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INTRODUCTION 

A model and a procedure for calculating loudness of steady-state sounds from measured third-octave 
band levels was published by Zwicker. The procedure is based on the distribution of the specific loud- 
ness along the critical band scale. The procedure was adopted in IS0 532B. Some years ago DIN 4563 1 
was revised including a computer program for calculating loudness level in BASIC which runs on IBM 
compatile or japanese PC’s [l]. Also a computer program in ANSI-C was published [2]. 
If loudness of temporally variable sounds is considered in a first step the specific loudness values have 
to be treated as time-dependant values. In each critical band the effects of temporal masking must be 
considerd. For of a complete loudness model also in a second step a network summing up all specific 
loudness values along the critical bands must be realized in the instrument. Such a network should con- 
sider that a loudness meter shows for impulses of tones with decreasing duration total loudness values 
N,, decreasing as well ([3]). This network is not discussed here. 
In the following section the first step towards an aurally-adequate time-variable loudness calculation 
procedure is developped using data of post-masking as measured by Zwicker [4]. A computer program 
for post-masking is derived from the data. In modem digital sound-analysis systems this procedure can 
not only be applied for calculation procedures of total loudness, but also for other temporally variable 
hearing sensations [SI. 

DATA ON POSTMASKING 

Post (forward-) masking has been investigated in several studies in which the dependance of post-mas- 
king on masker duration has been measured. One effect seems to be generally accepted: post-masking 
becomes smaller for masker durations shorter than about 100 ms. Zwicker [4] published some data that 
show that the form of the decay decreases more rapidly for shorter masker impulses. The masking 
patterns can be used as a guide for the decay of the ears internal excitatition and to the corresponding 
specific loudness. 
Fig. 1 summarizes the calculated specific loudness-time function Nlth(t) (the index ‘th’ stands for 
simulated post-masking threshold) as given by Zwicker 143. An exponential decay in this figure 
corresponds to a straight line as indicated in the inset of Fig. I. All curves decay from the same starting 
point, regardless of duration, much more rapidly for shorter masker durations than for a long lasting 
impulse. For masker durations of TM = 5, 10,30,200 ms the time constants for the decay as proposed by 
Zwicker are Tn.= 4,4.5,6.5 and 11 ms. At longer delays the specific loudness tends to decrease more 
slowly. A time constant of about 15 ms can be derived from the data. 
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Fig. 1: Post-masking curves according to [4] transformed into specific loudness N’th as a function of 
masker duration TM. Inset: Several time constants for exponential decay. 

The described behaviour could be simulated with an anolog non-linear model. Fig. 2 shows an analog 
network already proposed by Zwicker [4]. 

Fig. 2: Network simulating a duration dependant decay 

CONTINOUS TREATMENT OF THE NFXWOIUS 

The behaviour of the network shown above is determined by the time-constants rshOr,=R1*Ctr 
r,,,,=R,.(C,+C,) and ryar = R&. 
Thiig with ideal diodes we have to distinguish several cases. Because of the Diode Di the voltage 
u,, at the output of the network is never lower than the input voltage ui. If ui becomes lower than uO 
(case 1) Ct is discharged. Depending on the voltage us of capacitor Cs there are 

l case 1.1 with u,> us: Ci is discharged via R, and via Rz in Ca and from the differential 
equations 

we get 

uo(‘) = (bar .h,+l)K,.ex~f+(~,,,.h2+1)K2.e*2t 

with: 
f indicating the time since us became lower than U, and the abbreviations 
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and 

l case 1.2 with u,=ua: Cr-l-C, are discharged via R,, so 

rj, = (c, +-$a, (4) 

is valid and we get 

uo(f)= u,(f =O).e-“‘~~~, 
where t now indicates the time, since uO=ua holds. 

(5) 

Diode Dz prevents ua from~ becoming higher than u,. 
Besides case 1 it is possible that r&,=6 (for instance if ai has risen and remained afterwards constant). 
Under this condition Ca is charged (without discharging C,), if u0 > ua (case 2.1). The valid differential 
equation in case 2.1 is 

and us follows 

u2(f) = (u2(f = 0) - uo). e-““v= + u, , 
t is the time since n,, became equal e. 

It is important to know us(t) because it is one initial value, necessary for determining u, in case 1 (see 
eqs. 3 and 5). If Ca is already charged on the same voltage like Cr (case 2.2) ua remains unchanged. 
As mentioned above u, < us can never occur. 
Fig. 3 shows an example for the time-dependant decay of the voltages involved in the decay process. 
The output signal follows immediately an increase of the input voltage. After the input signal is 
switched of, the decay of the output signal starts. The slope of the decrease follows the short time 
constant. After the condenser Ca is charged the slope changes to the slow decay rate. 
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Fig. 3: Tie history of the voltages of the network for an input impulse with a duration of 50 ms. 
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DISCRETE TREATMENT OF THE NETWORK 

To realize the transfer characteristic of the above discussed network on sampled time data (sampling 
frequencyf,= I/&) we can use the time dependent functions of eqs. (3) (5) and (7) to determine the 
new value u,(t) from the input value r&) and the known values u&-At) and &r-At). Indicating 

we get: 

l case 1.1: (ui<ud and u,>use) 

u2=uoo~5-u2,~4, 

u*=uo,~E&-U20.83r 

. case 1.2: (u,<ud and ua=uae) 

u,=u,=u,,,~B,, 

l case 2.1: (c,=ud and um>use) 
u, = uj 

u~=(IJ~~-U~).B~+IJ~ 

with the constants 

(8) 

(9) 

(10) 

(11) 

(12) 

5 = r,,,(~-h2)(e11At-ei~Af) ’ 

ft’ = ’ 
G&.l - h2) 

((7”arh2 + l)eA'"'-(7,,h, + l)eLZAf) , 

8’=7v.r(~-h2)((~va~~~+l)e”“t-(r,~h?+l)ehzAt)~ 

In the discrete realization of the nehvork we only can check the conditions distinguishing between 
several cases at discrete times. So, solving the problem in ftite steps of length At, it can happen that u, 
became larger than Us. In this new case (case 3) u, follows ut whereas ua obeys eq. (12). Furthermore 
we also have to prevent that u, becomes lower than us during one step (case 1.1.1). It is not exact to 
set u,=u,, but the error using this approach is negligible. 
The following C-program shows the complete algorithm for a discrete realization of the network. Q,,,~, 

and hg were chosen to be 5 ms and 15 ms. r,,, is 75 ms, which seems to be an appropriate setting for 
loudness analysis purposes (see Fig. 4). 
First we have to initialize the constants Bi depending on the sampling interval At and to set a definite 
state of the capacitors by calling routine inif-nmlp and afterwards function nl-lp calculates for the next 
value & the corresponding u,. 
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REALIZATION AS C-PROGRAM 

Figure 4 describes the source code of a C program realizing the digital structure described above, 

#include cmath.h> 

#include cstdio.h> 

#define t-short 0.005 

#define t-long 0.015 

#define t-var 0.075 

Eloat B[61, 

u 0 0, -- /* u;o(t-delta-t) */ 

u 2 0; -- /* u-Z(t-delta-t) */ 

raid initgl-lp(float delta-t) 

/* initializes constants B and states 

of capacitors Cl and C2, 

l/delta-t = sampling frequency */ 

( 
float lambda-l, lambda-z, 

P, q, den, 

e1, e2; 

int i; 

p = (t-var + t-long)/ 

(t-var*t-short); 

q = l/(t-short*t-var); 

lambda-1 = -p/2+sqrt(p*p/4 - q); 

lambda-2 = -p/2-sqrt(p*p/4 - q); 

den = t-var*(lambda-1 - lambda-2); 

el = expUambda_l*delta t); 

e2 = expUambda_2*delta:t); 

BI01 = (el-e2)/den; 

B[ll = ((t_var*lambda_2+1)*el - 

(t_var*lambda_l+l)*e2)/den; 

BI21 = ((t_var*lambda_l+l)*el - 

(t_var*lambda_;?+l)*e2)/den; 

BI31 = t-var*lambda-l+l)* 

(t-var*lambda-2+1)* 

(el-e2)/den; 

BL41 = exp(-delta-t/t-long); 

BL51 = exp(-delta-t/t-var); 

u-O-0 = 0; /* at beginning 

capacitors Cl and C2 are 

discharged */ 

U-2-0 = 0; 

float nl-lptfloat u-i) 

/* calculates u-o(t) from u-i(t) usin! 

I 

u-o(t-delta-t) and u-2(t-delta-t)*, 

float u-0, u-2; 

if (u-i c u-o-0) /* case 1 *, 

if (u-o-0 > U-2-O) { /* case 1.1 *, 

u-2 = U-O-O*B[Ol - U-2_0*B[ll; 

U-0 = u~o~O*B[21 - u_2_0*B[31; 

if (u-i > u-0) 

u-0 = u-i; /* u CI can't becomi 
lower than u_i */ 

if (u-2 > u-0) /* case 1.1.1 *, 

u-2 = u-o; /* u-2 can't becoml 

higher than u-o */ 

) 
else{ /* case 1.2 *, 

U-O = u_o_O*B[41; 

if (u-i > u-o){ 

u-o = u-i; /* u-o can't become 

lower than u-i */ 

I 
u-2 = u-0; 

i 
else{ 

if (u-i == u-o-O){ /* case 2 *, 

u-0 = u-i; 

if (u-0 > u 2 0) -- /* case 2.1 *, 

u-2 = (U-2-O - u_i)*B[51 + 

u-i; 

alse /* case 2.2 */ 

U-2 = u-i; 

1 
else{ /* case 3 */ 

u-0 = u-i; 

1 

U-2 = (u-2-O - u_i)*B[51 + u-i; 

1 

u-o-0 = u-0; /* preparation for next 

step */ 

u-2-0 = u-2; 

I 

return (u-0) ; 

1 

Fig. 4: C-source code describing the duration dependant decay 
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Fig. 5: comparison of the original data (solid lines) and the simulated post-masking data (symbols): 
TM = 200 ms (quadrangles), TM = 30 ms (triangles ), TM = 10 ms (circles), TM = 5 ms (tilted 
triangles). 

Fig. 5 compares the calculated decays with the algoritm for masker durations of 5, lo,30 and 200 ms 
and the measured data (see Fig. 1). For longer masker durations the calculated data and the values N’m 
agree very well. For short masker durations some deviations occur with the chosen time-constants. 

CONCLUSIONS 

If loudness of temporally variable sounds is considered the specific loudness values have to be treated as 
time-dependant values. A temporal resolution of 2 ms can be chosen for practical applications. In digital 
sound analysis systems post-masking effects must be taken into account. Post-masking depends strongly 
on duration. With the above described digital realization a procedure is available to account for this 
duration dependant decay of post-masking. For durations of 10 ms to 200 ms the behaviour of the algo- 
rithm fits the published data of post-masking sufficiently. Therefore this algorithm may be applied in 
loudness meters or other pre-processing devices. 
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