
AN EFFICIENT TOP-DOWN PARSING ALGORITHM FOR UNDERSTANDING SPEECH
BY USING STOCHASTIC SYNTACTIC AND SEMANTIC MODELS

Holger Stahl, Johannes Müller, Manfred Lang

Institute for Human-Machine-Communication
Munich University of Technology

Arcisstrasse 21, D-80290 Munich, Germany
email: {sta,mue,lg}@mmk.e-technik.tu-muenchen.de

ABSTRACT

The paper is concerning an approach for understanding
speech using a new form of probabilistic models to repre-
sent syntactic and semantic knowledge of a restricted do-
main. One important feature of our grammar is that the
parse tree directly represents the semantic content of the ut-
terance. Since we determine that semantic content by an in-
tegrated search, we avoid consistency problems at the in-
terface between the recognizer and the language
understanding part of the speech understanding system. We
succeeded in designing such an incremental algorithm,
which integrates semantic, syntactic, and acoustic-phonetic
knowledge in a seamless, consistent way. High efficiency is
achieved by using a chart-parsing technique with structure-
sharing and a strict top-down strategy for opening new
word hypotheses in the pronunciation layer.

1. INTRODUCTION

Stochastic methods have proved to be powerful for speech
recognition, mainly due to the uniformity of knowledge
representations on different levels. Further pursuing the
stochastic approach, speech understanding can be inter-
preted as maximizing the a-posteriori probability
of the semantic content S given the input pattern O (i.e. the
sequence of feature frames from the preprocessed speech
signal) of an utterance. Applying Bayes’ inversion formula
and taking into account just the most likely word chain W,
we obtain the following classification rule [1] for maxi-
mum-a-posteriori probability decoding (MAP):

(1)

As acoustic-phonetic models for the calculation of
we use Hidden-Markov-Models (HMMs). The grammar
knowledge is splitted into a semantic model, providing the
a-priori probability and a syntactic model, providing
the conditional probability .

2. PROBABILITIES IN THE GRAMMAR

The following overview is a brief description of our se-
mantic representation and our grammar formalism. A more
detailed and formal description can be found in [2].

P S O()

SE P O W() P W S() P S()⋅ ⋅[]
W

max
S

argmax=

P O W()

P S()
P W S()

Definition of the Semantic Structure: In our approach,
the semantic structure S is a tree consisting of a finite
number N of semantic units (we simply call them semuns),
each containing the semantic contribution of one signifi-
cant word in W. Fig. 1 shows an example within the domain
’speech-understanding graphic editor’ with semuns:

Each semun of S consists of a type, a value and suc-
cessor-semuns. The number X is fixed by the semun’s type.
The leaves of the tree are terminated by ’blank semuns’.

Semantic Model: For each possible type of a semun, there
exist two sets of probabilistic rules for determining

(i) the value of the considered semun,

(ii) the types of the combination of successor semuns.

There also exists a set of probabilistic rules for determining

(iii) the type of the root semun.

Assuming statistical independence, is calculated as
product of the probabilities for applying all rules for assem-
bling a semantic structure S. Note that these rules are not
context-free in the sense of fixing any chronological order!

Syntactic Model: The syntactic model serves for the pro-
duction of syntactical correct word chains W corresponding
to a given semantic structure S.

For each semun, a phrase is originated into W, consisting of
one significant word, an optional insignificant word, and
further phrases for each of the successor semuns. Depend-
ing on the semun’s type, the syntactic model provides a set
of probabilistic context-free rules for determining

(iv) the order of these substrings (time-alignment).

These time-alignment rules are implemented as probabili-
stic networks, which consist of nodes , B, C, dis-
tinguished start/end nodes ’s’ and ’e’, and a probability ma-
trix containing all network connections. Fig. 2 shows such

Figure 1: Word chain W and corresponding semantic structure S

N 5=

cmd
createS: form

sphere

num
1

colour
red
size
large

W: "please paint a big red ball "

type
value

successor mechanism ’blank semuns’

root semun

X 1≥

P S()

A1…AX

a network called syntactic module (SM) for the type ’cmd’,
taken from the example in fig. 1, with successor:

From node , that phrase is originated, which is associated
with the first (and sole) successor semun of type ’form’. En-
tering this node will perform the entry of a child SM one
level below the current one. In the example, the start node of
the type ’form’ is encountered. Passing the end node of that
syntactic module signifies a return to the parent level.

For the node B, there is a set of probabilistic rules for producing

(v) the significant word associated with the semun

depending on the semun’s value. For the node C, the syn-
tactic model provides a set of rules as well for producing

(vi) the insignificant word associated with the semun.

The appliance of these rules depends on the semun’s type.

There are additional constraints for the transitions to be
considered inside an SM: Since we defined that for every
semun in the semantic structure exactly one significant
word, one phrase for each successor and one optional insig-
nificant word has to be originated, it is inhibited to pass one
of the nodes , B, C twice. Furthermore, the end
node cannot be encountered before the nodes , and
B have been passed. To illustrate the required bookkeeping
inside an SM, we cross out (’ ’) the passed nodes and
place a dot (’ ’) at the current position. Using a simplified
depiction of the SM, a dot left of a node indicates that it
just has been encountered, whereas a dot right of it indi-
cates that the node just has been passed:

The probability is approximated by maximizing
the product of the probabilities concerning all productions
(iv) to (vi) in all possible derivations.

Figure 2: Syntactic module for a type with successor

Figure 3: Part of the hierarchic connection of SMs according to
the example in fig. 1. Each SM produces a phrase for one semun.
The words "please paint a big ..." have already been originated.

X 1=

C

B

A1

0.03
0.94

0.03

0.25

0.75

0.05
0.01

0.94

0.95

0.05

0.0

0.0s e
start
node

end
node

X 1=

A1

A1…AX
A1…AX

CBA1

CBA1 A2 A3 A4 A5

CBA1

paint please

a

CBA1

big

Start of the
utterance

End of the
utterance

type:
value: sphere

form

type:
value: 1

num type:
value: large

size

type:
value: create

cmd

s e

s

s s

e

ee

P W S()

3. THE SEARCH ALGORITHM
For the search, an active chart parser is applied. The parser
consists of two layers, the grammar layer and the pronunci-
ation layer. In the grammar layer, hypotheses for potential
word chains are generated by applying the respective gram-
mar rules (i) to (vi). In the pronunciation layer, the acous-
tic-phonetic emission probabilities are calculated. Since the
computations in this layer for in eq. (1) are much
more expensive as those for and in the gram-
mar layer, the parser works strictly top-down. Only those
word chains W are then considered, with . A
time-synchronous search allows a direct comparison of dif-
ferent hypotheses and facilitates real-time applications. The
grammar layer of the parser is based on Earley’s algorithm
[3], some extensions for processing continuous input with
probabilistic knowledge bases could be adopted from [4].

3.1 Representation of Hypotheses in the Search

During the search, the knowledge about open hypotheses is
kept in so-called items [4], each representing a certain sub-
parse referring to a certain SM. An item contains informa-
tion about the matching between input frames
and one single semun with a particular type. In addition to
the bookkeeping of the SM (fig. 3), the item maintains
properties concerning semantics, time-alignment, and pro-
babilistic information. Fig. 4 shows an example:1)

The item only holds the parsing history since the start-frame
index i, when the respective SM was entered, until the cur-
rently processed frame. The inside-score denotes the score2),
which has been summed up inside the SM. This score in-
cludes all partial probabilities contributing to the MAP esti-
mation of eq. (1), accumulated along this subparse since the
start frame. The overall-score contains the inside-score as
well and additionally the accumulated score for the left con-
text of the item, i.e. the complete history to enter the SM.

Like the ’dotted rules’ used in [3], our items contain infor-
mation only concerning the subparse of a piece of the input
pattern, but they show some fundamental differences:

• The probabilistic extension by the two scores (from [4]).
• The bookkeeping for the time-alignment is not only con-

tained in the position of the dot, but also in the list of
crossed-out (= passed) nodes.

• The successor types include semantic information by
fixing the type(s) of the successor semun(s).

1) For simplification, properties required for trace-back are omitted!
2) We transform all probabilities from the models into their nega-

tive logarithm to replace multiplications by faster additions.

Figure 4: Properties contained in an item

P O W()
P W S() P S()

P W S,() 0≠

oi…oj 1–

CBA1
type: cmd

start frame:
inside-score: 800
overall-score: 2000

21
succss. type: ?

• type of the semun
• type(s) of the successor(s)
• no. i of frames processed

• summed score inside SM
• sum. score since frame 0

before entering the SM

s e

3.2 Item Lists and Agendas

All items, which have been generated after processing
frame , form the item list . Each item list is splitted
up into two parts: An agenda (the active part) contains items
which still have to be processed by the control structure, a
passive part contains items which already have been pro-
cessed. Items can be checked in and retrieved from the list:

Whenever an item is checked in, it is tested for recombina-
tion with another item in the list. Items are equivalent, if
they concur in all their properties except the scores. Equiv-
alent items can recombine! That item with the lower over-
all-score (i.e. the higher probability) survives, the other is
discarded. Instead of attaching each item to be checked in,
the following strategy is chosen to maximize the efficiency:

After retrieving an item, the pointer on the location to re-
trieve the next one is incremented. Actually, the item lists can
be seen as a ’FIFO’, that implements a breadth-first search.

3.3 Control Structure for Operations on Item Lists

Fig. 7 illustrates the function of item lists and the operations
on them. First, item list is generated by the initialization

. Subsequently, one item at a time is retrieved from the
agenda of list and is processed by one of the applicable
in-list operations transitions, entries or completions.
The resulting new items are checked in again in the same
item list. This process continues until the agenda is empty,
i.e. no items remain to be processed by in-list operations.

Afterwards, all items in the list with one of the nodes B
or C encountered are processed to start up new words in the
pronunciation layer. We call this operation push-words .
As a counterpart to this, the pop-words operation pops
out words which have been completely matched to a se-
quence of frames by the pronunciation layer. From these
words, the next item list is then initialized.

Figure 5: Organization of an item list and operations on it

Figure 6: Strategy for recombination of items to be checked in

oj 1– Lj

Location to retrieve the
next active item

Location to attach the
next item to be checked
in, if no recombination in
the agenda is possible

agenda, the active
part of the list

passive part of the list

A new item has to be checked in

recom-

part?
bination in active

recom-

part?
bination in passive

new
item survives?

new
item survives?

discard new item!

replace item in active
part by new item!

attach new item
to top of list!

Y

N Y

Y

N

NY

N

L0
1

L0
2

L0

3
4

L1

Now, another round of , , and is repeated for each
of the input frames, generating one item list after another,
until all J frames are consumed. All inactive item lists

, which remain after processing frame are kept
back in the chart for the completion steps (in) and .

The following lines will give a short description of the opera-
tions, which generate a new item from a retrieved item:

Initialization : is initialized by applying rules (iii)
creating items of all possible semun types with the start
node just encountered.

In-List Operations : Transitions are invoked to encoun-
ter an SM node from another already processed node by
rules (iv). Entries fix the type(s) of the X successor semun(s)
and enter the start-node of a new SM. Expressed in the ter-
minology of chart-parsing [3][5], the transitions and the en-
tries can be seen as the PREDICTOR step. The completions
move the dot over a node, which represents the child SM of
a completed subparse, i.e. which has just passed the SM
from start to end. In the chart-parsing terminology, the com-
pletions correspond to the COMPLETER step.

Note that recursive constructs in the grammar do not cause
any problem for the parser, since they will be caught as
equivalent subparses, which can recombine to avoid a loop!

Push-words operation and pop-words operation :
Each item with one of the nodes A or B just encountered
has to produce a word to move the dot over this node. If a
push-words operation is invoked for an item (with encoun-
tered node A or B), all words are started, which can be pro-
duced by the respective rule (v) or (vi). If these words have
been completely matched to a certain number of input
frames, they can be used to complete that item, which they
were started from by invoking the pop-words operation.

In contrast to the easy task of parsing deterministic input,
both the words itself and their boundaries are ambiguous
with our task. Without countermeasures, the search space
grows unimaginably huge already after a few input frames.

Figure 7: Illustration of the main steps of the algorithm:
The initialization step , the in-list operations , the push-

words operation , and the pop-words operation .

2 3 4

L0 … Lj, , oj
2 4

item lists L0 LJ

o0 o1 oJ -1

1

2

gr
am

m
ar

 la
ye

r
pr

on
un

ci
at

io
n

la
ye

r

2

input
frames

L1

2

33

4 4

word
hypotheses

1 2
3 4

1 L0

2

3 4

3.4 Improving Efficiency

To reduce both computation and memory effort down to
manageable values, we applied a beam search technique.
Our incremental algorithm guarantees that all paths ending
in the items contained inside one item list have con-
sumed exactly the same number j of input frames. This is
an important claim for a direct comparison of the items’
overall-scores for pruning them. Pruning is carried out both
in the grammar layer and in the pronunciation layer.

The number of word hypotheses to be started up, can be
further reduced, if the grammar layer is not activated for
each frame index. In practice, after finishing the push-
words operations , a number of frames is skipped before
invoking the next pop-words operations . Note, how-
ever, that this practice is no longer consistent, since it con-
strains the words to be forced into a fixed temporal grid.

4. EXPERIMENTAL RESULTS
Our grammar was trained from 1843 utterances out of the
domain ’speech-understanding graphic editor’. For testing
our decoder, we used 100 utterances, which are a subset of
the training set, to avoid out-of-vocabulary errors. The utter-
ances have been collected by a ’Wizard-of-Oz’ experiment
[6] with 33 speakers. Each utterance is represented by the
speech signal, sampled at 16 kHz, and the associated seman-
tic structure, which was used both for training the grammar
and as reference for testing the decoder’s semantic accuracy.

As acoustic models, we took the phoneme-based HMMs
from the SPICOS system [7]. Note that these models were
trained from a multi-speaker data base unrelated to the con-
sidered domain. They are not the most powerful ones in the
meantime, but tried and tested. Due to the independence of
our knowledge bases, they can be embedded balanced into
the search. In contrast to the reports of others [5][8], we
had no need for any normalization of the scores.

In the tests, we determined semantic errors as the percent-
age of wrongly assigned semantic structures and the com-
putation effort as the average number of check-in opera-
tions (see chap. 3.2) on the item lists per utterance.

Fig. 8 shows the computation effort and understanding er-
rors related to the beam width. It can be seen that pruning is
necessary to prevent an uncontrollable increase of the com-
putations. These results were obtained if the grammar is ac-
tivated every fourth frame index. The performance of the
algorithm for other grammar activity intervals is listed in

Figure 8: Performance depending on the beam width

Lj

3
4

se
m

an
tic

 e
rro

rs
 (%

)

beam width (pruning offset)

30

40

900 1700

no
. o

f c
he

ck
-in

s
(th

ou
sa

nd
s)

1300

50

0

100

200

300

2100

fig. 9, determined for the beam width set to 1500. Hence, a
grammar activity interval of four reduces the computation ef-
fort by about factor 14 without impairing semantic accuracy!

Even though it is a parser in general, we gained a
dependence of the number of operations on the number J of
input symbols, which seems to be between linear and quad-
ratic. The following diagram was obtained for a beam
width of 1500 and a grammar activity interval of four:

5. CONCLUSIONS
We designed a MAP-decoder for the outlined new gram-
mar formalism to determine the semantic content of an ut-
terance directly by integrating semantic, syntactic, and
acoustic-phonetic knowledge. The huge search space is
kept manageable by using a top-down chart-parser com-
bined with beam search and discontinued grammar activity.

REFERENCES
[1] R. Pieraccini, E. Levin, E. Vidal: Learning how to Understand

Language, Proc. EUROSPEECH 1993 (Berlin, Germany),
pp. 1407-1412

[2] H. Stahl, J. Müller: A Stochastic Grammar for Isolated Represen-
tation of Syntactic and Semantic Knowledge, Proc. EU-
ROSPEECH 1995 (Madrid, Spain), pp. 551-554

[3] J. Earley: An Efficient Context-Free Parsing Algorithm, Comm.
of the ACM, vol. 13 (1970), no. 2, pp. 94-102

[4] A. Paeseler: Modification of Earley’s Algorithm for Speech Rec-
ognition, Proc. NATO ASI, vol. F 46, Springer, 1988, pp. 465-472

[5] H. Weber: Time Synchronous Chart Parsing of Speech Integrat-
ing Unification Grammars with Statistics: Proc. 8th Twente Work-
shop on Language Technology (1994)

[6] J. Müller, H. Stahl: Collecting and Analysing Spoken Utterances
for a Speech Controlled Application, Proc. EUROSPEECH 95
(Madrid, Spain), pp. 1437-1440

[7] H. Höge: SPICOS II - a Speech Understanding Dialogue System,
Proc. ICLSP 90 (Kobe, Japan), pp. 1313-1316

[8] S. Senneff: TINA: A Natural Language System for Spoken Lan-
guage Applications, Computational Linguistics, vol. 18 (1992),
no. 1, pp. 62-86

Figure 9: Performance depending on the grammar activity interval

Figure 10: Computation effort depending on the input length.
Results have been averaged inside the bar width (= 100 frames).

se
m

an
tic

 e
rro

rs
 (%

)

grammar activity interval

40

5

no
. o

f c
he

ck
-in

s
(th

ou
sa

nd
s)

3

50

0

400

800

2 4

600

200

106

1000

30
1

O J3()

length of input pattern in frames (1 frame =̂ 10 ms)

0
200 600 800400

400

200

no
. o

f c
he

ck
-in

s
(th

ou
sa

nd
s)

