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Randomizing the parameter(s) of a given parametric family of univariate random
variables is a popular technique to enrich the distribution in concern with addi-
tional stochastic properties and to create new probability laws. On a multivariate
level, another motivation is to introduce dependence to originally independent ob-
jects by means of a joint mixture variable affecting multiple random variables in a
similar way. A well-known example are extendible Archimedean copulas that can
be interpreted as the survival copulas arising from a two step experiment: Firstly,
a positive random variable M is simulated. Secondly, a sequence of exponential
random variables with rate parameter M is drawn independently. Other examples
are credit-risk models where a joint (random) default probability p ∈ (0, 1) is used
as mixture variable in a sequence of Bernoulli(p) experiments, or loss models for
insurance claims based on Poisson-distributed count variables with joint (random)
intensities.

Factor models created in this way are popular due to, among others, the fol-
lowing facts: They enjoy a great level of interpretability, they are straightforward
to simulate in large dimensions, the dimension of the considered problem is flex-
ible, convenient limit results for large-dimensional random vectors (X1, . . . , Xd)
for (d↗∞) are often computable, parametric families of mixture variables imply
parametric families of copulas, and extensions beyond conditional iid (i.e. homoge-
neous one-factor models) are typically easy to find by, e.g., using multiple factors
or inhomogeneous marginal laws. Moreover, hierarchical constructions are imme-
diate in many cases, see [10].

Most factor models currently considered – in theory as well as in practice – are
based on the aforementioned idea of using random parameters. This ansatz, how-
ever, can be extended to more involved random objects, e.g. stochastic processes.
Providing more mathematical structure, a famous result by Bruno de Finetti (see
[2]) shows that an infinite sequence of random variables {Xk}k∈N on (Ω,F ,P) is
exchangeable if and only if it is conditionally iid, i.e. there exists a sub-σ-algebra
G ⊂ F s.t. for all d ≥ 2:

P(X1 ≤ x1, . . . , Xd ≤ xd | G) =

d∏
k=1

P(X1 ≤ xk | G), x1, . . . , xd ∈ R.

This is equivalent to the existence of a random distribution function t 7→ Ft such
that conditioned on G := σ({Ft}t∈R), the components {Xk}k∈N are iid and can be
represented as

Xk := inf{t ∈ R : Ft ≥ Uk}, {Uk}k∈N
iid∼ U [0, 1],

where the sequence {Uk}k∈N is independent of {Ft}t∈R.
In the case of randomized parameters, the stochastic process {Ft}t∈R is an

ordinary distribution function with random parameters. Opposed to this quite
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simplistic approach, we will need “true” stochastic processes in the following. Mo-
tivated especially by applications in portfolio credit-risk modeling and insurance,
our research group has considered the questions:

• Given an interesting class of multivariate probability distributions, can we
identify the conditionally iid subfamily, i.e. the subfamily representable by
a one-factor construction?
• How can we create new probability laws starting from one-factor models?

These questions are flanked by the search for stochastic representations, efficient
sampling strategies, extensions to multi-factor models, and real-world applications.
It is quite difficult to give a general description on how the above questions can be
solved, since the answer heavily depends on the family one has in mind. Generally
speaking, one first has to identify the exchangeable subfamily of the distribution in
concern in dimension d (since this is a necessary condition for extendibility), then
one has to let the dimension go to infinity, and finally one has to guess a stochastic
model for {Xk}k∈N that ultimately reveals the nature of G := σ({Ft}t∈R).

Since the applications we have in mind involve the modeling of default times
or the arrival times of insurance claims, it is not surprising that we consider fatal
shock models on the one hand, and various multivariate extensions of the expo-
nential law on the other hand. Fatal shock models have been thoroughly studied
and applied in different fields, e.g., finance, hydrology, insurance, and reliability
theory. In their classical stochastic representation, distinct shocks EI hit combi-
nations of components of a d-dimensional vector, i.e. the vector (X1, . . . , Xd) is
defined as

Xk := min
∅6=I⊂{1,...,d}

{EI : k ∈ I}, k = 1, . . . , d.(1)

The seminal example for both – multivariate exponential laws and fatal shock
constructions as in (1) – is the Marshall–Olkin law (see [12]), in which the shocks
EI are independent and exponentially distributed. While this is convenient to
interpret and use in low dimensions, the number of involved shocks increases ex-
ponentially in d, preventing such models from being applicable even in moderate
dimensions. This problem is overcome as soon as a one-factor subfamily is identi-
fied. For the Marshall–Olkin law, one can show that the exchangeable subfamily
is parameterized by d-monotone vectors, which for (d ↗ ∞) provides a link to
completely monotone sequences. These are linked to Bernstein functions by a re-
sult in [4], which are finally in a one-to-one relation with Lévy subordinators (see
[9]). The model for {Xk}k∈N, called Lévy-frailty construction in [8], can then be
formulated as

Xk := inf{t ≥ 0 : Λt ≥ εk}, k ∈ N,(2)

with a sequence of iid unit exponentials {εk}k∈N and {Λt}t≥0 a Lévy subordinator.
On a theoretical basis, this provides a marvelous link between classes of multivari-
ate probability laws and the corresponding families of stochastic processes.

Generalizations to arbitrary exchangeable fatal shock models, extending the
Marshall–Olkin model beyond the embedded exponential law, are considered in
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[5]. Among others, all copulas of the functional form

C(u1, . . . , ud) =

d∏
k=1

gk(u(k)), d ≥ 2,(3)

are characterized analytically and by means of a fatal shock model. Here, u(1) ≤
. . . ≤ u(d) denotes the ordered arguments of C. Moreover, a link to additive
processes, serving as stochastic factor, is revealed, and the specific cases of Sato
processes (see [6]) and the Dirichlet process (see [7]) are discussed in quite some
detail.

Turning to alternative multivariate definitions of the exponential law (apart
from the Marshall–Olkin distribution), MSMVE distributions and distributions
with exponential minima are natural candidates, see [3]. For both classes, the
extendible subfamilies are characterized in [11] and a stochastic model based on
strong (respectively weak) IDT subordinators is given. Specific families of MSMVE
distributions (respectively their associated extreme-value copula) are constructed
in [1]. This provides new (low-parametric) families of extreme-value copulas that
might be interesting for applications, among others, due to their convenient sto-
chastic representation.
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