
Usage Control in Service-Oriented Architectures?

Alexander Pretschner1, Fabio Massacci2, and Manuel Hilty1

1 Information Security, ETH Zürich, Switzerland
2 Dept. of Information and Communication Technology, Università degli Studi di Trento, Italy

Abstract. Usage control governs the handling of sensitive data after it has been
given away. The enforcement of usage control requirements is a challenge be-
cause the service requester in general has no control over the service provider’s
information processing devices. We analyze applicable trust models, conclude
that observation-based enforcement is often more appropriate than enforcement
by direct control over the service provider’s actions, and present a logical archi-
tecture that blends both forms of enforcement with the business logics of service-
oriented architectures.

1 Introduction

The past few years have seen major technological and business trends that are reshap-
ing software technology and business processes. These trends have a profound impact
on the trust models, security policies, security procedures, and security infrastructures
that companies need to develop and maintain [1, 2]. From a technological perspective,
service-oriented architectures (SOA) and business process management platforms have
emerged as the architectures and technologies of choice for structuring and integrating
applications within and across enterprises. From a business perspective, companies and
institutions have increasingly outsourced the non-core parts of their business processes.
Outsourcing is the ongoing administration, management, and possibly subcontracting
of specific IT processes by external parties to enhance efficiency and effectiveness of
those processes (cited after [2]). Outsourcing is sometimes iterated, so that the service
provider (SP) itself outsources some functions to third parties [3]. In this way a com-
pany can concentrate on its core business rather than on peripheral tasks. Outsourcing
often involves sensitive data such as trade secrets or the personal data of customers.
Data owners (i.e., the companies who own the trade secrets) and data subjects (i.e., the
customers to whom (personal) data is related) are interested in governing how that data
may be used by the SPs. Further, regulatory frameworks such as the Sarbanes-Oxley act
also impose technical and governance restrictions on how business-relevant data may
or must be processed.

There is a long history of security research concerned with the protection of data.
Access control (AC for short) addresses the question of who may access which data
under which circumstances. Those decisions are taken with information that relates to

?This work was done while A. Pretschner was on leave at the universities of Trento and
Innsbruck—support by the Bolzano Innsbruck Trento Joint School for Information Technology
is gratefully acknowledged. F. Massacci was supported by the EU-funded S3MS project.

the present and the past. More recent work has extended the concept to usage control
(UC for short; [4–7]) that is concerned with what may happen with data once a data
provider has given it to a data consumer. In service-oriented settings, the data con-
sumers are typically the SPs. Requirements about the future handling of data are called
obligations. Examples include “delete the document within thirty days”, “notify the
data owner whenever the data is accessed”, “log every access to the document”, and
“the data must be stored in an encrypted manner” [8]. Obligations are also studied in
the areas of privacy (e.g., [9–11]) and digital rights management (DRM, e.g., [12, 13]).

In this paper, we tackle the problem of enforcing obligations in SOAs. Because of
the special trust relationships in service-based business processes, it might be sufficient
not to ensure the adherence to obligations—which is what is needed in DRM contexts—
but rather to observe and react to violations in hindsight. Based on these considerations,
we present a logical architecture that identifies the necessary core functionalities for
enforcing UC. We show how to connect the UC logic to the business logic(s) of a SOA.
We make the assumptions explicit, discuss the crucial aspect of trust, and demonstrate
the limitations of the architecture. Implementing the architecture is a next step.

Problem Statement and Contribution. To summarize, the problem that we study is
whether and how UC requirements can be enforced in SOAs and which enforcement
strategies are appropriate in which scenarios. Our solution is the analysis of different
trust models in usage control scenarios and the specification of functional components
that can enforce UC requirements. The contribution of this paper is, to our knowledge,
the first explicit conceptual treatment of security and trust requirements for UC in out-
sourced SOAs and the first logical architecture addressing it.

Overview. In §2, we discuss the fundamentally different UC-related trust models
in the areas of DRM and service-based business processes. This analysis leads us to
two different kinds of enforcement of UC requirements in §3, detective and preventive
enforcement. We present the logical architecture in §4 and sketch two different deploy-
ment schemes in §5. Finally, in §6, we put our work in context and conclude.

2 Usage Control and Trust in Different Domains

Different stakeholders have different interests in UC. Human data subjects are interested
in their privacy being respected. To keep their competitive advantage, companies want
to prevent their trade secrets from falling into the hands of competitors. Similarly, artists
and distributors of artworks and software are interested in receiving royalty payments
for their intellectual property. Finally, shareholders and other parties are interested in
compliance with governance rules such as the Sarbanes-Oxley act. In contrast to this
perspective of the data provider, data consumers (or SPs, respectively) have different
interests with regard to whether and how obligations are enforced.

In the DRM (B2C) area, the data consumer has in general no interest in adapting its
computing infrastructure to meet the more or less prying needs of a data provider. The
data consumers’ well-being does not depend on whether or not they receive a movie.
Furthermore, limitations imposed by DRM are often seen as a nuisance by the data
consumers because DRM may also prevent playing data on several devices or making
backup copies. Legal restrictions are often not taken seriously by the data consumers

2

because the enforcement of the law in this area is nearly impossible. In terms of UC en-
forcement mechanisms, the data consumers have an interest in data protection as many
DRM mechanisms send information back to central servers that may be of privacy-
sensitive nature.

This is in contrast to the relationship between a company and an outsourced SP
(B2B). SPs are interested in adhering to the stipulated terms and conditions for two rea-
sons. Firstly, maintaining a high reputation is important in competitive markets. Loosing
one customer translates into considerable losses (compare the value of an outsourcing
contract and the value of an mp3 song). Depending on the level of customization, a
company using, e.g., the SAP R/3 business suite, might quickly move from one SP to
another; and SPs with a low reputation have difficulties of finding new customers. Sec-
ondly, the legal implications of not adhering to the terms and conditions may be severe.
The penalties stipulated in the outsourcing contracts act as a deterrence for the SP to
handle the customer’s data in unintended ways.

Finally, public administrations, seen as SPs, have in general no direct economic re-
lationship with businesses (A2B) or citizens (A2C) who send them sensitive data. How-
ever, most processes in administrations are strictly governed and public administrations
usually have no particular interest in breaking the respective laws and regulations. We
may conclude that these administrations are inherently honest and that violations of
usage control requirements tend to happen unintentionally rather than deliberately.

The relationship between SPs and service requesters often is subject to regulatory
demands. These may include the requirement that a company provide evidence to regu-
lators, auditors and finally its customers that it is delivering a secure, privacy-respecting,
trustworthy service. Yet, regulators might not consider sophisticated outsourcing struc-
tures and may only hold one of the parties accountable to the end user. Similarly, even if
contractual protection and deterrence can help avoid problems with regulators and law
enforcement, they are not sufficient to mitigate the rage of customers whose pressure
might force a global brand to take responsibility for outsourced services.

In sum, service requesters (data providers) must trust the SPs (data consumers) to
handle the received sensitive data in accordance with stipulated terms. To achieve this
trust, secure service-oriented infrastructures must be developed so that data providers
can specify security policies for services and the infrastructure can enforce such policies,
monitor and detect violations, and diagnose the root causes for violations in order to
take appropriate actions. However, SPs may be reluctant to give the service requesters
too much control over their IT infrastructures. Even giving away information about the
internal behavior may be critical to the SP; but it is generally more acceptable than
giving control to the service requester.

3 Enforcement of Usage Control

In DRM, data providers are interested in gaining enough control over the data con-
sumers’ IT infrastructures so that they can make sure that UC requirements are adhered
to. This is a consequence of the trust relationship described in §2. In contrast, in the
domain of business IT it may be impossible, not practical, too costly, or simply not nec-
essary to fully control the IT infrastructure of the service that receives sensitive data.

3

This is equally a consequence of the respective trust relationship discussed in §2. SPs
may, however, agree to present some (trustworthy—cf. §5) information about their ac-
tions. The original senders of the data can then, in hindsight, decide whether previously
stipulated obligations have been adhered to. If not, they can penalize the receiver, e.g.,
by lowering trust ratings. The idea is that of deterrence: potential delinquents are aware
that their wrongdoings may be detected and that they may be held accountable. In the
following, we will refer to the first kind of enforcement as preventive enforcement and
to the second kind as detective enforcement.

The functionality of mechanisms for preventive enforcement can be broken down
into the fundamental strategies of inhibition, modification, execution, and finite delay
[8, 14]. Mechanisms for preventive enforcement are mostly developed in the DRM area
and usually perform enforcement by inhibition, with a few exceptions that support en-
forcement by modification [15]. Detective enforcement does not require direct influ-
ence on the actions performed by the SP but relies on signaling mechanisms that inform
about actions of the SP. As a consequence, the original requirement (e.g., “delete the
data item within thirty days”) is transformed into a combined statement that consists of
an observable requirement (“the execution of the deletion command within thirty days
must be confirmed”) and a compensating action that is executed in case of violation
(e.g., “lower the SP’s trust rating”) [7]. We require that a violation of the observable
requirement implies a violation of the original requirement. Ideally, one would like the
opposite direction to hold as well, but this is in general not possible—this is the cost
for using the weaker observation-based kind of enforcement. Detective enforcement
involves both signaling and monitoring components. Typically, signalers reside at the
SP’s side (or at some distributed parts of the service requester infrastructure such as
SAP R/3 clients). They send (partial) information about the provider’s internal state or
actions to the service requester. Monitors predominantly reside at the requester’s side.
They receive signals from the signalers and verify if these signals conform with ap-
plicable UC policies. Obviously, a monitor must trust the information that is sent by
signaling components; the latter must be correct and complete: notifications are sent
whenever necessary, and there must not be any “spurious” notifications (§5).

4 A Logical Architecture for Usage Control in SOAs

We now describe an architecture for UC in SOAs. It is logical in the sense that it is
completely independent of any implementation. Later, in §5, we sketch two deployment
schemes for integrating UC with an existing SOA.

Abstractly, a service is a functional entity with an internal state that receives and
sends messages under well-defined conditions (contracts). A service S sends a request
to another service S’; if there is a result of the computation that S may be interested
in, S’ can send a response message. Messages consist of a command that the requester
wants the receiver to execute, possibly including references to the receiver’s state (e.g.,
a data base), data that the receiver needs to perform its task and that might have to be
usage-controlled, and UC policies for that data.

Fig. 1 schematically shows how to incorporate enforcement mechanisms for AC
and UC into this simple service model. Labeled arrows represent the main data flows

4

actual actions logs

Service 1
Logic of

AC/
UC

AC/
UC

Business
Logic of

Service 2

Business
Logic of

Service 3

request monitor
actual actions

monitor
access control

usage control
PEP

online
obligations monitor

diagnosis engine
offlinerequest logs

compensating actions

activation

 PEP

AC/UC of Service 1

u

u u,nunu

nu

u,nu

u,nu

u

u,nu

u

u

u,nu

u,nu

u,nu

u,nu

u,nu

u,nu

signals

Business

Fig. 1. Services with access and usage control

(messages) and boxes represent functional components; we will convey the meaning of
the labels later. A request enters the system from the left hand side. Rather than passing
it directly to the business logic of the receiving service (say, service 1, to which the
request was directed), we first make the message enter the hierarchically decomposed
box labeled “AC/UC”. Once this box has performed its tasks, messages are sent to
other services. These messages may be identical to those originally received, and the
receiving services may be identical to the original receiver (service 1), but they need
not, because the AC/UC enforcement mechanisms may have decided otherwise. The
idea is that an AC/UC component resides within each communication channel between
two services; it intercepts requests and performs its tasks.

We distinguish between messages that directly relate to usages (label u) and those
that do not (label nu). Usage always relates to data for which UC policies exist. It can
be classified into management, distribution to other parties, rendering, data processing,
and execution of programs [15]. Usages can be combined; editing a document with a
word processor, for instance, usually involves rendering, processing, and management
usages. Messages that do not relate to usage include notifications, status reports, pay-
ments, fines, etc. In Fig. 1, we make the following assumption. All usage-related actions
that the business logic of a service undertakes (manage, render, process, execute) as the
result of processing a request (that is, usages that are not directly mentioned in the
original request) are not directly executed but rather encoded as an explicit request and
fed back to the AC/UC component of the service (uppermost arrow and feed-back data
flows for services 2 and 3). In this way, we make sure that all usage-related actions
(messages) always pass the AC/UC component of a service and are hence subject to
UC. This is of course a strong assumption. However, it can be justified by the logi-
cal nature of the architecture: UC need not necessarly be implemented by dedicated
software components (§5).

The main functional components of the AC/UC component are three monitoring
components (request, actual actions, and obligations monitor), the AC policy enforce-
ment point (PEP), a UC PEP that takes policy-defined actions should this be necessary
(e.g., delete a file after thirty days, notify the data owner, spell out a fine), and a compo-

5

nent that can be used to analyze system executions w.r.t. a set of policies in an off-line
manner and to analyze existing logs for business decisions.

The request monitor does nothing but log incoming requests. The main requirement
is to be sufficiently fast and to scale. Some requests may not be allowed to be logged;
this is stipulated by monitoring policies. The logs of all requests can later be used for
offline analysis purposes. Incoming requests are forwarded to the AC PEP.

The AC PEP decides whether a request can be granted, that is, if the command in the
(command, data, UC policy) triple of the message can be executed w.r.t. the applicable
AC policies. These policies can reflect both the AC functionality of the business logic
of the service itself and AC functionality that reflects requirements on the entire system
rather than a single service (e.g., chinese wall policies). In addition to AC policies, UC
policies may be applicable. These UC policies are defined system-wide (reflecting legal
frameworks), on a per-service, or a per-data item basis. How these policies are retrieved
and how the system knows when to activate them is outside the scope of the logical
architecture. If any UC policies are applicable to the data that is part of the data in the
request, they must be tied to the data object in question and then be activated. Activated
obligations are handled by the obligations monitor discussed below. If the AC PEP
decides that a request can be granted, it forwards it to the UC PEP. The reason for not
directly sending the request to the service’s business logic is that even at the moment
of granting access, UC requirements may have to be enforced—e.g., a notification may
have to be sent, or a policy that was activated earlier prohibits the current request from
being forwarded to the service’s business logic.

The online obligations monitor monitors requirements on the future of a data item
that was previously sent to the service and for which an applicable UC policy exists. The
monitor keeps track of the actions of the service. If specific policy-defined conditions
are met (or violated), it makes the UC PEP perform specific tasks.

The UC PEP enforces UC requirements based on the four classes of enforcement
defined in §3. For instance, the execution of action conditions with an executor mech-
anism can be done by spelling out fines—i.e., sending the respective message to a re-
spective service—notifying a data owner, or automatically issuing a payment. Note that
the execution of actions may also be delayed as demonstrated by the above example of
deletion in thirty days (this is different from delaying enforcement mechanisms which
simply wait to see if certain favorable conditions have, by virtue of actions the requester
may have taken in the meantime, become true). As a second example, the obligations
monitor can also tell the UC PEP not to forward a request to the service’s business
logic, i.e., inhibit it. For instance, a UC policy might state that some action must not be
executed more than three times. When the fourth request arrives, then the obligations
monitor will notify the UC PEP that this fourth request must not be forwarded to the
service’s business logic. The other forms of enforcement can be achieved in a similar
manner. If the result of the UC PEP is different from the original request yet itself a
usage (an action for which UC policies may be applicable), then this result must be
enveloped into a request and fed back to the request monitor: similar to actions that the
business logic of a service may want to execute, UC policies may be applicable.

If according to the obligations monitor, the UC PEP has nothing to do, then the latter
forwards the input received from the AC PEP, and possibly also that of the obligations

6

monitor. The actions of the UC PEP may affect the AC PEP and the obligations monitor,
e.g., if any policy stipulates actions to be taken after three fines were spelled out. These
components hence get fed back with the actions executed by the UC PEP.

The actual actions monitor logs all messages that the UC PEP has deemed ap-
propriate (or modified into something appropriate) for being executed by the service.
Furthermore, it forwards the requests that it receives to the service’s business logic (or
to another service, if this is applicable—for instance, a penalty service). The actual ac-
tions monitor also serves as the signaling component for other services, as discussed in
§3. The actual actions monitor does not need to send its data to the UC PEP and the
obligations monitor because this has already been achieved by the UC PEP. The moni-
toring activity is governed by a monitoring policy, similar to the monitoring policy that
governs the request monitor.

Finally, an offline diagnosis engine analyzes activities in the logs. Data mining tech-
niques can be performed for risk analysis, or it might be decided that online detection
of UC policy violations is not really an issue and that offline detection—e.g., once a
week—is fully appropriate for a given business scenario.

In addition to trust issues that we will discuss in §5, this perspective on UC involves
a constraint that relates to side effects. A UC policy may depend on the output of a
service. For instance, a policy may state that if the result of the service’s computation
includes specific names, then it must not be distributed to specific parties. This means
that the UC PEP must first trigger the service’s business logic, then retrieve the result,
and check it w.r.t. its UC policies. The problem then obviously is that the service’s
computation may have side effects that cannot be undone.

5 Engineering Usage Control in SOAs

We now describe the mapping of this functionality to a technical architecture and to the
implementation.

Dedicated Services. One approach to implementing the above functionality imple-
ments dedicated software components for each functionality of one of the logical en-
tities. AC and UC are hence enforced at the interface level of a service. The challenge
with this approach is twofold. Firstly, preventive enforcement requires that all actions
of a service are initiated by requests that pass through the respective AC/UC compo-
nent. In other words, there must be no other way for a service to receive requests,
and the service exclusively performs actions that are initiated by an external request.
Proactive behavior of a service—that is not initiated by sending explicit messages to
itself—is obviously prohibited by this approach. Secondly, detective enforcement re-
quires all consumer-side events that are relevant for checking compliance with a policy
to be (1) generated by the signaling components and (2) received and appropriately in-
terpreted by the monitoring components. In particular, signaling components must not
miss any events that they should inform the monitoring components about (complete-
ness) and the signaling components must not notify the monitors of actions that have
not taken place (correctness). As an example for a possible technical infrastructure,
Apache Axis (ws.apache.org/axis), a development framework for Java web services,
allows the definition of request handlers and handler chains. These handlers intercept

7

requests, perform specific actions, and then send requests to the business logic (and all
requests necessarily pass the handlers). The AC and UC PEPs can be implemented as
part of these handlers. Because the online obligations monitor must take into account
information that is not exclusively related to requests that are sent to the business logic
(e.g., time or notification messages), it cannot in general be integrated into the handlers.
Checking the conditions of a UC requirement must be done by a dedicated component.

Weaving. The approach of implementing the enforcement infrastructure along the
lines of the functional entities is appealing because of its modular nature: AC/UC com-
ponents can be added to any communication channel in a system. However, we have
seen that it relies on a set of rather strong assumptions on the deployment of the ser-
vices. A further possibility consists of compiling the AC/UC functionality directly into
the service. This scenario is attractive when a SP is tailoring services to customer’s
needs anyway, as it happens in several outsourcing scenarios. We would argue that when
the service binary is built, one could also alter the source code so as to incorporate some
functionalities of the logical architecture. In this scenario, generic AC PEPs, online obli-
gation monitors, and UC PEPs could be interwoven with the service’s business logic
at compile time, similarly to what aspect weavers do in aspect-oriented programming
[16], how monitors can be interwoven with object code [17], and to what modified Java
virtual machine class loaders do at runtime to implement security requirements [18].

Parsimonious Trusted Computing. Both approaches to implementing UC enforce-
ment mechanisms rely on assumptions that relate to trust at different levels. How can it
be ensured that the only way for services to receive requests is after they have passed the
respective AC/UC component? The system must be trusted that there are no other ways
to request actions from a service. Similarly, how can the (currently deployed) business
logic of a service itself be trusted? How can signalers provide monitors with the correct
and complete information that these monitors need for assessing adherence to policies?
How can it be ensured that a service reacts to a message in the specified way, i.e., how
can input messages and internal actions be linked? And how can it be ensured that the
components of AC and UC mechanisms have been implemented correctly and may not
be tampered with? These difficult questions are relevant in both deployment scenarios.

At least some technological help can be expected here. First, with trusted comput-
ing technology, hardware-based solutions for restricting the actions of an IT system and
making sure that a certain configuration of a service is running on a specific host (re-
mote attestation) are becoming increasingly powerful. For example, trusted computing
technology could be used to make signaling mechanisms more tamper-resistant. Ap-
proaches in this direction have been presented in the literature [19, 20]. Second, data
caging at the level of hardware (e.g., Intel’s LaGrande Technology) and operating sys-
tems (e.g., Symbian OS v9) can also be implemented for general business information
systems and protect both program code and cryptographic keys. These cryptographic
keys can be used to restrict access to data to those who possess the respective key
(which of course implies that decrypted data must not be publicly accessible). Third,
there exist approaches for securing software that cannot rely on trusted hardware [21,
22]. However, these approaches are often considered weaker than hardware-based ap-
proaches. Finally, off-the shelf components such as databases can be equipped with
built-in mechanisms for increasing trust (e.g., Hippocratic databases [9]).

8

6 Related Work and Conclusions

UC has been discussed by several authors [5–7], with few researchers explicitly cater-
ing to the notion of distribution in UC, i.e., the loss of control over a data item after
giving it away. Several policy languages for UC have been proposed [23, 24, 13, 12, 8].
Enforcement by observation and penalties has been documented [25, 5, 26]; and pre-
ventive control mechanisms have been surveyed and characterized [15, 8, 14]. All this
work does not relate to the specifics of loosely-coupled software architectures for busi-
ness information systems (in the P2P context, related work was mentioned earlier [20,
19]). To our knowledge, this paper constitutes the first treatment of UC in SOAs.

Distributed UC is concerned with requirements on data after this data has left the
data provider’s scope of influence. Sources for the respective requirements are the data
owners’ interests but also governance rules and regulations. Some of these requirements
can be controlled. For other requirements, enforcement by observation and compensa-
tion is a suitable solution. Whether or not preventive or detective control mechanisms
are applied depends on the underlying business and trust models. Enforcement by ob-
servation and compensation seems to be applicable in outsourced business service sce-
narios rather than in DRM (§2). In SOAs, the data consumer (SP) may not want the
data provider (service requester) to be so powerful; full control may also be technically
impossible, inappropriate because of the wrong trust model, or too costly. In the DRM
scenario, the trust model is fundamentally different. Furthermore, in the area of DRM
for handheld devices, we would argue that if there is sufficient control over the hand-
held’s operations for observation purposes, then there should be sufficient control to
directly enforce by control as well.

The contributions of this paper are technical and conceptual. Technically, we have
identified the main functional components for enforcing UC policies. We have defined
a logical architecture and presented two different deployment schemes, one relying on
dedicated SW components, and one relying on weaving the functionality with the ser-
vice’s business logic at compile-time. Conceptually, we have shown how the appropri-
ateness of different enforcement schemes (preventive or detective control) depends on
the business model of the SP and the applicable trust model. In other words, we have
shown that UC in SOAs and UC in DRM are fundamentally different. While trust is
a huge technological and also organizational problem, we have hinted at first building
blocks for respective solutions. We are aware that a logical architecture is only a first
step and that we will face many challenges when implementing it.

In addition to scalability issues that we did not scrutinize in this paper, we did not
mention two further technical challenges. Firstly, when instantiating the abstract notions
of usages with actual usages, then the question about their semantics arises: if a policy
specifies that a data item has to be “deleted”, does this mean that all copies have to
be deleted, that the data has to be physically over-written several times, or that in case
of encrypted storage the key is deleted? At the level of business processes, however,
policies may directly relate to (standardized) messages exchanged between services,
which means that this problem may be less relevant. Secondly, we did not touch the
problem of rights delegation and propagation in iterative outsourcing scenarios.

Open research and engineering problems relate to all of the above. We need to better
understand how hardware-based trusted computing technology, secure storage of keys,

9

application-specific enforcement schemes, modern operating systems and middleware
can help establish the necessary trust.

Acknowledgments. We would like to thank F. Casati and B. Crispo for contributing
to and discussing the architecture as well as V. Lotz for many useful comments on the
business side of SOAs.

References

1. Karjoth, G., Pfitzmann, B., Schunter, M., Waidner, M.: Service-oriented Assurance - Com-
prehensive Security by Explicit Assurances. In: Proc. of QoP’05. (2005)

2. Karabulut, Y., Kerschbaum, F., Massacci, F., Robinson, P., Yautsiukhin, A.: Security and
Trust in IT Business Outsourcing: a Manifesto. In: Proc. STM. ENTCS (2006)

3. Goth, G.: The ins and outs of it outsourcing. IT Professional 1 (1999) 11–14
4. Schaad, A., Moffett, J.: Delegation of Obligations. In: Proc. POLICY. (2002) 25–35
5. Bettini, C., Jajodia, S., Wang, X.S., Wijesekera, D.: Provisions and obligations in policy rule

management. J. Network and System Mgmt. 11(3) (2003) 351–372
6. Park, J., Sandhu, R.: The UCON ABC Usage Control Model. ACM Transactions on Infor-

mation and Systems Security 7 (2004) 128–174
7. Pretschner, A., Hilty, M., Basin, D.: Distributed Usage Control. CACM 49(9) (2006) 39–44
8. Hilty, M., Pretschner, A., Schaefer, C., Walter, T.: A System Model and a Policy Language

for Distributed Usage Control. Technical Report I-ST-20, DoCoMo (2006)
9. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic DBs. In: VLDB. (2002) 143–154

10. Karjoth, G., Schunter, M., Waidner, M.: Platform for Enterprise Privacy Practices: Privacy-
enabled Management of Customer Data. In: Proc. PET. (2002) 69–84

11. W3C: The Platform for Privacy Preferences 1.1 (P3P1.1) Spec., Working Draft (2005)
12. Wang, X., Lao, G., DeMartini, T., Reddy, H., Nguyen, M., Valenzuela, E.: XrML–eXtensible

rights Markup Language. In: Proc. XMLSEC. (2002) 71–79
13. Iannella, R.: Open Digital Rights Language - Version 1.1 (2002) odrl.net/1.1/ODRL-11.pdf.
14. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for Run-time

Security Policies. International Journal of Information Security 4(1-2) (2005) 2–16
15. Hilty, M., Pretschner, A., Schaefer, C., Walter, T.: Enforcement for Usage Control—An

Overview of Control Mechanisms. Technical Report I-ST-18, DoCoMo EuroLabs (2006)
16. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented SW Development. (2004)
17. Erlingsson, U., Schneider, F.: SASI enforcement of security policies: A retrospective. In:

Proc. New Security Paradigms Workshop. (1999) 87–95
18. Bauer, L., Ligatti, J., Walker, D.: Composing Security Policies with Polymer. In: Proc. ACM

SIGPLAN Conf. on Programming Language Design and Implementation. (2005) 305–314
19. Zhang, X., Chen, S., Sandhu, R.: Enhancing Data Authentity and Integrity in P2P Systems.

IEEE Internet Computing 9(6) (2005) 18–25
20. Sandhu, R., Zhang, X.: Peer-to-peer access control architecture using trusted computing

technology. In: SACMAT. (2005) 147–158
21. van Oorschot, P.: Revisiting software protection. In: Proc. IST. (2003) 1–13
22. van Oorschot, P.: SW protection and application security: understanding the battleground.

In: State of the art and evolution of computer security and industrial cryptography. (2003)
23. W3C: A P3P Preference Exchange Language 1.0 (APPEL1.0) (2002)
24. Backes, M., Pfitzmann, B., Schunter, M.: A toolkit for managing enterprise privacy policies.

In: Proc. ESORICS. (2003) 162–180
25. Povey, D.: Optimistic security: a new access control paradigm. In: Proc. workshop on new

security paradigms. (1999) 40–45
26. Hilty, M., Basin, D., Pretschner, A.: On obligations. In: Proc. ESORICS. (2005) 98–117

10

