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ABSTRACT

This paper describes a system for the semantic-based translation
of spoken or written limited-domain utterances. The semantic
structure as output of a semantic decoder serves as the interlin-
gua-level. A word chain generator combined with a linguistic
post-processor produces the according word chain in the target
language. Both the semantic decoder and the word chain genera-
tor work with pure stochastic and trainable knowledge bases. The
grammatical features of certain words can be easily extracted by
the help of both the word chain and the semantic structure.
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1. SYSTEM OVERVIEW

The depicted translation system, suitable for limited-domain ut-
terances (comparable to [3] and [14]) without any subordinate
clause, consists of three main components:

Figure 1: Overview of the automatic speech translation
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• The semantic decoder converts either an observa-
tion sequence O (spoken utterance) or a word
chain W (written text) of the source language into
a corresponding semantic representation − in our
approach the semantic structure SE.

Under the assumption that a semantic structure is not language
specific, we can use this semantic representation level as interlin-
gua-level for the translation task − similar to the principle of the
concept-based translation [4].

• The word chain generator converts a semantic
structure SE into a corresponding word chain Wg
of the target language. Since the semantic struc-
ture SE does not contain any grammatical infor-
mation, the syntax of the word chain Wg may not
be correct.

• The linguistic post-processing module converts
the possibly grammatically wrong word chain
Wg into a correct (’optimized’) word chain Wopt .

These three components are described in detail in the following
chapters. Furthermore, a speech synthesis module (text-to-
speech, TTS) produces spoken output in the target language.

2. THE SEMANTIC STRUCTURE

In our approach, the semantic structure S (representing the se-
mantic content) is a tree consisting of a finite number N of se-
mantic units (simply called "semuns") sn:

(1)

Each semun corresponds to exactly one significant word and not
more than one insignificant word out of W. It expresses a small
semantic partition of the utterance (i.e. the semantic contribution
of the significant word), similar to "conceptual labels" [7] [8].

Each semun  with  is an (X+2)-tupel of a
type , a value  and X particular successor-semuns1

:

, (2)

1) Currently, we use semuns with 1 ≤ X ≤ 5 successors.
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The semun s1 is defined as the root of the semantic structure S.
Every semun  is marked exactly once as a successor-se-
mun. The special semun ’blnk’ has the type , no
value and no successor.

In the sense of predicate logic, a semun with X successors can be
compared to an X-place relational constant [9]. In this context, a 0-
place relational constant can be realized by a semun  with X=1
successor  and the successor type . A
detailed description of the semantic structure can be found in [5].

As an example, fig. 2 shows the semantic structure S of the German
word chain ’bitte schiebe die große rote kugel fünf millimeter nach
rechts’ (’please move the large red sphere five millimetres to the
right’):

3. SEMANTIC DECODING

The semantic decoder converts a spoken utterance (given as obser-
vation sequence O) into its semantic representation (in our approach
denoted as semantic structure S). From the set of all possible S, that
one SE has to be found which is most probable given the observation
sequence O, i.e. which maximizes the a-posteriori-probability

. The resulting term can be transformed using the Bayes for-
mula.

(3)

Since  is not relevant for maximizing, it can be neglected:

(4)

Due to the high variety of S and O, it is not possible to estimate
 directly. Therefore, additional representation levels are

necessary. Clearly defined are the word chain W and the phoneme
chain Ph, which can be used to calculate SE:

(5)

Eq. (5) can be implemented as ’top-down’-approach for finding that
semantic structure SE, which is the most likely combination of a se-
mantic structure S, a word chain W, a phoneme chain Ph and the
given observation sequence O. In the above equations, we assume
statistical independence of all probabilities, which are stored in four
stochastic knowledge bases (called "models"):

Figure 2: Semantic structure S in a graphic form

s2 … sN, ,
t blnk[ ] blnk=

sn
q1 sn[ ] t q1 sn[ ][ ] blnk=

t = cmd
v = move

dest
toRight

s1=S:

quant
5mm

form
sphere

num
1

colour
red

size
large

q1

q2

q3

P S O( )

SE P S O( )
S

argmax
P O S( ) P S( )⋅

P O( )
--------------------------------

S
argmax= =

P O( )

SE P O S( ) P S( )⋅[ ]
S

argmax=

P O S( )

SE P O Ph( ) P Ph W( ) P W S( ) P S( )⋅ ⋅ ⋅[ ]
Ph

max
W

max
S

argmax=

• The semantic model delivers the a-priori probability
 for the occurrence of a certain semantic struc-

ture S.

• The syntactic model delivers the conditional proba-
bility  for the occurrence of a word chain W
given a certain semantic structure S.

• The phonetic model delivers the conditional proba-
bility  for the occurrence of a phoneme
chain Ph given a certain word chain W.

• The acoustic model delivers the conditional proba-
bility  for the occurrence of an observa-
tion sequence O given a certain phoneme chain Ph.

Phonetic and acoustic models are not necessary to decode written
text, since in case of written input (i.e. word chain W) eq. (5) can be
simplified to .

These probabilities have to be estimated by counting the occurring
frequencies over a large set of training data, which are authentic
limited-domain utterances, each represented by semantic structure,
word chain, phoneme chain and observation sequence [6]. A de-
tailed description of the semantic decoder, which is implemented as
an incremental ’top-down’-parser combining a modified Earley-
parsing [2] and a Viterbi-beam-search [15] algorithm, and the con-
sistent integration of all stochastic knowledge can be found in [13].

4. WORD CHAIN GENERATOR

The word chain generator converts a semantic structure into the cor-
responding word chain of the target language. For this purpose, we
make use of the generative power of our syntactic models by creat-
ing just the most likely word chain given a certain semantic struc-
ture. The stochastic process of originating word chains with the
grammar described in [12] can be seen as a complex transition net-
work similar to a hierarchic Hidden-Markov-Model [10]. Each se-
mun corresponds to a "syntactic module" (SM), which is according
to the given semantic structure SE hierarchically connected with
other SMs to a whole syntactic network. The transitions within this
network affect the word alignment, the emissions affect the respec-
tive word choice.  is calculated as the product over all tran-
sition and emission probabilities along a certain path through the
entire syntactic network:

(6)

Unlike the word chain generator in the ’top-down’ speech under-
standing (e.g. described in [1] or [11]), which has to produce many
word chain hypotheses, this one delivers only the most probable
word chain Wg given the semantic structure SE. The concerning syn-
tactic model considers that word chain Wg , which maximizes eq. (6):

(7)

Fig. 3 depicts one selected path through such a syntactic network,
consisting of four SMs:
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Since the semantic structure does not contain any grammatical in-
formation, case, number, and gender of words in Wg may be wrong.
Nevertheless, Wg is usually comprehensible by humans. According
to eq. (7), a word chain

Wg : ’erzeuge zwei rot kugel’

(’create two red sphere’) might be generated. In this case, the emis-
sion probabilities for the singular words ’rot’ and ’kugel’ is accord-
ing to the syntactic model higher than those for the correct plural
words ’rote’ and ’kugeln’.

Because choice (i.e. the uninflected word) and alignment of the gen-
erated words in Wg are fixed by the transitions and the emissions of
the syntactic model and cannot be re-changed in a later stage, it is
advisable to use manually created instead of trained syntactic
knowledge bases for the target language.

5. LINGUISTIC POST-PROCESSING

The post-processing module converts the grammatically wrong
word chain Wg into a correct word chain Wopt by changing the in-
flection of some words using the following knowledge bases:

• The grammar rules specify the grammatical features
(case, number, gender) of a certain word by the help
of both the word chain Wg and the sem. structure SE.

• The inflectional model delivers the correct inflec-
tion of a word given its grammatical features.

The semantic structure SE is recursively examined semun by semun.
If the affiliated word of the current semun is a noun, an adjective, or
an article, the correct inflection has to be found according to the re-
spective grammatical features. The gender is extracted depending
on the emitted noun, but case and number are extracted depending
only on the semantic structure SE (which is a different and new ap-
proach compared to classic linguistics). As an example, we look at
following word chain Wg and semantic structure SE:

Figure 3: Origination of a word chain along a certain path by
transitions and emissions within the syntactic network [12]
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• The semun ’ ’ corresponds to the word
’erzeuge’. As a verb, it remains unchanged.

• The semun ’ ’ corresponds to the word
’kugel’. As a noun, the grammatical features are de-
termined as follows:

Since the predecessor-semun is ’ ’, the
case is accusative. Since the first successor-semun
is ’ ’, the number is plural. Since the
emitted noun is ’kugel’, the gender is feminine.

The inflectional model delivers for the word ’kugel’
with the grammatical features "accusative, plural,
feminine" the correct word ’kugeln’.

• The semun ’ ’ corresponds to the word
’zwei’. As a number, it remains unchanged.

• The semun ’ ’ corresponds to the word
’rot’. As an adjective, the grammatical features are
determined as follows:

Since the predecessor-semun is ’ ’, case,
number, and gender are identical to the correspond-
ing word of the predecessor-semun.

The inflectional model delivers for the word ’rot’
with the grammatical features "accusative, plural,
feminine" the correct word ’rote’.

After gone through the whole semantic structure, the optimized
word chain Wopt with the correct inflections can be composed as

Wopt : ’erzeuge zwei rote kugeln’

(’create two red spheres’). Note, that neither the choice nor the
alignment of the words is changed during the post-processing.

6. PERFORMANCE RATES

6.1.  Semantic Decoding

For spoken input, the grammar was trained with 1843 utterances
within the ’graphic editor’ domain. For testing the decoder, we used
100 utterances, which are a subset of the training set, to avoid out-
of-vocabulary errors. The utterances have been collected by a
’Wizard-of-Oz’ experiment with 33 speakers [6]. Each utterance is
represented by the speech signal (16 kHz, 16 bit) and the associated
semantic structure, which was used both for training and as refer-
ence for testing the decoder’s semantic accuracy. In the tests, the se-
mantic errors are determined as the percentage of wrongly assigned
semantic structures. Fig. 5 shows the semantic decoding errors and
the computation effort related to the beam width. It can be seen that
pruning is necessary to prevent an uncontrollable increase of the

Figure 4: Word chain Wg and semantic structure SE
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computations. A compromise between performance and computa-
tion effort results in a semantic error rate of approximately 30%.

For written input, the wrong conversion of a word chain into a se-
mantic structure amounts to only 0.2%, if the test set is a subset of
the training material. If the test set is not included in the training, the
rate increases to 22.8%, because of many out-of-vocabulary errors
due to unknown words [12].

6.2.  Language Production

The language production was tested with 307 real existing semantic
structures within the ’graphic editor’ domain producing four differ-
ent target languages German, English, French, and Slovenian. We
asked human subjects to judge the semantics (whether it is compre-
hensible or incomprehensible) and the syntax (whether it is correct,
unusual, or wrong) for every optimized word chain Wopt .

The above results with an average comprehensible semantics of
93.2% and an average not-wrong syntax of 91.0% confirm that the
introduced translation approach based on the semantic structure can
be an alternative to other much more complex rule-based and word-
based approaches, if short sentences within a limited domain should
be translated.
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Figure 5: Semantic error rate for spoken input [13]

target language semantics syntax

comprehensible correct unusual

German 95.9 % 84.4 % 5.2 %

English 94.8 % 81.1 % 10.4 %

French 93.8 % 82.4 % 9.8 %

Slovenian 88.3 % 82.1 % 8.5 %

Table 1: Language production performance

se
m

an
tic

 e
rro

rs
 (%

)

beam width (pruning offset)

30

40

900 1700

co
m

pu
ta

tio
n 

ef
fo

rt 
as

 n
um

-

1300

50

0

100

200

300

2100

be
r o

f c
he

ck
-in

s 
(th

ou
sa

nd
s)

8. REFERENCES

1. J. G. Bauer, H. Stahl, J. Müller: A One-pass Search Algo-
rithm for Understanding Natural Spoken Time Utterances
by Stochastic Models, Proc. Eurospeech 1995 (Madrid,
Spain), pp. 567-570

2. J. Earley: An Efficient Context-Free Parsing Algorithm,
Comm. of the ACM, vol. 13 (1970), no. 2, pp. 94-102

3. V. M. Jiménez, A. Castellanos, E. Vidal: Some Results with
a Trainable Speech Translation and Understanding System,
Proc. ICASSP 1995 (Detroit, USA), pp. 113-116

4. L. Mayfield, M. Gavalda, W. Ward, A. Waibel: Concept-
based Speech Translation, Proc. ICASSP 1995 (Detroit,
USA), pp. 97-100

5. J. Müller, H. Stahl: Die semantische Gliederung als adä-
quate semantische Repräsentationsebene für einen sprach-
verstehenden ’Grafikeditor’, in L. Hitzenberger (ed.): "An-
gewandte Computerlinguistik", Georg Olms Publishing,
Hildesheim, 1995, pp. 211-225 (in German)

6. J. Müller, H. Stahl: Collecting and Analyzing Spoken Utter-
ances for a Speech Controlled Application, Proc. Eu-
rospeech 1995 (Madrid, Spain), pp. 1437-1440

7. R. Pieraccini et al.: A Speech Understanding System Based
on Statistical Representation of Semantics, Proc. ICASSP
1992 (San Francisco, USA), pp. I.193-I.196

8. R. Pieraccini, E. Levin, E. Vidal: Learning how to Under-
stand Language, Proc. Eurospeech 1993 (Berlin, Germany),
pp. 1407-1412

9. M. Pinkal: Semantik, in G. Görz (ed.): "Einführung in die
künstliche Intelligenz", Addison-Wesley, Bonn, 1993,
pp. 425-498 (in German)

10. L. R. Rabiner: A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition, Proc. IEEE,
vol. 77 (1989), no. 2, pp. 257-286

11. H. Stahl, J. Müller: An Approach to Natural Speech Under-
standing Based on Stochastic Models in a Hierarchical
Structure, Proc. Workshop ’Modern Modes of Man-Ma-
chine-Communic.’ 1994 (Maribor, Slovenia), pp. 16.1-16.9

12. H. Stahl, J. Müller: A Stochastic Grammar for Isolated Rep-
resentation of Syntactic and Semantic Knowledge, Proc. Eu-
rospeech 1995 (Madrid, Spain), pp. 551-554

13. H. Stahl, J. Müller, M. Lang: An Efficient Top-Down Pars-
ing Algorithm for Understanding Speech by Using Stocha-
stic Syntactic and Semantic Models, Proc. ICASSP 1996
(Atlanta, USA), pp. I.397-I.400

14. E. Vidal: Language Learning, Understanding and Transla-
tion, Proc. CRIM-FORWISS Workshop on "Progress and
Prospects of Speech Research and Technology" (Munich,
Germany), 1994, pp. 131-140

15. A.J. Viterbi: Error Bounds for Convolutional Codes and an
Asymptotical Optimal Decoding Algorithm, IEEE Trans. In-
formation Theory, vol. 61 (1973), pp. 268-278


