
Stochastic Modelling of Syntax and Semantics
Johannes Müller, Holger Stahl

Inst. for Human-Machine-Communication, Munich University of Technology
Arcisstrasse 21, D-80290 Munich, Germany

email: {mue,sta}@mmk.e-technik.tu-muenchen.de

Abstract: Within a ’top-down’ approach for speech understanding (i.e. for con-
verting a spoken utterance into its semantic representation), the semantic model
generates semantic structures, which are semantic representations close to the
word level. Corresponding to such a semantic structure, the syntactic model gen-
erates according word chains. These models can be integrated for language pro-
duction or automatic translation within a restricted domain.
Keywords: speech understanding, language production, automatic translation,
semantic model, syntactic model, spoken human-machine-dialogue

1. Definition of the semantic structure
In our approach [1], the semantic structure S (representing the semantic content) is a tree con-
sisting of a finite number N of semantic units (we simply call them semuns) :

(1)

Each semun with is an (X+2)-tupel of a type , a value and X
successor-semuns :

 , (2)

The semun is defined as the root of the semantic structure S. Every semun is
marked exactly once as a successor-semun. The special semun ’blnk’ has the type

, no value and no successor [2].

2. The semantic model
If statistical dependencies are assumed only inside of each semun, the a-priori probability
can be calculated as product of the following probabilities:

, with ... (3)

• ... denoting the a-priori-probability that the root semun is of the type :
(4)

• ... denoting the conditional probability that the value occurs with the type :
(5)

• ... denoting the conditional probability that the X successor semuns
of the semun with type are of the types :

(6)

3. The syntactic model
We assume the following restrictions for the word chains originated by
the syntactic model to express a given semantic content S:
• Every word in the word chain W can be assigned to exactly one semun .
• An unbroken part of W is originated for each semun and all its successors.
• For each semun , one word wsig is produced obligatorily, which depends on the value

. Another word winsig is produced optionally, which depends only on the type .
We call these two words the ’significant word’ wsig and the ’insignificant word’ winsig.

sn

S s1 s2 … sN, , ,{ }=

sn S∈ 1 n N≤ ≤ t sn[] v sn[]
q1 sn[] … qX sn[], , s2 … sN, blnk, ,{ } \ sn{ }∈

sn t sn[] v sn[] q1 sn[] … qX sn[], , , ,()= X 1≥

s1 s2 … sN, ,

t blnk[] blnk=

P S()

P S() froot en fn⋅()
n 1=

N

∏⋅=

froot s1 t s1[]
froot P t s1[]()=

en v sn[] t sn[]
en P v sn[] t sn[]()=

fn q1 sn[] … qX sn[], ,
sn t sn[] t q1 sn[][] … t qX sn[][], ,

fn P t q1 sn[] … t qX sn[], , t sn[]⎝ ⎠
⎛ ⎞=

W w1w2…wj…wJ=

wj sn S∈
wi wi 1+ … wj sn

sn S∈
v sn[] t sn[]

Production Rules: The last assumption above implies to use a stochastic context-free gram-
mar [3] as syntactic model. This grammar, denoted contains the sets V, T
and P of variables, terminals and production rules. The derivation always starts rewriting the
start symbol as variable , with marking the root of the semantic structure S:

(7)

• For the case that the variable produces a sequence of a variable , an
optional variable and X variables for the successors of :

(8)

• always produces the empty string :

(9)

• produces one significant word wsig depending on the value :

(10)

• produces one insignificant word winsig depending on the type :

(11)

The probability is calculated by maximizing the product of the probabilities concern-
ing all the productions according to eq. (8), (10) and (11) required to derive ’ ’ [5].

4. Language production and automatic translation
From a given semantic structure S, the most likely word chain Wg should be created according
to the syntactic model: (12)

Using eq. (12), the choice and order of the produced words is mostly correct. Since the seman-
tic structure does not contain any grammatical information, case, gender and number of many
words in Wg are wrong. Therefore, the syntactic incorrect word chain has to be linguistically
purified with an inflectional knowledge base and with the help of the given semantic structure.
Combining understanding and production with models of two different languages, a very sim-
ple automatic translation system for a restricted domain can be realized.

References
[1] J. Müller, H. Stahl: Ein Ansatz zum Verstehen natürlicher, gesprochener Sprache durch hierar-

chisch strukturierte Hidden-Markov-Modelle, Proc. KONVENS 1994 (Vienna), pp. 260-269
[2] J. Müller, H. Stahl: Die semantische Gliederung als adäquate semantische Repräsentations-

ebene für einen sprachverstehenden ’Grafikeditor’, Proc. GLDV-Jahrestagung 1995 (Regensbg.)
[3] H. Ney: Stochastic Grammars and Pattern Recognition, NATO ASI, vol. F75 (1992), pp. 319-344
[4] L.R. Rabiner: A Tutorial on Hidden Markov Models and Selected Applications in Speech Rec-

ognition, Proc. IEEE, vol. 77, (1989), no. 2, pp. 257-286
[5] H. Stahl, J. Müller: A Stochastic Grammar for Isolated Representation of Syntactic and Seman-

tic Knowledge, Proc. Eurospeech 1995 (Madrid), to be published

The probability of eq. (8) is estimated by a
transition network similar to an ergodic hid-
den markov model [4]. Such a syntactic
module (SM) consists of X+4 states: ,

 and repre-
sent the corresponding variables, ’strt’ and
’end’ stand for the entry and the exit of the
SM. The path, i.e. the order of passing the
states of the SM, is constrained by eq. (8). Fig. 1: SM for the semun with X=1 successor

Gsyn V T Σ P, , ,()=

Σ V∈ A s1() s1

P Σ A s1()→⎝ ⎠
⎛ ⎞

sn blnk≠ A sn() B sn()
C sn() A q1 sn[]() … A qX sn[](), , sn

P A sn() B sn() C sn() A q1 sn[]()… A qX sn[](),, , t sn[]→⎝ ⎠
⎛ ⎞⎫ ⎬ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

in arbitrary order

optional

A blnk() ε

P A blnk() ε→⎝ ⎠
⎛ ⎞ 1=

B sn()
C sn() A q1 sn[]() … A qX sn[](), , aB,C

a
A,C

a A,B

aC,end

aB,end

aA,end

aC,B

a B,A

astrt,B

a strt,C

a
C

,A

B(sn)

A(q1[sn])
astrt,A

A(sn)

strt end

C(sn)

sn
B sn() v sn[]

P B sn() wsig→ v sn[]⎝ ⎠
⎛ ⎞

C sn() t sn[]

P C sn() winsig→ t sn[]⎝ ⎠
⎛ ⎞

P W S()
Σ W⇒

Wg P W S()
W

argmax=

