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Abstract—Web applications and web services enjoy an ever-
increasing popularity. Such applications have to face a variety
of sophisticated and subtle attacks. The difficulty of identifying
respective vulnerabilities steadily increases with the complexity
of applications. Moreover, the art of penetration testing predom-
inantly depends on the skills of highly trained test experts. The
difficulty to test web applications hence represents a daunting
challenge to their developers. As a step towards improving
security analyses, model checking has, at the model level, been
found capable of identifying complex attacks and thus moving
security analyses towards a push-button technology. In order to
bridge the gap with actual systems, we present SPaCiTE. This
tool relies on a dedicated model-checker for security analyses that
generates potential attacks with regard to common vulnerabilities
in web applications. Then, it semi-automatically runs those
attacks on the System Under Validation (SUV) and reports
which vulnerabilities were successfully exploited. We applied
SPaCiTE to Role-Based-Access-Control (RBAC) and Cross-Site
Scripting (XSS) lessons of WebGoat, an insecure web application
maintained by OWASP. The tool successfully reproduced RBAC
and XSS attacks.

I. INTRODUCTION

Since the emergence of model-checkers dedicated to security

goals [3], developing secure specifications is easier. However,

testing if the implementation of such specifications is also

secure remains a difficult task. Existing penetration testing

tools for web applications either require access to the source

code [8] or suffer from missing a lot of potential interactions

with the user; Doupé et al. [7] evaluated the weaknesses of such

penetration scanners. Even though the idea of exploiting the

availability of a secure model to test an implementation is not

new [2, 1, 6], SPaCiTE focuses on testing web applications and

therefore provide an even more practicable tool for testing the

security of web applications. First, it allows to abstract away

the protocol layer (HTTP) from the model. Thus, modeling

web applications can be done at the browser level, which both

simplify the modeling process and include the browser as part

of the testing process. Second, SPaCiTE relies on a library of

known vulnerabilities and attacks to select interesting test cases

for web applications. Indeed, the tool successfully reproduced

RBAC and XSS attacks in four lessons of WebGoat1.

The methodology behind the tool is described in detail in [5],

and a demonstration video of the tool is available on-line2. In

this paper, we first describe the overall workflow of the tool

and then provide details on the Test Execution Engine (TEE)

1Webgoat: www.owasp.org/index.php/Category:OWASP WebGoat Project
2SPaCiTE demo: zvi.ipd.kit.edu/26 500.php

Fig. 1. SPaCiTE workflow and TEE architecture

architecture. Finally, we report in Section III the results from

executing the tool on several WebGoat lessons.

II. THE SPACITE TOOL

A. Workflow

The SPaCiTE tool (Figure 1) takes as input a secure

model described in the AVANTSSAR Specification Language

(ASLan++) [4]. Even though ASLan++ was created for security

protocols, the language can naturally be used to model web

applications as well. In particular the definition of access control

policies in web application is simplified by the availability of

horn clauses. The model is described in terms of abstract

messages exchanged by different web application components.

These messages describe the interaction between components

at a high level (e.g., login, viewProfile, updateProfile),

ignoring details about underlying protocols.

First, SPaCiTE injects some known vulnerabilities into the

secure model such that a model checker may report Abstract

Attack Traces (AATs) that exploit these vulnerabilities. An

AAT is a sequence of abstract messages together with their

sender and receiver. Then, using a mapping given as input to

the tool, every AAT message is mapped to browser actions that

generate and verify these messages. An intermediate language,

called Web Application Abstract Language (WAAL), has been

developed to simplify the translation of abstract messages to

browser actions. Next, WAAL actions are mapped to executable

code by an internal, framework-specific mapping. Finally this

concrete test case is executed against the SUV by a TEE. The

last step is described in detail in the following section.
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B. Test Execution Engine

First, SUV components are split into two distinct sets:

simulated and observed components. The simulated agents

are part of the TEE, which is responsible for emitting the

messages they are supposed to send according to the test case.

Observed components run in their normal environment except

that their communication channels are monitored by proxies.

These proxies allow the TEE to observe messages exchanged

between observed components. An additional proxy is put in

front of the TEE to intercept sent messages when it generates

additional messages that are not part of the test case; such

extra messages are for the test expert when the TEE requests

his intervention.

Then, the TEE translates WAAL actions performed by

simulated agents into pieces of code executable within the

Selenium framework3 and/or Apache HTTPComponents4. Such

code also contains some recovery actions that are executed

when a browser action cannot be performed (e.g., selecting an

item from a list that is missing, clicking on a hidden button).

If the code executed by Selenium fails, it first tries to execute

some prepending actions (e.g., reconfiguration of the tool to

use credentials) and then executes the failed action again, or

some alternative actions (e.g., triggering the desired event by

a different action). These automatic recovery actions depend

on the occurred failure. If neither prepending nor alternative

actions can recover from the failure, the TEE switches to the

HTTP level and makes use of the HTTPComponents framework.

In this case, the TEE may require the help of a test expert to

translate a sequence of browser actions into the corresponding

HTTP request. To simplify the task of the test expert, the TEE

will provide HTTP requests that correspond to similar actions.

For example, if an item is missing in a list, the TEE will show

the HTTP request that corresponds to selecting another item

from the same list. Once the test expert provided the needed

HTTP request (i.e., the failed Selenium action is successfully

executed by the HTTPComponents framework), the test case is

resumed in the Selenium framework. Shared information (e.g.,

cookies) between the frameworks is automatically transferred.

III. APPLICATION TO WEBGOAT

To evaluate the tool, we considered four WebGoat lessons

from the RBAC and XSS domains. For all these lessons, the

SUV is split into the web server for the observed component

and the clients for the simulated agents, which access to the

server through a web browser. Our tool successfully instantiated

and executed attack traces reported by the model checker.

For the RBAC domain, the models describe a web application

where a user can view and/or delete user profiles only if he is

authorized to do so with respect to the RBAC system. After

mutation operators seeded vulnerabilities that deactivate server-

side authorization checks, the model checker reported AATs

that show how a user can view or delete unauthorized profiles.

SPaCiTE was able to automatically execute all AATs messages

3Selenium: http://seleniumhq.org/
4Apache HTTPComponents: http://hc.apache.org/

but the last one. To also successfully execute the last message,

the presentation layer must be bypassed (i.e., by moving to

the HTTPComponents framework). To help the test expert in

providing the mapping of the last message to an HTTP message,

SPaCiTE shows him some HTTP messages that result from

executing similar actions. For example, in the “Bypass Data

Layer Access Control” lesson, SPaCiTE shows HTTP requests

for viewing other profiles. For the “Bypass Business Layer

Access Control” lesson, the HTML button to delete a profile

is missing on the webpage and thus SPaCiTE shows HTTP

requests generated by other buttons on the same page.

For the XSS domain, the models describe a web application

where a user can update profiles and search for a profile via a

query engine. In the secure models, every action sanitizes user

inputs. After tagging some actions as non-correctly sanitizing,

the model checker reports AATs showing a specific sequence

of messages to exploit a potential XSS vulnerability. During

the execution of these AATs, the non-correctly sanitized input

of the vulnerable request is replaced by a malicious JavaScript

code. Then, a verification code is executed at the place where

this JavaScript code should eventuate. Both the malicious

JavaScript code and the corresponding verification code come

from a library SPaCiTE has access to. The two AATs for XSS

were automatically be executed by the tool.

To sum up, all reported attack traces has been successfully

reproduced. Future versions of the tool will be implemented

as a web service to bring SPaCiTE to the SUV such that the

test environment can stay locally.
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