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Space–time Lévy noise, Stochastic heat equation, Stochastic partial differential
equation

Mathematics Subject Classifications (2010): 60H35, 65C30, 60H20, 60H15,
60G57, 60G51

Bohan Chen · Carsten Chong · Claudia Klüppelberg
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1 Introduction

The aim of this paper is to investigate different simulation techniques for stochastic
Volterra equations (SVEs) of the form

Y (t,x) =Y0(t,x)+
∫ t

0

∫
Rd

G(t,x;s,y)σ(Y (s,y))Λ(ds,dy) , (t,x)∈R+×Rd , (1)

where G is a deterministic kernel function, σ a Lipschitz coefficient and Λ a Lévy
basis on R+×Rd of pure-jump type with no Gaussian part. In the purely temporal
case where no space is involved and the kernel G is sufficiently regular on the diag-
onal {(t;s)∈R+×R+ : t = s}, the existence and uniqueness of the solution Y to (1)
are established for general semimartingale integrators in [14]. The space–time case
(1) is treated in [5] for quite general Lévy bases. In particular, G is allowed to be
singular on the diagonal, which typically happens in the context of stochastic partial
differential equations (SPDEs) where G is the Green’s function of the underlying
differential operator. More details on the connection between SPDEs and the SVE
(1) are presented in Sect. 2, or can be found in [2, 5, 20].

Since in most cases there exists no explicit solution formula for the SVE (1), it
is a natural task to develop appropriate simulation algorithms. For SPDEs driven
by Gaussian noise, research on this topic is rather far advanced, see e.g. [7, 9, 21].
However, for SPDEs driven by jump noises such as non-Gaussian Lévy bases, the
related literature is considerably smaller, see [3] and the work of Hausenblas and
coauthors [8, 10, 11]. The case σ ≡ 1 has been treated in [4]. The contribution of
our paper can be summarized as follows:

• We propose and analyze two approximation schemes for (1), each of which re-
places the original noise by a truncated noise that only has finitely many atoms
on compact subsets of R+×Rd . For the first scheme, we simply cut off all jumps
whose size is smaller than a constant. For the second scheme, we use series rep-
resentation techniques for the noise as in [17] such that the jumps to be dropped
off are chosen randomly. Both methods have already been applied successfully
to the simulation of Lévy processes, cf. [1, 18].

• In the case where G originates from an SPDE, the crucial difference of our nu-
merical schemes to the Euler or finite element methods in the references men-
tioned before is that we do not simulate small space–time increments of the noise
but successively the true jumps of the Lévy basis, which is an easier task given
that one usually only knows the underlying Lévy measure. It is important to rec-
ognize that this is only possible because the noise Λ is of pure-jump type, and
contains neither a Gaussian part nor a drift. We shall point out in Sect. 6 how to
relax this assumption.

The remaining article is organized as follows: Section 2 gives the necessary back-
ground for the SVE (1). In particular, we present sufficient conditions for the ex-
istence and uniqueness of solutions, and address the connection between (1) and
SPDEs. In Sect. 3 we construct approximations to the solution Y of (1) by truncat-
ing the small jumps of the Lévy basis. We prove in Thm. 1 their Lp-convergence,
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and in some cases also their almost sure (a.s.) convergence to the target process Y .
In Sect. 4 we approximate the driving Lévy basis using series representation meth-
ods. This leads to an algorithm that produces approximations again converging in
the Lp-sense, sometimes also almost surely, to Y , see Thm. 2. In both theorems, we
find explicit Lp-convergence rates that only depend on the kernel G and the charac-
teristics of Λ . Section 5 presents a simulation study for the stochastic heat equation
which highlights the typical path behaviour of stochastic Volterra equations. The
final Sect. 6 compares the two simulation algorithms developed in this paper and
discusses some further directions of the topic.

2 Preliminaries

We start with a summary of notations that will be employed in this paper.

R+ the set [0,∞) of positive real numbers
N the natural numbers {1,2, . . .}
B a stochastic basis (Ω ,F ,F = (Ft)t∈R+ ,P) satisfying the usual hy-

potheses of completeness and right-continuity
Ω̄ ,Ω̃ Ω̄ := Ω ×R+ and Ω̃ := Ω ×R+×Rd where d ∈ N
B(Rd) the Borel σ -field on Rd

B̃b the collection of all bounded Borel sets of R+×Rd

P the predictable σ -field on B or the collection of all predictable processes
Ω̄ → R

P̃ the product P ⊗B(Rd) or the collection all P ⊗B(Rd)-measurable
processes Ω̃ → R

P̃b the collection of sets in P̃ which are a subset of Ω × [0,k]× [−k,k]d

for some k ∈ N
p∗ p∨1
Lp the space Lp(Ω ,F ,P), p ∈ (0,∞], endowed with the topology induced

by ∥X∥Lp := E[|X |p]1/p∗

L0 the space L0(Ω ,F ,P) of all random variables on B endowed with the
topology of convergence in probability

Bp
loc the set of all Y ∈ P̃ for which ∥Y (t,x)∥Lp is uniformly bounded on

[0,T ]×Rd for all T ∈ R+ (p ∈ (0,∞])
Ac the complement of A within the superset it belongs to (which will be

clear from the context)
A−B {x− y : x ∈ A,y ∈ B}
−A {−x : x ∈ A}
Leb the Lebesgue measure on Rd (d should be clear from the context)
∥ · ∥ the Euclidean norm on Rd .
C,C(T ) two generic constants in R+, one dependent and one independent of T ,

whose values we do not care of and may therefore change from one
place to the other
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We suppose that the stochastic basis B supports a Lévy basis, that is, a mapping
Λ : P̃b→ L0 with the following properties:

• Λ( /0) = 0 a.s.
• For all pairwise disjoint sets (Ai)i∈N ⊂ P̃b with

∪∞
i=1 Ai ∈ P̃b we have

Λ

(
∞∪

i=1

Ai

)
=

∞

∑
i=1

Λ(Ai) in L0 . (2)

• (Λ(Ω ×Bi))i∈N is a sequence of independent random variables if (Bi)i∈N are
pairwise disjoint sets in B̃b.

• For every B ∈Bb, Λ(Ω ×B) has an infinitely divisible distribution.
• Λ(A) is Ft -measurable when A ∈ P̃b and A⊆Ω × [0, t]×Rd for t ∈ R+.
• For every t ∈ R+, A ∈ P̃b and Ω0 ∈Ft we have a.s.

Λ(A∩ (Ω0× (t,∞)×Rd)) = 1Ω0Λ(A∩ (Ω × (t,∞)×Rd)) .

Just as Lévy processes are semimartingales and thus allow for an Itô integra-
tion theory, Lévy bases belong to the class of L0-valued σ -finite random measures.
Therefore, it is possible to define the stochastic integral∫

R+×Rd
H(s,y)Λ(ds,dy)

for H ∈ P̃ that are integrable with respect to Λ , see [6] for the details.
Similarly to Lévy processes, there exist two notions of characteristics for Lévy

bases: one going back to [15, Prop. 2.1] that is based on the Lévy-Khintchine for-
mula and is independent of F, and a filtration-based one that is useful for stochastic
analysis [6, Thm. 3.2]. For the whole paper, we will assume that both notions coin-
cide such that Λ has a canonical decomposition under the filtration F of the form

Λ(dt,dx) = B(dt,dx)+Λ c(dt,dx)+
∫
R

z1{|z|≤1} (µ−ν)(dt,dx,dz)

+
∫
R

z1{|z|>1} µ(dt,dx,dz) ,

where B is a σ -finite signed Borel measure on R+×Rd , Λ c a Lévy basis such that
Λ(Ω ×B) is normally distributed with mean 0 and variance C(B) for all B ∈ B̃b,
and µ a Poisson measure on R+×Rd relative to F with intensity measure ν (cf. [12,
Def. II.1.20]). There exists also a σ -finite Borel measure λ on R+×Rd such that

B(dt,dx) = b(t,x)λ (dt,dx) , C(dt,dx) = c(t,x)λ (dt,dx) and
ν(dt,dx,dz) = π(t,x,dz)λ (dt,dx) (3)

with two functions b : R+×Rd → R and c : R+×Rd → R+ as well as a transition
kernel π from (R+×Rd ,B(R+×Rd)) to (R,B(R)) such that π(t,x, ·) is a Lévy
measure for each (t,x) ∈ R+×Rd .
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We have already mentioned in the introduction that we will assume

C = 0 (4)

throughout the paper. For simplicity we will also make two further assumptions:
first, that there exist b ∈ R and a Lévy measure π such that for all (t,x) ∈ R+×Rd

we have
b(t,x) = b , π(t,x, ·) = π and λ (dt,dx) = d(t,x) ; (5)

second, that
Λ ∈S ∪V0 , (6)

where S is the collection of all symmetric Lévy bases and V0 is the class of Lévy
bases with locally finite variation and no drift, defined by the property that∫

R
|z|1{|z|≤1}π(dz)< ∞ , and b0 := b−

∫
R

z1{|z|≤1}π(dz) = 0 .

Furthermore, if π has a finite first moment, that is,∫
R
|z|1{|z|>1}π(dz)< ∞ , (7)

we define

B1(dt,dx) := b1 d(t,x) , b1 := b+
∫
R

z1{|z|>1}π(dz) ,

M(dt,dx) := Λ(dt,dx)−B1(dt,dx) =
∫
R

z(µ−ν)(dt,dx,dz) .

Next, let us summarize the most important facts regarding the SVE (1). All de-
tails that are not explained can be found in [5]. First, many SPDEs of evolution type
driven by Lévy noise can be written in terms of (1), where G is the Green’s function
of the corresponding differential operator. Most prominently, taking G being the
heat kernel in Rd , (1) is the so-called mild formulation of the stochastic heat equa-
tion (with constant coefficients and multiplicative noise). Typically for parabolic
equations, the heat kernel is very smooth in general but explodes on the diagonal
t = s and x = y. In fact, it is only p-fold integrable on [0,T ]×Rd for p < 1+2/d. In
particular, as soon as d ≥ 2, it is not square-integrable, and as a consequence, no so-
lution to the stochastic heat equation in the form (1) will exist for Lévy noises with
non-zero Gaussian component. This is another reason for including assumption (4)
in this paper.

Second, let us address the existence and uniqueness problem for (1). By a so-
lution to this equation we mean a predictable process Y ∈ P̃ such that for all
(t,x) ∈ R+×Rd , the stochastic integral on the right-hand side of (1) is well de-
fined and the equation itself for each (t,x) ∈ [0,T ]×Rd holds a.s. We identify two
solutions as soon as they are modifications of each other. Given a number p ∈ (0,2],
the following conditions guarantee a unique solution to (1) in Bp

loc by [5, Thm. 3.1]:
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A1. Y0 ∈ Bp
loc is independent of Λ .

A2. σ : R→ R is Lipschitz continuous, that is, there exists C ∈ R+ such that

|σ(x)−σ(y)| ≤C|x− y| , x,y ∈ R . (8)

A3. G : (R+×Rd)2→ R is a measurable function with G(t, ·;s, ·)≡ 0 for s > t.
A4. Λ satisfies (3)–(6) and ∫

R
|z|p π(dz)< ∞ . (9)

A5. If we define for (t,x),(s,y) ∈ R+×Rd

G̃(t,x;s,y) := |G(t,x;s,y)|1{p>1,Λ /∈S }+ |G(t,x;s,y)|p , (10)

then we have for all T ∈ R+

sup
(t,x)∈[0,T ]×Rd

∫ T

0

∫
Rd

G̃(t,x;s,y)d(s,y)< ∞ . (11)

A6. For all ε > 0 and T ∈R+ there exist k ∈N and a partition 0 = t0 < .. . < tk = T
such that

sup
(t,x)∈[0,T ]×Rd

sup
i=1,...,k

∫ ti

ti−1

∫
Rd

G̃(t,x;s,y)d(s,y)< ε . (12)

Apart from A1–A6, we will add another assumptions in this paper:

A7. There exists a sequence (UN)N∈N of compact sets increasing to Rd such that for
all T ∈ R+ and compact sets K ⊆ Rd we have, as N→ ∞,

rN
1 (T,K) := sup

(t,x)∈[0,T ]×K

(∫ t

0

∫
(UN )c

|G(t,x;s,y)|1{p>1,Λ /∈S } d(s,y)

+

(∫ t

0

∫
(UN )c

|G(t,x;s,y)|p d(s,y)
)1/p∗

)
→ 0 . (13)

Conditions A6 and A7 are automatically satisfied if |G(t,x;s,y)| ≤ g(t− s,x−y)
for some measurable function g and A5 holds with G replaced by g. For A6 see [5,
Rem. 3.3(3)]; for A7 choose UN := {x ∈ Rd : ∥x∥ ≤ N} such that for p > 1

sup
(t,x)∈[0,T ]×K

∫ t

0

∫
(UN)c

|G(t,x;s,y)|p d(s,y)

≤ sup
(t,x)∈[0,T ]×K

∫ t

0

∫
(UN)c

gp(t− s,x− y)d(s,y)

= sup
x∈K

∫ T

0

∫
x−(UN)c

gp(s,y)d(s,y)≤
∫ T

0

∫
K−(UN )c

gp(s,y)d(s,y)

→ 0 as N→ ∞
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by the fact that K− (UN)c ↓ 0. A similar calculation applies to the case p ∈ (0,1]
and the first term in rN

1 (T,K).

Example 1. We conclude this section with the stochastic heat equation in Rd , whose
mild formulation is given by the SVE (1) with

G(t,x;s,y) = g(t− s,x− y) , g(t,x) =
exp(−∥x∥2/(4t))

(4πt)d/2 1[0,t)(s) (14)

for (t,x),(s,y) ∈ R+×Rd . We assume that Y0 and σ satisfy conditions A1 and A2,
respectively. Furthermore, we suppose that (3)–(6) are valid, and that (9) holds with
some p ∈ (0,1+ 2/d). It is straightforward to show that then A3–A6 are satisfied
with the same p. Let us estimate the rate rN

1 (T,K) for T ∈R+, K := {∥x∥ ≤ R} with
R ∈ N, and UN := {∥x∥ ≤ N}. We first consider the case p ≤ 1 or Λ ∈ S . Since
K− (UN)c = (UN−R)c for N ≥ R, the calculations after A7 yield (Γ (·, ·) denotes the
upper incomplete gamma function and p(d) := 1+(1− p)d/2)

(rN
1 (T,K))p∗ ≤

∫ T

0

∫
(UN−R)c

gp(t,x)d(t,x) =
∫ T

0

∫ ∞

N−R

exp(−pr2/(4t))
(4πt)pd/2 rd−1 dr dt

=C
∫ T

0
t p(d)−1Γ

(
d
2
,

p(N−R)2

4t

)
dt

=C(T )

(
(p(d))−1Γ

(
d
2
,

p(N−R)2

4T

)
−
(

p(N−R)2

4T

)p(d)

×Γ
(

d
2
− p(d),

p(N−R)2

4T

))

≤C(T )exp
(
− p(N−R)2

4T

)
(N−R)d−2 , (15)

which tends to 0 exponentially fast as N→ ∞. If p > 1 and Λ /∈S , it follows from
formula (13) that we need an extra summand for rN

1 (T,K), namely (15) with p = 1.

3 Truncation of Small Jumps

In this section we approximate equation (1) by cutting off the small jumps of Λ . To
this end, we first define for each N ∈ N

GN(t,x;s,y) := G(t,x;s,y)1UN (y) , (t,x),(s,y) ∈ R+×Rd , (16)

where the meaning of the sets UN is explained in A7. Furthermore, we introduce

rN
2 :=

(∫
[−εN ,εN ]

|z|p π(dz)
)1/p∗

, rN
3 :=

∣∣∣∣∫
[−εN ,εN ]

z1{p>1,Λ /∈S }π(dz)
∣∣∣∣ , (17)
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where (εN)N∈N ⊆ (0,1) satisfies εN → 0 as N → ∞. Condition A4 implies that
rN

2 ,r
N
3 → 0 as N→ ∞. Next, defining truncations of the Lévy basis Λ by

Λ N(dt,dx) :=
∫
[−εN ,εN ]c

z µ(dt,dx,dz) , (18)

our approximation scheme for the solution Y to (1) is given as:

Y N(t,x) := Y0(t,x)+
∫ t

0

∫
Rd

GN(t,x;s,y)σ(Y N(s,y))Λ N(ds,dy) (19)

for (t,x)∈R+×Rd . Indeed, Y N can be simulated exactly because for all T ∈R+ the
truncation Λ N only has a finite (random) number RN(T ) of jumps on [0,T ]×UN ,
say at the space–time locations (τN

i ,ξ N
i ) with sizes JN

i . This implies that we have
the following alternative representation of Y N(t,x) for (t,x) ∈ [0,T ]×Rd :

Y N(t,x) = Y0(t,x)+
RN(T )

∑
i=1

G(t,x;τN
i ,ξ N

i )σ(Y N(τN
i ,ξ N

i ))JN
i 1{τN

i <t} . (20)

What remains to do is to simulate Y N(τN
i ,ξ N

i ), i = 1, . . . ,RN(T ), iteratively, from
which the values Y (t,x) for all other (t,x) ∈ [0,T ]×Rd can be computed.

The following algorithm summarizes up the simulation procedure:

Algorithm 1. Consider a finite grid G that is a subset of [0,T ]×Rd . For each step
N proceed as follows:

1. Draw a Poisson random variable RN(T ) with intensity

RN(T ) :=
∫ T

0

∫
UN

∫
R
1{z∈[−εN ,εN ]c} ν(dt,dx,dz) = T Leb(UN)π

(
[−εN ,εN ]c

)
.

2. For i = 1, . . . ,RN(T ):

a. Draw a pair (τN
i ,ξ N

i ) with uniform distribution from [0,T ]×UN .
b. Draw JN

i from [−εN ,εN ]c with distribution π/π
(
[−εN ,εN ]c

)
.

3. For each i = 1, . . . ,RN(T ) and (t,x) ∈ G simulate Y0(τN
i ,ξ N

i ) and Y0(t,x).
4. For each i = 1, . . . ,RN(T ) set

Y N(τN
i ,ξ N

i ) := Y0(τN
i ,ξ N

i )+
i−1

∑
j=1

G(τN
i ,ξ N

i ;τN
j ,ξ N

j )σ(Y N(τN
j ,ξ N

j ))J
N
j .

5. For each (t,x) ∈ G define Y N(t,x) via (20).

The next theorem determines the convergence behaviour of the scheme (19) to
the true solution Y to (1).

Theorem 1. Grant assumptions A1–A7 under which the SVE (1) has a unique so-
lution in Bp

loc. Then Y N as defined in (19) belongs to Bp
loc for all N ∈ N, and for all
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T ∈ R+ and compact sets K ⊆ Rd there exists a constant C(T ) ∈ R+ independent
of N and K such that

sup
(t,x)∈[0,T ]×K

∥Y (t,x)−Y N(t,x)∥Lp ≤C(T )(rN
1 (T,K)+ rN

2 + rN
3 ) . (21)

Furthermore, if ∑∞
n=1(r

N
1 (T,K)+ rN

2 + rN
3 )

p∗ < ∞ is fulfilled, then we also have for
all (t,x) ∈ [0,T ]×K that Y N(t,x)→ Y (t,x) a.s. as N→ ∞.

Proof. It is obvious that |GN | ≤ |G| pointwise and that we have νN ≤ ν for the third
characteristic νN of Λ N . Thus, A1–A6 are still satisfied when G and ν are replaced
by GN and νN (if Λ ∈S , also Λ N ∈S ). So Y N as a solution to (1) with GN and Λ N

instead of G and Λ belongs to Bp
loc as well. Moreover, for all T ∈ R+ there exists

C(T ) ∈ R+ independent of N ∈ N such that

sup
(t,x)∈[0,T ]×Rd

∥Y N(t,x)∥Lp ≤C(T ) , N ∈ N . (22)

We only sketch the proof for this statement. In fact, using [5, Lem. 6.1(1)] it can be
shown that the left-hand side of (22) satisfies an inequality of the same type as in
Lem. 6.4(3) of the same paper. In particular, it is bounded by a constant CN(T ) that
depends on N only through |GN | and νN , and that this constant is only increased if
we replace |GN | and νN by the larger |G| and ν . In this way, we obtain an upper
bound C(T ) that does not depend on N.

Next, we prove the convergence of Y N to Y as stated in (21). We have

Y (t,x)−Y N(t,x) =
∫ t

0

∫
Rd
[G(t,x;s,y)−GN(t,x;s,y)]σ(Y (s,y))Λ(ds,dy)

+
∫ t

0

∫
Rd

GN(t,x;s,y)[σ(Y (s,y))−σ(Y N(s,y))]Λ(ds,dy)

+
∫ t

0

∫
Rd

GN(t,x;s,y)σ(Y N(s,y))(Λ −Λ N)(ds,dy)

=: IN
1 (t,x)+ IN

2 (t,x)+ IN
3 (t,x) , (t,x) ∈ R+×Rd . (23)

If p > 1, we have by (8), Hölder’s inequality and the Burkholder-Davis-Gundy-
inequality

∥IN
2 (t,x)∥Lp ≤

∥∥∥∥∫ t

0

∫
Rd

GN(t,x;s,y)[σ(Y (s,y))−σ(Y N(s,y))]B1(ds,dy)
∥∥∥∥

Lp

+

∥∥∥∥∫ t

0

∫
Rd

GN(t,x;s,y)[σ(Y (s,y))−σ(Y N(s,y))]M(ds,dy)
∥∥∥∥

Lp

≤C

((∫ t

0

∫
Rd
|G(t,x;s,y)| |B1|(ds,dy)

)p−1

×
∫ t

0

∫
Rd
|G(t,x;s,y)|∥Y (s,y)−Y N(s,y)∥p

Lp |B1|(ds,dy)

)1/p
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+C
(∫ t

0

∫
Rd
|G(t,x;s,y)|p∥Y (s,y)−Y N(s,y)∥p

Lp d(s,y)
)1/p

. (24)

If p ∈ (0,1], we have Λ ∈ V0 by (6) and (9), and thus Jensen’s inequality gives

∥IN
2 (t,x)∥Lp = E

[(∫ t

0

∫
Rd

GN(t,x;s,y)[σ(Y (s,y))−σ(Y N(s,y))]z µ(ds,dy,dz)
)p]

≤ E
[∫ t

0

∫
Rd
|GN(t,x;s,y)[σ(Y (s,y))−σ(Y N(s,y))]z|p ν(ds,dy,dz)

]
≤C

∫ t

0

∫
Rd
|G(t,x;s,y)|p∥Y (s,y)−Y N(s,y)∥Lp d(s,y) . (25)

Inserting (24) and (25) back into (23), we have for vN(t,x) := ∥Y (t,x)−Y N(t,x)∥Lp

vN(t,x)≤C(T )

((∫ t

0

∫
Rd
|G(t,x;s,y)|1{p>1,Λ /∈S }(v

N(s,y))p d(s,y)
)1/p

+

(∫ t

0

∫
Rd
|G(t,x;s,y)|p(vN(s,y))p∗ d(s,y)

)1/p∗
)

+∥IN
1 (t,x)+ IN

3 (t,x)∥Lp , (t,x) ∈ [0,T ]×Rd .

By a Gronwall-type estimate, which is possible because of A5 (see the proof of [5,
Thm. 4.7(3)] for an elaboration of an argument of this type), we conclude

sup
(t,x)∈[0,T ]×K

vN(t,x)≤C(T ) sup
(t,x)∈[0,T ]×K

∥IN
1 (t,x)+ IN

3 (t,x)∥Lp .

where C(T ) does not depend on K because of (11). For IN
1 (t,x) we have for p > 1

∥IN
1 (t,x)∥Lp ≤

∥∥∥∥∫ t

0

∫
Rd
[G(t,x;s,y)−GN(t,x;s,y)]σ(Y (s,y))B1(ds,dy)

∥∥∥∥
Lp

+

∥∥∥∥∫ t

0

∫
Rd
[G(t,x;s,y)−GN(t,x;s,y)]σ(Y (s,y))M(ds,dy)

∥∥∥∥
Lp

≤C

(
1+ sup

(t,x)∈[0,T ]×Rd
∥Y (t,x)∥Lp

)(∫ t

0

∫
(UN)c

|G(t,x;s,y)| |B1|(ds,dy)

+

(∫ t

0

∫
(UN)c

|G(t,x;s,y)z|p ν(ds,dy,dz)
)1/p

)
≤C(T )rN

1 (T,K) , (26)

uniformly in (t,x) ∈ [0,T ]×K. In similar fashion one proves the estimate (26) for
p ∈ (0,1], perhaps with a different C(T ). Next, when p > 1, (22) implies
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∥IN
3 (t,x)∥Lp =

∥∥∥∥∫ t

0

∫
Rd

∫
[−εN ,εN ]

GN(t,x;s,y)σ(Y N(s,y))z(µ−ν)(ds,dy,dz)
∥∥∥∥

Lp

+

∥∥∥∥∫ t

0

∫
Rd

∫
[−εN ,εN ]

GN(t,x;s,y)σ(Y N(s,y))z1{Λ /∈S } ν(ds,dy,dz)
∥∥∥∥

Lp

≤C(T )

((∫ t

0

∫
Rd

∫
[−εN ,εN ]

|G(t,x;s,y)z|p π(dz)d(s,y)
)1/p

+

∣∣∣∣∫
[−εN ,εN ]

z1{Λ /∈S }π(dz)
∣∣∣∣∫ t

0

∫
Rd
|G(t,x;s,y)|1{Λ /∈S } d(s,y)

)
≤C(T )(rN

2 + rN
3 ) .

The case p ∈ (0,1] can be treated similarly, cf. the estimation of IN
2 (t,x) above.

It remains to prove that for each (t,x) ∈ [0,T ]×K the convergence of Y N(t,x)
to Y (t,x) is almost sure when rN

1 (T,K), rN
2 and rN

3 are p∗-summable. To this end,
choose an arbitrary sequence (aN)N∈N ⊆ (0,1) converging to 0 such that

∞

∑
N=1

AN < ∞ with AN :=
(rN

1 (T,K)+ rN
2 + rN

3 )
p∗

ap
N

.

Such a sequence always exists, see [13, Thm. 175.4], for example. So by (21) and
Chebyshev’s inequality we derive

P
[
|Y (t,x)−Y N(t,x)| ≥ aN

]
≤
∥Y (t,x)−Y N(t,x)∥p∗

Lp

ap
N

≤C(T )AN .

Our assertion now follows from the Borel-Cantelli lemma. ⊓⊔

Example 2. The rates rN
2 and rN

3 from (17) only depend on the underlying Lévy
measure π . Let p,q ∈ (0,2] with q < p, and assume that

∫
[−1,1] |z|q π(dz) < ∞. If

Λ ∈ V0, assume that q < 1. Then

rN
2 =

(∫
[−εN ,εN ]

|z|p π(dz)
)1/p∗

≤
(∫

[−1,1]
|z|q ν(dz)(εN)p−q

)1/p∗

= O
(
(εN)(p−q)/p∗

)
,

rN
3 =

∣∣∣∣∫
[−εN ,εN ]

z1{p>1,Λ /∈S }π(dz)
∣∣∣∣≤O

(
(εN)1−q1{p>1,Λ /∈S }

)
.

For instance, if εN = 1/Nk, then the sequence (rN
2 )

p∗ = O(N−k(p−q)) is summable
for all k > (p− q)−1. So in order to obtain a.s. convergence of Y N(t,x)→ Y (t,x),
a sufficient condition is to choose the truncation rates εN small enough. Similar
conclusions are valid for the other two rates rN

1 (T,K) and rN
3 .
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4 Truncation via Series Representations

From the viewpoint of simulation, the truncation of the small jumps as presented in
the previous section, has two main drawbacks: first, it may not be so easy to simulate
the jumps of the truncated Lévy measure, i.e. from the distribution π/π([−ε,ε]c),
for a large number of times; second, the jumps have to be simulated all over again
when one goes from step N to step N + 1. These two problems can be overcome
by using series representations for the Lévy basis. The idea, going back to [16, 17]
and already applied to the simulation of Lévy processes [18], is to choose the jumps
to be simulated in a random order. Instead of selecting the big jumps first and the
smaller jumps later as in Sect. 3, we only choose the big jumps first more likely.
The details are as follows: we fix a finite time horizon T ∈ R+ and, recalling A7, a
partition (Qi)i∈N of Rd into pairwise disjoint compact sets such that UN =

∪N
i=1 Qi.

We now assume that the jump measure µ of Λ on the strip [0,T ]×Rd ×R can be
represented in the form

µ(dt,dx,dz) =
∞

∑
i=1

µi(dt,dx,dz) ,

µi(dt,dx,dz) =
∞

∑
j=1

δ(τ i
j ,ξ

i
j ,H(Γ i

j ,V
i
j ))
(dt,dx,dz) a.s. , (27)

where H : (0,∞)×R→ R is a measurable function, satisfying H(·,v) =−H(·,−v)
for all v ∈ R when Λ ∈S , and the random variables involved have the following
properties for each i ∈ N:

• (τ i
j : j ∈ N) and (ξ i

j : j ∈ N) are i.i.d. sequences with uniform distribution on
[0,T ] and Qi, respectively.

• (Γ i
j : j ∈ N) is a random walk whose increments are exponentially distributed

with mean 1/T .
• (V i

j : j ∈ N) is an i.i.d. sequence with distribution F on R, which we should be
able to simulate from. We assume that F is symmetric when Λ ∈S .

• The sequences τ i, ξ i, Γ i and V i are independent from each other.
• (τ i,ξ i,Γ i,V i) is independent from (τk,ξ k,Γ k,V k : k ̸= i).

Because of (6), µ can always be written in the form (27) whenever the underlying
stochastic basis is rich enough. We give three examples of such series representa-
tions.

Example 3. The proofs that the following choices are valid can be found in [18,
Sect. 3], where also more examples are discussed.

1. LePage’s method: we set F := (δ−1 + δ1)/2 and H(r,±1) := ±ρ←(r,±1),
where ρ←(r,±1) = inf{x ∈ (0,∞) : π(±[x,∞))< r} for r ∈ (0,∞).

2. Bondesson’s method: we assume that π(A) =
∫ ∞

0 F(A/g(t))dt for A ∈B(Rd)
with some non-increasing g : R+→ R+. Then we define H(r,v) := g(r)v.

3. Thinning method: we choose F in such a way that Q is absolutely continuous
with respect to F with density q, and define H(r,v) := v1{q(v)≥r}.
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Our approximation scheme is basically the same as in Sect. 3: we define GN by
(16) and Y N by (19), with the difference that Λ N on [0,T ]×Rd is now defined as

Λ N(dt,dx) :=
∫
R

z µN(dt,dx,dz) ,

µN(dt,dx,dz) :=
∞

∑
i=1

∑
j : Γ i

j≤N

δ(τ i
j ,ξ

i
j ,H(Γ i

j ,V
i
j ))
(dt,dx,dz) . (28)

We can therefore rewrite Y N(t,x) for (t,x) ∈ [0,T ]×Rd as

Y N(t,x) = Y0(t,x)+
N

∑
i=1

∑
j : Γ i

j≤N

G(t,x;τ i
j,ξ i

j)σ(Y N(τ i
j,ξ i

j))H(Γ i
j ,V

i
j)1{τ i

j<t} . (29)

This yields the following simulation algorithm:

Algorithm 2. Let G be a finite grid in [0,T ]×Rd and N ∈ N.

1. For each i = 1, . . . ,N set j := 1 and repeat the following:

a. Draw E i
j from an exponential distribution with mean 1/T .

b. Define Γ i
j := Γ i

j−1 +E i
j (Γ i

0 := 0).
c. If Γ i

j > N, set Ji := j−1 and leave the loop; otherwise set j := j+1.

2. For each i = 1, . . . ,N and j = 1, . . . ,Ji simulate independently

a. a pair (τ i
j,ξ i

j) with uniform distribution on [0,T ]×Qi;
b. a random variable V i

j with distribution F ;
c. the random variable Y0(τ i

j,ξ i
j).

3. Sort the sequence (τ i
j : i = 1, . . . ,N, j = 1, . . . ,Ji) in increasing order, yielding

sequences (τi,ξi,Γi,Vi : i = 1, . . . ,∑N
j=1 J j). Now define

Y N(τi,ξi) := Y0(τi,ξi)+
i−1

∑
j=1

G(τi,ξi;τ j,ξ j)σ(Y N(τ j,ξ j))H(Γj,Vj) .

4. For each (t,x) ∈ G simulate Y0(t,x) and define Y (t,x) by (29).

We can now prove a convergence theorem for Y N to Y , similar to Thm. 1. Define

rN
2 :=

(∫ ∞

N

∫
R
|H(r,v)|p F(dv)dr

)1/p∗

,

rN
3 :=

∣∣∣∣∫ ∞

N

∫
R

H(r,v)1{p>1,Λ /∈S }F(dv)dr
∣∣∣∣ . (30)

Theorem 2. Grant assumptions A1–A7 under which the SVE (1) has a unique solu-
tion in Bp

loc. Further suppose that the jump measure µ of Λ has a representation in
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form of (27). Then Y N as defined in (29) belongs to Bp
loc for all N ∈ N, and for all

T ∈ R+ and compact sets K ⊆ Rd there exists a constant C(T ) ∈ R+ independent
of N and K such that

sup
(t,x)∈[0,T ]×K

∥Y (t,x)−Y N(t,x)∥Lp ≤C(T )(rN
1 (T,K)+ rN

2 + rN
3 ) . (31)

If ∑∞
n=1(r

N
1 (T,K)+ rN

2 + rN
3 )

p∗ < ∞, then we also have for all (t,x) ∈ [0,T ]×K that
Y N(t,x)→ Y (t,x) a.s. as N→ ∞.

Proof. We start with some preliminaries. It follows from (27) and [18, Prop. 2.1]
that on [0,T ]×Rd×R we have ν = ν̄ ◦h−1 where ν̄(dt,dx,dr,dv) = dt dxdr F(dv)
and h(t,x,r,v) = (t,x,H(r,v)). Therefore, conditions (6) and (9) imply that∫ ∞

0

∫
R
|H(r,v)|p F(dv)dr =

∫
R
|z|p π(dz)< ∞ ,

and
∫ ∞

0

∫
R
|H(r,v)|1{p>1,Λ /∈S }F(dv)dr =

∫
R
|z|1{p>1,Λ /∈S }π(dz)< ∞ .

Consequently, rN
2 and rN

3 are well defined and converge to 0 when N→∞. Similarly,
the compensator νN of the measure µ−µN is given by νN(dt,dx,dz) = dt dxπN(dz),
where πN = (Leb⊗F)◦H−1

N and HN(r,v) = H(r,v)1(N,∞)(r).
For the actual proof of Thm. 2 one can basically follow the proof of Thm. 1.

Only the estimation of IN
3 (t,x) as defined in (23) is different, which we shall carry

out now. In the case of p > 1, we again use the Burkholder-Davis-Gundy inequality
and obtain for (t,x) ∈ [0,T ]×Rd

∥IN
3 (t,x)∥Lp =

∥∥∥∥∫ t

0

∫
Rd

∫
R

GN(t,x;s,y)σ(Y N(s,y))z(µN−νN)(ds,dy,dz)
∥∥∥∥

Lp

+

∥∥∥∥∫ t

0

∫
Rd

∫
R

GN(t,x;s,y)σ(Y N(s,y))z1{Λ /∈S } νN(ds,dy,dz)
∥∥∥∥

Lp

≤C(T )

((∫ t

0

∫
Rd

∫ ∞

N

∫
R
|G(t,x;s,y)H(r,v)|p F(dv)dr d(s,y)

)1/p

+
∫ t

0

∫
Rd
|G(t,x;s,y)|

∣∣∣∣∫ ∞

N

∫
R

H(r,v)1{Λ /∈S }F(dv)dr
∣∣∣∣ d(s,y)

)
≤C(T )(rN

2 + rN
3 ) .

The case p ∈ (0,1] is treated analogously. One only needs to replace µN−νN by µN
and estimate via Jensen’s inequality. ⊓⊔
Example 4 (Continuation of Ex. 3). We calculate the rates rN

2 and rN
3 from (30) for

the series representations given in Ex. 3. We assume that p,q ∈ (0,2] with q < p are
chosen such that

∫
[−1,1] |z|q π(dz) < ∞, and q < 1 if Λ ∈ V0. For all three examples

we use the fact that π = (Leb⊗F)◦H−1 and that r >N implies |H(r,v)| ≤ |H(N,v)|
for all v ∈ R.
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1. LePage’s method: We have

(rN
2 )

p∗ =
∫ ∞

N

|H(r,1)|p + |H(r,−1)|p

2
dr ≤ 1

2

∫
[H(N,−1),H(N,1)]

|z|p π(dz)

≤ 1
2

∫
[H(1,−1),H(1,1)]

|z|q π(dz)(|H(N,−1)|∨ |H(N,1)|)p−q ,

and therefore

rN
2 = O

(
(ρ←(N,1)∨ρ←(N,−1))(p−q)/p∗

)
,

rN
3 = O

(
(ρ←(N,1)∨ρ←(N,−1))1−q1{p>1,Λ /∈S }

)
.

2. Bondesson’s method: Since H(r,v) = g(r)v and g is non-increasing, we obtain

(rN
2 )

p∗ =
∫ ∞

N

∫
R
|g(r)v|p F(dv)dr ≤ (g(N))p−q

∫ ∞

0
gq(r)dr

∫
R
|v|p F(dv) ,

and consequently

rN
2 = O

(
g(N)(p−q)/p∗

)
, rN

3 = O
(
g(N)1−q1{p>1,Λ /∈S }

)
.

3. Thinning method: Here we have

rN
2 =

(∫
R

∫ q(v)∨N

N
|v|p dr F(dv)

)1/p∗

=

(∫
R
|v|p (q(v)−N)∨0

q(v)
π(dv)

)1/p∗

≤
(∫

R
|z|p1{q(v)≥N}π(dz)

)1/p∗

,

rN
3 ≤

∫
R
|z|1{q(v)≥N}1{p>1,Λ /∈S }π(dz) .

In most situations, there exist (εN)N∈N ⊆ R+ with εN → 0 as N→ ∞ such that
{q(v)≥ N} ⊆ [−εN ,εN ]. In this case, one can apply the estimates in Ex. 2.

5 Simulation Study

In this section we visualize the sample path behaviour of the stochastic heat equation
from Ex. 2 via a simulation study, using MATLAB programs from [4]. We take Λ
to be a Lévy basis without drift, whose Lévy measure π is that of a gamma process,
i.e.

π(dz) = γz−1 exp(−λ z)1{z>0} dz

with two parameters γ,λ > 0. In the figures below their values are always γ = 10
and λ = 0.1. Furthermore, we set Y0 ≡ 0 and σ ≡ 1. Especially the latter choice
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Fig. 1 Successive approximations of Y as given in (32) via Bondesson’s method in dimension 1
for (t,x) ∈ [0,1]× [0,1] with N ∈ {50,100,250,500} jumps in the region [0,1]× [−1,2]

simplifies the subsequent discussion a lot, but none of the issues we address below
relies on this assumption. Thus, the process we would like to simulate is

Y (t,x) =
∫ t

0

∫
Rd

g(t− s,x− y)Λ(ds,dy) , (t,x) ∈ R+×Rd , (32)

with g being the heat kernel given in (14). In order to understand the path properties
of Y , it is important to notice that g is smooth on the whole R+×Rd except at the
origin where it explodes. More precisely, for every t ∈ (0,∞) the function x 7→ g(t,x)
is the Gaussian density with mean 0 and variance 2t, which is smooth and assumes
its maximum at 0. Also, for every x ̸= 0, the function t 7→ g(t,x) is smooth (also at
t = 0), with maximum at t = ∥x∥2/(2d). However, if x = 0, then g(t,0) = (4πt)−d/2

has a singularity at t = 0.
These analytical properties have direct consequences on the sample paths of Y .

When Λ is of compound Poisson type, that is, has only finitely many atoms on
compact sets, it can be readily seen from (32) that the evolution of Y after a jump J at
(τ,ξ ) follows the shape of the heat kernel until a next jump arrives. In particular, for
x= ξ , Y (t,x) jumps to infinity at τ , and decays in t like J(4π(t−τ))−d/2 afterwards.
But for every x ̸= ξ , the evolution t 7→Y (t,x) is smooth at t = τ . In fact, it first starts
to increase until t = τ + ∥x− ξ∥2/(2d) and then decays again. As a consequence,
in space dimension 1, the space–time plot of Y shows a basically smoothly evolving
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Fig. 2 Several t-sections of the realization of Y shown in Fig. 1 with N = 500

path, only interrupted with slim poles at the jump locations of Λ ; see the case N = 50
in Fig. 1. However, when Λ has infinite activity, that is, has infinitely many jumps
on any non-empty open set, then it is known from [16, Thm. 4] that on any such set
Y is unbounded, at least with positive probability. Therefore, the space–time plots
of the approximations of Y with finitely many jumps must be treated with caution:
in the limiting situation, no smooth area exists any more, but there will be a dense
subset of singularities on the plane, which is in line with Fig. 1.

Another interesting observation, however, is the following: if we consider a
countable number of x- or t-sections of Y (for x ∈ Rd , the x-section of Y is given by
the function t 7→ Y (t,x); for t ∈ R+, the t-section of Y is the function x 7→ Y (t,x)),
then it is shown in [19, Sect. 2] that these are continuous with probability one. In-
tuitively, this is possible because a.s. the sections never hit a jump (although they
are arbitrarily close). For instance, Figs. 2 and 3 show t-sections of a realization of
(32) in one, respectively two space dimensions. So as long as we only take count-
ably many “measurements”, we do not observe the space–time singularities of Y
but only its relatively regular sections. In theory, this also includes the x-sections of
the process Y . But if we plot them for one space dimension as in Fig. 4, one would
conjecture from the simulation that they exhibit jumps in time. However, this is not
true: the jump-like appearance of the x-sections are due to the fact that g(·,x) resem-
bles a discontinuous function at t = 0 for small x. Of course, it follows right from
the definition (14) that all x-sections of g are smooth everywhere.
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Fig. 3 Several t-sections in the region [−1,1]2 of a realization of Y in dimension 2 by Bondesson’s
method with N = 500 jumps within [0,1]× [−2,2]2
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Fig. 4 The x-section of the realization of Y as in Fig. 1 with N = 500 at x = 0.6 and the heat kernel
g(·,x) at x = 0.002



Simulation of Stochastic Volterra Equations Driven by Space–Time Lévy Noise 19

6 Conclusion and Outlook

In Sects. 3 and 4 we have presented two simulation algorithms for the SVE (1):
Algorithms 1 and 2. In Thms. 1 and 2 we have determined the rate of convergence of
the approximations Y N to Y in the Lp-sense. If these rates are small enough, we have
also proved a.s. convergence. Although the theoretical analysis of both schemes lead
to quite similar results regarding their convergence behaviour, there are important
differences which will decide on whether the one or the other method is preferable in
concrete situations. For the first method of truncating the small jumps to work, one
must be able to efficiently simulate from the truncated Lévy measure π/π([−ε,ε]c)
for small ε . For the second method, which relies on series representations, the main
challenge is to choose H and F in a way such that H is explicitly known and F can
be easily simulated from. For instance, if one uses LePage’s method (see Ex. 3), then
F = (δ−1 + δ1)/2 is easily simulated, but for H, which is given by the generalized
inverse tails of the underlying Lévy measure, maybe no tractable expression exists.

Finally, let us comment on further generalizations of the our results. Throughout
this paper, we have assumed that the driving noise Λ is a homogeneous Lévy ba-
sis, i.e. satisfies (5). In fact, we have introduced this condition only for the sake of
simplicity: with a straightforward adjustment, all results obtained in this paper also
hold for time- and space-varying (but deterministic) characteristics. Another issue
is the finite time perspective which we have taken up for our analysis. An interest-
ing question would be under which conditions (1) has a stationary solution, and in
this case, whether one can simulate from it. Sufficient conditions for the existence
and uniqueness of stationary solutions to (1) are determined in [5, Thm. 4.8]. Under
these conditions, the methods used to derive Thms. 1 and 2 can indeed be extended
to the case of infinite time horizon. We leave the details to the reader at this point.

At last, also the hypothesis that Λ is of pure-jump type can be weakened. If Λ
has an additional drift (including the case where Λ has locally infinite variation and
is not symmetric) but still no Gaussian part, the approximations Y N in (19) or (29)
will contain a further term that is a Volterra integral with respect to the Lebesgue
measure. So each time in between two simulated jumps, a deterministic Volterra
equation has to be solved numerically, which boils down to a deterministic PDE
in the case where G comes from an SPDE. For this subject, there exists a huge
literature, which is, of course, also very different to the stochastic case as consid-
ered above. If Λ also contains a Gaussian part, then one has to apply techniques
from the papers cited in Sect. 1 and ours simultaneously. We content ourselves with
referring to [22], who numerically analyzes a Volterra equation driven by a drift
plus a Brownian motion. Finally, let us remark that if p = 2 (in particular, G must
be square-integrable), it is possible for some Lévy bases to improve the results of
Sect. 3 if we do not neglect the small jumps completely but approximate them via a
Gaussian noise with the same variance, cf. [1] in the case of Lévy processes.
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9. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space–time white noise II. Potential Anal. 11(1), 1–37 (1999)

10. Hausenblas, E.: Finite element approximation of stochastic partial differential equations
driven by Poisson random measures of jump type. SIAM J. Numer. Anal. 46(1), 437–471
(2008)

11. Hausenblas, E., Marchis, I.: A numerical approximation of parabolic stochastic differential
equations driven by a Poisson random measure. BIT Numer. Math. 46(4), 773–811 (2006)

12. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin
(2003)

13. Knopp, K.: Theory and Application of Infinite Series. Dover, New York (1990)
14. Protter, P.: Volterra equations driven by semimartingales. Ann. Probab. 13(2), 519–530 (1985)
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