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Abstract

A large share of connected mobile devices, such as smartphones or connected vehicles, is nowadays
equipped with camera systems. As a consequence, the captured videos are increasingly upstreamed to
video portals or directly to other devices. This is mainly challenged by high user experience demands,
the available computational resources of the mobile devices, and the limited uplink transmission ca-
pacity and connectivity. The focus of this thesis is to develop and evaluate means to enable user
experience-driven uplink video streaming from mobile video sources with limited computational ca-
pacity and to apply these to resource-constraint automotive environments.

The first part of the thesis investigates the perceptual quality-aware encoding of videos. To this end,
a video bit rate model is proposed to estimate the bit rate of encoded videos as a function of the
quantization parameter, frame rate, group of pictures length, and group of pictures structure encod-
ing settings. Temporal and spatial activity-based estimators of the video content-dependent model
parameters for H.264/MPEG-4 AVC encoded videos are developed. A performance assessment shows
that the proposed bit rate model is highly accurate. Together with an objective video quality metric,
the video bit rate model is used to determine the encoding settings which maximize the perceptual
quality for given bit rate constraints.

In the second part of the thesis, the solution from the first part is applied to videos captured with a
front-facing camera of a vehicle. In vehicular deployments access to the raw video stream, which is
required to determine the temporal and spatial activity parameters, might not be possible. As a remedy,
camera context-aware estimators of the temporal and spatial activity parameters are developed, which
use information about the status and the dynamics of the vehicle and the vehicles in the field-of-view
of the front-facing camera. The developed estimators show a high estimation performance of the
measured temporal and spatial activity values.

The last part of the thesis studies the upstreaming of video content from a mobile video source using
adaptive HTTP streaming. Due to their limited computational capacities, mobile video sources, such
as modern vehicles, are typically not able to simultaneously generate the same number of video levels as
commonly employed in adaptive HTTP streaming content delivery network deployments. As a remedy,
three context-aware video level selection algorithms, which employ different context information, are
proposed in order to select a reduced set of video levels out of a pre-defined static video level set.
Experimental results show that the number of video levels at the mobile video source can be reduced
significantly while ensuring a high user experience in the streaming sessions.
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Kurzfassung

Ein Großteil der heutigen mobilen Endgeräte, wie etwa Smartphones oder vernetzte Fahrzeuge, sind
mit Kameras ausgestattet. Dieser Trend führt dazu, dass vermehrt aufgezeichnete Videos zu Video-
portalen oder direkt zu anderen Endgeräten übertragen werden. Die Herausforderungen hierbei liegen
vor allem in den hohen Nutzeranforderungen, den zur Verfügung stehenden Berechnungskapazitäten
mobiler Endgeräte und den Verbindungskapazitäten heutiger Mobilfunksysteme. Der Schwerpunkt
dieser Dissertation liegt daher in der Entwicklung von Mechanismen, die eine Videoübertragung von
einem mobilen Endgerät mit begrenzten Berechnungskapazitäten unter Berücksichtigung des Nutzer-
erlebnisses ermöglichen und diese auf ressourcenbeschränkte automobile Szenarien anzuwenden.

Der erste Teil der Dissertation untersucht die Videoencodierung unter Berücksichtigung der Wahr-
nehmungsqualität. Zu diesem Zweck wird zuerst ein Videobitratenmodell vorgeschlagen, welches eine
Abschätzung der Bitrate encodierter Videos als Funktion des Quantisierungsparameters, der Frame-
rate, der Bildgruppenlänge und der Bildgruppenstruktur ermöglicht. Für die videoinhaltsabhän-
gigen Modellparameter H.264/MPEG-4 AVC encodierter Videos werden Schätzer auf Basis räumlicher
und zeitlicher Aktivitätsparameter entwickelt. Eine durchgeführte experimentelle Evaluation zeigt,
dass das entwickelte Modell eine sehr präzise Abschätzungsgenauigkeit der Bitraten ermöglicht. Das
Bitratenmodell wird darüberhinaus in Verbindung mit einer objektiven Videoqualitätsmetrik dazu
verwendet, die Videoencodierparameter für vorgegebene Zielbitraten derart zu bestimmen, dass die
Wahrnehmungsqualität maximiert wird.

Im zweiten Teil der Dissertation wird die entwickelte Lösung zur Bestimmung der Videoencodierpa-
rameter auf ein Fahrzeugszenario angewendet, bei dem der Videoinhalt einer Frontkamera übertragen
werden soll. Der direkte Zugang zu den unkomprimierten Videoströmen, der zur Bestimmung der
örtlichen und zeitlichen Aktivitätsparameter benötigt wird, ist in modernen Bordnetzarchitekturen
oftmals nicht realisierbar. Daher werden Schätzer beider Aktivitätsparameter entwickelt, die Kon-
textinformationen der Kamera nutzen, wie etwa die Zustandsinformation des Fahrzeugs, sowie fahr-
dynamische Eigenschaften des Fahrzeugs und anderer Fahrzeuge im Sichtfeld der Frontkamera. Eine
durchgeführte Evaluation beider entwickelter Schätzer bestätigt eine hohe Abschätzungsgenauigkeit.

Der letzte Teil der Dissertation untersucht die Videoübertragung von mobilen Endgeräten mittels adap-
tiver HTTP Übertragung in der Aufwärtsstrecke. Durch die begrenzte Berechnungskapazität heutiger
mobiler Endgeräte, wie etwa Fahrzeugen, kann nicht die gleiche Anzahl von Videostufen erzeugt wer-
den, die üblicherweise bei der adaptiven HTTP Videoübertragung von Content-Delivery-Netzwerken
eingesetzt wird. Daher werden drei kontextabhängige Algorithmen zur Videostufenauswahl vorgeschla-
gen, die unterschiedliche Kontextinformationen nutzen, um eine Untermenge von Videostufen aus einer
vorher festgelegten Menge von Videostufen auszuwählen. Eine durchgeführte experimentelle Evalua-
tion aller drei Algorithmen zeigt, dass die Anzahl der Videostufen signifikant reduziert werden kann,
ohne eine Verschlechterung des Nutzererlebnisses zu erzeugen.
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Chapter 1

Introduction

With the development and deployment of high data rate and low delay cellular radio access
networks, such as Universal Mobile Telecommunications System (UMTS) in the 2000s and
the recent evolution towards 4G standards, such as Long Term Evolution (LTE) and LTE-
Advanced, video streaming has evolved to one of the most popular mobile Internet services
over the last decade. According to Cisco’s traffic forecast [Cis13], video traffic is responsible
for half of the overall mobile Internet traffic as of today, and this amount is expected to
increase 14-fold until the end of 2018.

Modern consumer electronic devices, such as smartphones, tablet computers, or connected
vehicles, are more and more equipped with enhanced signal processing capabilities and cam-
era modules which allow for mobile capturing and processing of high quality video content.
Besides the traditional offline storage, videos are increasingly upstreamed from mobile devices
to video portals (e.g., YouTube [Webc]) or directly to other consumer electronic devices (e.g.,
Periscope [Webb]) over wireless networks on demand or in real time. Modern connected ve-
hicles, for example, are equipped with numerous cameras and sensor systems primarily used
for on-board advanced driver assistance service (ADAS) applications. Safety, security, and
convenience in road situations can be further increased by upstreaming the captured videos
of the ADAS cameras directly to other devices outside the vehicle or to a video portal for fur-
ther on-demand sharing. The video content captured by ADAS cameras, for example, can be
used in traffic monitoring systems used for real-time road traffic information and surveillance
[BV+14].

Besides the limited computational capacities, video streaming to and from mobile devices
is challenging due to the time-varying network throughput performance and frequent inter-
radio access network (RAN) handovers, especially at vehicular velocities. In order to realize
reliable and interruption-free transmissions of video streams at a high user satisfaction, en-
hanced encoding and rate adaptation mechanisms are required, which offer support for an
adaptation of the bit rate of video streams according to the network performance along the
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Figure 1.1.: Schematic overview of the considered AHS-based uplink streaming scenario where
a source video stream captured with a mobile (vehicular) video source is up-
streamed to a remote streaming sink. A perceptual quality-aware rate control
entity computes the encoding settings for desired bit rates using video content
information determined by camera context-aware estimators (marked in green).
The bit rates required for the AHS-based streaming process are selected from a full
static video level set using context information (marked in blue). Contributions
of this thesis are framed in bold.

transmission path. Over the last years, adaptive HTTP streaming (AHS) gained high popu-
larity, since it offers intra-session rate adaptation and relies on a Hypertext Transfer Protocol
(HTTP)/Transmission Control Protocol (TCP) transmission, which is supported by almost
all network components deployed in the Internet. AHS follows a pull-based streaming princi-
ple, where the streaming source divides the source video into segments of a defined duration,
encodes the video segments at different desired bit rates (video levels), and stores the encoded
video segments on a standard web server along with a manifest file, which contains references
to the different video segments. The AHS client installed at the streaming sink requests the
AHS segments at a bit rate which matches the transmission capacity using HTTP requests.
So far, AHS has mainly been considered for live and on-demand downlink delivery of video
content from content delivery networks (CDNs). This thesis goes one step further and inves-
tigates AHS-based streaming for the uplink transmission of videos from mobile video sources
with limited computational resources. Figure 1.1 displays the uplink streaming scenario con-
sidered within this thesis where a source video stream captured with a mobile (vehicular)
video source is upstreamed to a remote streaming sink. The thesis contributes to the percep-
tual quality-aware, AHS-based adaptive uplink transmission of delay-tolerant video streams
in two directions.

First, the determination of encoding settings for desired target video bit rates is investigated,
which can be employed as control information at the rate controller of the AHS video source
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to realize the desired bit rates. Most of the previously proposed rate controllers for hybrid
video coding consider the sole adaptation of spatial encoding settings by a modification of the
quantization parameter to adapt the bit rate of the encoded video and employ peak signal-
to-noise ratio (PSNR) as the distortion measure in the rate control process. However, it has
been shown that by additionally taking modifications of other encoding settings in the rate
control process into account, such as adaptations of the temporal resolution, the perceptual
quality for desired bit rates might increase significantly [WMO09]. Besides that, it has been
shown that PSNR does not correlate well with the human perception, since it does not take
the characteristics of the human visual system (HVS) into consideration [Gir93; GHT08]. To
overcome these limitations, this thesis considers perceptual quality-aware rate control which
suggests the joint modification of spatial quality (i.e., image quality) and temporal resolution
encoding settings. For this purpose, a content-dependent video bit rate model and a perceptual
video quality metric need to be employed in the rate control process, which consider spatial
quality and temporal resolution encoding settings. The determination of the video content-
dependent parameters of the bit rate model and the video quality metric requires access to
uncompressed source video. This, however, might not be possible, especially in automotive
ADAS camera deployments, where typically only restricted access to internal functions and
data streams is possible. As a remedy, this thesis investigates an estimation of the video
content-dependent parameters based on camera context information.

Second, the uplink streaming of video content from mobile video sources with limited com-
putational capacity using AHS is studied, which is significantly different from the downlink
video streaming from CDNs. CDN systems typically generate a comprehensive number of
video levels in order to be able to serve all streaming clients at a high user experience in the
streaming sessions. In contrast, mobile video sources, such as modern vehicles equipped with
ADAS camera systems, offer limited computational capacities and as a consequence allow the
parallel generation of only a limited number of video levels. In order to reduce the number
of video levels employed in the AHS source process, this thesis investigates algorithms to
dynamically select a subset of video levels out of a full static video level set based on different
sources of context information.

1.1. Contributions

Figure 1.1 displays the contributions of this thesis along the considered uplink streaming
scenario. The main contributions are summarized as follows:

1. Video bit rate model as a function of quantization parameter, frame rate,
and group of pictures (GoP) encoding settings: This thesis proposes a bit rate
model for video encoding which considers spatial quality impairments resulting from
modifications of the quantization parameter and temporal quality degradations due to
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reductions of the frame rate. Besides that, the model captures the influence of the GoP
length and GoP structure. Separate factors are defined for each of the four encoding
settings, which need to be determined for each source video individually. The model is
further applied to H.264/MPEG-4 Advanced Video Codec (AVC) video encoding and
estimators of the video content-dependent parameters based on standard video activity
measures (temporal and spatial activity) are developed.

2. Perceptual quality-aware video bit rate control: A perceptual quality-aware op-
timization problem to determine quantization parameter and temporal resolution en-
coding settings for given bit rate constraints of video segments is defined. Based on the
aforementioned bit rate model and a video quality metric, which captures the percep-
tual quality of encoded videos, a solution to the problem for H.264/MPEG-4 AVC video
encoding is developed. Since both the bit rate model and the video quality metric use
spatial and temporal activity measures to estimate the content-dependent parameters,
the determined solution can easily be deployed in automated video processing systems.
As an application, the developed solution is applied to an AHS video source, where the
optimal encoding settings need to be determined for different desired target bit rates.

3. Camera context-based estimation of spatial and temporal activity measures:
The calculation of the spatial and temporal activity measures required for the proposed
solution of the perceptual quality-aware rate control problem is problematic in auto-
motive deployments since access to the uncompressed source camera stream and to the
internal functions of video encoders is typically not possible. This thesis proposes low-
complexity estimators of the spatial and temporal activity measures for videos captured
with an ADAS front-facing camera of a vehicle based on context information of the
vehicle. The developed estimators employ information about the scenario where the
video is captured, the dynamics of the vehicle, and the dynamics of other vehicles in the
field-of-view of the ADAS front-facing camera.

4. Dynamic video level encoding for AHS-based uplink video transmission: An
AHS-based streaming system is considered for the uplink transmission of live video
content from mobile video sources with limited computational and encoding capacities
which only support a limited number of parallel encoding processes. In order to sig-
nificantly reduce the number of video levels which need to be encoded and to enable
the application of the considered AHS system at the mobile video source, three context-
aware dynamic video level selection algorithms are proposed. The goal of the algorithms
is to select a reduced set of video levels out of a pre-defined static video level set based
on context information. To this end, two algorithms employ different statistical informa-
tion of the measured network performance of the streaming session and one algorithm
uses the history of previous segment requests.
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1.2. Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background material
for this thesis. It first reviews the main concepts and recent advances in the area of video
coding, provides an overview of adaptive streaming technologies, presents subjective quality
assessment methodologies, and compares video quality metrics to estimate the perceptual
quality of encoded videos. Besides that, ADAS sensor and communication technologies of
modern automotive systems are introduced. Chapter 3 proposes a video bit rate model which
captures the influence of spatial, temporal, and GoP encoding settings on the bit rate. The
model is applied to H.264/MPEG-4 AVC video coding and corresponding estimators for the
video content-dependent model parameters using temporal and spatial activity measures are
developed. A perceptual quality-aware rate control problem to determine optimal quanti-
zation parameter and temporal resolution encoding settings for desired rate constraints is
defined and a solution based on the proposed bit rate model and a video quality metric is
developed. Chapter 4 is devoted to the development of camera context-based estimators for
spatial and temporal activity measures of videos recorded with an ADAS front-facing camera
based on camera context information. The developed estimators are applied to the solution
of the perceptual quality-aware rate control problem. In Chapter 5, AHS-based streaming is
considered for the uplink transmission of videos from mobile devices. Context-aware dynamic
video level selection algorithms are proposed to reduce the number of video levels which need
to be encoded on the mobile device. The proposed algorithms are applied to an automotive
scenario, where the content of an ADAS front-facing camera is upstreamed to a video portal
deployed in the Internet. Finally, Chapter 6 concludes this thesis with a summary of the
results and points out some limitations and potential future research directions.

A complementary website of this thesis is available and is introduced in Appendix B.

Parts of this thesis have been published in [LSS; LG+15; LS14; LM+14a; LM+14b].





Chapter 2

Background

This chapter presents the basic concepts of video coding, gives an overview about adaptive
video transmission systems, reviews subjective quality assessment methodologies, and com-
pares objective video quality metrics to estimate the perceptual quality of encoded videos.
Finally, it introduces sensor and communication technologies of modern automotive systems.

2.1. Video coding and rate control

Video compression is required to reduce the bit rate of a raw digital video in order to enable
the transmission of video streams over communication channels with limited transmission
capacity or the storage of the compressed video content on a medium with limited storage
capacity.

The following section first introduces the concept of video coding, gives a brief overview about
the basic building blocks of a modern hybrid video codec, describes the concept of video rate
control, and gives a brief overview about the features of H.264/MPEG-4 AVC.

2.1.1. Video coding

The compression and decompression of a digital representation of a video is commonly referred
to as video coding [Ric03]. Video compression reduces the quantity of bits to digitally represent
a video and is measured by the compression ratio which is defined as the number of bits
of the uncompressed representation divided by the number of bits after the compression.
Lossy compression offers potentially high compression ratios, however, introduces irreversible
distortion to the original data, which cannot be reconstructed correctly by the decoder.

Modern video coders, such as block-based hybrid coding systems (displayed in Figure 2.1),
typically apply two different coding methodologies: (i) intra-frame coding, which comprises
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Figure 2.1.: Encoding and decoding (marked with ) process of a block-based hybrid cod-
ing system. Rate control blocks are marked in green. Adapted from [WOZ02].

compression techniques for information contained in the single frames, and (ii) inter-frame
coding, which exploits the temporal redundancies of successive frames to further compress
the video content. In the following, all essential mechanisms employed in block-based hybrid
coding systems are introduced.

2.1.1.1. Intra-frame coding

In the following, the processing steps used for intra-frame coding in hybrid block-based coding
systems are introduced.

Color space transformation and block partitioning: Before the actual coding of the raw
video content, the video frames are pre-processed (marked as Pre-processing in Figure 2.1).
First, the video frames need to be transformed to the YCbCr color space which is typically
applied in the digital representation of video frames. The luminance component (Y ) and the
two chrominance components (Cb, Cr) can be processed independently of each other. As
observed in subjective tests, the HVS is more sensitive to variations in brightness rather than
variations in color. To this end, the video representation can be optimized by allocating more
bits to the Y component than to Cb and Cr. For example, in the 4:2:0 chroma subsampling
scheme, which is applied throughout this work, half of the number of samples for the represen-
tation of the content is required compared to a 4:4:4 scheme, where no chroma subsampling
is applied. The pixel values of the Y, Cb, and Cr components are partitioned into rectangular
blocks of a defined size, commonly referred to as macroblocks [WOZ02]. Macroblocks are fur-
ther used to exploit the statistical correlation between the blocks spatially (for intra-coding)
and temporally (for inter-coding).
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(a) Uncompressed (q = 0). (b) Medium quantization parame-
ter (q = 32).

(c) Large quantization parameter
(q = 48).

Figure 2.2.: Example frame of the Football video [Seq] encoded with H.264/MPEG-4 AVC
using x264 [Vid] at different quantization parameter settings.

Transform coding: In video coding, transform coding is a lossless process which describes
the frequency transform of the pixel values of a video frame into transform coefficients. After
the transform, the coefficients exhibit reduced statistical dependencies which can be exploited
for the further compression. Also, more focus can be set on the coefficients which have a
high impact on the human perception. The 0-frequency component is typically known as the
DC component, whereas the AC components denote the higher frequency components. In
video coding, typically discrete cosine transform (DCT) is used as the transform [WOZ02].
For example, most modern Moving Picture Experts Group (MPEG) video codecs employ a
DCT-based transform (marked as DCT and IDCT as the inverse operation in Figure 2.1).

Quantization: One major part of the actual compression in intra-frame coding is performed
by quantization (marked as Quant with the inverse operation Quant−1 in Figure 2.1). To
reduce the information of the transform coded representation of the block, the transform
coefficients are quantized. Coefficients below a defined quantizer threshold are set to zero
[Sun00], whereas coefficients above or equal to the defined quantizer threshold are divided
by the quantization step size and set to the integer value with the smallest absolute differ-
ence [RR97]. Video encoders employ a quantization matrix which contains quantization step
sizes for the different transform coefficients [WOZ02]. The quantization matrix is further mul-
tiplied with a quantization factor, which is used to control the quantization step size, and
hence, the encoding quality and the compression ratio for the corresponding frames. The
quality of the frames decreases as the quantization factor increases. In modern codecs, such
as H.264/MPEG-4 AVC, the quantization factor is referred to as the quantization parameter,
which is defined in values between 0 (uncompressed) and 51 (worst quality) [WS+03]. Quan-
tization is a lossy step in the encoding process and as a consequence, the original transform
coefficients can not be reconstructed correctly by the decoder. This might lead to visible
distortion artifacts in the video frames. In Figure 2.2 these artifacts are demonstrated for
three different quantization parameters using H.264/MPEG-4 AVC video coding. For small
values of the quantization parameter (Figure 2.2b) almost no distortion is visible in the video
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frames, whereas for larger quantization parameter values, block artifacts can clearly be per-
ceived (Figure 2.2c). Distortion in video frames is commonly measured as the mean square
error (MSE) or PSNR1 between the compressed and the uncompressed (raw) video.

Variable length coding: Variable length coding (VLC) is a form of entropy coding and is
applied to further decrease the number of allocated bits after the quantization by reducing
the statistical redundancies of the quantized transform coefficients. Before applying VLC,
the coefficients are arranged in a 1-D array by scanning the coefficients in a specific manner
starting with the DC component and followed by the AC components using a zig-zag scan
pattern [Gha99]. Since a significant number of coefficients is zero after the quantization, it
is not reasonable to specify each of the coefficient values individually. To this end, run-level
coding is applied, which represents the coefficients in symbols consisting of the values from
non-zero coefficients and the number of zero coefficients [WOZ02]. VLC uses a mapping of
symbols to codewords which considers short codewords for symbols with high probabilities
[SFR07]. VLC is commonly implemented by arithmetic coding and Huffman coding [HV91;
LH87]. Arithmetic coding offers high compression ratios, however, relies on computationally
complex operations as opposed to Huffman coding, which is based on less complex operations
at the cost of lower compression ratios. Since modern systems offer high computational ca-
pacities, typically arithmetic coders are employed. H.264/MPEG-4 AVC and High Efficiency
Video Coding (HEVC), for example, use context-adaptive binary arithmetic coding (CABAC)
for VLC [WS+03; SO+12].

2.1.1.2. Inter-frame coding

The previously discussed coding steps exploit the spatial redundancies of the single video
frames and are employed for intra-frame coding. The content differences of successive frames
in videos is typically low. To this end, modern video encoders additionally use inter-frame
coding to exploit the temporal redundancies among successive frames in video sequences and
to predict a video frame from coded past or future frames. Modern video encoders typically
employ motion compensated prediction for inter-frame coding [WOZ02].

Motion compensated prediction: Two main concepts are employed for the motion compen-
sated prediction. First, using motion estimation an area of pixels in the reference frame for
each macroblock of the current frame with the smallest prediction error is identified. To this
end, a block-matching algorithm is applied to determine the motion vector that describes the
displacement of each macroblock in the reference frames, which have to be decoded and stored
in the frame memory [HC+06]. Modern video encoders offer sub-pixel shift accuracies, such as
half-pixel or quarter-pixel, to achieve high accuracies for the motion estimation and to realize

1A further definition and discussion of PSNR is given in Section 2.3.2.1.
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Figure 2.3.: Representative MPEG GoP with I-, P-, and B-frames (n = 12, m = 2).

an exact encoding of the motion of the videos. Second, the process of motion compensation
determines the difference between the block of the predicted frame and the reference frame,
also commonly referred to as the residual. The residual is transformed, quantized and further
compressed using VLC. In the overall encoding process, the motion compensated prediction
is the computationally most demanding operation, which consumes roughly 80-90% of the
overall computation time of the encoding process in H.264/MPEG-4 AVC video encoding
[HH+06].

2.1.1.3. Group of pictures

In modern video coding standards, three different frame types are produced [WOZ02]: I (intra-
frame), P (forward predicted inter-frame), and B (bi-directionally predicted inter-frame). I-
frames offer random access points for the video playback, however, typically use more bits after
the encoding compared to P- or B-frames. These frames are usually grouped into sequences
starting with an I-frame and ending before the successive I-frame, also commonly referred to
as GoPs [WOZ02]. The GoPs are typically continuously repeated in the overall video sequence.
A typical MPEG GoP [ISO93], which incorporates all frame types and shows the dependency
of the different frame types on each other, is displayed in Figure 2.3. The GoP starts with
an I-frame, followed by the predicted P- and B-frames. The structure of GoPs is typically
characterized by the GoP length n and the number of consecutive B-frames m [LS14].

P-frames reference preceding frames in display and decoding order. B-frames reference both
frames in preceding (referred to as forward prediction) and frames in successive display
order (referred to as backward prediction) [ISO93; ISO00]. In modern standards, such as
H.264/MPEG-4 AVC [ISO03], multiple previous frames can be used as a reference of P- and
B-frames (up to 16). Furthermore, B-frames can also be employed as references for other P-
and B-frames [ISO03].
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2.1.2. Video rate control

As previously discussed, the quantizer settings have a significant impact on the distortion of
the encoded video frames. In video coding, two different coding concepts with respect to the
distortion and bit rate properties are defined: variable bit rate (VBR) and constant bit rate
(CBR) video coding. In VBR, the quality is kept constant over the encoded video sequence
using constant quantizer settings. As a consequence, the video bit rate after the encoding
process fluctuates significantly in the order of a decimal magnitude depending on the spatial
and temporal characteristics of the video sequence. This, however, might not be reasonable
for some video applications where a constant bit rate of the encoded video is required, such
as AHS systems, which require the source video encoded at desired target bit rates2. To this
end, modern video encoders employ rate controllers to dynamically adapt the quantization
settings for encoded video sequences, and hence to achieve a constant output bit rate, which
is referred to as CBR coding. Unlike in VBR coding, where the quality is kept constant, the
quality of the encoded frames in CBR coding might vary significantly, especially in spatially
complex scenes [CN07].

The main task of rate controllers is to solve the inherent trade-off between distortion and bit
rate of the encoded video [OR98]. As investigated in R-D theory [Sha48], distortion D is a
decreasing function of the bit rate R. This is described by the R-D function that defines the
theoretical lower bound for the bit rate at a given distortion [CN07]. The general rate control
problem to achieve the minimum distortion without exceeding a given bit rate constraint Rc
can be formulated as

minimize D (2.1)

subject to R ≤ Rc.

Figure 2.1 shows a video encoder with a rate control unit, which consists of two major elements:
(i) a buffer which is set up at the output of the VLC to store the encoded frames, and (ii)
the rate control entity which is responsible for adapting the quantizer settings in order to
achieve the target bit rate constraint. Rate controllers used in modern encoders, such as
H.264/MPEG-4 AVC [ISO03], allow to perform the control on a macroblock-, slice-, and
frame-level [CN07]. For all three, the R-D relationships are typically realized by R-D models,
which are developed based on statistical measures of the video sequences and R-D theory
[HC97]. Throughout this thesis, frame-level rate control is applied. A detailed overview about
frame-level R-D models which relate the bit rate of encoded videos versus the quantizer
settings is given in Section 3.2.

More recently proposed rate controllers employ a multi-dimensional adaptation which addi-
tionally consider spatial [BEK03] and temporal resolution [LK05; WMO09] changes. This,
however, requires an extension and reformulation of the rate control problem of Eq. (2.1),

2An introduction to AHS is given in Section 2.2.2.
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which is discussed for quantization parameter and frame rate encoding settings in Section 3.4.

2.1.3. H.264/MPEG-4 AVC

Since H.264/MPEG-4 AVC3 is used as the default video codec throughout this thesis, it
is briefly introduced in the following. H.264/AVC was developed by the Joint Video Team
(JVT), which is a consortium of ISO/IEC MPEG and International Telecommunication Union
(ITU)-T Video Coding Expert Group (VCEG) [ISO03]. It is designed to offer at least twice
the compression ratio as compared to H.263 [IT96], MPEG-2 [ISO00], and MPEG-4 Part 2
[ISO04]. Furthermore, it is designed to enable the integration of the encoded video data into
different protocols and network architectures, such as high-quality but low bit rate streaming
applications or the storage and broadcasting of high-definition video content [WS+03].

The H.264/AVC encoder structure is divided into two parts, the video coding layer (VCL) and
the network abstraction layer (NAL) [Wen03]. The VCL represents the coded video content.
Similar as the predecessor standards, H.264/AVC uses block-based motion-compensated cod-
ing, which offers improved rate-distortion characteristics. Compared to H.263, the bit rate
demands could be halved at roughly the same distortion [OS+12], however, at the cost of
higher computational demands of the overall coding process. The NAL, on the other hand,
defines a generic format for the application in packet oriented transport systems (e.g., Internet
Protocol (IP) packets) [WS+03]. During the encoding process, syntax elements are mapped
to NAL units, which consist of the syntax element and the NAL header [WS+03]. A type and
importance tag is appended to each syntax element. The importance tag contains information
about the influence for the decoding in case the syntax element is corrupted or lost. This
information can be exploited by the transmission system to prioritize some syntax elements.

H.264/AVC supports different profiles which incorporate different tools and features. Through-
out this thesis, the Main profile is used, which supports I-, P-, and B-slices, quarter-pixel mo-
tion compensation, different block sizes, intra-prediction, in-loop de-blocking filters, multiple
reference frames, CABAC, weighted prediction, and interlaced coding. Further information
about H.264/AVC can be found in [WS+03; ISO03] and a detailed overview of the different
profiles in [STL04].

HEVC [ISO13] is the successor standard developed by the JVT. Compared to H.264/AVC,
major improvements have been achieved on the VCL. At the same level of distortion, the
compression ratio could be doubled and very high spatial resolutions of up to 8K are supported
[SO+12].

3In the remainder of this thesis, H.264/MPEG-4 AVC is referred to as H.264/AVC.



14 Chapter 2. Background

Standard video
encoder Transcoder

ControllerController

E
nc

od
in

g
se

tt
in

gs

Tr
an

sc
od

.
se

tt
in

gs

Rc(t)

Input video

Figure 2.4.: Transcoding based adaptation of a video stream. Adapted from [DCMP11].

2.2. Video streaming technologies

Video streaming applications, such as on-demand or live streaming, gained substantial pop-
ularity over the last decade. In order to ensure an interruption-free transmission of video
streams over wide area networks (WANs) and RANs at a high user satisfaction, adaptive
coding and streaming technologies are employed in modern streaming systems.

The following section first introduces adaptive video coding techniques which enable the adap-
tation of the video bit rate according to the available network transmission capacity. Second,
an overview of the most commonly used transport layer protocols designed for video streaming
and their corresponding application layer implementations is given.

2.2.1. Adaptive video coding techniques

The techniques to adapt the source video stream to transmission capacity constraints can
be classified into three main types [DCMP11]: transcoding, scalable video coding (SVC), and
multiple bit rate coding (MBR).

Transcoding: Transcoding describes the digital transformation of an encoded representation
of a video to a different one. To adapt the video bit rate according to the available transmission
capacity, the source video is first encoded by a standard video encoder (cf., Figure 2.4). A
separate transcoder is used to further encode the video at a target bit rate according to the
available transmission capacity. The transcoding operation can be performed both in the
temporal and spatial domain, e.g., by an adaptation of the frame rate, the spatial resolution,
the picture quality, or combinations of those [MFW13]. Transcoding algorithms are able to
realize a fine-granular resolution of bit rates of the encoded video. The transcoding process,
however, introduces additional complexity and additional processing delays since the video
needs to be decoded and re-encoded at a desired bit rate.

Scalable video codecs: SVC considers the encoding of a raw source video into one or more
separate bitstreams [SMW07]. To this end, in SVC a layered coding structure is considered,
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Figure 2.5.: Adaptation of a video stream using scalable video coding. Adapted from
[DCMP11].

which incorporates a base layer and enhancement layers [SMW07]. The base layer, which is
encoded in a way to be decoded independently, offers a minimal perceptual quality. Additional
enhancement layers can be added in order to enhance the perceptual quality of the encoded
video. They offer temporal scalability (frame rate), spatial scalability (spatial resolution),
SNR scalability (picture quality), and combinations of the three [WOZ02]. To achieve a desired
bit rate of the video bitstream, an adaptation algorithm selects video layers according to
the transmission capacity (cf., Figure 2.5). In typical deployments, three to five layers are
produced, since more layers typically lead to substantial inefficiencies in the rate-distortion
performance. An SVC-based video transmission approach requires an advanced deployment
strategy since an adaptation logic is required at the video source and intermediate proxies.
Another limitation of SVC is that the usage of scalable codecs has not been adopted widely
by industry as of today. Popular on-demand streaming Internet streaming platforms, such as
YouTube [Webc] or Netflix [Weba], use single-layered representations of the encoded videos
for AHS.

Multiple bit rate coding: In MBR coding (cf., Figure 2.6), a video coding entity encodes
the raw source video at NL desired bit rates (video levels). The simultaneously encoding of
the NL different video levels can, for example, be realized by NL separate video encoders or a
multi-rate video encoding entity [FS+11; SRS15]. A separate adaptation algorithm selects the
video levels dynamically according to the transmission capacity between the video source and
the sink. In contrast to the transcoding-based approach, no additional transcoding step of the
encoded video is required after the encoding to adapt the video to the network performance.
Besides that, MBR is codec-agnostic since it does not rely on any advanced codec features
[DCMP11]. MBR is applied in AHS, which has been realized in several commercial and open
source implementations and is further discussed in Section 2.2.2.2.

2.2.2. Video streaming protocols

The transmission of video streams between a streaming server, which acts as a video source,
and the streaming clients can be performed in different ways, depending on the type of video
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Figure 2.6.: Adaptation of the video stream using multiple bit rate coding. Adapted from
[DCMP11].

content (live or on-demand) and the network conditions. To ensure a reliable delivery of the
video content over lossy networks, streaming protocols are required which support retrans-
missions of lost packets. For real-time requirements, low latency protocols are required which
might admit occasional packet losses. The major video streaming protocols can be grouped
into two major classes [BAB11]: push-based and pull-based streaming protocols.

2.2.2.1. Push-based streaming protocols

In push-based streaming, a media streaming session is established between the streaming
source and the client, which is used for the media transmission until the client terminates
the session. The server employs a session state to control the streaming session, which is
updated by the client using session-state updates [BAB11]. These, for example, can be used
at the server to adapt the bit rate of the encoded video stream according to the transmission
capacity using a transcoder for the bitstream adaptation.

Real-Time Transport Protocol (RTP) [SC+03] is the most commonly used push-based stream-
ing application protocol which provides end-to-end transport mechanisms developed for the
transmission of multimedia content. RTP usually employs User Datagram Protocol (UDP)
[Pos80] as a transport layer protocol, which does not offer internal rate control processes
[BAB11]. For session control, such as the start-up or termination of a streaming session, Real-
Time Streaming Protocol (RTSP) [SRL98] is applied. In typical RTP/UDP-based streaming
sessions, the media bit rate is adapted according to the transmission capacity between the
server and the client. For this purpose, the client constantly tracks the network statistics,
such as throughput, round-trip-time, and jitter. The measurement reports are provided to
the server using Real-Time Control Protocol (RTCP) [SC+03], which are used at the server
to adapt the bit rate of the encoded video stream accordingly.

Despite its efficient bandwidth usage and its built-in adaptation mechanisms, RTP/UDP-
based streaming has several disadvantages. The RTP-based media transmission might suffer
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significantly due to the usage of UDP as a transport protocol. The inherent unreliability and
likeliness of filterings of UDP packets at firewalls might lead to significant packet losses [Sto11]
and as a consequence to degradations of the perceptual quality at the client. Therefore, flow
congestion control and error control mechanisms are up to the application layer, since UDP
does not provide these mechanisms [Sto11]. Besides that, for the transmission of the video
contents a specialized RTSP server is required, which introduces additional complexity at the
streaming server [BAB11].

2.2.2.2. Pull-based streaming protocols

Unlike in push-based streaming, in pull-based streaming the client is responsible to command
and request the video stream from the server. The delivered media bit rate from the server
depends on the client requests. Most pull-based streaming protocols employ HTTP [FG+99]
as an application protocol and TCP [Pos81] as the underlying transport protocol. In modern
deployments, typically two different implementations of pull based streaming are used: non-
adaptive progressive download over HTTP and AHS.

Progressive download over HTTP: In progressive download, the client requests a download
of a pre-encoded media file stored on a conventional web server using a HTTP GET request.
In response to the HTTP request, the download is started and performed at the maximum
possible download rate [ABD11]. The playback of the video is performed in parallel to the
download and started once the client buffer is filled above a certain threshold. If the download
rate is equal to or larger than the playback rate, the client buffer is always filled above a critical
level which ensures an interruption-free media playback. If, however, the download rate is
lower than the playback bit rate of the video, buffer underflow events might occur which lead
to stalling during the playback.

Progressive download over HTTP typically depends on TCP as the transport protocol. Due
to TCP’s retransmission mechanisms for lost packets and its successful traversal at firewalls, a
reliable transmission of the media stream can be achieved. Besides that, TCP offers congestion
control algorithms in order to realize an overall stable network [DCMP11]. This, however, can
lead to significant TCP rate fluctuations which in turn causes stalling in the media playback
due to an empty playout buffer. A sufficiently large buffer size and an initial playout delay
are typically required to guarantee that the client playout buffer is filled above the critical
threshold and consequently to ensure an uninterrupted playback.

Although progressive download is the most commonly used streaming system for on-demand
media transmission as of today, it exhibits some major limitations. Progressive download does
not offer live streaming capabilities and adaptation mechanisms [Sto11]. During a streaming
session, the download rate cannot be adapted according to the available transmission capacity
without re-initiating a new download session. This becomes problematic in the streaming
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response to network performance changes. Adapted from [BAB11].

sessions of clients with significant network performance changes during the streaming sessions
[ABD11]. Furthermore, transmitted media content in the buffer might be wasted in case of
an abortive program stop [Sto11].

Adaptive HTTP streaming: AHS is a pull-based streaming technology which relies on
HTTP/TCP transport mechanisms, analogous to progressive download over HTTP. AHS
is designed to solve the major weaknesses of progressive download over HTTP by additionally
employing rate adaptations and support for live streaming. In AHS, the source video stream
is split into segments of a defined duration (typically 2-10 s [EK+14]). A MBR encoder is
used to encode the video segments at multiple bit rates, which represent different video qual-
ity levels. Information about the available video levels, i.e., their bit rate, resolution, timing
information, etc., are merged into a manifest file, which needs to be transmitted to the client
prior to the streaming session. During a streaming session, the client continuously monitors
its playout buffer fullness and the throughput to the streaming server. In return the client
requests video levels at bit rates that best match the current network performance. The media
stream can be fully reconstructed at the client, if all downloaded segments are played back
consecutively [BAB11]. Figure 2.7 displays a typical AHS adaptation scenario, where a client
reacts dynamically to changing network conditions.

Similar to progressive download over HTTP, AHS inherits the deployment and transmis-
sion properties of the underlying HTTP/TCP transport. Therefore, the encapsulated media
packets do not suffer from firewall filterings on the transport layer. Furthermore, standard
web servers can be used for the media streaming, which makes special streaming servers,
such as RTSP servers required in RTP/UDP-based streaming, superfluous. Unlike progres-
sive download over HTTP, AHS offers support for live-streaming, which makes it suitable for
the transmission of live video content, such as live camera streams [Sto11]. In case of live
streaming, the manifest file is updated on-the-fly once new video segments become available
[Sod11].
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AHS has initially been developed for the downlink delivery of videos from CDN networks.
In this context, several proprietary AHS systems have been developed and deployed over the
last years, such as Apple’s HTTP Live Streaming (HLS) [PM14], Microsoft’s Smooth Stream-
ing [Zam09], and Adobe’s HTTP Dynamic Streaming [Ado10]. Besides that, 3rd Generation
Partnership Project (3GPP) and MPEG have developed Dynamic Adaptive Streaming over
HTTP (DASH) as a common AHS standard, which is standardized as MPEG-DASH [ISO14]
and 3GP-DASH [3GP14].

2.3. Video quality

Lossy compression is required to adapt the bit rate of encoded videos, depending on the
application, to the storage or transmission channel capacities. This can be realized by an
adaptation of the spatial quality as well as temporal and spatial resolutions, which all in-
troduce different kinds of distortions to the encoded video. The artifacts, such as blurring,
blocking, and jerkiness, appear as visually annoying distortions to the viewer [YW98]. In order
to attain the desired bit rate constraints and to select the encoding settings that maximize the
perceptual quality, it is necessary to evaluate the impact of the different impairments on the
perceived quality of the viewer. To this end, two assessment methodologies are primarily used:
subjective and objective quality assessments. In subjective quality assessments, human sub-
jects evaluate the perceptual quality of the displayed videos. The assessments are conducted
to investigate how the video quality is perceived for various impairments. While subjective
video quality assessments are able to offer reliable information about the actually perceived
quality, they are time-consuming and expensive since a large number of test subjects is re-
quired. Objective video quality assessments, on the other hand, employ video features which
can be computed directly from the video frames and mathematical models of the HVS to
determine the video quality. Since no direct human interaction is required, objective quality
metrics are inexpensive and therefore suitable for video processing systems to automatically
measure or estimate the video quality. However, objective video quality metrics are not able
to capture various factors which affect the perceptual quality, such as the user experience and
expectations, display settings, or specific tasks and thus might not be able to offer accurate
estimations of the subjective video quality [Ric03].

In the remainder of this section, subjective video quality assessment methodologies are re-
viewed in Section 2.3.1. Objective video quality assessment methodologies are introduced in
Section 2.3.2. Finally, major state-of-the-art objective video quality metrics for spatial quality
and temporal resolution impairments are discussed and compared in Section 2.3.3.
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2.3.1. Subjective video quality assessment

The quality feeling of a perceived video is highly subjective as it is influenced by different
factors of the human perception, such as the eye, the brain and their interactions [Ric03]. To
capture the opinions of the subjective quality observed by the humans, subjective video quality
assessment tests are applied, which present a set of video sequences to the human subjects
and record the corresponding ratings. Two different kinds of subjective tests are commonly
used [Zha14]. In pairwise tests, two test videos are displayed side-by-side in a test case and
the subject has to evaluate which video has the higher perceptual quality as opposed to mean
opinion score (MOS)-based tests, where the test videos are presented solely and the subject
needs to assess the quality of each test video on a defined quality scale. The MOS value
has originally been designed for the subjective assessment of the voice quality in telephone
applications [IR98], however, is commonly applied to capture the subjective perception of
video sequences. It is calculated as the mean of the individual quality ratings of the test
subjects.

2.3.1.1. Assessment methodologies

To design and conduct subjective tests and to ensure reproducibility of the subjective votes
realized in equal test conditions, ITU has defined a set of guidelines to conduct the subjective
tests [IR08; IR09; IR12]. In the following, three commonly used types of tests are briefly
reviewed.

Double-stimulus methods: Two different double-stimulus methods, which have originally
been developed for television applications, are widely accepted as test methods (cf., Fig-
ure 2.8): double-stimulus impairment scale (DSIS), and double-stimulus continuous quality
scale (DSCQS) [IR12]. In both methods, the unimpaired and processed sequences are dis-
played consecutively twice, and the subjects rate the perceptual quality of the processed
sequence during the second playback. Depending on the test method, different display orders
of the reference and the processed video sequence are performed and different rating scales
are applied. In DSIS, which uses a five-point impairment scale to capture the user ratings (cf.,
Figure 2.9a), the reference sequence is always presented first and the processed sequence sec-
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Figure 2.9.: Rating scales of the different video quality assessment methods. Adapted from
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ond [IR12]. DSCQS considers a randomized display order of the reference and the processed
representation of the video. The difference between the subjective quality ratings of both
representations, which is captured by a continuous quality scale (cf., Figure 2.9b), is used to
compute the perceptual quality of the processed representation of the video [PW03].

Single-stimulus methods: Single-stimulus continuous quality evaluation (SSCQE) [IR12]
and absolute category rating (ACR) [IR08], originally defined for television applications, are
two widely used single-stimulus test methods. In SSCQE the observers rate the displayed video
continuously throughout the test using the same quality scale as in the DSCQS assessment
method (Figure 2.9b), sampled at a frequency of 2 Hz [IR12]. This allows to capture the
continuous change of impairments over time perceived by the observers. In the ACR method,
similar as in DSCQS and DSIS, the subjects rate the displayed video representations after
the playback using a five point scale (Figure 2.9c). In comparison to the double-stimulus
assessment methods, ACR enables to analyze more video representations in the same test
duration, which, however, might lead to contextual effects. Contextual effects occur when
subject ratings are influenced by the degree and ordering of the impairments in the test
session [PW03]. It has been shown that by using additional hidden reference sequences among
the test sequence set, the contextual effects could be reduced significantly at roughly the same
reliability of DSCQS [ITU08].

Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ): Unlike the previously
presented single- and double-stimulus methods, SAMVIQ [IR09] has been developed for qual-
ity assessments of multimedia content and applications. The test is performed scene-wise (cf.,
Figure 2.10) with a number of processed video sequences and a reference sequence each. To
avoid contextual effects throughout the test, the processed video sequences are ordered ran-
domly and a hidden reference sequence is added to the sequence set. Analogous to DSCQS,
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Figure 2.10.: Example of the test organization in SAMVIQ. Adapted from [IR09].

SAMVIQ uses a continuous quality scale for the quality ratings (cf., Figure 2.9b). In SAMVIQ,
no strict timing for the rating is specified which allows the subject to make arbitrary com-
parisons between the processed video sequences with the reference or other processed video
sequences at his/her desired pace. This makes it possible for the subject to replay and re-rate
the different representations, and as a consequence to reduce erroneous ratings. It has been
shown that SAMVIQ enables to capture the subjective ratings more reliably as compared to
DSCQS [Bli06] and with a similar reliability as compared to ACR but with a lower number
of required test subjects [RP+10].

Because of the higher reliability of the subjective ratings of SAMVIQ in comparison with
the other subjective quality assessment methods, SAMVIQ is used to assess the perceptual
quality in the further course of this chapter.

2.3.1.2. Video content selection

To ensure generality of the determined results of the subjective quality assessment, it is nec-
essary to select the video sequences for the test carefully. According to ITU [IR08; IR09] it
is recommended to use temporal perceptual information (TI) and spatial perceptual infor-
mation (SI) values, which quantify the spatial and temporal properties of videos, in order to
select a representative set of test video sequences. The test videos should contain all extreme
conditions, and should “be ‘critical but not unduly so’ for the system under test” (quoted
from [IR12]).

The TI value of a video sequence with Nf frames indicates the amount of temporal change
and is calculated by

TI = maxNf
[σNx,Ny

{Pk(x, y)− Pk−1(x, y)}], (2.2)
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where σNx,Ny
{Pk(x, y)−Pk−1(x, y)} is the standard deviation of the pixel differences between

two consecutive frames (k and k−1) with Nx horizontal and Ny vertical pixels. The maximum
value over all Nf frames of a video sequence (maxNf

[.]) is used to compute the single valued
TI measure. In general, video sequences with a high amount of motion lead to large TI values
[IR08].

Besides that, the SI value indicates the amount of spatial detail of a video sequence. The
calculation of the SI value for a video sequence with Nf frames is

SI = maxNf
[σNx,Ny

{Sobel(Pk(x, y))}], (2.3)

where the luminance plain of the kth frame is processed by the Sobel-filter (Sobel(Pk(x, y)))
[SF68]. Similar as for the TI value, first the standard deviation over all pixel values for all
frames are computed (σNx,Ny

{Sobel(Pk(x, y))}). The maximum value over all Nf frames of
a video sequence is used to generate the single valued SI measure. SI values are larger for
spatially more complex video scenes [IR08].

One main limitation of the defined TI and SI measures is that they rely on the maximum
values of the temporal change of consecutive frames and the spatial information of a sequence,
respectively. This, however, is problematic for long video sequences with a significant content
change, such as sport sequences (cf., Figure 2.2a). In order to quantify the temporal and
spatial properties of the whole video sequence more representatively and reliably, slightly
modified versions of TI and SI values have been proposed in [PS11] as temporal activity (TA)
and spatial activity (SA) values:

TA = µNf
[σNx,Ny

{Pk(x, y)− Pk−1(x, y)}] (2.4)

SA = µNf
[σNx,Ny

{Sobel(Pk(x, y))}]. (2.5)

Instead of the maximum value over the Nf frames (maxNf
[.]), the mean value (µNf

[.]) is
employed to compute TA and SA.

Throughout this work, TA and SA are used to quantify the temporal and spatial properties
of video sequences.

2.3.1.3. Assessment preliminaries and procedure

Besides the thorough selection of the test video set, the selection and number of the test
subjects is essential for the reliability of the results of the subjective assessment. Test subjects
can be classified as experts and non-experts. Expert subjects are people who are familiar with
the intricacies of image and video processing and the different kinds of visual impairments.
They have an experienced way of looking at the displayed video sequences and tend to conduct
the test too hastily. In order to ensure generality and to capture representative subject votes,



24 Chapter 2. Background

only non-experts should be selected for the assessments [IR12]. Most test recommendations
suggest to use at least 15 subjects with normal color vision and visual acuity in the test in
order to ensure statistical reliability [IR08; IR09; IR12]. Besides that, a playback duration of
10 to 15 s for the displayed video sequence is commonly recommended in order to get stable
and reliable results [IR09].

The actual test procedure is commonly divided into the three main phases preparation, test
assessment, and post-processing. In the preparation phase, the test room should be prepared
according to the test recommendations [IR08; IR09; IR12]. The test should be explained to
the subjects in an oral and written form. A training session prior to the actual test should be
performed in order to clarify questions and to accustom the subjects to the test environment
and impairments inquired in the test. The ratings recorded during the training session should
not be included in the final results.

In the post-processing, the test subjects should be evaluated regarding the reliability of their
ratings, and outliers should be removed from the set of subjects. The test standards define
rejection criteria which evaluate the correlation between the votes of the individual subjects
with the mean values of all subjects of the test [IR08; IR09; IR12].

2.3.2. Objective video quality assessment

Objective video quality assessment methodologies are employed in order to estimate the per-
ceptual quality of a video sequence in an algorithmic way without direct human interactions.
The metrics are typically applied in a number of different video processing and video transport
applications, such as rate controllers installed at the video encoder or for perceptual quality-
aware adaptations along the video transport path. In general, objective video quality metrics
can be divided, depending on the employed information of the original and compressed repre-
sentation, into three main classes: full-reference, no-reference, and reduced-reference quality
metrics [IR00]. Figure 2.11 displays a system view of the three different objective quality
assessment concepts and their deployments in video processing systems.

In a full-reference (FR) metric, the video quality is determined by comparing the reference
frames with the processed frames in a pixel-by-pixel manner. Although it has been shown that
full-reference assessments offer the highest estimation accuracy of the perceptual quality, the
practical applicability of these assessments systems is limited to scenarios where the reference
frames are available. To this end, FR assessments are typically applied in source-based video
processing, such as rate controllers at the video source, or off-line applications. In Section 3.4
of this thesis, for example, a FR metric has been used in perceptual-quality aware rate control
to determine encoding settings for given rate constraints.

In no-reference (NR) quality metrics, the video quality of the processed video is directly as-
sessed without the involvement of the original video source, which offers a higher usability
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Figure 2.11.: Block diagram of no-reference, full-reference and reduced-reference video quality
assessment systems. Adapted from [Pen12].

range compared to FR metrics. In general, there are two types of NR metrics. NR-B metrics
consider the bitstream of the video before decoding and NR-P analyze the decoded video
[KC+06]. One major drawback of NR metrics is that it is sometimes complicated to differ-
entiate between content and encoding artifacts in the video frames, such as straight borders,
which might be either caused by blocking artifacts or an actual part of the video frame [Pen12].

Finally, reduced-reference (RR) metrics employ features which are determined from the orig-
inal and the processed video. These features need to be transmitted over a separate channel
to the video quality measurement point, where the video quality is estimated by comparing
the features from both measurement points. In general, RR metrics are able to provide higher
accuracies of the video quality estimations as compared to NR models, however, at the cost
of a larger transmission overhead caused by the features which need to be transmitted to the
measurement point.

2.3.2.1. Objective video quality metrics

In the following, the most commonly used objective video quality metrics are briefly reviewed.

Peak signal-to-noise ratio: The most commonly applied FR objective video quality metric
in image and video processing is PSNR, which describes the ratio of the maximum power of a
source signal and the power of the noise of the distorted image or video frame [WOZ02]. The
PSNR is computed by

PSNR = 10 · log10
(2b − 1)2

MSE
dB, (2.6)

where b is the number of bits per pixel, which is set to b = 8 bit/px throughout the thesis.
The MSE of a compressed image or video frame is computed by a pixel-to-pixel comparison
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(a) Original (b) 37.2 dB (c) 35.2 dB (d) 35.1 dB

Figure 2.12.: Original and distorted versions of an example frame of the Foreman video [Seq]
at different PSNR values.

between the original image (P (x, y)) and the processed image (P̂ (x, y)) as

MSE = 1
Nx ·Ny

·
Nx∑
x=1

Ny∑
y=1

(P (x, y)− P̂ (x, y))2, (2.7)

where Nx and Ny are the number of horizontal and vertical pixels of a frame, respectively.
In video processing the PSNR value of a video sequence is typically computed as the mean
over the PSNR values of the luminance component (referred to as PSNRY ) of all Nf video
frames of a video sequence, which is computed by

µPSNRY
= 1
Nf
·
Nf∑
i=1

PSNRY,i. (2.8)

PSNR4 is widely used to evaluate the distortion of images and video frames due to its simple
calculation. However, one main limitation of PSNR is that it does not take the characteristics
of the HVS into account and thus offers a low estimation accuracy of the human perception
[Gir93; VQE03]. A PSNR value does not necessarily match the actual subjective evaluation
of a human observer. To give an example, Figure 2.12 displays different distorted versions
of an example frame (Figure 2.12a). Figures 2.12(b, c) display blurred representations of
the original image at different PSNR levels (37.2 dB and 35.2 dB), where the distortion is
applied to the whole frame. Besides that, in Figure 2.12d the face is almost undistorted
and the distortion has primarily been applied to the background of the image. Although
the resulting image has approximately the same PSNR value compared to Figure 2.12c, the
perceptual quality of Figure 2.12d is commonly rated higher [Ric03]. These findings reveal
that the actual perceived quality might vary from the quality ratings of the PSNR values.
A second limitation of the PSNR is its content-dependency, since it offers unreliable quality
estimations when the quality of videos with diverse content is compared [GHT08].

4Throughout this thesis, µP SNRY is referred to as PSNR.
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Advanced objective video quality metrics: Two different types of quality metrics have been
developed, which aim to solve the limitations of the PSNR metric [Win15]: HVS-based met-
rics and engineering metrics. HVS-based metrics take different psycho-visual characteristics
of the HVS into consideration, such as contrast sensitivity and multichannel decomposition
[WSB03]. They incorporate the error sensitivity of the HVS between the original and pro-
cessed images by modeling the HVS as a sequential process [WSB03]. HVS-based metrics are
typically FR metrics which offer accurate estimations of the perceptual quality, however, are
computationally complex. Besides that, HVS-based metrics do not account for other aspects
of the visual perception, such as the processing of the results in the brain, which also have a
significant impact on the overall visual perception. Further information on HVS-based metrics
can be found in [WSB03; WM08; CS+11].

Engineering metrics, on the other hand, assume the HVS as a black box and estimate the
overall quality using some content features of the video. Unlike the HVS-based metrics, engi-
neering metrics are typically developed for a specific quality task and employ video features
which can be determined from the video frames using computationally efficient algorithms.
Various metrics depend on PSNR or MSE values and further extend these by incorporating
some video content features to reduce the content-dependency effects of the PSNR [PW02;
ODZ07; BRK09]. Structural similarity index (SSIM) offers higher correlations with the human
perception than the PSNR-based metrics by taking the structural information of the frames
into account, which covers the inter-dependencies between spatially close pixels [WB+04].
SSIM is a single valued measure which expresses the contrast, luminance, and structure of
two images after the mean subtraction and variance normalization [WB+04].

The major limitation of the previously discussed SSIM and the PSNR-based engineering
metrics is that they do not capture other visual impairments than the spatial quality of the
video frames, such as spatial and temporal resolution impairments. To this end, numerous
engineering metrics have been developed which consider the joint influence of spatial quality
as well as spatial and temporal resolution impacts on the perceptual quality [KD+07; MX+12;
FS+07; PS11].

2.3.3. Perceptual video quality modeling

In the following subsection, PSNR-based objective video (engineering) quality metrics are
reviewed, which estimate the perceptual quality (referred to as Q in the following) of pro-
cessed representations of a video for both, spatial quality (i.e., image quality) and temporal
resolution impairments. To this end, first, three major spatio-temporal video quality metrics
are introduced. Second, a subjective test to assess the perceptual quality for spatio-temporal
quality impairments is conducted for a representative video set. The results of the subjec-
tive assessment are used to train the model parameters of the different metrics and used to
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compare the estimation performance of the three metrics5.

2.3.3.1. Spatio-temporal video quality metrics

In the following, three objective video quality metrics are introduced which estimate the
influence of the spatial quality and the temporal resolution on the perceptual quality.

QM [FS+07]: The quality metric proposed in [FS+07] (referred to as QM in the following)
depends linearly on the PSNR value. It additionally takes the temporal estimation weakness of
PSNR into account, which underrates the perceptual quality for temporally downsampled pro-
cessed video sequences [Pen12]. For this purpose, QM introduces a video content-dependent
temporal compensation factor which depends on the frame rate difference of the original video
and the downsampled representation of the video as well as a content-dependent motion factor
κ. The motion factor is computed as the average of the highest 25% of the motion vector
magnitudes divided by the frame width.

The perceptual quality using QM is estimated by

QQM = a1 · (PSNR+ a2 · κa3 · (fmax − f)) + a4, (2.9)

where a1, a2, a3, and a4 are content-dependent model parameters, which are determined by
least squares non-linear fitting, and fmax is the highest frame rate considered in the metric.
QQM of Eq. (2.9) has been slightly modified compared to its originally proposed version in
[FS+07] by additionally introducing a1 and a4 as scaling factors in order to realize other
quality scales than the ones used in the originally proposed version, such as five-point rating
scales (cf., Fig 2.9c).

Although QM is able to improve the estimation performance of the perceptual quality for
temporally downsampled processed video sequences compared to PSNR, it suffers from its
linear dependency on the PSNR and its content-dependency issues. This, however, might
lead to an overall low estimation performance of the perceptual quality.

VQMTQ [WMO09; MX+12]: Unlike QM, the quality metric proposed in [WMO09] (re-
ferred to as Wang in the following) depends directly on the quantization parameter of the
encoded video for spatial quality impairments. The metric proposes a separation of the spatial
and temporal encoding settings as separate factors. The perceptual quality using Wang is
estimted by

QWang = Qmax ·Qq(q, fmax) ·Qf (f, qmin), (2.10)

5Parts of this study appeared in preliminary form in [LSS].
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where Qmax is the highest rating of the video quality, Qq is the factor which captures the
influence of the quantization encoding settings, and Qf is the factor which takes the impact
of temporal resolution changes into account. Qq and Qf are computed by

Qq(q) = eb1 · e−b1· q
qmin

Qf (f) = 1− e−b2· f
fmax

1− e−b2
,

where b1 and b2 are content-dependent model parameters, fmax is the highest frame rate and
qmin the lowest quantization parameter considered in the metric. Wang takes the content-
dependency of the spatial quality into consideration, which improves the metric accuracy
significantly. The authors extend their metric in [MX+12], where they develop video codec-
specific estimators for the content-dependent parameters (referred to as VQMTQ in the fol-
lowing). The estimators depend on the motion vectors and video contrast-dependent measures
which need to be computed by a separate pre-processor entity from the original video. This
process, however, is computationally demanding and requires direct access to the video and
internal mechanisms of the video codec.

STVQM [PS11]: Similar to Wang and VQMTQ, STVQM models the impact of spatial
and temporal encoding settings as separate factors. To this end, in STVQM a spatial factor
(SV QM) that depends on PSNR and a temporal factor (TV QM) which depends on the frame
rate of the encoded video are introduced. SV QM is modeled as a logistic function

SV QM = Qmax −Qmin
1 + e−(PSNR+ws·SA+wt·TA−µ)/s +Qmin, (2.11)

and TV QM as

TV QM = Qmax −Qmin
Qmax

· 1 + ta · TAtb

1 + ta · TAtb · fmax

f

+ Qmin
Qmax

, (2.12)

where Qmin is the lowest rating of the video quality, fmax is the highest considered frame rate,
and ws, wt, ta, and tb are model factors. The perceptual quality using STVQM is estimated
by

QSTV QM = SV QM · TV QM . (2.13)

STVQM employs TA and SA as video content parameters for the spatial and temporal com-
ponents. This makes it possible to compensate for the contextual issues of PSNR and hence to
achieve high estimation accuracies of SVQM [Pen12]. STVQM achieves a similar estimation
performance as VQMTQ, however, with the advantage that less computational demanding
estimators for the video content-dependent parameters are required, which makes STVQM
suitable for real-time video processing systems [PS11].
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5

(f) Video 6 (g) Video 7 (h) Video 8 (i) Video 9 (j) Video 10

(k) Video 11 (l) Video 12 (m) Video 13 (n) Video 14

Figure 2.13.: Example frames of the Road video set recorded with an ADAS front-facing cam-
era.

2.3.3.2. Subjective study

In the following, the estimation performance of the perceptual quality of QM, VQMTQ,
and STVQM is determined and compared. To this end, first the setup and the results of
the conducted subjective test is introduced, followed by an assessment of the estimation
performance of the three video quality metrics.

Test sequences: For the investigation, 14 videos from road scenes are selected, which have
been recorded with a resolution of 1280x720 at 30 frames per second6. The videos are recorded
with a prototypical ADAS front-facing camera while driving in urban and highway environ-
ments. All sequences have a length of 300 frames. Example frames of the selected videos are
displayed in Figure 2.13 and the TA/SA values of the full video sequences are displayed in
Figure 2.14. For the further analysis, the video pool is separated into two datasets: a training
set (video 1-10), which is used to train the model parameters and a validation set (video
11-14), which is used to assess the performance for videos outside the training set.

For each uncompressed source video, 12 processed video sequences (PVSs) at four different
frame rates (30 fps, 15 fps, 10 fps, 5 fps) are created. For each frame rate level, the videos are
encoded at three different PSNR values (42 dB, 38 dB, 34 dB) with H.264/AVC (Main profile)
using x264 [Vid]. All videos are encoded with a constant quantization parameter using I-frame
only GoPs. In order to realize the same video duration, frame repetitions are generated for
the temporally downsampled representations of the videos.

6In the remainder of this thesis, the video set is referred to as Road video set.
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Figure 2.14.: TA and SA values of the Road training ( ) and validation ( ) sets (full video
sequences).

Test setup and procedure: The perceptual quality of all uncompressed and compressed
video sequences is assessed using SAMVIQ [IR09]. For the test development and assessment,
the instructions of [IR09] are followed. A graphical user interface according to the guidelines
of [IR09] is implemented, where the video is displayed in full resolution in the center of the
screen with a gray background. Further information on the implemented interface is given in
Appendix A. A five-point rating Likert scale (cf., Figure 2.9c) with values from 1 (worst) to 5
(best) with intermediate steps of 0.5 is used to capture the user ratings. The subjects are able
to access the uncompressed reference sequence (referred to as Ref ), the hidden reference, and
the different PVSs of one video scene by clicking on the buttons placed below the video. In
order to perform the ratings, the subjects have to watch the full video representations when
played the first time but are able to jump back to the previously rated video representations
and change the ratings afterwards. Once all representations of one video are rated, a Next
button is unlocked to proceed to the next video. An End button appears if the subjects rated
the representations of all video scenes.

Before the actual test, the test setup and process is introduced to the subjects using a printed
version of the test (cf., Appendix A) as well as a presentation of the test with a demonstration
of the different types of impairments that are assessed during the test. Besides that, the
subjects are able to familiarize themselves with the test interface using a mock-up model of
the test and to ask questions.

The properties of the hardware setup of the conducted test are displayed in Table 2.1. To avoid
fatigue of the subjects, two separate experiments with two groups of persons were performed.
In the first experiment, the subjects evaluated videos 1-7, and in the second experiment the
subjects rated videos 8-14. In both experiments, 17 non-expert subjects with an average
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Parameter Settings
Type of display LCD (CCFL, TN-panel)

Display size 15.4”
Display resolution WUXGA (1920x1200)

Model LG.Philips LP154WU1-TLB1

Table 2.1.: Subjective test hardware configuration.

age of 31 participated and each of the subjects rated in total 91 PVSs. The duration of
both experiments was on average 25 minutes each. To remove the bias in the quality ratings
effected by the subjects’ feeling regarding the video content, differential mean opinion score
(DMOS) values for each PVS are computed as

DMOS = 1
Ns
·
Ns∑
i=1

(ri(PV S)− ri(SRC)) +Qmax, (2.14)

where ri(PV S) and ri(SRC) are the ratings of the ith subject for the PVS and uncompressed
video sequence (SRC), respectively, andNs is the number of subjects which rated the sequences
for the corresponding video.

Subjective data post processing: The screening procedure defined in [IR09] is used to ex-
clude outliers from the ratings. For this purpose, the Spearman rank correlation SCi and
the Pearson correlation PCi are computed for each subject i versus the mean ratings of all
subjects. For each subject i the following rejection criterion is applied:

If Ci ≤ UR Then reject subject i,

where UR is the rejection threshold7 and Ci = min(SCi, PCi). After the screening procedure,
15 subjects in the first experiment and 16 subjects in the second experiment are identified as
valid. Figure 2.15 displays the mean DMOS values of the subjective test results for the videos
of the training set versus the frame rate for the different PSNR values along with the 95%
confidence interval (CI), which is determined using the Student’s t-distribution.

2.3.3.3. Performance assessment

In the following, the performance in estimating the perceptual video quality is determined for
the three objective video quality metrics.

Evaluation metrics: In order to investigate the estimation performance of the objective video
quality metrics, the Pearson correlation (PC) and the root mean square error (RMSE) are

7UR has been set to 0.85, which is the default value suggested in SAMVIQ [IR09].
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Figure 2.15.: Perceptual quality Q versus f for different PSNR values determined using the
subjective test for videos of the Road training set: 42 dB ( ), 38 dB ( ),
34 dB ( ) with 95% CI ( ).
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used as performance measures, which are commonly used for the evaluation of subjective
quality metrics [VQE08].

The PC is a statistical metric which indicates the linearity between two random variables
[PF98]. Applied to objective video quality metrics, the PC describes the linearity between the
metric estimations and the subject ratings of the test assessment. The PC is calculated as

PC =

Nv∑
i=1

(ri − rmean) · (r̂i − r̂mean)√
Nv∑
i=1

(ri − rmean)2 ·
√

Nv∑
i=1

(r̂i − r̂mean)2

, (2.15)

where Nv denotes the number of videos considered in the investigation. The estimations
from the metrics for the ith video and the mean over all videos are denoted by r̂i and r̂mean,
respectively, whereas ri and rmean are the corresponding subjective ratings and the mean value
over all subjects. The PC is a unitless measure which is defined between 0 and 1. Values close
to 1 indicate a high metric estimation performance.

RMSE is an error measure that describes the accuracy of the model estimations. The RMSE
is calculated as

RMSE =

√√√√ 1
Nv − u

Nv∑
i=1

(ri − r̂i)2 , (2.16)

where u is the number of subjective quality-dependent model parameters. The inclusion of u
in the error determination is considered to take the model complexity into account [Pen12].
The smaller the RMSE value, the better is the estimation performance.

Performance comparison: The model parameters of QM, VQMTQ, and STVQM are trained
with the subject ratings from the subjective test with the videos of the training set using
least squares non-linear fitting. In order to evaluate the performance of the models and to
investigate the robustness for videos outside the training set, the estimation performance is
also assessed for the videos of the validation set.

Figure 2.16 displays the measured Q along with the estimated Q values for videos of the
validation set. Furthermore, Figure 2.17 displays the monotonicity characteristics of all three
metrics for the validation videos. The results show that STVQM and VQMTQ offer a similar
estimation performance with only small inaccuracies and a high correlation with the measured
Q values from the subjective assessment. The estimation performance of the QM metric
offers the worst estimation performance, for both the correlation and the deviation from the
measured Q values. The numerical results listed in Table 2.2 underline these findings, where
additionally the PC and RMSE values for the videos of the training and validation set are
listed.
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Figure 2.16.: Performance evaluation of QM [FS+07] ( ), VQMTQ [MX+12] ( ), STVQM
[PS11] ( ) for videos of the Road validation set; measured Q obtained from
subjective test for 42 dB ( ), 38 dB ( ), 34 dB ( ) with 95% CI ( ).
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Figure 2.17.: Performance evaluation of QM [FS+07], VQMTQ [MX+12], and STVQM
[PS11] for videos of the Road validation set: measured Q vs. estimated Q.

VQM Training set Validation set
PC RMSE [DMOS] PC RMSE [DMOS]

QM [FS+07] 0.843 0.47 0.877 0.42
VQMTQ [MX+12] 0.950 0.30 0.955 0.29

STVQM [PS11] 0.983 0.25 0.991 0.17

Table 2.2.: QM [FS+07], VQMTQ [MX+12], and STVQM [PS11] estimation performance:
PC and absolute RMSE values for videos of the Road training and validation set.
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2.4. Automotive systems

Over the last decade, automobiles evolved from simple vehicles for personal traveling and
transportation to elements in the Internet-of-things which actively exchange information with
other nodes in the Internet [FS+14]. This has been primarily driven by the increased compu-
tational resources of the electronic control units (ECUs)8, and the advances of radio access
networks. Larger capacities and the enhanced mobility support of contemporary cellular radio
access networks of the third and fourth generation enable the uplink and downlink of data
traffic even at high velocities. Besides that, vehicles are nowadays able to drive autonomously
in a multitude of driving situations enabled by different ADAS systems. The recent advances
in the ADAS domain have mainly been driven by developments in the near-field and far-field
sensor technology domain and the evolution of advanced ADAS algorithms.

The following section builds the background for the automotive related topics of this thesis.
In Section 2.4.1 an overview of ADAS sensor systems employed in modern vehicles is given,
followed by an introduction to automotive communication systems in Section 2.4.2.

2.4.1. Sensors for advanced driver assistance services

ADAS systems installed at modern vehicles aim at supporting the driver during various driving
tasks and thus increase the safety and convenience on the road. Typical ADAS applications
are pedestrian detection [DW+12], collision avoidance [VE03], congestion assistance [Kra08],
and adaptive cruise control (ACC) [WDS09]. The different ADAS systems use information
about the status, the dynamics, and the surroundings of the vehicle determined by different
sensor systems. In the following, the major sensor technologies to capture the status of the
vehicle and information about the surroundings are briefly introduced.

Vehicle dynamics and positioning: In modern vehicles, several sensor systems are employed
to gather information about the dynamics of the vehicle [Sch09]. The velocity of the vehicle is
determined by an induction-based wheel-speed sensor installed at the front wheels. The lateral
and longitudinal accelerations are computed from the displacement of a spring-mounted mass
using a capacitive sensor. In order to determine the yaw rate, which describes the vehicle’s
angular velocity around the vertical axis, the tilting movement of a swinging impeller is
measured by a capacitive sensor. Further details about the sensor systems to determine the
dynamics of the vehicle can be found in [Fle01; Rei11].

Information about the location of the vehicle is determined using a satellite-based global nav-
igation satellite system (GNSS). Most modern vehicles typically employ NAVSTAR Global

8In vehicular deployments, ECUs constitute embedded computational entities which are responsible for one
or more computational tasks.
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Figure 2.18.: Surround sensor configuration of a typical modern vehicle: LIDAR-
scanner ( ), RADAR ( ), mono ADAS front-facing camera ( ).
Adapted from [AS+12].

Positioning System (GPS) and GLONASS to determine the absolute latitudinal and longitu-
dinal position [Gro13].

Environment perception: Modern vehicles are typically equipped with numerous sensor
technologies to capture objects in the vicinity of the vehicle, which differ in their suitability
for different ADAS systems and their accuracy. In Figure 2.18 the most commonly used
near-field and far-field sensor technologies are displayed.

Radio detection and ranging (RADAR) sensors are employed in both near-field (24 GHz)
and far-field sensing (77 GHz) [Sch05]. In order to capture the distance to other objects, the
RADAR sensor emits electro-magnetic pulses and measures the power of the reflected impulse
in emission direction, which mainly depends on the diameter of the reflected pulse. The emitter
and receiver of the RADAR sensor are typically installed at the same unit. RADAR systems
are especially interesting for automotive ADAS applications, since they are almost insensitive
to weather and atmospheric influences. Besides that, the velocities of objects can be directly
measured based on Doppler measurements. RADAR sensors, however, offer only a limited
lateral resolution [Det89]. In modern vehicles, RADAR sensors are typically employed for
ACC applications.

Light detection and ranging (LIDAR) sensors exploit the principle of time measurement of
emitted light impulses [RG05]. To this end, the distance to other objects is determined by
the runtime of a reflected light impulse with a wave length of around 900 nm and the speed-
of-light. The light impulses can be either emitted by a laser diode with flexible optics or by
a sensor which is constructed by multiple rows of diodes with fixed optics. In comparison to
RADAR sensors, LIDAR sensors are more sensitive to atmospheric and weather influences,
however, offer a higher lateral resolution which can be used to determine the dimensions of
objects [FD+02]. LIDAR sensors are employed in various safety related ADAS applications,
such as collision avoidance and pedestrian detection.
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Modern vehicles are increasingly equipped with camera systems for direct and indirect camera-
based ADAS applications [Rah09]. Direct camera-based ADAS applications present the frames
captured by the cameras directly to the driver. Indirect camera-based ADAS systems, on the
other hand, use advanced image processing algorithms to automatically detect objects or
situations in the field-of-view. Objects and situations are typically detected in the single
frames using edge detectors and are further processed through advanced filters [GKL05]. Due
to the usage of advanced image processing algorithms, indirect camera-based ADAS systems
are able to support a multitude of ADAS applications as opposed to LIDAR and RADAR
systems, which are mainly used to determine the distance and the velocity to other objects.
Direct camera-based ADAS applications are typically employed in parking situations (e.g.,
top-view ADAS systems, rear-view ADAS systems), whereas indirect camera-based ADAS
applications are employed to support the driver in various driving tasks (e.g., lane departure
warnings or pedestrian detection). Similar as for LIDAR systems, the major drawback of
camera-based ADAS systems is that they suffer from the unreliability in unfavorable light
conditions (e.g., low light or extreme weather conditions).

Further information on other sensor systems employed in modern automotive systems (such
as ultrasonic) can be found in [Fle01; WDS09].

In order to enable highly automated driving (HAD) systems with strict reliability constraints,
a sensor setup is required which is able to reliably capture objects and critical situations in
the surroundings of the vehicle. Single-sensor perception systems might not be able to provide
reliable and robust information due to weaknesses inherited by their sensing technology. As
a remedy, modern HAD deployments use a heterogeneous sensor setup with redundant and
complementary sensing technologies (LIDAR, RADAR, and indirect camera-based ADAS
systems) and employ further sensor fusion algorithms to combine the information gathered
by the different sensor technologies [AS+12].

2.4.2. Automotive communication technologies

In automotive deployments, functions and data are typically distributed over several ECUs
and sensor systems. In modern premium vehicles, for example, up to 70 different on-board9

ECUs are employed which exchange thousands of variables and signals among each other
[Alb04]. These numbers are even higher if off-board applications deployed at backend servers
in the Internet are considered.

In order to exchange the data among the different on-board ECUs and off-board entities,
different wired and wireless communication technologies are used in modern vehicles. An

9On-board refers to the communication of ECUs installed locally at the vehicle and off-board refers to the
communication of the vehicle’s ECUs with entities outside the vehicle, e.g., other vehicles or servers deployed
in the Internet.
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overview of both communication technologies and an introduction to the ECU architecture of
modern vehicles is given in the following.

Wired on-board communication technologies: Until the 1990s, ECUs were initially inter-
connected by point-to-point links for inter-ECU communication. However, as the number of
ECUs increased significantly over the years, different fieldbuses have been introduced, which
allowed to replace several dedicated cables by serial buses and as a consequence to decrease the
amount of required cables substantially [NHB05]. In modern vehicles, five major bus systems
are employed:

• The controller area network (CAN) bus system, originally developed by Bosch GmbH
in the 1980s, is the most commonly employed inter-ECU communication technology
in modern vehicles. Typically, two different types of CAN networks are considered
[NS+05]: (i) real-time control CANs for power-train and chassis functions with a data
rate of 250 or 500 kbit/s and (ii) CANs for body-domain functions with a data rate of
125 kbit/s.

• Local Interconnect Network (LIN) is a low-cost in-vehicle network standard, which offers
low network speeds of up to 20 kbit/s and is typically employed for comfort applications,
such as climate control, or light sensors [NHB05].

• Media Oriented Systems Transport (MOST) is a network standard for inter-ECU com-
munication of multimedia applications. In modern vehicles, MOST is typically used for
the interconnection of infotainment applications, such as video displays, active speakers,
or digital radios [NHB05].

• FlexRay has been developed as a major progress towards the requirements of x-by-wire
(e.g., break-by-wire, steer-by-wire) and high data rate in-vehicle applications [NS+05].
It is capable of data rates of up to 10 Mbit/s and is considered as a potential replacement
for the existing buses and increasingly deployed in modern vehicles [NS+05].

• Automotive Ethernet offers even higher data rates of up to 100 Mbit/s. It is consid-
ered as the upcoming standard for the in-vehicle transmission of bandwidth-demanding
video streams from ADAS cameras and high-definition entertainment multimedia traffic
[Rah09; LVH11].

More information on wired automotive communication technologies can be found in [NHB05;
NS+05; SD14].

Wireless off-board communication technologies: Automotive systems increasingly employ
data from off-board systems which introduces the need for wireless connectivity to the Internet.
The potential off-board applications mainly cover three domains: (i) off-board ADAS appli-
cations which exchange road traffic relevant information between the vehicles using vehicle-



40 Chapter 2. Background

to-infrastructure communications (e.g., real-time traffic information), (ii) telematic domain
applications (e.g., off-board navigation), and (iii) multimedia applications (e.g., online video
and audio entertainment applications) [LB+15]. Modern vehicles are increasingly equipped
with a heterogeneous RAN modem [HF+09] and multi-standard antennas [Eki14] which of-
fer connectivity to a multitude of wireless communication standards. In the following, an
overview of the major RAN technologies employed in modern European vehicles is given.

Over the last decade, dedicated short range communication (DSRC) has been developed
as an automotive wireless communication technology to offer both, ad-hoc based vehicle-
to-vehicle and infrastructure-based vehicle-to-infrastructure communication. For vehicle-to-
infrastructure communication, road-site units located along the road are required, which offer
the connectivity to backend servers and the Internet. ITS-G5 [ETS12] represents a DSRC
implementation of the European Telecommunications Standards Institute (ETSI) intelligent
transportation systems and is able to support peak data rates of up to 27 Mbit/s [ITU14].
However, such an automotive-specific technology suffers from the typical chicken-and-egg de-
ployment problem, since a certain penetration of DSRC-equipped vehicles is required before
road operators install required road site units [LB+12b]. Besides that, the high throughput
demands of future off-board automotive applications might exceed the capacities of DSRC
systems [LB+15].

UMTS is the cellular communication standard of the third generation [HT00] and has been
developed by 3GPP. Compared to its predecessor, Global System for Mobile Communications
(GSM) with its extensions General Packet Radio Service (GPRS) and Enhanced Data rates
for GSM Evolution (EDGE), it offers higher data rates, lower latencies, and a higher spectral
efficiency, which is mainly achieved by the usage of code-multiplex mechanisms [HT00]. With
the introduction of the UMTS extensions High Speed Packet Access (HSPA) and HSPA+,
theoretical uplink and downlink data rates of up to 168 Mbit/s (downlink) and 22 Mbit/s
(uplink) can be achieved [JB+09]. Despite the high peak throughput, it has been shown that
both GSM- and UMTS-based cellular networks are not able to satisfy the stringent quality-
of-service (QoS) requirements of future automotive off-board applications [BG+09].

To meet the increasing demand in mobile data traffic and the advanced QoS requirements of
new mobile and automotive applications, LTE has been developed by 3GPP [HT09]. Com-
pared to UMTS and HSPA, it offers even higher data rates, lower latencies and a higher
network capacity. In the downlink, orthogonal frequency-division multiple access (OFDMA)
is applied, which separates the overall downlink stream in small sub-bands. This makes
it possible to reduce the influence of frequency-selective fading and to enable the usage of
multiple-input and multiple-output (MIMO) transmissions which offer peak data rates of 300
Mbit/s in the downlink. In the uplink, peak data rates of 85 Mbit/s with a single antenna
system [DPS11] can be achieved. Although LTE has been developed to offer connectivity at
vehicular velocities, it has been shown that bandwidth-demanding video streaming applica-
tions might not be supported in high velocity scenarios [LB+12b].
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Figure 2.19.: Exemplary ECU architecture (ECUs marked with ) with sensor systems
(LIDAR marked with , RADAR marked with and ADAS front-facing
camera marked with ) and interconnecting bus systems (CAN marked with

and Ethernet marked with ).

LTE-Advanced [HT11] radio access networks will provide even higher data rates and an ad-
vanced support for high velocity (vehicular) terminals. Unlike GSM, UMTS, and LTE, LTE-
Advanced is not yet commonly deployed by mobile network operators as of today.

Further information about wireless automotive connectivity can be found in [EL+13; SD14;
LB+12b; LB+15].

ECU architecture of modern vehicles: Modern vehicles are equipped with a mixture of
different ECUs for different application domains. The ECUs are typically developed as black
boxes by automotive suppliers. Access to settings and functionalities of the ECUs, such as
video encoders and data streams, is only granted through dedicated interfaces with restricted
access. As a consequence, a direct access to raw data streams, such as uncompressed video
streams from ADAS cameras and processing functions of ECUs, is typically not possible.
In accordance with low production costs, the ECUs are typically purpose-built with limited
computational capacities.

Figure 2.19 displays an example ECU architecture and the corresponding interconnection of
a typical modern vehicle with a selection of the ECUs which are employed for the automotive
applications in the course of this thesis:

• The central gateway (CGW) ECU acts as a central relay and transmits traffic between
the different ECUs and wired on-board bus systems [Rah09].

• The head unit (HU) ECU is a central processing entity within the vehicle which per-
forms all infotainment related processes, such as on-board and remote human-machine
interface (HMI) functions and multimedia applications [WT06; EPS10].

• The heterogeneous RAN (HetRAN) ECU offers connectivity to IP-based cellular net-
works, such as GPRS/EDGE, UMTS/HSPA, LTE, and DSRC. It is connected via Ether-
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net to the CGW and offers Internet connectivity to a multitude of ECUs in the vehicle
[HF+09].

• The ADAS ECU performs all ADAS related computations, such as the filtering and
fusion of the data from different sensor systems [Hin11]. It is connected to the CGW
with an Ethernet connection and acts as a sink for the sensor data of the LIDAR
and RADAR sensors which are directly connected to the ECU via the CAN bus. The
computed information can be transmitted to the HU for on-board ADAS services or to
off-board entities via the HetRAN ECU.
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Chapter 3

Video bit rate model for perceptual
quality-aware rate control

In this chapter, the impact of the temporal resolution, spatial quality, and GoP settings on
the bit rate of encoded videos is investigated. Based on analytical evaluations, a video bit
rate model1 is developed which makes it possible to estimate the bit rate of encoded videos
for different quantization parameter, frame rate, GoP length, and GoP structure settings.
Estimators of the content-dependent model parameters for H.264/AVC encoded videos are
developed as functions of the temporal and spatial activity which can be determined from
the uncompressed source video. Furthermore, the proposed video bit rate model is applied
to the solution of a perceptual quality-aware rate control problem to determine quantization
parameter and frame rate encoding settings for given rate constraints.

3.1. Introduction

Enhanced features and the high computational capacity of modern consumer electronic de-
vices as well as the evolution of modern cellular radio access networks enable wireless video
streaming of live and on-demand video content to and from consumer electric devices, such
as smartphones, tablet computers, or connected vehicles. To adapt the video stream to the
dynamically changing performance of wireless channels, different adaptive streaming systems
have been proposed, which have been discussed earlier in Section 2.2. Traditional RTP/UDP-
based video streaming systems and AHS systems use single layer representations of the same
source video and require the video encoded at certain desired bit rates. To achieve the bit
rates, rate controllers at video encoders are required to adapt the encoding settings accord-
ingly. Most state-of-the-art rate controllers employ rate models that only consider modifica-
tions of the spatial quality by an adaptation of the quantization settings or a joint adaptation

1The bit rate model presented in this chapter has previously been proposed in [LS14].
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of quantization and temporal resolution encoding settings by additionally taking frame rate
modifications into account. Typically, these rate models consider a fixed GoP length and
structure for all temporal resolutions with an IPP...P GoP.

While these GoPs are suitable for traditional RTP/UDP-based streaming, AHS based stream-
ing systems require rate controllers that additionally consider the adaptation of the GoP length
for temporally downsampled representations of the encoded video in order to realize video seg-
ments of a specified duration. Besides that, it has been shown that further bit rate savings
of 8% on average can be realized while additionally considering B-frames in the GoPs and
hence taking the influence of the GoP structure on the bit rate into account [LS14]. In order
to realize advanced rate control for video segments of a defined duration, it is necessary to
investigate the impact of each encoding setting on the video bit rate, and thus, to be able to
estimate the bit rate accurately when the encoding settings are adjusted.

Based on these motivations, this chapter proposes a bit rate model which captures the influence
of the spatial quality resulting from adaptations of the quantization parameter and the impact
of the temporal resolution resulting from a variation of the frame rate. In addition, the bit rate
model captures the influence of the GoP length and GoP structure which makes it possible
to estimate the bit rate of encoded video segments of a defined duration. The model has
structural similarity with the models proposed in [MX+12] and [LM+14a] which consider
separate factors for the spatial and temporal encoding settings. It further introduces two
additional factors which take the GoP length and GoP structure into account. The proposed
bit rate model depends on constant parameters and content-dependent factors that need to be
calculated directly from the source video. However, the calculation of the content-dependent
parameters for each source video is computationally complex. To reduce the computational
complexity and to make the rate model applicable in rate controllers, content-dependent
estimators based on temporal and spatial activity values are developed. The proposed bit
rate model is applied to H.264/AVC video coding and shows a high estimation performance
with the measured bit rates of the encoded videos. Finally, a perceptual quality-aware rate
control problem is defined to determine quantization parameter and frame rate encoding
settings for given rate constraints of video segments of a specified duration. A solution of the
problem is developed which takes the proposed bit rate model and an objective video quality
metric into consideration.

The remainder of this chapter is organized as follows. Section 3.2 reviews the related work
on video bit rate models. Section 3.3 presents the proposed bit rate model and the developed
TA- and SA-based estimators for the content-dependent model parameters. In Section 3.4
the proposed bit rate model is applied to perceptual quality-aware rate control in order to
determine optimal quantization parameter and frame rate encoding settings for given rate
constraints. Finally, Section 3.5 summarizes this chapter.
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3.2. Related work

Rate control algorithms at video encoders for hybrid video encoding typically employ video bit
rate models and video quality metrics2 to determine the encoding parameters for achieving
desired video bit rates. In the following, rate models which consider modifications of the
spatial encoding settings and joint modifications of the spatio-temporal encoding settings3

are surveyed.

Spatial rate models: In most state-of-the-art rate control algorithms for hybrid video coding,
the spatial resolution and the frame rate are fixed, and the encoder varies the quantization
encoding settings to achieve desired target bit rates.

The rate control algorithms proposed for MPEG-4 Part 2 [LCZ00] and H.264/AVC [LSW05]
directly depend on the quantization parameter q and use quadratic rate models of the form

R(q) = a1
q

+ a2
q2 + a3, (3.1)

where a1, a2, and a3 are content dependent model parameters which rely on the mean absolute
difference (MAD) of the video frames.

A different class of rate models employ ρ, which is the percentage of zero quantized transform
coefficients for a specific quantization parameter. [KHM01] proposes a linear ρ-based rate
model for typical video coding systems as

R(q) = c · (1− ρ(q)), (3.2)

where c is a content-dependent constant. ρ-based models typically offer a high accuracy in
estimating the bit rates of encoded videos, however, with the requirement to first encode
several or even all blocks before the rate allocation can be done.

Spatio-temporal rate models: Advanced video bit rate models have been developed which,
besides spatial encoding settings, also take the influence of frame rate adaptations into con-
sideration.

The video bit rate model for H.264/AVC encoding proposed in [WMO09] takes both the
impact of quantization parameter and frame rate modifications on the bit rate into account
and introduces separate factors for both encoding settings. The overall model is defined as

R(q, f) = R0 ·Rq(q) ·Rf (f), (3.3)
2A survey of video quality metrics is given in Section 2.3.
3In the course of this chapter, spatial encoding settings refer to quantization parameter settings and temporal

encoding settings refer to frame rate settings.
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where Rq(q) accounts for the quantization parameter q, Rf (f) incorporates the influence of
the frame rate f , and R0 is a video-specific bit rate factor. All three factors rely on content-
dependent model parameters which need to be determined for each video separately. The
rate model considers a static IPP...P GoP and does not take influences of the GoP length and
structure into consideration. As a consequence, the rate model does not allow for estimating
the bit rate of video segments of a specified duration while changing the temporal resolution,
which, however, is typically applied in AHS deployments. The authors extend their metric
in [MX+12] by estimating the video-specific model parameters by content features, which
are determined from the motion-estimation scheme and frame difference information of the
underlying codec. The authors propose a video-codec dependent pre-processor to extract the
features, which, however, is computationally demanding [PS11; LM+14a].

In [LM+14a], a video bit rate model for video segments of a fixed duration for H.264/AVC
encoded videos is proposed, which considers frame rate and quantization parameter modifi-
cations. The model follows a similar approach as [MX+12], however, employs features based
on temporal and spatial activity values to estimate the content-dependent model parameters
which can be computed from the source video. In comparison to [MX+12], the computational
complexity could be reduced and the proposed bit rate model is able to capture downsampled
temporal resolutions for video segments of a defined duration. However, the model has only
been trained for one specific segment duration and is only able to consider IPP...P GoPs.

3.3. Proposed video bit rate model

The bit rate model follows a similar approach as [MX+12] and [LM+14a] and considers the
influence of each encoding setting separately. To this end, an impact factor for each individual
encoding setting is introduced. The spatial factor Rs captures the influence of quantization
parameter modifications. Besides that, the temporal factor Rt takes the influence of temporal
resolution variations on the bit rate of encoded videos into account. The influence of the GoP
settings are captured by a GoP length factor RGoPL, which considers the length of a GoP (n)
and a GoP structure factor RGoPS , which additionally depends on the number of consecutive
B-frames in a GoP (m). Furthermore, a maximum bit rate factor Rmax,I is introduced which
is the bit rate at full frame rate (fmax), the minimum quantization parameter (qmin), and an
I-frame only GoP structure (n = 1, m = 0). The overall bit rate model can be formulated as

R(q, f, n,m) = Rmax,I ·Rs(q) ·Rt(f) ·RGoPL(n) ·RGoPS(m,n). (3.4)

The modeling of the individual factors for the different encoding settings is performed in two
steps. First, the impact of each individual encoding setting on the bit rate of the encoded
videos is studied analytically in Section 3.3.1. Second, estimators for the video content-
dependent model parameters based on temporal and spatial activity values are developed in
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5

(f) Video 6 (g) Video 7 (h) Video 8 (i) Video 9 (j) Video 10

Figure 3.1.: Example frames of the videos from the CIF video set.

Section 3.3.2. Finally, the estimation performance of the model is assessed in Section 3.3.3.

3.3.1. Analytical rate factor modeling

To investigate the impact of the individual parameters on the video bit rate, two different
video sets are introduced:

• CIF : The video set consists of 10 multimedia domain video sequences in Common In-
termediate Format (CIF) (352x288 pixels) with a frame rate of 30 fps and a total length
of 300 frames [Seq]: Akiyo (1), Container (2), Football (3), Foreman (4), Hall (5), Mo-
bile (6), Mother & Daughter (7), Paris (8), Highway (9), and Deadline (10). Figure 3.1
shows example frames of the video sequences and the corresponding TA and SA values
of the full video sequences, computed from the raw videos using Eqs. (2.4) and (2.5),
are displayed in Figure 3.2.

• Road: The video set consists of 14 road-view video sequences recorded with a front-
facing camera of a vehicle with a spatial resolution of 1280x720 pixels, a frame rate of
30 fps and a sequence length of 300 frames. The video set including example frames and
an overview of the TA and SA properties has been introduced earlier in Section 2.3.3.2.

Similar to the investigation in Section 2.3.3.2, both video sets are separated into two datasets
each. To this end, training sets (CIF : video 1-6; Road: video 1-10) are introduced which are
used to train the model parameters and the corresponding estimators. Separate validation
sets (CIF : video 7-10; Road: video 11-14) are used to verify the robustness of the developed
bit rate model and the estimators for videos outside the training sets. The videos of the
training sets are selected to cover the extremes of the TA and SA values and to consider the
characteristics of typical videos of both sets.
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Figure 3.2.: TA and SA values of the CIF training ( ) and validation ( ) sets (full video
sequences).

For the further investigation, each video sequence is split into ten sub-sequences of 30 frames
length, which corresponds to a duration of τ = 1 s per segment at full frame rate. For each
video segment, the TA and SA values are computed separately. Figure 3.3 displays the TA and
SA values of all video segments of the CIF video set. It can be observed that the variation of
the TA and SA values for the segments of the same sequence is high for some video sequences.
For example, video 3 (CIF video set) shows a TA value change of 61% and a SA value change
of 66% over the whole video sequence.

For the analysis, different PVSs are created for each video segment with the encoding settings
listed in Table 3.1. The encoding settings are selected such that all GoPs of one video sequence
offer the same number of frames depending on the n and f settings. All PVSs are encoded in
H.264/AVC Main profile using x264 [Vid].

In the following, the influencing factors are analyzed separately and analytical models for the
different factors are developed.

Encoding setting min max Steps
q 24 45 stepsize: 1

f [fps] 5 30 5, 10, 15, 30
m 0 4 stepsize: 1
n 1 30 1, 2, 3, 5, 6, 10, 15, 30

Table 3.1.: Considered q, f , m, and n encoding settings in the video bit rate model.
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Figure 3.3.: SA ( ) and TA ( ) values of video segments of the CIF video set (τ = 1 s).
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Figure 3.4.: Rs versus q for videos of the Road and CIF training sets.

3.3.1.1. Spatial factor

The spatial factor Rs(q) describes the influence of the quantization parameter q on the video
bit rate. To capture the decrease of the bit rate for increasing q values, PVSs at full frame rate
(f = fmax) using an I-frame only GoP (n = 1, m = 0) are created and normalized by Rmax,I .
Figure 3.4 shows the relation between Rs and the quantization parameter for training videos
of the Road and CIF video set. It can be derived that Rs is 1 at the smallest considered q

value (qmin) and reduces down to 0 for large q values. Similar as in [MX+12] and [LM+14a]
an inverse power function is used to model Rs:

Rs(q) =
(

q

qmin

)−s
, (3.5)

where s is a content-dependent parameter to define how fast Rs is decreasing for increasing q
values.

3.3.1.2. Temporal factor

Rt(f) describes the influence of the frame rate f on the bit rate of the encoded video. In order
to analyze the decrease of the bit rate for a reduction of the temporal resolution, PVSs at the
best considered quantization parameter setting (q = qmin) with an I-frame only GoP (n = 1,
m = 0) are generated. In Figure 3.5 the measured bit rate relative to Rmax,I are displayed for
the training videos of the Road and CIF video sets. Rt can be modeled as a linear function
with a constant slope which is equal to 0 for still images and increases linearly to 1 at fmax:

Rt(f) =
(

f

fmax

)
. (3.6)
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Figure 3.5.: Rt versus f for videos of the Road and CIF training sets.

Unlike Rs, Rt is independent of the video content and does not rely on any content-dependent
parameters.

3.3.1.3. GoP length factor

RGoPL(n) considers the impact of P-frames and the GoP length on the video bit rate. In order
to model the impact of the GoP length, the uncompressed video sequences are encoded at
the best spatio-temporal encoding settings (q = qmin, f = fmax) using the previously defined
GoP lengths with an IPP. . . P GoP structure (m = 0). Figure 3.6 displays the measured rate
of the encoded videos relative to Rmax,I for the training videos of both video sets. RGoPL is 1
at n = 0 (I-frame only GoP) and converges to a video content-specific offset for large n values.
Similar as Rs, RGoPL can be modeled as an inverse power function with a content-dependent
offset:

RGoPL(n) = l1 ·
( 1
n

)
+ l2, (3.7)

where l1 is the content-dependent weight for the inverse power function, and l2 is the factor
that describes the content-dependent relative offset for large n values.

3.3.1.4. GoP structure factor

The GoP structure factor RGoPS(m,n) additionally accounts for the influence of B-frames and
describes the influence of the number of consecutive B-frames m for a given GoP length n on
the video bit rate. RGoPS considers m ≤ 4, since it has been shown that the bit rate increases
and the average PSNR of the encoded video decreases significantly for m > 4 [WCK06], which
is not convenient for video compression. Furthermore, the GoP structure is limited to GoPs



52 Chapter 3. Video bit rate model for perceptual quality-aware rate control

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

n

R
G

o
P

L

(a) Measured RGoP L (dots) and estimated RGoP L

(lines) of Eq. 3.7 for the first video segment of
the Road training set: 1 ( , ), 2 ( , ),
3 ( , ), 4 ( , ), 5 ( , ), 6 ( , ),
7 ( , ), 8 (, ), 9 ( , ), 10 ( , ).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

n

R
G

o
P

L

(b) Measured RGoP L (dots) and estimated RGoP L

(lines) of Eq. 3.7 for the first video segment of the
CIF training set: 1 ( , ), 2 ( , ), 3 ( , ),
4 ( , ), 5 ( , ), 6 ( , ).

Figure 3.6.: RGoPL versus n for videos of the Road and CIF training sets.
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Figure 3.7.: RGoPS versus m for the considered n values for video 1 of the Road and CIF
video sets each.

where B-frames can only rely on P-frames and not on other B-frames, i.e., m ≤ n− 2. RGoPS
is modeled using a third order polynomial:

RGoPS(m,n) = g1(n) ·m3 + g2(n) ·m2 + g3(n) ·m+ 1, (3.8)

where g1(n), g2(n), and g3(n) are the factors of the polynomial, which depend on the GoP
length n. Figure 3.7 displays RGoPS for different n values for one video segment of both video
sets each.
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Factor Value Feature
s, l1, l2, g1, g2, g3 TA TA±1, log(TA), e±T A

s, l1, l2, g1, g2, g3 SA SA±1, log(SA), e±SA

g1, g2, g3 n n±1, log(n), e±n

Table 3.2.: Set of TA- and SA-based features used for the estimator of Rmax,I , and the model
parameter estimators of Rs(q) and RGoPL(n). Set of n-based features are addi-
tionally employed for the model parameter estimators of RGoPS(m,n).

3.3.2. Content-based model parameter estimation

The proposed rate model considers a separation of the impact of spatial, temporal, and GoP
encoding settings as individual factors which all rely on content-dependent model parameters.
In the following section, estimators of the content-dependent model parameters based on TA
and SA features are developed which can be computed from the uncompressed video.

3.3.2.1. Content features

Similar as in [LM+14a], a set of TA- and SA-based features is used for the development of the
estimators of the content-dependent model parameters. Besides TA and SA, different elemen-
tary functions4 of TA and SA are introduced. In a pre-investigation, the single features which
show a high correlation with the content-dependent parameters are selected as candidates for
the further estimator development process. Table 3.2 lists the considered TA- and SA-based
feature set used for the development of the estimators of Rmax,I , and the estimators of the
model parameters of Rs(q) and RGoPL(n). The interaction terms of the different factors are
calculated as the products of the single features. The estimators of the model parameters of
RGoPS(m,n) additionally depend on features which employ the GoP length n.

3.3.2.2. Model parameter estimation

It has been shown in [LM+14a] that the single TA- and SA-based features might not be
able to estimate the model parameters accurately. However, by linearly combining several
of the previously introduced features, the estimation performance of the model parameters
might improve significantly. Therefore, the generalized linear regression methodology (GLM)
proposed in [MN90] is used to combine different features in an iterative process. For example,
the estimator of a parameter y (referred to as ŷ) is developed as

ŷ =
L∑
i=1

αi · f(xi) + α0, (3.9)

4Elementary functions cover logarithms, exponentials, trigonometric and hyperbolic functions, and their in-
verses.
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where f(xi) are the considered features in the estimators with αi as the corresponding weight-
ing factors. To realize generic results that are also valid for samples outside the training set,
the leave-out-one cross-validation error (CVE) is used as a measure to iteratively combine the
different features for each estimator. To compute the CVE, K − 1 out of K samples are used
to train and determine the weighting factors of the investigated estimator. The remaining
video is used as a test sample and used to compute the squared fitting error in this round.
This procedure is performed K times using a different testing sample in each round. The
CVE for the feature set using the training samples is calculated as the mean of the squared
fitting errors of the testing sample of all K rounds. To develop the estimators for the model
parameters, the features are selected and combined using the iterative stepwise feature selec-
tion approach proposed in [MX+12]. At the first iteration step, the single feature that offers
the lowest CVE with respect to the real model parameter is determined. In a second iteration
round, a second feature is investigated that in combination with the first feature offers a lower
CVE. This iteration process is repeated until no further CVE reductions can be achieved
while adding more features to the feature set. In each iteration round, the model parameters
αi are determined by using least squares non-linear fitting.

It has been shown in [Ma11] that the model parameter estimators developed for a video set of
one spatial resolution lead to an overall poor estimation performance for videos of a different
spatial resolution. To this end, separate estimators for the model factors of the Road and
CIF video sets are developed using GLM. Table 3.9 and Table 3.10 list the feature weights
of each content-dependent parameter estimator for the Road and for the CIF video set using
the features and feature combinations defined in Table 3.2.

3.3.2.3. Temporal and spatial activity dependent rate model

The developed model parameter estimators are now integrated into the rate factors5 of Rs(q),
RGoPL(n), and RGoPS(m,n), and further integrated into the overall bit rate model of Eq. (3.4).
The resulting spatio-temporal rate model which considers the influence of the GoP length and
structure (STRM +) is

RSTRM+(q, f,m, n) = R̂max,I · R̂s(q) ·Rt(f) · R̂GoPL(n) · R̂GoPS(m,n). (3.10)

3.3.3. Performance evaluation

The estimation performance of the rate factors which depend on the proposed TA- and SA-
based estimators is assessed individually. Furthermore, the estimation performance of STRM +

with the measured bit rates of the encoded videos is determined and compared to other bit

5The TA- and SA- dependent rate factors are referred to as R̂, while R represents the individual rate factors.
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Perf. metric Road CIF
PC 0.934 0.944

RMSE [kbits/s] 1589.12 830.99

Table 3.3.: R̂max,I estimation performance for the videos of the Road and CIF training sets:
PC and absolute RMSE.

Factor Perf. metric Road CIF

R̂s(q) PC 0.998 0.996
RMSE 0.0238 0.0365

Rt(f) PC 0.999 0.999
RMSE 0.0005 0.0004

R̂GoP L(n) PC 0.999 0.999
RMSE 0.0294 0.0444

R̂GoP S(m,n) PC 0.924 0.947
RMSE 0.0864 0.0613

Table 3.4.: R̂s(q), Rt(f), R̂GoPL(n), R̂GoPS(m,n) estimation performance for the videos of
the Road and CIF training sets: PC and absolute RMSE.

rate models for one fixed GoP length and different GoP structures. In some video processing
systems, the TA and SA values might not be available for each individual video segment and
instead only be determined for a longer video window length. To this end, the influence of
the TA and SA window length on the bit rate estimation accuracy is investigated.

3.3.3.1. Bit rate estimation performance

In Table 3.3 the PC and the absolute RMSE of the TA- and SA-based R̂max,I with the
measured Rmax,I values are listed for the training videos of the Road and CIF video set. The
results show that the estimation performance is high with a PC of roughly 0.94 for both video
sets, a RMSE of roughly 830 kbit/s for the CIF video set, and a RMSE of approximately
1600 kbit/s for the Road video set. The measured Rmax,I values are in the range of Rmax,I ∈
[1.8, 9.7] Mbit/s for the CIF and in the range of Rmax,I ∈ [4.8, 20.9] Mbit/s for the Road video
set.

Table 3.4 lists the estimation performance of the individual rate factors using the developed
TA- and SA-based estimators. Similar to R̂max,I , a high estimation performance can be
achieved with a PC of larger than 0.92 and an absolute RMSE of less than 0.09 taking all
factors into consideration.

Finally, the overall model performance of the TA- and SA-based bit rate model is determined
for all considered q, f , m, and n encoding settings listed in Table 3.1. Table 3.5 lists the PC
and relative RMSE (normalized by Rmax,I) of the measured bit rate versus the estimated bit
rate calculated using STRM + for the Road and the CIF video sets. For both video sets, the
proposed TA- and SA-based rate model is able to achieve a high estimation performance with a
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Video set Perf. metric Training set Validation set

Road PC 0.975 0.966
% RMSE 3.72 3.84

CIF PC 0.978 0.979
% RMSE 3.14 2.69

Table 3.5.: STRM + estimation performance for the videos of the Road and CIF training and
validation sets: PC and RMSE (normalized by Rmax,I).
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Figure 3.8.: Measured R versus estimated R determined using STRM + for videos of the Road
validation set.
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Figure 3.9.: Measured R versus estimated R determined using STRM + for videos of the CIF
validation set.

PC of around 0.97 and a RMSE relative to Rmax,I of less than 4% for the training sets. Similar
results for the validation sets verify the robustness of STRM + for the bit rate estimation of
videos outside the training sets. Figure 3.8 and Figure 3.9 display the measured versus the
estimated bit rate for the first video segment of the validation videos for the Road and the
CIF video set, respectively. It can be observed for the Road video set that STRM + tends
to underestimate the bit rate for videos with low SA values and to overestimate the bit rate
for videos with high SA values. For videos of the CIF video set, on the other hand, STRM +

tends to underestimate the bit rate for videos with high SA values and to overestimate the
bit rate of videos with low SA values. The reason for this contrary trend lies in the different
estimators of STRM’s model parameters which are employed for both video sets.

3.3.3.2. Performance comparison

The estimation performance of STRM + is compared to the bit rate model of [LM+14a]
(referred to as STRM in the following) and the bit rate model of [MX+12] (referred to as
Ma in the following). Similar to STRM +, STRM uses TA- and SA-based estimators for the
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GoP structure Perf. metric Ma [MX+12] STRM [LM+14a] STRM +

m = 0 PC 0.987 0.998 0.989
RMSE [kbit/s] 484.1 492.15 518.68

m = 4 PC 0.995 0.935 0.864
RMSE [kbit/s] 575.34 569.47 447.64

Table 3.6.: Estimation performance of Ma, STRM, and STRM + for the videos of the Road
validation set: PC and absolute RMSE.

GoP structure Perf. metric Ma [MX+12] STRM [LM+14a] STRM +

m = 0 PC 0.987 0.986 0.987
RMSE [kbit/s] 190.33 175.66 111.73

m = 4 PC 0.988 0.987 0.923
RMSE [kbit/s] 216.84 199.03 89.19

Table 3.7.: Estimation performance of Ma, STRM, and STRM + for the videos of the CIF
validation set: PC and absolute RMSE.

video content-dependent model parameters. The content-dependent features required for Ma
are determined using a codec-dependent pre-processor, as proposed in [MX+12]. The different
GoP lengths for each frame rate are considered such that the GoPs have a duration of 1 s.
This GoP length is typical for AHS deployments, where the video segments usually have an
integer length in seconds [Sto11]. The model parameters of STRM and Ma are determined
using least squares non-linear fitting with the training videos of the Road and CIF video sets
and the same spatio-temporal encoding settings as considered for STRM + (cf., Table 3.1)
and m = 0. To compare the bit rate estimation performance of all three bit rate models, the
PC and RMSE determined with the measured bit rates of an IPP...P GoP (m = 0) and an
IPBBBBP... GoP (m = 4) are listed in Table 3.6 for the Road validation video set and in
Table 3.7 for the CIF validation video set.

The results for an IPP...P GoP show a PC of roughly 0.99 for both considered video sets
and for all three rate models which proves the linearity between the model estimations and
the actual bit rate values. The RMSE of STRM + is significantly lower for videos of the CIF
video set and approximately at the same level for videos of the Road video set as compared to
STRM and Ma. The performance gain of STRM + is high if an IPBBBBP... GoP structure
is considered. The RMSE for the CIF video set is around 60% lower and for the Road video
set around 20% lower compared to STRM and Ma. The main reason for the lower estimation
error of STRM + for the IPBBBBP... GoP structure is that STRM and Ma are only able to
capture the bit rate of IPP...P GoP structures and are not able to account for the influence
of B-frames.
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Figure 3.10.: Influence of τT A,SA on the bit rate estimation performance for video 3 of the CIF
video set: RMSE relative to Rmax,I .

3.3.3.3. Influence of the TA and SA window length

Since all model parameters of STRM + depend on TA and SA, both values have a signifi-
cant impact on the bit rate estimation performance. In STRM +, the TA and SA values are
considered available for each video segment separately. In some video processing systems,
however, the TA and SA information might not be available for each video segment individu-
ally. Instead, the TA and SA values might be available only for a longer window length, which
might cover several video segments. As a consequence, the TA and SA window length (τT A,SA)
does not match the video segment length τ . This might become problematic, especially in
longer multimedia domain videos where the content of a video changes significantly over the
sequence, such as video 3 of the CIF video set (cf., Figure 3.1c). If the TA and SA values are
computed for a longer duration rather than for each segment separately, the overall bit rate
estimation might become inaccurate. To demonstrate the influence of τT A,SA on the bit rate
estimation accuracy, the estimation performance of video 3 (CIF video set) is determined for
τ = 1 s video segments for two different τT A,SA values (1 s and 10 s). Figure 3.10 displays the
RMSE of the proposed rate model relative to Rmax,I for all video segments based on the TA
and SA values of both window lengths. The results show a RMSE of 3.4% for τT A,SA = 1 s
and a 2 percentage points higher RMSE of 5.4% for τT A,SA = 10 s. For other video sequences
with more stable TA and SA values, such as video 1 of the CIF video set (Figure 3.3a) or
all videos of the Road video set, the RMSE is roughly the same for both TA and SA window
lengths with a RMSE difference of less than 0.5 percentage points which does not have a large
impact in real-life deployments.

3.4. Application in perceptual quality-aware rate control

This section applies the developed bit rate model to perceptual quality-aware rate control. In
Section 3.4.1 the perceptual quality-aware rate control problem for spatio-temporal encoding
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settings is defined and a solution using STVQM and STRM + is developed. In Section 3.4.2,
the developed solution of the rate control problem is applied to an AHS video source.

3.4.1. Problem definition and solution

In the previous section it has been demonstrated how the bit rate of encoded videos can be
modified by an adaptation of the spatial quality, the temporal resolution, and the GoP en-
coding settings. To achieve a desired bit rate constraint, modern rate controllers for hybrid
video coding typically modify the spatial quality of the encoded video by an adaptation of the
quantization parameter. To capture the trade-off between the distortion introduced by the
quantization and the bit rate of the encoded video, rate-distortion models are employed which
consider the distortion measured as PSNR. However, it has been shown that PSNR offers a low
correlation with the subjective quality perceived by the viewer [Gir93; GHT08]. In contrast,
more recently proposed objective video quality metrics are able to capture the perceptual
quality Q (measured in DMOS) more accurately, as demonstrated in Section 2.3.3.3. Further-
more, subjective studies demonstrated that, depending on the video content, the perceptual
quality might suffer more from spatial quality reductions rather than a downsampling of the
temporal resolution [WMO09]. Based on these two findings, the classical rate control prob-
lem of Eq. (2.1) can be reformulated as a perceptual quality-aware rate control optimization
problem:

(qj , fj) = argmax
q,f

Q(q, f) (3.11)

subject to R(q, f) ≤ Rc,j ,

fmin ≤ f ≤ fmax,

qmin ≤ q ≤ qmax,

where qj and fj are the spatial and temporal encoding settings to maximize the perceptual
quality Q for a given rate constraint Rc,j . Furthermore, fmin ≤ f ≤ fmax and qmin ≤ q ≤ qmax
define the considered frame rate and the quantization parameter encoding settings.

To solve the rate control problem of Eq. (3.11) and to determine the optimal q and f encoding
settings for given rate constraints, STRM + of Eq. (3.10) and STVQM of Eq. (2.13) are
employed, which both rely on TA and SA values to compute the video content-dependent
model parameters. Unlike STRM +, which directly depends on the quantization parameter to
consider spatial quality modifications, STVQM uses PSNR of the encoded video as a measure
of the spatial quality. However, to realize STQVM that directly depends on q for the spatial
encoding setting, the PSNR model proposed in [SE+13] (referred to as PSNR[SE+13] in the
following) is applied to the video quality metric of Eq. (2.13). PSNR[SE+13] makes it possible
to estimate the PSNR of encoded videos while using the mean bit rate of the encoded video, the
quantization parameter at full frame rate and an IPP...P GoP structure (m = 0). The model
uses a logarithmic relation between the PSNR value and the bit rate and an approximately
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Figure 3.11.: System view of a MBR encoding entity installed at an AHS source with NL

desired bit rates. The rate controller determines optimal encoding settings as
solutions to the perceptual quality-aware rate control problem of Eq. (3.11) using
TA and SA computed from the source video.

linear relation between the PSNR value and the quantization parameter. Based on these two
relations, the PSNR is estimated as:

PSNR[SE+13] = b1 + b2 · log(R) + b3 · q + b4 ·R · q, (3.12)

with a term depending on the bit rate of the encoded video (expressed in kbit/s), a term
depending on q, an interaction term and a constant offset. Therefore, the estimated PSNR of
an encoded video can be computed as

P̂SNR = PSNR[SE+13](STRM +(fmax, q, n, 0)), (3.13)

which is integrated into STV QM as the PSNR value of the encoded video in the following.

For a given rate constraint Rc,j , the optimization problem of Eq. (3.11) is solved by using
exhaustive search to determine the optimal (qj , fj) values which maximize Q. Since typically
only a finite number of integer frame rates (Nt) and quantization parameters (Nq) are em-
ployed in the encoding process, the computational complexity of the exhaustive search is low,
and the optimal solution can be found at a low computation time, i.e., O(Nt ·Nq).

3.4.2. Application and performance evaluation

Figure 3.11 displays a system view of a typical application of a rate control entity which
employs the proposed rate control problem and its solution. The rate control entity is installed
at an AHS source where video segments of a defined duration from a video source need to
be encoded at NL desired bit rates using MBR coding. To this end, the video frames of an
uncompressed video segment are first stored in a frame buffer. A further entity computes
the TA and SA values of the video segment, which are then used at the rate control entity
to compute the model parameters of STVQM and STRM +. The determined optimal (q, f)
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(b) Video 12

0 2,000 4,000 6,000
0

10

20

30

40

50

R [kbit/s]

q
;f

[fp
s]

0

1

2

3

4

5

Q
[D

M
O

S]

(c) Video 13
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(d) Video 14

Figure 3.12.: q ( ) and f ( ) determined as solutions of Eq. (3.11) and corresponding Q ( ) for
given bit rate constraints for videos of the Road validation set.

values for the NL desired bit rate constraints are then used as encoding settings.

In the following it is assumed that all considered video segments offer a duration of τ = 1 s
and are encoded with H.264/AVC using the (q, f) encoding settings listed in Table 3.1. Since
PSNR[SE+13] considers only IPP...P GoPs, m is set to 0 for the investigation. Figure 3.12 and
Figure 3.13 display the determined optimal (q, f) encoding settings and the corresponding
Q values as a function of the rate constraint R for videos of the Road and CIF validation
set. For larger bit rate constraints, f increases, q reduces continuously, and the perceptual
quality Q improves steadily. For all videos, an abrupt decrease of the quantization parameter
for increasing rates can be observed which is caused by the coarse integer frame rate steps.

To quantitatively investigate the accuracy of the proposed approach in achieving the target bit
rates of the solutions, a set of video bit rate constraints is introduced for both, the Road video
set (Rc,Road = {200, 230, 280, 350, 430, 530, 700, 1000, 1700, 2600, 3700, 5000} kbit/s) and the
CIF video set (Rc,CIF = {100, 125, 175, 235, 285, 375, 475, 600, 850, 1100, 1300, 1500} kbit/s).
The bit rates for the AHS source6 are selected according to the guidelines of [TAP+14].

The videos are encoded with the (q, f) pairs determined as solutions of Eq. (3.11) for the
defined bit rate constraints. To investigate the accuracy in achieving the rate constraints,
the RMSE between the bit rate constraints and the measured bit rates of the videos encoded
with the determined (q, f) pairs relative to Rm=0 (IPP...P GoP, q = qmin, f = fmax, m = 0,

6A detailed introduction to the selection process of the AHS video levels is given in Section 5.4.1.2.
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(c) Video 9
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(d) Video 10

Figure 3.13.: q ( ) and f ( ) determined as solutions of Eq. (3.11) and corresponding Q ( ) for
given bit rate constraints for videos of the CIF validation set.

n = fmax · τ) is determined. The accuracy of the proposed approach is further compared
to solutions based on STRM and Ma. Table 3.8 lists the RMSE of the solutions of the rate
control problem of Eq. (3.11) using all three rate models for the Road and CIF video sets. For
STRM + and STRM, the trained STVQM parameters developed in Section 2.3.3.3 are used
for the Road video set and for the CIF video set the parameters of [PS11] are employed. For
Ma, VQMTQ introduced in Section 2.3.3.1 is used as the objective video quality metric. The
trained metric parameters for VQMTQ are taken from the investigation of Section 2.3.3.3 for
the Road video set and from [MX+12] for the CIF video set.

The determined solution based on STRM + offers an about 4 percentage points lower RMSE
for the CIF video set and an around 1 percentage points lower RMSE for the Road video set
compared to the solution based on STRM. The better estimation performance of the solution
using STRM + lies in the more accurate rate estimation than of STRM. A similar trend can
be obtained for the solution based on Ma, which offers an about 6 percentage points worse
RMSE for the CIF video set and a 3 percentage points worse RMSE for the Road video set
compared to the STRM + based solution.

To quantitatively compare the achieved perceptual quality of the different solutions, first the
perceptual quality Q is computed for all rate constraints using STVQM of Eq. (2.13) with the
(q, f) pairs determined as solutions of Eq. (3.11) based on all three different rate models. In
a second step, the mean perceptual quality µQ is computed as the mean over the Q values of
all rate constraints and videos of the validation set. The results listed in Table 3.8 show that
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Video set Perf. metric Ma [MX+12] STRM [LM+14b] STRM +

Road %RMSE 8.63 6.79 5.64
µ

Rc,Q
[DMOS] 3.75 3.38 3.36

CIF %RMSE 13.86 11.58 7.91
µ

Rc,Q
[DMOS] 4.24 4.24 4.22

Table 3.8.: Mean relative RMSE (normalized by Rm=0) and mean perceptual quality µRc,Q of
the solutions of the rate control problem of Eq. (3.11) for the validation videos of
the Road and CIF video sets using Ma, STRM, and STRM +.

roughly the same mean DMOS is achieved for all three solutions.

3.5. Chapter summary

In this chapter, a video bit rate model is developed which considers the impact of the temporal
resolution, spatial quality impairments, and GoP characteristics. The rate model is based on
the quantization parameter, frame rate, GoP length, and GoP structure encoding settings
as well as video content-dependent parameters. TA- and SA-based estimators of the video
content-dependent model parameters are developed. Statistical analysis with the measured
bit rates of two different video sets show that the proposed model is highly accurate in
estimating the bit rate of H.264/AVC encoded videos. The estimation performance is better
than or as good as the performance of two other related estimation models, however, with the
advantage that GoP characteristics are considered. Finally, the proposed video bit rate model
is applied in perceptual quality-aware rate control to determine encoding settings for given
rate constraints. The results show that a high accuracy in achieving the bit rate constraints
can be achieved while using the proposed video bit rate model.
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Chapter 4

Context-aware estimation of temporal and
spatial activities

In this chapter, low-complexity estimators of the temporal and spatial activity values1 for
videos captured with an ADAS front-facing camera of a vehicle are developed by using camera
context information. To this end, the estimators comprise camera context features which
exploit information about the status and the dynamics of the vehicle and other vehicles in
the field-of-view of the front-facing camera. The estimators are applied to a video bit rate
model (STRM +), to an objective video quality metric (STVQM ), and to the solution of the
perceptual quality-aware rate control problem previously proposed in Chapter 3 to determine
optimal spatio-temporal encoding settings for desired bit rate constraints.

4.1. Introduction

Nowadays, vehicles are equipped with a variety of different sensors and camera systems, which
are primarily used for on-board ADAS applications. In order to further extend the viewing
range of other road users, the video content of the ADAS cameras can be streamed to devices
outside the vehicle. To this end, the bit rate of the source video stream needs to be adapted to
the transmission capacity of the communication path between the vehicle and the streaming
sink.

Rate controllers are required to select the encoding settings to achieve video bit rates according
to the current network performance. State-of-the-art rate controllers for hybrid video coding
typically employ video bit rate models and objective video quality metrics, which rely on
video content-dependent model parameters. The proposed solution to the perceptual quality
aware rate control problem developed in Section 3.4.2, for example, employs STRM + and
STVQM, which both depend on TA and SA values as video content information. Both,

1The TA and SA estimators presented in this chapter have been proposed previously in [LSS].
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however, need to be determined from the uncompressed source video. This is problematic in
automotive deployments, where the camera modules and video processing ECUs are typically
developed as black boxes by automotive suppliers. A direct access to the uncompressed
source video streams of ADAS cameras and to the internal functions of the video encoder is
typically not possible. Besides that, the automotive suppliers typically employ off-the-shelf
hardware encoder modules for the video processing. As a consequence the content-dependent
video features cannot be computed along with the video coding process and a separate pre-
processor might be required. The calculation of the features at a separate pre-processor,
however, is computationally demanding and quickly exceeds the computational capacities of
modern ECUs.

For this purpose, camera context-based estimators for the TA and SA values of video sequences
recorded with an ADAS front-facing camera have been proposed in [LM+14b], which employ
basic context information of the vehicle (mean velocity and scenario of the captured video
sequence). While these estimators are well suited for video sequences recorded at a constant
velocity and homogeneous traffic conditions, they might offer a low estimation performance for
video sequences with diverse movements of the vehicles in the field-of-view or during turnings.
To overcome this limitation, this chapter proposes advanced TA and SA estimators which
additionally take further dynamics of the vehicle and vehicles in the field-of-view of the ADAS
camera into consideration. To this end, a novel set of camera context features is introduced
which incorporates advanced information from ADAS sensors and status information of the
vehicle. The developed estimators are applied to STVQM and STRM + which both consider
spatio-temporal impairments and depend on TA and SA values. Finally, both models are
applied to the solution of the rate control optimization problem defined in Eq. (3.11) in order
to determine optimal encoding settings which maximize the perceptual quality for given rate
constraints. The determined solution based on the developed TA and SA estimators offers
similar accuracies in achieving given rate constraints and perceptual quality characteristics
as the solution based on computed TA and SA values, however, with the advantage that no
access to the uncompressed source video is required.

Camera context-based video processing has been previously considered for motion estimation
in hybrid video encoders to simplify the motion estimation process [CZ+11; SS02]. These
approaches, however, do not consider the estimation of the spatial information of the source
video.

The remainder of the chapter is organized as follows. The camera context features used
to estimate the temporal and spatial activities are introduced in Section 4.2. Section 4.3
presents the developed TA and SA estimators which are based on the proposed camera context
features. Both estimators are applied to STRM +, STVQM, and the solution of the rate
control optimization problem of Eq. (3.11) in Section 4.4. Finally, Section 4.5 summarizes
this chapter.
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EgoV1

V2

vego

ψ̇ego

vrel,1

vrel,2

drel,1

drel,2

Figure 4.1.: Dynamics of the ego vehicle (vego(t), ψ̇ego(t)), dynamics of vehicles (Vi) in the
field-of-view of the ADAS camera (drel,i(t), vrel,i(t)) and sensor configuration of
the ego vehicle (front-facing LIDAR scanner: , front-facing RADAR: ,
ADAS front-facing camera: ).

4.2. Camera context features

In the following section, camera context features to estimate TA and SA values for videos
captured with an ADAS front-facing camera are developed. Information about the dynamics
of the vehicle where the ADAS camera is installed (referred to as the ego vehicle in the
following) and other vehicles in the field-of-view of the ADAS camera are used to describe the
context of the captured video.

4.2.1. Experimental settings and context information

The on-board sensors of the ego vehicle introduced in Section 2.4.1 are used to deter-
mine the status and the dynamics of the ego vehicle, such as the velocity (vego(t) =[
vx,ego vy,ego

]T
) and the yaw rate (ψ̇ego(t)). Furthermore, the position of the vehicle

(pego(t) =
[
plat,ego plon,ego

]T
) is determined by a GPS receiver module. Additional in-

formation about the scenario, i.e., the location where the video is recorded and the type of
road is determined by matching the GPS position with a digital map, which is performed by
the navigation ECU.

In order to gather information about the dynamics and properties of the other objects in
the field-of-view of the ADAS camera, the object information provided by a front-facing
LIDAR scanner and a front-facing RADAR sensor mounted at the ego vehicle are combined.
Figure 4.1 displays the experimental setup of the sensors installed at the ego vehicle. A high-
level sensor data fusion architecture proposed in [AK11], which has initially been developed for
highly autonomous driving and ADAS applications, is set up at the ADAS ECU and applied
to combine the raw sensor data. The fusion architecture considers a three level processing
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approach. At the lowest level, sensor-level processing is performed, where each sensor creates
an abstracted list of detected objects, their state (such as their relative velocity to the ego
vehicle), and their existence probability. At the fusion-level processing, the object lists are
combined to produce a global list of detected objects by the fusion algorithm proposed in
[AS+12]. This global list of detected objects is provided to the application level, where each
application filters the objects and state information based on the relevance for its function.

In the present approach, the global list of objects is filtered in order to create a list of relevant
vehicles in the field-of-view of the ADAS front-facing camera (Dt = {V1, V2, . . . , VK}). The
relative distance between the ego vehicle and vehicle i (drel,i(t) =

[
dx,i dy,i

]T
) as well as

the relative velocity to the ith vehicle (vrel,i(t) =
[
vx,i vy,i

]T
) is used to describe the state

of the ith vehicle at time t. It is assumed for each video sequence that S samples of the raw
sensor data are available for the computation of the features.

4.2.2. Temporal activity related features

In the following, the TA-related context features are introduced. Recall that the TA value of
a video sequence (defined in Eq. (2.4)) quantifies the amount of temporal change in a video
sequence. To this end, camera context parameters are required which describe the dynamics
of the ego vehicle, the dynamics of vehicles in the field-of-view of the ADAS front-facing
camera, and the scenario where the video sequence is recorded.

Mean ego velocity ν: The velocity of the ego vehicle has a direct influence on the temporal
activity of the video content. Hence, the mean velocity over S samples of the ego vehicle,
similar to [LM+14b], is defined as

ν = 1
S
·
S∑
t=1
|vego(t)| , (4.1)

where |vego(t)| is the absolute value of the ego vehicle’s velocity vego(t) at time t.

Mean yaw rate ω: Sequences recorded while turning offer a fast change of the video content
in successive frames. This applies in particular for video sequences recorded in urban scenarios
where the temporal change among the frames is low for situations while driving straight and
high while turning. To take the rotary dynamics of the ego vehicle into consideration, the
absolute mean yaw rate over time is introduced as

ω = 1
S
·
S∑
t=1

∣∣∣ψ̇ego(t)∣∣∣ , (4.2)
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where
∣∣∣ψ̇ego(t)∣∣∣ is the absolute value of the yaw rate of the ego vehicle at time t.

Mean number of detected vehicles β: Depending on the traffic situation of the recorded
video, a different number of vehicles is visible in the field-of-view of the ADAS front-facing
camera. The mean number of detected vehicles in the field-of-view is defined as

β = 1
S
·
S∑
t=1
‖Dt‖ , (4.3)

where ‖Dt‖ is the number of detected vehicles a time t.

Mean relative velocity of detected vehicles λ: The vehicles in the field-of-view of the
ADAS front-facing camera are moving at different relative velocities vrel,i(t) to the ego vehi-
cle. Depending on the distance to the ego vehicle, vehicles in the field-of-view of the ADAS
front-facing camera have a different influence on the temporal activity of the video sequence.
Vehicles with a small distance to the ego vehicle appear large, whereas vehicles with a large
distance to the ego vehicle appear small. Therefore, for K vehicles in the field-of-view, λ is
defined as

λ = 1
S
· 1
K
·
S∑
t=1

K∑
i=1

∣∣vrel,i(t)
∣∣ · ∣∣drel,i(t)

∣∣−1 , (4.4)

where
∣∣vrel,i(t)

∣∣ is the absolute value of the relative velocity and
∣∣drel,i(t)

∣∣−1 the inverse of
the absolute value of the distance between the ego vehicle and the ith vehicle at time t in the
field-of-view.

Scenario ζ: In order to realize a clear distinction between the different types of scenes where
the video is recorded, the categorical variable ζ is introduced. It has been shown in a pre-study
that a binary categorical variable is sufficient to describe the different scenes and to cover the
typical driving scenes. Similar as in [LM+14b], a value of 0 expresses highway scenarios and
1 urban scenarios.

4.2.3. Spatial activity related features

In the following, the SA-related camera context features are introduced. Recall that SA
values indicate the amount of spatial detail of video sequences (cf., Eq. (2.5)). To this end,
SA-related features are defined which employ information about the status of the ego vehicle
and the other vehicles in the field-of-view of the ADAS camera.

Mean inverse distance to detected vehicles δ: Depending on the distance to the ego vehicle,
vehicles in the field-of-view of the ADAS camera have a different influence on the spatial
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activity of the video sequence. Similar as for λ, the further the other vehicles are apart from
the ego vehicle, the less influence they have on the spatial activity. To gather the influence of
the vehicles, the mean absolute inverse distance to the K detected vehicles in a video sequence
is defined as

δ = 1
S
· 1
K
·
S∑
t=1

K∑
i=1

∣∣drel,i(t)
∣∣−1 , (4.5)

where
∣∣drel,i(t)

∣∣−1 is the inverse of the absolute value of the distance between the ego vehicle
and the ith vehicle at time t.

Yaw standard deviation α: Turnings of the ego vehicle have a significant influence on the
spatial activity measure, since the spatial information might change significantly over the
sequence. This holds especially for sequences in urban scenarios while turning at corners,
where the amount of spatial detail is low while driving straight and high while turning.
Hence, the standard deviation of the angle of yaw over time is used to capture the influence
of turnings on the spatial activity. It is defined as

α = σS (ψego(t)), (4.6)

which is the standard deviation of the angle of yaw relative to the start position (ψego(t)) over
all S samples.

Since β and ζ are also related to the spatial details of the video frames, they are additionally
considered in the SA feature set in the course of this chapter.

4.3. Estimation of temporal and spatial activity values

In the following section, the camera context-based TA and SA estimators using the afore-
mentioned camera context features are developed. For the investigation, the Road video set
introduced in Section 2.3.3.2 is considered. Analogous to the investigations in Chapter 3.3.1,
the video pool is separated into a training set (video 1-10), which is used for the training of
the estimators, and a separate validation set (video 11-14) which is used to investigate the
estimation performance of the developed estimators for videos outside the training set.

In order to develop the TA and SA estimators, the iterative GLM-based feature selection
approach with an analysis on the CVE introduced in Section 3.3.2.2 is applied to combine
and select a minimal set of camera context features. Therefore, the TA estimator (referred
to as T̂A in the following) and the SA estimator (referred to as ŜA in the following) for L
camera context-based features are developed as

T̂A, ŜA =
L∑
i=1

αi · f(xi) + α0, (4.7)
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Video ID TA SA ν ω β λ σ δ α

1 26.28 57.28 5.97 10.02 1.75 0.37 1 0.17 31.70
2 13.28 49.80 7.01 0.41 3.41 0.33 1 0.13 0.68
3 22.37 50.72 5.54 9.17 1.13 0.22 1 0.13 33.15
4 6.57 41.74 2.86 0.31 1.75 0.23 1 0.14 0.49
5 6.75 23.68 32.07 0.29 4.36 0.09 0 0.12 0.69
6 6.74 28.36 28.69 0.32 7.30 0.05 0 0.22 1.02
7 2.37 27.82 5.58 0.25 2.63 0.06 0 0.17 0.45
8 4.09 29.48 9.97 0.35 4.60 0.08 0 0.15 0.20
9 5.39 61.53 0.00 0.03 2.53 0.17 1 0.15 0.01
10 18.92 48.56 5.78 8.85 1.46 0.14 1 0.06 23.14
11 12.45 53.06 5.48 3.33 1.84 0.26 1 0.12 11.15
12 9.98 30.34 35.77 0.21 4.45 0.17 0 0.14 0.25
13 23.19 61.23 12.78 1.77 2.81 0.61 1 0.17 3.52
14 14.57 46.93 8.54 2.25 1.98 0.38 1 0.10 4.19

Table 4.1.: Computed TA, SA and feature values for all videos of the Road training and
validation set.

#Iteration Parameters PC CVE

1

ζ 0.642 54.58
β 0.526 82.44
ν 0.243 79.65
ω 0.935 12.15
λ 0.689 51.04

2 ω, λ 0.980 5.30
3 ω, λ, ν 0.993 3.44
4 ω, λ, ν, β 0.994 3.14

Table 4.2.: TA cross-validation results for the videos of the Road training set.

where the αi are determined by least squares non-linear fitting. In the implementation, the
sensor information of the ego vehicle and the vehicles in the field-of-view is provided at a
frequency of 10 Hz which leads to an overall number of samples per video sequence of S = 100.
The computed values of all features for all videos are listed in Table 4.1. For the investigation,
T̂A and ŜA are computed for the full video sequence, i.e., τT A,SA = 10 s.

4.3.1. Temporal activity estimator development

T̂A is developed by applying the GLM with the temporal activity related features. The
videos of the training set are used in order to evaluate the dependency of the TA value and
the camera context-based features. Figures 4.2 (a)-(e) show the scatter plots of the single
camera context-based features ζ, β, ν, ω, and λ versus the computed TA values. Table 4.2
lists the corresponding estimation performance in terms of the CVE and PC of the different
single features. The results reveal that the single feature ω offers the lowest CVE among all
single features with a PC of almost 0.94, which is the highest estimation performance of the
single features.
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Figure 4.2.: Computed TA values versus temporal activity related features and feature com-
binations for videos of the Road training set.

To further improve the estimation performance, the iterative GLM with an analysis of the CVE
is applied. Table 4.2 displays the PC and CVE of the feature combinations of the different
iterations. Furthermore, Figures 4.2 (f)-(g) display the computed versus the estimated TA
values. The results show that a linear combination of the four camera context-based features
ω, λ, β, and ν at the fourth iteration offers the lowest CVE of all feature combinations, which
cannot be further reduced by adding more features to the feature set. Hence, the resulting
camera context-based TA estimator is

T̂A = t1 · ω + t2 · λ+ t3 · ν + t4 · β + t5, (4.8)

where the values for the model parameters trained with videos of the training set using least
squares non-linear fitting are t1 = 1.26 s

◦ , t2 = 28.46 s
m , t3 = 1.51 s

m , t4 = 4.60 · 10−3, and
t5 = −0.66.
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Figure 4.3.: Computed SA values versus spatial activity related features for the videos of the
Road training set.

#Iteration Parameters PC CVE

1

ζ 0.919 38.17
µ 0.642 151.58
α 0.520 170.04
δ 0.264 216.82

2 ζ, δ 0.933 35.49

Table 4.3.: SA cross-validation results for the videos of the Road training set.

4.3.2. Spatial activity estimator development

Analogous to T̂A, ŜA is developed by applying the iterative GLM process with the spatial
activity related features introduced in Section 4.2.3. Figure 4.3 displays the computed SA
values versus the single features for videos of the training set. Furthermore, Table 4.3 lists
the estimation performance in terms of CVE and PC for the different features and feature
combinations. At the first iteration of the GLM, ζ offers the lowest GLM of 38.17. The CVE
is further reduced down to 35.49 at the second iteration by additionally adding δ to the feature
set. The GLM is terminated at the second iteration step since no further reductions could be
achieved by adding other features to the feature set. Hence, the resulting SA estimator is

ŜA = s1 · ζ + s2 · δ + s3, (4.9)

where s1 = 26.37, s2 = 58.14m, and s3 = 17.71.
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Perf. metric Training set Validation set
PC 0.994 0.991

%RMSE 3.33 4.31

Table 4.4.: T̂A estimation performance: PC and RMSE relative to the maximum TA value of
all videos of the Road video set.
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Figure 4.4.: T̂A and T̂A[LM+14b] estimation performance for videos of the Road training ( )
and validation set ( ).

4.3.3. Performance evaluation

4.3.3.1. T̂A performance evaluation

In the following, the estimation performance of T̂A is assessed and compared to the previously
proposed TA estimator of [LM+14b], and the computational complexity of T̂A is determined.

T̂A estimation performance: In order to assess the estimation performance of the developed
TA estimator, the PC and RMSE of T̂A of Eq. (4.8) versus the computed TA values are
determined for the videos of the training and the validation video set. For consistency, the
RMSE is normalized by the maximum TA value of all videos. The results listed in Table 4.4
indicate a high estimation performance with a PC of 0.99 as well as a RMSE of less than 4%
for videos of the training set. A similar estimation performance for the validation set with a
PC of more than 0.99 and a RMSE of less than 5% verifies the robustness of the model for
videos outside the training set.

T̂A performance comparison: The estimation performance of T̂A is compared with the TA
estimator proposed in [LM+14b] (referred to as T̂A[LM+14b] in the following). In comparison
to T̂A, T̂A[LM+14b] uses limited camera context information (ζ and ν). Analogous to T̂A,
the model parameters of T̂A[LM+14b] are trained with the videos of the training set using
least squares non-linear fitting. A graphical representation of the estimation performance
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of both estimators for all videos is given in Figure 4.4. The performance comparison shows
that the estimation performance of T̂A is significantly better as compared to T̂A[LM+14b]

(PC
T̂A,[LM+14b] = 0.765, RMSE

T̂A,[LM+14b] = 14.18% for videos of the validation set). The
main reason is that T̂A[LM+14b] does not consider the yaw rate of the ego vehicle (ω) and
the dynamics of the other vehicles in the field-of-view (λ, β, and ν). This limits the model
to sequences with no turnings and homogeneous driving conditions of other vehicles in the
field-of-view of the ADAS front-facing camera.

Computational complexity of T̂A: The computational complexities of TA (Eq. (2.4)) and
T̂A (Eq. (4.8)) are determined and compared. The computational complexity of TA, which
depends on the frame size, is OTA(Nx · Ny) with Nx horizontal and Ny vertical pixels. It
is assumed for T̂A that the context features are provided by the ADAS ECU and do not
need to be computed separately. As a consequence, the computational complexity of T̂A is
independent of the actual video content and can be seen as constant (O

T̂A
(1)). Similar as for

T̂A[LM+14b], the computational complexity of T̂A is significantly lower as compared to TA.

4.3.3.2. ŜA performance evaluation

In the following, the estimation performance of ŜA is determined, a performance comparison
to the SA estimator of [LM+14b] is conducted, and the computational complexity of ŜA is
determined.

ŜA estimation performance: Similar as for the T̂A performance evaluation, the PC and
RMSE between ŜA and the computed SA values are determined for videos of the training
and validation set. For consistency, the RMSE is normalized by the maximum computed
SA value of all videos. Table 4.5 lists the results, which indicate an overall high estimation
performance with a PC of 0.93 and a RMSE of less than 8% for videos of the training set,
and even a marginally better estimation performance for videos of the validation set.

ŜA performance comparison: ŜA is compared to the SA estimator proposed in [LM+14b]
(referred to as ŜA[LM+14b] in the following). In contrast to ŜA, ŜA[LM+14b] is solely based on ζ.
Figure 4.5 displays the measured SA values versus the estimated SA values for both estimators.
The estimation performance of ŜA is higher compared to ŜA[LM+14b] (PC

ŜA,[LM+14b] = 0.894,
RMSE

ŜA,[LM+14b] = 9.15% for the videos of the validation set), which is due to the depen-
dency of ŜA[LM+14b] on a single feature.

Computational complexity of ŜA: Finally, the computational complexities of SA (Eq. (2.5))
and ŜA (Eq. (4.9)) are determined and compared. The computational complexity of SA,
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Perf. metric Training set Validation set
PC 0.933 0.941

%RMSE 7.58 7.56

Table 4.5.: ŜA estimation performance: PC and RMSE relative to the maximum SA value of
all videos of the Road video set.
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Figure 4.5.: ŜA and ŜA[LM+14b] estimation performance for videos of the Road training ( )
and validation set ( ).

which depends on the settings of the Sobel filter2, is OSA(Nx ·Ny ·k2). On the other hand, the
asymptotic time complexity of ŜA is independent of the actual video content assuming that,
similar as for T̂A, the context features are provided by the ADAS ECU and do not need to be
computed additionally. Hence, similar as for ŜA[LM+14b], the computational complexity can
be seen as constant, i.e., O

ŜA
(1), which is significantly lower as compared to the computational

complexity of SA.

In this section, estimators for the temporal and spatial activity values of video sequences
recorded with an ADAS front-facing camera of a vehicle based on context information of
the vehicle are developed. For the proposed low-complexity TA and SA estimators, a high
estimation performance could be achieved with the additional advantage that no access to
the raw video stream is required. In comparison to the TA and SA estimators proposed in
[LM+14b], which only consider limited camera-context features, the developed TA and SA
estimators improve the estimation performance significantly.

4.4. Application in perceptual quality-aware video rate control

In this section, T̂A and ŜA are applied to STVQM and to STRM +. Both consider spatio-
temporal encoding settings and employ TA and SA values as video content information.

2Within the thesis a search range of k = 3 is considered, which is the suggested setting proposed by the ITU
for the SI determination [IR08].
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VQM Perf. metric Training set Validation set

STVQM PC 0.984 0.991
RMSE [DMOS] 0.25 0.17

CSTVQM PC 0.983 0.982
RMSE [DMOS] 0.237 0.275

CSTVQM [LM+14b]
PC 0.981 0.981

RMSE [DMOS] 0.29 0.25

Table 4.6.: VQM estimation performance: PC and absolute RMSE values for videos of the
Road training and validation set.

Analogous to the investigation in Section 3.4, both models are used to determine a solution
to the perceptual quality-aware rate control problem of Eq. (3.11).

4.4.1. Spatio-temporal video quality metric

In the following, T̂A and ŜA are integrated into STVQM of Eq. (2.13) and the performance
in estimating the perceptual quality for different encoding settings is compared to STVQM,
which is based on the computed TA and SA values and STVQM which employs T̂A[LM+14b]

and ŜA[LM+14b].

For this purpose, CSTVQM is introduced as the camera context-aware STVQM, which de-
pends on T̂A and ŜA:

QCSTV QM = QSTV QM (T̂A, ŜA). (4.10)

Furthermore, CSTV QM [LM+14b] is defined as STVQM, which depends on T̂A[LM+14b] and
ŜA[LM+14b]:

QCSTV QM[LM+14b] = QSTV QM (T̂A[LM+14b], ŜA[LM+14b]). (4.11)

The estimation performance of STVQM, CSTVQM, and CSTV QM [LM+14b] is determined
for the full video sequences (i.e., τ = 10 s) of the Road video set using the Q values deter-
mined from the subjective quality assessment of Section 2.3.3.2. Table 4.6 lists the estimation
performance in terms of PC and absolute RMSE for the evaluation of the videos from the
training and the validation set. Furthermore, Figure 4.6 displays a graphical representation of
the DMOS values of the videos from the validation set along with the 95% CI and the model
estimations of STVQM using the three different TA and SA estimators.

The results for the training set show that the estimation performance of STVQM, CSTVQM,
and CSTVQM [LM+14b] is comparable. For the validation set, a slightly worse RMSE of 0.1
DMOS for CSTVQM and CSTVQM [LM+14b] compared to STVQM can be observed. The
results confirm the findings of [LM+14b], that some inaccuracies in the TA and SA estimation
are tolerable in STVQM without a significant degradation of the perceptual quality estimation
performance.
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Figure 4.6.: Performance evaluation of STVQM ( ), CSTVQM ( ), CSTVQM [LM+14b] ( ) for
videos of the validation set; measured Q obtained from the subjective test of
Section 2.3.3.2 for 42 dB ( ), 38 dB ( ), 34 dB ( ) with 95% CI ( ).

4.4.2. Video bit rate model

Similar as for the objective video quality metric, T̂A and ŜA are integrated into STRM+ of
Eq. (3.10). The bit rate estimation performance is further compared to STRM + based on the
computed TA and SA values, and STRM + based on T̂A[LM+14b] and ŜA[LM+14b].

For this purpose, CSTRM+ is defined as STRM+ depending on T̂A and ŜA:

RCSTRM+ = RSTRM+(T̂A, ŜA). (4.12)

Besides that, CSTRM+
[LM+14b] is introduced as the T̂A[LM+14b] and ŜA[LM+14b] dependent

STRM+:
RCSTRM+

[LM+14b]
= RSTRM+(T̂A[LM+14b], ŜA[LM+14b]). (4.13)

For the investigation, the trained model parameters developed in Section 3.3.2.2 are applied to
the τ = 1 s segments of the videos of the Road video set. To assess and compare the estimation
performance of STRM+, CSTRM+, and CSTRM+

[LM+14b], the PC and RMSE relative to
Rmax,I are determined with the measured bit rate values for the same encoding settings as
listed in Table 3.1. The results summarized in Table 4.7 show that CSTRM+ offers a slightly
worse estimation performance as compared to STRM+ with an about 0.5 percentage points
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Model Perf. metric Training set Validation set

STRM+ PC 0.975 0.966
%RMSE 3.72 3.84

CSTRM+ PC 0.968 0.970
%RMSE 4.26 4.20

CSTRM+
[LM+14b]

PC 0.969 0.963
%RMSE 4.95 4.84

Table 4.7.: Video bit rate estimation performance: PC and RMSE relative to Rmax,I .
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ŜA

(R1, . . . , RNL )

...

Encoder

(q
N

L
,

f
N

L
)

RNL

Encoder
(q

2
,

f
2

)

R2
Encoder

(q
1

,
f

1
)

R1

Figure 4.7.: System view of a MBR encoding entity installed at an AHS source with NL

desired video bit rates. The rate controller determines optimal encoding settings
as solutions to the rate control optimization problem of Eq. (3.11) using T̂A and
ŜA.

higher RMSE for the videos of both the training and the validation set. In all cases, CSTRM+

offers a slightly better estimation performance compared to CSTRM+
[LM+14b] with an about

0.7 percentage points lower RMSE considering both the training and the validation set.

The results of the performance evaluation show that CSTRM+ (based on T̂A and ŜA) offers
a similar bit rate estimation performance as compared to STRM+. Besides that, the bit
rate estimation performance can be improved compared to CSTRM+

[LM+14b] at the same
computational complexity.

4.4.3. Perceptual quality-aware video rate control

Figure 4.7 displays a system view of a MBR encoding entity installed at an AHS source where
the segments of a defined duration of a source video need to be encoded at different desired
bit rates. Compared to the AHS source system introduced in Section 3.4, which employs
a pre-processor to compute the TA and SA values directly from the uncompressed source
video, the rate control entity of Figure 4.7 depends on a camera context-based pre-processor
to compute T̂A and ŜA. To this end, the rate control entity of Figure 4.7 determines the
optimal (q, f) values for the NL desired rate constraints based on T̂A and ŜA.
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Perf. metric TA, SA T̂A, ŜA T̂A[LM+14b], ŜA[LM+14b]

%RMSE 5.64 8.25 10.95
µ

Rc,Q
[DMOS] 3.36 3.38 3.35

Table 4.8.: Mean relative RMSE (normalized with Rm=0) and mean perceptual quality µRc,Q

of the solutions of the rate control problem of Eq. (3.11) for the videos of the Road
validation set.

CSTVQM and CSTRM+ are applied to the solution of the perceptual quality-aware rate
control problem of Eq. (3.11) to determine optimal spatio-temporal encoding settings for given
rate constraints. In order to realize CSTVQM which directly depends on q for the spatial
encoding settings the P̂SNR model of Eq. (3.13) is integrated into CSTV QM . Analogous to
the approach of Section 3.4.1, an IPP...P GoP is considered (i.e., m = 0). Exhaustive search
is applied to determine the optimal solutions for given rate constraints. It is assumed that all
PVSs are encoded with H.264/AVC with the (q, f) ranges defined in Table 3.1.

The accuracy of the approach in achieving desired target bit rates using T̂A and ŜA is assessed
and compared to the solutions which employ the TA and SA estimators of [LM+14b] and the
computed TA and SA values. The defined AHS bit rate constraints for the Road video set
defined in Section 3.4.1 are used for the performance assessment. Table 4.8 shows the RMSE
between the bit rate constraints and the measured bit rates of the videos encoded with the
parameters determined as solutions of Eq. (3.11) relative to Rm=0 using the three different TA
and SA estimators for videos of the validation set. The solution based on the proposed T̂A and
ŜA offers an about 2.5 percentage points higher RMSE in achieving the bit rate constraints
as the solution based on computed TA and SA values. In comparison, the solution which
employs T̂A[LM+14b] and ŜA[LM+14b] offers a RMSE of about 5.3 percentage points higher
compared to the computed TA- and SA-based solution. The better estimation performance
of the solution using T̂A and ŜA lies in the more accurate rate estimation of CSTRM+

compared to CSTRM+
[LM+14b].

Furthermore, the perceptual quality (in DMOS) for the (q, f) pairs determined as solutions
of Eq. (3.11) for all rate constraints using STVQM of Eq. (2.13) is computed. Similar as in
Section 3.4.2, first the perceptual quality Q is computed for all rate constraints using STVQM
of Eq. (2.13) with the (q, f) pairs determined as solutions of Eq. (3.11) based on all three TA
and SA estimators. In a second step, the mean perceptual quality µRc,Q is computed as the
mean over the Q values of all rate constraints and videos of the validation set. The results
listed in Table 4.8 show that roughly the same µRc,Q is achieved for all three TA and SA
estimators.

Since the developed TA and SA estimators depend on features which are determined inde-
pendently of the raw video, the presented rate control entity can be applied in automotive
scenarios to encode the source video captured with an ADAS front-facing camera where an
access to the source video stream or to internal functions of video encoders might not be
possible.
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4.5. Chapter summary

In this chapter, low-complexity TA and SA estimators are developed for video sequences
captured with an ADAS front-facing camera of a vehicle based on camera context information
of the vehicle. Using the proposed TA and SA estimators, a high estimation performance
for both estimators with the computed TA and SA values is achieved with the additional
advantage that no access to the raw video stream is required. In comparison to the previously
proposed TA and SA estimators of [LM+14b], which only consider limited camera-context
features, the developed TA and SA estimators are able to improve the estimation performance
significantly at the same computational complexity. The developed TA and SA estimators are
applied to a video bit rate model (STRM+), an objective video quality metric (STVQM ), and
the solution of the perceptual quality-aware rate control problem to determine the optimal
spatio-temporal encoding settings for desired bit rate constraints. The results show that,
using the proposed estimators, a similar estimation performance compared to the solution
based on computed TA and SA values is achieved for the bit rate model, the video quality
metric, and the solution of the rate control optimization problem.





85

Chapter 5

Dynamic video level encoding for uplink
adaptive HTTP streaming

This chapter studies the uplink delivery of live video content using AHS from mobile video
sources. Three context-aware video level selection algorithms1 are developed which use dif-
ferent context information to select a subset of video levels from a full static video level set.
By using the proposed algorithms, the number of video levels at the AHS source can be re-
duced significantly. The developed algorithms are applied in an automotive scenario where
the video of a vehicle’s ADAS front-facing camera is upstreamed to a video portal deployed
in the Internet.

5.1. Introduction

Video streaming to and from mobile devices over RANs is challenging due to the time-varying
network performance and frequent inter-RAN handovers. Therefore, adaptive streaming tech-
nologies are required in order to avoid an empty video playout buffer at the streaming client
caused by a mismatch of the playout and transmission bit rate. RTP/UDP-based adaptive
streaming systems offer intra-session rate adaptation mechanisms, however, are often filtered
out by firewalls [Sto11]. AHS-based systems, on the contrary, which have originally been de-
veloped for adaptive downlink streaming from CDNs, use HTTP/TCP-based transmissions.
Since most of the network components deployed in the Internet are designed to support
HTTP/TCP-based traffic, AHS-based streaming systems do not suffer from firewall filterings.
So far, AHS-based systems have not been considered for uplink streaming from mobile de-
vices since the MBR encoding process of creating the different video levels is computationally
demanding and quickly exceeds the computational resources of modern mobile devices. The
computational capacities and the number of hardware encoders installed at mobile devices

1Parts of this chapter appeared in preliminary form in [LG+15].
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Figure 5.1.: System image of the considered uplink AHS architecture. The AHS server
(marked in green) is installed on the mobile video source. The AHS client,
which uses standard AHS adaptation algorithms, is deployed at the streaming
sink (marked in purple).

are typically limited and as a consequence such devices might not be able to create the same
number of video levels in real time as CDN systems, which typically employ 10-15 video
levels [App; TAP+14]. However, due to its favorable deployment and transport characteris-
tics, AHS offers major advantages compared to RTP/UDP-based streaming systems for video
uplink streaming from mobile devices.

To this end, this chapter considers an uplink video streaming scenario, in which the video
captured with a camera of a mobile device is upstreamed to a single remote sink using AHS.
The streaming sink, for example, can be another mobile device or a video portal, which can
act as an intermediate node to offer further live consumption or the storage of the video
content for on-demand retrieval. Figure 5.1 displays the system model of the considered AHS
streaming architecture. An AHS server entity, deployed at a mobile device, splits the video
into segments of a defined duration and encodes the segments at different desired bit rates
using MBR. The desired bit rates are defined in a full static video level set and used as
control information for the MBR encoding entity. The encoded video segments are stored
on a locally installed web server along with a manifest file which is used to inform the client
about the different video segments. An AHS client entity is installed at the streaming sink,
which adaptively requests the video segments from the AHS server set up at the mobile video
source using standard AHS adaptation algorithms. The communication channel between the
mobile source and the streaming sink consists of a cascade of the uplink RAN used by the
mobile video source, a WAN infrastructure, and a wired or wireless network technology to
the streaming sink. It is assumed that the mobile device uses a heterogeneous RAN modem
which offers support for different cellular communication standards.

In order to reduce the number of video levels considered for the AHS-based uplink streaming,
this chapter proposes three different context-aware algorithms, which dynamically select a
reduced set of video levels from the full static video level set. The reduced video level set is used
as the control information at the MBR encoding entity. The first two algorithms are network
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performance-aware, since they employ different statistics of the TCP throughput performance
to select the reduced video level set. The third algorithm employs the history of the previously
requested video levels of the streaming client to determine the reduced video level set. All three
algorithms are applied to a mobile uplink streaming scenario, where the video of a vehicle’s
ADAS front-facing camera is upstreamed to a video portal. In the experimental evaluation,
TCP network performance traces from measurements in real HSPA and LTE networks are
used. The results show that with the proposed video level selection algorithms, a similar user
experience can be achieved as compared to a reference implementation which employs the
full static set of video levels. At the same time, the number of video levels considered in the
streaming session can be reduced significantly using all three proposed algorithms.

The remainder of this chapter is organized as follows. Section 5.2 reviews the related work on
AHS rate adaption algorithms and the context-aware selection of AHS video levels. Section
5.3 introduces the concept of context-aware dynamic video level selection and proposes the
three algorithms to determine a reduced set of video levels out of a full static video level set. In
Section 5.4 the experimental evaluation of the three algorithms in an automotive environment
is conducted. Finally, Section 5.5 summarizes this chapter.

5.2. Related work

The overall behavior and user experience in a streaming session of AHS systems depend,
besides the performance of the communication channel between the streaming source and sink,
to a large degree on the system settings and mechanisms used both at the AHS server and
the AHS client. In the following, major AHS client rate adaptation algorithms are reviewed
and an overview of the advances in the area of video level selection in AHS systems is given.

Since AHS is a pull-based streaming system, rate adaptation algorithms deployed at the
streaming sink are used in order to react to network performance fluctuations and to select
the most appropriate video levels. The adaptation algorithms can be classified into three
categories regarding their input control information:

• Throughput-based adaptation algorithms: Network performance measures di-
rectly derived from the TCP throughput of the previously fetched video segments are
used as the control input for the successive video level selection decisions. The adapta-
tion algorithm proposed by Liu et al. [LBG11] employs the segment fetch time for the
video level selection, which describes the duration from the request until the successful
transmission of the segment to the client. A smooth playback is guaranteed if the seg-
ment fetch time is less than or equal to the segment duration. Based on this requirement,
the authors use the ratio between the segment duration and the segment fetch time to
decide on the video level for the successive segment. In their work, the authors consider
a sequential segment fetch, i.e., the segments are requested and received sequentially



88 Chapter 5. Dynamic video level encoding for uplink adaptive HTTP streaming

one at a time. They extended their work in [LB+12a], where they also consider par-
allel fetching of video segments using multiple parallel TCP connections. Despite their
simplicity, both approaches offer some limitations inherited from the employed TCP
network performance information. Huang et al. [HH+12] demonstrated that inaccurate
TCP performance estimations might introduce an oscillating feedback loop which in
turn leads to frequent quality switches in streaming sessions and an overall poor user
experience. This occurs presumably in scenarios where various AHS clients share one
network performance bottleneck. To overcome this limitation, Li et al. [LZ+14] pro-
posed a probe-and-adapt mechanism which performs additional probes at the application
layer to reliably quantify the network throughput and thus to prevent oscillation effects.
Similar to that, Mok et al. [ML+12] proposed a quality-of-experience (QoE)-aware AHS
system which additionally employs bandwidth probes at the application layer.

• Buffer status-based adaptation algorithms: The algorithms solely employ infor-
mation about the buffer status in the rate adaptation process. The adaptation algorithm
proposed by Huang et al. [HJM13] uses the fullness of the video playback buffer of the
streaming client to decide on the video levels of the successive video segments, which
makes the potentially error-prone process of TCP network performance estimation su-
perfluous. A control-theoretical approach using a proportional-derivative controller was
proposed by Zhou et al. [ZL+14], which uses the buffer fullness information of the client
for the video level selection. Besides that, De Cicco et al. [DCMP11] proposed a fur-
ther control-theoretical approach which employs the sender buffer in the rate adaptation
process.

• Buffer- and throughput-based adaptation algorithms: The adaptation algo-
rithms use information about the buffer status as well as the TCP throughput informa-
tion for the rate adaptation process. The algorithm proposed by Miller et al. [MQ+12]
targets to accomplish an optimal playout buffer level throughout the streaming session
by reacting to the buffer status as well as to the measured TCP throughput of the last
segment fetches. The authors additionally employed a fast-start mechanism to increase
the bit rates of the video levels rapidly at the beginning of a streaming session in order
to achieve a high user experience directly after the start-up. Similar to that, the algo-
rithm proposed by Tian et al. [TL13] determines the video levels of the successive video
segments based on the video time buffered at the client, the recent TCP throughput
history, and the video levels of the previously transmitted segments. In order to avoid
buffer underflows at all times, the rate adaptation algorithm considers a throughput
safety margin and uses a conservative quantization process to select the video levels of
the requested segments.

The set of video levels employed in an AHS-based streaming system has a major influence
on the overall user satisfaction in a streaming session. To this end, the video levels need
to be selected thoroughly prior to the setup of the AHS system taking the contents and
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deployment characteristics, such as the expected throughput range of the streaming clients as
well as the capabilities of the user devices (screen resolution, processing capacities, etc.), into
consideration. Most commercial AHS systems, such as Microsoft’s Smooth Streaming [Zam09],
Adobe’s HTTP Dynamic Streaming [Ado10], or Apple’s HTTP Live Streaming [PM14; App]
recommend a static set of video levels for different spatial resolutions. Toni et al. [TAP+14]
demonstrated that these recommendation sets have major weaknesses in terms of the overall
user satisfaction in streaming sessions. To overcome these issues, they defined and solved an
optimization problem to select a set of optimal video levels with respect to the user experience.
Based on the optimal solution, they proposed guidelines to select the video levels in real AHS
deployments.

5.3. Dynamic video level selection

This section first defines the objective of dynamic video level selection (Section 5.3.1). It
proposes the three context-aware algorithms to select a subset of video levels out of a full
static video level set based on (i) network performance information (Section 5.3.2) and (ii)
the history of the previous video level requests of the clients (Section 5.3.3).

5.3.1. Video level selection objective

The goal of dynamic video level selection is to choose a reduced set of video levels with NR

elements (Ṽ = {ṽ1, ṽ2, ..., ṽNR
}) from a full static video level set with NL elements (V =

{v1, v2, ..., vNL
}), which is used as control information at the AHS server to produce the video

segments employed in the streaming session. Ideally, the user experience in streaming sessions
using Ṽ should be the same as in streaming sessions which use the full static video level set
V.

In order to quantify the user experience of a streaming session, four performance measures
are introduced, which are determined at the streaming client:

• γ is defined as the total duration of buffer emptiness due to stalling events in a stream-
ing session which results in an interrupted playback. A large duration of interrupted
playback leads to a low user satisfaction [SE+14].

• ε is defined as the number of video level changes during a streaming session. A low
number of switches during a session leads to a high user satisfaction [NE+11]. ε is
determined as

ε =
I∑
i=0

a(vi), a(vi) =
{

0 vi−1 = vi

1 vi−1 6= vi, i = 0



90 Chapter 5. Dynamic video level encoding for uplink adaptive HTTP streaming

where vi is the video level of the ith fetched segment, and I is the total number of
fetched segments in the streaming session.

• µR defines the mean bit rate of the transmitted video levels in a streaming session and
is computed by

µR = 1
I
·
I∑
i=1

vi.

• µQ is defined as the mean perceptual quality of the transmitted video segments of a
streaming session and is determined by

µQ = 1
I
·
I∑
i=1

Q(vi),

where Q(vi) is the perceptual quality of the i the video level (measured in DMOS).

Based on these definitions, the goal of the dynamic video level selection can be formulated as

NR = argmin
Ṽ⊆V

∥∥∥Ṽ∥∥∥ (5.1)

subject to γV = γ
Ṽ

,

εV = ε
Ṽ

,

µQ,V = µ
Q,Ṽ

,

where
∥∥∥Ṽ∥∥∥ describes the number of video levels of Ṽ, which is a subset of V. Besides that,

γV , εV , and µQ,V denote the user experience of a streaming session if the full static video level
set V is considered. γ

Ṽ
, ε

Ṽ
, and µ

Q,Ṽ
quantify the user experience if the reduced video level

set Ṽ is employed.

5.3.2. Network performance-aware dynamic video level selection

In the following subsection, first the system model employed for the two network performance-
aware dynamic video level selection algorithms is presented, followed by an introduction of
the two algorithms.

5.3.2.1. System model

To determine Ṽ, the network performance-aware dynamic video level selection algorithms
employ two different sources for the TCP network performance information T : TM is the
TCP uplink throughput performance of the streaming session for a window length of W
seconds, measured by the RAN modem installed at the mobile device. TDB is the TCP
uplink throughput information provided by a remote lookup database. It is assumed that
the throughput information stored in the remote database is created through previous TCP
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ṽNR

MBR Enc.

Dyn. VLS

...

HSPA

LTE

Het. RAN
Modem

AHS client

t

R

Commun.
channel

Streaming sink

Figure 5.2.: System model of the dynamic video level selection approaches (referred to as
Dyn. VLS): network performance-aware dynamic video level selection employs
measured and requested TCP network performance information T ( ), client
request-aware dynamic video level selection uses history of client requests vReq
( ).

throughput measurements of other mobile devices with the same network context2. Besides
that, it is considered that the mobile devices also provide the measured uplink TCP through-
put information to the remote database during or after the streaming session in order to
keep the system up-to-date. The variable h is introduced to select the source of the TCP
throughput performance information (h = 1: T = TDB, h = 0: T = TM ).

Two network performance-aware dynamic video level selection algorithms are developed to
produce Ṽ from the static video level set V based on T . The measured network performance-
aware dynamic video level selection algorithm (referred to as NetVLS-M in the following)
employs TM as the primary source for the TCP network performance information and TDB

during the start-up phase and after inter-RAN handovers. The requested network performance-
aware dynamic video level selection algorithm (referred to as NetVLS-DB in the following)
uses solely TDB as the TCP network performance information. The system model of the
network performance-aware dynamic video level selection is displayed in Figure 5.2.

2A network context of a connection denotes the connected RAN, the geographical area of a connection using
the same base station, and the time of the day.
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Algorithm 1: NetVLS-M/NetVLS-DB
Input: V: Full set of available video levels

NR: Number of video levels considered in Ṽ
TM : TCP uplink throughput measured at the mobile device
TDB: TCP uplink throughput requested from remote database
h: Variable to select the source of T

Output: Ṽ: Reduced set of video levels
1 if h = 1 then
2 T = TDB

3 else
4 T = TM

5 vn = arg min
{vi,1≤i≤NL}

|vi − T |

6 if n < bNR/2c+ 1 then
7 Ṽ← {v1, v2, · · · , vNR

}
8 else if n > NL − dNR/2 − 1e then
9 Ṽ← {vNL−L+1, vNL−NR+2, · · · , vNL

}
10 else
11 if NR is odd then
12 Ṽ← {vn−bNR/2c, vn−bNR/2c+1, · · · , vn+bNR/2c}
13 else
14 Ṽ← {v

n−NR
2
, v
n−NR

2 +1, · · · , vn+ NR
2 −1}

15 return Ṽ

5.3.2.2. Measured network performance-aware dynamic video level selection

Algorithm 1 displays the algorithm’s pseudocode. It is assumed that the algorithm is called
after the request of a segment when one of the two following events occurs: (i) the streaming
session is started or an inter-RAN handover between two RANs occurs, (ii) a duration of W
seconds of the streaming session has elapsed. The algorithm needs to be re-invoked after an
inter-RAN handover since the two RANs involved in the handover might feature significantly
different TCP network performance properties. It is assumed that the manifest file, which
contains references to the video segments of Ṽ, is updated after the algorithm is invoked.

The algorithm requires the input arguments V, NR, and T and determines Ṽ as the output
argument. In order to reduce the number of video levels, the algorithm requires NR < NL.

After the algorithm is called, first the TCP uplink throughput information is determined.
After inter-RAN handovers and the start-up, T is set to TDB (i.e., h = 1). At all other times,
T is set to TM (i.e., h = 0). In the successive step, the video levels of the reduced set Ṽ are
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determined according to T using a symmetrical windowing approach. To this end, first, the
video level vn is determined as the center element of Ṽ, which offers the smallest absolute
difference to T among all other video levels in V (line 5). The remaining NR − 1 video
levels are selected symmetrically around vn (line 6-14). In the case of an odd NR, a perfectly
symmetrical selection of the remaining NR−1 video levels is performed by choosing the same
number of adjacent video levels above and below vn (line 12). Otherwise, a conservative
selection approach is conducted and NR

2 adjacent video levels below and NR
2 − 1 adjacent

video levels above vn are selected (line 14). Depending on NR, if not enough video levels are
available below or above vn, the algorithm constructs Ṽ asymmetrically around vn. In this
case, the algorithm selects the available video levels above (or below, respectively) of vn and
the remaining video levels from below (or above, respectively) (line 6-9).

5.3.2.3. Requested network performance-aware dynamic video level selection

The application of the previously proposed NetVLS-M makes it possible to determine the
video levels specifically for the actual network connection performance due to the primary
usage of TM . However, in order to determine TM , a measurement interface at the RAN
modem is required. This might be problematic in automotive deployments, where a full
access to the ECUs and thus to the TCP network performance information is typically not
available. To overcome this limitation, NetVLS-DB is proposed which considers TDB as the
only source of the TCP throughput information, and, hence, does not require any additional
interfaces at the RAN modem of the mobile video source.

NetVLS-DB (cf., Algorithm 1) follows a similar approach as NetVLS-M with the difference
that h = 1 at all times, since only TDB is employed as the TCP throughput information. The
selection process of Ṽ is performed symmetrically around T and follows the same symmetrical
windowing approach as NetVLS-M (line 6-14).

5.3.3. Client request-aware dynamic video level selection

The following subsection first presents the system model of the client request-aware dynamic
video level selection, followed by an introduction to the corresponding video level selection
algorithm (referred to as CliVLS in the following).

5.3.3.1. System model

The system model of the client request-aware dynamic video selection approach, displayed in
Figure 5.2, considers a similar system model as the network performance-aware dynamic video
level selection approach with the difference that no TCP throughput performance information
is required to generate the reduced video level set.
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Algorithm 2: CliVLS
Input: V : Full set of available video levels

NR: Number of video levels considered in Ṽ
Output: Ṽ: Reduced set of video levels

1 vn = arg min
{vi,1≤i≤NL}

|vi − vReq|

2 if n < bNR/2c+ 1 then
3 Ṽ← {v1, v2, · · · , vNR

}
4 else if n > NL − dNR/2 − 1e then
5 Ṽ← {vNL−NR+1, vNL

−NR+2, · · · , vNL
}

6 else
7 if NR is odd then
8 Ṽ← {vn−bNR/2c, vn−bNR/2c+1, · · · , vn+bNR/2c}
9 else

10 Ṽ← {v
n−NR

2
, v
n−NR

2 +1, · · · , vn+ NR
2 −1}

11 return Ṽ

Instead of the TCP throughput information, the video level selection approach employs the
client request history to determine Ṽ which comprises the previously requested video levels of
the AHS client. It is assumed that the manifest file, employed by the client for the segment
requests during the overall streaming session, contains the full video set V. The AHS server
generates and maintains Ṽ as a subset of V which is generated based on the mean of the
previous client requests of the previous W seconds (vReq). Based on Ṽ, the AHS server entity
produces the video levels employed in the streaming session. If, however, the AHS client
requests a video level which is not contained in Ṽ, the AHS server instead selects the video
level which offers the smallest absolute difference to the requested video level out of Ṽ as an
alternative.

5.3.3.2. Client request-aware dynamic video level selection algorithm

Algorithm 2 depicts the algorithm’s pseudocode. The algorithm is performed at time t im-
mediately after the request of a segment when a window of W seconds is completed. Other
than the network performance-aware dynamic video level selection algorithms, CliVLS does
not handle start-up and inter-RAN handover events separately. The algorithm requires V
and NR as the input arguments and generates Ṽ as the output argument.

At the beginning of the streaming session, the manifest file which contains the full set of video
levels V is provided to the client. After the start-up of the streaming session, no client request
history is available at the AHS server yet. Hence, the client selects the video levels from the
full video level set according to its rate adaptation strategy for the first W seconds and the
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server produces the requested video levels on demand. For all successive time instants, the
algorithm determines the video levels of the reduced set Ṽ based on vReq. The video level in
V which offers the smallest absolute difference to vReq is selected as the center element vn in
Ṽ. The NR− 1 other video levels of Ṽ are selected symmetrically around vn according to the
windowing selection process proposed in the NetVLS-M approach (cf., lines 2-10).

5.4. Performance evaluation in automotive streaming scenarios

The proposed network performance-aware and client request-aware dynamic video level selec-
tion algorithms are applied to an automotive streaming scenario where the video of an ADAS
front-facing camera of a vehicle is upstreamed to a video portal using AHS. The AHS server
module, i.e., the MBR encoder and the web server, is installed at the vehicle. It splits the
source video into segments of a defined duration, encodes the segments at the defined video
levels, and stores the encoded video segments at a locally installed web server along with the
manifest file, which is used to inform the client about the video segments. The heterogeneous
RAN ECU is used for wireless connectivity. In the course of the performance assessment,
HSPA and LTE RANs in an urban deployment are considered which offer almost full cover-
age in urban areas as of today [Map]. The AHS source entities can be integrated into modern
vehicle deployments with minor modifications of the architecture and the ECUs. To this end,
the hardware encoder modules of the ADAS camera ECUs can be used for the encoding of
the video segments and a web server installed on the HU ECU, which is typically employed in
remote HMI applications [EPS10], can be used to store and provide the video segments to the
streaming client. The AHS client is installed at a remote video portal deployed in the Inter-
net, which adaptively requests segments from the vehicle using a standard AHS adaptation
algorithm. This scenario is especially interesting since the network performance of moving
vehicles fluctuates significantly over time due to the properties of the wireless connectivity
in automotive environments which suffers from fast-changing wireless channels and frequent
inter-RAN handovers [LB+15].

The following section first describes the developed simulation model (Section 5.4.1) followed
by a performance assessment of the three video level selection algorithms with respect to the
user experience (Section 5.4.2).

5.4.1. Simulation model

In the simulation model, two different implementations are considered at the encoder side:
(i) a reference implementation (referred to as Reference/Ref in the following) where the MBR
encoder entity at the AHS server produces the full static video level set V with NL different
video levels, and (ii) an implementation where the proposed dynamic video level selection
algorithms are employed. In order to ensure reliability and generalizability of the results,
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three different standard AHS adaptation algorithms are considered at the streaming sink to
determine the performance measures during the streaming sessions: (i) the adaptation algo-
rithm proposed by Liu et al. [LBG11] (referred to as Liu in the following), (ii) the adaptation
algorithm proposed by Miller et al. [MQ+12] (referred to as Miller in the following), and
(iii) the adaptation algorithm proposed by Tian et al. [TL13] (referred to as Tian in the
following).

A modular, discrete MATLAB simulation framework is developed to investigate and compare
the performance of the different video level selection approaches. The AHS server entities and
AHS client entities are implemented as separate modules. The client buffer model proposed in
[HJM13] is used to model the playout buffer for the three adaptation algorithms. The network
performance between the mobile source and the video portal is modeled by measurements
conducted in real HSPA and LTE networks in an automotive environment.

In the following, the conducted TCP network performance measurements and the selection of
the static set of video levels employed at the AHS streaming server are introduced.

5.4.1.1. Network performance modeling

In order to model the uplink TCP throughput performance using HSPA and LTE RANs
in an urban automotive environment, repeated TCP uplink throughput measurements of a
single TCP connection are performed while driving. TCP uplink performance traces are
recorded with a server deployed in the Internet using iperf [TQ+] along a 4.3 km long route
in the urban area of Munich. For connectivity, a ZTE MF821 data modem was connected to
the heterogeneous RAN ECU and to an external automotive-grade rooftop antenna system
[ET+13]. Nine repeated measurements in the network of Telefónica for both HSPA and LTE
networks were conducted. To reduce the effect of direction-dependent gain differences inherent
from MIMO antennas, especially in the vicinity of LTE base stations [ET+13], the same
driving direction was selected for all measurements. All traces were recorded at an average
velocity of 30 km/h. The data points were recorded at a frequency of 1 Hz containing uplink
TCP throughput measurements, geographical position (latitude and longitude determined by
a GPS module), velocity of the vehicle, and timestamp of the measurements. Figures 5.3a
and 5.3b show the mean and standard deviation of the measured uplink TCP throughput T
of all measurements for HSPA and LTE networks versus the distance to the start position
d. It can be observed that for LTE the uplink TCP throughput performance fluctuates
around a mean of approximately 5000 kbit/s (except for a significant drop in the last 500 m).
On the other hand, the TCP throughput performance of the HSPA traces is more stable
over time, but significantly lower as compared to the LTE traces with a mean of roughly
450 kbit/s. For the further analysis, an artificial scenario is created where alternating inter-
RAN handovers between HSPA and LTE networks are considered every 60 s. To generate the
handover traces, the HSPA and LTE trace segments of 60 s length obtained from respective
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Figure 5.3.: Mean ( ) and standard deviation ( ) of the measured uplink TCP through-
put for HSPA, LTE, and HO measurements over nine traces each.

uplink TCP throughput measurements are piecewise combined (cf., Figure 5.3c).

The mean over all traces for each RAN and geographical position is used to create the TCP
uplink performance information in the remote database which provides TDB for the considered
network contexts.

5.4.1.2. Selection of the static video level set

For the further investigation, typical CDN settings are considered for the number of video
levels in V [App; TAP+14], i.e., NL = 12. Furthermore, three representative videos of the
Road video set (introduced in Section 2.3.3.2) are used: video 1, 2, and 6. In order to select
the video levels of V, the guidelines for the selection of an optimal video level set proposed
in [TAP+14] are followed. To this end, two factors are taken into account: (i) the TCP
throughput performance characteristics of the automotive scenario, and (ii) the properties
of the R-Q curves of the considered videos. First, the lowest and highest video levels in
V are determined such that the uplink throughput range observed during the conducted
measurements in the HSPA and LTE networks is fully covered. Secondly, more video levels
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Figure 5.4.: R-Q curves of video 1 (), 2 (), and 6 () of the Road video set determined as
optimal solutions of Eq. (3.11) using STRM+ and STV QM ; bit rates of selected
video levels ( ).

are selected for lower bit rates (R ≤ 1000 kbit/s), since the Q gains are high in this range. The
R-Q curves displayed in Figure 5.4 reveal that in this bit rate range, a small increase in bit
rate leads to a large Q increment. On the contrary, the Q gain is small for bit rate increases
above a certain threshold. Figure 5.4 shows that this threshold is roughly 5000 kbit/s for the
considered videos, which is selected as the video level with the highest bit rate in V.

Considering these two factors, V is constructed as:

V = {200, 230, 280, 350, 430, 530, 700, 1000, 1700, 2600, 3700, 5000} kbit/s

It is assumed that the source videos are separated into video segments of τ = 2 s length
and are encoded using the integer q and f settings determined as solutions of the perceptual
quality-aware rate control problem of Eq. (3.11), which employ STRM+ of Eq. (3.10) and
STV QM of Eq. (2.13). For the investigation, the q and f values listed in Table 3.1 are
considered.

5.4.2. Simulation results

In the following, the performance of the different dynamic video level selection algorithms is
determined in a two step approach. First, the influence of the encoder side adaptation time
W on the video level selection approaches is investigated. To this end, the minimum number
of video levels NR,min is determined for different W values which is required to fulfill the
goals of Eq. (5.1), and thus to achieve the same user experience (i.e., γ, ε, µQ) as the Refer-
ence implementation. For this investigation, Liu’s adaptation algorithm and the LTE TCP
uplink throughput traces are used, since this combination offers the lowest user experience
among the single-RAN adaptation scenarios. Table 5.2 reveals that Liu’s algorithm offers a
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W [s] 10 20 40 60
NR,min 2 4 4 5

Table 5.1.: Feasible (W , NR,min)-pairs of NetVLS-M.

γ [s] ε µR [kbit/s] µQ [DMOS]
Video 1 Video 2 Video 6

Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop

LTE
Liu 0.0 0.0 37 27 4365.2 4203.5 4.63 4.64 4.71 4.72 4.77 4.74

Miller 0.0 0.0 19 16 4321.9 3544.0 4.59 4.54 4.67 4.67 4.73 4.70
Tian 0.0 0.0 13 21 4383.6 3932.3 4.51 4.57 4.60 4.67 4.68 4.71

HO
Liu 0.0 6.4 49 22 2804.5 2912.7 3.64 3.72 3.85 3.90 4.17 4.20

Miller 4.9 6.2 47 20 2190.4 1928.8 3.17 3.40 3.39 3.64 3.76 4.00
Tian 0.8 0.4 26 25 2775.7 2632.7 3.49 3.63 3.69 3.83 4.03 4.16

Table 5.2.: Performance overview of the Reference and NetVLS-M (referred to as Prop in the
table) implementations in LTE and HO scenarios for NR = 2, W = 10 s, mean
over nine traces each.

significantly higher number of video level switches compared to Miller’s and Tian’s algorithm
for the Reference implementation, while the other parameters offer approximately the same
performance. Second, the identified W and NR,min parameters are used to determine the user
experience performance measures for the AHS adaptation algorithms and different network
performance scenarios. For this investigation, the LTE and the HO traces are employed, which
both feature significant network performance changes as opposed to the HSPA traces which
offer stable performance characteristics.

5.4.2.1. Network performance-aware dynamic video level selection

NetVLS-M: First, NR,min is determined for different W values (W ∈ {10, 20, 40, 60} s). The
results listed in Table 5.1 show that NR,min increases for larger W values since the responsive-
ness of the video level selection approach to throughput fluctuations decreases significantly as
W increases. The lowest possible value of NR,min can be achieved for W = 10 s (NR,min = 2),
which is used in the following to assess the performance for the LTE and handover network
performance scenarios.

Table 5.2 lists the mean performance over all nine LTE and handover traces of all four per-
formance measures (γ, ε, µR , µQ) for the three different rate adaptation algorithms. The
performance of NetVLS-M in terms of mean subjective quality µQ and interrupted playback
time due to stalling events γ is comparable to the performance of the Reference implemen-
tation for all client side adaptation algorithms. For Liu’s [LBG11] and Miller’s [MQ+12]
adaptation algorithms, a decrease in the number of video level switches ε can be observed.
This is due to the small number of video levels which in turn lead to a decreased probability
of video level switches. Besides that, the mean video rate µR is lower for the scenarios where
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W [s] 10 20 40 60
NR,min 4 4 4 5

Table 5.3.: Feasible (W , NR,min)-pairs of NetVLS-DB.

γ [s] ε µR [kbit/s] µQ [DMOS]
Video 1 Video 2 Video 6

Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop

LTE
Liu 0.0 0.5 37 28 4365.2 4275.1 4.63 4.66 4.71 4.75 4.77 4.81

Miller 0.0 0.0 19 12 4321.9 3782.2 4.59 4.56 4.67 4.68 4.73 4.73
Tian 0.0 0.0 13 13 4383.6 4241.3 4.51 4.63 4.60 4.73 4.68 4.79

HO
Liu 0.0 5.6 49 42 2804.5 2787.7 3.64 3.66 3.85 3.89 4.17 4.21

Miller 4.9 6.2 47 27 2190.4 1635.9 3.17 3.17 3.39 3.50 3.76 3.95
Tian 0.8 0.6 26 25 2775.7 2216.1 3.49 3.40 3.69 3.68 4.03 4.07

Table 5.4.: Performance overview of the Reference and NetVLS-DB (referred to as Prop in
the table) implementations in LTE and HO scenarios for NR = 4, W = 10 s, mean
over nine traces each.

NetVLS-M is applied compared to the scenarios where the Reference implementation is em-
ployed (except for the handover scenario where Liu’s algorithm is used). However, this does
not necessarily lead to a lower µQ value, since the R-Q relation is not linear (cf., Figure 5.4).
Figure 5.5 displays the selected video levels for both NetVLS-M and the Reference imple-
mentation for an exemplary LTE network trace. It can be observed that higher video levels
are requested in the start-up phase using NetVLS-M, which is due to the usage of TDB in
the adaptation process already at t = 0 s. In contrast to that, the rate adaptation algorithms
start with the lowest bit rate video level of V for the Reference implementation, since no
information about the potential TCP network performance is available and no pre-selection
of the potential video levels is conducted.

NetVLS-DB: Table 5.3 lists NR,min for different W values. Similar as for NetVLS-M, NR,min

increases for larger W values. Compared to NetVLS-M, two more video levels (NR,min = 4)
are required for W = 10 s in order to fulfill the goals defined in Eq. (5.1) for the LTE traces and
Liu’s adaptation algorithm. The reason for this larger number of NR,min lies in the throughput
information, which considers solely the TCP network performance from the remote database
(T = TDB) and as a consequence introduces inaccuracies in the TCP throughput estimation.

The user experience performance results for all three client adaptation algorithms for the LTE
and handover network traces displayed in Table 5.4 and the selected video segments for one
exemplary LTE network trace displayed in Figure 5.6 indicate a similar trend as NetVLS-
M. To this end, a significant reduction of the number of quality switches ε compared to the
Reference implementation is achieved for Liu’s and Miller’s adaptation algorithm. Besides
that, the mean perceptual quality in the streaming sessions µQ for all algorithms is comparable
to the Reference implementation.
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W [s] 10 20 40 60
NR,min 4 5 7 7

Table 5.5.: Feasible (W , NR,min)-pairs of CliVLS.

γ [s] ε µR [kbit/s] µQ [DMOS]
Video 1 Video 2 Video 6

Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop Ref Prop

LTE
Liu 0.0 0.0 37 33 4365.2 4191.8 4.63 4.54 4.71 4.64 4.77 4.72

Miller 0.0 0.0 19 15 4321.9 4062.2 4.59 4.34 4.67 4.45 4.73 4.58
Tian 0.0 0.0 13 5 4383.6 4364.9 4.51 4.47 4.60 4.56 4.68 4.65

HO
Liu 0.0 1.7 49 44 2804.5 2408.3 3.64 3.41 3.85 3.63 4.17 4.02

Miller 4.9 17.3 47 35 2190.4 2295.7 3.17 3.10 3.39 3.33 3.76 3.74
Tian 0.8 5.0 26 26 2775.7 2720.0 3.49 3.51 3.69 3.72 4.03 4.07

Table 5.6.: Performance overview of the Reference and CliVLS (referred to as Prop in the
table) implementations in LTE and HO scenarios for NR = 4, W = 10 s, mean
over nine traces each.

5.4.2.2. Client request-aware video level selection

Finally, the performance of CliVLS is assessed. The dependency between W and NR,min is
listed in Table 5.5 and follows a similar trend as for the network performance-aware dynamic
video level selection algorithms. For W = 10 s, four video levels are required in order to
achieve the same user experience in the streaming sessions as the Reference implementation
for Liu’s adaptation algorithm and the LTE network performance traces.

Table 5.6 lists the user experience for all client adaptation algorithms for the LTE and han-
dover network traces. Similar as for the network performance-aware dynamic video level
selection algorithms, the number of video level switches is reduced significantly as compared
to the Reference implementation. However the interrupted playback time caused by stalling
events γ is significantly higher in inter-RAN handover scenarios (especially for Miller’s algo-
rithm). This behavior is due to the indirect and potentially outdated network performance
information inherited from the video level requests. After an inter-RAN handover from LTE
to HSPA, for example, the requested video levels might still be inappropriately high. As a
consequence, more buffer underflows might occur which lead to more frequent and longer
playback interruptions.

Figure 5.7 displays the video level selections of CliVLS for an exemplary LTE network trace.
It can be observed that the video levels after the start-up are lower compared to the network
performance-aware dynamic video level selection algorithms, since no network performance
information is available at t = 0 s, and, thus, a pre-selection of the video levels cannot be
conducted. Due to their rate adaptation strategy, the client adaptation algorithms request
the lowest video level of V at the start-up of the streaming session.

To summarize, the performance assessment reveals that all three proposed dynamic video
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level selection algorithms are able to reduce the number of video levels employed at the AHS
video source while achieving the goals of Eq. (5.1). NetVLS-M, which primarily employs
the TCP network performance measured at the heterogeneous RAN modem of the vehicle
for the dynamic video level selection makes it possible to significantly reduce the number
of video levels from 12 all the way down to two video levels, as opposed to NetVLS-DB
and CliVLS, which require two more video levels. Despite the larger number of required
video levels compared to NetVLS-M, NetVLS-DB and CliVLS offer the major advantage
that no additional interface at the heterogeneous RAN modem is required to determine the
TCP throughput information. Both algorithms merely depend on context information which
can be determined on the application layer. This is particularly beneficial in automotive
deployments, where the ECUs are typically developed and produced by automotive suppliers
which generally do not grant full access to statistics and the internal functions of the ECUs.

5.5. Chapter summary

In this chapter, an AHS-based streaming system is considered to upstream videos from a
mobile video source with limited computational resources. To reduce the number of video
levels which need to be encoded at the AHS server installed at the mobile video source, three
context-aware video level selection algorithms are proposed which select a reduced video level
set out of a full static video level set. Two algorithms are network performance-aware since
they employ TCP throughput information measured or requested from a remote database, and
one algorithm uses information about the previous video level requests of the streaming client.
The algorithms are applied to an automotive streaming scenario where the video content of
an ADAS front-facing camera is upstreamed to a remote video portal using HSPA and LTE
RANs. The results of the investigation show that with all three algorithms the number of
video levels in a streaming session can be reduced significantly while offering a similar user
experience in the streaming sessions as an implementation which employs the full static video
level set.
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(b) Miller [MQ+12]
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(c) Tian [TL13]

Figure 5.5.: Exemplary LTE TCP uplink network performance trace ( ) with the requested
video levels using the Reference ( ) and NetVLS-M ( ) AHS server imple-
mentations for Liu’s, Miller’s, and Tian’s adaptation algorithms; video levels of
V ( ).
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(b) Miller [MQ+12]
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(c) Tian [TL13]

Figure 5.6.: Exemplary LTE TCP uplink network performance trace ( ) with the requested
video levels for the Reference ( ) and NetVLS-DB ( ) implementations for
Liu’s, Miller’s, and Tian’s AHS client adaptation algorithms; video levels of V
( ).
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(b) Miller [MQ+12]
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(c) Tian [TL13]

Figure 5.7.: Exemplary LTE TCP uplink network performance trace ( ) with the requested
video levels using the Reference ( ) and CliVLS ( ) implementations for
Liu’s, Miller’s, and Tian’s AHS client adaptation algorithms; video levels of V
( ).
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Chapter 6

Conclusions and future directions

6.1. Conclusions

In this thesis, means to enable user experience-driven video streaming from mobile video
sources with limited computational capacity are developed and applied to an automotive
environment.

First, a video bit rate model is developed, which takes the impact of spatial quality, temporal
resolution, and the GoP settings into account. To this end, the model considers quantization
parameter, frame rate, GoP length, and GoP structure as encoding settings and relies on video
content-dependent model parameters. To estimate the video content-dependent parameters,
temporal and spatial activity dependent estimators are developed, which make it possible
to employ the rate model in automated video processing systems, such as rate controllers.
An extensive performance assessment with the measured bit rates of two video sets reveals
that the proposed bit rate model is very accurate in predicting the bit rate of H.264/AVC
encoded videos. Compared to two other related bit rate estimation models, the performance
in estimating the video bit rates is comparable or slightly better, however, with the additional
advantage that the proposed model takes GoP encoding settings into account. Along with a
perceptual quality metric, the developed bit rate model is integrated into the solution of an
optimization problem to determine spatio-temporal encoding settings in order to maximize
the perceptual quality for desired bit rate constraints. The results show a high accuracy in
achieving desired bit rate constraints while using the proposed video bit rate model.

Second, camera context-aware temporal and spatial activity estimators are developed for
videos recorded with an ADAS front-facing camera of a vehicle. The estimators employ TA-
and SA-related features which are based on the status and the dynamics of the vehicle and the
vehicles in the field-of-view of the ADAS camera. A performance assessment shows that the
proposed estimators offer a high estimation performance of the computed TA and SA values
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with the additional advantage that no access to the uncompressed source video or the internal
functions of video encoders is required. Both estimators are applied to the aforementioned
bit rate model, the perceptual quality metric, and the solution of the optimization problem
to determine spatio-temporal encoding settings for desired bit rate constraints. For all three
a similar performance is achieved compared to the solution based on computed TA and SA
values.

Finally, an AHS-based system is assumed to upstream video content from a mobile video
source with limited computational capacity to a remote streaming sink in the Internet. Mobile
video sources might not be able to simultaneously create the same number of video levels
which are typically employed in AHS systems installed at CDNs. To significantly reduce the
number of video levels at the AHS source, three context-aware video level selection algorithms
are proposed. These algorithms select a reduced set of video levels out of a full static video
level set. One algorithm employs statistics of the previous video level requests from the client
and two algorithms use different sources of the TCP network performance between the video
source and the video sink. The algorithms are applied to an automotive streaming scenario
where the content of an ADAS front-facing camera of a vehicle is upstreamed to a remote video
portal deployed in the Internet. Using all three proposed algorithms, a significant reduction
of video levels at the AHS source can be realized while achieving a similar user experience in
streaming sessions as an AHS deployment which considers the full static video level set.

6.2. Future directions

In this section, potential extensions of the work presented in this thesis are discussed in three
directions.

Video quality metric: The solution of the rate control optimization problem proposed in
Chapter 3 of this thesis employs a perceptual video quality metric which captures the perceived
quality of the viewer for a certain range of spatio-temporal encoding settings. While this
metric can be employed to maximize the overall QoE in streaming applications, it might
not be suitable for some task-related streaming applications where some objects or events
contained in the video frames need to be detected by humans. For example, videos of a road
scene captured with an ADAS front-facing camera might be used in overtaking applications
[GOMF12] where faraway approaching vehicles should be detected. To this end, task-related
quality metrics, such as task performance metrics, may be developed and employed in the
rate control process rather than perceptual quality metrics.

Uplink video streaming: Chapter 5 of this thesis proposes an AHS-based approach to up-
stream captured videos from a mobile device with limited computational capacity to a single
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streaming sink. The approach may be extended in two directions:

• The proposed AHS-based approach to upstream video content from a camera to a remote
device in the Internet can be applied for delay tolerant applications, such as automotive
surveillance and convenience applications, which allow an end-to-end delay in the order
of several seconds. Other applications, however, have more strict delay constraints
in the order of milliseconds, such as automotive safety applications, which feature a
transmission of the video content of ADAS cameras between two road users to enhance
the viewing range in overtaking situations [GOMF12]. To reduce the end-to-end delay
between the video source and the sink, the settings of the AHS systems may be tuned
targeting a reduction of the transmission time, e.g., by a reduction of the segment length
in combination with AHS client algorithms which allow more frequent AHS requests.
Besides that, device-to-device communication may be investigated for the transmission
of video streams between a video source and a spatially adjacent sink instead of an
over-the-top transmission over the Internet.

• The proposed approach focuses on the unicast transmission of videos from a mobile
source to a sink. However, real-world scenarios might consider multicast transmissions
of the source video to multiple sinks. For example, the video of an ADAS front-facing
camera of a source vehicle can be simultaneously upstreamed to multiple streaming
clients, such as smartphones, other vehicles, or off-board servers. In this case, the
available uplink resources of the mobile video source need to be shared among the
different video sinks. To this end, an additional scheduling entity may be considered as
an extension at the AHS source entity, which performs a fair resource allocation among
the different video sinks.

Estimation of temporal and spatial activities: Camera context-aware estimators of spatial
and temporal activities for videos captured with an ADAS front-facing camera are developed
in this thesis. Suggestions on extensions of the estimators are as follows:

• The developed estimators employ trained model parameters which are limited to video
sequences with similar context properties (i.e., similar light and weather conditions). If,
however, the source video is recorded at a significantly different context which is not
captured by the proposed context features (such as different weather or light conditions),
the developed estimators might lead to a poor performance in estimating TA and SA.
As a remedy, different estimators may be developed which employ additional context
features. To capture the additionally required context information, a remote server
may be considered, which extends the proposed estimators by additional information
provided by other sources (such as online weather information). The estimators may be
re-trained and provided to the vehicle along with the additional context information.
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• The sensor information employed in the context features might not be available at all
times due to the characteristics of the underlying sensor technology. For example, the
GPS information might not always be available as it suffers from shadowing especially
in urban scenarios [Gro13]. As a consequence, the developed estimators might provide
inaccurate estimates for the TA and SA values. To overcome this limitation, different
estimators may be developed which consider subsets of the features of the originally
proposed estimators, e.g., a SA estimator which does not take the scenario feature
(which relies on the GPS information) into consideration. These estimators may be
re-trained according to the proposed methodology, stored in a database, and employed
in situations when some features are not available.
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Appendix A

SAMVIQ guidelines

Figure A.1 displays the graphical user interface of the SAMVIQ-based subjective test. In
the preparation phase of the subjective test, the following introduction was presented to the
subjects:

Guidelines: Within the current investigation, an objective video quality metric to determine
the perceived quality of videos captured with an ADAS front-facing camera of the vehicle
based on the user experience is investigated. In order to train the objective video quality
metric, it is necessary to perform the present subjective test.

In the target application, users are able to identify the traffic situation from different parts
of different road situation through the front facing camera of other vehicles. The goal of the
present subjective test is to evaluate how good the viewer is satisfied with the quality
of a video, when certain video characteristics are modified. Please note that the quality of
the original video does not have perfect characteristics in all cases.

Ref A B C D E F G H I J K L M N
5 2 3 5 4 3 - - - - - - - - -

1

2

3

4

5

Figure A.1.: SAMVIQ graphical user interface applied in the subjective test.
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SAMVIQ Guidelines

• The test will last approximately 1 hour. It is divided into two subtests of approximately
20 minutes and a break in-between.

• In each subtest, 7 different scenes will be evaluated. For each scene an explicit reference
video will be shown along with 12 processed video sequences of the same scene and one
hidden reference.

• All sequences from the same scene must be scored before the viewer can proceed to the
next scene or previous scene.

• The interface presents a set of buttons that allow to view each of the sequences, one at
time, in the video window. The duration of each sequence is 10 seconds.

• On the right hand side of the video window is an interactive slide-bar to rate the quality
of the sequence. Based on the task mentioned above, the quality rating can be graded
from 1 to 5 (Bad, Poor, Fair, Good, Excellent) with intermediate steps of 0.5 using the
scoring slider.

• The viewer is able to jump between the different representations, replay each represen-
tation several times and compare the different representations with each other.

• Moving back to previous sequences recalls all the previous ratings.

• The button with label REF identifies the reference sequence. Buttons with letter labels
A to N give access to either the hidden reference or one of the processed sequences.
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Appendix B

Thesis website

A complementary website of this thesis is available at
http://c.lotterm.org/thesis/

It contains an overview about the contributions of this thesis and separate websites with
supplementary material of the publications which cover a major part of the thesis:

• The complementary website of the low-complexity and context-aware estimation of TA
and SA values for automotive camera rate control publication [LSS] provides the un-
compressed source videos (YUV 4:2:0) of the Road video set. Furthermore, the subject
ratings of the subjective test presented in Section 2.3.3.2 are available. Finally, the raw
sensor data of the ego vehicle’s status and the dynamics of the vehicles in the field-of-
view of the ADAS front-facing camera for all video sequences are provided in order to
reproduce or extend the developed estimators.
Direct URL: http://c.lotterm.org/thesis/tcsvt/

• The complementary website of the network-aware video level encoding for uplink adaptive
HTTP streaming publication [LG+15] provides the TCP uplink network performance
traces for both LTE and HSPA RANs applied in Chapter 5 of this thesis. Additionally,
TCP downlink network performance traces captured with the same hardware configu-
ration and in the same scenarios are available which can be used to further extend the
conducted research or be used by others for their own research.
Direct URL: http://c.lotterm.org/thesis/icc2015/

• The complementary website of the modeling the bit rate of H.264/AVC video encoding
as a function of quantization parameter, frame rate and GoP characteristics publication
[LS14] offers links to the CIF video sequences and to the tools and settings applied for
the encoding of the videos.
Direct URL: http://c.lotterm.org/thesis/icmews2014/
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List of Abbreviations

Term Description
3GPP 3rd Generation Partnership Project
ACC Adaptive cruise control
ACR Absolute category rating
ADAS Advanced driver assistance service
AHS Adaptive HTTP streaming
AVC Advanced Video Codec
CABAC Context-adaptive binary arithmetic coding
CAN Controller Area Network
CBR Constant bit rate
CDN Content delivery network
CGW Central gateway
CI Confidence interval
CIF Common Intermediate Format
CVE Cross-validation error
DASH Dynamic Adaptive Streaming over HTTP
DCT Discrete cosine transform
DMOS Differential mean opinion score
DSCQS Double-stimulus continuous quality scale
DSIS Double-stimulus impairment scale
DSRC Dedicated short range communication
ECU Electronic control unit
EDGE Enhanced Data rates for GSM Evolution
ETSI European Telecommunications Standards Institute
FR Full-reference
GLM Generalized linear regression methodology
GNSS Global navigation satellite system
GoP Group of pictures
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
HAD Highly automated driving
HEVC High Efficiency Video Coding
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Term Description
HMI Human-machine interface
HSPA High Speed Packet Access
HTTP Hypertext Transfer Protocol
HU Head unit
HVS Human visual system
IP Internet Protocol
ITU International Telecommunication Union
JVT Joint Video Team
LIDAR Light detection and ranging
LIN Local Interconnect Network
LTE Long Term Evolution
MAD Mean absolute difference
MBR Multiple bit rate coding
MIMO Multiple-input and multiple-output
MOS Mean opinion score
MOST Media Oriented Systems Transport
MPEG Moving Picture Experts Group
MSE Mean square error
NAL Network abstraction layer
NR No-reference
OFDMA Orthogonal frequency-division multiple access
PC Pearson correlation
PSNR Peak signal-to-noise ratio
PVS Processed video sequence
QoE Quality-of-experience
QoS Quality-of-service
RADAR Radio detection and ranging
RAN Radio access network
RMSE Root mean square error
RR Reduced-reference
RTCP Real-Time Control Protocol
RTP Real-Time Transport Protocol
RTSP Real-Time Streaming Protocol
SA Spatial activity
SAMVIQ Subjective Assessment of Multimedia VIdeo Quality
SI Spatial perceptual information
SSCQE Single-stimulus continuous quality evaluation
SSIM Structural similarity index
SVC Scalable video coding
TA Temporal activity
TCP Transmission Control Protocol
TI Temporal perceptual information
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
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Term Description
VBR Variable bit rate
VCEG Video Coding Expert Group
VCL Video coding layer
VLC Variable length coding
WAN Wide area network
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List of Symbols

In the course of the thesis, scalars are in italics, vectors and matrices are in bold.

Video coding and quality estimation

Symbol Unit Description
b bit/px Number of bits per pixel
D dB Distortion
f fps Frame rate of a video
m Number of consecutive B-frames in a GoP
µ

Q
DMOS Mean perceptual quality of transmitted video segments in a streaming session

µ
Rc,Q

DMOS Mean perceptual quality of a video bit rate set Rc

n Number of frames in a GoP
Nf Number of frames of a video sequence
Nq Number of quantization parameter settings considered for rate control
Ns Number of subjects in a subjective test
Nt Number of frame rates considered for rate control
Nv Number of videos considered in a subjective test
Nx Number of horizontal pixels of a video frame
Ny Number of vertical pixels of a video frame
P (x, y) Pixel value of pixel (x, y)
q Quantization parameter
Q DMOS Perceptual quality of a video sequence
r Subject rating for a video representation
R kbit/s Bit rate of an encoded video
Rc kbit/s Bit rate constraint
RGoP L GoP length bit rate factor (depends on n)
RGoP S GoP structure bit rate factor (depends on m and n)
Rmax,I kbit/s Bit rate of an encoded video (q = qmin, f = fmax, m = 0, and n = 1)
Rm=0 kbit/s Bit rate of an encoded video (q = qmin, f = fmax, m = 0, and n = fmax · τ)
Rs Spatial bit rate factor (depends on q)
Rt Temporal bit rate factor (depends on f)
τ s Length of a video segment
τ

T A,SA
s TA and SA window length
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Camera context estimation

Symbol Unit Description
α ◦ Standard deviation of the ego vehicle’s yaw angle in a video sequence
β Mean number of detected vehicles in the field-of-view in a video sequence
Dt Vehicles in the field-of-view at time t
drel,i m Relative distance between the ego vehicle and the ith vehicle
δ m Mean inverse distance to other vehicles in the field-of-view in a video sequence
K Overall number of detected vehicles in the field-of-view in a video sequence
λ m/s Mean relative velocity of vehicles in the field-of-view in a video sequence
ν m/s Mean velocity of the ego vehicle in a video sequence
ω ◦/s Mean yaw rate of the ego vehicle in a video sequence
pego

◦ Absolute position of the ego vehicle (in decimal degrees)
ψego

◦ Angle of yaw relative to the start angle of the ego vehicle
ψ̇ego

◦/s Yaw rate of the ego vehicle
S Number of camera context samples of a video sequence
vego m/s Velocity of the ego vehicle
vrel,i m/s Relative velocity between the ego vehicle and the ith vehicle
ζ Scenario where a video sequence is taken

Adaptive HTTP streaming

Symbol Unit Description
B s Streaming client buffer fullness
ε Number of video level switches in a streaming session
γ s Duration of interrupted playback in a streaming session
I s Number of segments fetched in a streaming session
NL Number of video levels employed in an AHS streaming system
NR Reduced number of video levels employed in an AHS streaming system
T kbit/s TCP throughput
TDB kbit/s Requested TCP throughput information from a remote database
TM kbit/s Measured TCP throughput information at the RAN modem of a mobile device
V Full static set of video levels
Ṽ Reduced set of video levels
v kbit/s Video level element
vReq kbit/s Mean of the previous client requests for a window length of W
W s Window length of the employed statistic information

Mathematical conventions

Symbol Description
|.| Absolute value (scalars) and Euclidean norm (vectors)
.̂ Estimator
max(.) Maximum value
µ(.) Mean value
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‖.‖ Number of elements in a vector
d.e Rounding up to the next integer
b.c Rounding down to the next integer
σ(.) Standard deviation
[.]T Transpose of [.]
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4.5. ŜA and ŜA[LM+14b] estimation performance for videos of the Road training and
validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6. Performance evaluation of STVQM, CSTVQM, CSTVQM [LM+14b] for videos
of the validation set; measured Q obtained from the subjective test of Sec-
tion 2.3.3.2 for 42 dB, 38 dB, 34 dB with 95% CI. . . . . . . . . . . . . . . . . 80

4.7. System view of a MBR encoding entity installed at an AHS source with NL

desired video bit rates. The rate controller determines optimal encoding set-
tings as solutions to the rate control optimization problem of Eq. (3.11) using
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