
Security Testing with Fault-Models and Properties

Matthias Büchler

Technische Universität München, Germany
buechler@cs.tum.edu

Advisor: Prof. Dr. Alexander Pretschner, Project: SPaCIoS EU project

Abstract—Web applications are complex and face a massive
amount of sophisticated attacks. Since manually testing web
applications for security issues is hard and time consuming,
automated testing is preferable. In model-based testing, test
cases are often generated using structural criteria. Since such
test cases do not directly target security properties, this Ph.D
thesis proposes to use a fault model for generating tests for
web applications. Faults are represented as known source code
vulnerabilities that, by using respective mutation operators at
the model level, are injected into models of a System Under
Validation to generate “interesting” test cases. To achieve
this, advantages of penetration testing are combined with
model-checkers dedicated to security analysis. To find attacks
on real systems the gap between an abstract attack trace
output by a model-checker and a penetration test needs to be
addressed. This Ph.D thesis contributes with a semi-automatic
methodology to turn abstract attack traces operational.

Keywords-security testing; property based testing; mutation
testing; model checking; semi-automatic test execution;

I. PRELIMINARY HYPOTHESIS

An ”interesting” test case exploits a known vulnerability

to violate a security property. They can be generated by

applying semantic mutation operators on models of a System

Under Validation. Semantic mutation operators bind high

level security properties to source code level vulnerabilities.

A semi-automatic instantiation methodology executes ”in-

teresting” test cases to find potential security vulnerabilities

in a real system.

II. INTRODUCTION

Web applications are part of our lives and deal with sensi-

tive data. Such applications usually address both declarative

security properties like the CIA properties (confidentiality,

integrity, availability), as well as properties of security

mechanisms. Examples of security properties are: Secret

values are only known by the a priori defined users to

guarantee confidentiality, sensitive data can only be modified

in a well-defined way to guarantee integrity. Properties of

security mechanisms are: Before accessing a user profile a

user has to be authenticated and authorized, admin functions

are only executable by users of the group “admin”, every

access needs to be evaluated by the access control system.

Corresponding web applications need to be tested for viola-

tions of both kind of properties. Ideally corresponding test

cases are generated automatically and executed on a System

Under Validation (SUV) to find attacks.

Figure 1. Characteristics of Interesting Test Cases

III. THE PROBLEM

In model-based testing, structural criteria on models are

often used for test case generation. They are on a syntactic

level and with a few exceptions (e.g., Fraser and Wotawa [5])

are not related to security properties due to the lack of an ob-

vious link between structural criteria and security properties.

The problem we want to address is: How can we generate

“interesting” test cases that test a SUV for violations of high

level security properties, under the assumption that such a

violation is indeed present in the SUV? An “interesting”

test case exploits a known vulnerability to violate a security

property. At the model level, model checking can verify

security properties φ and reported counter examples can be

considered as abstract test cases. One can model potential

violations of the security properties by mutating properties

or by mutating models. If the underlying model M is

secure, mutated properties are not immediately useful for

test case generation since a secure model satisfies all original

properties (∀ϕ ∈ φ : M |= ϕ). If the security properties are

mutated, the model checker can only report traces from the

secure model that all satisfy the initial security properties.

Therefore the model M itself needs to be mutated to M ′ so

that a trace in M ′ exists that violates at least one specified

property (∃ϕ ∈ φ : M ′ �|= ϕ). Model checking tools might

now report traces of the mutated model that violate an initial

security property ϕ ∈ φ (� in Figure 1). To test whether

the SUV is vulnerable, such reported traces need to be

instantiated and executed.

IV. PROPOSED RESEARCH APPROACH

Our approach is related to Dadeau et al. [4]. We address

the question how test cases for security properties are

generated from a secure model by combining penetration

testing and model checking techniques. Penetration testing

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.74

501

techniques provide knowledge about security properties and

source code vulnerabilities that could be exploited by an

attack to violate a security property. Source code vulnerabil-

ities are captured by model-level mutation operators and are

injected into a secure model. Model checking techniques are

used to report Abstract Attack Traces (AATs) that violate the

security property due to the injected vulnerability (see Fig-

ure 1). Since a single syntactic mutation operator might not

be powerful enough to represent a source code vulnerability

at model level, they are aggregated into semantic mutation

operators. They are hence higher-order mutation operators

that consider the semantic of the model as well. E.g. for ac-

cess control policies, Martin and Xie [7] show evidence that

structural coverage for test selection is far from optimal for

fault-detection effectiveness. Using our approach, generated

test cases are “interesting” (� in Figure 1) because they test

for specific vulnerabilities, acknowledge the presence if the

vulnerability indeed exists, or raise confidence that the vul-

nerability would have been found if present. Since AATs are

on an abstract level, they are mapped to executable test cases

to find potential attacks on the SUV. The instantiation uses

a 2-step mapping to separate application-dependent from

application-independent data and hence makes it reusable

for multiple test cases.

V. EXPECTED CONTRIBUTION

The contribution of this Ph.D thesis is an approach for

generating and executing “interesting” test cases for security

properties based on vulnerabilities. To achieve that I in

particular propose useful semantic mutation operators which

represent a domain-specific fault model for web applications.

In addition, tool support for mutating secure models to gen-

erate AATs at model level is provided. Since semantic muta-

tion operators are higher-order mutation operators, research

will be carried out to compare them with first-order syntactic

mutation operators that only apply 1 small syntactic change

(also see Jia and Harman [6]). For executing AATs a semi-

automatic methodology is proposed to map test cases at

model level to operational test cases at implementation level.

VI. SUMMARY OF RESULTS TO DATE

Research [1, 2, 3] has already been carried out in the

context of the SPaCIoS EU project. Among others, I have

collected a non-exhaustive set of security properties and

corresponding source code vulnerabilities. Currently, I am

working on the design of semantic mutation operators and

the development of a mutation tool for the ASLan++ mod-

eling language, a formal language for specifying security-

sensitive service-oriented architectures. For the instantiation

of AATs I have a preliminary version of the Web Appli-

cation Abstract Language, which describes abstract browser

actions, together with a mapping to executable API calls.

Finally, I am working on heuristics and methodologies used

by the Test Execution Engine to involve test experts when

necessary during instantiation and the adaptation to non-

expected behavior of the SUV since the used model for test

generation can be implemented in different ways.

VII. EVALUATION

As an evaluation I first want to focus on the effectiveness

of our approach for web applications with documented

security issues since we generate test cases from known

vulnerabilities. Second, I want to compare our approach with

first-order mutation operators, that mutate a secure model

by a single syntactic change, and with different random

approaches. The random approach is both applied to secure

models as well as to the mutated models. For each approach,

n test cases are considered. The goal of the comparison is

the evaluation how many vulnerabilities are discovered with

n test cases of each approach. Finally as a proof-of-concept

and use case scenario, I would like to describe how our

approach is embedded in the software development process.

VIII. CONCLUSION

The aim of this Ph.D thesis is an approach to generate test

cases for security properties of web applications. Following

a model-based testing approach, a fault model represented

as a set of semantic mutation operators for secure models

is proposed. Semantic mutation operators are higher-order

mutation operators that bind security properties and source

code vulnerabilities. Model checking techniques are used

to find abstract test cases that violate security properties

based on the injected vulnerability. A semi-automatic test

execution engine finally executes reported tests to find

attacks on a System Under Validation.

REFERENCES

[1] M. Büchler, J. Oudinet, and A. Pretschner, “Security

mutants for property-based testing,” in TAP, 2011, pp.

69–77.

[2] ——, “Spacite - web application testing engine,” in

ICST, G. Antoniol, A. Bertolino, and Y. Labiche, Eds.

IEEE, 2012, pp. 858–859.

[3] ——, “Semi-automatic security testing of web applica-

tions from a secure model,” in SERE. IEEE, 2012, pp.

253–262.

[4] F. Dadeau, P.-C. Héam, and R. Kheddam, “Mutation-

based test generation from security protocols in

HLPSL,” in ICST, 2011, pp. 240–248.

[5] G. Fraser and F. Wotawa, “Property relevant software

testing with model-checkers,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 6, pp. 1–10, Nov. 2006.

[6] Y. Jia and M. Harman, “Higher order mutation testing,”

Inf. Softw. Technol., vol. 51, no. 10, pp. 1379–1393, Oct.

2009.

[7] E. Martin and T. Xie, “A fault model and mutation

testing of access control policies,” in WWW, 2007, pp.

667–676.

502

