //Container, um
Festnerinhalt aufnehmen zu koennen.

cp.setLayout(null);

String[] tore = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"10"};

String[] spieler = {"11", "12", "13", "14", "15", "16", "17", "18"
, "19"};

auswahlHeim = new JComboBox(Ballmanager.mannschaftsArray);
auswahlHeim.setBounds(20, 20, 200, 20);
cp.add(auswahlHeim);

doppelpunkt = new JLabel(" : ");
doppelpunkt.setBounds(225, 20, 10, 20);

B.6 Code Examples 255

cp.add(doppelpunkt);

auswahlGast = new JComboBox(Ballmanager.mannschaftsArray);
auswahlGast.setBounds(240, 20, 200, 20);
cp.add(auswahlGast);

auswahlToreHeim = new JComboBox(tore);
auswahlToreHeim.setBounds(170, 60, 50, 20);
cp.add(auswahlToreHeim);

doppelpunkt1 = new JLabel(" : ");
doppelpunkt1.setBounds(225, 60, 100, 20);
cp.add(doppelpunkt1);

auswahlToreGast = new JComboBox(tore);
auswahlToreGast.setBounds(240, 60, 50, 20);
cp.add(auswahlToreGast);

text = new JLabel("Zugelassene Spieleranzahl:");
text.setBounds(155, 100, 180, 20);
cp.add(text);

auswahlspielerHeim = new JComboBox(spieler);
auswahlspielerHeim.setBounds(170, 140, 50, 20);
cp.add(auswahlspielerHeim);

doppelpunkt1 = new JLabel(" : ");
doppelpunkt1.setBounds(225, 140, 100, 20);
cp.add(doppelpunkt1);

auswahlspielerGast = new JComboBox(spieler);
auswahlspielerGast.setBounds(240, 140, 50, 20);
cp.add(auswahlspielerGast);

buttonOK = new JButton("Spielergebnis eintragen");
buttonOK.addActionListener(this);
buttonOK.setBounds(130, 190, 200, 20);

cp.add(buttonOK);
}

@Override
public void actionPerformed(ActionEvent e) {

heim = (String)auswahlHeim.getSelectedItem();
gast = (String)auswahlGast.getSelectedItem();
spielerHeim = (String)auswahlspielerHeim.getSelectedItem();
spielerGast = (String)auswahlspielerGast.getSelectedItem();
toreHeim = (String)auswahlToreHeim.getSelectedItem();
toreGast = (String)auswahlToreGast.getSelectedItem();

if (heim != gast && heim != "" && gast != "")
{

int spielerHeim1 = Integer.parseInt(spielerHeim);
int spielerGast1 = Integer.parseInt(spielerGast);
int toreHeim1 = Integer.parseInt(toreHeim);
int toreGast1 = Integer.parseInt(toreGast);

Ballmanager.Spielarray[Ballmanager.spielIndex] = new
Spiel();

256 B Minimally Invasive Programming Courses (MIPC)

Ballmanager.Spielarray[Ballmanager.spielIndex].
mannschaftsNamen(heim, gast);

Ballmanager.Spielarray[Ballmanager.spielIndex].spieler
(spielerHeim1, spielerGast1);

Ballmanager.Spielarray[Ballmanager.spielIndex].
ergebnis(toreHeim1, toreGast1);

Ballmanager.spielIndex++;

int i =0;
while (i<Ballmanager.spielIndex)
{

Ballmanager.rowData[i][0] = Ballmanager.Spielarray[i].
heim;

Ballmanager.rowData[i][1] = Ballmanager.Spielarray[i].
gast;

Ballmanager.rowData[i][2] = ""+Ballmanager.Spielarray[
i].toreHeim;

Ballmanager.rowData[i][3] = ""+Ballmanager.Spielarray[
i].toreGast;

Ballmanager.rowData[i][4] = ""+Ballmanager.Spielarray[
i].spielerHeim;

Ballmanager.rowData[i][5] = ""+Ballmanager.Spielarray[
i].spielerGast;

Ballmanager.rowData[i][6] = ""+Ballmanager.Spielarray[
i].punkteHeim;

Ballmanager.rowData[i][7] = ""+Ballmanager.Spielarray[
i].punkteGast;

i++;
}

Oberflaeche.table.repaint();

try { //IOException-Handler fuer
SpieleSpeichern

new SpieleSpeichern();
}

catch (IOException e1)
{

// TODO Auto-generated catch block
System.out.println("Schreiben nicht

moeglich.");
}

this.dispose();
}
else
{

//Meldung: zwei verschiedene Mannschaften waehlen!!
}

}
}

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

public class Oberflaeche extends JFrame implements ActionListener{

Container cp;
JButton button_neueMannschaft;

B.6 Code Examples 257

JButton button_neuesSpiel;
static JTable table;

public Oberflaeche(String titel) //Konstruktor
{

super(titel);
//uebergibt Fenstertitel an den

ensprechenden JFrame-Konstruktor.
setDefaultCloseOperation(EXIT_ON_CLOSE); //Beendet

Programm beim Schliessen des Fensters.
setSize(900, 700);

setVisible(true);
//Macht Fenster sichtbar

cp = getContentPane(); //Container, um
Festnerinhalt aufnehmen zu koennen.

cp.setLayout(null);

button_neueMannschaft = new JButton("Mannschaft hinzufuegen");
button_neueMannschaft.addActionListener(this);
button_neueMannschaft.setBounds(20, 20, 200, 20);

cp.add(button_neueMannschaft);
button_neuesSpiel = new JButton("Spielergebnis eintragen");
button_neuesSpiel.addActionListener(this);
button_neuesSpiel.setBounds(240, 20, 200, 20);

cp.add(button_neuesSpiel);

int i =0;
while (i<Ballmanager.spielIndex)
{

Ballmanager.rowData[i][0] = Ballmanager.Spielarray[i].heim;
Ballmanager.rowData[i][1] = Ballmanager.Spielarray[i].gast;
Ballmanager.rowData[i][2] = ""+Ballmanager.Spielarray[i].

toreHeim;
Ballmanager.rowData[i][3] = ""+Ballmanager.Spielarray[i].

toreGast;
Ballmanager.rowData[i][4] = ""+Ballmanager.Spielarray[i].

spielerHeim;
Ballmanager.rowData[i][5] = ""+Ballmanager.Spielarray[i].

spielerGast;
Ballmanager.rowData[i][6] = ""+Ballmanager.Spielarray[i].

punkteHeim;
Ballmanager.rowData[i][7] = ""+Ballmanager.Spielarray[i].

punkteGast;
i++;

}

String[] columnNames = {
"Heim", "Gast", "Tore Heim", "Tore Gast", "Spieler

Heim", "Spieler Gast", "PunkteHeim", "PunkteGast"
};

table = new JTable(Ballmanager.rowData, columnNames);
JScrollPane table_pane = new JScrollPane(table);
table_pane.setBounds(20, 60, 850, 570);
cp.add(table_pane);

}

@Override

258 B Minimally Invasive Programming Courses (MIPC)

public void actionPerformed(ActionEvent arg0) { //Event-listener fuer
die Buttons

Object obj = arg0.getSource();

if (obj == button_neueMannschaft) new neueMannschaft("
Mannschaft registrieren");

if (obj == button_neuesSpiel && Ballmanager.mannschaftsArray[0] !=
null && Ballmanager.mannschaftsArray[1] != null)

{
new neuesSpiel("Spielergebnis eintragen");

}
else
{

//Fenster oeffnen, Meldung: erst zweio Mannschaften
hinzufuegen!!!

}
}

}

public class Spiel {

/**
* Teilnehmernummer 2

* Spiel mit Spielnummer, zwei Mannschaften und einem Ergebnis jeweils
als Attribut

*/

public String heim;
public String gast;
public int spielerHeim;
public int spielerGast;
public int toreHeim;
public int toreGast;
public int punkteHeim;
public int punkteGast;

public void mannschaftsNamen(String heim, String gast)
{

this.heim = heim;
this.gast = gast;

}
public void spieler(int spielerHeim, int spielerGast)
{

this.spielerHeim = spielerHeim;
this.spielerGast = spielerGast;

}

public void ergebnis(int toreHeim, int toreGast)
{

this.toreHeim = toreHeim;
this.toreGast = toreGast;
if (toreHeim > toreGast)
{

this.punkteHeim = 3;
this.punkteGast = 0;

}
if (toreHeim == toreGast)
{

this.punkteHeim = 1;

B.6 Code Examples 259

this.punkteGast = 1;
}
if (toreHeim < toreGast)
{

this.punkteHeim = 0;
this.punkteGast = 3;

}

}
}

import java.io.*;
import java.util.StringTokenizer;

public class SpieleLaden {

public SpieleLaden() throws IOException
{

byte zeichen;
String text ="";
String dateiName = "spiele.gme";
FileInputStream leseStrom = new FileInputStream(dateiName);
do{
zeichen = (byte)leseStrom.read();
text += (char)zeichen;

} while (zeichen !=-1);

//System.out.println(text);
StringTokenizer tokenizer = new StringTokenizer(text, "$");

int i = tokenizer.countTokens();
for (int a=0; a<(i-1); a++)
{

String aktuellerToken = tokenizer.nextToken();
StringTokenizer tokenizer1 = new StringTokenizer(

aktuellerToken, "&");
Ballmanager.Spielarray[a] = new Spiel();
Ballmanager.Spielarray[a].heim = tokenizer1.nextToken();
Ballmanager.Spielarray[a].gast = tokenizer1.nextToken();
Ballmanager.Spielarray[a].toreHeim = Integer.parseInt(

tokenizer1.nextToken());
Ballmanager.Spielarray[a].toreGast = Integer.parseInt(

tokenizer1.nextToken());
Ballmanager.Spielarray[a].spielerHeim = Integer.parseInt(

tokenizer1.nextToken());
Ballmanager.Spielarray[a].spielerGast = Integer.parseInt(

tokenizer1.nextToken());

Ballmanager.spielIndex++;

Ballmanager.rowData[a][0] = Ballmanager.Spielarray[a].heim;
Ballmanager.rowData[a][1] = Ballmanager.Spielarray[a].gast;
Ballmanager.rowData[a][2] = ""+Ballmanager.Spielarray[a].

toreHeim;
Ballmanager.rowData[a][3] = ""+Ballmanager.Spielarray[a].

toreGast;
Ballmanager.rowData[a][4] = ""+Ballmanager.Spielarray[a].

260 B Minimally Invasive Programming Courses (MIPC)

spielerHeim;
Ballmanager.rowData[a][5] = ""+Ballmanager.Spielarray[a].

spielerGast;
Ballmanager.rowData[a][6] = ""+Ballmanager.Spielarray[a].

punkteHeim;
Ballmanager.rowData[a][7] = ""+Ballmanager.Spielarray[a].

punkteGast;
/*

Ballmanager.Spielarray[a].heim = tokenizer1.
nextToken();

Ballmanager.Spielarray[a].gast = tokenizer1.
nextToken();

Ballmanager.Spielarray[a].toreHeim = Integer.
parseInt(tokenizer1.nextToken());;

Ballmanager.Spielarray[a].toreGast = Integer.
parseInt(tokenizer1.nextToken());

Ballmanager.Spielarray[a].spielerHeim = Integer.
parseInt(tokenizer1.nextToken());

Ballmanager.Spielarray[a].spielerGast = Integer.
parseInt(tokenizer1.nextToken());

*/
}
leseStrom.close();
Oberflaeche.table.repaint();

}
}

import java.io.*;

public class SpieleSpeichern {

public SpieleSpeichern() throws IOException
{

FileOutputStream schreibeStrom = new FileOutputStream("spiele.
gme");

for (int i=0; i < Ballmanager.spielIndex; i++)
{

String text = Ballmanager.Spielarray[i].heim+"&";
for (int j=0; j < text.length(); j++){

schreibeStrom.write((byte)text.charAt(j));
}

text = Ballmanager.Spielarray[i].gast+"&";
for (int j=0; j < text.length(); j++){

schreibeStrom.write((byte)text.charAt(j));
}

text = Ballmanager.Spielarray[i].toreHeim+"&";
for (int j=0; j < text.length(); j++){

schreibeStrom.write((byte)text.charAt(j));
}

text = String.valueOf(Ballmanager.Spielarray[i].toreGast)+
"&";

B.6 Code Examples 261

for (int j=0; j < text.length(); j++){
schreibeStrom.write((byte)text.charAt(j));

}

text = String.valueOf(Ballmanager.Spielarray[i].
spielerHeim)+"&";

for (int j=0; j < text.length(); j++){
schreibeStrom.write((byte)text.charAt(j));

}

text = String.valueOf(Ballmanager.Spielarray[i].
spielerGast)+"$";

for (int j=0; j < text.length(); j++){
schreibeStrom.write((byte)text.charAt(j));

}
}
schreibeStrom.close();

}
}

262 B Minimally Invasive Programming Courses (MIPC)

B.6.3 Example for The Kniffel Task

/*
* To change this template, choose Tools | Templates

* and open the template in the editor.

*/
package kniffel;

import java.util.Random;

/**
*
* @author vorpro

* Nummer 6

*/
public class Dice {

private Random random;
private int lastNumber;
private boolean active; // Nicht zur Seite gelegt

public Dice() {
random = new Random();
lastNumber = 0;
active = true;

}

/**
* Erzeugt neue Augenzahlen

*/
public void random() {

if (active)
lastNumber = random.nextInt(6)+1;

}

/**
* @return the lastNumber

*/
public int getLastNumber() {

return lastNumber;
}

/**
* @return the active

*/
public boolean isActive() {

return active;
}

/**
* @param active the active to set

*/
public void setActive(boolean active) {

this.active = active;
}

}

/*
* To change this template, choose Tools | Templates

B.6 Code Examples 263

* and open the template in the editor.

*/
package kniffel;

import java.util.ArrayList;

/**
*
* @author vorpro

* Nummer 6

*/
public class DiceRound {

private Dice[] dices;
private final int countDices = 5;
private int playCount;
private final int maxPlayCount = 3;

public DiceRound() {
dices = new Dice[countDices];
for (int i = 0; i < countDices; i++) {

dices[i] = new Dice();
}

}

/**
* Laesst alle Wuerfel ihre Augenzahlen neu berechnen

* @throws Exception Wenn bereits zuviele Wuerfe durchgefuehrt wurden

*/
public void newDice() throws Exception {

if (getPlayCount() >= getMaxPlayCount()) {
throw new Exception("Bereits zu viele Wuerfe");

}

for (int i = 0; i < dices.length; i++) {
dices[i].random();

}

playCount++;
}

/**
* Gibt alle Augenzahlen aller Wuerfel aus

* @return

*/
public int[] getResult() {

int[] arr = new int[countDices];

for (int i = 0; i < dices.length; i++) {
arr[i] = dices[i].getLastNumber();

}

return arr;
}

/**
* Summiert die Augenzahlen auf

* @return result Summe der Augenzahlen

*/

264 B Minimally Invasive Programming Courses (MIPC)

public int getSumResult() {
int result = 0;

for (int i = 0; i < dices.length; i++) {
result += dices[i].getLastNumber();

}

return result;
}

/**
* Zum Entfernen von gleichen Augenzahlens

* @return int[] ohne duplicate

*/
public int[] getUniqueResult() {

ArrayList<Integer> arrayList = new ArrayList<Integer>();

int[] duplicatesArray = new int[6];

for (int i : this.getResult()) {
if (duplicatesArray[i - 1] == 0) {

duplicatesArray[i - 1] = i;
arrayList.add(i);

}
}

Integer[] arr = new Integer[arrayList.size()];
arr = arrayList.toArray(arr);
int[] results = new int[arr.length];

for (int i = 0; i < results.length; i++) {
results[i] = (int) arr[i];

}
return results;

}

/**
* Zaehlt wieoft welche Zahl vorkommt

* @return Haeufigkeit der Zahlen

*/
public int[] countNumbersOfDices() {

int[] arr = new int[6];

for (int i = 0; i < dices.length; i++) {
arr[dices[i].getLastNumber() - 1]++;

}

return arr;
}

/**
* Zaehlt wieoft eine bestimmte Zahl vorkommt

* @param number Die Zahl, nach deren Haeufigkeit gesucht wird

* @return result Haeufigkeit der geforderten Zahl

*/
public int countNumber(int number) {

int count = 0;
for (int i = 0; i < dices.length; i++) {

if (dices[i].getLastNumber() == number) {

B.6 Code Examples 265

count++;
}

}
return count;

}

/**
* Sperrt einen bestimmten Wuerfel

* @param index Der gewuenschte Wuerfel

*/
public void saveDice(int index) {

dices[index].setActive(false);
}

/**
* @return the playCount

*/
public int getPlayCount() {

return playCount;
}

/**
* @return the maxPlayCount

*/
public int getMaxPlayCount() {

return maxPlayCount;
}

}

/*
* To change this template, choose Tools | Templates

* and open the template in the editor.

*/
package kniffel;

import java.util.Arrays;

/**
*
* @author vorpro

* Nummer 6

* Spiel Punkte Punkte Punkte Anmerkungen

* Einer Nur Einer zaehlen | Index 0 of saveBlock

* Zweier Nur Zweier zaehlen | Index 1 sof saveBlock

* Dreier Nur Dreier zaehlen | Index 2 of saveBlock

* Vierer Nur Vierer zaehlen | Index 3 of saveBlock

* Fuenfer Nur Fuenfer zaehlen | Index 4 of saveBlock

* Sechser Nur Sechser zaehlen | Index 5 of saveBlock

*
* Bonus 35 Punkte, wenn oben mindestens 63 Punkte |

Index 0 of otherBlock

* Dreierpasch Drei gleiche Wuerfel - Alle Augen zaehlen
Index 1 of otherBlock

* Viererpasch Vier gleiche Wuerfel - Alle Augen zaehlen
Index 2 of otherBlock

* Full House Drei gleiche und zwei gleiche Wuerfel - 25 Punkte
Index 3 of otherBlock

* Kleine Strasse 1-2-3-4, 2-3-4-5, oder 3-4-5-6 - 30 Punkte
Index 4 of otherBlock

266 B Minimally Invasive Programming Courses (MIPC)

* Grosse Strasse 1-2-3-4-5 oder 2-3-4-5-6 - 40 Punkte
Index 5 of otherBlock

* Kniffel/Yahtzee Fuenf gleiche Wuerfel - 50 Punkte
Index 6 of otherBlock

* Chance Alle Augen zaehlen

* Summe unten

* Gesamtsumme Oben + Bonus + Unten

*/
public class GameSheet {

private final int maxPlayRounds = 3;
private int actualPlayRound;
private DiceRound[][] saveBlock;
private DiceRound[][] otherBlock;
private int[] insertCount;

/**
* Bildet die Funktionalitaet eines Spielzettels nach.

*/
public GameSheet() {

actualPlayRound = 0;
saveBlock = new DiceRound[maxPlayRounds][6];
otherBlock = new DiceRound[maxPlayRounds][7];
insertCount = new int[maxPlayRounds];

}

/**
* Neue Runde starten, ausser maximale Rundenzahl ist erreicht.

* @throws Exception

*/
public void newRound() throws Exception {

if (actualPlayRound >= maxPlayRounds) {
throw new Exception("Maximale Spielzahl erreicht");

}
actualPlayRound++;

}

/**
* Speichert die Wuerfel Runde im Sammelblock

* @param index Welche Position in der Liste? (1er, 2er, 3er, ...)

* @param diceRound Die Wuerfelrunde

*/
public void addDiceRoundToSaveBlock(int index, DiceRound diceRound) {

if (saveBlock[actualPlayRound][index] == null) {
saveBlock[actualPlayRound][index] = diceRound;
insertCount[actualPlayRound]++;

}
}

/**
* Speichert die Wuerfel Runde im anderen Block

* @param index Welche Position in der Liste? (Dreierpasch,
Viererpasch, ...)

* @param diceRound Die Wuerfelrunde

*/
public void addDiceRoundToOtherBlock(int index, DiceRound diceRound) {

if (otherBlock[actualPlayRound][index] == null) {
otherBlock[actualPlayRound][index] = diceRound;
insertCount[actualPlayRound]++;

B.6 Code Examples 267

}
}

/**
* Berechnet das Gesamtergebnis jeder Runde und jeden Blocks.

* @return result Die Summe der Spielstaende

*/
public int calculateOverallResult() {

int result = 0;

// saveBlock Rounds
for (int i = 0; i < saveBlock.length; i++) {

// saveBlock items
for (int j = 0; j < saveBlock[i].length; j++) {

// Item 0 soll auf 1er achten
result += saveBlock[i][j].countNumber(j + 1);

}
}
if (result >= 63) {

result += 35;
}
return result;

}

/**
* Berechnet das Ergebnis des Sammelblocks fuer 1 Runde

* @param round Die gesuchte Runde

* @return result Die Summe der Runde

*/
public int calculateCollectBoxRoundResult(int round) {

int result = 0;

for (int j = 0; j < saveBlock[round].length; j++) {
// Item 0 soll auf 1er achten
result += this.getCollectBoxRoundRowResult(round, j);

}

// Eventueller Bonus
if (result >= 63) {

result += 35;
}

return result;
}

/**
* Berechnet das Ergebnis des anderen Blockes fuer 1 Runde

* @param round Die gesuchte Runde

* @return result Die Summe der Runde

*/
public int calculateOtherBoxRoundResult(int round) {

int result = 0;

for (int j = 0; j < otherBlock[round].length; j++) {
// Item 0 soll auf 1er achten
result += this.getOtherBoxRoundRowResult(round, j);

}

return result;

268 B Minimally Invasive Programming Courses (MIPC)

}

/**
* Berechnet das Ergebnis eines bestimmten Zeilen / Spalten Eintrages

* @param round Die gesuchte Runde

* @param row Die gesuchte Reihe (1er, 2er, 3er, ...)

* @return result Das Summenergebnis

*/
public int getCollectBoxRoundRowResult(int round, int row) {

int result = 0;
try {

result = saveBlock[round][row].countNumber(row + 1);
} catch (NullPointerException ex) {

result = 0;
}
return result;

}

/**
* Berechnet das Ergebnis eines bestimmten Zeilen / Spalten Eintrages

* @param round Die gesuchte Runde

* @param row Die gesuchte Reihe (1er, 2er, 3er, ...)

* @return result Das Summenergebnis

*/
public int getOtherBoxRoundRowResult(int round, int row) {

int result = 0;
int[] counts;
int[] results;
try {

switch (row) {
// Dreierpasch
case 0:

counts = otherBlock[round][row].countNumbersOfDices();
for (int i : counts) {

if (i >= 3) {
result = otherBlock[round][row].getSumResult();

}
}
break;

// Viererpasch
case 1:

counts = otherBlock[round][row].countNumbersOfDices();
for (int i : counts) {

if (i >= 3) {
result = otherBlock[round][row].getSumResult();

}
}
break;

// Full House
case 2:

counts = otherBlock[round][row].countNumbersOfDices();
boolean check = false;
for (int i : counts) {

if (i == 3 || i == 2) {
check = true;

}

if (check && (i == 3 || i == 2)) {

B.6 Code Examples 269

result = 25;
}

}
break;

// Kleine Strasse
case 3:

results = otherBlock[round][row].getUniqueResult();
Arrays.sort(results);

if (results.length < 4) {
result = 0;
break;

}
int alastNumber = results[0];
for (int i = results[1]; i < results[0] + 3; i++) {

if (alastNumber - 1 != i) {
result = 0;
break;

}
alastNumber++;

}
result = 30;
break;

// Kleine Strasse
case 4:

results = otherBlock[round][row].getUniqueResult();
Arrays.sort(results);

if (results.length < 5) {
result = 0;
break;

}
int blastNumber = results[0];
for (int i = results[1]; i < results[0] + 4; i++) {

if (blastNumber - 1 != i) {
result = 0;
break;

}
blastNumber++;

}
result = 40;
break;

// Kniffel
case 5:

results = otherBlock[round][row].getUniqueResult();
if (results.length == 1) {

result = 50;
}
result = 0;
break;

// Chance
case 6:

result = otherBlock[round][row].getSumResult();
break;

}
} catch (NullPointerException ex) {

// Sollte ein Eintrag noch nicht gesetzt sein, wird eine
Nullpointer geworfen und

// 0 zurueckgegeben

270 B Minimally Invasive Programming Courses (MIPC)

return 0;
}
return result;

}

/**
* Gibt an, wieviele Felder in der aktuellen Runde bereits gesetzt wurden.

* @return the insertCount

*/
public int getInsertCount() {

return insertCount[actualPlayRound];
}

}

/*
* KniffelAboutBox.java

*/

package kniffel;

import org.jdesktop.application.Action;

public class KniffelAboutBox extends javax.swing.JDialog {

public KniffelAboutBox(java.awt.Frame parent) {
super(parent);
initComponents();
getRootPane().setDefaultButton(closeButton);

}

@Action public void closeAboutBox() {
dispose();

}

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the Form Editor.

*/
// <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN

:initComponents
private void initComponents() {

closeButton = new javax.swing.JButton();
javax.swing.JLabel appTitleLabel = new javax.swing.JLabel();
javax.swing.JLabel versionLabel = new javax.swing.JLabel();
javax.swing.JLabel appVersionLabel = new javax.swing.JLabel();
javax.swing.JLabel vendorLabel = new javax.swing.JLabel();
javax.swing.JLabel appVendorLabel = new javax.swing.JLabel();
javax.swing.JLabel homepageLabel = new javax.swing.JLabel();
javax.swing.JLabel appHomepageLabel = new javax.swing.JLabel();
javax.swing.JLabel appDescLabel = new javax.swing.JLabel();
javax.swing.JLabel imageLabel = new javax.swing.JLabel();

setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE)
;

org.jdesktop.application.ResourceMap resourceMap = org.jdesktop.
application.Application.getInstance(kniffel.KniffelApp.class).
getContext().getResourceMap(KniffelAboutBox.class);

B.6 Code Examples 271

setTitle(resourceMap.getString("title")); // NOI18N
setModal(true);
setName("aboutBox"); // NOI18N
setResizable(false);

javax.swing.ActionMap actionMap = org.jdesktop.application.Application
.getInstance(kniffel.KniffelApp.class).getContext().getActionMap(
KniffelAboutBox.class, this);

closeButton.setAction(actionMap.get("closeAboutBox")); // NOI18N
closeButton.setName("closeButton"); // NOI18N

appTitleLabel.setFont(appTitleLabel.getFont().deriveFont(appTitleLabel
.getFont().getStyle() | java.awt.Font.BOLD, appTitleLabel.getFont
().getSize()+4));

appTitleLabel.setText(resourceMap.getString("Application.title")); //
NOI18N

appTitleLabel.setName("appTitleLabel"); // NOI18N

versionLabel.setFont(versionLabel.getFont().deriveFont(versionLabel.
getFont().getStyle() | java.awt.Font.BOLD));

versionLabel.setText(resourceMap.getString("versionLabel.text")); //
NOI18N

versionLabel.setName("versionLabel"); // NOI18N

appVersionLabel.setText(resourceMap.getString("Application.version"));
// NOI18N

appVersionLabel.setName("appVersionLabel"); // NOI18N

vendorLabel.setFont(vendorLabel.getFont().deriveFont(vendorLabel.
getFont().getStyle() | java.awt.Font.BOLD));

vendorLabel.setText(resourceMap.getString("vendorLabel.text")); //
NOI18N

vendorLabel.setName("vendorLabel"); // NOI18N

appVendorLabel.setText(resourceMap.getString("Application.vendor"));
// NOI18N

appVendorLabel.setName("appVendorLabel"); // NOI18N

homepageLabel.setFont(homepageLabel.getFont().deriveFont(homepageLabel
.getFont().getStyle() | java.awt.Font.BOLD));

homepageLabel.setText(resourceMap.getString("homepageLabel.text")); //
NOI18N

homepageLabel.setName("homepageLabel"); // NOI18N

appHomepageLabel.setText(resourceMap.getString("Application.homepage")
); // NOI18N

appHomepageLabel.setName("appHomepageLabel"); // NOI18N

appDescLabel.setText(resourceMap.getString("appDescLabel.text")); //
NOI18N

appDescLabel.setName("appDescLabel"); // NOI18N

imageLabel.setIcon(resourceMap.getIcon("imageLabel.icon")); // NOI18N
imageLabel.setName("imageLabel"); // NOI18N

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(
getContentPane());

getContentPane().setLayout(layout);
layout.setHorizontalGroup(

272 B Minimally Invasive Programming Courses (MIPC)

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING)

.addGroup(layout.createSequentialGroup()
.addComponent(imageLabel)
.addGap(18, 18, 18)
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.

Alignment.TRAILING)
.addGroup(javax.swing.GroupLayout.Alignment.LEADING,

layout.createSequentialGroup()
.addGroup(layout.createParallelGroup(javax.swing.

GroupLayout.Alignment.LEADING)
.addComponent(versionLabel)
.addComponent(vendorLabel)
.addComponent(homepageLabel))

.addPreferredGap(javax.swing.LayoutStyle.
ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.
GroupLayout.Alignment.LEADING)
.addComponent(appVersionLabel)
.addComponent(appVendorLabel)
.addComponent(appHomepageLabel)))

.addComponent(appTitleLabel, javax.swing.GroupLayout.
Alignment.LEADING)

.addComponent(appDescLabel, javax.swing.GroupLayout.
Alignment.LEADING, javax.swing.GroupLayout.
DEFAULT_SIZE, 266, Short.MAX_VALUE)

.addComponent(closeButton))
.addContainerGap())

);
layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.
LEADING)

.addComponent(imageLabel, javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addGroup(layout.createSequentialGroup()
.addContainerGap()
.addComponent(appTitleLabel)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(appDescLabel, javax.swing.GroupLayout.

PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.
Alignment.BASELINE)
.addComponent(versionLabel)
.addComponent(appVersionLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.
Alignment.BASELINE)
.addComponent(vendorLabel)
.addComponent(appVendorLabel))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.
Alignment.BASELINE)
.addComponent(homepageLabel)

B.6 Code Examples 273

.addComponent(appHomepageLabel))
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED, 19, Short.MAX_VALUE)
.addComponent(closeButton)
.addContainerGap())

);

pack();
}// </editor-fold>//GEN-END:initComponents

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton closeButton;
// End of variables declaration//GEN-END:variables

}

/*
* KniffelApp.java

*/

package kniffel;

import org.jdesktop.application.Application;
import org.jdesktop.application.SingleFrameApplication;

/**
* The main class of the application.

* Number 6

*/
public class KniffelApp extends SingleFrameApplication {

/**
* At startup create and show the main frame of the application.

*/
@Override
protected void startup() {

show(new KniffelView(this));
}

/**
* This method is to initialize the specified window by injecting

resources.

* Windows shown in our application come fully initialized from the GUI

* builder, so this additional configuration is not needed.

*/
@Override
protected void configureWindow(java.awt.Window root) {
}

/**
* A convenient static getter for the application instance.

* @return the instance of KniffelApp

*/
public static KniffelApp getApplication() {

return Application.getInstance(KniffelApp.class);
}

/**
* Main method launching the application.

274 B Minimally Invasive Programming Courses (MIPC)

*/
public static void main(String[] args) {

launch(KniffelApp.class, args);
}

}

/*
* KniffelView.java

*/
package kniffel;

import java.util.logging.Level;
import java.util.logging.Logger;
import org.jdesktop.application.Action;
import org.jdesktop.application.ResourceMap;
import org.jdesktop.application.SingleFrameApplication;
import org.jdesktop.application.FrameView;
import org.jdesktop.application.TaskMonitor;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.Timer;
import javax.swing.Icon;
import javax.swing.JDialog;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JToggleButton;

/**
* The application’s main frame.

* Nummer 6

*/
public class KniffelView extends FrameView {

private Player player;
private GameSheet lastGameSheet;
private DiceRound actualDiceRound;

public KniffelView(SingleFrameApplication app) {
super(app);

initComponents();

// <editor-fold defaultstate="collapsed" desc="generated code">
// status bar initialization - message timeout, idle icon and busy animation,

etc
ResourceMap resourceMap = getResourceMap();
int messageTimeout = resourceMap.getInteger("StatusBar.messageTimeout"

);
messageTimer = new Timer(messageTimeout, new ActionListener() {

public void actionPerformed(ActionEvent e) {
statusMessageLabel.setText("");

}
});
messageTimer.setRepeats(false);
int busyAnimationRate = resourceMap.getInteger("StatusBar.

busyAnimationRate");
for (int i = 0; i < busyIcons.length; i++) {

busyIcons[i] = resourceMap.getIcon("StatusBar.busyIcons[" + i + "]

B.6 Code Examples 275

");
}
busyIconTimer = new Timer(busyAnimationRate, new ActionListener() {

public void actionPerformed(ActionEvent e) {
busyIconIndex = (busyIconIndex + 1) % busyIcons.length;
statusAnimationLabel.setIcon(busyIcons[busyIconIndex]);

}
});
idleIcon = resourceMap.getIcon("StatusBar.idleIcon");
statusAnimationLabel.setIcon(idleIcon);
progressBar.setVisible(false);

// connecting action tasks to status bar via TaskMonitor
TaskMonitor taskMonitor = new TaskMonitor(getApplication().getContext

());
taskMonitor.addPropertyChangeListener(new java.beans.

PropertyChangeListener() {

public void propertyChange(java.beans.PropertyChangeEvent evt) {
String propertyName = evt.getPropertyName();
if ("started".equals(propertyName)) {

if (!busyIconTimer.isRunning()) {
statusAnimationLabel.setIcon(busyIcons[0]);
busyIconIndex = 0;
busyIconTimer.start();

}
progressBar.setVisible(true);
progressBar.setIndeterminate(true);

} else if ("done".equals(propertyName)) {
busyIconTimer.stop();
statusAnimationLabel.setIcon(idleIcon);
progressBar.setVisible(false);
progressBar.setValue(0);

} else if ("message".equals(propertyName)) {
String text = (String) (evt.getNewValue());
statusMessageLabel.setText((text == null) ? "" : text);
messageTimer.restart();

} else if ("progress".equals(propertyName)) {
int value = (Integer) (evt.getNewValue());
progressBar.setVisible(true);
progressBar.setIndeterminate(false);
progressBar.setValue(value);

}
}

});// </editor-fold>

player = new Player();
player.addGameSheet();
lastGameSheet = player.getLastGameSheet();
actualDiceRound = new DiceRound();
this.updateTable();

}

@Action
public void showAboutBox() {

if (aboutBox == null) {
JFrame mainFrame = KniffelApp.getApplication().getMainFrame();
aboutBox = new KniffelAboutBox(mainFrame);

276 B Minimally Invasive Programming Courses (MIPC)

aboutBox.setLocationRelativeTo(mainFrame);
}
KniffelApp.getApplication().show(aboutBox);

}

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the Form Editor.

*/
@SuppressWarnings("unchecked")
// <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN

:initComponents
private void initComponents() {

mainPanel = new javax.swing.JPanel();
dicePanel = new javax.swing.JPanel();
countLabel = new javax.swing.JLabel();
dice1 = new javax.swing.JToggleButton();
dice3 = new javax.swing.JToggleButton();
dice2 = new javax.swing.JToggleButton();
dice4 = new javax.swing.JToggleButton();
dice5 = new javax.swing.JToggleButton();
playButton = new javax.swing.JButton();
controlPanel = new javax.swing.JPanel();
jLabel1 = new javax.swing.JLabel();
sammelblockSelectBox = new javax.swing.JComboBox();
jButton7 = new javax.swing.JButton();
jLabel3 = new javax.swing.JLabel();
otherBlockSelectBox = new javax.swing.JComboBox();
jScrollPane1 = new javax.swing.JScrollPane();
collectTable = new javax.swing.JTable();
jScrollPane2 = new javax.swing.JScrollPane();
otherTable = new javax.swing.JTable();
menuBar = new javax.swing.JMenuBar();
javax.swing.JMenu fileMenu = new javax.swing.JMenu();
jMenuItem1 = new javax.swing.JMenuItem();
javax.swing.JMenuItem exitMenuItem = new javax.swing.JMenuItem();
javax.swing.JMenu helpMenu = new javax.swing.JMenu();
javax.swing.JMenuItem aboutMenuItem = new javax.swing.JMenuItem();
statusPanel = new javax.swing.JPanel();
javax.swing.JSeparator statusPanelSeparator = new javax.swing.

JSeparator();
statusMessageLabel = new javax.swing.JLabel();
statusAnimationLabel = new javax.swing.JLabel();
progressBar = new javax.swing.JProgressBar();

mainPanel.setName("mainPanel"); // NOI18N

org.jdesktop.application.ResourceMap resourceMap = org.jdesktop.
application.Application.getInstance(kniffel.KniffelApp.class).
getContext().getResourceMap(KniffelView.class);

dicePanel.setBorder(javax.swing.BorderFactory.createTitledBorder(javax
.swing.BorderFactory.createTitledBorder(resourceMap.getString("
dicePanel.border.border.title")))); // NOI18N

dicePanel.setName("dicePanel"); // NOI18N

countLabel.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
countLabel.setText(resourceMap.getString("countLabel.text")); //

B.6 Code Examples 277

NOI18N
countLabel.setName("countLabel"); // NOI18N

dice1.setMnemonic(’1’);
dice1.setText(resourceMap.getString("dice1.text")); // NOI18N
dice1.setFocusable(false);
dice1.setName("dice1"); // NOI18N
dice1.setRolloverEnabled(false);
dice1.setSelectedIcon(resourceMap.getIcon("dice1.selectedIcon")); //

NOI18N
dice1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
dice1ActionPerformed(evt);

}
});

dice3.setMnemonic(’3’);
dice3.setText(resourceMap.getString("dice3.text")); // NOI18N
dice3.setCursor(new java.awt.Cursor(java.awt.Cursor.DEFAULT_CURSOR));
dice3.setFocusable(false);
dice3.setName("dice3"); // NOI18N
dice3.setRolloverEnabled(false);
dice3.setSelectedIcon(resourceMap.getIcon("dice3.selectedIcon")); //

NOI18N
dice3.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
dice3ActionPerformed(evt);

}
});

dice2.setMnemonic(’2’);
dice2.setText(resourceMap.getString("dice2.text")); // NOI18N
dice2.setFocusable(false);
dice2.setName("dice2"); // NOI18N
dice2.setRolloverEnabled(false);
dice2.setSelectedIcon(resourceMap.getIcon("dice2.selectedIcon")); //

NOI18N
dice2.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
dice2ActionPerformed(evt);

}
});

dice4.setMnemonic(’4’);
dice4.setText(resourceMap.getString("dice4.text")); // NOI18N
dice4.setFocusable(false);
dice4.setName("dice4"); // NOI18N
dice4.setRolloverEnabled(false);
dice4.setSelectedIcon(resourceMap.getIcon("dice4.selectedIcon")); //

NOI18N
dice4.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
dice4ActionPerformed(evt);

}
});

dice5.setMnemonic(’5’);
dice5.setText(resourceMap.getString("dice5.text")); // NOI18N
dice5.setFocusable(false);

278 B Minimally Invasive Programming Courses (MIPC)

dice5.setName("dice5"); // NOI18N
dice5.setRolloverEnabled(false);
dice5.setSelectedIcon(resourceMap.getIcon("dice5.selectedIcon")); //

NOI18N
dice5.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
dice5ActionPerformed(evt);

}
});

playButton.setMnemonic(’W’);
playButton.setText(resourceMap.getString("playButton.text")); //

NOI18N
playButton.setName("playButton"); // NOI18N
playButton.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
playButtonActionPerformed(evt);

}
});

javax.swing.GroupLayout dicePanelLayout = new javax.swing.GroupLayout(
dicePanel);

dicePanel.setLayout(dicePanelLayout);
dicePanelLayout.setHorizontalGroup(

dicePanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addComponent(countLabel, javax.swing.GroupLayout.DEFAULT_SIZE,
100, Short.MAX_VALUE)

.addGroup(dicePanelLayout.createSequentialGroup()
.addContainerGap()
.addGroup(dicePanelLayout.createParallelGroup(javax.swing.

GroupLayout.Alignment.LEADING)
.addComponent(dice1, javax.swing.GroupLayout.Alignment.

TRAILING, javax.swing.GroupLayout.PREFERRED_SIZE, 80,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(dice2, javax.swing.GroupLayout.Alignment.
TRAILING, javax.swing.GroupLayout.PREFERRED_SIZE, 80,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(dice3, javax.swing.GroupLayout.Alignment.
TRAILING, javax.swing.GroupLayout.PREFERRED_SIZE, 80,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(dice4, javax.swing.GroupLayout.Alignment.
TRAILING, javax.swing.GroupLayout.PREFERRED_SIZE, 80,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(dice5, javax.swing.GroupLayout.Alignment.
TRAILING, javax.swing.GroupLayout.PREFERRED_SIZE, 80,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.
MAX_VALUE))

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
dicePanelLayout.createSequentialGroup()
.addContainerGap()
.addComponent(playButton, javax.swing.GroupLayout.DEFAULT_SIZE

, 80, Short.MAX_VALUE)
.addContainerGap())

);
dicePanelLayout.setVerticalGroup(

dicePanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

B.6 Code Examples 279

.addGroup(dicePanelLayout.createSequentialGroup()
.addComponent(countLabel)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(playButton)
.addGap(18, 18, 18)
.addComponent(dice1, javax.swing.GroupLayout.PREFERRED_SIZE,

65, javax.swing.GroupLayout.PREFERRED_SIZE)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(dice2, javax.swing.GroupLayout.PREFERRED_SIZE,

65, javax.swing.GroupLayout.PREFERRED_SIZE)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(dice3, javax.swing.GroupLayout.PREFERRED_SIZE,

65, javax.swing.GroupLayout.PREFERRED_SIZE)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(dice4, javax.swing.GroupLayout.PREFERRED_SIZE,

65, javax.swing.GroupLayout.PREFERRED_SIZE)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED)
.addComponent(dice5, javax.swing.GroupLayout.PREFERRED_SIZE,

65, javax.swing.GroupLayout.PREFERRED_SIZE)
.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.

MAX_VALUE))
);

controlPanel.setBorder(javax.swing.BorderFactory.createTitledBorder(
resourceMap.getString("controlPanel.border.title"))); // NOI18N

controlPanel.setName("controlPanel"); // NOI18N

jLabel1.setText(resourceMap.getString("jLabel1.text")); // NOI18N
jLabel1.setName("jLabel1"); // NOI18N
jLabel1.setNextFocusableComponent(sammelblockSelectBox);

sammelblockSelectBox.setModel(new javax.swing.DefaultComboBoxModel(new
String[] { "None", "1er", "2er", "3er", "4er", "5er", "6er" }));

sammelblockSelectBox.setName("sammelblockSelectBox"); // NOI18N

jButton7.setMnemonic(’E’);
jButton7.setText(resourceMap.getString("jButton7.text")); // NOI18N
jButton7.setName("jButton7"); // NOI18N
jButton7.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton7ActionPerformed(evt);

}
});

jLabel3.setText(resourceMap.getString("jLabel3.text")); // NOI18N
jLabel3.setName("jLabel3"); // NOI18N

otherBlockSelectBox.setModel(new javax.swing.DefaultComboBoxModel(new
String[] { "None", "Dreierpasch", "Viererpasch", "Full House", "
Kleine Strasse", "Grosse Strasse", "Kniffel", "Chance" }));

otherBlockSelectBox.setName("otherBlockSelectBox"); // NOI18N

javax.swing.GroupLayout controlPanelLayout = new javax.swing.
GroupLayout(controlPanel);

280 B Minimally Invasive Programming Courses (MIPC)

controlPanel.setLayout(controlPanelLayout);
controlPanelLayout.setHorizontalGroup(

controlPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addGroup(controlPanelLayout.createSequentialGroup()
.addContainerGap()
.addGroup(controlPanelLayout.createParallelGroup(javax.swing.

GroupLayout.Alignment.LEADING)
.addGroup(controlPanelLayout.createSequentialGroup()

.addGroup(controlPanelLayout.createParallelGroup(javax
.swing.GroupLayout.Alignment.LEADING)
.addComponent(jLabel1)
.addComponent(jLabel3))

.addPreferredGap(javax.swing.LayoutStyle.
ComponentPlacement.UNRELATED)

.addGroup(controlPanelLayout.createParallelGroup(javax
.swing.GroupLayout.Alignment.LEADING, false)
.addComponent(otherBlockSelectBox, 0, javax.swing.

GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
.addComponent(sammelblockSelectBox, 0, 75, Short.

MAX_VALUE)))
.addComponent(jButton7, javax.swing.GroupLayout.Alignment.

TRAILING))
.addContainerGap())

);
controlPanelLayout.setVerticalGroup(

controlPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addGroup(controlPanelLayout.createSequentialGroup()
.addGap(19, 19, 19)
.addGroup(controlPanelLayout.createParallelGroup(javax.swing.

GroupLayout.Alignment.BASELINE)
.addComponent(jLabel1)
.addComponent(sammelblockSelectBox, javax.swing.

GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.
DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
UNRELATED)

.addGroup(controlPanelLayout.createParallelGroup(javax.swing.
GroupLayout.Alignment.BASELINE)
.addComponent(jLabel3)
.addComponent(otherBlockSelectBox, javax.swing.GroupLayout

.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(25, 25, 25)

.addComponent(jButton7)

.addContainerGap(297, Short.MAX_VALUE))
);

jScrollPane1.setName("jScrollPane1"); // NOI18N

collectTable.setModel(new javax.swing.table.DefaultTableModel(
new Object [][] {

{"1er", null, null, null},
{"2er", null, null, null},
{"3er", null, null, null},
{"4er", null, null, null},
{"5er", null, null, null},
{"6er", null, null, null},

B.6 Code Examples 281

{"Summe", null, null, null}
},
new String [] {

"Spiel", "Punkte", "Punkte", "Punkte"
}

) {
Class[] types = new Class [] {

java.lang.String.class, java.lang.Integer.class, java.lang.
Integer.class, java.lang.Integer.class

};
boolean[] canEdit = new boolean [] {

false, false, false, false
};

public Class getColumnClass(int columnIndex) {
return types [columnIndex];

}

public boolean isCellEditable(int rowIndex, int columnIndex) {
return canEdit [columnIndex];

}
});
collectTable.setName("collectTable"); // NOI18N
jScrollPane1.setViewportView(collectTable);

jScrollPane2.setName("jScrollPane2"); // NOI18N

otherTable.setModel(new javax.swing.table.DefaultTableModel(
new Object [][] {

{"Dreierpasch", null, null, null},
{"Viererpasch", null, null, null},
{"Full House", null, null, null},
{"Kleine Strasse", null, null, null},
{"Grosse Strasse", null, null, null},
{"Kniffel", null, null, null},
{"Chance", null, null, null},
{"Summe", null, null, null}

},
new String [] {

"Spiel", "Punkte", "Punkte", "Punkte"
}

) {
Class[] types = new Class [] {

java.lang.String.class, java.lang.Integer.class, java.lang.
Integer.class, java.lang.Integer.class

};
boolean[] canEdit = new boolean [] {

false, false, false, false
};

public Class getColumnClass(int columnIndex) {
return types [columnIndex];

}

public boolean isCellEditable(int rowIndex, int columnIndex) {
return canEdit [columnIndex];

}
});
otherTable.setName("otherTable"); // NOI18N

282 B Minimally Invasive Programming Courses (MIPC)

jScrollPane2.setViewportView(otherTable);

javax.swing.GroupLayout mainPanelLayout = new javax.swing.GroupLayout(
mainPanel);

mainPanel.setLayout(mainPanelLayout);
mainPanelLayout.setHorizontalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addGroup(mainPanelLayout.createSequentialGroup()
.addContainerGap()
.addComponent(dicePanel, javax.swing.GroupLayout.

PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addComponent(controlPanel, javax.swing.GroupLayout.
PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addGroup(mainPanelLayout.createParallelGroup(javax.swing.
GroupLayout.Alignment.LEADING)
.addComponent(jScrollPane1, javax.swing.GroupLayout.

PREFERRED_SIZE, 412, javax.swing.GroupLayout.
PREFERRED_SIZE)

.addComponent(jScrollPane2, javax.swing.GroupLayout.
PREFERRED_SIZE, 412, javax.swing.GroupLayout.
PREFERRED_SIZE))

.addGap(34, 34, 34))
);
mainPanelLayout.setVerticalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addGroup(mainPanelLayout.createSequentialGroup()
.addContainerGap()
.addGroup(mainPanelLayout.createParallelGroup(javax.swing.

GroupLayout.Alignment.LEADING)
.addGroup(mainPanelLayout.createSequentialGroup()

.addComponent(jScrollPane1, javax.swing.GroupLayout.
PREFERRED_SIZE, 139, javax.swing.GroupLayout.
PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.
ComponentPlacement.UNRELATED)

.addComponent(jScrollPane2, javax.swing.GroupLayout.
PREFERRED_SIZE, 156, javax.swing.GroupLayout.
PREFERRED_SIZE))

.addComponent(dicePanel, javax.swing.GroupLayout.Alignment
.TRAILING, javax.swing.GroupLayout.DEFAULT_SIZE, javax
.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(controlPanel, javax.swing.GroupLayout.
DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
Short.MAX_VALUE))

.addContainerGap())
);

menuBar.setName("menuBar"); // NOI18N

fileMenu.setText(resourceMap.getString("fileMenu.text")); // NOI18N
fileMenu.setName("fileMenu"); // NOI18N

B.6 Code Examples 283

jMenuItem1.setAccelerator(javax.swing.KeyStroke.getKeyStroke(java.awt.
event.KeyEvent.VK_N, java.awt.event.InputEvent.CTRL_MASK));

jMenuItem1.setText(resourceMap.getString("jMenuItem1.text")); //
NOI18N

jMenuItem1.setName("jMenuItem1"); // NOI18N
jMenuItem1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
jMenuItem1ActionPerformed(evt);

}
});
fileMenu.add(jMenuItem1);

javax.swing.ActionMap actionMap = org.jdesktop.application.Application
.getInstance(kniffel.KniffelApp.class).getContext().getActionMap(
KniffelView.class, this);

exitMenuItem.setAction(actionMap.get("quit")); // NOI18N
exitMenuItem.setName("exitMenuItem"); // NOI18N
fileMenu.add(exitMenuItem);

menuBar.add(fileMenu);

helpMenu.setText(resourceMap.getString("helpMenu.text")); // NOI18N
helpMenu.setName("helpMenu"); // NOI18N

aboutMenuItem.setAction(actionMap.get("showAboutBox")); // NOI18N
aboutMenuItem.setName("aboutMenuItem"); // NOI18N
helpMenu.add(aboutMenuItem);

menuBar.add(helpMenu);

statusPanel.setName("statusPanel"); // NOI18N

statusPanelSeparator.setName("statusPanelSeparator"); // NOI18N

statusMessageLabel.setName("statusMessageLabel"); // NOI18N

statusAnimationLabel.setHorizontalAlignment(javax.swing.SwingConstants
.LEFT);

statusAnimationLabel.setName("statusAnimationLabel"); // NOI18N

progressBar.setName("progressBar"); // NOI18N

javax.swing.GroupLayout statusPanelLayout = new javax.swing.
GroupLayout(statusPanel);

statusPanel.setLayout(statusPanelLayout);
statusPanelLayout.setHorizontalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addComponent(statusPanelSeparator, javax.swing.GroupLayout.
DEFAULT_SIZE, 785, Short.MAX_VALUE)

.addGroup(statusPanelLayout.createSequentialGroup()
.addContainerGap()
.addComponent(statusMessageLabel)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED, 615, Short.MAX_VALUE)
.addComponent(progressBar, javax.swing.GroupLayout.

PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

284 B Minimally Invasive Programming Courses (MIPC)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.
RELATED)

.addComponent(statusAnimationLabel)

.addContainerGap())
);
statusPanelLayout.setVerticalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.
Alignment.LEADING)

.addGroup(statusPanelLayout.createSequentialGroup()
.addComponent(statusPanelSeparator, javax.swing.GroupLayout.

PREFERRED_SIZE, 2, javax.swing.GroupLayout.PREFERRED_SIZE)
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.

RELATED, javax.swing.GroupLayout.DEFAULT_SIZE, Short.
MAX_VALUE)

.addGroup(statusPanelLayout.createParallelGroup(javax.swing.
GroupLayout.Alignment.BASELINE)
.addComponent(statusMessageLabel)
.addComponent(statusAnimationLabel)
.addComponent(progressBar, javax.swing.GroupLayout.

PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(3, 3, 3))
);

setComponent(mainPanel);
setMenuBar(menuBar);
setStatusBar(statusPanel);

}// </editor-fold>//GEN-END:initComponents

private void playButtonActionPerformed(java.awt.event.ActionEvent evt) {//
GEN-FIRST:event_playButtonActionPerformed
try {

actualDiceRound.newDice();
int[] numbers = actualDiceRound.getResult();

dice1.setText("" + numbers[0]);
dice2.setText("" + numbers[1]);
dice3.setText("" + numbers[2]);
dice4.setText("" + numbers[3]);
dice5.setText("" + numbers[4]);

} catch (Exception ex) {
Logger.getLogger(KniffelView.class.getName()).log(Level.SEVERE,

null, ex);
}

if (actualDiceRound.getPlayCount() >= actualDiceRound.getMaxPlayCount
()) {
playButton.setEnabled(false);

}

countLabel.setText(actualDiceRound.getPlayCount() + ". Wurf");

}//GEN-LAST:event_playButtonActionPerformed

private void dice1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_dice1ActionPerformed
this.lockDice(dice1, 0);

}//GEN-LAST:event_dice1ActionPerformed

B.6 Code Examples 285

private void dice2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_dice2ActionPerformed
this.lockDice(dice2, 1);

}//GEN-LAST:event_dice2ActionPerformed

private void dice3ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_dice3ActionPerformed
this.lockDice(dice3, 2);

}//GEN-LAST:event_dice3ActionPerformed

private void dice4ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_dice4ActionPerformed
this.lockDice(dice4, 3);

}//GEN-LAST:event_dice4ActionPerformed

private void dice5ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_dice5ActionPerformed
this.lockDice(dice5, 4);

}//GEN-LAST:event_dice5ActionPerformed

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {//
GEN-FIRST:event_jButton7ActionPerformed
int selectedIndexCollectBox = sammelblockSelectBox.getSelectedIndex();
int selectedIndexOtherBox = otherBlockSelectBox.getSelectedIndex();

if (selectedIndexCollectBox > 0 && selectedIndexOtherBox > 0) {
JOptionPane.showMessageDialog(null, "Bitte nur eine

Speicherungsart verwenden");
} else {

if (selectedIndexCollectBox > 0) {
lastGameSheet.addDiceRoundToSaveBlock(selectedIndexCollectBox

- 1, actualDiceRound);
} else if (selectedIndexOtherBox > 0) {

lastGameSheet.addDiceRoundToOtherBlock(selectedIndexOtherBox -
1, actualDiceRound);

}

actualDiceRound = new DiceRound();
this.updateTable();
this.resetDices();

System.out.println("InsertCount: " + lastGameSheet.getInsertCount
());

if (lastGameSheet.getInsertCount() >= 13) {
try {

lastGameSheet.newRound();
System.out.println("NewRound!");

} catch (Exception ex) {
Logger.getLogger(KniffelView.class.getName()).log(Level.

SEVERE, null, ex);
}

}
}
sammelblockSelectBox.setSelectedIndex(0);
otherBlockSelectBox.setSelectedIndex(0);

286 B Minimally Invasive Programming Courses (MIPC)

}//GEN-LAST:event_jButton7ActionPerformed

private void jMenuItem1ActionPerformed(java.awt.event.ActionEvent evt) {//
GEN-FIRST:event_jMenuItem1ActionPerformed
player.addGameSheet();
this.lastGameSheet = player.getLastGameSheet();
actualDiceRound = new DiceRound();
countLabel.setText("");
sammelblockSelectBox.setSelectedIndex(0);
otherBlockSelectBox.setSelectedIndex(0);

this.updateTable();
this.resetDices();

}//GEN-LAST:event_jMenuItem1ActionPerformed
// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JTable collectTable;
private javax.swing.JPanel controlPanel;
private javax.swing.JLabel countLabel;
private javax.swing.JToggleButton dice1;
private javax.swing.JToggleButton dice2;
private javax.swing.JToggleButton dice3;
private javax.swing.JToggleButton dice4;
private javax.swing.JToggleButton dice5;
private javax.swing.JPanel dicePanel;
private javax.swing.JButton jButton7;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel3;
private javax.swing.JMenuItem jMenuItem1;
private javax.swing.JScrollPane jScrollPane1;
private javax.swing.JScrollPane jScrollPane2;
private javax.swing.JPanel mainPanel;
private javax.swing.JMenuBar menuBar;
private javax.swing.JComboBox otherBlockSelectBox;
private javax.swing.JTable otherTable;
private javax.swing.JButton playButton;
private javax.swing.JProgressBar progressBar;
private javax.swing.JComboBox sammelblockSelectBox;
private javax.swing.JLabel statusAnimationLabel;
private javax.swing.JLabel statusMessageLabel;
private javax.swing.JPanel statusPanel;
// End of variables declaration//GEN-END:variables

private void lockDice(JToggleButton diceButton, int index) {
if (actualDiceRound.getPlayCount() > 0) {

diceButton.setEnabled(false);
actualDiceRound.saveDice(index);

} else {
diceButton.setSelected(false);

}
}

private void resetDices() {
countLabel.setText("");

dice1.setText("");
dice1.setEnabled(true);

B.6 Code Examples 287

dice1.setSelected(false);

dice2.setText("");
dice2.setEnabled(true);
dice2.setSelected(false);

dice3.setText("");
dice3.setEnabled(true);
dice3.setSelected(false);

dice4.setText("");
dice4.setEnabled(true);
dice4.setSelected(false);

dice5.setText("");
dice5.setEnabled(true);
dice5.setSelected(false);

playButton.setEnabled(true);
}

public void updateTable() {

for (int row = 0; row <= 5; row++) {
for (int round = 0; round <= 2; round++) {

collectTable.setValueAt("" + lastGameSheet.
getCollectBoxRoundRowResult(round, row), row, round + 1);

}
}

for (int row = 0; row <= 6; row++) {
for (int round = 0; round <= 2; round++) {

otherTable.setValueAt("" + lastGameSheet.
getOtherBoxRoundRowResult(round, row), row, round + 1);

}
}

// Summe row = 6
for (int round = 0; round <= 2; round++) {

collectTable.setValueAt("" + lastGameSheet.
calculateCollectBoxRoundResult(round), 6, round + 1);

otherTable.setValueAt("" + lastGameSheet.
calculateOtherBoxRoundResult(round), 7, round + 1);

}

}
private final Timer messageTimer;
private final Timer busyIconTimer;
private final Icon idleIcon;
private final Icon[] busyIcons = new Icon[15];
private int busyIconIndex = 0;
private JDialog aboutBox;

}

/*
* To change this template, choose Tools | Templates

* and open the template in the editor.

*/

288 B Minimally Invasive Programming Courses (MIPC)

package kniffel;

import java.util.Vector;

/**
*
* @author vorpro

* Nummer 6

*/
public class Player {

private String name;
private Vector<GameSheet> gameSheets;

public Player () {
name = "Player";
gameSheets = new Vector<GameSheet>();

}

public GameSheet getLastGameSheet() {
return gameSheets.lastElement();

}

public void addGameSheet() {
gameSheets.add(new GameSheet());

}

/**
* @return the gameSheets

*/
public Vector<GameSheet> getGameSheets() {

return gameSheets;
}

}

B.7 Concept Maps 289

B.7 Concept Maps

B.7.1 List of 2-rated associations of programming novices in the
pre-test

Id concept1 concept2 label label normal

3 Objekt Attribute haben hat
3 Initialisierung Instanz führt zu wird
8 Objekt Attribute besitzen besitzt
8 Objekt Klasse sind einer ...

zugewiesen
weist zu

10 Zustand Objekt ist in ?
10 Attribute Objekt definiert durch definiert
10 Objekt Klasse gehört zu ?
10 Methode Attribute verändert durch verändert
21 Attribute Vererbung können an eine

weitere Klasse
vererbt werden

?

21 Objekt Methode kann bearbeitet
werden mit

bearbeitet

21 Methode Operatoren enthält enthält
28 Methode Fallunterscheidung kann enthalten enthält
31 Attribute Zuweisung legen Eigen-

schaften fest
legt fest

32 Felder Zuweisung bekommt bekommt
32 Klasse Assoziation verbunden verbindet
74 Operatoren Zuweisung v.a. verwendet für verwendet
83 Objekt Attribute hat hat
83 Objekt Datentyp gibt es als ver-

schiedene
?

87 Objekt Assoziation Verbindung ?
102 Objektorientierung Objekt benötigt benötigt
102 Objekt Methode besteht aus besteht aus
115 Datentyp Attribute bestimmen näher bestimmt
115 Parameter Datentyp bestimmen näher bestimmt
127 Objekt Attribute kann haben hat
135 Klasse Objekt definiert definiert

Continued on next page

290 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

153 Objekt Datentyp hat einen bes-
timmten

hat

153 Vererbung Objektorientierung ist ein Merkmal der ?
153 Objekt Zustand hat hat
153 Konstruktor Objekt erschafft ein erschafft
159 Objekt Attribute kann besitzen besitzt

B.7 Concept Maps 291

B.7.2 List of 0-rated associations of programming novices in the
pre-test

Id concept1 concept2 label label normal

3 Objekt Parameter definiert sich über definiert
3 Objekt Fallunterscheidung kann durchgeführt

werden
führt durch

7 Operatoren Initialisierung sorgen möglicher-
weise für eine

?

7 Parameter Zuweisung erzeugen in
manchen Fällen

erzeugt

7 Operatoren Methode kennzeichnen eine kennzeichnet
8 Zustand Attribute eines Objektes ?
8 Zuweisung Felder in ... eingeteilt ?
8 Zustand Datentyp eines Objektes ?

8 Zustand Klasse eines Objektes ?
8 Objekt Zuweisung durch ?
10 Parameter Objekt definiert durch definiert
10 Methode Parameter verändert durch verändert
10 Methode Wiederholung mögliche Art einer

Methode
?

13 Datentyp Parameter definiert definiert
13 Initialisierung Datentyp und ?
13 Klasse Zuweisung enthält enthält
21 Klasse Instanz Synonym für

Klasse
?

21 Felder Parameter mögliche
Eingaben

?

23 Klasse Operatoren können verbunden/
getrennt werden
durch

?

23 Klasse Zuweisung bekommen "Inhalt"
durch

?

28 Klasse Methode definiert durch definiert
28 Fallunterscheidung Datentyp besteht aus besteht aus
28 Datentyp Wiederholung besteht aus besteht aus
28 Zuweisung Datentyp definiert definiert
31 Parameter Zuweisung legen Eigen-

schaften fest
legt fest

Continued on next page

292 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

31 Wiederholung Objekt Befehl für ?
31 Zuweisung Objekt bestimmt bestimmt
31 Fallunterscheidung Objekt Befehl für ?
32 Fallunterscheidung Operatoren weiter durch ?
32 Zuweisung Fallunterscheidung bringen bringt
32 Operatoren Klasse unterteilt unterteilt
32 Parameter Wiederholung bei bestimmten ?
32 Parameter Datentyp gespeichert als ?
47 Fallunterscheidung Objektorientierung Gegensatz zu ?
71 Konstruktor Operatoren erstellt für erstellt
74 Wiederholung Parameter definiert durch definiert
74 Zuweisung Parameter definiert durch definiert
83 Objekt Parameter besteht aus besteht aus
83 Datentyp Parameter besteht aus besteht aus
83 Attribute Parameter hat hat
102 Objekt Klasse besteht aus besteht aus
109 Objekt Datentyp hat hat
127 Objekt Datentyp notwendig ?
132 Wiederholung Operatoren are caused by ?
132 Parameter Objekt influence ?
132 Objekt Operatoren instruct ?
139 Datentyp Operatoren Zuweisung ?
141 Überladen Datenkapselung kein Speicherplatz

vorhanden Daten
müssen komprim-
iert werden zip
Ordner

?

141 Vererbung Wiederholung Wenn ein Pro-
gramm fehlerhaft
ist und weiter
erweitert wird, wird
der Fehler vererbt

?

153 Methode Zuweisung Beispiel ?
153 Zuweisung Objekt weißt einem Objekt

einen Wert zu
weist zu

153 Methode Operatoren Beispiel ?
153 Objekt Parameter hat hat

Continued on next page

B.7 Concept Maps 293

continued from previous page

Id concept1 concept2 label label normal

155 Fallunterscheidung Zuweisung ist nötig zur ?

155 Parameter Fallunterscheidung erfordert erfordert
159 Parameter Attribute besitzen besitzt
159 Objekt Parameter kann besitzen besitzt
159 Objekt Datentyp ist ein bestimmter bestimmt

294 B Minimally Invasive Programming Courses (MIPC)

B.7.3 List of 2-rated associations of programming novices in the
post-test

Id concept1 concept2 label label normal

3 Objekt Attribute haben hat
3 Objekt Klasse übergeordnet ist überge-

ordnet
3 Konstruktor Objekt erzeugt erzeugt

5 Objektorientierung Datenkapselung durch ?
5 Zugriffsmodifikator Datenkapselung erlaubt/ un-

terbindet
?

5 Zugriffsmodifikator Objektorientierung erlaubt/ un-
terbindet

?

5 Objekt Klasse Bestandteil besteht aus
5 Methode Attribute ändert ändert

5 Konstruktor Objekt erstellt erstellt
5 Attribute Objekt beschreibt Eigen-

schaften
beschreibt

7 Zugriffsmodifikator Methode macht von außen
sichtbar/unsicht-
bar

macht sicht-
bar

7 Datenkapselung Attribute machen von außen
sichtbar

macht sicht-
bar

7 Attribute Objekt beschreiben beschreibt
7 Methode Zustand verändert verändert
7 Konstruktor Objekt erschaffen erschafft
8 Methode Objekt verändern den Zu-

stand
verändert

8 Methode Überladen ... möglich ?
8 Klasse Objekt kann erzeugen erzeugt
8 Objekt Zustand besitzen einen besitzt
10 Parameter Methode enthält enthält
10 Objekt Methode Bearbeitung ?
10 Objekt Attribute Eigenschaft ?
13 Assoziation Klasse stellt Zusammen-

hang her
?

13 Objekt Attribute besitzt besitzt
13 Methode Attribute ändert ändert
13 Attribute Zustand beschreiben beschreibt

Continued on next page

B.7 Concept Maps 295

continued from previous page

Id concept1 concept2 label label normal

13 Operatoren Fallunterscheidung werden benötigt
bei

benötigt

13 Zuweisung Felder um Daten zu
übergeben

?

13 Konstruktor Objekt erstellt erstellt
13 Datenkapselung Objektorientierung Zentrales Prinzip

der
?

13 Operatoren Felder stellen Vergleiche
oder mathematis-
che Verknüpfun-
gen her

?

13 Zugriffsmodifikator Attribute regelt Zugriff auf ?
13 Parameter Methode werden übergeben

um Eigenschaften
zu ändern

?

15 Objekt Klasse sind Grundpläne
für

?

15 Objekt Datentyp sind keine primi-
tiven

?

15 Klasse Attribute enthalten enthält
15 Objektorientierung Klasse mit Hilfe von ?

15 Klasse Methode enthalten enthält
15 Datenkapselung Objektorientierung durch ?
15 Objekt Instanz sind ist
21 Datenkapselung Objekt Zugriff auf ?
21 Operatoren Zuweisung verändert den

Wert einer Vari-
ablen durch

?

21 Objektorientierung Objekt speichert Daten in ?
21 Zugriffsmodifikator Datenkapselung bestimmt Art der ?
21 Objekt Instanz Synonym ?
21 Objekt Methode enthält enthält
21 Parameter Datentyp hat einen bes-

timmten
?

23 Datentyp Felder hat bestimmten hat
23 Klasse Objekt enthält enthält
23 Datentyp Attribute hat bestimmten hat
23 Zuweisung Attribute von Attributwert ?

Continued on next page

296 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

23 Konstruktor Objekt macht aus Klasse ?
23 Methode Attribute kann verändern verändert
23 Objektorientierung Datenkapselung beschreibt beschreibt
23 Objekt Attribute hat hat
23 Attribute Felder können als Felder

beschreiben wer-
den

?

23 Datenkapselung Attribute Sichtbarkeit von ?

28 Methode Objekt verändert verändert
28 Zugriffsmodifikator Objekt beeinflusst beeinflusst
28 Objekt Klasse bestimmen bestimmt
31 Attribute Datentyp bestimmt mit bestimmt
31 Attribute Vererbung können durch

... weitergegen
werden

gibt weiter

31 Attribute Klasse besitzt besitzt
31 Klasse Assoziation verbinden mit an-

deren Klassen ist
verbindet

31 Methode Vererbung können durch
... weitergegen
werden

gibt weiter

31 Datenkapselung Methode Schutz vor Zugriff
von außen durch

?

31 Zugriffsmodifikator Datenkapselung mit Hilfe von ?
31 Methode Fallunterscheidung besitzen unter Um-

ständen
besitzt

31 Methode Wiederholung besitzen unter Um-
ständen

besitzt

31 Datenkapselung Attribute Schutz vor Zugriff
von außen durch

?

32 Klasse Attribute haben hat
32 Objekt Konstruktor werden erstellt

durch
erstellt

32 Objektorientierung Objekt arbeitet mit ?
35 Initialisierung Konstruktor durch ?
35 Klasse Konstruktor enthält enthält
35 Objekt Methode enthält/ ruft auf &

definiert
enthält

Continued on next page

B.7 Concept Maps 297

continued from previous page

Id concept1 concept2 label label normal

35 Konstruktor Methode ist eine ist
35 Methode Parameter übergebt übergibt
35 Klasse Attribute definiert definiert
47 Klasse Methode besteht aus besteht aus
48 Klasse Objekt durch Erstellung

Konnstruktor
?

48 Objekt Attribute hat hat
48 Attribute Methode verändert verändert
65 Klasse Attribute besteht aus besteht aus
65 Klasse Konstruktor besteht aus besteht aus
65 Klasse Methode besteht aus besteht aus
69 Methode Attribute können verändern verändert
69 Konstruktor Objekt erstellt erstellt
69 Klasse Methode hat hat
69 Attribute Zuweisung Wert ?
69 Methode Konstruktor z.B. den ?
69 Attribute Datentyp haben hat
69 Objektorientierung Objekt basiert auf Verwen-

dung von
?

69 Klasse Attribute besitzt besitzt
69 Methode Parameter gegebenfalls ?
69 Methode Fallunterscheidung uses ?
69 Methode Operatoren benutzen benutzt
69 Objekt Datenkapselung bietet den Vorteil

der
?

69 Objekt Klasse wird erstellt aus erstellt
71 Objekt Zustand hat verschiedenen hat
74 Objekt Methode Zugriff durch ?

74 Methode Zustand ändert eines Objek-
tes . . .

ändert

74 Methode Fallunterscheidung können verwenden verwendet
74 Methode Überladen Möglichkeit des ?
74 Objekt Datenkapselung verwenden verwendet
74 Methode Wiederholung können verwenden verwendet
74 Methode Parameter verwenden verwendet
83 Objektorientierung Klasse durch ?

Continued on next page

298 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

83 Datentyp Attribute ist darin vorhanden ?
83 Objekt Attribute wird beschrieben

durch
beschreibt

83 Methode Wiederholung einbaubar ?
83 Attribute Methode veränderbar ?
83 Objekt Datenkapselung besitzt eine besitzt
83 Datentyp Felder ist darin vorhanden ?
87 Objekt Assoziation Verbindung ?
94 Fallunterscheidung Methode kann Teil einer

Methode sein
?

94 Klasse Methode beteht aus besteht aus
94 Klasse Konstruktor besteht aus besteht aus
94 Attribute Zuweisung brauchen braucht
94 Objektorientierung Datenkapselung basiert auf basiert auf
102 Klasse Methode haben hat
106 Instanz Klasse ist von einer ?
106 Attribute Datentyp Variablen haben

einen
?

106 Attribute Datenkapselung sind unveränder-
bar durch

?

106 Klasse Methode hat hat

106 Methode Parameter manchmal mit ?
106 Instanz Zustand hat hat
106 Klasse Konstruktor hat hat
106 Klasse Attribute hat hat
107 Objekt Attribute in bestimmtem Zu-

stand
?

107 Objekt Methode veränderbar ?

107 Klasse Objekt mit gleichen At-
tributen

?

109 Attribute Zuweisung brauchen braucht
109 Objekt Zustand hat hat
109 Parameter Datentyp haben hat
109 Klasse Attribute bestimmt bestimmt
109 Parameter Methode bestimmen bestimmt
109 Methode Wiederholung können enthalten enthält

Continued on next page

B.7 Concept Maps 299

continued from previous page

Id concept1 concept2 label label normal

109 Klasse Konstruktor hat hat

109 Konstruktor Objekt erzeugt erzeugt
109 Methode Fallunterscheidung können enthalten enthält
115 Objekt Konstruktor hat hat
115 Zugriffsmodifikator Objekt versteckt versteckt
115 Objekt Attribute besitzt ver-

schiedene
besitzt

115 Klasse Objekt Bauplan für ?

115 Klasse Konstruktor hat hat
115 Methode Objekt verändert verändert
119 Methode Wiederholung können sein ist
119 Objekt Konstruktor wird durch ist
119 Konstruktor Attribute initialisiert mit initialisiert
119 Methode Fallunterscheidung können sein ist
119 Objekt Zustand hat hat

119 Klasse Attribute legt fest legt fest
119 Objekt Attribute hat hat
127 Klasse Konstruktor enthält enthält
127 Objektorientierung Datenkapselung vereinfacht vereinfacht
127 Überladen Parameter unterschiedliche ?
127 Objekt Attribute verfügt über verfügt über

127 Attribute Datentyp hat hat
127 Klasse Methode verfügt über verfügt über
127 Klasse Attribute verfügt über verfügt über
127 Konstruktor Objekt erstellt erstellt
127 Parameter Datentyp muss muss
132 Methode Konstruktor können sein ist
132 Methode Überladen können ... werden ist
132 Klasse Attribute haben hat
132 Klasse Objekt werden aus ...

erzeugt
erzeugt

132 Parameter Datentyp haben ver-
schiedene

hat

132 Methode Wiederholung können enthalten enthält

132 Methode Fallunterscheidung können enthalten enthält
132 Methode Operatoren verwenden verwendet

Continued on next page

300 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

132 Methode Objekt verändern verändert

133 Attribute Objekt Eigenschaften ?
133 Methode Attribute manipuliert manipuliert
133 Zugriffsmodifikator Datenkapselung legt fest legt fest
133 Datenkapselung Attribute verbirgt verbirgt
133 Klasse Objekt legt bestimmte At-

tribute fest
legt fest

133 Konstruktor Objekt konstruiert konstruiert

135 Attribute Objekt beschreiben beschreibt
135 Klasse Objekt legt fest legt fest
135 Parameter Methode können enthalten enthält
135 Klasse Methode enthält und

beschreibt
enthält

135 Datenkapselung Klasse macht sicherer ?
135 Klasse Konstruktor enthält und

beschreibt
enthält

135 Initialisierung Attribute legt fest legt fest
135 Methode Objekt ändert oder gibt

weiter
ändert

139 Klasse Objekt hat hat
139 Methode Attribute ändert ändert

141 Zustand Attribute Attribute zeigen
auf in welchem
Zustand sich die
Klassen befinden

?

141 Objekt Attribute Eigenschaften
von Objekten bzw.
einer Klasse

?

141 Methode Wiederholung Kann man z.B.
in Methoden ein-
bauen, damit sie
sich immer wieder-
holen "schleifen"

?

148 Zugriffsmodifikator Datenkapselung ermöglichen ermöglicht
148 Parameter Methode in ?
148 Konstruktor Objekt erstellt erstellt
148 Methode Attribute kann Werte verän-

dern
verändert

Continued on next page

B.7 Concept Maps 301

continued from previous page

Id concept1 concept2 label label normal

148 Attribute Objekt sind Eigenschaften
von

?

148 Datenkapselung Attribute ermöglicht, dass
sie nicht von über-
all geändert wer-
den können

?

148 Klasse Objekt besteht aus besteht aus
153 Konstruktor Objekt erschafft ein erschafft

153 Objekt Klasse gerhört an gehört an
153 Zuweisung Attribute Weißt einem At-

tribut einen bes-
timmten Wert zu

?

153 Objektorientierung Objekt hat im Zentrum hat
153 Zugriffsmodifikator Datenkapselung bewirkt eine bewirkt

153 Objekt Attribute hat verschiedene hat
155 Objektorientierung Klasse hat "Bausteine" ?
155 Klasse Methode hat hat
155 Klasse Attribute hat hat
155 Konstruktor Objekt "baut" ?
155 Klasse Konstruktor hat hat
155 Klasse Objekt enthält enthält
155 Objektorientierung Datenkapselung führt zu wird
159 Objekt Attribute hat hat
159 Klasse Objekt hat hat
161 Objekt Zustand hat hat
161 Klasse Attribute legt fest legt fest
161 Zustand Attribute festgelegt durch legt fest

161 Objekt Klasse gehört zu ?
161 Objekt Attribute hat hat
161 Klasse Objekt beinhaltet "Bau-

plan"
?

161 Methode Attribute kann ändern ändert
161 Objektorientierung Objekt übergeordnetes

Konzept
?

302 B Minimally Invasive Programming Courses (MIPC)

B.7.4 List of 0-rated associations of programming novices in the
post-test

Id concept1 concept2 label label normal

3 Parameter Fallunterscheidung kann durchgeführt
werden

führt durch

5 Parameter Attribute gibt Werte an gibt an
5 Operatoren Attribute Hilfsmittel ?
10 Klasse Instanz Unterkategorie ?

13 Datenkapselung Attribute vereint gleiche vereint
13 Initialisierung Felder zur Benennung

von
?

21 Instanz Klasse mehrere Instanzen
zusammen
ergeben eine

?

21 Methode Operatoren enthält enthält
21 Vererbung Klasse neue Klassen

mit Ähnlichen
Attributen können
durch Vererbung
angelegt werden

?

21 Methode Parameter liefert liefert
21 Initialisierung Parameter bestimmt An-

fangswert
?

21 Objekt Felder speichert Daten in ?
23 Wiederholung Methode von ?
23 Fallunterscheidung Methode von ?
23 Wiederholung Attribute von ?

23 Fallunterscheidung Attribute von ?
28 Fallunterscheidung Klasse teil einer ?
31 Objektorientierung Klasse besitzt ein oder

mehrere
besitzt

31 Parameter Zuweisung erfolgt erfolgt
31 Operatoren Vererbung können durch

... weitergegen
werden

gibt weiter

31 Klasse Methode und ?
31 Methode Operatoren oder ?
31 Klasse Konstruktor erzeugt durch erzeugt

Continued on next page

B.7 Concept Maps 303

continued from previous page

Id concept1 concept2 label label normal

32 Methode Operatoren umgesetzt durch setzt um
32 Klasse Methode benutzen benutzt
32 Objekt Klasse werden unterteilt unterteilt
32 Klasse Vererbung neue Attribute

hinzufügen
?

35 Objekt Initialisierung enthält enthält
47 Methode Fallunterscheidung wird eingegeben

als
?

47 Methode Konstruktor und eingeben in ?
47 Methode Zugriffsmodifikator besteht aus besteht aus
47 Methode Vererbung wird eingegeben

als
?

47 Methode Wiederholung wird eingegeben
als

?

47 Klasse Objekt besteht aus besteht aus
48 Parameter Methode verändert verändert
48 Objekt Überladen kann Wiederholun-

gen enthalten
?

69 Felder Datentyp speichern speichert
71 Attribute Datentyp sind ist
74 Objekt Attribute einer Klasse unter-

scheiden sich in
?

74 Methode Datentyp festlegen des legt fest
74 Wiederholung Instanz können "ver-

schachtelt" werden
?

74 Methode Zugriffsmodifikator teils als ?
74 Objekt Parameter verwenden verwendet

74 Datentyp Initialisierung muss zunächst ..
werden

ist

83 Klasse Objekt beinhaltet beinhaltet
83 Datentyp Klasse ist darin vorhanden ?
83 Attribute Fallunterscheidung hat zeitweise hat
83 Objekt Assoziation wenn mehrere

zusammenpassen
?

83 Überladen Attribute durch zu viel ?
83 Attribute Zustand haben einen hat
83 Objekt Überladen kann kann

Continued on next page

304 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id concept1 concept2 label label normal

83 Attribute Parameter besitzt besitzt
83 Attribute Felder beinhaltet beinhaltet
83 Konstruktor Objekt folgt danach ?
83 Klasse Konstruktor "Grundgerüst" ?
87 Methode Fallunterscheidung mögliche Methode ?
87 Attribute Felder Umfang ?
87 Konstruktor Attribute werden dort einge-

tragen
trägt ein

87 Methode Wiederholung kann wiederholt
werden

?

94 Zuweisung Datentyp des ?
94 Wiederholung Methode kann Teil einer

Wiederholung sein
?

94 Parameter Objekt bestimmt Zustand
von Objekt

?

94 Attribute Parameter besitzen abhängig
von Objekt bes-
timmte

?

94 Klasse Instanz läuft in einer ?
94 Fallunterscheidung Zugriffsmodifikator ist ist
94 Klasse Attribute weißt Objekten At-

tribute zu
?

102 Felder Parameter haben hat
102 Felder Attribute haben hat
102 Methode Felder brauchen braucht
106 Fallunterscheidung Objektorientierung benutzt man zur ?
109 Initialisierung Parameter erstellt erstellt

119 Methode Zuweisung sind " Werkzeuge"
zur

?

119 Attribute Parameter die durch ... fest-
gelegt sind

legt fest

119 Zuweisung Parameter von ?
119 Methode Operatoren mit Hilfe von ?
127 Fallunterscheidung Wiederholung kann benutzt wer-

den
benutzt

127 Objekt Parameter hat hat
127 Zugriffsmodifikator Zuweisung wird benutzt benutzt

Continued on next page

B.7 Concept Maps 305

continued from previous page

Id concept1 concept2 label label normal

132 Parameter Initialisierung entstehen durch entsteht

133 Parameter Attribute gibt genauen Wert
an

?

135 Wiederholung Konstruktor widerholt wiederholt
135 Datentyp Operatoren beschreibt beschreibt
135 Parameter Initialisierung lassen bestimmte

Effekte aus, bei
?

135 Datentyp Objekt beschreibt beschreibt

135 Wiederholung Methode wiederholt wiederholt
141 Attribute Parameter definiert den Zus-

tand (höhe,länge,
breite Farbe) eines
Attributes

?

141 Klasse Objekt ist Überbegriff von ?

143 Methode Objekt Zuweisung ?
148 Parameter Attribute verändert verändert
148 Klasse Attribute gleiche ?
153 Methode Wiederholung Beispiel ?
153 Methode Initialisierung Beispiel ?
155 Fallunterscheidung Zuweisung ermöglicht ermöglicht
159 Methode Fallunterscheidung mögliche Metho-

den sind
?

159 Operatoren Parameter können besitzen besitzt
159 Methode Operatoren hat hat
161 Felder Parameter speichert speichert
161 Initialisierung Parameter legt Wert fest ?

306 B Minimally Invasive Programming Courses (MIPC)

B.8 Student Questions

Id question answer knowledge school concept

2 Ich kann Klassen auch nutzen
um Funktionen auszulagern?

1 2 4 class

2 Wie kann ich auf eine Var.
Einer anderen Klasse zu-
greifen?

2 2 4 association

2 Var. Aus anderen Klassen def. 1 2 4 attribute

2 Wie führe ich Konstruktor aus? 1 2 4 constructor
2 Was ist static 1 2 4 access modifier
2 Array mit Objekten 2 2 4 array
2 Was sind Wrapperklassen? 1 2 4 datatype
2 Wie kennzeichne ich Parame-

ter einer Methode?
1 2 4 parameter

2 Wie funktoniert ein Konstruk-
tor?

2 2 4 constructor

2 Wie kann ich mehrere Param.
Überg.

1 2 4 parameter

2 Was bedeutet das "this. . . ." 1 2 4 object
2 Wo erstelle ich die Objekte? 1 2 4 object
2 Warum funktioniert die

Zuweisung nicht? (static
reference)

1 2 4 assignment

2 Was steht in einem gerade In-
stanzierten Array?

1 2 4 array

2 Cast von Objekt aus String 2 2 4 datatype
2 Wie krieg ich Scrollbars? 1 2 4 other

2 Wie nutzte ich zweidimension-
ale Arrays?

1 2 4 array

2 Wie kann ich meine ITable ak-
tualisieren?

1 2 4 other

2 Brauch eine Klasse einen Kon-
struktor?

1 2 4 class

2 Objekte initialisieren bevor sie
genutzt werden?

1 2 4 initialization

3 Nach "if" mehrere Be-
fehle geben (Block durch
geschweifte Klammern)

1 1 5 cond. Statement

Continued on next page

B.8 Student Questions 307

continued from previous page

Id question answer knowledge school concept

3 Klammern zusammenfassen
Syntax: Mehrere Bedingungen
durch

1 1 5 operators

3 Wertebereich einschränken 1 1 5 datatype
3 Was ist x=2 und x==2 1 1 5 operators
5 Was machen die Parameter in

Klammern bei Methoden?
3 1 5 parameter

8 Wie kann ich Zahlen in fes-
ter Reihenfolge zufällig gener-
ieren?

1 1 5 other

9 Was sind das für Zeichen,
wenn ich eine Array ausgeben
möchte?

2 2 5 array

9 s=="1" funktioniert nicht? 2 2 5 syntax

10 Muss eine Static- Methode
definieren

1 1 5 other

10 Keine Methode in einer Meth-
ode definieren

1 1 5 other

10 Wie kann ich auf Var. Ver-
schiedener Klassen zugreifen?

2 1 5 association

10 Was ist ein Enam 1 1 5 datatype
10 Was bedeutet "Void"? 1 1 5 datatype
10 Wie sieht das aus wenn eine

Funktion etwas zurückgibt?
2 1 5 method

10 Wann setzte ich ein Attribut auf
einen Wert?

1 1 5 attribute

10 Wie sieht ein Konstruktor aus? 2 1 5 constructor
10 Fallunterscheidung? 2 1 5 cond. Statement
10 Wie mache ich eine Klasse

(???)?
1 1 5 class

10 Syntaxfehler () hinter Methode
vergessen

2 1 5 syntax

10 Variableninitialisierung 1 1 5 initialization
10 Wie kann ich versch. Daten in

eine Array packen?
1 1 5 array

10 Warum brauch er die Parame-
ter?

2 1 5 parameter

Continued on next page

308 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id question answer knowledge school concept

10 Brauche ich eine elo für if-
Abfragen?

1 1 5 cond. Statement

14 Wie vergleiche ich Zahlen? 2 1 4 operators
15 statische Methoden 3 1 5 method
18 Was bedeutet das "privat"? 1 0 0 access modifier
21 Wie kann man Be-

nutzereingaben verwenden?
2 1 5 other

22 Wie importiere ich " random"? 9 2 3 other

22 Schachtelungen von Funktion-
saufrufen möglich?

5 2 3 method

22 Warum wandelt die toString
Methode einen Integer in
was anderes um als die ur-
sprüngliche eingegebene Zahl

8 2 3 datatype

22 Wollte in einer Klasse auf ein
Attribut einer anderen Vergle-
ichen "hatte "="statt ==+ Meth-
ode war nicht static

2 2 3 syntax

23 Beim Konstuktor muss nicht
unbedingt angegeben werden
was er zurückliefert, oder?

1 1 5 constructor

23 Werden Methoden nacheinan-
der abgearbeitet wie sie im
Code stehen?

1 1 5 other

23 Mehrere Rückgabewerte in
einer Funktion möglich?

1 1 5 method

23 Fehlender Rückgabewert beim
compilieren?

3 1 5 syntax

23 Unreachable Code? (beim
Kompilieren)

1 1 5 syntax

23 Wird eine Methode immer
wieder aufgerufen oder wird
sich der Wert gemerkt?

1 1 5 method

23 Wie kann ich den Konstruktor
aufrufen?

1 1 5 constructor

25 Wie schachtel ich if- Abfragen
richtig?

1 1 4 cond. Statement

28 Unterschied Klasse / Objekt? 1 1 5 object
29 Ist Constructor= compiler? 1 0 0 other

Continued on next page

B.8 Student Questions 309

continued from previous page

Id question answer knowledge school concept

31 Ist char ein einzelnes Zeichen? 1 1 5 datatype
31 Muss ich für zwei Arrays zwei

Attribute benutzen? Bzw. wie
unterscheide ich zwei Arrays?

1 1 5 array

31 Gibt es einen except Befehl? 1 1 5 other
32 Wie geht die For-Schleife? 2 1 5 loop
32 If- Abfrage 2 1 5 cond. Statement
32 Fehlerhafte abbruchbedingung 1 1 5 loop

32 Zufallszahlen mit Ausnahme
generieren

1 1 5 other

32 Array. Initialisieren 1 1 5 array
35 Objekt erzeugen im Mode? 1 1 5 object
35 Methode mit Rückgabewert 1 1 5 method
36 Was bedeutet "new" bei der

Definition von einem Array?
1 1 3 array

39 Objekt erzeugen im Mode
(???)

2 0 0 object

39 lokale Variablen 2 0 0 other
41 Wenn innerhalb einer Me-

thide andere Aufgerufen wer-
den, müssen diese "vorher"
definiert werden?

1 2 4 method

42 Was machen die () Klammern
hinter dem Methodenaufrufen?

3 1 4 method

47 Muss meine Methode einen
Rückgabewert haben?

1 1 5 method

47 Wie gebe ich Textauf der Kon-
sole aus?

11 1 5 other

49 Array erklärt 2 0 0 array
49 For-Schleife erklärt 2 0 0 loop
55 Wie greife ich auf andere

Klassen zu?
2 2 0 association

55 Wie geht ein "oder" in einer
Abfrage?

1 2 0 operators

55 Var. Aus anderen Klassen def. 1 2 0 association
55 Nicht statische Methode

statisch aufrufen.
1 2 0 other

55 Wie mache ich Eingaben? 1 2 0 other

Continued on next page

310 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id question answer knowledge school concept

55 Aufruf über mehrere Klassen 1 2 0 association
55 Wie sichere ich mein

Porgramm gegen falsch
Eingaben?

1 2 0 other

55 Warum werden 0000 als 0 gele-
sen?

1 2 0 datatype

59 Buttons wie 25 0 0 other
62 private? Vs puplic 2 1 5 access modifier

65 Objekt erzeugen im Mode
(???)

2 1 5 object

69 Methode mit Rückgabewert 1 1 5 method
71 Was bedeutet "new int(5)"? 1 1 5 initialization
71 Wie geht if Abfrage 1 1 5 cond. Statement
71 Var. Ref. Aus anderer Klasse 2 1 5 association
71 Methodenaufruf in anderer

Klasse
1 1 5 association

71 Mehrere Abfragen in einer if-
Abfrage

2 1 5 cond. Statement

71 Wie gehen Arrays 2 1 5 array
72 Wie gehen Arrays 2 1 4 array
73 Wie kann ich if -Abfragen "gle-

ichwertig" machen?
2 1 5 cond. Statement

73 Wie mache ich Wiederholun-
gen?

2 1 5 loop

74 Probleme mit Schleifenvariable
"inti=" funktioniert nicht?

2 1 5 syntax

74 Wie breche ich eine Schleife
ab?

2 1 5 loop

74 Wie wird der Konstruktor
aufgerufen?

3 1 5 constructor

74 Vergleich mit "=" funktioniert
nicht?

2 1 5 syntax

83 Wo müssen die Attribute einer
Klasse stehen in der Klasse?
Reihenfolge wichtig?

2 1 5 class

83 Wo müssen Methoden notiert
werden?

3 1 5 class

Continued on next page

B.8 Student Questions 311

continued from previous page

Id question answer knowledge school concept

83 Methodenaufrufe in Metho-
den?

3 1 5 method

83 Wie funktioniert das mit der
main-Methode?

3 1 5 other

83 Array out Of Bounds Excep-
tion?

2 1 5 other

89 Was ist x=2 und x==2 1 1 5 operators
90 String vergleichen

(.equals(str))
26 3 4 datatype

91 Fehler wegen fehlender
Semikolon

1 2 3 syntax

92 Wie man input von Zahlen
macht. Mit System.inetc.

8 2 5 other

92 Dynamische Arrays 8 2 5 array

94 Ist ein Array ein Attribut? 5 1 5 attribute
94 Wie bekomme ich Variablen

von einer Klasse in eine an-
dere?

10 1 5 association

97 Objekt erzeugen im Mode
(???)

2 1 4 object

98 Wie erstelle ich ein Frame mit
einem Button?

8 3 4 other

98 Wie erstelle ich eine num-
merierete Liste von Objekten
–> List, Array

1 3 4 array

98 Wie ordne ich meine Objekt in
einem Panel an? –> Layout
Manager

1 3 4 other

100 private? Vs puplic 2 0 0 access modifier
102 Objekterstellung im Code 2 1 5 object
104 Wie kann man innergalb der

main-Methode nicht-static Vari-
ablen und Fkt. Aufrufen?

1 0 0 other

104 Wie kann man eine dynamis-
che Anzahl an Objekten erzeu-
gen?

1 0 0 other

106 Objekt erzeugen im Mode
(???)

2 1 5 object

Continued on next page

312 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id question answer knowledge school concept

106 Methode Objekt als Parameter
übergeben

2 1 5 parameter

109 Objekterzeugung im Code? 2 1 5 object
109 Inititialisierung von Attributen

über Konstruktor?
2 1 5 initialization

109 lokale Variablen 1 1 5 other
113 array.length liefert nicht Anzahl

sinnvoll belegter Elemente ,
sondern Gesamtgröße des Ar-
rays

1 3 0 array

114 Wie verwendet man Felde? 1 0 0 array
114 Wie verwendet man Schleifen? 1 0 0 loop
118 (???) Datentypen , Arrays in

Java
2 0 0 datatype

118 Konstruktor mit/ ohne Panome-
ter?

2 0 0 constructor

118 for-schleife 2 0 0 loop
121 Was ist eine Klasse/ ein Objekt 1 0 0 class
123 Verständnisprobleme mit Array

und Input!
9 2 1 array

123 Was ist Void und wofür braucht
man das?

5 2 1 datatype

123 Unterschied Objekt und
Klasse?

1 2 1 class

124 Scope von Variablen 2 1 2 attribute
124 Kann man While-Schleifen

zählen lassen?
1 1 2 loop

125 Objekterzeugung im Code? 2 0 0 object
125 Inititialisierung von Attributen

über Konstruktor?
2 0 0 initialization

125 Arrays in Java? 2 0 0 array
127 Objekterzeugung im Code? 2 1 5 object
127 Inititialisierung von Attributen

über Konstruktor?
2 1 5 initialization

132 Objekterzeugung im Code? 2 1 5 object
132 Inititialisierung von Attributen

über Konstruktor?
2 1 5 initialization

132 lokale Variablen 1 1 5 other

Continued on next page

B.8 Student Questions 313

continued from previous page

Id question answer knowledge school concept

133 lokale Variablen 2 1 5 other

133 Objekt erzeugen im Mode
(???)

2 1 5 object

134 Leerzeichen in Variablenna-
men?

1 0 0 syntax

134 Wie erstelle ich ein neues Ar-
ray?

1 0 0 array

134 Benutze ich while oder for
für die 12 Schritte bei Master-
mind?

1 0 0 loop

134 Wie greife ich mit this auf
Klassen Variablen zu?

1 0 0 object

135 Objekt erzeugen im Mode
(???)

2 1 5 object

135 Konstruktor von Mode mit/
ohne Parameter

1 1 5 constructor

139 Objekt erzeugen im Mode
(???)

2 1 5 object

140 Wie erstelle ich eine neue
Array-Instanz (new Operator)?

2 2 5 initialization

140 Index-Bereich eines Arrays der
Größe n?

1 2 5 array

141 Was sind Methodenköpfe, was
Methodenrümpfe?

2 1 5 method

141 Wie funktioniert sys-
tem.out.println?

2 1 5 other

142 Was ist x=2 und x==2 1 1 5 operators

145 Listen, Stacks, . . . in Java? 9 2 5 other
147 Rückgabewert, Parameter

einer Funktion?
1 2 4 method

147 Wie ruft man static- Methoden
einer anderen Klasse auf?

1 2 4 association

147 Unterschied zwischen int und
Integer?

1 2 4 datatype

147 Globale Variable wurde nicht
geschrieben weil durch lokale
Variable verdeckt

1 2 4 attribute

147 Allgemeine Frage zur
Vererbung

1 2 4 inheritance

Continued on next page

314 B Minimally Invasive Programming Courses (MIPC)

continued from previous page

Id question answer knowledge school concept

148 Wie wird ein Objekt erzeugt? 1 1 5 initialization

148 Zugriff auf Attribut 1 1 5 attribute
148 Rückgabewert von Methoden

spezifizieren
3 1 5 method

148 Wie liefert Methode Wert
zurück

1 1 5 method

151 Wo Attribute definieren 1 1 3 class
151 Syntax der if-Anweisung? 2 1 3 cond. Statement

151 Konstruktor 3 1 3 constructor
151 for-schleife 2 1 3 loop
152 Kann ich in einer Schleife Funk-

tionen aufrufen?
1 2 4 loop

156 Wie kann ich eine Schleife ab-
brechen?

2 2 1 loop

156 Kann eine Methode auch
booleans zurückliefern?

1 2 1 method

157 Wie wandelt man einen String
in eine Zahl um?

2 3 4 datatype

C Translations

Page Original Source Translation

p. 76 “Der Hauptunterschied beider fach-
didaktischen Vorgehensweisen ist
die sequenzielle Abfolge der The-
men. Der Schwerpunkt beider Vorge-
hensweisen liegt eher in der Program-
mierung als in der Modellierung, ohne
dass auf die Modellierung verzichtet
wird.” (Ehlert 2012, p. 16)

The main difference of both teaching
approaches is the sequential order of
topics. Both approaches focus more
in programming as in the modeling,
without giving up the modeling.

p. 76 “Es wurden keine signifikanten Un-
terschiede zwischen dem OOP-
First-Vorgehen und dem OOP-Later-
Vorgehen im Hinblick auf den Lern-
erfolg der Schülerinnen und Schüler
festgestellt bzw. gemessen (die
p-Werte für die neun abgefragten
Themen liegen zwischen 0,18 und
0,83). Die OOP-Later-Schüler hatten
in vielen Bereichen ein (signifikant)
besseres subjektives Erleben, sowohl
in den Frage-Bereichen („Schule“,
„Fach Informatik“ und „Thema“) als
auch in den Erlebnis-Dimensionen
(emotionales, kognitives und moti-
vationales Erleben).” (Ehlert 2012,
p. 184)

No significant differences between
the OOP-first approach and the OOP-
later approach were observed or mea-
sured regarding the learning gain of
pupils / students (p-values for the
nine requested topics are between
0.18 and 0.83). OOP-later students
had a (significantly) better subjec-
tive experience in the relevant fields
(“school”, “subject” and “topic”) as
well as in the dimensions of experi-
ence (emotional, cognitive and moti-
vational experience).

p. 89 “kennen die Begriffe »Klasse«, »Ob-
jekt«, »Attribut« und »Attributwert«
und benutzen sie in Anwendungssitu-
ationen” (Gesellschaft für Informatik
(GI) 2008, p. 14)

understand the terms “class”, “object”,
“attribute”, and “attribute value” and
apply them.

p. 89 “kennen Änderungsmöglichkeiten für
Attributwerte von Objekten in alters-
gemäßen Anwendungen und reflek-
tieren, wie sie die Informationsdarstel-
lung unterstützen” (Gesellschaft für
Informatik (GI) 2008, p. 15)

understand the manipulation capabil-
ities for attribute values of objects in
age-appropriate applications and re-
flect how they support the presenta-
tion of information.

316 C Translations

Page Original Source Translation

p. 89 “stellen Objekte der jeweiligen An-
wendung in einer geeigneten Form
dar” (Gesellschaft für Informatik (GI)
2008, p. 16)

represent the objects of the respec-
tive application in a suitable form.

p. 89 “identifizieren Objekte in Infor-
matiksystemen und erkennen
Attribute und deren Werte”
(Gesellschaft für Informatik (GI)
2008, p. 19)

identify objects in informatics systems
and identify attributes and their val-
ues.

p. 89 “erstellen Diagramme und Grafiken
zum Veranschaulichen einfacher
Beziehungen zwischen Objekten der
realen Welt” (Gesellschaft für Infor-
matik (GI) 2008, p. 22)

create charts and graphs to illus-
trate simple associations between
real-world objects.

p. 89 “entwickeln für einfache Sachverhalte
objektorientierte Modelle und stellen
diese mit Klassendiagrammen dar”
(Gesellschaft für Informatik (GI) 2008,
p. 19)

develop object-oriented models for
simple issues and represent them
with class diagrams.

p. 91

(Ministerium für Schule und Weit-
erbildung des Landes Nordrhein-
Westfalen 2014)

p 91 • “ermitteln bei der Analyse einfacher
Problemstellungen Objekte, ihre
Eigenschaften, ihre Operationen
und ihre Beziehungen (M),

• identify objects, their properties,
their operations and their relation-
ships in the analysis of simple prob-
lems (M),

317

Page Original Source Translation

p 91 • modellieren Klassen mit ihren At-
tributen, ihren Methoden und As-
soziationsbeziehungen (M),

• model classes with their attributes,
methods and associations (M),

• modellieren Klassen unter Verwen-
dung von Vererbung (M),

• model classes using inheritance
(M),

• ordnen Attributen, Parametern und
Rückgaben von Methoden ein-
fache Datentypen, Objekttypen
oder lineare Datensammlungen zu
(M),

• assign simple data types, object
types, or linear data structures to
attributes, parameters, and return
values of methods (M),

• ordnen Klassen, Attributen und
Methoden ihren Sichbarkeitsbere-
ich zu (M),

• assign a visibility to classes, at-
tributes, and methods (M),

• stellen den Zustand eines Objekts
dar (D),

• represent the state of an object (D),

• stellen die Kommunikation zwis-
chen Objekten grafisch dar (M),

• graphically represent the communi-
cation between objects (M),

• stellen Klassen, Assoziations- und
Vererbungsbeziehungen in Dia-
grammen grafisch dar (D),

• represent classes, associations
and inheritance in diagrams (D),

• dokumentieren Klassen durch
Beschreibung der Funktionalität
der Methoden (D),

• document classes by description
of the functionality of the methods
(D),

• analysieren und erläutern eine ob-
jektorientierte Modellierung (A),

• analyze and explain an object-
oriented modeling (A),

318 C Translations

Page Original Source Translation

p 91 • implementieren Klassen in einer
Programmiersprache auch unter
Nutzung dokumentierter Klassen-
bibliotheken (I)”

(Ministerium für Schule und Weit-
erbildung des Landes Nordrhein-
Westfalen 2014)

• implement classes in a program-
ming language including docu-
mented class libraries (I).

p. 92 • ermitteln bei der Analyse von Prob-
lemstellungen Objekte, ihre Eigen-
schaften, ihre Operationen und ihre
Beziehungen (M),

• identify objects, their properties,
their operations and their associ-
ations in the analysis of problems
(M),

• stellen lineare und nichtlineare
Strukturen grafisch dar und er-
läutern ihren Aufbau (D),

• graphically represent linear and
non-linear structures and explain
them (D),

• modellieren Klassen mit ihren
Attributen, Methoden und ihren
Assoziationsbeziehungen unter
Angabe von Multiplizitäten (M),

• model classes with their attributes,
methods and associations specify-
ing multiplicities (M),

• modellieren abstrakte und nicht
abstrakte Klassen unter Verwen-
dung von Vererbung durch Spezial-
isieren und Generalisieren (M),

• model abstract and non-abstract
classes using inheritance by spe-
cializing and generalizing (M),

• ordnen Attributen, Parametern und
Rückgaben von Methoden ein-
fache Datentypen, Objekttypen
sowie lineare und nichtlineare
Datensammlungen zu (M),

• assign simple data types, object
types, and linear and nonlinear
data structures to attributes, param-
eters, and return values of methods
(M),

319

Page Original Source Translation

p. 92 • verwenden bei der Modellierung
geeigneter Problemstellungen
Möglichkeiten der Polymorphie
(M),

• use possibilities of polymorphism
in the modeling of appropriate prob-
lems (M),

• ordnen Klassen, Attributen und
Methoden ihre Sichtbarkeitsbere-
iche zu (M),

• assign a visibility to classes, at-
tributes, and methods (M),

• stellen die Kommunikation zwis-
chen Objekten grafisch dar (D),

• graphically represent the communi-
cation between objects (D),

• stellen Klassen und ihre Beziehun-
gen in Diagrammen grafisch dar
(D),

• represent classes and their associ-
ations in diagrams (D),

• dokumentieren Klassen (D), • document classes (D),

• analysieren und erläutern objekori-
entierte Modellierungen (A),

• analyze and explain object-
oriented modeling (A),

• implementieren Klassen in einer
Programmiersprache auch unter
Nutzung dokumentierter Klassen-
bibliotheken (I).”

(Ministerium für Schule und Weit-
erbildung des Landes Nordrhein-
Westfalen 2014)

• implement classes in a program-
ming language including docu-
mented class libraries (I).

320 C Translations

Page Original Source Translation

p. 93 Überlegungen zur Struktur von
Graphiken führen zur objektorien-
tierten Sichtweise. Die Schüler
erkennen, dass jedes Objekt der
Graphik bestimmte Eigenschaften
hat und einer Klasse gleichartiger
Objekte zugeordnet ist.

• Objekte einer Vektorgraphik:
Attribut, Attributwert und Meth-
ode

• Beschreibung gleichartiger Ob-
jekte durch Klassen: Rechteck,
Ellipse, Textfeld, Linie

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

Considerations about the structure of
graphs lead to the object-oriented per-
spective. The students recognize that
each of the graphics objects has cer-
tain properties and is associated with
a class of similar objects.

• Objects of a vector graphic:
attribute, attribute value, and
method

• Description of similar objects
by class: line, rectangle, el-
lipse, text box

p. 94 Bei der praktischen Arbeit mit Textver-
arbeitungssoftware wird das Ver-
ständnis für diese Begriffe vertieft;
dabei zeigt sich, dass einzelne Ob-
jekte miteinander in Beziehung ste-
hen können. Die Schüler erken-
nen, dass viele alltägliche Zusam-
menhänge ebenfalls durch Beziehun-
gen zwischen Objekten beschrieben
werden können, diese Begriffe also
eine allgemeinere Bedeutung haben.

• Verbesserung der Infor-
mationsdarstellung durch
geeignetes Ändern von
Attributwerten

• die Enthält-Beziehung zwis-
chen Objekten; Entwerfen von
Objekt- und Klassendiagram-
men

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

The understanding of these concepts
is deepened in practical work with
word processing software; it is shown
that individual objects can be associ-
ated with each other. The students
recognize that many everyday con-
nections can also be described by
relations between objects, so these
terms have a more general meaning.

• Improve the representation of
information by changing the ap-
propriate attribute values

• The contains-association be-
tween objects; design of object
and class diagrams

321

Page Original Source Translation

p. 94 Verschiedenartige Animationen, wie
sie Präsentationssoftware zur Gestal-
tung bietet, helfen den Schülern, das
Prinzip der Methoden von Objekten
besser zu verstehen. (Bayerisches
Staatsministerium für Unterricht und
Kultus 2004)

Various animations, such as presen-
tation software provides for the de-
sign, help students to understand the
principle of the method.

p. 94 Sie erkennen, dass hierarchische
Ordnungen durch die Enthält-
Beziehung zwischen Objekten der
gleichen Klasse ermöglicht werden.

• erweiterte Anwendung der
Enthält-Beziehung: Ordner
enthalten Ordner

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

They realize that hierarchical or-
ders are enabled by the contains-
association between objects of the
same class.

• Advanced application of the
contains-association: folder
containing folders

p. 94 Die Schüler erfahren, dass inhaltliche
Zusammenhänge zwischen Doku-
menten zu vernetzten Strukturen
führen können, für die eine hierarchis-
che Darstellung nicht ausreicht.

• die Beziehung “verweist auf”
zwischen Objekten

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

The students will learn that content re-
lationships between documents may
lead to networked structures, for
which a hierarchical representation
is not enough.

• The association ‘refers to’ be-
tween objects

322 C Translations

Page Original Source Translation

p. 94 Dabei erkennen sie, dass die Struktur
der Klassen sowie deren Beziehun-
gen sehr übersichtlich in Klassendi-
agrammen dargestellt werden kön-
nen. Um das Modell nutzen und
seine Brauchbarkeit überprüfen zu
können, realisieren sie es mit einem
relationalen Datenbanksystem.

• Objekt (Entität), Klasse, At-
tribut und Wertebereich

• Beziehungen zwischen
Klassen, Kardinalität, graphis-
che Darstellung

• Realisierung von Objekten,
Klassen und Beziehungen
in einem relationalen Daten-
banksystem: Datensatz,
Tabelle, Wertebereich, Schlüs-
selkonzept

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

They realize that the structure of
classes and their associations can
be represented very clearly in class
diagrams. To take advantage of
the model and check its usefulness,
they implement it with a relational
database system.

• Object (entity), class, attribute
and value range

• Associations between classes,
cardinality, graphical represen-
tation

• Implementation of objects,
classes, and associations in
a relational database system:
data set, table, range of values,
concept of keys

p. 95 Unter Verwendung einer geeigneten
Entwicklungsumgebung für die objek-
torientierte Modellierung wiederholen
und präzisieren die Schüler anhand
von einfachen Beispielen die bekan-
nten Begriffe und Notationen der ob-
jektorientierten Sichtweise. Dabei
wird ihnen deutlich, dass Objekte
im Wesentlichen eine Einheit aus At-
tributen und Methoden darstellen.

• Objekt als Kombination aus At-
tributen und Methoden

• graphische Darstellung
von Klassen und Objekten,
Beschreibung statischer
Beziehungen durch Objekt-
bzw. Klassendiagramme

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

By using a suitable development en-
vironment for object-oriented model-
ing the students repeat and clarify
the known terms and notations of the
object-oriented perspective with sim-
ple examples. This will clarify that
objects essentially represent a unit of
attributes and methods.

• Object as a combination of at-
tributes and methods

• Graphical representation of
classes and objects, descrip-
tion of static associations
through object or class dia-
grams

323

Page Original Source Translation

p. 95 Die Schüler lernen, die Veränderun-
gen von Objekten mithilfe von Zustän-
den und Übergängen zu beschreiben
sowie mit Zustandsübergangsdia-
grammen zu dokumentieren. Bei der
Umsetzung dieser Zustandsmodelle
in objektorientierte Programme legen
sie die Zustände durch Werte von At-
tributen (Variablen) fest und ordnen
den Übergängen Methodenaufrufe
zu.

• Zustand von Objekten: Fes-
tlegung durch Zustände der
Attribute, Zustandsübergang
durch Wertzuweisung

• Lebenszyklus von Objekten
von der Instanzierung über die
Initialisierung bis zur Freigabe

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

The students learn to describe the
changes of objects using states and
transitions, as well as to document
with state diagrams. By implementing
these state models in object-oriented
programs, they set the states by val-
ues of attributes (variables) and as-
sign method calls to the transitions.

• State of objects: Determination
by states of attributes, state
transition by value assignment

• Life cycle of objects from the
instantiation to initialization to
release

324 C Translations

Page Original Source Translation

p. 95 Die Schüler erkennen, dass
wesentliche Abläufe eines Systems
auf der Kommunikation zwischen
seinen Objekten basieren. Für die
vollständige Beschreibung müssen
neben den bereits kennengelernten
statischen auch die dynamischen
Beziehungen zwischen Objekten
bzw. Klassen erfasst werden. Hierfür
lernen die Jugendlichen geeignete
graphische Notationen kennen
und erarbeiten Möglichkeiten zur
Realisierung der Beziehungen in
einer Programmiersprache.

• Kommunikation zwischen Ob-
jekten durch Aufruf von Meth-
oden; Interaktionsdiagramme;
Datenkapselung

• Realisierung der Enthält-
Beziehung, Referenzen auf
Objekte

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

The students recognize that essen-
tial processes of a system are based
on communication between its ob-
jects. For the full description, the dy-
namic associations between objects
or classes have to be learned in addi-
tion to the already learned static ones.
For this purpose, the young people
get to know appropriate graphical no-
tations and develop possibilities for
the implementation of these associa-
tions in a programming language.

• Communication between ob-
jects by calling methods; Inter-
action diagrams; Data encap-
sulation

• Implementation of the contains-
association, references to ob-
jects

325

Page Original Source Translation

p. 95 Die Jugendlichen verwenden hierar-
chische Strukturen zur Ordnung ihrer
Erfahrungswelt. Sie erkennen, dass
sich diese oft durch eine spezielle
Art von Beziehungen zwischen den
Klassen eines Modells darstellen
lassen. Die Schüler lernen hier das
Prinzip der Vererbung kennen und
wenden es an. Sie beschäftigen
sich insbesondere mit der Möglichkeit
einer zunehmenden Spezialisierung
durch Veränderung ererbter Metho-
den.

• Generalisierung bzw. Spezial-
isierung durch Ober- bzw.
Unterklassen, Abbildung in
Klassendiagramme, Vererbung

• Polymorphismus und Über-
schreiben (overriding) von
Methoden

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

Young people use hierarchical struc-
tures to order their realm of experi-
ence. They realize that these often
can be represented through a spe-
cial kind of association between the
classes of a model. The students
learn the concept of inheritance and
apply it. In particular, they deal with
the possibility of increasing special-
ization by changing inherited meth-
ods.

• Generalization and specializa-
tion by super- or subclasses,
representation in class dia-
grams, inheritance

• Polymorphism and overriding
methods

326 C Translations

Page Original Source Translation

p. 96 Eine erste Implementierung mit
einem Feld zeigt schnell die Gren-
zen dieser statischen Lösung auf
und führt die Jugendlichen zu einer
dynamischen Datenstruktur wie der
einfach verketteten Liste. Sie er-
arbeiten deren prinzipielle Funktion-
sweise sowie deren rekursiven Auf-
bau und wenden hierbei das Prinzip
der Referenz auf Objekte an. Die Ju-
gendlichen erkennen, dass die rekur-
sive Struktur der Liste für viele ihrer
Methoden einen rekursiven Algorith-
mus nahelegt. Sie verstehen, dass
eine universelle Verwendbarkeit der
Klasse Liste nur möglich ist, wenn auf
eine klare Trennung von Struktur und
Daten geachtet wird.

• Implementierung einer einfach
verketteten Liste als Klasse
mittels Referenzen unter Ver-
wendung eines geeigneten
Softwaremusters (Composite);
Realisierung der Methoden
zum Einfügen, Suchen und
Löschen

(Bayerisches Staatsministerium für
Unterricht und Kultus 2004)

A first implementation with an array
quickly shows the limits of this static
solution and leads the youth to a dy-
namic data structure such as the sim-
ply linked list. They learn its principle
functionality, as well as the recursive
structure and apply the concept of
reference on objects. The youth re-
alize that the recursive structure of
the list suggests a recursive algorithm
for many of its methods. They under-
stand that a universal applicability of
the class list is only possible if atten-
tion is paid on a clear separation of
structure and data.

• Implementation of a simply
linked list using references by a
suitable software pattern (com-
posite); Implementation of the
methods to add, find, and
delete

References

Abelson, H., Sussman, G. J. and Sussman, J. (1996), Structure and interpretation of
computer programs, 2nd edition, MIT Press, Cambridge.

ACM/IEEE-CS Joint Task Force on Computing Curricula (2013), Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science.
URL: http://www.acm.org/education/CS2013-final-report.pdf (ac-
cessed 05.12.2014)

Adams, J. and Frens, J. (2003), Object centered design for Java: Teaching OOD in
CS-1, in Proceedings of the 34th SIGCSE technical symposium on Computer science
education, Reno, February 19-23 2003, ACM Press, New York, pp. 273–277.

Albert, D. and Steiner, C. M. (2005), Empirical Validation of Concept Maps: Preliminary
Methodological Considerations, in Proceedings of the 5th IEEE International Confer-
ence on Advanced Learning Technologies, Kaohsiung, July 5 - 8 2005, IEEE Press,
Los Alamitos, pp. 952–953.

Alphonce, C. and Ventura, P. (2002), Object orientation in CS1-CS2 by design, in
Proceedings of the 7th annual conference on Innovation and technology in computer
science education, Aarhus, Juni 24-26 2002, ACM Press, New York, pp. 70–74.

Anderson, J. R. (2005), Cognitive psychology and its implications, 6th edition, Worth
Publishers, New York.

Anderson, L. W. and Krathwohl, D. R. (2009), A taxonomy for learning, teaching, and
assessing: A revision of Bloom’s taxonomy of educational objectives, Longman, New
York.

Armstrong, D. J. (2006), The quarks of object-oriented development, COMMUNICA-
TIONS OF THE ACM 49(2), 123–128.

Ayala, R. J. d. (2009), The theory and practice of item response theory, Methodology
in the social sciences, Guilford Press, New York.

Bandura, A. (1977), Social learning theory, Prentice Hall, Englewood Cliffs, N.J.

Bandura, A. (1986), Social foundations of thought and action: A social cognitive theory,
Prentice-Hall, Englewood Cliffs, N.J.

http://www.acm.org/education/CS2013-final-report.pdf

328 References

Bandura, A. (1989), Social cognitive theory, in R. Vasta, ed., Annals of child devel-
opment, Vol. 6 of Six theories of child development, CT: JAI Press, Greenwich,
pp. 1–60.

Bandura, A. (1997), Self-efficacy: The exercise of control, W.H.Freeman & Co Ltd, New
York.

Bandura, A. (2001), Social Cognitive Theory: An Agentic Perspective, Annual Review
of Psychology 52(1), 1–26.

Bartholomew, D. J. (2008), Analysis of multivariate social science data, Chapman &
Hall/CRC statistics in the social and behavioral sciences series, 2nd edition, CRC
Press, Boca Raton.

Bayerisches Staatsministerium für Unterricht und Kultus (2004), Lehrplan für das
Gymnasium in Bayern: Informatik.
URL: http://www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.
de/index.php?StoryID=26172 (accessed 14.11.2014)

Ben-Ari, M. (1998), Constructivism in computer science education, in Proceedings
of the twenty-ninth SIGCSE technical symposium on Computer science education,
Atlanta, February 25- March 1 1998, ACM, New York, pp. 257–261.

Bennedsen, J. and Caspersen, M. E. (2004), Programming in context: A model-first
approach to CS1, in Proceedings of the 35th SIGCSE technical symposium on
Computer science education, Norfolk, March 3–7 2004, ACM Press, New York,
pp. 477–481.

Bennedsen, J. and Schulte, C. (2006), A Competence Model for Object-Interaction in
Introductory Programming, in 18th Workshop of the Psychology of Programming
Interest Group,, Vol. 18 of Brighton, September 7-8 2006, pp. 215–229.
URL: http://www.ppig.org/papers/18th-bennedsen.pdf (accessed
13.12.2014)

Bennedsen, J. and Schulte, C. (2008), What does ’objects-first’ mean? An international
study of teachers’ perceptions of objects-first, in Seventh Baltic Sea Conference on
Computing Education Research, Koli National Park, Finland, November 15-18 2007,
Australian Computer Society, Inc, Darlinghurst, pp. 21–29.

Bennedsen, J. and Schulte, C. (2013), Object Interaction Competence Model v. 2.0, in
Learning and Teaching in Computing and Engineering, Macau, March 22-24 2013,
IEEE Press, Los Alamitos, pp. 9–16.

Berges, M. and Hubwieser, P. (2010), Vorkurse in objektorientierter Programmierung:
Lösungsansatz für einen leichteren Einstieg in die Informatik, in D. Engbring, R. Keil,
J. Magenheim and H. Selke, eds, Tagungsband der 4. Fachtagung zur "Hochschul-
didaktik Informatik", Vol. 4 of Paderborn, Okt 09-10 2010, Universitätsverlag Potsdam,
Potsdam, pp. 13–22.

http://www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.de/index.php?StoryID=26172
http://www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.de/index.php?StoryID=26172
http://www.ppig.org/papers/18th-bennedsen.pdf

References 329

Berges, M. and Hubwieser, P. (2012), Towards an Overview Map of Object-Oriented
Programming and Design, in Proceedings of the 12th Koli Calling International
Conference on Computing Education Research - Koli Calling ’12, Koli National Park,
Finland, November 15–18 2012, ACM Press, New York, pp. 135–136.

Berges, M. and Hubwieser, P. (2013), Concept specification maps: displaying content
structures, in Proceedings of the 18th ACM conference on Innovation and technology
in computer science education, Canterbury, England, July 1-3 2013, ACM Press,
New York, USA, pp. 291–296.

Berges, M. and Hubwieser, P. (2015), Evaluation of Source Code with Item Response
Theory, in Proceedings of the 20th SIGCSE Conference on Innovation and Technol-
ogy in Computer Science Education, Vilnius, July 6-8, ACM Press, New York.

Berges, M., Mühling, A. and Hubwieser, P. (2012), The Gap Between Knowledge and
Ability, in Proceedings of the 12th Koli Calling International Conference on Computing
Education Research - Koli Calling ’12, Koli National Park, Finland, November 15–18
2012, ACM Press, New York, pp. 126–134.

Bergin, J., Bruce, K. and Kölling, M. (2005), Objects-early tools: a demonstration,
in Proceedings of the 36th SIGCSE technical symposium on Computer science
education, St. Louis, Missouri, February 23-27 2005, ACM, New York, pp. 390–391.

Bergin, S. and Reilly, R. (2005a), Programming: factors that influence success, in Pro-
ceedings of the 36th SIGCSE technical symposium on Computer science education,
Vol. 37 of St. Louis, Missouri, February 23-27 2005, ACM, New York, pp. 411–415.

Bergin, S. and Reilly, R. (2005b), The influence of motivation and comfort-level on
learning to program, in 17th Workshop of the Psychology of Programming Interest
Group, Brighton, June 29-July 1 2005.
URL: http://www.ppig.org/workshops/17th-programme.html (ac-
cessed 13.12.2014)

Black, A. P. (2013), Object-oriented programming: some history, and challenges for the
next fifty years, Journal Information and Computation 231, 3–20.

Blair, G. (1991), Object-oriented languages, systems and applications, Pitman, London.

Bonar, J. and Soloway, E. (1983), Uncovering principles of novice programming,
in Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, Austin, Texas, 1983, ACM Press, New York, pp. 10–13.

Bonar, J. and Soloway, E. (1985), Preprogramming knowledge: a major source of
misconceptions in novice programmers, Human-Computer Interaction 1(2), 133–161.

Bond, T. G. and Fox, C. M. (2007), Applying the Rasch model: Fundamental measure-
ment in the human sciences, 2 edition, Lawrence Erlbaum Associates Publishers,
Mahwah.

http://www.ppig.org/workshops/17th-programme.html

330 References

Booch, G. (1994), Object-oriented analysis and design with applications, The Benjam-
in/Cummings series in object-oriented software engineering, 2nd edition, Benjam-
in/Cummings Pub. Co., Redwood City, Calif.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999), The unified modeling language user
guide, Addison-Wesley, Reading.

Borge, R. E. (2004), Teaching OOP using graphical programming environments: An
expermental study, PhD thesis, University of Oslo, Oslo.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C. and
Thomas, L. (2009), An evaluation of object oriented example programs in introductory
programming textbooks, in Proceedings of the 14th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, Vol. 41 of Paris, July
6-9 2009, ACM Press, New York, pp. 126–143.

Börstler, J., Henrik B. Christensen, Jens Bennedsen, Nordström, M., Lena Kallin
Westin, Moström, J. E. and Michael E. Caspersen (2008), Evaluating OO example
programs for CS1, in Proceedings of the 13th annual conference on Innovation and
technology in computer science education, Madrid, June 30 - July 2 2008, ACM
Press, New York, pp. 47–52.

Börstler, J. and Sperber, M. (2010), Systematisches Programmieren in der Anfänger-
ausbildung, Informatica Didactica 8.
URL: http://www.informatica-didactica.de/cmsmadesimple/index.
php?page=Boerstler2010 (accessed 15.12.2014)

Bortz, J. and Schuster, C. (2010), Statistik für Human- und Sozialwissenschaftler, 7th
edition, Springer, Berlin.

Boytchev, P. (2011), Wild Programming – One Unintended Experiment with Inquiry
Based Learning, in I. Kalaš and R. Mittermeir, eds, Informatics in Schools. Contribut-
ing to 21st Century Education, Vol. 7013 of Bratislava, Oct. 26-29 2011, Springer,
Berlin, Heidelberg, pp. 1–8.

Brinda, T., Puhlmann, H. and Schulte, C. (2009), Bridging ICT and CS: Educational
Standards for Computer Science in Lower Secondary Education, in Proceedings of
the 14th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, Paris, July 6-9 2009, ACM Press, New York, pp. 288–292.

Brooks, R. E. (1980), Studying programmer behavior experimentally: the problems of
proper methodology, COMMUNICATIONS OF THE ACM 23(4), 207–213.

Brown, J. S., Collins, A. and Duguid, P. (1989), Situated Cognition and the Culture of
Learning, Educational Researcher 18(1), 32–42.

Broy, M. and Siedersleben, J. (2002), Objektorientierte Programmierung und Softwa-
reentwicklung: Eine kritische Einschätzung, Informatik-Spektrum 25(1), 3–11.

http://www.informatica-didactica.de/cmsmadesimple/index.php?page=Boerstler2010
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=Boerstler2010

References 331

Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M. and Stoodley, I.
(2004), Ways of Experiencing the Act of Learning to Program: A Phenomenographic
Study of Introductory Programming Students at University, Journal of Information
Technology Education 3, 143–160.

Bruce, K. B., Danyluk, A. and Murtagh, T. (2001), A library to support a graphics-
based object-first approach to CS 1, in Proceedings of the 32nd SIGCSE technical
symposium on Computer science education, Vol. 33 of Charlotte, Feb 21-25 2001,
ACM Press, New York, pp. 6–10.

Bruning, R. H., Schraw, G. J. and Norby, M. M. (2011), Cognitive psychology and
instruction, 5th edition, Allyn & Bacon/Pearson, Boston.

Burnham, K. P. and Anderson, D. R. (2002), Model selection and multimodel inference:
A practical information-theoretic approach, 2nd edition, Springer, New York.

Capretz, L. F. (2003), A brief history of the object-oriented approach, SIGSOFT Soft-
ware Engineering Notes 28(2), 6–15.

Cardelli, L. and Wegner, P. (1985), On Understanding Types, Data Abstraction, and
Polymorphism, ACM COMPUTING SURVEYS 17(4), 471–523.

Carey, S. (1985), Conceptual change in childhood, MIT Press series in learning,
development, and conceptual change, MIT Press, Cambridge.

Carter, J., Bouvier, D., Cardell-Oliver, R., Hamilton, M., Kurkovsky, S., Markham, S.,
McClung, O. W., McDermott, R., Riedesel, C., Shi, J. and White, S. (2011), Motivating
all our students?, in Proceedings of the 16th annual conference reports on Innovation
and technology in computer science education - working group reports, Darmstadt,
June 25-29 2011, ACM Press, New York, pp. 1–18.

Chandler, P. and Sweller, J. (1991), Cognitive Load Theory and the Format of Instruction,
Cognition and Instruction 8(4), 293–332.

Christensen, H. B. (2005), Implications of perspective in teaching objects first and
object design, in Proceedings of the 10th annual SIGCSE conference on Innovation
and technology in computer science education, Monte de Caparica, June 27-29,
ACM Press, New York, pp. 94–98.

Clancy, M. (2004), Misconceptions and Attitudes that Interfere with Learning to Program,
in S. Fincher, ed., Computer Science Education Research, Taylor & Francis, London,
pp. 85–100.

Clark, R. C., Nguyen, F. and Sweller, J. (2005), Efficiency in learning: Evidence-based
guidelines to manage cognitive load, Pfeiffer, San Francisco.

Collins, A., Brown, J. S. and Newman, S. E. (1989), Cognitive apprenticeship: Teaching
the crafts of reading, writing, and mathematics, in L. B. Resnick, ed., Knowing,
learning, and instruction, L. Erlbaum Associates, Hillsdale, N.J., pp. 453–493.

332 References

Compeau, D. R. and Higgins, C. A. (1995), Computer Self-Efficacy: Development of a
Measure and Initial Test, MIS Quarterly 19(2), 189–211.

Cooper, S., Dann, W. and Pausch, R. (2003), Teaching objects-first in introductory
computer science, in Proceedings of the 34th SIGCSE technical symposium on
Computer science education, Reno, February 19-23 2003, ACM Press, New York,
pp. 191–195.

Cottam, J. A., Menzel, S. and Greenblatt, J. (2011), Tutoring for retention, in Proceed-
ings of the 42nd ACM technical symposium on Computer science education, Dallas,
March 9-12 2011, ACM Press, New York, pp. 213–218.

Crow, D. (2014), Why every child should learn to code.
URL: http://www.theguardian.com/technology/2014/feb/07/
year-of-code-dan-crow-songkick (accessed 10.11.2014)

Dahl, O.-J. (2002), The roots of object orientation: the Simula language, in M. Broy and
E. Denert, eds, Software Pioneers, Springer-Verlag, New York, pp. 78–90.

Dahl, O.-J. and Nygaard, K. (1966), SIMULA: an ALGOL-based simulation language,
COMMUNICATIONS OF THE ACM 9(9), 671–678.

Dahl, O.-J. and Nygaard, K. (1967), Class and subclass declarations, in J. N. Buxton,
ed., Simulation Programming Languages, Oslo, May 1967, Amsterdam, pp. 158–174.

Dahncke, H. and Reiska, P. (2008), Testing Achievement with Concept Mapping in
School Physics, in Proceedings of the Third International Conference on Concept
Mapping, Tallinn, Sept 22-25 2008, pp. 403–410.

Daly, J., Brooks, A., Miller, J., Roper, M. and Wood, M. (1996), Evaluating inheri-
tance depth on the maintainability of object-oriented software, Empirical Software
Engineering 1(2), 109–132.

Dangwal, R. and Mitra, S. (2005), A Model of How Children Acquire Computing Skills
from Hole-in-the-Wall Computers in Public Places, Information Technologies and
International Development 2(4), 41–60.

Davier, M. v. (1997), Bootstrapping Goodness-of-Fit Statistics for Sparse Categorical
Data: Results of a Monte Carlo Study, Methods of Psychological Research Online
2(2), 29–48.

Decker, A. (2003), A tale of two paradigms, Journal of Computing Sciences in Colleges
19(2), 238–246.

Decker, R. and Hirshfield, S. (1994), The top 10 reasons why object-oriented program-
ming can’t be taught in CS 1, in Proceedings of the 25th SIGCSE symposium on
Computer science education, Phoenix, March 10-12 1994, ACM Press, New York,
pp. 51–55.

http://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick
http://www.theguardian.com/technology/2014/feb/07/year-of-code-dan-crow-songkick

References 333

DeClue, T. (1996), Object-orientation and the principles of learning theory: a new look
at problems and benefits, in Proceedings of the 27th SIGCSE technical symposium
on Computer science education, Philadelphia, Feb 15-18 1996, ACM Press, New
York, pp. 232–236.

Deitel, P. J. and Deitel, H. M. (2012), Java: How to program, 9th edition, Prentice Hall,
Upper Saddle River.

Dierbach, C., Taylor, B., Zhou, H. and Zimand, I. (2005), Experiences with a CS0
course targeted for CS1 success, in Proceedings of the 36th SIGCSE technical
symposium on Computer science education, Vol. 37 of St. Louis, Missouri, February
23-27 2005, ACM, New York, pp. 317–320.

Diethelm, I. (2007), Strictly models and objects first": Unterrichtskonzept und -methodik
für objektorientierte Modellierung im Informatikunterricht, Dissertationsschrift, Univer-
sität Kassel, Kassel.

diSessa, A. A. (1993), Toward an Epistemology of Physics, Cognition and Instruction
10(2-3), 105–225.

Drasutis, S., Motekaityte, V. and Noreika, A. (2010), A Method for Automated Program
Code Testing, Informatics in Education 9(2), 199–208.

du Boulay, B. (1988), Some Difficulties of Learning to Program, in E. Soloway and
J. Spohrer, eds, Studying the novice programmer, Interacting With Computers : Iwc,
L. Erlbaum Associates, Mahwah, pp. 283–299.

Duit, R. and Treagust, D. F. (2003), Conceptual change: A powerful framework for
improving science teaching and learning, International Journal of Science Education
25(6), 671–688.

Eckel, B. (2006), Thinking in Java, 4th edition, Prentice Hall, Upper Saddle River.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K. and Zander, C.
(2006), Putting threshold concepts into context in computer science education, in
Proceedings of the 11th annual SIGCSE conference on Innovation and technology
in computer science education, Bologna, June 26-28 2006, ACM Press, New York,
pp. 103–107.

Edmondson, C. (2009), Proglets for first-year programming in Java, SIGCSE Bulletin
41(2), 108–112.

Edmondson, K. M. (2005), Assessing science understanding through concept maps,
in J. J. Mintzes, ed., Assessing science understanding, Educational psychology,
Elsevier, Amsterdam, pp. 15–40.

Ehlert, A. (2012), Empirische Studie: Unterschiede im Lernerfolg und Unterschiede im
subjektiven Erleben des Unterrichts von Schülerinnen und Schülern im Informatik-
Anfangsunterricht (11. Klasse Berufliches Gymnasium) in Abhängigkeit von der
zeitlichen Reihenfolge der Themen (OOP-First und OOP-Later), Dissertationsschrift,
Freie Universität Berlin, Berlin.

334 References

Ehlert, A. and Schulte, C. (2009a), Empirical comparison of objects-first and objects-
later, in Proceedings of the 5th international workshop on Computing education
research workshop, Berkeley, Aug 10-11 2009, ACM Press, New York, pp. 15–26.

Ehlert, A. and Schulte, C. (2009b), Unterschiede im Lernerfolg von Schülerinnen und
Schülern in Abhängigkeit von der zeitlichen Reihenfolge der Themen (OOP-First bzw.
OOP-Later), in Tagungsband zur 13. GI-Fachtagung Informatik und Schule, Berlin,
Sept 21-24 2009, Gesellschaft für Informatik, Bonn, pp. 121–132.

Everitt, B. (2011), Cluster analysis, Wiley series in probability and statistics, 5th edition,
Wiley, Chichester.

Faessler, L., Hinterberger, H., Dahinden, M. and Wyss, M. (2006), Evaluating student
motivation in constructivistic, problem-based introductory computer science courses,
in Thomas Reeves and Shirley Yamashita, eds, Proceedings of World Conference
on E-Learning in Corporate, Government, Healthcare, and Higher Education 2006,
Honolulu, Oct 13-17 2006, AACE, Honolulu, pp. 1178–1185.

Feldgen, M. and Clua, O. (2003), New motivations are required for freshman introduc-
tory programming, in Proceedings to 33rd Frontiers in Education Conference, Vol. 1
of Westminster, Nov 5-8 2003, IEEE Press, Westminster, p. 24.

Fischer, G. H. and Molenaar, I. W. (1995), Rasch Models: Foundations, recent devel-
opments, and applications, Springer, New York.

Flanagan, D. (2005), Java in a nutshell, 5th edition, O’Reilly, Sebastopol.

Fleury, A. E. (2000), Programming in Java: student-constructed rules, in Proceedings
of the 31st SIGCSE technical symposium on Computer science education, Vol. 32 of
Austin, March 8-12 2000, ACM Press, New York, pp. 197–201.

Fraley, C. and Raftery, A. E. (2000), Model-Based Clustering, Discriminant Analysis,
and Density Estimation, Journal of the American Statistical Association 97(458), 611–
631.

Fraley, C., Raftery, A. E., Murphy, T. B. and Scrucca, L. (2012), mclust Version 4 for
R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density
Estimation, Technical Report 597, University of Washington, Seattle.

Frey, E., Hubwieser, P. and Winhard, F. (2004), Informatik 1: Objekte, Strukturen,
Algorithmen, Klett, Stuttgart.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova,
J., Lahtinen, E., Lewis, T. L., Thompson, D. M., Riedesel, C. and Thompson, E.
(2007), Developing a computer science-specific learning taxonomy, SIGCSE Bulletin
39(4), 152–170.

Garrigue, J. (1998), Programming with polymorphic variants, in The 1998 ACM SIG-
PLAN Workshop on ML, Baltimore, Sept 26 1998, ACM Press, New York.

References 335

Garrigue, J. (2000), Code reuse through polymorphic variants, in Workshop on Foun-
dations of Software Engineering, Sasaguri, Nov 2000.
URL: http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.
html (accessed 15.12.2014)

Garrison, D. R. (1997), Self-Directed Learning: Toward a Comprehensive Model, Adult
Education Quarterly 48(1), 18–33.

Gerjets, P., Scheiter, K. and Cierniak, G. (2009), The Scientific Value of Cognitive
Load Theory: A Research Agenda Based on the Structuralist View of Theories,
Educational Psychology Review 21(1), 43–54.

Gesellschaft für Informatik (GI) (2008), Grundsätze und Standards für die Infor-
matik in der Schule: Bildungsstandards Informatik für die Sekundarstufe I, LOGIN
28(150/151).

Giannakos, M. N., Hubwieser, P. and Ruf, A. (2012), Is Self-efficacy in Programming
Decreasing with the Level of Programming Skills?, in Proceedings of the 7th Work-
shop in Primary and Secondary Computing Education, Hamburg, Nov 8-9 2012,
ACM, New York, pp. 16–21.

Gill, T. G. and Holton, C. F. (2006), A Self-Paced Introductory Programming Course,
Journal of Information Technology Education 5, 95–105.

Glaserfeld, E. v. (1983), Learning as Constructive Activity, in Proceedings of the
5th Annual Meeting of the North American Group of Psychology in Mathematics
Education, Montreal, pp. 41–101.

Glasersfeld, E. v. (1989a), Cognition, construction of knowledge, and teaching, Syn-
these 80(1), 121–140.

Glasersfeld, E. v. (1989b), Constructivism in Education, in T. Husén, ed., The in-
ternational encyclopedia of education, Vol. 1: Supplement, Pergamon Pr, Oxford,
pp. 162–163.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C. and
Zilles, C. (2008), Identifying important and difficult concepts in introductory computing
courses using a delphi process, in Proceedings of the 39th SIGCSE technical
symposium on Computer science education, Portland, Mar 12-15 2008, ACM Press,
New York, pp. 256–260.

Goldsmith, T. E. and Davenport, D. M. (1990), Assessing structural similarity of graphs,
in R. W. Schvaneveldt, ed., Pathfinder associative networks, Ablex Publishing Corp,
Norwood, New Jersey, pp. 75–87.

Gower, J. C. (1971), A General Coefficient of Similarity and Some of Its Properties,
Biometrics 27(4), p 857–871.

Greening, T. (1998), Computer science: through the eyes of potential students, in
Proceedings of the 3rd Australasian conference on Computer science education,
Brisbane, July 08-10 1998, ACM Press, New York, pp. 145–154.

http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html
http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html

336 References

Hadar, I. and Hadar, E. (2007), An iterative methodology for teaching object oriented
concepts, Informatics in Education 6(1), 67–80.

Hadjerrouit, S. (1999), A constructivist approach to object-oriented design and pro-
gramming, in Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference
on Innovation and technology in computer science education, Vol. 31 of Cracow,
6/99, ACM Press, New York, pp. 171–174.

Hanks, B. (2007), Problems encountered by novice pair programmers, in Proceedings
of the 3rd international workshop on Computing education research, Atlanta, Sept
15-16 2007, ACM Press, New York, pp. 159–164.

Hanks, B., McDowell, C., Draper, D. and Krnjajic, M. (2004), Program quality with
pair programming in CS1, in Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science education, Vol. 36 of Leeds, June
28-30 2004, ACM Press, New York, pp. 176–180.

Hanks, B., Murphy, L., Simon, B., McCauley, R. and Zander, C. (2009), CS1 students
speak: advice for students by students, in Proceedings of the 40th ACM technical
symposium on Computer science education, Chattanooga, Mar 4-7 2009, ACM
Press, New York, pp. 19–23.

Hansen, S. A. (2009), Analyzing programming projects, in Proceedings of the 40th
ACM technical symposium on Computer science education, Chattanooga, Mar 4-7
2009, ACM Press, New York, pp. 377–381.

Hares, J. S. and Smart, J. D. (1994), Object orientation: Technology, techniques,
management, and migration, Wiley professional computing, Wiley, Chichester.

Henderson-Sellers, B. (1992), A book of object-oriented knowledge - Object-oriented
analysis, design, and implementation: a new approach to software engineering,
Prentice Hall object-oriented series, Prentice Hall, New York.

Hewson, P. W. (1981), A Conceptual Change Approach to Learning Science, European
Journal of Science Education 3(4), 383–396.

Holland, S., Griffiths, R. and Woodman, M. (1997), Avoiding object misconceptions,
in Proceedings of the twenty-eighth SIGCSE technical symposium on Computer
science education, Vol. 29 of San Jose, Feb 27 - Mar 1 1997, ACM Press, New York,
pp. 131–134.

Hristakeva, M. and Vuppala, R. (2009), A Survey of Object Oriented Programming
Languages, Technical report, University of California, Santa Cruz, California.
URL: http://users.soe.ucsc.edu/~vrk/Reports/oopssurvey.pdf (ac-
cessed 16.12.2014)

Hu, C. (2011), When to inherit a type: what we do know and what we might not, ACM
Inroads 2(2), 52–58.

http://users.soe.ucsc.edu/~vrk/Reports/oopssurvey.pdf

References 337

Hubwieser, P. (2006), Functions, objects and states: Teaching informatics in secondary
schools, in R. Mittermeir, ed., Informatics Education – The Bridge between Using
and Understanding Computers, Vol. 4226 of Vilnius, Nov 7-11 2006, Springer, Berlin,
pp. 104–116.

Hubwieser, P. (2007a), A smooth way towards object oriented programming in sec-
ondary schools, Informatics, Mathematics and ICT: a’golden triangle’. IFIP WG 3.

Hubwieser, P. (2007b), Didaktik der Informatik: Grundlagen, Konzepte, Beispiele,
EXamen.press, 3rd edition, Springer, Berlin.

Hubwieser, P. (2007c), Tabellenkalkulationssysteme, Datenbanken, Vol. 2 of Informatik,
Klett, Stuttgart.

Hubwieser, P. (2008a), Algorithmen, objektorientierte Programmierung, Zustandsmod-
ellierung, Vol. 3 of Informatik, Klett, Stuttgart.

Hubwieser, P. (2008b), Analysis of Learning Objectives in Object Oriented Program-
ming, in R. T. Mittermeir and M. M. Syslo, eds, Proceedings of the 3rd international
conference on Informatics in Secondary Schools - Evolution and Perspectives, Vol.
5090 of Torun, July 1-4 2008, Springer-Verlag, Berlin, pp. 142–150.

Hubwieser, P. (2009), Rekursive Datenstrukturen, Softwaretechnik, Vol. 4 of Informatik,
Klett, Stuttgart.

Hubwieser, P. (2010), Formale Sprachen, Kommunikation und Synchronisation von
Prozessen, Funktionsweise eines Rechners, Grenzen der Berechenbarkeit, Vol. 5 of
Informatik, Klett, Stuttgart.

Hubwieser, P. (2012), Computer Science Education in Secondary Schools – The Intro-
duction of a New Compulsory Subject, ACM Transactions on Computing Education
12(4), 1–41.

Hubwieser, P. and Berges, M. (2011), Minimally invasive programming courses: learn-
ing OOP with(out) instruction, in Proceedings of the 42nd ACM technical symposium
on Computer science education, Dallas, March 9-12 2011, ACM Press, New York,
pp. 87–92.

Hubwieser, P. and Bitzl, M. (2010), Modeling Educational Knowledge. Supporting the
Collaboration of Computer Science Teachers, in J. L. G. Dietz, ed., Proceedings of the
2nd International Conference on Knowledge Engineering and Ontology Development,
Valencia, Oct 25-28 2010, SciTePress.

Hubwieser, P. and Mühling, A. (2011a), Investigating cognitive structures of object
oriented programming, in Proceedings of the 16th annual joint conference on Innova-
tion and technology in computer science education, Darmstadt, June 25-29 2011,
ACM, New York, pp. 377–377.

338 References

Hubwieser, P. and Mühling, A. (2011b), Knowpats: Patterns of Declarative Knowledge -
Searching Frequent Knowledge Patterns about Object-orientation, in J. Filipe and
Ana L. N. Fred, eds, Proceedings of the International Conference on Knowledge
Discovery and Information Retrieval, Paris, Oct 26-29 2011, SciTePress, pp. 358–
364.

Hubwieser, P. and Mühling, A. (2011c), What students (should) know about object
oriented programming, in Proceedings of the seventh international workshop on
Computing education research, Providence, Aug 8-9 2011, ACM Press, New York,
pp. 77–84.

Hubwieser, P. and Mühling, A. (2014), Competency Mining in Large Data Sets - Prepar-
ing Large Scale Investigations in Computer Science Education, in A. Fred and
J. Filipe, eds, Proceedings of the 6th International KDIR - International Confer-
ence on Knowledge Discovery and Information Retrieval, Rome, Oct 14-16 2014,
SciTePress, pp. 315–322.

Ifenthaler, D. (2006), Diagnose lernabhängiger Verändung mentaler Modelle: En-
twicklung der SMD-Technologie als methodologisches Verfahren zur relationalen,
struckturellen und semantischen Analyse individueller Modellkonstruktionen, Disser-
tationsschrift, Albert-Ludwigs-Universtät Freiburg im Breisgau, Freiburg im Breisgau.

Ifenthaler, D. (2010), Relational, structural, and semantic analysis of graphical repre-
sentations and concept maps, Educational Technology Research and Development
58, 81–97.

Isomöttönen, V., Tirronen, V. and Cochez, M. (2013), Issues with a course that em-
phasizes self-direction, in Proceedings of the 18th ACM conference on Innovation
and technology in computer science education, Canterbury, England, July 1-3 2013,
ACM Press, New York, USA, pp. 111–116.

Jacobson, I. (1992), Object-oriented software engineering: A use case driven approach,
ACM Press, New York.

Jähnichen, S. and Herrmann, S. (2002), Was, bitte, bedeutet Objektorientierung?,
Informatik-Spektrum 25(4), 266–276.

Jakovljevic, M. (2003), Concept mapping and appropriate instructional strategies
in promoting programming skills of holistic learners, in Proceedings of the 2003
annual research conference of the South African institute of computer scientists and
information technologists on Enablement through technology, pp. 308–315.

Jana, D. (2005), Java and object-oriented programming paradigm, Prentice-Hall of
India, New Delhi.

Jenkins, T. (2002), On the Difficulty of Learning to Program, in 3rd Annual Conference
of the LTSN Centre for Information and Computer Sciences, Loughbourgh, Aug 23
2002.

References 339

Kaufman, L. and Rousseeuw, P. J. (1990), Finding groups in data: An introduction
to cluster analysis, Wiley series in probability and mathematical statistics. Applied
probability and statistics, Wiley, New York.

Kay, A. C. (1993), The early history of Smalltalk, in The second ACM SIGPLAN
conference on History of programming languages, Cambridge, Apr 20-23 1993, ACM
Press, New York, pp. 69–95.

Kedar, S. V. (2007), Programming paradigms and methodology, 3rd edition, Technical
Publications Pune, Pune, India.

Kelleher, C. and Pausch, R. (2005), Lowering the Barriers to Programming: A Taxon-
omy of Programming Environments and Languages for Novice Programmers, ACM
COMPUTING SURVEYS 37(2), 83–137.

Kemkes, G., Vasiga, T. and Cormack, G. (2006), Objective Scoring for Computing
Competition Tasks, in R. Mittermeir, ed., Informatics Education – The Bridge between
Using and Understanding Computers, Vol. 4226 of Vilnius, Nov 7-11 2006, Springer,
Berlin, pp. 230–241.

Keppens, J. and Hay, D. (2008), Concept map assessment for teaching computer
programming, Computer science education 18(1), 31–42.

Kern, C. and Crippen, K. J. (2008), Mapping for Conceptual Change, The Science
Teacher 75(6), 32–38.

Knowles, M. S. (1975), Self-directed learning: A guide for learners and teachers,
Association Press, New York.

Knudsen, J. L. and Madsen, O. L. (1988), Teaching Object-Oriented Programming Is
More than Teaching Object-Oriented Programming Languages, in Proceedings of
the European Conference on Object-Oriented Programming, Vol. 322 of Oslo, Aug
1988, Springer-Verlag, London, pp. 21–40.

Kollee, C., Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S. and
Stechert, P. (2009), Computer Science Education and Key Competencies, in 9th IFIP
World Conference on Computers in Education, Vol. 302 of Bento Goncalves, July
27-31 2009, Springer, New York.

Koller, I., Alexandrowicz, R. and Hatzinger, R. (2012), Das Rasch Modell in der Praxis,
Vol. 3786 of utb-studi-e-book, UTB GmbH, Stuttgart.

Koller, I. and Hatzinger, R. (2013), Nonparametric tests for the Rasch model: explana-
tion, development, and application of quasi-exact tests for small samples, InterStat
11, 1–16.

Kölling, M. (1999a), The problem of teaching object-oriented programming, Part I:
Languages, JOURNAL OF OBJECT-ORIENTED PROGRAMMING 11(8), 8–15.

Kölling, M. (1999b), The problem of teaching object-oriented programming, Part II:
Environments, JOURNAL OF OBJECT-ORIENTED PROGRAMMING 11(9), 6–12.

340 References

Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. (2003), The BlueJ system and
its pedagogy, Journal of Computer Science Education 13(4), 249–268.

Kölling, M. and Rosenberg, J. (1996), An Object-Oriented Program Development
Environment for the First Programming Course, in Proceedings of the 27th SIGCSE
technical symposium on Computer science education, Philadelphia, Feb 15-18 1996,
ACM Press, New York, pp. 83–87.

Kölling, M. and Rosenberg, J. (2001), Guidelines for teaching object orientation with
Java, in Proceedings of the 6th annual conference on Innovation and technology in
computer science education, ACM, Canterbury and United Kingdom, pp. 33–36.

Krippendorff, K. (2004), Content analysis: An introduction to its methodology, 2nd
edition, Sage, Thousand Oaks, Calif.

Krippendorff, K. (2011), Computing Krippendorff’s Alpha-Reliability, Departmental
Papers (ASC) .
URL: http://repository.upenn.edu/asc_papers/43 (accessed
16.12.2014)

Kuhn, T. S. (1996), The structure of scientific revolutions, 3rd edition, Univ. of Chicago
Press, Chicago.

Kumar, D. A. and Annie, M. L. (2012), Clustering Dichotomous Data for Health Care,
International Journal of Information Sciences and Techniques (IJIST) 2(2), 23–33.

Lahtinen, E., Ala-Mutka, K. and Järvinen, H.-M. (2005), A study of the difficulties of
novice programmers, in Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education, Monte de Caparica, June
27-29, ACM Press, New York, pp. 14–18.

Lewis, J. (2000), Myths about Object-Orientation and its Pedagogy, in Proceedings
of the 31st SIGCSE technical symposium on Computer science education, Austin,
March 8-12 2000, ACM Press, New York, pp. 245–249.

Li, T. (2005), A General Model for Clustering Binary Data, in Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining, Chicago, Aug 21-24 2005, ACM Press, New York, pp. 188–197.

Linck, B., Ohrndorf, L., Schubert, S., Stechert, P., Magenheim, J., Nelles, W., Neuge-
bauer, J. and Schaper, N. (2013), Competence model for informatics modelling and
system comprehension, in IEEE Global Engineering Education Conference, Berlin,
Mar 13-15 2013, IEEE Press, Los Alamitos, pp. 85–93.

Luker, P. A. (1989), Never mind the language, what about the paradigm?, in Proceed-
ings of the twentieth SIGCSE technical symposium on Computer science education,
Louisville, Feb 23-25 1989, ACM Press, New York, pp. 252–256.

Luker, P. A. (1994), There’s more to OOP than syntax!, in Proceedings of the 25th
SIGCSE symposium on Computer science education, Phoenix, March 10-12 1994,
ACM Press, New York, pp. 56–60.

http://repository.upenn.edu/asc_papers/43

References 341

Luxton-Reilly, A., Denny, P., Kirk, D., Tempero, E. and Yu, S.-Y. (2013), On the
differences between correct student solutions, in Proceedings of the 18th ACM
conference on Innovation and technology in computer science education, Canterbury,
England, July 1-3 2013, ACM Press, New York, USA, pp. 177–182.

Maechler, M. (2013), Package ’cluster’.
URL: http://cran.r-project.org/web/packages/cluster/cluster.
pdf (accessed 25.09.2013)

Magenheim, J. (2005), Towards a Competence Model for Educational Standards of
Informatics, in 8th IFIP World Conference on Computers in Education, Cape Town,
July 1-7 2005, Springer, New York.

Magenheim, J., Nelles, W., Rhode, T. and Schaper, N. (2010), Towards a methodical
approach for an empirically proofed competency model, in J. Hromkovič, R. Královič
and J. Vahrenhold, eds, Teaching Fundamentals Concepts of Informatics, Vol. 5941
of Zürich, Jan 13-16 2010, Springer, Berlin, pp. 124–135.

Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S. and Stechert, P. (2010),
Competencies for informatics systems and modeling: Results of qualitative content
analysis of expert interviews, in IEEE Global Engineering Education Conference,
Madrid, Apr 14-16 2010, IEEE Press, Los Alamitos, pp. 513–521.

Manaris, B. (2007), Dropping CS enrollments: or the emperor’s new clothes?, SIGCSE
Bulletin 39(4), 6–10.

Maturana, H. R. and Varela, F. J. (1980), Autopoiesis and cognition: The realization of
the living, Vol. 42 of Boston studies in the philosophy of science, D. Reidel Pub. Co.,
Dordrecht.

Mayring, P. (2010), Qualitative Inhaltsanalyse: Grundlagen und Techniken, Studium
Paedagogik, 11th edition, Beltz, Weinheim.

McClure, J. R., Sonak, B. and Suen, H. K. (1999), Concept map assessment of
classroom learning: Reliability, validity, and logistical practicality, Journal of Research
in Science Teaching 36(4), 475–492.

McDonald, R. P. (1965), Difficulty Factors and Non-linear Factor Analysis, British
Journal of Mathematical and Statistical Psychology 18(1), 11–23.

McDonald, R. P. and Ahlawat, K. S. (1974), Difficulty Factors in Binary Data, British
Journal of Mathematical and Statistical Psychology 27(1), 82–99.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S. and Thomas, L. (2006),
A cognitive approach to identifying measurable milestones for programming skill
acquisition, in Proceedings of the 11th annual SIGCSE conference on Innovation
and technology in computer science education, Bologna, June 26-28 2006, ACM
Press, New York, pp. 182–194.

http://cran.r-project.org/web/packages/cluster/cluster.pdf
http://cran.r-project.org/web/packages/cluster/cluster.pdf

342 References

Meyer, B. (1987a), Eiffel: Programming for Reusability and Extendibility, SIGPLAN
Notices 22(2), 85–94.

Meyer, B. (1987b), Reusability - The Case for Object-Oriented Design, IEEE SOFT-
WARE 4(2), 50–64.

Meyer, B. (1993), Towards an Object-Oriented Curriculum, in Proceedings of 11th
international TOOLS conference, Santa Barbara, August 1993, Prentice Hall.

Meyer, B. (2006), Testable, Reusable Units of Cognition, Computer 39(4), 20–24.

Meyer, B. (2009), Object-oriented software construction, 2nd edition, Prentice Hall,
Upper Saddle River.

Miller, N. E. and Dollard, J. (1941), Social Learning and Imitation, Institute of human
relations, Yale University. Institute of Human Relations.

Milne, I. and Rowe, G. (2002), Difficulties in Learning and Teaching Programming—
Views of Students and Tutors, Education and Information Technologies 7(1), 55–66.

Minarova, N. (2013), Programming Language Paradigms & The Main Principles of
Object-Oriented Programming, CRIS - Bulletin of the Centre for Research and
Interdisciplinary Study 2013(2).

Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen (2014),
Kernlehrplan für die Sekundarstufe II Gymnasium/Gesamtschule in Nordrhein-
Westfalen: Informatik.
URL: http://www.schulentwicklung.nrw.de/lehrplaene/upload/
klp_SII/if/KLP_GOSt_Informatik.pdf (accessed 14.11.2014)

Mitchell, W. (2000), A paradigm shift to OOP has occurred. . .implementation to follow,
Journal of Computing Sciences in Colleges 16(2), 94–105.

Mitra, S. (2000), Minimally invasive education for mass computer literacy, in Conference
on Research in Distance and Adult Learning in Asia, Hong Kong, June 21-25 2000.

Moosbrugger, H. and Frank, D. (1992), Clusteranalytische Methoden in der Persön-
lichkeitsforschung: Eine anwendungsorientierte Einführung in taxometrische Klassi-
fikationsverfahren, Vol. 12 of Methoden der Psychologie, 1st edition, Huber, Bern.

Mössenböck, H. (2014), Sprechen Sie Java? Eine Einführung in das systematische
Programmieren, 5th edition, Dpunkt, Heidelberg.

Mühling, A. and Hubwieser, P. (2012), Towards Software-supported Large Scale
Assessment of Knowledge Development, in Proceedings of the 12th Koli Calling
International Conference on Computing Education Research - Koli Calling ’12, Koli
National Park, Finland, November 15–18 2012, ACM Press, New York, pp. 145–146.

Mühling, A., Hubwieser, P. and Brinda, T. (2010), Exploring teachers’ attitudes towards
object oriented modelling and programming in secondary schools, in Proceedings of
the 6th international workshop on Computing education research, Aarhus, Aug 8-11
2010, ACM Press, New York, pp. 59–68.

http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf

References 343

Mühling, A. M. (2014), Investigating Knowledge Structures in Computer Science Edu-
cation, Dissertationsschrift, Technische Universität München, München.

Müller, H. and Weichert, F. (2011), Vorkurs Informatik: Der Einstieg ins Informatik-
studium, 2nd edition, Springer Fachmedien, Wiesbaden.

Neugebauer, J., Hubwieser, P., Magenheim, J., Ohrndorf, L., Schaper, N. and Schubert,
S. (2014), Measuring Student Competences in German Upper Secondary Computer
Science Education, in Y. Gülbahar and E. Karatas, eds, Proceedings of 7th Interna-
tional Conference on Informatics in Schools, Vol. 8730 of Istanbul, Sept 22-25 2014,
Springer, Heidelberg, pp. 100–111.

Novak, J. D. (2002), Meaningful learning: The essential factor for conceptual change in
limited or inappropriate propositional hierarchies leading to empowerment of learners,
Science Education 86(4), 548–571.

Novak, J. D. and Cañas, A. J. (2008), The Theory Underlying Concept Maps and
How to Construct and Use Them, Technical report, Florida Institure for Human and
Machine Cognition.
URL: http://cmap.ihmc.us/Publications/ResearchPapers/
TheoryUnderlyingConceptMaps.pdf (accessed 16.12.2014)

Novak, J. D. and Gowin, D. B. (1989), Learning how to learn, University Press, Cam-
bridge.

Novick, M. R. (1966), The axioms and principal results of classical test theory, Journal
of Mathematical Psychology 3(1), 1–18.

Nygaard, K. (1986), Basic concepts in object oriented programming, SIGPLAN Notices
21(10), 128–132.

Ozdemir, A. (2005), Analyzing Concept Maps as an Assessment (Evaluation) Tool in
Teaching Mathematics, Journal of Social Sciences 1(3), 141–149.

Özdemir, G. and Clark, D. B. (2007), An Overview of Conceptual Change Theories,
Eurasia Journal of Mathematics, Science & Technology Education 3(4), 351–361.

Park, R. E., Miller, T. R. and Col, L. (1992), Software size measurement: A frame-
work for counting source statements, Technical report, Carnegie Mellon University,
Pittsburgh.

Pea, R. D. (1986), Language-independent conceptual "bugs" in novice programming,
Journal of Educational Computing Research 2, 25–36.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,
M. and Paterson, J. (2007), A survey of literature on the teaching of introductory
programming, in Working group reports on ITiCSE on Innovation and technology in
computer science education, Dundee, Dec 2007, ACM Press, New York, pp. 204–
223.

http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUnderlyingConceptMaps.pdf

344 References

Pedroni, M. (2009), Concepts and Tools for Teaching Programming, Dissertationsschrift,
ETH Zurich, Zurich.

Pedroni, M. and Meyer, B. (2010), Object-Oriented Modeling of Object-Oriented Con-
cepts, in J. Hromkovič, R. Královič and J. Vahrenhold, eds, Teaching Fundamentals
Concepts of Informatics, Vol. 5941 of Zürich, Jan 13-16 2010, Springer, Berlin,
pp. 155–169.

Pedroni, M., Oriol, M., Meyer, B. and Angerer, L. (2008), Automatic extraction of notions
from course material, in Proceedings of the 39th SIGCSE technical symposium on
Computer science education, Portland, Mar 12-15 2008, ACM Press, New York,
pp. 251–255.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. and Simmons, R. (1988), Conditions
of Learning in Novices Programmers, in E. Soloway and J. Spohrer, eds, Studying
the novice programmer, Interacting With Computers : Iwc, L. Erlbaum Associates,
Mahwah, pp. 261–279.

Piaget, J. (1929), The Child’s Conception of the World, Littlefield Adams Quality
Paperbacks, Lanham, Maryland.

Piaget, J. (1952), The origins of intelligence in children;, International Universities
Press, New York.

Pinto, Y. (2012), The efficacy of homogeneous groups in enhancing individual learning,
Journal of Education and Practice 3(3), 25–38.

Ponocny, I. (2001), Nonparametric goodness-of-fit tests for the rasch model, Psychome-
trika 66(3), 437–460.

Posner, G. J., Strike, K. A., Hewson, P. W. and Gertzog, W. A. (1982), Accommodation
of a scientific conception: Toward a theory of conceptual change, Science Education
66(2), 211–227.

Pugh, J. R., LaLonde, W. R. and Thomas, D. A. (1987), Introducing object-oriented
programming into the computer science curriculum, in Proceedings of the eighteenth
SIGCSE technical symposium on Computer science education, St. Louis, Feb 19-20
1987, ACM Press, New York, pp. 98–102.

Putnam, R. T., Sleeman, D., Baxter, J. A. and Kuspa, L. K. (1988), A Summary of
Misconceptions of High School Basic Programmers, in E. Soloway and J. Spohrer,
eds, Studying the novice programmer, Interacting With Computers : Iwc, L. Erlbaum
Associates, Mahwah, pp. 301–314.

Quibeldey-Cirkel, K. (1994), Das Objekt, Paradigma in der Informatik, Teubner,
Stuttgart.

Raadt, M. d., Watson, R. and Toleman, M. (2005), Textbooks: under inspection,
Technical report, University of Southern Queensland, Toowoomba.

References 345

Ramalingam, V., LaBelle, D. and Wiedenbeck, S. (2004), Self-efficacy and Mental
Models in Learning to Program, in Proceedings of the 9th annual SIGCSE conference
on Innovation and technology in computer science education, Leeds, June 28-30
2004, ACM Press, New York, pp. 171–175.

Rasch, G. (1980), Probabilistic models for some intelligence and attainment tests,
University of Chicago Press, Chicago.

Rentsch, T. (1982), Object Oriented Programming, SIGPLAN Notices 17(9), 51–57.

Renumol, V., Janakiram, D. and Jayaprakash, S. (2010), Identification of Cognitive
Processes of Effective and Ineffective Students During Computer Programming,
ACM Transactions on Computing Education 10(3), 1–21.

Rieman, J. (1996), A field study of exploratory learning strategies, ACM Transactions
on Computing Education 3(3), 189–218.

Robins, A., Haden, P. and Garner, S. (2006), Problem distributions in a CS1 course,
in D. Tolhurst and S. Mann, eds, Proceedings of the 8th Austalian conference on
Computing education, Hobart, Jan 16-19 2006, Australian Computer Society, Inc,
Darlinghurst, pp. 165–173.

Robins, A., Rountree, J. and Rountree, N. (2001), My program is correct but it doesnt
run: A review of novice programming and a study of an introductory programming
paper, Technical Report OUCS-2001-06, University of Otago.

Robins, A., Rountree, J. and Rountree, N. (2003), Learning and teaching programming:
A review and discussion, Computer science education 13(2), 137–172.

Rosson, M. B. and Alpert, S. R. (1990), The cognitive consequences of object-oriented
design, Human-Computer Interaction 5(4), 345–379.

Rost, J. (2004), Lehrbuch Testtheorie - Testkonstruktion, Psychologie Lehrbuch, 2nd
edition, Huber, Bern.

Rubin, J. (1967), Optimal classification into groups: An approach for solving the
taxonomy problem, Journal of Theoretical Biology 15(1), 103–144.

Ruiz-Primo, M. A. (2000), On the use of concept maps as an assessment tool in
science: What we have learned so far, 2(1), 29–52.

Ruiz-Primo, M. A., Schultz, S. E., Li, M. and Shavelson, R. J. (2001), Comparison of
the reliability and validity of scores from two concept-mapping techniques, Journal of
Research in Science Teaching 38(2), 260–278.

Ruiz-Primo, M. A. and Shavelson, R. J. (1996), Problems and issues in the use of
concept maps in science assessment, Journal of Research in Science Teaching
33(6), 569–600.

346 References

Ruiz-Primo, M. A., Shavelson, R. J. and Schultz, S. E. (1998), On The Validity Of
Concept Map-Base Assessment Interpretations: An Experiment Testing The As-
sumption Of Hierarchical Concept Maps In Science, Technical Report 455, University
of California, Los Angeles.

Rumbaugh, J. (1991), Object-oriented modeling and design, Prentice Hall, Englewood
Cliffs, N.J.

Saeli, M., Perrenet, J., Wim M. G. Jochems and Zwaneveld, B. (2011), Teaching
programming in secondary school: A pedagogical content knowledge perspective,
Informatics in Education 10(1), 73–88.

Sajaniemi, J., Kuittinen, M. and Tikansalo, T. (2008), A study of the development
of students’ visualizations of program state during an elementary object-oriented
programming course, Journal on Educational Resources in Computing 7(4), 1–31.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L.
and Zander, C. (2008), Student understanding of object-oriented programming as
expressed in concept maps, in Proceedings of the 39th SIGCSE technical symposium
on Computer science education, Portland, Mar 12-15 2008, ACM Press, New York,
pp. 332–336.

Sanders, K. and Thomas, L. (2007), Checklists for grading object-oriented CS1 pro-
grams: concepts and misconceptions, in Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science education, Dundee,
Dec 2007, ACM Press, New York, pp. 166–170.

Sattar, A. and Lorenzen, T. (2009), Teach Alice programming to non-majors, SIGCSE
Bulletin 41(2), 118–121.

Schubert, S. and Stechert, P. (2010), Competence Model Research on Informatics
System Application, in Proceedings of the IFIP Conference New developments in
ICT and Education, Amiens, June 2010, pp. 28–30.

Schulte, C. (2013), Reflections on the Role of Programming in Primary and Secondary
Computing Education, in Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, Aarhus, Nov 11-13 2013, ACM, New York, pp. 17–24.

Schulte, C. and Magenheim, J. (2005), Novices’ expectations and prior knowledge of
software development: results of a study with high school students, in Proceedings
of the first international workshop on Computing education research, Seattle, Oct
1-2 2005, ACM Press, New York, pp. 143–153.

Schunk, D. H. (2011), Learning theories: An educational perspective, 6th edition,
Pearson, Boston.

Schwill, A. (1994), Fundamental ideas of computer science, Bulletin-European Associ-
ation for Theoretical Computer Science 53, 274–297.

References 347

Sebesta, R. W., Mukherjee, S. and Bhattacharjee, A. K. (2013), Concepts of program-
ming languages, 10th edition, Pearson, Boston.

Sedgewick, R. and Wayne, K. D. (2008), Introduction to programming in Java: An
interdisciplinary approach, Pearson Addison-Wesley, Boston.

Sethi, R. (2003), Programming Languages: Concepts and Constructs, 2nd edition,
Addison-Wesley, Boston.

Shavelson, R. and Ruiz-Primo, M. (2005), On the psychomentrics of assessing science
understanding, in J. J. Mintzes, ed., Assessing science understanding, Educational
psychology, Elsevier, Amsterdam, pp. 304–341.

Shrager, J. and Klahr, D. (1986), Instructionless learning about a complex device:
the paradigm and observations, International Journal of Man-Machine Studies
25(2), 153–189.

Sousa, D. A. (2006), How the brain learns, 3rd edition, Corwin Press, Thousand Oaks.

Spohrer, J. C. and Soloway, E. (1986), Novice mistakes: are the folk wisdoms correct?,
COMMUNICATIONS OF THE ACM 29(7), 624–632.

Ständige Kultuministerkonferenz (2004), Einheitliche Prüfungsanforderungen Infor-
matik.
URL: http://www.kmk.org/fileadmin/veroeffentlichungen_
beschluesse/1989/1989_12_01-EPA-Informatik.pdf (accessed
14.11.2014)

Steinert, M. (2010), Lernzielstrukturen im Informatikunterricht, Habilitationsschrift,
TU München, München.

Strobl, C. (2010), Das Rasch-Modell: Eine verständliche Einführung für Studium und
Praxis, Vol. 2 of Sozialwissenschaftliche Forschungsmethoden, Hampp, Mering.

Stroustrup, B. (1988), What is object-oriented programming, IEEE SOFTWARE
5(3), 10–20.

Stroustrup, B. (1994), The design and evolution of C++, Addison-Wesley, Reading.

Stroustrup, B. (2003), The C plus plus programming language, 3rd edition, Addison-
Wesley, Boston.

Sweller, J. (1988), Cognitive Load During Problem Solving: Effects on Learning.,
Cognitive Science 12(2), 257–285.

Sweller, J. (1989), Cognitive technology: Some procedures for facilitating learning and
problem solving in mathematics and science, Journal of Educational Psychology
81(4), 457–466.

Sweller, J., van Merrienboer, J. and Paas, F. (1998), Cognitive Architecture and
Instructional Design, Educational Psychology Review 10(3), 251–296.

http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf
http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/1989/1989_12_01-EPA-Informatik.pdf

348 References

Technische Univerisät München (2014), Curriculum for the Bachelor’s degree.
URL: http://www.in.tum.de/fuer-studierende/
bachelor-studiengaenge/informatik/studienplan/
studienbeginn-ab-ws-20122013.html (accessed 14.11.2014)

Temte, M. C. (1991), Let’s Begin Introducing the Object-oriented Paradigm, in Proceed-
ings of the Twenty-second SIGCSE Technical Symposium on Computer Science
Education, San Antonio, Mar 7-8 1991, ACM Press, New York, pp. 73–77.

Tew, A. E. and Guzdial, M. (2010), Developing a validated assessment of fundamental
CS1 concepts, in Proceedings of the 41st ACM technical symposium on Computer
science education, Milwaukee, Mar 10-13 2010, ACM Press, New York, pp. 97–101.

The CSTA Standards Task Force (2011), CSTA K-12 Computer Science Standards,
Technical report, Computer Science Teacher Association.
URL: http://csta.acm.org/Curriculum/sub/K12Standards.html (ac-
cessed 15.12.2014)

The Royal Society (2012), Shut down or restart? The way forward for computing in
UK schools.
URL: https://royalsociety.org/~/media/education/
computing-in-schools/2012-01-12-computing-in-schools.pdf
(accessed 16.12.2014)

Truong, N., Roe, P. and Bancroft, P. (2004), Static analysis of students’ Java programs,
in Proceedings of the 6th conference on Australasian computing education, Dunedin,
Jan 2004, Australian Computer Society, Inc, Darlinghurst, pp. 317–325.

Turkle, S. and Papert, S. (1990), Epistemological Pluralism: Styles and Voices within
the Computer Culture, Signs: Journal of Women in Culture and Society 16(1), 128–
157.

van Roy, P., Armstrong, J., Flatt, M. and Magnusson, B. (2003), The role of language
paradigms in teaching programming, in Proceedings of the 34th SIGCSE technical
symposium on Computer science education, Reno, February 19-23 2003, ACM
Press, New York, pp. 269–270.

Ventura, P. R. (2005), Identifying predictors of success for an objects-first CS1, Com-
puter science education 15(3), 223–243.

Verguts, T. and De Boeck, P. (2000), A note on the Martin-Löf test for unidimensionality,
Methods of Psychological Research Online 5(1), 77–82.
URL: http://www.dgps.de/fachgruppen/methoden/mpr-online/
issue9/ (accessed 16.12.2014)

Verhelst, N. D. (2008), An Efficient MCMC Algorithm to Sample Binary Matrices with
Fixed Marginals, Psychometrika 73(4), 705–728.

http://www.in.tum.de/fuer-studierende/bachelor-studiengaenge/informatik/studienplan/studienbeginn-ab-ws-20122013.html
http://www.in.tum.de/fuer-studierende/bachelor-studiengaenge/informatik/studienplan/studienbeginn-ab-ws-20122013.html
http://www.in.tum.de/fuer-studierende/bachelor-studiengaenge/informatik/studienplan/studienbeginn-ab-ws-20122013.html
http://csta.acm.org/Curriculum/sub/K12Standards.html
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue9/
http://www.dgps.de/fachgruppen/methoden/mpr-online/issue9/

References 349

Vihavainen, A., Paksula, M. and Luukkainen, M. (2011), Extreme apprenticeship
method in teaching programming for beginners, in Proceedings of the 42nd ACM
technical symposium on Computer science education, Dallas, March 9-12 2011,
ACM Press, New York, pp. 93–98.

Vihavainen, A., Vikberg, T., Luukkainen, M. and Kurhila, J. (2013), Massive increase in
eager TAs: experiences from extreme apprenticeship-based CS1, in Proceedings
of the 18th ACM conference on Innovation and technology in computer science
education, Canterbury, England, July 1-3 2013, ACM Press, New York, USA, pp. 123–
128.

Vihavainen, A., Vikberg, T., Luukkainen, M. and Pärtel, M. (2013), Scaffolding students’
learning using test my code, in Proceedings of the 18th ACM conference on Innova-
tion and technology in computer science education, Canterbury, England, July 1-3
2013, ACM Press, New York, USA, pp. 117–122.

Vujošević-Janičić, M. and Tošić, D. (2008), The Role of Programming Paradigms in the
First Programming Courses, The Teaching of Mathematics XI(2), 63–83.

Vygotsky, L. (1962), Thought and language., M.I.T. Press Massachusetts Institute of
Technology, Cambridge.

Wegner, P. (1989), Conceptual evolution of object-oriented programming, Technical
Report CS-89-48, Brown University Department of Computer Science, Providence.

Wegner, P. (1990), Concepts and paradigms of object-oriented programming, SIGPLAN
OOPS Messenger 1(1), 7–87.

Weinert, F. E. (2001), Concept of competence: A conceptual clarification, in D. S.
Rychen and L. H. Salganik, eds, Defining and selecting key competencies, Hogrefe
& Huber, Seattle, pp. 45–65.

Wigfield, A., Cambria, J. and Eccles, J. S. (2012), Motivation in Education, in R. M.
Ryan, ed., The Oxford handbook of human motivation, Oxford University Press, New
York, pp. 463–478.

Wilson, B. C. and Shrock, S. (2001), Contributing to success in an introductory computer
science course: a study of twelve factors, in Proceedings of the 32nd SIGCSE
technical symposium on Computer science education, Charlotte, Feb 21-25 2001,
ACM Press, New York, pp. 184–188.

Winslow, L. E. (1996), Programming pedagogy—a psychological overview, SIGCSE
Bulletin 28(3), 17–22.

Wirth, N. (2002a), Pascal and Its Successors, in M. Broy and E. Denert, eds, Software
Pioneers, Springer-Verlag, New York, pp. 108–119.

Wirth, N. (2002b), The Programming Language Pascal, in M. Broy and E. Denert, eds,
Software Pioneers, Springer-Verlag, New York, pp. 121–148.

Wren, A. (2007), Relationships for object-oriented programming languages, Technical
Report UCAM-CL-TR-702, University of Cambridge, Computer Laboratory.

Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C. and Shavelson, R. J. (2005), Com-
parison of two concept-mapping techniques: Implications for scoring, interpretation,
and use, Journal of Research in Science Teaching 42(2), 166–184.

Zimmerman, B. J. (2000a), Attaining Self-Regulation: A Social Cognitive Perspective,
in M. Boekaerts, P. R. Pintrich and M. Zeidner, eds, Handbook of Self-Regulation,
Academic Press, San Diego, pp. 13–39.

Zimmerman, B. J. (2000b), Self-Efficacy: An Essential Motive to Learn, Contemporary
Educational Psychology 25, 82–91.

Zuse, H. (1999), Geschichte der Programmiersprachen, Technical Report 1999-1,
Technische Universität Berlin, Berlin.

List of Tables

2.1 Important feature of the presented object-oriented programming languages 15
2.2 Results of the text analysis presented by Armstrong (2006) 22
2.3 Object-oriented taxonomy presented by Armstrong (2006) 27

3.1 Overview of the different perspectives on constructivism (Schunk 2011) 32
3.2 Overview of the different levels of cognitive load (CL) theory (Gerjets

et al. 2009, p. 43) . 40

5.1 Comparison of the topics of the OOP-first and OOP-later approaches
and their order of introduction, (cf. Ehlert and Schulte 2009a) 76

5.2 Text passages related to object-oriented concepts in the curriculum of
the Bavarian Gymnasium (Translated by the author from German. The
original source is listed in Appendix C) - continued on next page 93

5.2 (contd.) Text passages related to object-oriented concepts in the curricu-
lum of the Bavarian Gymnasium (Translated by the author from German.
The original source is listed in Appendix C) - continued on next page . . 94

5.2 (contd.) Text passages related to object-oriented concepts in the curricu-
lum of the Bavarian Gymnasium (Translated by the author from German.
The original source is listed in Appendix C) - continued on next page . . 95

5.2 (contd.) Text passages related to object-oriented concepts in the curricu-
lum of the Bavarian Gymnasium (Translated by the author from German.
The original source is listed in Appendix C) 96

6.1 Sample text passages with the rating (specifying text passage: 1 -
otherwise: 0) and corresponding concepts marked by a different typeset
(specified concept: bold - specifying concepts: italic) 105

6.2 Textbooks recommended in introductory courses at the German techni-
cal universities . 108

6.3 Selected universities as the base for the textbook analysis 109
6.4 Final list of textbooks that are used by or recommended to the students

in the investigated introductory programming courses 110
6.5 Statistical overview (number of text passages, number of 1-rated ele-

ments, frequency of 1-rated items) on all five books 111
6.6 Concepts defining “object-oriented programming and design” directly . 112
6.7 Number of nodes (specifications) and concepts in each book 113

7.1 Number of preproject’s absolute and relative enrollments between 2008
and 2011 . 139

7.2 Description of the project’s tasks with the corresponding levels of previ-
ous knowledge (1-3) . 143

7.3 Logical SLOC counting rules (Park et al. 1992) 150
7.4 List of the identified programming concepts 152
7.5 List of code items with the criteria for 1-rating - continued on next page 153
7.5 (contd.) List of code items with the criteria for 1-rating - continued on

next page . 154
7.5 (contd.) List of code items with the criteria for 1-rating - continued on

next page . 155
7.5 (contd.) List of code items with the criteria for 1-rating 156
7.6 List of the formulas to calculate the score of the programming concepts 157
7.7 Overview of the data gathered from each student over the years 158
7.8 Number of possible datasets for the different investigations over the years159
7.9 Differences between the mean values of the two clusters and the corre-

sponding p-values (∗ < 0.05, ∗∗ < 0.01) of the Welch two sample t-test
on µ1 = µ2 . 169

7.10 Concepts with more than three associations drawn by novice program-
mers in the pre-test and their associated concepts 174

7.11 Mostly drawn edges by novice programmers in the pre-test 176
7.12 Differences between the mean values of the concepts expressed in the

pre- and the post-test by the novice programmers and the corresponding
p-values (∗ < 0.05, ∗∗ < 0.01) of the Welch two sample t-test on µ1 = µ2 183

7.13 Relative frequencies of the questions by category for all participants and
for the novices group only . 197

7.14 Relative frequencies of the questions by answer type for all participants
and the novice group only . 198

7.15 The p-values of the Wald-test for different splitting criteria 201
7.16 Frequencies of the values of person parameters using the Rasch model,

as well as the marginal scores . 206

List of Figures

2.1 Procedural programming model (Jana 2005, p. 7) 10
2.2 Organization of data and behavior (function) in object-oriented program-

ming (Kedar 2007, p. 171) . 11
2.3 Overview of the history of programming languages (adopted from (Zuse

1999, p. 6) – languages described in this thesis are in cyan color 17
2.4 Graphical representation of the concepts object and encapsulation

(Hares and Smart 1994, p. 43) . 20
2.5 Object-oriented triangle by Henderson-Sellers (1992) 28

3.1 Dimensions of self-directed learning (Garrison 1997, p. 22) 38

4.1 Comprehensive concept map that describes the structure of concept
maps (Novak and Cañas 2008, p. 2) . 48

4.2 Various concept mapping tasks and their degree of directedness (Ruiz-
Primo 2000, p. 35) . 50

4.3 Sample data with the corresponding dendrogram (Bartholomew 2008,
p. 27) . 55

5.1 Overview of the different educational “paradigms” for introducing object
orientation and the corresponding programming notions 72

5.2 Overview on the computer science strands of the CSTA standards (The
CSTA Standards Task Force 2011, p. 10) 87

5.3 Overview of the concepts and process dimensions of the educational
standards for computer science of the GI, (Brinda et al. 2009, p. 289) . 89

5.4 Overview of the competency and content areas of the NRW curriculum in
computer science at higher secondary education facilities – Translated
by the author from German. The original source is listed in Appendix C 91

6.1 Example of a specification node (12) with one specified concept (class)
and two specifying concepts (field and method) 101

6.2 Sample concept specification map of the “quarks” definitions by Arm-
strong (2006) – arrows: “specifying” - bold line: “specified” 103

6.3 Matched concept specification map of the “quarks” of object orientation
and (Abelson et al. 1996) - (gray color: no matching - black edges, blue
concepts: matching - red node: no exact matching - green node: exact
matching) . 116

6.4 Matched concept specification map of the “quarks” of object orientation
and (Deitel and Deitel 2012) - (gray color: no matching - black edges,
blue concepts: matching - red node: no exact matching - green node:
exact matching) . 117

6.5 Matched concept specification map of the “quarks” of object orienta-
tion and (Eckel 2006) - (gray color: no matching - black edges, blue
concepts: matching - red node: no exact matching - green node: exact
matching) . 118

6.6 Matched concept specification map of the “quarks” of object orientation
and (Flanagan 2005) - (gray color: no matching - black edges, blue
concepts: matching - red node: no exact matching - green node: exact
matching) . 119

6.7 Matched concept specification map of the “quarks” of object orientation
and (Sedgewick and Wayne 2008) - (gray color: no matching - black
edges, blue concepts: matching - red node: no exact matching - green
node: exact matching) . 120

6.8 Part of a large concept specification map 122

7.1 Graphical representation of objects and classes on the worksheets . . . 145
7.2 Graphical representation of the dot notation 145
7.3 Graphical representation of the effects of methods on objects 145
7.4 Content specification map for the basic object-oriented concepts of the

worksheets presented during the course 147
7.5 Relative frequencies of the code items over all student projects (red)

and those from the years 2009 (blue), 2010 (green), and 2011 (nude) . 162
7.6 Average values of the novice programmers’ self-assessment of the

Learning Gain . 164
7.7 Average values of the novice programmers’ self-assessment of the Java

knowledge . 165
7.8 Average values of the novice programmers’ self-assessment of the OO

knowledge . 165
7.9 Dendrogram of the cluster analysis with a hierarchical clustering algo-

rithm resulting in two clusters (red and blue) 167
7.10 Different groups (more implemented concepts (1) vs. less implemented

concepts (2)) of novice programmers 168
7.11 Relative frequencies of the code items separated by the two clusters

(cluster 1, cluster 2) only differing in the participants not implementing
any item . 171

7.12 Relative frequency of the 1-rated code items for the concept method
(ME) in relation to the participants of each cluster (cluster 1, cluster 2) . 172

7.13 Relative frequency of the 1-rated code items for the concept attribute
(AT) in relation to the participants of each cluster (cluster 1, cluster 2) . 172

7.14 Relative frequency of the 1-rated code-items for the concept parameter
(PA) in relation to the participants of each cluster (cluster1, cluster2) . . 173

7.15 Combined graph of the 2-rated associations of the novice programmers
in the pre-test – the thicker the line, the more connections have been
found between the concepts . 175

7.16 Partitioning of clusters from the pre-test on levels of previous knowledge 177
7.17 Relative frequency of included concepts in the pre-test for each cluster

(c1 to c3) . 179
7.18 Grouped concept map of the 2-rated association of the novice program-

mers in the post-test – the thicker the line, the more connections have
been found between the concepts . 180

7.19 Mean values for each concept in the post-test separated by the novice
(p)rogrammers and the (r)est . 182

7.20 Mean values for each concept in the test at the (b)eginning and at the
(e)nd of the course concentrating on the novice programmers 184

7.21 Relative frequencies of differences between the pre- and the post-test
for each concept drawn by the novice programmers (green: Increase –
red: Decrease) . 186

7.22 Development of the misconceptions in the concept maps drawn by
novice programmers at the (b)eginning and at the (e)nd of the course . 188

7.23 Comparison of the concepts connected with 2-rated edges and concepts
with 0-rated edges in the pre-test . 190

7.24 Comparison of the concepts connected with 2-rated edges and concepts
with 0-rated edges in the post-test . 192

7.25 Comparison of the code items and the concept maps in the post-test of
the students without prior knowledge. Line a shows the mean values of
the concepts in our code analysis. Line k shows the mean values of the
same concepts in the concept maps of the post-test. 194

7.26 Comparison of the code-items and the concept-maps in the post-test
of the students with prior knowledge. Line a shows the mean-values of
the concepts in our code analysis. Line k shows the mean-values of the
same concepts in the concept maps of the post-test. 195

7.27 Graphical model check for all items in the Rasch model 202
7.28 Item characteristic curves (ICC) of all items included in the 2PL model . 203
7.29 Item characteristic curves (ICC) of all items included in the Rasch model 204
7.30 Item parameters ordered by difficulty and the distribution of person

parameters . 205
7.31 Correlation of the person parameters to the raw score 205
7.32 Box plots of the lines of code for the different previous-knowledge groups207

	Introduction
	Problem Setting and Motivation
	Research Questions
	Methodology and Structure

	Computer Science Background
	Small History of the Object-Oriented Paradigm and the Corresponding Programming Languages
	Different Views of Object Orientation
	A Definition of Object Orientation by its Fundamental Concepts
	Object
	Class
	Method
	Message Passing
	Encapsulation
	Polymorphism
	Inheritance
	Abstraction

	Taxonomies of Object Orientation

	Educational Background
	Constructivism
	Social Cognitive Theory
	Self-Regulation
	Self-Efficacy

	Self-Directed Learning
	Cognitive Load Theory
	Knowledge Organisation
	Knowledge as Theory
	Knowledge as Elements

	Methodological Background
	Concept Maps
	Principles Underlying Concept Maps
	Application of Concept Maps

	Cluster Analysis
	Hierarchical Cluster Analysis
	Partitioning Cluster Analysis
	Model-Based Clustering

	Item Response Theory
	The Logistic Models
	Parametric Tests for Model Fitting
	Martin-Löf Test
	Graphical Model Proof
	Likelihood Ratio Test
	Wald Test

	Nonparametric Tests
	Test for Homogeneity
	Test for Local Stochastic Independence

	The Latent Trait Model

	Object-Oriented Programming in an Educational Context - A Literature Review
	Object Orientation in Introductory Programming Courses
	A Suitable Educational ``Paradigm'' for Introducing Object Orientation
	When to Introduce the Object-Oriented Notions?
	What is the Most Suitable Order for Introducing Programming Notions Related to Object Orientation?

	An Appropriate Language for an Introductory Programming Course

	Object Orientation in Competency Models
	Competency Model of Object Interaction
	Competency Model on Informatics Modeling and System Comprehension (MoKoM)

	Object Orientation in National and International Education Standards and Computer Science Curricula
	The ACM/IEEE Joint Task Force Computer-Science Curriculum
	Curriculum of the Bachelor Degree in Computer Science at the Technische Universität München
	General Assessment Guidelines (EPA) in Computer Science
	Educational Standards of the Computer Science Teachers Association (CSTA)
	Educational Standards of the German Society for Computer Science (GI)
	Curricula of German Grammar Schools
	The Grammar School in North Rhine-Westphalia
	The Bavarian Gymnasium

	Summary

	Visualizing the Basic Concepts of Object-Oriented Programming
	Related Work
	Concept Specification Maps
	Concept Specification Maps of Textbooks
	Object Orientation in Textbooks of Introductory Courses
	Structures in Introductory Textbooks
	Representation of the ``Quarks'' in the Textbooks

	Threats to Validity
	Missing Intercoder Reliability and Agreement
	Large Concept Specification Maps

	Summary

	Novices' Object-Oriented Programming Knowledge and Abilities
	Related Work
	Minimally Invasive Education
	Introductory Programming Courses
	Novice Programmers
	Conceptual Knowledge
	Program Code Evaluation

	Minimally Invasive Programming Courses
	A Preliminary Course for the Introduction into Computer Science
	Prerequisites for the Courses
	Design of the Course
	Gathering the Appropriate Topics for the Course
	Design of the Course Material

	Data Gathering
	Analysis of Novice Programmers' Knowledge and Abilities
	Differences in the Program Code
	Development of Knowledge
	Previous Programming Knowledge
	Posterior Programming Knowledge
	Knowledge Development

	Misconceptions
	Difference Between Knowing and Doing
	Common Questions

	Evaluation of Program Code using Psychometric Models
	Threats to Validity
	Summary

	Conclusion
	Summary
	Further Research
	Further Work on Concept Specification Maps
	Further Work on Evaluating Novice Programmers' knowledge and abilities

	Concept Specification Map (CMS)
	Abelson - Structure and Interpretation of Computer Programs
	Deitel - How to Program Java
	Eckel - Thinking in Java
	Flanagan - Java in a Nutshell
	Sedgewick - Introduction to Programming in Java
	CSM - All books

	Minimally Invasive Programming Courses (MIPC)
	Worksheets MIPC
	B.1.1. Worksheet 1
	B.1.2. Worksheet 2
	B.1.3. Worksheet 3
	B.1.4. Worksheet 4

	Specifications of the Worksheets
	Questionnaire MIPC
	Concept Map Questionnaire MIPC
	Report Form for the Participant Questions
	Code Examples
	Example for The Mastermind Task
	Example for The Ballsportmanager Task
	Example for The Kniffel Task

	Concept Maps
	List of 2-rated associations of programming novices in the pre-test
	List of 0-rated associations of programming novices in the pre-test
	List of 2-rated associations of programming novices in the post-test
	List of 0-rated associations of programming novices in the post-test

	Student Questions

	Translations
	References
	List of Tables
	List of Figures

