
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

Resource Management in Real-time Multicore
Embedded Systems: Performance and Energy

Perspectives

Gang Chen

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Alois Knoll

2. Prof. Dr. Zhihua Wang, Tsinghua University/China

Die Dissertation wurde am 13.07.2015 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 09.11.2015 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:cheng@in.tum.de

Abstract

Multi-core architectures are believed to be one of the major solutions for future

embedded systems, due to their advantages in the high average performance and

procurement cost. However, the use of the architecture of multi-core processors in

real-time systems poses important challenges on timing analysis, which stems from

the interferences among cores when accessing shared hardware resources. To exploit

the potential of a multi-core platform in real-time systems, multi-core platform does

not only need to meet the requirements of high performance and power efficiency,

but also should provide analyzable timing behavior.

In this thesis, we present novel reconfiguration techniques and scheduling algorithms

for resource management in real-time multi-core embedded systems. We provide

approaches by considering effects of computation and cache memory together to

optimize overall performance and energy of real-time multi-core embedded systems.

To address the impacts of cache interference on predictability and performance of

multi-core embedded systems, we developed a dynamic partitioned cache memory

to provide strict cache resource isolation among real-time tasks. The proposed

cache is physically implemented and prototyped on FPGA. Based on the proposed

dynamic partitioned cache memory, an integrated cache management framework

is presented to study and verify the interactions between the task scheduling and

the shared cache interference. We also explored system-level power managements

to reduce power consumption of the multi-core system under real-time constraints.

An energy-aware scheduling technique based on period power management scheme

is presented to reduce the static energy consumption for multi-core system with

non-deterministic workload.

Zusammenfassung

Multikern-Architekturen stellen aufgrund ihrer Performance- und Kostenvorteile

eine bedeutende Lösung im Bereich zukünftiger Embedded Systeme dar. Jedoch

bedeutet die Verwendung von Multikernprozessor-Architekturen in Echtzeit große

Herausforderungen hinsichtlich Zeitanalysen, welche von Interferenzeffekten zwi-

schen den Kernen herrühren, sobald auf gemeinsame Hardware-Ressourcen zuge-

griffen wird. Um das Potential von Multikern-Plattformen in Echtzeit-Systemen

auszuschöpfen, muss diese Multikern-Plattform nicht nur Anforderungen in puncto

hoher Performance und Leistungseffizienz erfüllen, sondern sie muss auch analysier-

bares Zeitverhalten aufweisen.

In dieser Dissertation werden neuartige Rekonfigurations-Techniken und Scheduling-

Algorithmen im Rahmen des Ressourcen-Managements innerhalb von Echtzeit-Multi-

kern Embedded Systems präsentiert. Es werden Lösungen entwickelt, welche sowohl

Berechnungseffekte als auch Cache-Speicher berücksichtigen, um Performance und

Energie des Gesamtsystems des Echtzeit-Multikern Systems zu optimieren. Um die

Auswirkungen von Cache-Interferenzen auf Vorhersehbarkeit und Performance des

Multikern Embedded Systems zu adressieren, wurde ein dynamisch partitionierter

Cache-Speicher entwickelt, welcher eine strikte Trennung von Cache-Ressourchen

zwischen Echtzeit-Aufgaben gewährleistet. Der vorgeschlagene Cache wird physika-

lisch implementiert und innerhalb eines Prototyps auf einem FPGA umgesetzt. Ba-

sierend auf dem vorgeschlagenen dynamisch partitionierten Cache-Speicher wird ein

integriertes Cache-Management Framework präsentiert und die Wechselwirkungen

zwischen dem Aufgaben-Scheduling und den Shared Cache-Interferenzen diskutiert

und verifiziert. Weiterhin werden Leistungs-Management auf System-Level unter-

sucht, um den Leistungsverbrauch des Multikern-Systems unter Echtzeitbedingun-

gen zu reduzieren. Hierbei wird eine energieeffiziente Scheduling-Technik basierend

auf periodischem Leistungs-Management-Schema präsentiert, welche den statischen

Energieverbrauch für Multikern-Systeme mit nicht-deterministischer Arbeitsauslas-

tung senkt.

vi

Acknowledgements

PhD study is a very special journey in one’s life. I’m not alone on my way to Ph.D.

but surrounded by many outstanding people who gives me a lot of help and support.

I am sincerely grateful for their generous help. Without them, this work would not

have been possible to be finished.

The foremost thanks go to my supervisor, Prof. Dr. Alois Knoll, for his guidance,

support, and encouragement over these years. I am very grateful that Prof. Knoll

provides me the opportunity to prepare this thesis and give me a lot of freedom to

pursue my research interest. I also would like to thank my second advisor Prof. Dr.

Zhihua Wang for reviewing my thesis and giving in-depth comments.

I owe many thanks to Dr. Kai Huang for all his valuable suggestions and enduring

support. You guided me to overcome challenging problems in the research field and

helped me to know how to explore new directions.

I also would like to thank: Biao Hu for his helps on testing the proposed cache and

recording the experimental datasets; Long Cheng for taking his time of proofread-

ing my thesis and for nice research cooperation, and Hardik Shah for his valuable

suggestions on my research work. Also thanks to the members of our previous lunch-

meeting group, M. Ali Nasseri, Martin Eder, and Dr. Dongkun Han. I broaden my

research views from the interesting chats while enjoying nice lunch food. I also want

to thank the master student, Li Feng, from Sun Yat-Sen Universiy for his helps on

conducting chip verification for our cache module. I would like to thank all the

other members at the chair, especially Amy Buecherl, Gertrud Eberl, Ute Lomp,

and Marie-Luise Neitz, for their very kind help and support.

Finally, I would like to thank my family for their everlasting love and support

throughout all these years of my PhD study.

ii

To my wife, Zhe, and

to my son, Yi-fan.

iii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Real-time Embedded Systems . 2

1.2 Multi-core Embedded Systems . 5

1.3 Challenges and Opportunities . 6

1.3.1 Opportunities . 7

1.3.2 Challengs . 9

1.4 Thesis Outline and Research Contributions . 11

1.5 Summary . 13

2 Dynamic Partitioned Shared Cache Memory 15

2.1 Introduction . 15

2.2 Related Work . 19

2.3 Dynamic Partitioned Cache Design and Implementation 21

2.3.1 Design Consideration and Challenge . 21

2.3.2 Reconfigurable Cache Architecture . 23

2.3.3 Cache Ways Management Unit (CWMU) 24

2.3.4 Cache Control Unit (CCU) . 24

2.3.5 Implementation of Partitioned FIFO Replacement Policy 26

2.4 Cache Generation . 26

2.5 Software Programming Interface . 28

2.6 Hardware Prototype and Verfication . 30

2.6.1 FPGA Synthesis Results . 30

v

CONTENTS

2.6.2 Physical Chip Synthesis Results . 31

2.6.3 Functionality Verification . 33

2.6.4 Reconfiguration Overhead Measurement 35

2.7 Summary . 36

3 Shared Cache Management Framework for Real-time Multicore Systems 39

3.1 Introduction . 39

3.2 Related Work . 41

3.2.1 Cache Partitioning . 41

3.2.2 Time-triggered Scheduling . 44

3.3 Background . 44

3.3.1 Way-based Cache Partitioning . 44

3.3.2 Hardware Platform . 45

3.3.3 Task Model . 45

3.4 Motivation . 46

3.5 Framework Overview . 47

3.6 Synthesis Approach for Scheduling and Cache Management 48

3.6.1 Time-Triggered Task Scheduling . 49

3.6.2 Cache Partitioning Constraints . 50

3.6.3 MILP Formulation Refinement . 53

3.7 Time-triggered Scheduling Implementation on Multi-core System 54

3.7.1 Share-clock Multi-port Timer IP . 55

3.7.2 Implementation of Time-triggered Scheduling 56

3.8 Automatic Generation . 59

3.8.1 Input Specifications . 59

3.8.2 Software Code Generation . 61

3.8.3 Hardware Component Generation . 63

3.9 Performance Evaluations . 64

3.9.1 Experiment Setup . 64

3.9.2 Timing Predictability . 65

3.9.3 Runtime Performance . 67

3.10 Case Study . 69

3.11 Discussion . 72

3.12 Summary . 74

vi

CONTENTS

4 Power Management for Real-time Multi-core Systems 77

4.1 Introduction . 77

4.2 Related Work . 79

4.3 Models and Problem Definition . 81

4.3.1 Hardware Model . 81

4.3.2 Energy Model . 82

4.3.3 Task Model . 84

4.3.4 Problem Statement . 85

4.4 Motivation Example . 86

4.5 Proposed Approach . 89

4.5.1 Problem Formulation . 92

4.5.2 Quadratic Programming Transformation 94

4.5.3 Quadratic Programming Heuristic . 95

4.5.4 Fast Heuristic . 98

4.6 Performance Evaluations . 100

4.6.1 Simulation Setup . 101

4.6.2 Simulation Result . 102

4.7 Summary . 108

5 Conclusion and Future Work 109

5.1 Main Results . 109

5.2 Future Work . 110

A List of Publication 113

References 117

vii

CONTENTS

viii

List of Figures

1.1 Typical structure of real-time embedded systems. 3

1.2 A typical multi-core architecture with shared cache memory. 7

1.3 Trends in power across process technologies [1]. 9

2.1 A graphic example of cache interference. 16

2.2 Illustration of four-way set-associative reconfigurable cache architecture in [2]. . . 20

2.3 Way-based cache partitioning. 21

2.4 Atomic operations. 22

2.5 Reconfigurable cache architecture. 23

2.6 Cache ways managment unit (CWMU). 25

2.7 Cache controller (CC). 25

2.8 Block reference field logic (BRFL). 27

2.9 Address mapping. 29

2.10 Chip area for dual-core caches with the varying cache way numbers. 32

2.11 Power consumption for dual-core caches with the varying cache way numbers. . . 32

2.12 The code for functionality verification. 34

2.13 # Cache miss and execution time for memory reuse code. 34

2.14 The difference rate between the observed cache miss and the expected cache miss. 36

3.1 System architecture. 45

3.2 Cache impact on the performance of the application. 47

3.3 System design framework. 48

3.4 Timing relationship between two tasks. 51

3.5 Share-clock timer IP. 55

3.6 The flowchart of time-triggered scheduling. 58

ix

LIST OF FIGURES

3.7 The example of platform specification. 60

3.8 The example of task specification. 60

3.9 The example of mapping specification. 60

3.10 The example of code template for main function. 61

3.11 The example of code template for task handler. 63

3.12 Cache partition and no cache partition. 66

3.13 # Cache miss reduction on different hardware platform. 68

3.14 Profile data of tasks. 70

3.15 Graphic user interface of our framework. 71

3.16 Scheduling graph. 73

4.1 System model . 83

4.2 Examples for arrival curves, where (a) periodic events with period p, (b) events

with minimal inter-arrival distance p and maximal inter-arrival distance p′ =

1.3p, and (c) events with period p, jitter j = p, and minimal inter-arrival distance

d = 0.75p. 84

4.3 Motivation example. 88

4.4 Average idle power consumption for three applications on 2-stage and 3-stage

pipeline architectures . 103

4.5 Average power consumption with tsw varying. 104

4.6 Average power consumption with period varying. 105

4.7 Computation time and power computation and for heterogeneous pipelined system107

x

List of Tables

2.1 Inner register map for the case of 16-ways associative cache. 29

2.2 APIs supported by reconfigurable cache . 30

2.3 Speed and resource consumption on Stratix V FPGA 31

3.1 APIs in time-triggered scheduler . 56

3.2 Benchmark sets for two-core system . 64

3.3 Benchmark sets for four-core system . 65

3.4 Cache configuration. 72

4.1 Constants for 70 nm technology [3, 4]. 101

4.2 Power parameters . 101

4.3 Average power savings with respect to DPA . 102

xi

xii

Chapter 1

Introduction

Embedded systems are autonomous microprocessor-based information processing systems de-

signed for performing certain routines of specific functions repeatedly. Safety-critical real-time

systems is one important domain of embedded systems, which require unique design consid-

erations, since timing constraints are imposed by the critical applications. Many of today’s

existing legacy real-time systems such as automotive systems are still developed on single-core

processors [5]. An increasing need for safety, comfort, services, and lower emissions from current

and future real-time embedded systems requires higher performance, which single-core embed-

ded processors cannot deliver. To meet such high performance demands, multi-core computing

platforms are believed to be one of the major solutions for future real-time embedded systems.

However, applying multi-core architectures in the domain of real-time embedded systems still

faces important challenges on timing analysis, which are stemmed from the contentions on the

access of shared hardware resource. This thesis presents a set of novel resource management

techniques to optimize overall performance and energy consumption for real-time multi-core

embedded systems. We focus on dealing with part of these challenges and contribute by pro-

viding solutions to shared cache management and energy-aware scheduling aspects. The rest

of the chapter is organized as follows. The relevant background of our work is reviewed in

Section 1.1 and Section 1.2. The potential improvement opportunities as well as major research

challenges are studied in Section 1.3. Finally, Section 1.4 summarizes the contributions and

draws the outline of this thesis.

1

1. INTRODUCTION

1.1 Real-time Embedded Systems

Embedded systems are of great importance in our modern society. Following the success of

information and communication technology (ICT), embedded systems are considered to be one

of the most important application areas of ICT in recent years [6]. These small and smart

electronic systems are driving a new round of information revolution and are widely used in our

daily life, ranging from commercial electronics such as cell phones, intelligent wearable devices,

cameras, printers to critical infrastructures such as nuclear power plants, communication net-

works, and factory production lines. Compared to the general computing systems, embedded

systems perform a limited set of dedicated functions with limited computing capability and lim-

ited power source. Despite of these limitations, the number of processors in embedded systems

has still exceeded the number of the processors in general computing systems, and this trend is

expected to continue [6]. According to the survey data in [7], there may be two or three general

computers in one modern family home, while more than 300 embedded systems co-exist.

Most of current embedded systems are required to work in dynamic environments, where

the characteristics of the computational workload cannot always be predicted in advance [8].

The correctness of an embedded system usually depends not only upon its logical correctness,

but also upon timely responses to the event within the precise timing constraints. Embedded

systems that are subject to such timing constraints are named real-time embedded systems.

Examples of real-time embedded systems are power-train controller for vehicles, embedded

controllers for aircrafts, health monitoring systems, and industrial plant controllers.

Distinguished from the general computing system, real-time embedded systems interact

continuously with the environment and have demanding quality specifications which require the

system to timely react to external events and execute computational activities within precise

timing constraints. For example, adaptive cruise controller (ACC) in automotive system should

continuously monitor the speed and brake sensors and react to the value changes of these

sensors. The acceleration and deacceleration information should be computed within a limited

delay to perform the correct control of a vehicle. Fig. 1.1 illustrates the system structure and

application domains of real-time embedded systems. The real-time operating system (RTOS)

executed on one specific hardware is responsible for ensuring a predictable execution behavior

of the application to allow an off-line guarantee of the required performance [8]. In general, we

can classify the real-time embedded systems into two categories as shown in Fig. 1.1.

2

1.1 Real-time Embedded Systems

Real-time Tasks

Real-time Operating System (RTOS)

Hard Real-time Systems Soft Real-time Systems

Specific Hardware

Figure 1.1: Typical structure of real-time embedded systems.

• Hard real-time (HRT) embedded systems: A hard real-time embedded system requires

to be high-confident to the predefined timing constraints. The tasks executed on such a

system should be constrained to complete the execution and produce the result within a

certain deadline. If any of the tasks cannot complete the execution before the deadline,

the system is considered to be malfunctioned. The tasks executed on a hard real-time

embedded system are usually safety-critical. Failing to meet the deadline constraint will

result in severe consequences.

• Soft real-time (SRT) embedded systems: In contrast to the hard real-time embedded

systems which require the absolute satisfaction on the timing constraints, the soft real-

time embedded systems impose the timing constraints on tasks in terms of the average

response time. Minor deadline violations will not be considered as system failure and

merely result in temporary system performance degradation. For example, we can tolerate

the display delay of the requested page for a certain time in a web browser, while we do

not consider the web browser is failed.

Timing constraints imposed on the workload (i.e., real-time tasks) in the real-time embed-

ded systems introduce difficulties which make the design of embedded system becomes par-

3

1. INTRODUCTION

ticularly challenging and requires unique design considerations. Real-time embedded systems

usually consist of a number of heterogeneous tasks with different features in terms of timing

constraints (e.g., worst-case execution time, deadlines, arrival times, etc.) and workload char-

acteristics (e.g., periodic/sporadic, preemptive/non-preemptive, etc.). To ensure the correct

system behavior, the design methodology should guarantee the tasks produce the responses to

events before their deadlines. Especially for safety-critical applications in the hard-real time

system with tight timing constraints, failing to meet the deadline constraints may lead to disas-

ter consequences. For example, to guarantee the safety of the drivers, a brake in the automotive

system needs to react within 50ms after the braking pedal is hit by the driver [9]. Due to these

safety concerns, the timing requirement should be guaranteed to be met under any assumption

made in the design process. This design requirement is called as the system predictability [10].

In case of hard real-time systems, the classical worst-case design approaches are widely adopted

to guarantee the timing constraints in all possible scenarios. Based on the pre-computed worst-

case execution time (WCET) of tasks, the system designers can conduct the task schedulability

analysis and design a feasible scheduler to guarantee the timing correctness of the complete

system. Therefore, the timing correctness of real-time tasks highly depends on the correctness

of worst-case execution time (WCET) analysis. One should offer the guarantees on the basic

assumption of the worst-case execution time at both run-time and design-time to achieve the

timing predictability.

However, the timing predictability of real-time embedded systems highly depends not only

upon the hardware infrastructure such as the processor, cache subsystem, and bus subsys-

tem, but also upon the software infrastructure such as operating systems. These dependences

threaten the system predictability. At the same time, due to the low-cost design concerns, the

standard hardware components, which are aimed at improving the average case performance for

the general computing systems, are adopted in the design of real-time embedded systems [11].

Such hardware components are usually disastrous to the timing predictability of the system.

One example is the unpredictable performance behavior of the complex cache subsystem which

is designed to bridge the performance gap between the off-chip memory and processor. Be-

sides, due to the continuous increase of the functional complexity of real-time systems and

stringent timing requirements they have to satisfy, the tremendously increasing design gap ex-

isting between requirements and realizations has been a pertinacious problem in the modern

real-time embedded systems [11]. This trend makes the system design that supports the timing

predictability even harder.

4

1.2 Multi-core Embedded Systems

1.2 Multi-core Embedded Systems

As the complexity of the applications is increasing, an embedded system requires an efficient

computing platform with the massive computational power to efficiently execute these compu-

tationally intensive embedded applications. The trend of the demand for the high performance

is expected to continue. According to the predictions from the ITRS Roadmap [12], a need

for 300x more performance is predicted by 2022. To achieve high performance, the traditional

complex single core architectures usually increase operating frequency. However, the perfor-

mance of a system is not simplify related to the operating frequency. According to [13], the

performance can be computed as a result of frequency and instructions per clock cycle (IPC).

This means both of two factors (i.e., frequency and IPC) needs to be taken into account to

achieve the high performance. According to the tendencies of today’s processor design in in-

dustries, many chip makers are focusing on a parallelism oriented design, rather than looking

for a possibility to increase clock speed. Besides, the performance gain cannot be continuously

achieved by increasing the operating frequency under the constraints of power consumption

and thermal dissipation, i.e., hitting the power wall [14]. Therefore, due to these technology

limitations and power/thermal limitations, the traditional complex single core architectures can

hardly overtake the increasing performance demand of the emergent applications.

Although the pure performance is important, increasing emphasis on energy efficiency de-

sign becomes another new trend in the embedded system design. The embedded systems are

typically operated with very limited power sources such as battery. Especially in the mobile en-

vironment where battery life and size are critical, all the computation must be executed in very

low power consumption. However, the increase of the energy density of the battery cannot keep

up with the pace of the increasing power consumption demand of modern embedded systems.

This gap is expected to continue. According to the recent research in [15], the annual increase

in the required power for mobile devices is predicted to about 20%, while the annual advance-

ment in the energy density of batteries is expected to be only 10%. Therefore, it is important

to use energy-efficient design techniques to extend the lifetime for battery-operated systems.

Besides, using appropriate energy-efficient design techniques in the embedded system can bring

several other benefits such as decreasing the heat dissipation and lowering the requirement for

expensive packaging and cooling technologies.

At present, the state-of-the-art computing platforms of embedded systems are increasingly

moving towards multi-core platforms for the next computing performance leap. In contrast

5

1. INTRODUCTION

to single core architectures, multi-core architectures take advantage of Moore’s Law, which

promises a the constant increase trend on the transistor count in the chip area, to integrate

more computing cores into one die. One key advantage that multi-core architecture can lever-

age is parallel processing. Many computational intensive applications can be divided to several

parallel tasks or phases, which can be executed on the multi-core computing platforms simul-

taneously to achieve parallel processing. Therefore, the raw performance gain in the multi-core

computing platforms is achieved by increasing the number of computing cores for the parallel

processing execution, rather than increasing the operation frequency. Implementing the multi-

core processors with moderate frequencies can bring the performance gains without the growth

in power consumption. According to [16], a dual-core solution clocked at 20% less would bring,

in theory, 73% more performance than a single core under the same power consumption.

The emergence of multicore computer architectures will have a profound effect on the general

computing system due to the advantages in the scalable performance. The multicore proces-

sors are already used in real-time systems only with low criticality (also called soft real-time

systems), but they are not yet typically employed in the safety-critical real-time computing do-

main [17]. The main reason is that many of today’s multi-core systems are primarily designed

for increasing the average-case performance. However, system predictability is the first-class

design concern in the safety-critical real-time systems. To achieve system predictability, tempo-

ral and spatial isolation of computing components should ideally be provided by the hardware

itself [17]. Spatial isolation ensures that an application in one partition cannot change private

data of another. Temporal isolation guarantees that the timing characteristics of an applica-

tion, such as the worst-case execution time (WCET), are not affected by the execution of an

application in another partition. Unfortunately, the presence of parallel processing and shared

hardware resource in multicore computing platforms destroys temporal and spatial isolation

among the safety-critical applications. Therefore, applying multi-core architecture into safety-

critical real-time computing domain still faces several challenges. In the next section, we will

study major research challenges as well as the potential improvement opportunities in real-time

multi-core systems.

1.3 Challenges and Opportunities

Migrating real-time systems to multi-cores computing platforms is a significant challenging

task. To apply the multicore computing platforms in the real-time system domains, multi-cores

6

1.3 Challenges and Opportunities

Core 1 Core 2 Core 3 Core 4

L1 Cache L1 Cache L1 Cache L1 Cache

Shared L2 Cache

Off-Chip Memory

Figure 1.2: A typical multi-core architecture with shared cache memory.

computing platforms are usually used in a conservative manner to resolve the predictability

problem. For example, avionics manufacturers usually turn off all cores but one for their highly

safety-critical subsystems to guarantee the correct behavior of safety-critical subsystems [18].

Therefore, there are tremendous optimization opportunities based on the different objects when

migrating real-time systems to multi-cores. In this section, we discuss the potential improve-

ment opportunities as well as major research challenges in real-time multi-core systems.

1.3.1 Opportunities

Over the past few decades, the continual improvements in processor cycle speed occurs at a

much faster rate than improvements in off-chip memory access speed. This ever-widening gap

is referred as ’Hitting the Memory Wall’, where further increases in processor speed yield little

or no performance benefits due to memory access time acting as the primary bottleneck [19].

To alleviate the high latency of the off-chip memory, the cache component is used to keep

frequently accessed data of the cores. The performance gap between the processor and off-chip

memory is thus alleviated by serving the request directly from caches which are faster than off-

chip memory. Currently, multi-core architectures are typically equipped with small L1 caches

for every core and a relatively large L2 cache shared among all cores [17,20]. ARM Cortex-A15

series [21] and openSPARC series [22] are examples of this class of architectures. Fig. 1.2 depicts

the typical multi-core architecture with the shared cache memory.

It is extremely challenging to derive tight timing estimates for shared caches because the

7

1. INTRODUCTION

behavior of shared cache is hard to predict and analyze statically [23, 24]. A task running on

one core may evict useful cache space that is used by another task in another core. These inter-

core cache interferences will cause an increase in the miss rate [25], leading to a corresponding

decrease in performance. In addition, inter-core cache interferences are extremely difficult to

analyze accurately [24], thus resulting in difficulty of estimating the worst-case execution time

(WCET) of the application program.

Safety-critical systems must be certified before being deployed. The certification require-

ments imposed by the industry ensure that the safety standards of critical real-time systems

are met. During the certification process, all the components including the software and hard-

ware are scrutinized to ensure conformance to safety standards. The tasks are categorized into

different Safety Integrity Levels (SILs). Tasks with different SILs can co-exist and share the

same physical hardware resources in a multi-core system. In order to limit the risk of failure of

tasks with high SILs, systems must be designed to isolate the execution of the tasks, both in the

spatial and temporal domains. To meet such design requirements for the shared cache in the

multi-core system, there are two techniques called cache reservation and cache arbitration [17].

Cache reservation technique statically reserves a part of the shared cache for each core, which

makes that the shared cache works like private cache for each core, while Cache arbitration

technique assigns the shared cache only to one core or turns the shared cache off for all cores.

Unfortunately, both of above techniques use the shared cache in a conservative manner

because different applications have different performance behaviors under the allocated cache

resource. Due to this varying cache requirement of applications, some applications require a

large cache to fit the working set for performance efficiency, while the working sets of some

applications can fit in a small cache. Therefore, we should partition the shared cache in a

more flexible manner to fit such different demands of cache resources among the applications.

The difference of performance behaviors among the applications will result in different timing

properties such as WCET estimation, which will further have impacts on the scheduler. Thus,

there are interesting trade-offs between cache resource allocation and scheduler design that can

be explored for optimizations.

Energy conservation is another primary optimization objective in almost every system de-

sign. As chip manufacturing technologies are shifting toward sub-micron domains (e.g. Intel has

shift its manufacturing technologies into 22nm in 2011 [26]), the static power increases expo-

nentially and becomes comparable or even greater than dynamic power (as shown in Fig. 1.3).

According to [1,13], the static power accounts for as much as 50% percentage of the total power

8

1.3 Challenges and Opportunities

Figure 1.3: Trends in power across process technologies [1].

dissipation for high-end processors in 90nm technologies. Such sharp increases in power densi-

ties hamper powering-on all the cores simultaneously at the nominal voltage while keeping the

chip temperature in the safe operating range, because power converts to heat and too much heat

can destroy a chip beyond use. Therefore, this effect will in turn limit the performance scale

of the multi-core, because not all cores can be powered on due to the temperature constraints.

This phenomenon is termed as dark silicon [27]. Thus, efficient power management technol-

ogy which aimed at reducing static power consumption becomes more and more important for

real-time multi-core design.

1.3.2 Challengs

Although state-of-art multi-core architectures provide enormous potential for real-time systems,

applying state-of-art multi-core architectures in the domain of real-time embedded systems still

faces several challenges. We identify a few new challenges as follows:

• To safely employ multi-core processors for today’s and future real-time applications, de-

signers must be able to accurately predict the timing behavior of the real-time applica-

tions. Unfortunately, the multi-core architectures, designed for improving average-case

performance (i.e., throughput), significantly complicate the timing behavior analysis due

to the complex hardware architecture. In the multi-core architectures, different cores

typically share hardware resources such as low-level cache (as shown in Fig. 1.2). Shared

cache interference in a multi-core system has been recognized as one of major factors that

9

1. INTRODUCTION

degrade the average performance [28, 29], as well as predictability of a system [18, 24].

Inter-core interference among these shared caches is difficult to predict and analyze stat-

ically. This difficulty actually prohibits an efficient use of the multi-core architecture

for real-time systems. For instance, to resolve the predictability problem for multi-core

systems, avionics manufacturers usually turn off all cores but one for their highly safety-

critical subsystems [18,30]. The questions are:

How to tackle the shared cache in the context of real-time systems? Can we use such the

shared cache in efficient manner while still guaranteeing the real-time constraints?

• Currently, most of the state-of-the-art techniques [31–35] manage the cache resource in

core level. However, reserving a region with a constant size to individual cores is often

ineffective with respect to the performance, since the tasks assigned on the same core

might have different requirements to the amount of cache allocated. Unfortunately, there

is no such implementable reconfigurable cache architectures which can guarantee the strict

cache isolation among the real-time applications in multi-core system. Most of research

work are devoted to analyze theoretical proposals and the simulation of reconfigurable

caches. The questions here are:

How to design a highly flexible cache architecture which allows us to manage the cache

resource in an efficient manner? How to realize and prototype it?

• Energy efficiency has become one of the major goals in embedded system design. Using ap-

propriate power management techniques, the lifetime for battery-operated systems could

be extended and the heat dissipation could be decreased, lowering the requirement for

expensive packaging and cooling technology. According to the International Technology

Roadmap for Semiconductors [12], leakage power increases its dominance of total power

consumption as semiconductors progress toward 32nm. Designing the power management

scheme for the multi-core systems under the requirements of both energy efficiency and

timing guarantee is however non-trivial. In general, energy efficiency and timing guar-

antee are conflict objectives, i.e., techniques that reduce the energy consumption of the

system will usually pay the price of longer execution time, and vice versa. The question

hereby is:

How to effectively reduce the static power consumption of multi-core architectures under

real-time constraints?

10

1.4 Thesis Outline and Research Contributions

This thesis aims to give partial answers to these new challenges imposed in real-time multi-

core architectures. The results of this thesis can be categorized as three parts: (1) A dynamic

partitioned cache memory for real-time multi-core systems and its prototype on FPGA (Chapter

2); (2) A integrated framework for automatic cache management and scheduling on the real-time

multi-core systems (Chapter 3); (3) Energy-aware scheduling for real-time multi-core embedded

system design (Chapter 4).

1.4 Thesis Outline and Research Contributions

In this thesis, we propose a set of novel techniques to address design challenges mentioned in

Section 1.3.2. The objective of my research is to develop reconfigurable hardware, scheduling

algorithms, and efficient tools for real-time embedded multi-core system optimizations. The

proposed research focus on major system components (i.e., processors and cache memory)

with various optimization objectives (i.e., energy and performance) by using dynamic resource

management techniques (i.e., dynamic cache partitioning and dynamic power management)

for the real-time multi-core system. The major contributions of the thesis are summarized as

follows:

In Chapter 2, we present a parameterized dynamic partitioned cache memory for real-time

multi-core systems. In this cache architecture, the cache resources are strictly isolated to prevent

the cache interference among cores. Therefore, the proposed cache can provide predictable

cache performance for real-time applications. To efficiently use cache resource and maximize

the performance of applications, the proposed cache allows cores to dynamically allocate cache

resource with minimal timing overhead according to the demand of applications. The dynamic

partitioned cache memory can be interfaced to CPUs for embedded systems such as Altera

NIOS II processor and can be physically implemented on an FPGA.

• A parameterized dynamic partitioned cache memory is developed for the real-time mul-

ticore systems. The cache size, line size, and associativity of the cache memory can be

parameterized during compile time while the partition of the cache can be reconfigured

in a flexible manner during runtime. We also design a complete set of APIs with atomic

operation, such that the application tasks can reconfigure their cache sizes during runtime.

• In contrast to most existing work [35–40] in the literature, which is devoted to analyze

theoretical proposals and the simulation of reconfigurable caches, the cache proposed in

11

1. INTRODUCTION

this thesis is physically implemented and prototyped on FPGA. This prototype will bridge

the gap between simulation and real systems, and will serve us a real (not simulation)

reconfigurable cache for studying and validating cache management strategies on the real-

time multi-core system under different cache settings.

• The dynamic partitioned cache memory is interfaced to Altera NIOS II based multi-

core system and a functional verification is implemented to verify the correctness of the

reconfigurable cache prototype implementation.

• We investigate the chip design process for the proposed cache and find the implementation

of the proposed cache is practical in terms of the chip area and power consumption.

In Chapter 3, we tackle schedule-aware cache management scheme for real-time multi-core

systems. We present an integrated framework to study and verify the interactions between the

task scheduling and the shared cache interference. For a given set of tasks and a mapping of

the tasks on a multi-core system, our approach can generate a fully deterministic time-triggered

non-preemptive schedule and a set of cache configurations during the compilation time. During

runtime, the cache is reconfigured by the scheduler according to offline computed configurations.

The generated schedule and the cache configurations together minimize the cache miss of the

cache subsystem while preventing deadline miss and cache overflow. Specifically, the detailed

contributions are listed below:

• We proposed an integrated cache management framework that improves the execution pre-

dictability for real-time multi-core systems. The proposed framework can automatically

generate fully deterministic time-triggered non-preemptive schedule and cache configura-

tions for system performance optimization with real-time constraints.

• A synthesis approach for scheduling and cache management is presented to improve the

performance of the cache subsystem. In this synthesis approach, the co-design problem of

cache partitioning and task scheduling is formulated as integer linear programming (ILP)

to minimize the cache miss of the system. With this formulation, the cache size allocation

and time-triggered scheduling for each task can be generated automatically, which could

avoid deadline miss and cache overflow.

• A share-clock multi-port timer component is developed for the implementation of time-

triggered schedule on the multi-core system. Based on this customized hardware compo-

12

1.5 Summary

nent, we develop a time-triggered scheduler which can implement cache configuration and

execute on the predefined multi-core system.

Chapter 4 explores system-level power managements to reduce power consumption under

real-time constraints. We present an energy-aware scheduling technique based on period power

management scheme [41, 42] to reduce the static energy consumption for non-deterministic

workload. To guarantee real-time requirements, we apply real-time calculus [43] to model the

irregular event arrivals and use Real-Time Interface theory [44] for the schedulability analysis.

By an inverse use of the well-known pay-burst-only-once principle [45], we develop a new ap-

proach to solve the energy-minimization problem for pipelined multi-core embedded systems

while guaranteeing the worst-case end-to-end delay. The contributions of this chapter are as

follows:

• A new method is developed to solve the energy-minimization problem for pipelined multi-

processor embedded systems by inversely using the pay-burst-only-once principle.

• A minimization problem is formulated based on the needed resource of individual stages of

the pipeline architecture and a transformation of the formulation to a standard quadratic

programming problem with box constraints. The formulated problem is proved to be

NP-Hard.

• A quadratic programming heuristic is developed to solve the formulated problem and a

formal proof is provided to show the correctness of our approach, i.e., guarantee on the

end-to-end deadline requirement.

• A fast heuristic is developed to solve the formulated problem, running with the complexity

O(mn).

1.5 Summary

In this chapter, we provide an overview of research problems in the real-time multi-core systems.

It has provided an outline of the thesis, specifically dedicating three chapters to target the

problems associated with shared caches and energy optimization in the real-time multi-core

systems.

13

1. INTRODUCTION

14

Chapter 2

Dynamic Partitioned Shared

Cache Memory

This chapter presents design details of our dynamic partitioned shared cache memory, which

aims at providing performance predictability of the cache subsystem in a multi-core system.

In contrast to most existing work [36–39] in the literature which is devoted to analyze the-

oretical proposals and simulations of reconfigurable caches, the proposed cache is physically

implemented and prototyped on FPGA. In this chapter, we firstly identify the key challenges

of designing such dynamic partitioned shared cache memory for multi-core systems. After-

wards, we provide the details about how to design and prototype the proposed cache. Finally,

experimental results are presented to evaluate the effectiveness.

2.1 Introduction

Over the past few decades, both the speed and the number of transistors in a dense integrated

circuit of processors doubled approximately every two years. This trend is commonly known

as the Moore’s Law. However, the access speed of the off-chip memory did not follow the same

trend. To bridge the performance gap between the off-chip memory and processor speed, the

cache component is included in nearly all processors to transparently store frequently accessed

instructions and data. Since the access speed of the cache component is much faster than the

off-chip memory, the cache component can effectively alleviate the performance gap between

the processor and off-chip memory by exploiting the temporal and spatial locality properties of

programs.

15

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

Figure 2.1: A graphic example of cache interference.

Nowadays, the computing systems are increasingly moving towards multi-core platforms for

the next computing performance leap. Increasing the number of cores increases the demanded

memory access speed. The performance gap between memory and processor is further increased

in multi-core platforms. To alleviate the increasing high latency of the off-chip memory, multi-

processor system-on-chip (MPSoC) architectures are typically equipped with hierarchical cache

subsystems. For instance, ARM Cortex-A15 series [21] and openSPARC series [22] all use

small L1 caches for individual cores and a relatively large L2 cache shared among different

cores. In such hierarchical cache subsystems, the shared cache can be accessed by all cores so

that several important advantages can be achieved, such as increased cache space utilization

and data-sharing opportunities.

At the same time, the shared caches also bring several drawbacks. The main disadvantage

of shared caches is that uncontrolled cache interference can occur among cores, because all

cores are allowed to freely access the entire shared caches. A graphic example of uncontrolled

cache interference is illustrated in Fig. 2.1. In this example, the data element b0 is loaded into

shared cache when core 1 needs to access the data element b0. One cache line is occupied by

core 1 for future usage. Later, when core 2 needs to access another data element b1 which is

mapped in the same place of b0, the cache line occupied by b0 is replaced by b1. This will result

in a cache miss for the later access of b0 on core 1. As a result, scenarios may occur where

one core may constantly evict useful cache lines belonging to another core, while such cache

evictions cannot bring a significant improvement for itself. Such cache interferences will cause

the increase in the miss rate [25], leading to a corresponding decrease in the performance. In

addition, uncontrolled cache interferences also result in unfairness [46] and the lack of Quality-

of-Service (QoS) [47]. For example, a low priority application running on one core may rapidly

occupy the entire shared cache and evict most of the cache lines of higher priority applications

co-executed on another core.

Multi-core platforms have been used to realize a wealth of new products and services across

16

2.1 Introduction

many domains due to the average high performance. However, safety-critical real-time em-

bedded systems are failed to be benefited by this trend. In safety-critical real-time embedded

systems including avionic and automotive systems, failures may lead to disastrous consequences,

such as losses of lives. Therefore, the safety-critical systems must be certified to ensure their re-

liability before being applied. System predictability is one of the most important principles for

the development of the certifiable computing platforms [18]. In addition, system predictability

is also one of the fundamental requirements for the real-time correctness. The timing correct-

ness of real-time systems usually depends on worst-case execution time (WCET) analysis of

programs. In the modern real-time computing theory, worst case execution time (WCET) of

individual tasks can be calculated as a prior to compute the schedulability of the complete sys-

tem. Unfortunately, this assumption is not even true in a modern multi-core platform equipped

with a shared cache. The main problem is that the behavior of shared cache is hard to predict

and analyze statically [23, 24] in multi-core systems. Cache interferences as shown in Fig. 2.1

are extremely difficult to accurately analyze[24], thus resulting in difficulties of estimating the

worst-case execution time (WCET) of the application program. How to tackle the shared cache

in the context of real-time systems is still an open issue [23] and the difficulty actually pro-

hibits an efficient use of multi-core computing platforms for real-time systems. For instance, to

resolve the predictability problem for multi-core computing platforms, avionics manufacturers

usually turn off all cores but one for their highly safety-critical subsystems [18, 30]. The work

in [31] also reports that inter-core cache interferences on a state-of-the-art quad-core processor

increased the task completion time by up to 40%, compared to when it runs alone in the sys-

tem. Therefore, it is crucial to design an interference-free shared cache memory component to

improve the performance and predictability of multi-core systems.

Cache partitioning is a promising technique to tackle the aforementioned problem [25,48,49],

which partitions the shared cache into separate regions and designates one or a few regions

to individual cores. Cache partitioning also has the advantage that it can provide spatial

isolation of the cache, which is required by safety standards such as ARINC 653 in the avionic

domain. According to [25], cache partitioning technique can be classified as software-based and

hardware-based approach. The software-based approach, which is also known as page coloring,

assigns different cache sets to different partitions by exploiting the translation from virtual to

physical memory addresses. Although the software-based approach has been extensively studied

in the community and can derive some promising results to improve the system performance

for general purpose computing systems [29, 50–53] and guarantee system prediction for safety

17

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

real-time computing systems [18,31,54,55], it has three important limitations: first, it requires

significant modifications of the virtual memory system, a complex component of the OS. Second,

one main problem for page-coloring based techniques is the significantly large timing overhead

when performing recoloring. This timing overhead on the one hand prohibits a frequent change

of the colors of pages [28,29], on the other hand makes color changes of tasks whose execution

time is less than the page-change overhead not worthy. Thus, software cache partitioning

approach can only work well when recoloring is performed infrequently [25]. Third, the page-

coloring techniques [18, 31, 55] partition the cache by sets at OS-level, cooperating OS timing

overhead also needs to be carefully considered in real-time systems. Besides, the state-of-the-

art studies [18,31,54,55] implement and evaluate the proposed approaches in a general-purpose

operating system Linux (OS) patched with real-time extensions. Due to the complexity of the

Linux kernel, the impacts of kernel activities, which have a considerable effect on real-time

tasks, are hard to be predicted and evaluated. In contrast, hardware-based approach usually

assigns cache ways within each cache set to different partitions with minimal timing overhead.

However, most of the hardware-based cache partitioning approaches in the literature can only

be used in uni-processor systems [56–58] or cannot strictly guarantee the cache space isolation

among real-time applications [2].

To tackle these problems, we present a dynamic partitioned cache memory for multi-core

systems and implement dynamic cache partitioning in our customized reconfigurable cache hard-

ware component with minimal timing overhead. In this cache architecture, the cache resources

are strictly isolated to prevent the cache interference among cores. Therefore, the proposed

cache can provide predictable cache performance for real-time applications. To efficiently use

cache resources, the proposed cache allows cores to dynamically allocate cache resource ac-

cording to the demand of applications. The proposed cache is physically implemented and

prototyped on FPGA, enabling us to evaluate dynamic cache management scheme within a

real embedded system. Besides, we also investigate the chip design process for the proposed

cache and find that the implementation of the proposed cache is practical in terms of the chip

area and power consumption. Finally, we also implement a functional test to verify the cor-

rectness of the reconfigurable cache prototype implementation. The functional test can prove

that the correctness of our cache design.

The rest of the chapter is organized as follows: Section 2.2 summarizes the existing research

work on reconfigurable cache architecture. Section 2.3 presents the hardware design and im-

plementation of the dynamic partitioned cache memory. Section 2.4 explains the process of

18

2.2 Related Work

hardware generation of the dynamic partitioned cache memory. Section 2.5 describes the soft-

ware interfaces. Experimental evaluation is presented in Section 2.6 and Section 2.7 concludes

this chapter.

2.2 Related Work

Numbers of general or application specific reconfigurable cache architectures have been proposed

in the literature. Albonesi et al. [36] proposed a selective ways cache architecture for uni-

processor system, which can disable a subset of the ways in a set associative cache during

periods of modest cache activity and enable the full cache to remain operational for more cache-

intensive periods. By collecting cache performance of applications on runtime, Suh at al. [37]

proposed a general dynamic partitioning scheme for the set associative cache. The simulation

based evaluation shows the potentials for performance improvement. Benitez et al. [38] proposed

amorphous cache aimed at improving performance as well as reducing energy consumption. As

opposed to the traditional cache architectures, the proposed cache architecture uses homogenous

sub-caches which can be selectively turn-off according to the workload of the application and

reduce both its access latency and power consumption. Based on the cache architecture in [2],

Sundararajan et al. [39] presented a set and way management cache architecture for efficient

run-time reconfiguration.

Most of above work [36–39] is devoted to analyze theoretical proposals and the simulation

of reconfigurable caches. Thus, their systems are only tailored at simulation. Only few research

work [2,56–58] is devoted to the physical implementation of the proposed cache models. Zhang

et al. [2] proposed a reconfigurable cache architecture where the cache ways configuration could

be tuned via the combination of configuration register and physical address bits. Fig. 2.2

illustrates a four-way set-associative reconfigurable cache architecture proposed in [2]. In this

architecture, the cache ways selection during the reconfiguration is related to the address bits of

the application, which cannot guarantee the strict cache isolation among real-time applications.

As shown in Fig. 2.2, one way is selected when Reg0= 0 and Reg1= 0. However, which exact one

way is selected is also determined by two physical address bits A18 and A19. The overlapped

address mapping of the real-time applications on these two physical address bits A18 and A19

will result in cache interference. In addition, the number of the allocated cache ways can only be

configured to be a power of two, which prevents the efficient usage of the limited cache ways. Gil

et al. [56, 57] presented one general-purpose reconfigurable cache design only for uni-processor

19

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

A0A4A5A16A17A18A19A32

A17

A18

Reg0

Reg1

C0 C1 C2 C3

Way Selection Control Signal

Combinational Logic
Address

Figure 2.2: Illustration of four-way set-associative reconfigurable cache architecture in [2].

systems to be implemented on FPGA. Besides, the proposed reconfigurable cache design [56,57]

can only work as direct mapped cache or 2-way set associative cache. Thus, this cache design

is quite limited for usage. Motorola M*CORE processor [58] supports a configurable unified

set-associative cache whose four ways could be individually shutdown to reduce dynamic power

during cache accesses. Besides, the cache in M*CORE processor [58] can be configured as

different functional cache (instruction cache, data cache, or unified cache). However, M*CORE

processor is developed for uni-processor systems. It is not easy to extend such reconfigurable

cache into multi-core systems due to synchronization and atomic operation issue [59].

In this chapter, we propose a parameterized reconfigurable cache architecture for real-time

multi-core system and physically implement it on FPGA. In this architecture, cache ways can

be tuned without constraints and can be efficiently and dynamically partitioned and allocated

to applications, which can guarantee the cache resource is strictly isolated among real-time ap-

plications to prevent the cache interference. Besides, our reconfigurable cache memory supports

parameterized design. The cache size, line size, and associativity of the cache memory can be

parameterized during compile time. The reconfigurable cache memory can be automatically

generated by setting the parameters, e.g., cache size, line size, and associativity. Thus, the pro-

posed reconfigurable cache memory supports hardware generation. The dynamic partitioned

cache memory can be interfaced and executed with CPUs for embedded systems such as Altera

NIOS II processor. We provide one physical prototype on FPGA and this prototype will serve

us a real (not simulation) reconfigurable cache for studying and validating cache management

20

2.3 Dynamic Partitioned Cache Design and Implementation

strategies on the real-time multi-core system under different cache configurations.

2.3 Dynamic Partitioned Cache Design and Implementa-

tion

In this section, we present the development and implementation of the reconfigurable cache,

which can be interfaced to NIOS-based multi-core systems. The developed cache supports

dynamic way-based cache partitioning. As shown in Fig. 2.3, the shared cache is partitioned

in ways. Each core can dynamically tune the number of selective-ways during runtime. For

example, core 2 can select the 3rd and 6th way by calling the cache reconfiguration APIs. We

firstly present the challenges of designing such a reconfigurable cache for multi-core systems.

Then, we provide the details about how to design and implement the reconfigurable cache.

Core1 Core2 Core3 Core4

Figure 2.3: Way-based cache partitioning.

2.3.1 Design Consideration and Challenge

Cache coherency problem is one of critical design considerations for the dynamic way-based

cache partition infrastructure. According to the Altera NIOS II datasheet [60], the current

NIOS architecture does not provide hardware cache coherency. When creating multiprocessor

systems, software for each processor is required to locate in its own unique region of off-chip

memory to avoid to implement cache coherency [60]. NIOS II SBT provides a simple scheme

of memory partitioning that allows multiple processors to run their software from different

regions of the same off-chip memory [60]. Besides, according to the state-of-the-art research

work in [61], current cache coherence strategies are not suitable for the real-time system. In this

chapter, we mainly focus on studying the cache interference among the cores, and follow this

official design presented in [60] from Altera to create our multi-core system. Actually, this kind

of memory architecture known as Partitioned Global Address Space (PGAS) has been widely

21

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

Figure 2.4: Atomic operations.

accepted in the embedded community for efficiency reasons and real-life examples come from

Adapteva Parallella multi-core chip E16G301 and E64G401 [62]. Note that inter-core cache

interference still exists although software on each core runs in different regions of the same

off-chip memory1. Besides, the proposed shared cache architecture is multi-port cache, which

allows NIOS cores to access the cache concurrently.

Another important part that should be carefully considered is atomic operations. In general,

to adaptively change the cache size, one core needs a two-phase operation, i.e., inquiry and

allocation (as shown in Fig. 2.4). In the inquiry phase, the core needs to check which ways

are available at the current moment. Then, based on the inquiry results, the core can acquire

cache resource in the allocation phase. Normally, this procedure works well in a uni-processor

system due to no core interference. However, in a multi-core system, when one core is checking

the cache resource state, the cache management logic might be conducting cache allocation for

other cores. This may lead to the fallacious cache resource state inquiry, because the results

of the on-going cache allocation fail to be synchronized to the current cache resource state.

Therefore, in a multi-core system, the APIs for adjusting the cache size should be guaranteed

to be atomic for implementing synchronization primitives. Hence, we develop a component,

called cache ways management unit (CWMU) to execute cache ways allocation and release,

which grantees the offered APIs atomicity.

The implementation of the replacement policy for the way-based partitioning cache is an-

other design challenge. To efficiently use the limited cache resource, the proposed cache archi-

tecture allows each core to dynamically tune its cache ways without any constraints. This will

result in that the cache ways occupied by one core might not be adjacent to each other. As

1Unique region of each processor on off-chip memory is larger than the total cache size

22

2.3 Dynamic Partitioned Cache Design and Implementation

shown in Fig. 2.3, the 3rd and 6th ways are occupied by core 2. Therefore, standard replace-

ment policies cannot be applied. In this chapter, we develop block reference field logic (BRFL)

to maintain this discontinuous cache ways distribution.

To Core0

To CoreN

…

Shared
by N Cores

To SDRAM

C
o

re-C
ach

e-Sw
itch

(C
C

S)

Cache
Controller

Cache
Controller

…

CWMU

…

…
…

CCU

Way S-1

Way S-2

Way 1

Way 0

…
…

CWB

Figure 2.5: Reconfigurable cache architecture.

2.3.2 Reconfigurable Cache Architecture

This section presents an overview of the proposed reconfigurable shared cache architecture. The

reconfigurable shared cache component allows cores to dynamically change the number of owned

cache ways. As depicted in Fig. 2.5, the proposed reconfigurable shared cache consists of cache

ways management unit (CWMU), cache control unit (CCU), core to cache switch (CCS), and

cache ways block (CWB). In the proposed architecture, cache ways management unit (CWMU)

controls the cache ways allocation according to the reconfiguration requests of the cores. The

reconfiguration port of CWMU is shared by all cores. Cache control unit (CCU) manages the

23

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

cache memory accesses by instantiating N cache controllers for a N-core system. Core to cache

switch (CCS) can dynamically connect cores to cache ways blocks according to ways mask

register of each core, which is maintained by CWMU according to the private cache ways pool

of the cores. Cache ways blocks (CWB) are memory blocks used for tag and data storage.

2.3.3 Cache Ways Management Unit (CWMU)

The cache ways management unit (CWMU) is used to manage cache ways in a centralized

manner, by which each core can send reconfiguration command to dynamically regulate its

cache ways. CWMU is connected to N NIOS cores by avalon slave interface (ASI) and a

round-robin arbiter is automatically created between N NIOS cores and CWMU by Altera

SOPC builder. As shown in Fig. 2.6, when CWMU receives one command from one NIOS core,

the CMD decoder component can distinguish the core ID (i.e., identity which core sends this

command) and its command type (i.e., identity command types in Tab. 2.2). If it is allocation

ways command, ways IDs will be fetched from the global ways pool. Then, the fetched ways IDs

are put into the cache ways pool of the distinguished core. Then, core to cache switch (CCS)

is controlled to connect cache ways to the distinguished core according to the cache ways pool.

Before fetching ways IDs from global ways pool, the logic will check whether there are enough

ways in the pool. If no enough ways exist in the pool, cache overflow error will be returned to

the distinguished core. Note that the approach in [48] can be applied to calculate one safe cache

configuration for real-time applications, which can guarantee that cache overflow error will never

occur. In contrast to the procedure of allocation ways command, release ways command will

fetch ways IDs from the cache ways pool of the distinguished core to the global ways pool. Ways

occupied by the distinguished core and replacement information are correspondingly updated

at this point. Note that due to this centralized management scheme, cores do not need to

inquiry the cache state any more before the allocation operation. Therefore, the APIs for cache

reconfigurations are atomic.

2.3.4 Cache Control Unit (CCU)

Cache control unit (CCU) instantiates N cache controllers for an N-core system, where each core

owns one cache controller. Cache controller is used to maintain the access for its corresponding

NIOS core. Thus, this shared cache allows NIOS cores to access the cache concurrently. For

cache controller, we employ the write-through policy for each write operation. Cache write-

through policy is inherently tolerant to soft errors due to its immediate update feature [63].

24

2.3 Dynamic Partitioned Cache Design and Implementation

CMD
Decoder

A
SI

Allocation Ways

Global Ways Pool

Release Ways

Core0 Ways Pool

CoreN Ways Pool

…

input

output

Figure 2.6: Cache ways managment unit (CWMU).

The cache architecture with write-through policy has been adopted in many real-life high-

performance processors such as Niagara processor [64], IBM POWER5 processor [65], and

Itanium processor [66].

Fig. 2.7 depicts the block diagram of cache controller. Transactions from NIOS cores are

injected through the cache ports, which is instantiated as avalon slave interface (ASI). Evictions,

refills and write-through are asserted from off-chip memory port, which is instantiated as avalon

master interface (AMI). The data-width of both ASI and AMI in our case is 32 bit. The

supported maximum burst of both ports depends on the cache line size. Thus, muxs and

demuxs in ASI and AMI are used to packet and de-packet bytes in the corresponding cache

line size. The control logic performs hit/miss check, returns the read data, and asserts evictions

and refills. The victim cache line is selected by the block reference field logic (BRFL) during

the refill phase. The implementation of the partitioned replacement policy is presented in

Section 2.3.5.

Mux

De-Mux

ASI

Control Logic

BRFL

AM
I

Ca
ch

e
Po

rt

CCS

Ways Pool

Of
f-c

hi
p

M
em

or
y

Figure 2.7: Cache controller (CC).

25

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

2.3.5 Implementation of Partitioned FIFO Replacement Policy

When a new data must be stored in a cache memory and all cache ways have been occupied,

one of the existing cache line must be selected for replacement. Standard replacement policies

include LRU, FIFO, etc. As the cache with the FIFO replacement policy could support accu-

rate quantitative WCET estimations [67] and prevent timing anomalies [68] for the real-time

applications, we consider FIFO cache replacement policy in our design. In addition, the FIFO

replacement policy has been widely used in the state-of-the-art processors such as ARM 11

processor and Intel X86 processor [67].

As mentioned in Section 2.3.1, dynamic cache partitioning may result in that cache ways

occupied by one core might not be adjacent to each other. To maintain the discontinuous cache

ways distribution, the block reference field logic (BRFL), as shown in Fig. 2.8, is proposed

to perform victim selection for cache write operations. The reference field contains selection

reference memory (SRM) and valid bits memory (VBM). The references of the next selection of

victim cache lines are stored in the selection reference memory (SRM). SRM can be instantiated

by one FPGA dual port memory block with the depth Q and width Log2(u), where Q and u

denote cache depth and cache associativity, respectively. When the core release ways, all the

contents of SRM should be cleared to initial reference in one clock. Unfortunately, no FPGA

can support this feature. In this chapter, we propose one solution to reset SRM by using VBM,

which can be instantiated as Q-bit register and be cleared in one clock. By using this similar

approach, the cache ways can be flushed in one clock when the core release the ways. We use

one bit valid register to associate with each reference in SRM. When we read a reference from

one location of SRM, the valid bit register acts as a toggle to determine the output. Based on

the current reference, the write control logic (WCL) updates the write data for reference field

on each cache write operation and write the next selection to reference field of SRM and VBM,

making that ways are selected in FIFO replacement manner. Note that write control logic

(WCL) can also be easily extended for other replacement policies, e.g., LRU. BRFL outputs a

valid reference and the victim can be referred from the ways pool.

2.4 Cache Generation

The multi-core system executing different applications has different demand requirements for

the cache memory. Choosing one best cache for the system is, therefore, quite application-

specific. However, this selection process is usually manually and subjectively done by user,

26

2.4 Cache Generation

M
U

X

1

1

1

W
C

L

Wr

Data

Clk

Wr

Ref

R
e

fe
re

n
ce

 Fie
ld

Ways Pool

Initial Reference

Controlled by CWMU

Clk

Wr

Address Selection
Ref Victim

V
B

M

Clk

Addr

Data

Wr

Rd

q

rst

SR
M

Clk

Addr

Data

Wr

Rd

q

Figure 2.8: Block reference field logic (BRFL).

which will lead to pessimistic cache settings for the system. In order to find one better cache

settings for a system, one requires more precise information of the cache performance under

different cache settings, such as chip area, power consumption, implementation frequency and

etc. Therefore, the feature of automatic hardware generation for our proposed dynamic parti-

tioned cache is required to facilitate collecting such information. The cache generator feature

allows us to automatically generate the dynamic partitioned cache memory by inputting the

specific cache parameters, such as the number of cache port, the depth of cache bank, line size,

and associativity of the cache memory. Besides, the cache generator feature also allows us to

evaluate the efficiency of the cache resource management schemes in different cache partitioning

scales.

To enable such cache generator features, we have a macro definition file to represent the

configurable cache parameters. According to the settings in the macro definition file, the Verilog

HDL code can be automatically organized in various code structures by using generate state-

ment and for loop statement. The bit width of the signals and registers in all hardware module

are all defined by using macro definition variable. The register maps are also re-organized ac-

cording to macro definition variable. Each module in the dynamic partitioned cache memory is

designed in a parameterized manner. Therefore, the whole dynamic partitioned cache memory

can be automatically generated by setting the parameters in the macro definition file.

27

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

2.5 Software Programming Interface

This section discusses the application programming interfaces (APIs) for dynamic partitioned

cache memory. As shown in Fig. 2.5, cache ways are managed in a centralized manner to

guarantee atomic operation via the cache ways management unit (CWMU). CWMU exposes

several registers, which can be accessed by cores, to control the cache ways configuration. Each

core is connected to CWMU by a shared bus, by which cores can access these registers to

dynamically regulate its cache ways. Each core controls the dynamic partitioned cache memory

by following registers:

• Setting the number of cache ways need to be allocated or released by writing the CON-

TROL registers.

• Getting the mask bits of cache ways occupied by the core by reading the MASK registers.

• Getting the value of cache hit counter for the core by reading the HITC registers.

• Getting the value of cache miss counter for the core by reading the MISSC registers.

• Clearing cache performance (hit and miss) counter for the core by writing the clear bit in

the CONTROL registers.

Currently the dynamic partitioned cache memory works with 32-bit systems. Therefore,

all embedded processor-accessible registers are 32 bits wide. The i-th core can only access its

own 4 registers: CONTROLi, MASTi, HITCi, MISSCi. Thus, the address space of total

registers in dynamic partitioned cache memory is 4 ·m, where m is the number of the cores in

the multi-core system. The registers address space of each core can be distinguished by the

following address mapping scheme, as shown in Fig. 2.9. The last 2 bits of the physical address

is used as word offset for 32-bit wide register. The 2nd and 3rd bits the physical address are

used to index the four 32-bit registers. The upper log2(m) bits of the physical address are used

to distinguish the address space of the cores, which can be considered as core ID. For example,

for 4 core system, the 4th and 5th bits is used as core ID. By using these two address bits,

the cache ways management unit (CWMU) can distinguish which core sends the configuration

command and conduct the cache configuration for the distinguished core.

Tab. 2.1 presents the inner register map for the case of 16-ways associative dynamic par-

titioned cache memory. The CONTROL register contains individual bits, set by the core,

which controls the cache management operation and the performance counter operation. If Rel

28

2.5 Software Programming Interface

Register Index Word OffsetCore Index

2 bits2 bitslog2(m) bits

Figure 2.9: Address mapping.

bit (or Alloc bit) is set as 1, CWMU releases (or allocates) cache ways, while the number of

cache ways is represented by Way# bits (bit 3:0). When Clc bit is set as 1, cache performance

counters HITC and MISSC is cleared. Besides, the CONTROL register contains 12 bits

(bits 31:20) to return the state of runtime cache management. The ErrorID bits (bits 31:28),

AvaWays# (bits 27:24), OccuWays# (bits 23:20) in the CONTROL register represent error

code for cache management, the available cache ways number of global ways pool in CWMU,

and the occupied cache ways number of the current core, respectively. When the core read

the CONTROL register, the status of dynamic partitioned cache memory can be obtained for

debugging. The MASK register is used to indicate which exact ways are be occupied by cores.

Besides, we also develop one customized performance counter to evaluate the performance be-

havior of the cache. The customized performance counter is integrated into the proposed cache.

The users can obtain the performance of the cache by reading the performance counter registers

HITC and MISSC.

Table 2.1: Inner register map for the case of 16-ways associative cache.

A3 to A2 Register Name 31:28 27:24 23:20 · · · · · · 6 5 4 3:0

0 CONTROL ErrorID AvaWays# OccuWays# Clc Rel Alloc Way#

1 MASK The Maks of the occupied cache ways

2 HITC Cache hit performance counter

3 MISSC Cache Miss performance counter

We develop a set of APIs to facilitate control of the dynamic partitioned cache memory

at a reasonable level of abstraction. Tab. 2.2 lists all the atomic APIs currently supported by

reconfigurable cache IP. By calling the following APIs, cache ways can be dynamically tuned

and performance statistic data can be obtained from the customized performance counter.

29

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

Table 2.2: APIs supported by reconfigurable cache

allo ways(way num) Allocate cache ways to cores

rel ways(way num) Release cache ways from cores

clc perf cnt() Clear the performance counter

get hit cnt() Get the value of cache hit counter

get miss cnt() Get the value of cache miss counter

get state() Return occupied ways, ways# in pool, error state

2.6 Hardware Prototype and Verfication

In this section, we present the experimental results obtained with an implementation of the

prototype of the proposed dynamic partitioned cache memory. At first, we summarize the

hardware characterization to evaluate the effectiveness of our cache hardware prototype. To

obtain the hardware characterization on FPGA platforms, different types of caches are synthe-

sized to Altera Stratix V FPGA with Quartus II (version 13.0). Besides, we also investigate

the chip design process for the proposed dynamic partitioned cache memory by using Synopsys

design compilers [69]. The design flow is based on the SMIC 130nm standard technology li-

brary [70]. Finally, we report the experimental results to verify the functionality of the proposed

dynamic partitioned cache memory. The results are obtained by implementing the constructed

NIOS-based multi-core system together with the proposed reconfigurable cache on the Altera

DE5 development board equipped with Stratix V FPGA.

2.6.1 FPGA Synthesis Results

First of all, we compare the different types of caches with respect to their maximum operating

frequency and resource consumption in terms of logic and memory usage. Different types of

caches are synthesized to Altera Stratix V FPGA with Quartus II (version 13.0) to obtain area

and critical path delay (maximum operating frequency Fmax) numbers. The effect of increased

cache depth, associativity, line size, and port number will be examined for all cache types.

Tab. 2.3 summarizes the results for different types of caches. The ’cache settings’ column is

organized as form of associativity/depth/line size. For example, 4/128/256 indicates 4-ways

cache architecture with 128 cache depth and 256-bit line size. Fmax indicates the maximum

frequency that the constructed multi-core system can run on.

For increase in depth address and ways number, the number of combinational ALUTs and

registers also increases. As explained in Section 2.3.5, to flush cache ways and reset the re-

30

2.6 Hardware Prototype and Verfication

Table 2.3: Speed and resource consumption on Stratix V FPGA

Port Cache Combinational Total Fmax

Number Settings ALUTs Registers (MHz)

Two Core

4/256/256 11510 8899 168.41

4/512/256 14453 11461 159.41

8/256/256 17619 10506 151.10

8/512/256 21609 14604 152.14

Four Core

8/256/256 29809 18683 140.29

8/512/256 36074 24831 134.34

16/256/256 39821 22014 126.90

16/512/256 49225 31234 125.83

placement reference in one cycle, we separate the valid bit of each line from memory block and

implement it in customized memory block which supports clearing contents globally. Thus, the

increment of address depth will result in the increment of the number of valid bit, which leads

to more logic resource in combinational ALUTs and registers. Regarding the ways number, the

contributing factors are the core-cache-switch circuitry, FIFO replacement policy circuitry, and

wide logical OR, all of which grow with the increased ways number. Regarding the maximum

operating frequency Fmax, we notice that 2-core cache is faster than 4-core cache and the cache

architecture with less associativity is faster than the one with more associativity.

2.6.2 Physical Chip Synthesis Results

In this section, we report physical chip synthesis results for the proposed dynamic partitioned

cache memory. The proposed cache memory is implemented in synthesizable Verilog HDL

code and synthesized by using Synopsys design compilers [69] with the SMIC 130nm standard

technology library [70]. We use ARM Artisan 130nm memory IPs [71] to generate RAM blocks

for our cache. Considering that the proposed cache memory supports way-based dynamic

cache partitioning, we mainly focus on studying how the cache way numbers impact chip design

process in terms of chip area and power consumption. We conduct the experiments to report the

chip area and power consumption of the proposed cache memory under different configurations.

In the experiment, we implemented 4 different configurations for the dual-core caches memory,

where the cache way numbers are varied from 4 to 32. The cache depths and cache lines are

fixed as 1024 and 128, respectively. For comparison, a standard shared cache without dynamic

partitioning functionality is also developed and verified by using the same experiment setups.

31

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

Figure 2.10: Chip area for dual-core caches with the varying cache way numbers.

Considering chip manufacturing technology we used (i.e., 130nm technology), we restrict the

frequency of all cache designs at 400MHz and report the chip area and power consumption

under this speed level.

Figure 2.11: Power consumption for dual-core caches with the varying cache way numbers.

Fig. 2.10 and Fig. 2.11 illustrate the chip area and power consumption for different types

of caches, respectively. As shown in Fig. 2.10, the chip density is mainly contributed by the

32

2.6 Hardware Prototype and Verfication

memory blocks in both cache architectures because the cache is mainly composed by the mem-

ory blocks. Comparing to pure cache without dynamic cache partitioning, the total density

overhead of our cache implementation ranges from 7% to 13% and maily comes from memory

and combinational blocks. This density overhead is introduced with the addition of selection

reference memory (SRM) in FIFO replacement policy circuitry and the routing logic in core-

cache-switch circuitry. Another important observation is that the chip area is nearly increased

linearly with the ways configurations. The cache with 32-ways configuration occupies 7X chip

area than the cache with 4-ways configuration. Fig. 2.11 depicts the power consumption for

both cache architectures under the different cache ways configurations. The main power over-

head is caused by the increase of registers for cache controller. The power overhead of our cache

design ranges from 0.3% to 10%. Thus, our cache design has a close power consumptions with

respect to the standard cache design. Besides, the more cache ways we configure, the more

power the cache memory will consume. From the results, we can see that reducing one more

cache ways can on average reduce 148 mW power consumption. This means turning off cache

ways can significantly reduce the power consumption of the system. This brings another po-

tential research direction about how to dynamically manage the cache ways resource to achieve

energy efficiency for the cache subsystem.

2.6.3 Functionality Verification

We implemented a functional test to verify the correctness of the reconfigurable cache prototype

implementation. This verification is based on memory reuse code, as shown in Fig. 2.12, which

can mimic the behavior of cache access behavior. According to the test presented in Fig. 2.12,

the program firstly access the array b[Cache Depth ∗ Ways Num][Line Size], whose size

equals the predefined cache, in the first for loop. The parameter Cache Depth, Ways Num,

and Line Size are denoted as the cache depth, cache way number, and the word number of

cache line, respectively. After the first loop, the assigned N -ways cache (N < Ways Num)

will remain the last visited N × Cache Depth × Line Size array data elements. For ex-

ample, if we assign one cache way to this functional test program, this one-way assigned

cache will be occupied by the array data elements from b[Cache Depth ∗ (Ways Num− 1)][0]

to b[Cache Depth ∗ Ways Num − 1][Line Size − 1]. In the second while loop, the array

b[Cache Depth ∗Ways Num][Line Size] is revisited in the reverse order for the sake of cache

reuse. The more the cache is assigned, the more cache reuse can be achieved which in turn can

lead to less cache miss.

33

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

1 unsigned int b [Cache Depth∗Ways Num] [L i n e S i z e] ;

2 unsigned int i , temp ;

3 // Load data in to cache

4 for (i =0; i<Cache Depth∗Ways Num ; i ++){
5 temp=b [i] [0] ;

6 }
7 // s t a r t to reuse cache

8 while (i >0){
9 temp=b [i] [0] ;

10 i−−;

11 }

Figure 2.12: The code for functionality verification.

Figure 2.13: # Cache miss and execution time for memory reuse code.

This functional test is conducted on the two-core system with 2MB reconfigurable shared

L2 cache (8 ways, 8192 cache depth, 256 bit line size), which is implemented on the Altera DE5

development board equipped with Statrix V FPGA. By calling cache reconfiguration listed in

Tab. 2.2, we implement memory reuse code under different cache ways. Fig. 2.13 shows cache

miss numbers and execution times under different cache ways. We can see that both cache miss

numbers and execution times predictably decrease linearly with reconfigured cache ways. By

increasing one way, cache miss numbers decrease linearly with step 8192 (i.e., cache depth).

This is expected since 8192 more cache lines are buffered for memory reuse when increasing one

way.

34

2.6 Hardware Prototype and Verfication

Lets give a quantitative analysis to this result. According to the test in Fig. 2.12, each

cache access in the first for loop always result in cache miss. Thus, there should be roughly

8192×8 cache misses to happen during the data load phase (i.e., the first for loop in Line 4-6).

According to the analysis we state above, only N × 8192 cache lines can be reused during the

cache reuse phase (i.e., the second while loop in Line 8-11). Thus, we will roughly get another

(8−N)× 8192 cache misses during the cache reuse phase. Totally, we are expected to roughly

get (16 − N) × 8192 cache misses if we assign N cache ways to this test program. From this

analysis, we can see the cache miss number should decrease linearly with reconfigured cache

ways. It is worthy noting that our cache works as a unified shared cache in the experiment

setup. Instruction access will also result in additional cache miss numbers. Thus, the above

cache miss number is a rough number which do not take instruction access into account. To

eliminate the impact of the cache miss caused by instruction access, we use the array with the

large size (2M byte) in the test program and set our cache with the large size in this experiment

to relieve the impact of instruction access and make our verification more accurate. By these

settings, the cache miss caused by instruction access can be ignored comparing to the cache

miss caused by data access. From the result as shown in Fig. 2.13, we can see that cache miss

numbers are expected to decrease linearly with reconfigured cache ways. Fig. 2.14 shows the

cache miss difference rate between the observed cache miss and the expected cache miss. From

Fig. 2.14, we can see that the cache miss differences between the expectation and measurement,

which is caused by instruction access, are quite small and the maximum cache miss difference

normalized with respect to the expected cache miss is up to 0.39%. This means our cache works

as the expected manner and the reconfiguration functionality of the designed cache is correct.

2.6.4 Reconfiguration Overhead Measurement

Finally, we conduct experiments to measure the timing overhead for cache reconfiguration

operations. According to Section 2.3.3, the port of cache ways management unit (CWMU) is

shared by all cores. To inject traffic on the shared bus, we implement allocation and release cache

configuration instructions in Infinite loop concurrently on the interference core. To measure

the timing overhead, allocation and release cache configuration instructions are implemented

for 10000 times on the target core. In each iteration, we implement allocation-release cache

configuration instruction pair to avoid the cache overflow. And we directly read the time stamp

counter and report the average latency as the timing overhead of allocation-release instruction

pair. According to our experiment, the average timing overhead of one allocation-release cache

35

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

Figure 2.14: The difference rate between the observed cache miss and the expected cache miss.

configuration instruction pair is 16 cycles, which is ignorable when comparing to OS-based

cache partitioning.

2.7 Summary

In this chapter, we present the dynamic partitioned shared cache memory to achieve the time-

predicable execution of shared cache subsystem in multi-core systems. By using the proposed

cache, the cache resource can be strictly isolated to prevent the cache interference among

cores. Furthermore, the proposed cache supports dynamic cache partitioning and allows cores

to dynamically allocate cache resource according to the demand of applications, which will

enable us to efficiently use cache resource and maximize the performance of applications. The

proposed cache can be interfaced to multi-core embedded systems such as Altera NIOS-based

multi-core systems, and this has been tested in Altera FPGAs. The FPGA implementation

shows a reasonable implications for the clock frequency and hardware resource consumption.

Besides, we also investigate the chip design process for the proposed cache memory. The

synthesis result shows the power consumption and chip area of the proposed cache is scalable

with respect to the cache way numbers. The usage of the proposed cache within a real C code

has been examined by a functionality test. By using a memory reuse code which can mimic the

behavior of cache access, the functional test can verify the correctness of the reconfigurable cache

36

2.7 Summary

prototype implementation. Finally, we also conduct experiments to show our cache memory

can be reconfigured with small overhead (scaling to cycles).

The existence of our FPGA prototype of the proposed cache provides one practical way to

implement dynamic cache partitioning on the multi-core system. In contrast to most previous

work [35–40] in the literature, which are devoted to analyze theoretical proposals and the

simulation of reconfigurable caches, we provide one physically implementation and prototype on

FPGA. This prototype will bridge the gap between simulation and real systems, and will serve

us a real (not simulation) reconfigurable cache for studying and validating cache management

strategies on the real-time multi-core system.

In the next chapter, we will present an integrated cache management framework, which

combines real-time task scheduling and task-level cache partitioning to improve the execution

predictability and performance for real-time multi-core systems. In this framework, the dynamic

partitioned shared cache memory is used to implement task-level cache partitioning.

37

2. DYNAMIC PARTITIONED SHARED CACHE MEMORY

38

Chapter 3

Shared Cache Management

Framework for Real-time

Multicore Systems

In the previous chapter, we have introduced the details of the hardware design of the dynamic

partitioned shared cache memory and its prototype on the FPGA platform. This shard cache

can guarantee the cache resource is strictly isolated among real-time applications to prevent

the cache interference. This chapter mainly focuses on studying how to manage the dynamic

partitioned shared cache memory in an efficient manner while still guaranteeing the real-time

constraints. Several challenging tasks are involved in this phase in particular for the multi-

core implementation of the predictable scheduler and the dynamic configuration of the cache

subsystem. To resolve these issues, we proposed an integrated cache management framework to

improve the execution predictability for real-time multi-core systems. The proposed framework

can automatically generate fully deterministic schedule and cache configurations for system

performance optimization with real-time constraints. This chapter discusses the design of this

automatic cache management framework in details.

3.1 Introduction

Multi-core systems have become one of the preferable choices in modern embedded systems

to achieve more powerful computing ability while reducing the cost of the system at the same

time. Safe-critical real-time embedded systems, such as electronic vehicles [72], are also one of

the promising domains which use the multi-core systems as their computing platforms, because

39

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

there are growing number of applications which require more powerful computing platform

to provide more computing power. For example, the driver assistant system in the modern

automotive system needs to process high-resolution video in real-time to track objects, which

requires significant computing power [73].

The multi-core architecture, however, poses a significant challenge in designing a safe-critical

real-time embedded system due to timing unpredictability caused by shared resource interfer-

ence. The shared cache has been recognized as one of the most important sources of unpre-

dictability in multi-core systems [17, 49, 59]. To resolve such unpredictability stemmed from

the shared cache, real-time systems usually are developed by either disabling or statically par-

titioning shared cache [33–35]. Another major challenge is that no real-time scheduling policy

taking cache space demands into account is established [23]. How to choose cache partition size

integrated with task scheduling design to optimize system performance while guaranteeing the

system predictability is still an open problem [23]. In this chapter, we study the problem of

how to use the shared cache in a predictable and efficient manner under real-time requirements

with the existence of cache interference.

Most of the state-of-art techniques [33–35] on this topic consider statically partitioning cache

at core level. The shared cache is statically partitioned to individual cores and all tasks mapped

on the same core should use this pre-partitioned cache. However, designating a region with a

constant size to individual cores is often ineffective with respect to the system performance,

since the tasks assigned on the same core might have different requirements and sensitivities

to the amount of cache allocated. We argue that by carefully designing a task schedule and

reconfiguring the cache partitioning for each task according to the schedule at runtime, the per-

formance of the system can be improved, compared to the core-level strategies. A motivation

example will further elaborate this issue in Section 3.4. In contrast to core-based cache parti-

tioning, we consider task-level cache partitioning, which enables us to allocate cache resource

in an efficient manner according to different features of tasks.

Combining real-time task scheduling and task-level cache partitioning allocation is however

more involved. On the one hand, the WCET of a task depends on the allocated cache size.

On the other hand, the maximal cache budget that can be assigned to a task depends on the

cache sizes occupied by other tasks that are currently running on other cores, i.e., depending

on the scheduler. Furthermore, the performance (e.g., cache miss, energy consumption, and

execution time) of running tasks may have different requirements to the amount of used cache

because memory access pasterns of tasks vary greatly from task to task. In principle, the task

40

3.2 Related Work

scheduling and the cache size allocation interrelate to each other with respect to the system

performance, such as cache misses [28] and energy consumption [35]. Therefore, a sophisticated

framework is needed to find the best trade-off between them in order to improve the system

performance [35].

In this chapter, we tackle schedule-aware cache management scheme for real-time multi-core

systems. We present an integrated framework to study and verify the interactions between the

task scheduling and the shared cache interference. For a given set of tasks and a mapping of

the tasks on a multi-core system, our approach can generate a fully deterministic time-triggered

non-preemptive schedule and a set of cache configurations during the compilation time. During

runtime, the cache is reconfigured by the scheduler according to the offline computed configura-

tions. The generated schedule and the cache configurations together minimize the cache miss of

the cache subsystem while preventing deadline misses and cache overflow. With a customized

reconfigurable cache component and share-clock multi-port timer component, our framework

can generate multi-core systems with different cache modules (different cache configurations

with respect to cache lines, size, and associativity) and prototype on Altera FPGA. Finally,

we analyze and discuss the experiment results under different hardware environments with re-

spect to the number of cores and cache settings. A case study is presented to demonstrate the

completeness of our framework.

The rest of the chapter is organized as follows: Section 3.2 reviews related work in the lit-

erature. Section 3.3 presents some background principles. Section 3.4 presents the motivation

example for schedule-aware cache management scheme. Section 3.5 overviews the proposed

framework and Section 3.6 describes the proposed synthesis approach for scheduling and cache

management. Section 3.7 illustrates the time-triggered scheduling implementation on multi-core

system. Section 3.7 describes the detailed process of the automatic generation. Experimental

evaluation is presented in Section 3.9. The case study aiming at demonstrating the complete-

ness of our framework is presented in Section 3.10. The usability for our cache management

framework is discussed in Section 3.11. Section 3.12 summarizes this chapter.

3.2 Related Work

3.2.1 Cache Partitioning

Shared cache interference in a multi-core system has been recognized as one of major factors

that degrade the average performance [28, 29], as well as predictability of a system [18, 24].

41

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Many work has been done in general-purpose computing to optimize different performance

objectives by cleverly partitioning shared cache, including cache performance [74, 75] and en-

ergy consumption [40]. Sundararajan et al. [76] proposed an energy-saving technique for the

last-level-cache (LLC) multi-core processors, where the cache are partitioned into shared and

private regions. The dynamic energy savings can be achieved by privately access to the ways

which contains useful data. By using curve fitting to dynamically partition the storage cache,

Patrick et al. [77] presented an effective shared storage cache management scheme to provide

differentiated services to applications. However, most existing studies are evaluated by simula-

tion. The simulation-based study may only simulate a few billion instructions for a program.

Besides, evaluations on simulators are prone to inaccuracy [29]. Instead of using simulation, Lin

et al. [29] evaluated a dynamic cache partitioning scheme on an Intel 5160 processor based on

page coloring technique. Above work [28, 29, 40, 74, 75] is mainly focused on improving system

performance and do not consider real-time requirements.

Cache partitioning techniques have also been actively studied to improve the performance

of real-time embedded systems. Bui et al. [78] exploited cache partitioning to minimize the

task real-time utilization while taking into account the tasks’ criticality. The results in [78]

show that cache partitioning can be used to improve system schedulability because cache parti-

tioning can help to reduce the interference. By leveraging configurable cache architectures, the

authors in [79] proposed a technique to eliminate inter-task cache interference and reduce cache

energy consumption. Wang et al. [32] proposed a profile-based scheduling-aware dynamic cache

reconfiguration technique to reduce the cache energy consumption for soft real-time systems.

Unfortunately, above simulation-based studies do not consider the multi-core platforms.

Few work in the literature has been done in the context of real-time multi-core system.

Given a task-level cache partitioning, the authors in [24] developed a sufficient schedulability

test for non-preemptive fixed priority scheduling for multi-core systems. However, the work

does not consider how to partition the cache size to individual tasks. How to choose cache

partition size to optimize system performance while guaranteeing the system predictability is

still an open problem [23]. Liu et al. [34] proposed a joint task assignment and cache partitioning

technique to minimize the overall WCET, where the shared cache is partitioned on core level

and cache locking is applied to guarantee a precise WCET. The authors in [33] proposed a

two-level utilization control solution for energy optimization in real-time multi-core systems,

in which the cache assigned to a task is upper-bounded by the cache quota of the core. Wang

et al. [35] proposed an approach to optimize the energy of the cache subsystem for multicore

42

3.2 Related Work

systems. In this work, they dynamically reconfigure the private L1-cache on task-level and

statically partition the shared L2-cache to cores. However, Most of the work [33–35] considers

static cache partitioning on core level. This kind of static cache partitioning scheme cannot fully

exploit the different cache demand features of the tasks and, therefore, will result in inefficient

usage of the cache resource. Besides, all above research work is evaluated by simulation.

In the context of practical real-time systems, cache partitioning techniques have been ex-

plored mostly by using software-based solution [18,31,55,80,81]. In [80,81], the off-chip memory

mapping of the tasks is altered to guarantee the spatial isolation in the cache by using compiler

technology. However, altering tasks’ mapping in the off-chip memory is far from trivial, which

requires significant modifications of the compilation tool chain. In addition, the partitioning

of the tasks can only be statically suppressed in fixed cache set regions due to the pre-decided

memory mapping, which also prevents the efficient usage of the limited cache resource. Re-

cently, the techniques [18,31,55] on the multi-core cache management in the context of real-time

systems have been proposed by using page-coloring, which partitions the cache by sets at OS-

level. However, page-coloring based techniques usually suffer from a significant timing overhead

inherent to changing the color of a page, which results in that making decision of changing the

color of a page cannot be frequent. The authors in [29] report that the observed overhead of

page-coloring based dynamic cache partitioning reaches 7% of the total execution time even

after conducting the optimization to reduce the recoloring times. Besides, the page-coloring

techniques [18, 31, 55] partition the cache by sets at OS-level. Cooperating OS overhead also

needs to be carefully considered in real-time systems. Distinct to above cache management

schemes, we present one cache management framework to improve the system predictability

and performance for the proposed FPGA-based time-triggered multi-core system, where a re-

configurable cache architecture can execute dynamic way-based cache partitioning in hardware

level. Our approach can dynamically change the cache size with minimal overhead (scaling to

cycles). Besides, compared to set-based cache partitioning techniques, our way-based recon-

figurable cache can turn off the whole unused ways to save static energy [2, 36]. Therefore,

our way-based reconfigurable cache can also bring benefits for low-power design. Based on the

dynamic partitioned cache memory presented in Chapter 2, the proposed cache management

framework can dynamically partition the cache resource on task-level to improve cache usage.

43

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

3.2.2 Time-triggered Scheduling

Time-triggered execution models can offer a fully deterministic real-time behavior for safety-

critical systems. Current practice in many safety-critical system domains, such as electric

vehicles [72] and avionics systems [82], favors a time-triggered approach [83]. Sagstetter et

al. [84] presented a schedule integration framework for time-triggered distributed systems tai-

lored to the automotive domain. The proposed framework uses two-step approach, where a

local schedule is computed first for each cluster and the local schedules are then merged to the

global schedule, to compute the schedule for the entire FlexRay network and task schedule on

ECUs. To optimize the control performance of distributed time-triggered automotive systems,

Goswami et al. [85] presented an automatic schedule synthesis framework, which generates time-

triggered scheduling for tasks on processor and messages on bus. Nghiem et al. [86,87] presented

an implementation of PID controller using time-triggered scheduling paradigm and showed the

effectiveness of such time-triggered implementation. Based on time-triggered scheduling, Jia et

al. in [88] presented an approach to compute message scheduling based on Satisfiability Modulo

Theories (SMT) for Time-Triggered Network-on-Chip. All above techniques are evaluated by

simulation. In [89], Ayman et al. describe a two-stage search technique which is intended to

support the configuration of time-triggered schedulers for single-processor embedded systems.

However, none of them apply time-triggered scheduling and cache management jointly on real-

time multi-core platform in order to achieve timing predictability and system performance.

3.3 Background

3.3.1 Way-based Cache Partitioning

Our cache management scheme implements way-based cache partitioning, where each cache set

is partitioned in the granularity of ways. In this work, we consider dynamic way-based cache

partitioning. Each core is dynamically allocated a group of ways and will only access that

portion in all cache sets. Compared to static cache partitioning scheme in [35] which partitions

cache ways on core-level, dynamic way-based cache partitioning allows each core can dynam-

ically tune the numbers of ways according to the cache demand of the executed applications.

Considering that real-time systems normally should have fully deterministic characteristics, we

partition cache ways on task-level. In other words, a fixed number of cache ways is allocated to

the application during the application execution. By this way, we can achieve not only deter-

ministic characteristics of the system but also the efficient usage of the limited cache ways. In

44

3.3 Background

this work, we implement cache partitioning on our customized reconfigurable cache component

presented in Chapter 2 and dynamically assign cache ways to tasks.

3.3.2 Hardware Platform

In this section, we present one FPGA-based multi-core system which supports dynamic cache

partitioning and time-triggered scheduling. A major benefit of choosing FPGA for prototyping

our multi-core system is the high configurability of the processor. This allows us to evaluate

the proposed integrated scheduling and cache management framework under various hardware

configurations with different cache sizes and varied arithmetic units. Fig. 3.1 illustrates the

proposed multi-core system on FPGA, where the cache is shared among cores. We adopt the

NIOS II core in the system. Modules highlighted with white color in Fig. 3.1 indicate the

hardware components specifically designed and implemented for our framework. The system

consists of several NIOS II cores along with reconfigurable cache IP which supports dynamic

cache partitioning and share-tick timer IP for time-triggered scheduling.

Nios II

Shared Cache
(Way-based cache partition)

SDRAM Controller

Share-tick Timer & Interrupt

Nios II

FPGA

......

Figure 3.1: System architecture.

3.3.3 Task Model

We consider the functionality of the entire system as a task set τ = {T1, ..., Tn}, which consists

of a set of independent periodic tasks. We use wij to denote the worst case execution time

(WCET) of task Ti ∈ τ with j ways shared cache allocated and Wi = {wi1, wi2, ..., wis} to

45

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

denote the WCET profile of task Ti, where s is the total number of ways in the shared cache

(cache capacity). In this chapter, a measurement-based WCET estimate technique is used to

determine the worst case execution time.

Timing predictability is highly desirable for safety-related applications. We consider a pe-

riodic time-triggered non-preemptive scheduling policy, which can offer a fully deterministic

real-time behavior for safety-critical systems. Note that we consider non-preemptive scheduling

as it is widely used in industry practice, especially in the case of hard real-time systems [90]. Fur-

thermore, non-preemptive scheduling eliminates the cache-related preemption delays (CPRDs),

and thus alleviates the need for complex and pessimistic CRPD estimation methods. We use

R to denote the set of the profiles for all tasks in task set τ . A task profile ri ∈ R is defined

as a tuple ri =< Wi, si, hi, di >, where si, hi, di are respectively the start time, period, and

deadline of the task Ti. The deadline di of the task Ti is equal to its period hi.

3.4 Motivation

Fig. 3.2 shows the number of L2 cache misses and instruction per cycle (IPC) for two benchmark

applications (CRC and qsort from MiBench [91] executed in SimpleScalar [92]) under different

L2 cache partition ways c. Unallocated L2 cache ways remain idle and cannot be accessed

in run-time. We can see that changing cache ways number will result in different numbers of

cache performance (i.e., cache miss) and system performance (i.e., IPC). It is expected that the

number of L2 cache misses decreases while IPC increases by increasing allocated L2 cache ways.

Besides, we can also observe that different applications have different performance behaviors

(L2 cache misses and IPC) under the allocated cache ways. For example, the number of L2

cache misses starts to converge for CRC application after c = 4 while it becomes almost identical

at c = 8 for qsort application. It is sufficient to assign 4 cache ways to CRC application for

performance improvement. However, keep increasing the cache ways for qsort application can

bring benefits in improving the system performance.

Based on above observations, we can see that the difference of performance behaviors among

the applications will result in different timing properties. For instance, different cache misses

and IPC will lead to different worst case execution time estimations. Therefore, designating a

region with a constant size to individual cores is often ineffective with respect to the system per-

formance. In addition, the varied timing properties will further have impacts on the scheduler.

There are interesting trade-offs between cache resource allocation and scheduler design that can

46

3.5 Framework Overview

(a) CRC (b) qsort

Figure 3.2: Cache impact on the performance of the application.

be explored for optimizations. Therefore, we should explore both dynamic cache configuration

and schedule simultaneously to optimize the system performance, while still utilizing the full

capacity of the cache.

3.5 Framework Overview

In this section, we give an overview of our system design framework depicted in Fig. 3.3, which

takes both real-time scheduling and cache partitioning into consideration to study and verify

the interactions between the multi-core real-time scheduling and shared cache management. As

shown in Fig. 3.3, the input specifications of the proposed framework consist of the following

three parts.

1. Platform Specification describes the settings of a multiprocessor platform, such as the

number of cores, the settings of the cache memory with respect to cache size, line size

and associativity.

2. Mapping Specification describes the relation between all tasks in the task specification and

all cores in the platform specification. The mapping specifications can be written by hand

or automatically generated by design space exploration tools.

3. Task Specification describes task timing requirements such as period and deadline, and

task profile information such as the WCETs and cache miss number under different cache

47

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Platform Spec

C1

Shared Cache

Mapping Spec

Shared Cache

T1

…

Task Spec

Tn Cache size

W
C

E
T

M
iss#

T1

Cache Configuration
Time-triggered

Scheduling
IPs in Verilog

Code Generation Quartus

Synthesis Approach for Scheduling and Cache Management IP library

FPGA

C2 C2C1

Tn

Figure 3.3: System design framework.

sizes.

As output, the synthesis approach can generate cache size allocation and time-triggered

scheduling for each task according to the input specification, by which the total cache miss

number is minimized. Based on this optimal schedule and cache allocation, tasks can be sched-

uled with insertion of cache size allocation instructions. Task code can be generated by in-

tegrating this optimal approach into real-time scheduler. At the same time, parameterized

reconfigurable cache IP and share-clock multi-port timer IP can be generated according to the

settings in platform specification.

3.6 Synthesis Approach for Scheduling and Cache Man-

agement

This section presents one synthesis approach for timing schedule and cache management. In

this synthesis approach, we formulate the co-design problem of cache partitioning and task

48

3.6 Synthesis Approach for Scheduling and Cache Management

scheduling as integer linear programming (ILP) to minimize the cache miss of the system.

With this formulation, the cache size allocation and time-triggered scheduling for each task

can be generated automatically, which could avoid deadline miss and cache overflow. We start

with an MILP formulation that focuses only on the scheduling problem. Then, the constraints

of cache capacity are integrated. Based on the observation that the MILP formulation may

suffer from the state explosion, we develop a refinement, the so-called unified resource demand

function (URDF) that captures the cache demand of every task and effectively models the

interference between tasks, to reduce the exploration space of the formulation.

3.6.1 Time-Triggered Task Scheduling

In the framework, we consider time-triggered non-preemptive schedule. For each task Ti with

the profile < Wi, si, hi, di >, the k-th instance of task Ti starts at si + k ·hi. Wi contains the

WCETs of the task with different cache configurations. We use a set of binary variables cij

to describe the amount of cache allocated to the task Ti: cij = 1 if exactly j cache ways are

allocated to Ti and cij = 0 otherwise. In this case, the actual WCET of Ti can be obtained

as
∑s
j=1 cijwij , where s is the total number of ways of the shared cache. To formulate the

scheduling problem by means of MILP, we have to cope with the design constraints of deadlines

and non-preemption. We present our formulation as follows.

For deadline constraint, task Ti has to finish no later than its deadline:

si +

s∑
k=1

cikwik ≤ di (3.1)

The non-preemptive constraint requires that any two tasks mapped to the same core must

not overlap in time. Let binary variable denote the execution order of task Ti and Tj : z
ij
pp̃ = 1 if

the i-th instance of task Tp finishes before the start of j-th instance of Tp̃, and 0 otherwise. Hr

and Hpp̃ denote the hyper-period of all tasks and the hyper-period of only task Tp and Tp̃ (i.e.,

LCM of periods of Tp and Tp̃), respectively. TS(Tp) denotes the set of tasks that are mapped

to the same core as Tp does. Let ξ denote the overheads for dynamic frequency scaling and

task switch. The non-preemption constraint can thereby be expressed as follows.

∀Tp, Tp̃ ∈ TS(Tp), i = 0, ..., (
Hpp̃
hp
− 1), j = 0, ..., (

Hpp̃
hp̃
− 1):

i ·hp + sp +

s∑
k=1

cpkwpk − (1− zijpp̃)Hr + ξ ≤ j ·hp̃ + sp̃ (3.2)

j ·hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k − zijpp̃Hr + ξ ≤ i ·hp + sp (3.3)

49

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

The constraints (3.2) and (3.3) ensure that either the instance of Tp runs strictly before the

instance of Tp̃, or vice versa.

3.6.2 Cache Partitioning Constraints

The constraints described above guarantee a valid time-triggered schedule. The next step is to

add the cache partitioning constraints. The goal here is to guarantee the feasibility of cache

partitioning, i.e., at any point in time, the sum of cache ways allocated to the tasks currently

being executed does not exceed the cache capacity. In other words, we must avoid cache

overflow. Before presenting the formulation, we state the following lemma to guarantee the

cache never overflows.

Lem. 1. If the cache does not overflow at start instant of any task within one hyper-period,

the cache never overflows.

Proof. Note that the amount of cache allocated to a task is constant during its execution

interval. It acquires the resources at the start instant and releases the resources at the finish

instant. Hence, cache overflow will not occur if the available resources fulfill the requirement of

tasks at its beginning.

From Lem. 1, we know only a finite number of time instants, i.e., at the start of any task,

need to be checked for cache overflow. For a specific task Tp, we have to gather all tasks that

overlap with it and inspect the total cache demands. Let Tp̃ /∈ TS(Tp) be a task running on a

different core as Tp. The timing relationship between Tp and Tp̃ can have three possibilities.

• Tp starts during the execution of Tp̃, i.e., the two tasks overlap in time (or in other words

Tp̃ interferes with Tp), as shown in Fig. 3.4(a).

• Task Tp̃ starts after task Tp starts (Fig. 3.4(b)). In this case, the interference occurs if

the start time of Tp̃ is earlier than the finish time of Tp.

• Task Tp̃ ends before task Tp starts (Fig. 3.4(c)), i.e., no overlap in time.

Two binary variables are used to describe the three scenarios above. The variable xijpp̃ is 1

if the start time of i-th instance of Tp is later than the start time of the j-th instance of Tp̃,

and 0 otherwise. The variable yijpp̃ = 1 if the start time of i-th instance of Tp is earlier than

the finish time of j-th instance of Tp̃ ends. Based the above definitions, we define the following

constraints.

50

3.6 Synthesis Approach for Scheduling and Cache Management

Core 0

Core 1

t

𝜏𝑖
𝑝

𝜏𝑗
 𝑝

Check Point

(a) scenario 1

Core 0

Core 1

t

𝜏𝑖
𝑝

𝜏𝑗
 𝑝 𝜏𝑗

 𝑝

Check Point

(b) scenario 2

Core 0

Core 1

t

𝜏𝑖
𝑝

𝜏𝑗
 𝑝

Check Point

(c) scenario 3

Figure 3.4: Timing relationship between two tasks.

∀Tp, Tp̃ /∈ TS(Tp), i = 0, ..., (Hrhp − 1), j = 0, ..., (Hrhp̃ − 1):

j ·hp̃ + sp̃ − (1− xijpp̃)Hr ≤ i ·hp + sp (3.4)

i ·hp + sp − xijpp̃Hr < j ·hp̃ + sp̃ (3.5)

i ·hp + sp − (1− yijpp̃)Hr ≤ j ·hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k (3.6)

j ·hp̃ + sp̃ +

s∑
k=1

cp̃kwp̃k − yijpp̃Hr < i ·hp + sp (3.7)

The constraints (3.4-3.7), cover the interference scenarios in Fig. 3.4, depending on the

combination of xijpp̃ and yijpp̃.

• xijpp̃ = 1 and yijpp̃ = 1: (3.5) and (3.7) are trivially satisfied while (3.4) and (3.6) restrict

Tp and Tp̃ to be overlapped. This corresponds to the scenario in Fig. 3.4(a).

• xijpp̃ = 0 and yijpp̃ = 1: (3.4) and (3.7) are trivially satisfied while (3.5) and (3.6) constraint

the execution order of the two tasks to be the scenario in Fig. 3.4(b). Still, as mentioned

before, two possibilities could occur, i.e., Tp interferes Tp̃
1 and Tp does not interfere with

Tp̃. The two interference scenarios, that Tp interferes with Tp̃ and Tp̃ interferes with Tp,

are distinguished by the symmetrical binary variable xjip̃p and yjip̃p.

• xijpp̃ = 1 and yijpp̃ = 0: (3.5) and (3.6) are trivially satisfied while (3.4) and (3.7) restrict

the execution order to be the scenario shown in Fig. 3.4(c).

Note that xijpp̃ and yijpp̃ cannot be 0 at the same time, due to contradiction between (3.5) and

(3.7). Based on above analysis, we know xijpp̃ + yijpp̃ − 1 ∈ {0, 1} and use the term xijpp̃ + yijpp̃ − 1

in the MILP formulation to indicate whether Tp̃ interferes with Tp, i.e, whether the scenario in

Fig. 3.4(a) occurs.

1Note that Tp interferes with Tp̃ and Tp̃ interferes with Tp are two different scenarios.

51

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Another related constraint is that each task must have exactly one cache configuration.

s∑
k=1

cik = 1 (3.8)

Based on Lem. 1, we can now formulate the constraint to guarantee feasibility of cache

partitioning. At the start time of a task Tp, the total cache demand consists of the parts

from Tp itself and the tasks that interfere with Tp, computed by
∑s
k=1 cpk · k (for Tp) and

(xijpp̃+yijpp̃−1)
∑s
k=1 cp̃k · k(for interference task), respectively. The term (xijpp̃+yijpp̃−1) indicates

whether Tp̃ interferes with Tp. Thus, we have the following constraint.

∀Tp, i = 0, ..., (Hrhp − 1) :

s∑
k=1

cpk · k +

j=Hr
hp̃
−1∑

Tp̃ /∈TS(Tp),j=0

(xijpp̃ + yijpp̃ − 1)

s∑
k=1

cp̃k · k ≤ s (3.9)

One may notice that there are quadratic items in (3.9), i.e., (xijpp̃+yijpp̃−1)
∑s
k=1 cp̃k · k. However,

we can transform this quadratic term into a set of linear constraints using Lem. 2. Here, we

define an intermediate variable tijpp̃ = (xijpp̃ + yijpp̃ − 1)
∑s
k=1 cp̃k · k and can obtain two linear

conditions 0 ≤
∑s
k=1 cp̃kk ≤ s from (3.8) and (xijpp̃ + yijpp̃ − 1) ∈ {0, 1}.

Lem. 2. Given a constant s > 0 and two constraint spaces P1 = {[t, b, x]|t = b ·x, 0 ≤ x ≤
s, b ∈ {0, 1}} and P2 = {[t, b, x]|0 ≤ t ≤ b · s, t ≤ x, t− b · s− x+ s ≥ 0, b ∈ {0, 1}}, then

P1
 P2

Proof. P1 ⇒ P2: We obtain 0 ≤ t ≤ b · s according to t = bx and 0 ≤ x ≤ s. From b ∈ {0, 1}
and t = bx, we have t ≤ x. Based on 0 ≤ x ≤ s and b ∈ {0, 1}, we can obtain (b−1)(x− s) ≥ 0.

Hence, t − b · s − x + s ≥ 0 holds. P2 ⇒ P1 : If b = 0 holds, we can prove that t = 0 and

0 ≤ x ≤ s according to the definition of P2. If b = 1 holds, we can obtain 0 ≤ t = x ≤ s from

P2. Thus, P2
 P1.

Up to now, we have presented the formulation for the task scheduling and cache partitioning.

To minimize the cache miss number in one hyper-period, the following objective function is used:

CM =
∑
∀Ti

Hr

hi

s∑
j=1

cijCM
ij (3.10)

where s and CM ij
cache represent the cache capacity (in the number of ways) and the cache miss

of task Ti under j-way cache configuration, respectively.

52

3.6 Synthesis Approach for Scheduling and Cache Management

3.6.3 MILP Formulation Refinement

The formulation described in Section 3.6.2 utilizes 3Q0 variables to model the interference be-

tween tasks at each checking instant (i.e., variable xijpp̃, y
ij
pp̃, and tijpp̃). Here, Q0 is the number of

task instances that may interfere with the task under consideration, i.e., Q0 =
∑
Tp̃ /∈TS(Tp)(

Hr
hp̃

).

Since the task Tp has Hr
hp

instances, the total amount of variables can be calculated as:

V0 = 3
∑
∀Tp

∑
Tp̃ /∈TS(Tp)

Hr

hp

Hr

hp̃
(3.11)

As it can be seen, the total number of used variables increases in a quadratic manner with

the number of tasks in the application, resulting in dramatically increased exploration space for

the MILP. To maintain the scalability of the approach, it is important to develop techniques

that can reduce the exploration space. Here, we propose a novel approach based on the concept

of Unified Resource Demand Function (URDF). URDF models the resource demand of a task

in the time domain. For task Tp with start time sp and execution time ep, the cache demand

at instant t can be defined as:

URDF (t, Tp) =

⌊
t− sp
hp

⌋
+ 1−

⌈
t− sp − ep

hp

⌉
(3.12)

The URDF above indicates that Tp requires the cache only in interval [sp + i ·hp, sp +

ep + i ·hp]. The URDF has several mathematic properties that are beneficial to model the

interference between tasks.

Prop. 1. URDF (t, Tp) ∈ {0, 1}. The case URDF = 1 represents that the task Tp requires the

cache at time instant t and 0 otherwise.

Prop. 2. URDF (t, Tp) = URDF (mod(t, hp), Tp).

Prop. 3. Define intermediate variables Xt,Tp =
⌊
t−sp
hp

⌋
and Yt,Tp =

⌈
t−sp−ep

hp

⌉
, then UDRF

could be linearized as UDRF (t, Tp) = Xt,Tp + 1 − Yt,Tp with two extra constraints
t−sp
hp
− 1 <

Xt,Tp ≤
t−sp
hp

and
t−sp−ep

hp
≤ Yt,Tp <

t−sp−ep
hp

+ 1.

Using URDF to model the cache demand, we can reformulate constraint (3.9) as following.

∀Tp, i = 0, ..., (Hrhp − 1):

s∑
k=1

cpk · k +
∑

Tp̃ /∈TS(Tp)

UDRF (sp + i ·hp, Tp̃)
s∑

k=1

cp̃k · k ≤ s (3.13)

53

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Similar to the linear procedure of (3.9), we define intermediate variable aipp̃ = UDRF (sp +

i ·hp, Tp̃)
∑s
k=1 cp̃k · k. According to Prop. 1 and Prop. 3, UDRF (sp + i ·hp, Tp̃) could be lin-

earized as Xsp+i ·hp,Tp̃ +1−Ysp+i ·hp,Tp̃ with (Xsp+i ·hp,Tp̃ +1−Ysp+i ·hp,Tp̃) ∈ {0, 1}. Based on

Lem. 2, the non-linear item UDRF (sp + i ·hp, Tp̃)
∑s
k=1 cp̃k · k in (3.13) can also be linearized.

The advantage of this reformulation is that we do not need to have separate variables

and constraints for every instance of task Tp̃ /∈ TS(Tp), resulting in significant reduction of the

number of variables and the exploration space. After the refinement, we just need 3Q1 variables

to model the inter-core interference at a specific checking instant, where Q1 is the cardinality

of the set Tp̃ /∈ TS(Tp), i.e. Q1 = |{Tp̃|Tp̃ /∈ TS(Tp)}|. Moreover, by applying Prop. 2, we can

further reduce the exploration space. We calculate ipp̃ =
Hpp̃
hp̃

for each task Tp̃ /∈ TS(Tp). Based

on Prop. 2, we have UDRF (sp + i ·hp, Tp̃) = UDRF (sp +mod(i, ipp̃) ·hp, Tp̃). It indicates that

UDRF at checking instant sp +mod(i, ipp̃) ·hp can be reused at checking instant sp + i ·hp. In

this case, we only need ipp̃ URDFs to model the interference between Tp and Tp̃. Since each

URDF needs 3 variables in the MILP formulation, the total amount of variables is computed

as:

V1 = 3
∑
∀Tp

∑
Tp̃ /∈TS(Tp)

Hpp̃

hp̃
(3.14)

Compared to (3.11), we can see the number of variables is significantly reduced after the re-

finement.

3.7 Time-triggered Scheduling Implementation on Multi-

core System

In this section, we discuss the software implementation of the scheduler and cache configuration

generated in Section 3.6. Regarding the scheduler, we consider time-triggered scheduler because

it can be expected to have highly-predictable patterns of behavior. For the computing system

which has a time-triggered architecture, it can be determined in advance (before the system

begins executing) exactly what the system will do at every moment of time while the system is

operating. This time-triggered execution model have been found to be useful in many practical

systems [86]. Unfortunately, most of the existing time-triggered schedulers [93] on the practical

system can only be implemented on the uni-processor system. In a multi-core system, we should

guarantee time-triggered scheduler executed on each core should be triggered by the common

clock. Otherwise, the tasks executed on each core cannot be synchronized on the time due to

54

3.7 Time-triggered Scheduling Implementation on Multi-core System

no common time reference. To solve this problem, we firstly develop one special timer, where

each core has one private decrementer to implement time-triggered task activation and these

private decrementers share one global clock to maintain the common time reference. Based

on this share-clock timer, we extend a time-triggered scheduler, which is implemented at the

proposed multi-core system presented in Section 3.3.2, to be implemented time-triggered task

activation.

3.7.1 Share-clock Multi-port Timer IP

To support the dynamic timekeeping functionality in the time-triggered scheduling, a free-

running counter and timer per processor are required. For the single processor system, this role

is adequately served by the normal timer peripheral. While this is sufficient for a single core

system, it does not work well with multiple processors due to a synchronization problem. In

a multi-core system, we should guarantee that all the cores in the system are triggered in one

global timer. Only in that way, the tasks on different cores can be precisely triggered and well

synchronized.

Per Core
Decrementer

A
SI

A
SI

…

Core0
Register

CoreN
Register

Global
Register

Global
Timer

Per Core IRQ
Generation

Core0
Register

CoreN
Register

…

Figure 3.5: Share-clock timer IP.

55

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Fig. 3.5 shows the block diagram of the share-clock multi-port timer, in which each port is

connected to one NIOS core by avalon slave interface (ASI). The share-clock multi-port timer

provides each core with a dedicated 32-bit decrementer, which decrements based on the shared

global timer. Here, the shared global timer expires every constant time (e.g., 1ms), which

triggers each decrementer to decrement once. When one decrementer expires, an interrupt

is generated to the corresponding core. Each core can dynamically control the period of each

decrementer by setting its register via ASI, which triggers the task to execute in different points.

The global register is used to synchronize the cores to be launched at the same point. Only

when all cores call the APIs to start timer, the global register is set to 1. Otherwise, each core

will keep waiting until this global register is active.

3.7.2 Implementation of Time-triggered Scheduling

In this section, we present the implementation of the time-triggered scheduling on the proposed

multi-core system. One individual scheduler is implemented on each core. Each scheduler

can be well synchronized by the customized multi-port shared-clock timer. The time-triggered

scheduler on uni-processor system in [89] is extended to be executed on each core by making

use of the customized multi-port shared-clock timer. Compared to the implementation of

the time-triggered scheduler in [89], we make a well-organized functional division between the

scheduler code and the task code and the scheduler can be executed in a more flexible manner.

This functional division allows us to avoid a significant amount of hand coding to control

the task activation timing. More importantly, it brings several benefits for automatic code

generation (see Section 3.8 for details). Besides, our implementation of the time-triggered

scheduling provides the interface to integrate the cache configuration features, which enables us

to implement the proposed co-design framework of time-triggered scheduling and cache resource

managements (as shown in Section 3.5) for real-time multi-core system.

Table 3.1: APIs in time-triggered scheduler

CreateTask(TaskHandler,Period Create a new task and add it

Offset,CacheNum) to the list of tasks that are ready to run.

SchedInit() Initialize the scheduler

SchedLauch() Lauch the scheduler

StartTimer() Start the timer to enable the global register

WaitStartSig() Get the value of cache hit counter

TimerInit(Ms) Initialize the timer

56

3.7 Time-triggered Scheduling Implementation on Multi-core System

To achieve the benefits mentioned above, we developed well-defined scheduler functions.

Tab. 3.1 lists all the supported APIs in the scheduler. Fig. 3.6 illustrates the whole software

execution process in the developed time-triggered scheduling. The whole process can be divided

to three phases: initialization, synchronization, and scheduling. The software starts from the

initialization phase, where the software creates new tasks and configure timer for the scheduler.

The software employs the CreateTask function to help the scheduler to add new tasks. When

the scheduler add one new tasks, two parameters related to the activation timing of tasks need

to be defined by the user: period and offset. Period parameter denotes the interval among

the repeated execution of tasks, while offset indicates the time after the task is released. Note

that the time in the scheduler is triggered by our customized multi-port shared-clock timer.

To prevent cache interference and achieve the predicable execution of the tasks, a certain

number of cache partitions need to be assigned and isolated during the execution of tasks.

Therefore, when one new task is added into the scheduler, we also need to add one parameter

CacheNum to indicate how many cache ways should be allocated for this new created task.

Similar the other real-time operating system [94, 95], we also define one task handler array

TaskHandler TaskArray[MAXTASKNUM] to maintain the newly created tasks, where

the data type TaskHandler and the macro constant MAXTASKNUM represent the task

handler with above configuration information and the maximum number of the tasks allowed

in the scheduler, respectively. We also use one link list to dynamically maintain the trigger

sequence of task invocations. The node sequence in the link list indicates the trigger sequence

of task invocations. In the initialization phase, SchedInit() is called to sort the link nodes

based on the trigger points in an ascending manner. The header node of the link list indicates

the earliest task invocation that need to execute in future. As mentioned in Section 3.7.1, the

proposed multi-port timer can provide one private decrementer for each core. The software can

use TimerInit(Ms) to set up the dedicated interrupt service routine (ISR) and set the first

trigger point at Ms millisecond for the first task node at link list.

In the synchronization phase, the software will call the StartTimer() function to enable

one dedicated bit in one local register. Until all cores call the StartTimer() function and

all dedicated bits in the local register are set as 1, the global register is automatically set as

1 by internal logic in the customized multi-port shared-clock timer. Then, the scheduler on

each core can start to schedule the tasks. Otherwise, the core will keep waiting until the global

register is set. This synchronization scheme can guarantee that all private decrementers can

57

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

Initialization

Synchronization

Scheduling

start

add new tasks
into scheduler

initialize scheduler

initialize timer

start timer

read global register

synchronized?

dispatch Tasks

update next trigger point

yes

no

Figure 3.6: The flowchart of time-triggered scheduling.

start to count the shared clock at the same point and the scheduler on each core can be precisely

synchronized.

Once all the cores are synchronized, the scheduler on each core is launched by calling Sched-

Lauch() function, which is an infinite loop with calling TaskDispatch() function and Trig-

gerPointUpdate() function. The trigger point of each task invocation is driven by the in-

terrupt generated from the corresponding decrementer. When the interrupt occurs, interrupt

service routine (ISR) activates the task invocation which should execute at current point and

set up next trigger point for another task invocation. TaskDispatch() function is called to

execute the corresponding task invocation. Then, TriggerPointUpdate() function inserts

next trigger point of current task invocation into task link list and updates the header of the

task link list.

58

3.8 Automatic Generation

3.8 Automatic Generation

Our cache management framework not only provides the synthesis approach for the improve-

ment on system predictability and performance, but also support automatic generation of im-

plementation artifacts including application scheduling code, cache configuration code, and a

part of hardware RTL code such as the shared cache and timer. In the section, we present in

details our automatic generation strategy for the hardware component and cache-aware pro-

gramming. For the sake of clarity, we explain the automatic generation strategy by going

through an illustrative example. At first, we give one example of the input specifications to

describe the settings of the multi-core system, task mapping, and task timing features. Then,

based on this example, we present in details how the back-end of our framework automatically

generates implementation artifacts including the software code for each core and RTL code for

the hardware components.

3.8.1 Input Specifications

As we stated in Section 3.5, the input specifications of our framework include platform , mapping

, and task specifications, which are used to model the system design requirements. These input

specifications are all written in XML format.

An example of the system-level specification of the platform is depicted in Fig. 3.7. In the

example as shown in Fig. 3.7, the platform specification consist of four definition parts which

specify the core components, cache subsystem component, timer subsystem component, and

FPGA platform. The core components (line 2 and line 3) describe that the computing platform

has 2 cores. The cache subsystem component (line 4-6) defines the hardware settings of the

shared cache presented in Chapter 2 such as cache ways number, cache depths, and cache lines.

According to the described configurations, cache ways number, cache depth, cache line size are

defined as 8, 512, and 128, respectively. The timer subsystem component (line 7-9) defines

the hardware settings for the share-clock multi-port timer presented in Section 3.7.1 such as

the frequency of input clock and the period of global timer. The FPGA platform (line 10) is

designated as Alter DE-115 development board. This setting decides which quartus template

projects we select.

An example of task specification is shown in Fig. 3.8. For the sake of clarity, we only show

the description of one task in the XML code. The task specification consists of three definition

parts which specifies the function code, the timing requirement, and the profile information. In

59

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

1 <Platform name = ”TwoCoreSystem”>

2 <Core name = ”Core1”> </Core>

3 <Core name = ”Core2”> </Core>

4 <SharedCache name = ” DynamicPartitionedCache ”>

5 <Parameter waynumber= ”8” depth = ”512” l i n e s i z e = ”128”/>

6 </SharedCache>

7 <SharedTimer name = ” SharedClockMultiportTimer ”>

8 <Parameter c l o ck= ”50” t i c k = ”11”/>

9 </SharedTimer>

10 <FPGABoard type= ”DE115”> </FPGABoard>

11 </ Platform>

.

Figure 3.7: The example of platform specification.

the example depicted in Fig. 3.7, the task executes a function code called sobel (line 3). This

function code is provided by users. The period and deadline of task are both 170 ms (line 4

and line 5). The WCET and cache miss number under different cache allocations are listed in

line 6 and line 7, respectively. The number of task definition blocks in XML code indicates the

number of the tasks executing on the pre-defined multi-core system.

1 <Taskset name = ” Taskset0 ”>

2 <Task ID = ”1”>

3 <Task code value = ” Sobel ”/>

4 <Period value = ”170”/>

5 <Deadl ine va lue = ”170”/>

6 <WCET value = ” [2 0 9 . 0 , 1 1 6 . 0 , 1 0 2 . 0 , 9 9 . 0 , 9 6 . 0 , 8 5 . 0 , 7 9 . 0] ”/>

7 <Miss va lue = ” [21770 ,6175 ,3811 ,3401 ,3054 ,1597 ,725] ”/>

8 </Task>

9 < !−−other t a s k s omit ted−−>
10 </ Taskset>

Figure 3.8: The example of task specification.

An example of mapping specification is given in Fig. 3.8. 4 tasks are mapped in 2-core

system. Task1 and task2 are mapped on core1, while task3 and task4 are mapped on core 2.

1 <Mapping name = ”Mapping0”>

2 <Core name = ”Core1”> <Task ID = ”1”/> <Task ID = ”2”/> </Core>

3 <Core name = ”Core2”> <Task ID = ”3”/> <Task ID = ”4”/> </Core>

4 </Mapping>

Figure 3.9: The example of mapping specification.

60

3.8 Automatic Generation

3.8.2 Software Code Generation

In this framework, we use template-based approach to transform abstract data (input specifica-

tions) into executable software code. Template-based code generation is a classical technology

that transforms abstract data into structured text such as software code via the use of templates.

The templates provide the structure of the target code used by the generator in the process of

code production. The template is a mixture of static text blocks and dynamic control blocks,

in which the static text blocks are used to describe static code patterns and dynamic control

blocks are used to dynamically substitute and expand the data or code into place holders in

the text file according to user inputs.

1 <main template f i l e = ”main . c”>

2 <Stat i c Content>

3 #inc lude ” i o . h”

4 #inc lude ” system . h”

5 #inc lude ” cache . h”

6 #inc lude ” uart0 . h”

7 #inc lude ” t imer . h”

8 #inc lude ” t t s . h”

9 #inc lude ”TaskHandler . h”

10 i n t main ()

11 {
12 unsigned i n t arg [NUM TASKS] ;

13 i n i t i a l w a y s () ;

14 //add the ta sk s here

15 </ Stat i c Content>

16 <Input ADD TASKS></Input ADD TASKS>

17 <Stat i c Content>

18 s h e d i n i t () ;

19 T imer in i t (header task−>d e l t a t im e) ;

20 S t a r t t i m e r () ;

21 w a i t s y n s i g n a l t i m e r () ;

22 TTS lauch () ;

23 re turn 0 ;

24 }
25 </ Stat i c Content>

26 </ main template>

Figure 3.10: The example of code template for main function.

The schedule-aware cache management scheme presented in Section 3.6 can determine the

scheduling and cache resource allocations for each task according to the input specifications.

According to these generated designs, tasks can be scheduled with inserting cache configuration

instructions in each task invocation. We can use control blocks in the template to control the

61

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

insertions of these cache configuration instructions for code generations. The scheduling and

cache configurations generated by the cache management scheme presented in Section 3.6 can

also be integrated into the corresponding task structures when new tasks are created. Besides,

user-defined C code such as the function code of tasks can also be integrated to the generated

code during the creation of new tasks.

Our framework uses XML language to develop the code templates including both static

text blocks and dynamic control blocks. A snippet of XML code shown in Fig. 3.10 is used to

describe the code template developed for the code generation of main function. In this example,

we use a tag pairs <Static Content> and </Static Content> to indicate the static code

blocks (line 2-line 16 and line 18-line 24). The parts among two static code blocks are dynamic

control blocks which need us to generate specific code depending on input specifications (line

17). In this example, new tasks are added according to the number of tasks indicated in task

specification by calling the function CreateTask(TaskHandler,Period,Offset,CacheNum)

listed in Tab. 3.1. Besides, the parameters in this function such as Offset and CacheNum are

determined by the cache management scheme presented in Section 3.6. These specific code for

task creation can be generated by our code generation back-end. We will generate a C source

file main.c for the main function.

Except for main function, we also need to generate task handler code, cache driver code,

and timer driver code. Since the generation for these code has a similar process, we only take the

process of task handler code generation as an example to explain the main steps for the sake of

clarity. The code template developed for the code generation of task handler code is depicted in

Fig. 3.11. In this example, we also use tag pairs <Static Content> and </Static Content>

to separate the static code blocks and dynamic control blocks. In the template code, each task

routine is wrapped with cache configuration instructions in Tab. 2.1 and the name of each

wrapped function begins with TaskHander. The first dynamic control block uses tag pairs

<Input TaskID> and </Input TaskID> to add task ID (see the task specification) into

the name of task handler function. By this way, the executed tasks can be recolonized by the

scheduler (line 5). The second dynamic control block uses tag pairs <Input userTask> and

</Input userTask> to input the user-defined function code of tasks (line 21). In the task

wrapper, the task firstly requires cache ways by calling allo ways(cache allo) for predictable

execution (line 14-line 17). After the task is terminated, the task release the occupied ways by

calling rel ways(cache allo) and the released cache ways can be dynamically used by other

cores for high performance (line 23-line 26). This kind of task-level cache resource management

62

3.8 Automatic Generation

1 <TaskHander template f i l e = ” taskhand le r . h”>

2 <Stat i c Content>

3 void TaskHander

4 </ Stat i c Content>

5 <Input TaskID></ Input TaskID>

6 <Stat i c Content>

7 (void ∗arg , unsigned i n t arg num)

8 {
9 unsigned i n t ∗ c a c h e s i z e ;

10 unsigned i n t c a c h e a l l o ;

11 c a c h e s i z e =(unsigned i n t ∗) arg ;

12 c a c h e a l l o=∗c a c h e s i z e ;

13 // the f i r s t argument i s cache s i z e

14 i f (c a c h e a l l o >0)

15 {
16 a l l o ways (c a c h e a l l o) ;

17 }
18

19 // User Task

20 </ Stat i c Content>

21 <Input userTask> </ Input userTask>

22 <Stat i c Content>

23 i f (c a c h e a l l o >0)

24 {
25 re l ways (c a c h e a l l o) ;

26 }
27 }
28 </ Stat i c Content>

29 </ TaskHander template>

Figure 3.11: The example of code template for task handler.

scheme cannot only guarantee the cache isolation and prevent cache interference among tasks,

but also can efficiently use the cache resource according to different cache resource demand of

real-time tasks. Using the similar approach, we can extract the hardware configurations from

the platform specification to substitute the data in a certain place and generate the code for

cache driver code and timer driver code.

3.8.3 Hardware Component Generation

The scope of this thesis focuses on developing a shared cache architecture to provide predictabil-

ity for real-time multi-core systems. Regarding the processors, we use the commercial processor

NIOS from Altera to construct the multi-core systems. The multi-core systems are required

to be constructed by using Altera’s system integration tool QSYS [96]. Currently, QSYS does

63

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

not provide interfaces to connect NIOS processors by using RTL code. Due to this limitation,

our framework currently only supports generate the customized hardware component such as

dynamic partitioned cache memory and share-clock multi-port timer. As mentioned above, our

dynamic partitioned cache memory and share-clock multi-port timer are developed in a param-

eterized manner. According to platform specifications presented in Section 3.8.1, the shared

cache memory and the customized timer can also be automatically generated during compile

time. Thus, our design framework also allows us to conduct hardware generation.

3.9 Performance Evaluations

In this section, we present the results obtained with an implementation of the proposed frame-

work, as well as the performance of the proposed hardware platform. In our framework, the

CPLEX [97] solver is used to solve the ILP problems for our synthesis approach.

3.9.1 Experiment Setup

We implement the proposed time-triggered cache reconfigurable multi-core system on the Al-

tera DE5 board equipped with Statrix V FPGA, which is based on the NIOS II multi-core

architecture. All cores are shared with the unified cache, which is an instance of the proposed

reconfigurable cache IP. By cooperating with the proposed share-clock multi-port timer, we im-

plement the partitioned time-triggered scheduling on each core. The global tick of the shared

clock timer is 1ms. To guarantee the predictability of the implementation of the scheduler, we

reserve 1 fixed way for each core for the scheduler implementation (e.g., task switch).

Table 3.2: Benchmark sets for two-core system

Core 1 Core 2

Set 1 Sobel, Fir Histogram, Lms

Set 2 Fir2dim, Pbmsrch Blackscholes, Fir

Set 3 Lms, FFT Nsichneu, Sobel

Set 4 Lms, Histogram, FFT Fir, Aes, Sobel

Set 5
Lms, Histogram FFT, Sobel

Corner turn,Pbmsrch Nsichneu, Fir

To evaluate the effectiveness of our framework and hardware platform, we use 27 benchmark

programs selected from MiBench [91] (Qsort, Dijkstra, Pbmsrch, FFT), CHStone [98] (Adpcm,

Aes, Gsm, Sha, Mpeg2), DSPstone [99] (Dot product, Fir2dim, Fir, Biquad, Lms, Matrix,

64

3.9 Performance Evaluations

Table 3.3: Benchmark sets for four-core system

Core 1 Core 2 Core 3 Core 4

Set 1 Lms,FFT Fir2dim,Pbmsrch Matrix1,N complex Fir,Biquad

Set 2
Fir,Mpeg2 Biquad Lms,Gsm Fdct,Sobel

Histogram Qurt Qsort Dijkstra,Aes

Set 3
Matrix,FFT Fir2dim Biquad Beamformer

Spectral estimation Sobel Decode Histogram

Set 4
Corner turn Fir Histogram Nsichneu

Dotproduct Sha Nsichneu Lms

Set 5
Fdct, Lpc Histogram,Sha FFT,Adpcm Blackscholes

Fir2dim Sobel,decode Corner turn Fir

N complex update), PARSEC [100] (Blackscholes), UTDSP [101] (Histogram, Spectral, Lpc,

Decode), Verabench [102] (Beamformer, Corner turn), and some other research works [103,

104] (Sobel,Nsichneu,Qurt,Fdct). To avoid the selected task to saturate fast, we made some

adaptations to the input scales of some benchmarks, such that they comply with the specified

cache size. Tab. 3.2 and Tab. 3.3 respectively list the task sets used in our experiments for

two-cores system and four-core system, which are combinations of the selected benchmarks.

According to [35], we specify the task mappings based on the rule that the total execution time

of each core is comparable.

3.9.2 Timing Predictability

The purpose of this experiment is to verify how effective the proposed framework is in avoiding

cache interference. In this experiment, we evaluate the system timing predictability on the two-

core platform with 256KB cache (8 ways with 32KB size for each way, 256 bit line size). We

run 4 tasks on different cores simultaneously (Pmbsrch and Lms are on core 1, while Sobel and

Ncomplex are on core 2). For comparison, we also developed one standard single port shared

cache without cache partitioning, which is shared by all core. For this cache architecture, the

entire cache space is competitively used by all tasks. For our reconfigurable cache, the schedule

and cache configuration are automatically generated by our synthesis approach to minimize the

cache miss: 1 way for Pmbsrch, 7 ways for Lms, 7 ways for Sobel, 1 way for Ncomplex.

Fig. 3.12 shows the observed execution time and cache miss of each task invocations for the

four tasks on two cache architectures. From the results, we can make the following observations:

(1) All tasks on our proposed cache run in a stable manner and the execution time of all task

65

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

(a) lms (b) pmbsrch

(c) ncomplex (d) sobel

Figure 3.12: Cache partition and no cache partition.

does not exceed their WCETs that are estimated with cache space isolation. The execution time

and cache miss of all tasks on our proposed cache are steady. It means that the timing of tasks

on our proposed cache can be well predicted. As a comparison, we can see the execution time

and cache miss of all tasks on normal shared cache vary significantly. Without cache isolation,

tasks compete for the shared cache and useful cache lines for one task on one core may be evicted

by one task on another core. This cache interference will result in poor timing predictability.

(2) Because only one way is assigned to Pmbsrch and Ncomplex, we get a direct-mapped

cache during the execution of Pmbsrch and Ncomplex. On normal shared cache, Pmbsrch

and Ncomplex can still use the whole cache size although inter-core cache interferences exist,

66

3.9 Performance Evaluations

which may lead to less cache miss compared to direct-mapped cache. Note that, the system

predictability is the prerequisite in real-time systems. Only when the system predictability is

guaranteed, we can then consider how to improve performance. In this experiment, we aim

to evaluate the system timing predictability. One interesting observation is that, even with

smaller cache miss, the execution time of pmbsrch and ncomplex on normal shared cache is still

greater than the one on our proposed cache. This may be caused by the fact that, all cores

share normal cache via only one port, which will degrade the performance. In contrast, our

proposed cache is a multi-port cache, which allows cores to access cache concurrently.

3.9.3 Runtime Performance

Finally, we evaluate the effectiveness of the proposed automatic cache management framework

under timing predictability requirement. In this experiment, we implement the cache manage-

ment scheme and scheduling on two hardware platforms: two-core system with 256KB shared

unified cache (8 ways with 32KB size for each way, 256 bit line size) and four-core system with

256KB shared unified cache (16 ways with 16KB size for each way, 256 bit line size). In the

two hardware platforms, each NIOS core runs at 125Mhz. Tab. 3.2 and Tab. 3.3 list the task

sets used in our experiments and the task mapping information for the two-core system and

the four-core system, respectively. We compared the cache miss numbers with the following

technique:

• EQUAL: Equal partitioning cache on cores.

• CORE-OPT: According to the cache reservation technique in the state-of-the-art work [31],

a portion of cache partitions is statically reserved for each core to prevent inter-core cache

interference. For fairness comparison, we integrate this cache reservation technique [31]

into our framework to generate optimal cache reservations for each core.

• TASK-OPT: Our synthesis approach.

Fig. 3.13 shows the total cache miss number in one hyper-period of the approaches normal-

ized w.r.t EQUAL. All results are collected by implementing the cache management scheme and

scheduling on the proposed multi-core system. From the result measured by real hardware, we

can see cache reservation technique (CORE-OPT) fails to improve system performance of most

benchmark sets. This is because tasks assigned on the same core might have different require-

ments and sensitivities to the allocated cache amount, and a designed region with a constant

67

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

(a) # Cache Miss on Two-core System

(b) # Cache Miss on Four-core System

Figure 3.13: # Cache miss reduction on different hardware platform.

size to individual cores cannot fully meet the features of the tasks. In contrast to the cache

reservation technique (CORE-OPT), our synthesis approach (TASK-OPT) partitions the cache in

task level and integrates cache partitioning globally with scheduling. We can observe that our

synthesis approach (TASK-OPT) outperforms the cache reservation technique (CORE-OPT). Our

approach (TASK-OPT) can on average reduce 14.93% (up to 22.03%) and 12.56% (up to 18.6%)

cache miss with respect to CORE-OPT on 2-core and 4-core architectures, respectively.

68

3.10 Case Study

3.10 Case Study

The effectiveness of the proposed cache management scheme under timing predictability require-

ment has been evaluated by using experiments presented in above sections. In this section, we

present one case study to demonstrate the completeness of our design framework. This case

study aims at demonstrating the practical usability of our framework. In this case study, the

target platform is two-core system running on an Altera DE2-115 development board equipped

with Cyclone IV FPGA. We construct two-core system based on NIOS II soft-cores from Altera.

In the multi-core architecture, all cores are shared with one common cache instanced by the

proposed dynamic partitioned cache IP. The shared cache is configured as 8 cache ways with

2KB size for each way. Share-clock multi-port timer presented in Section 3.7.1 is equipped

to provide the common time base. Each core runs the time-triggered scheduler presented in

Section 3.7.2 based on this equipped share-clock multi-port timer.

To represent the execution timing of the applications at runtime, each application is associ-

ated with one GPIO pin. At the start point of the execution of the application, the associated

GPIO pin is pulled up. At the termination point of the execution of the application, the asso-

ciated GPIO pin is pulled down. Then, we can use an oscilloscope to monitor the pull-up and

pull-down timing of GPIO pins, which represents the execution timing of the applications. By

this way, we can use the oscilloscope to visualize the run-time execution timing of the applica-

tions and demonstrate the execution predictability of the applications. Since the oscilloscope

has four signal input channels, we can monitor up to four applications. In this case study,

we consider four applications Sobel, Matrix, LMS and Adpcm to execute on two-core system.

According to the mapping rules presented in [35], Sobel and Matrix are mapped on core 1 while

LMS and Adpcm are on core 2. The periods of four applications are set as 180ms.

We use the measurement-based approach in [93] to estimate the WCET of a task and

obtain the cache miss numbers from the customized performance counter by calling the related

APIs in Tab. 2.2. Fig. 3.14 shows the WCETs and cache miss numbers under different cache

way configurations. As shown in Fig. 3.14, we can see that the applications we adopt in this

case study have different cache sensitivities. Adpcm, Matrix, and Sobel are cache-sensitive

applications. Both cache miss and WCETs of these three applications drastically decrease

as the number of cache ways increases. However, the cache miss and WCETs of these three

applications saturate at different amount of cache ways allocated. For example, when the

number of cache ways is allocated to Adpcm and Matrix applications exceeds 4, the benefit

69

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

(a) WCETs

(b) Cache Miss

Figure 3.14: Profile data of tasks.

of assigning even more cache is very limited. However, keep increasing the cache ways for

Sobel application can bring benefits to improve the system performance. On the other hand,

LMS is quite insensitive to the allocated cache resource. Comparing to three cache-sensitive

applications, cache miss and WCETs of LMS decrease very slowly as the number of cache ways

increases.

All above system requirements are written in XML format as input specifications presented

in Section 3.8.1. The task IDs of four applications Sobel, Matrix, LMS and Adpcm are set as

70

3.10 Case Study

1, 2, 3, and 4, respectively. The applications are represented as Ti in our framework, where

i is task ID. Our framework also provides a GUI to input these XML specifications, compute

feasible cache configurations and scheduling, visualize the results, and automatically generate

the implementation artifacts(as shown in Fig. 3.15). The GUI is developed by using Matlab

GUIDE tools. The input specifications written in XML language can be parsed by using XML

Matlab interface such as XMLread function. The specification data within XML files can

be extracted into Matlab environment. The extracted data can be used to formulated ILP

problems. Then, the ILP formulated problem presented in Section 3.6 can be solved with

CPLEX solver through provided Matlab interface and generate the performance optimized

scheduling and cache configurations. Then, the code generation back-end can integrate these

generated results into our templates for implementation generation.

Figure 3.15: Graphic user interface of our framework.

As the output results, our approach can generate a time-triggered schedule and a set of cache

configurations for each task. The generated schedule and the cache configurations together

minimize the cache miss of the cache subsystem while preventing deadline misses and cache

overflow. Our framework can also visualize the computed time-triggered scheduling (as shown in

Fig. 3.16(a)) and cache configurations (as shown in Tab. 3.4) for each task. Our framework can

sense the varying cache requirement of the tasks and balance this different cache requirements

of the tasks to generate results for performance optimization while guaranteeing the deadline

71

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

constraints are satisfied and the required cache resource does not exceeds the cache capacity.

In particular, Adpcm and Matrix application are allocated only 4 cache ways because assigning

more cache resource will not achieve the decrease of WCET and cache miss. Sobel application

is assigned with 6 cache ways to continuously achieve the performance. In contrast, insensitive

application LMS is assigned with 2 cache ways.

Table 3.4: Cache configuration.

Task T1 T2 T3 T4

Cache Allocation 6 4 2 4

Besides, we also use an oscilloscope to monitor the run-time execution timing of the task,

which is represented by the timing of the associated GPIO pin. The screenshot of an oscilloscope

is shown in Fig. 3.16(b). In this case study, Channel 1 (yellow line), channel 2 (blue line),

channel 3 (purple line), and channel 4 (green line) are respectively connected to the GPIOs

associated with task T1, T2, T3, and T4. By comparing the run-time execution timing (as

shown in Fig. 3.16(b)) and the pre-computed execution timing (as shown in Fig. 3.16(a)), we

can see that the tasks are executed and scheduled according to the scheduling graph generated

by out framework. This means the implementation generated by our framework can be executed

according to the timing we precomputed in our framework.

3.11 Discussion

According to the state-of-the-art survey in [23, 25], how to manage the shared cache in a pre-

dictable and efficient manner under real-time requirements is still an open issue. As one of

the uniqueness of our approaches, we provide not only a reconfigurable cache architecture,

which enables us to use the shared cache in a predictable and efficient manner, but also one

schedule-aware cache management scheme. Besides, we also provide a physical implementation

on both of hardware and software to evaluate the usability of our approaches. In this section,

we summarizes the features that is currently supported and also discuss the next steps for our

approaches.

Dynamic partitioned cache and its implementation. We propose a parameterized

reconfigurable cache architecture, so called dynamic partitioned cache memory, for real-time

multi-core system and physically implement it on FPGA. The dynamic partitioned cache mem-

ory is interfaced to Altera NIOS II based multi-core system. In principle, our cache can be

72

3.11 Discussion

(a) Scheduling graph generated by framework.

(b) Scheduling graph measured on run-time.

Figure 3.16: Scheduling graph.

implemented at any level of caches (L1 or L2) in the cache hierarchy. Due to the technology

limitations stemmed from Altera NIOS II soft-core processor, we currently do not implement

cache coherency protocol on the proposed cache. Besides, according to the state-of-the-art re-

search work in [61], current cache coherence strategies are not suitable for the real-time system.

Another aspect for improvement is to enable write-back policy on the proposed dynamic

73

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

partitioned cache memory. Currently, the proposed shared cache architecture is multi-port cache

with using write-through policy, which allows NIOS cores to access the cache concurrently. By

using write-through policy, the data in cache is always consistent to the off-chip memory. Thus,

the cache ways can be released immediately and we can conduct the cache reconfiguration with

the minimal timing overhead.

However, if write-back policy is adopted, all dirty data in the released cache ways need

to write back to off-chip memory during the cache reconfiguration phase. This will result in

a significant timing overhead for the cache reconfiguration. Nevertheless, we proposed one

solution to efficiently use the write-back policy in the dynamic partitioned cache memory. In

this solution, we need to extend our cache to single port shared cache. Each write operation

from one core keeps updating the content of dirty data in the entire cache associativity to make

it updated only when cache hit occurs, even though the dirty data is not located in the cache

partitions belongs to the core. Note that, for the case of cache data which does not belongs to

the cache partitions of the core, the core can only update the content of data during cache hit

and however cannot evict the data out of cache. By this way, we can keep the cache data are

consistent among the ways during the write-back policy.

Schedule-aware cache management scheme. We provide one integrated cache manage-

ment framework which combines the time-triggered scheduling and dynamic cache partitioning

together to decide how to allocate the cache to tasks to achieve system predictability as well as

system performance. Currently, our framework only supports time-triggered scheduling policy.

It will be a great advantage to add the support for other scheduling policy such as fixed-priority

scheduling.

3.12 Summary

In this chapter, we present an integrated cache management framework that improves the

execution predictability for real-time multi-core systems. In contrast to the state-of-art tech-

niques [33–35] which statically partition cache at core level, our framework manage the shared

cache at task-level based on the dynamic partitioned cache memory present in Chapter 2.

Thus, our cache management can sense the varying cache requirements of tasks and allocate

cache resource in a more efficient manner. For a given set of tasks and a mapping of the

tasks on the predefined multi-core system, the proposed framework can automatically generate

74

3.12 Summary

fully deterministic time-triggered non-preemptive schedule and cache configurations for sys-

tem performance optimization. The generated schedule and the cache configurations together

minimize the cache miss of the cache subsystem while preventing deadline misses and cache

overflow. Experiment results based on FPGA implementation demonstrate the effectiveness of

the proposed cache management framework over the state-of-the-art cache management strate-

gies when tested 27 benchmark programs on the constructed multi-core systems.

Besides, our cache management framework supports automatic generation of implementa-

tion artifacts including application scheduling code and a part of hardware RTL code. For the

implementation of time-triggered schedule on the multi-core system, a share-clock multi-port

timer component and time-triggered scheduler are developed in this chapter. Based on these

hardware and software components including dynamic partitioned cache and time-triggered

scheduler, a template-based code generator is provided to produce executable application soft-

ware directly from the input specifications. Finally, we provide a case study to demonstrate

the completeness of the design flow and the correctness of the run-time execution timing of the

implementation generated by the proposed framework.

75

3. SHARED CACHE MANAGEMENT FRAMEWORK FOR REAL-TIME
MULTICORE SYSTEMS

76

Chapter 4

Power Management for Real-time

Multi-core Systems

In the previous chapters, we developed a highly flexiable reconfiguable cache for the real-time

multi-core embedded systems and presented a shared cache managment framework to utilize

the shared cache resource in a predictable and efficient manner under real-time requirements.

This chapter studies another important design metric in the multi-core embedded system, i. e.,

power dissipation. We focus on streaming embedded systems at system level and study efficient

power management under certain performance constraints. Specifically, we make use of the

worst-case analysis method, i.e., real-time calculus and explore how to apply dynamic power

management to reduce static power consumption of pipelined multi-core embedded systems

while satisfying real-time constraints.

4.1 Introduction

Energy conservation has been a primary optimization objective in almost every system design.

To achieve ever-increasing demand for computing power within limit energy budget, multi-

core architectures are considered as a promising solution towards energy-efficient computing.

However, as chip manufacturing technologies are currently entering post-silicon era, the number

of cores on die continues to increase along with transistor count increases. Such the increase of

chip density has led to sharp rising on power density that forces not all cores can be powered on

due to the power and temperature constraints. This phenomenon is termed as dark silicon [27].

Thus, efficient power management technology becomes more and more important for efficient

processing in real-time multi-core design.

77

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

Pipelined computing is a promising paradigm for embedded system design, which can, in

principle, provide high throughput and low energy consumption [105]. In pipelined computing

systems, we can split a streaming application into a sequence of functional blocks that are

computed by a pipeline of processors where power-gating techniques can be applied to achieve

energy efficiency. Performance constraints of a streaming application are usually imposed on two

principle metrics, i.e., throughput and latency. The latency is the main concern for applications

such as video/telephone conferencing and automatic pattern recognition applications, where the

latency beyond a certain boundary is not tolerated. In the case of pipelined real-time systems,

the latency of a streaming application can be expressed as the end-to-end deadline requirement

that the application is processed through the pipeline.

Designing the scheduling policy for the pipeline stages under the requirements of both energy

efficiency and timing guarantee is however non-trivial. In general, energy efficiency and timing

guarantee are conflict objectives, i.e., techniques that reduce the energy consumption of the

system will usually pay the price of longer execution time, and vice verse. Previous work on

this topic either requires precise timing information of the system [106, 107] or tackles only

soft real-time requirements [105, 108]. However, this precise timing of task arrivals might not

be guaranteed in practice. Thus, the previous approaches can not guarantee the worst-case

deadline and can not be applied to the embedded systems where violating deadlines could be

disastrous. Compared to above work, our work tackles a pipelined event stream with non-

deterministic workloads in hard real-time system by an inverted use of the pay-burst-only-once

principle for energy efficiency.

This chapter studies the energy-minimization problem of coarse-grained pipelined systems

under hard real-time requirements. We consider a streaming application that is split into a

sequence of coarse-grained functional blocks which are mapped to a pipeline architecture for

processing. The workload of the streaming application is abstracted as an event stream and the

event arrivals of the stream are modeled as the arrival curves in interval domain [45]. The event

stream has an end-to-end deadline requirement, i.e., the time by which any event in the stream

travels through the pipeline should be no longer than this required deadline. The objective is

thereby to find the optimal scheduling policies for individual stages of the pipeline with minimal

energy consumption while the deadline requirement of the event stream is guaranteed.

Intuitively, the problem can be solved by partitioning the end-to-end deadline into sub-

deadlines for individual pipeline stages and optimizing the energy consumption based on the

partitioned sub-deadlines. However, any partition strategy based on the end-to-end deadline

78

4.2 Related Work

and the follow-up optimization method will suffer from counting multiple times of the burst

of the event stream, which will inevitably over-estimate the needed resource for every pipeline

stage and lead to poor energy saving. A motivation example in Section 4.4 will demonstrate this

drawback in details. Therefore, more sophisticated method is needed to tackle this problem.

In this chapter, we develop a new approach to solve the energy-minimization problem for

pipelined multi-processor embedded systems while guarantee the worst-case end-to-end delay.

Our idea to solve this problem lies in an inverse use of the well-known pay-burst-only-once

principle [45]. Rather than directly partitioning the end-to-end deadline, we compute for the

entire pipeline one service curve which serves as a constraint for the minimal resource demand.

The energy minimization problem is then formulated with respect to the individual resource

demands of pipeline stages. To solve this problem, we propose two heuristics, i.e., a quadratic

programming heuristic and a fast heuristic. In quadratic programming heuristic, the minimiza-

tion problem is transformed to a standard quadratic programming problem with box constraint

and then solved by a standard solver. Observing that the formulated problem is NP-Hard, we

present a fast heuristic to find a sub-optimal solution by analyzing the properties of the optimal

solution, running with the complexity O(mn) (m and n are the stage number and sample step

number, respectively). For simplicity, we consider power-gating energy minimization and use

periodic dynamic power management in [41, 42] to reduce the leakage power, i.e., to periodi-

cally turn on and off the processors of the pipeline. In this chapter, we compute period power

management schemes off-line and the fixed Ton/Toff for processors of every pipeline stages are

applied during runtime. With this approach, we can not only guarantee the overall end-to-end

deadline requirement but also retrieve the pay-burst-only-once phenomena, achieving a signifi-

cant reduction of the energy consumption. In addition, our methods are scalable with respect

to the number of the pipeline stages.

The rest of the chapter is organized as follows: Section 4.2 reviews related work in the

literature. Section 4.3 presents basic models and the definition of the studied problem. Sec-

tion 4.4 presents the motivation example and Section 4.5 describes the proposed approach.

Experimental evaluation is presented in Section 4.6 and Section 4.7 concludes the chapter.

4.2 Related Work

Pipelined computing is a promising paradigm for the embedded system design, which can in

principle provide high performance and low energy consumption. Pipelined multiprocessor sys-

79

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

tems are wildly applied as a viable platform for high performance implementation of multimedia

applications [109–112]. Energy optimization for pipelined multiprocessor systems is an interest-

ing topic where numbers of techniques have been proposed in the literature. Carta et al. [105]

and Alimonda et al. [113] proposed a feedback-control technique for dynamic voltage/frequency

scaling (DVFS) in a pipelined MPSoC architecture with soft real-time constraints, aimed at

minimizing energy consumption with throughput guarantees. Each pipelined processor is asso-

ciated with a dedicated controller which monitors the occupancy level of the queues to determine

when to increase or decrease the voltage-frequency levels of the processor. Javaid et al. [108]

proposed a adaptive pipelined MPSoC architecture and a run-time balancing approach based

on workload prediction to achieve energy efficiency. The authors in [114] proposed a dynamic

power management scheme for adaptive pipelined MPSoCs. In this work, the duration of idle

periods is determined based on future workload prediction and is used to select an appropri-

ate power state for the idle processor. However, above approaches are under soft real-time

constraints. When coming to hard real-time systems, these approaches can not be applicable.

There are also methods [106, 115–119] for hard real-time systems. To guarantee the end-

to-end delay, the anthers in [119] studied the problem of minimizing the number of processors

required for scheduling the end-to-end deadline constrained streaming applications modeled as

CSDF graphs, where the actors of a CSDF are executed as strictly periodic tasks. In [115],

Davare et al. optimized periods for dependent tasks on hard real-time distributed automotive

systems in order to meet the end-to-end constraints. In [116], Hong et al. proposed a dis-

tributed approach to assign local deadlines for periodical tasks on distributed systems to meet

the end-to-end deadline constraints. To reduce the energy consumption, Yu et al. [106] pre-

sented an integer linear programming (ILP) formulation for the problem of frequency assignment

of a set of periodic independent tasks on heterogeneous multi-processor system. The authors

in [117, 118] proposed leakage-aware scheduling heuristics to reduce the energy consumption

by translating the real-time applications with periodic tasks to DAGs using the frame-based

scheduling paradigm and considering the trade-offs among DVFS, DPM and the number of the

processors. But these methods require precise timing information, such as periodical real-time

events. However, in practice, this precise timing information of task arrivals might not be de-

termined in advance. The non-determinism in the timing of event arrivals comes from two main

reasons: (a) An event may be triggered by the physical environment, which, in general, is not

able to be accurately predicted. (b) When a distributed system is considered, an event might

be triggered by other events on different processing components, in which variable execution

80

4.3 Models and Problem Definition

workloads would make the prediction of precise information on event arrivals extremely com-

plicated. In above researches, there is no guarantee that a event will arrive in time. Therefore,

these approaches can not be applied to guarantee the worst-case deadline in embedded systems

where violating deadlines could be disastrous. Unlike previous works, we focus on improving

energy-efficiency in hard real-time embedded systems while guarantee the system satisfy under

the worst-case deadline constraint.

To model irregular event arrivals, Real-Time Caculus(RTC) [43], which is based on Network

Calculus [45], can be applied. Specifically, the arrival curve in RTC model an upper bound and

a lower bound of the number of event arrivals or the demand of computation under specified

time interval domain. Considering the DVFS system, Maxiaguine et al. [120] computed a safe

frequency at periodical interval to prevent buffer overflow of a system. By adopting RTC

models, Chen et al. [121] explored the schedulability for online DVFS scheduling algorithms

proposed in [122]. Combining optimistic and pessimistic DVFS Scheduling, Perathoner et

al.[123] presented an adaptive scheme for the scheduling of arbitrary event streams. When only

consider dynamical power management(DPM), Huang et al. [41, 42] presented a algorithm to

find periodic time-driven patterns to turn on/off processor for energy saving. On-line algorithms

are proposed in [124–126] to adaptively control the power mode of a system, procrastinating

the processing of arrived events as late as possible. In one algorithm in [124,125], a tight bound

of event arrivals is computed based on historical information of event arrivals in the recent past.

Instead of using historical information, dynamic counter technique [126] is used to predicted the

future workload. Compared to above work, the distinct difference of our work is that we can

tackle the correlation of a pipelined event stream by an inverted use of the pay-burst-only-once

principle. With this new method, retrieving this correlation of the same event stream between

different pipeline stages, we can compute longer deadlines for each pipeline stage and reduce

the overall power consumption of the system.

4.3 Models and Problem Definition

4.3.1 Hardware Model

The hardware architecture that we have chosen is a simplified architecture which has no shared

cache and shared bus among different processing cores. The processing cores are connected in

a pipelined fashion via dedicated FIFOs. We consider the system with pipeline architecture

showed in Fig.1(a). Sub-tasks of a partitioned application are mapped and executed in different

81

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

processors. The processors communicate data only through distributed memory units. Each

memory unit can be organized as one or several FIFOs. The data communication and synchro-

nization among processors are realized by blocking read and write SW primitives. This kind

of hardware architecture has been realized in [127]. As the service curve of each stage can be

computed for energy efficiency by our proposed approaches off-line, the worst-case FIFO size

of each stage can be determined by applying the analysis approach in [128].

Each processor in the pipelined system has three power consumption modes, namely active,

standby, and sleep modes, as shown in Fig. 4.1(b). To serve events, the processor must be in the

active mode with power consumption Pa. When there is no event to process, the processor can

switch to sleep mode with lower power consumption Pσ. However, mode-switching from sleep

mode to active mode will cause additional energy and latency penalty, respectively denoted as

Esw,on and tsw,on. To prevent the processor from frequent mode switches, the processor can

stay at standby mode with power consumption Ps, which is less than Pa but more than Pσ,

i.e. Pa > Ps > Pσ. Moreover, the mode-switch from active (standby) mode to sleep mode will

cause energy and time overhead, respectively denoted by Esw,sleep and tsw,sleep.

Consider the overhead of switching system from active mode to sleep mode, the system

break-even time TBET denotes the minimum time length that system stays at sleep mode. If

the interval that system can stay at sleep mode is smaller than TBET , the mode-switch mode

overheads are larger than the energy saving. Therefore, switching mode is not worthwhile. And

break-even time TBET can be defined as follows:

TBET = max(tsw,
Esw

Ps − Pσ
) (4.1)

where tsw = tsw,on + tsw,sleep and Esw = Esw,on + Esw,sleep.

4.3.2 Energy Model

The analytical processor energy model in [3,4,118,129] is adopted in this chapter, whose accu-

racy has been verified with SPICE simulation [3, 4, 118]. The dynamic power consumption of

the core on one voltage/frequency level (Vdd, f) can be given by:

Pdyn = Ceff ·V 2
dd · f (4.2)

where Vdd is the supply voltage, f is the operating frequency and Ceff the effective switching

capacitance. The cycle length tcycle is given by a modified alpha power model.

tcycle =
Ld ·K6

(Vdd − Vth)α
(4.3)

82

4.3 Models and Problem Definition

Processor1

PD1 FIFO

Processor2

deQ FIFO

Processor3

IDCT FIFO

Processor4

MC

(a) H.263 decoder on pipeline hardware architecture

t
active (Pa)

sleep (Pσ)
standby

(Ps)

Ton Toff Ton

(b) Power model of a processor

Figure 4.1: System model

where K6 is technology constant and Ld is estimated by the average logic depth of all instruc-

tions critical path in the processor. The threshold voltage Vth is given below.

Vth = Vth1 −K1 ·Vdd −K2 ·Vbs (4.4)

where Vth1, K1, K2 are technology constants and Vbs is the body bias voltage.

The static power is mainly contributed by the subthreshold leakage current Isubn, the reverse

bias junction current Ij and the number of devices in the circuit Lg. It can be presented by:

Psta = Lg · (Vdd · Isubn + |Vbs| · Ij) (4.5)

where the reverse bias junction current Ij is approximated as a constant and the subthreshold

leakage current Isubn can be determined as:

Isubn = K3 · eK4Vdd · eK5Vbs (4.6)

where K3, K4 and K5 are technology constants. To avoid junction leakage power overriding

the gain in lowering Isubn, Vbs should be constrained between 0 and -1V. Thus, the power

consumption at active mode and at stand-by mode, i.e., Pa and Ps, under one voltage/frequency

(Vdd, f) can be respectively computed as:

Pa = Pdyn + Psta + Pon (4.7)

Ps = Psta + Pon (4.8)

where Pon is an inherent power needed for keeping the processor on.

83

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

4.3.3 Task Model

This chapter considers streaming applications that can be split into a sequence of tasks. As

shown in Fig. 4.1(a), a H.263 decoder is represented as four tasks (i.e., PD1, deQ, IDCT, MC)

implemented in a pipeline fashion [130]. To model the workload of the application, the concept

of arrival curve α(∆) = [αu(∆), αl(∆)], originated from Network Calculus [45], is adopted.

αu(∆) and αl(∆) provides the upper and lower bounds on the number of arrival events for the

stream S in any time interval ∆. Many other traditional timing models of event streams can be

unified in the concept of arrival curves. For example, a periodic event stream can be modeled by

a set of step functions where ᾱu(∆) = b∆
p c+ 1 and ᾱl(∆) = b∆

p c. For a sporadic event stream

with minimal inter arrival distance p and maximal inter arrival distance p′, the upper and lower

arrival curve is ᾱu(∆) = b∆
p c + 1, ᾱl(∆) = b∆

p′ c, respectively. Moreover, a widely used model

to specify an arrival curve is the PJD model, where the arrival curve is characterized by with

period p, jitter j, and minimal inter arrival distance d. In PJD model, the upper arrival curve

can be determined as ᾱu(∆) = min{d∆+j
p e, d

∆
d e}. Fig. 4.2 depicts arrival curves for the above

cases.

2

4

6

1p 2p 3p 4p 5p

ᾱu(∆)

ᾱl(∆)
∆

(a)

2

4

6

1p 2p 3p 4p 5p

ᾱu(∆)

ᾱl(∆)
∆

(b)

2

4

6

1p 2p 3p 4p 5p

ᾱu(∆)

ᾱl(∆)
∆

(c)

Figure 4.2: Examples for arrival curves, where (a) periodic events with period p, (b) events with

minimal inter-arrival distance p and maximal inter-arrival distance p′ = 1.3p, and (c) events with

period p, jitter j = p, and minimal inter-arrival distance d = 0.75p.

Analogous to arrival curves that provide an abstract event stream model, a tuple β(∆) =

[βu(∆), βl(∆)] defines an abstract resource model which provides an upper and lower bounds

on the available resources in any time interval ∆. Further details are referred to [43]. Note that

arrival curves are event-based which specifies the number of event of the steam in one interval

time, while service curves are based on amount of computation time. Therefore, service curve

β has to be transformed to β̄ to indicate the number of the event of the stream that processor

can processed in specified interval time. Suppose that the execution time of an event is c, the

84

4.3 Models and Problem Definition

transformation of the service curves can be done by β̄l = bβ
l

c c and β̄u = bβ
u

c c. With these

definitions, a processor with lower service curve β̄Gl(∆) is said to satisfy the deadline D for the

event stream specified by αu(∆), if the following condition holds.

β̄Gl(∆) ≥ αu(∆−D), ∀∆ ≥ 0 (4.9)

Note that we adopt the same assumption as [41,120,121,124,126] and assume that the worst

case execution time (WCET) of each task can be is predefined and considered as system input

in the chapter. As mentioned in the previous section, the hardware architecture that we have

chosen is a simplified architecture which has no shared cache and shared bus among different

processing cores. In this sense, we can safely assume the WCET of the running tasks as system

inputs.

4.3.4 Problem Statement

This chapter considers periodic power management [41] that periodically turns on and off a

processor. In each period T = Ton + Toff , switch the processor to active (standby) mode for

Ton time units, following by Toff time units in sleep mode, as shown in Fig. 4.1(b). Given a

time interval L, where L� T and L
T is an integer. Suppose that γ(L) is the number of events

of event stream S served in L. If all the served events finish within L, the energy consumption

E(L, Ton, Toff) by applying this periodic scheme is

E(L, Ton, Toff) =
L

Ton + Toff
(Esw,on + Esw,sleep)

+
L ·Ton

Ton + Toff
Ps +

L ·Toff
Ton + Toff

Pσ

+c · γ(L)(Pa − Ps)

=
L ·Esw

Ton + Toff
+
L ·Ton(Ps − Pσ)

Ton + Toff

+L ·Pσ + c · γ(L)(Pa − Ps)

where Esw is Esw,on +Esw,sleep for brevity. Given a sufficiently large L, without changing the

scheduling policy, the minimization of energy consumption E(L, Ton, Toff) of a single processor

is to find Toff and Ton such that the average idle power consumption P (Ton, Toff) is minimized.

P (Ton, Toff)
def
=

L ·Esw
Ton+Toff

+ L ·Ton · (Ps−Pσ)
Ton+Toff

L

=
Esw + Ton · (Ps − Pσ)

Ton + Toff

(4.10)

85

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

By defining K = Ton
Ton+Toff

, the average idle power consumption P in(4.10) can be defined by

Toff and K(0 ≤ K ≤ 1) as follows:

P (K, Toff)
def
=

Esw
Toff

+ ((Ps − Pσ)− Esw
Toff

) ·K (4.11)

By analyzing (4.11), it is obvious that the following properties hold.

Prop. 4. ∀Toff , Toff ≥ Esw
Ps−Pσ , P (K, Toff) gets its minimum when K gets its minimum.

Prop. 5. ∀Toff , Toff < Esw
Ps−Pσ , P (K, Toff) gets its minimum as Ps − Pσ when K = 1.

According to Prop. 4 and Prop. 5, when Toff >
Esw
Ps−Pσ holds, the processing unit should

turn on as short as possible in one period. when Toff ≤ Esw
Ps−Pσ holds, the processing unit should

turn on all the time with Toff = 0. In this context, Esw
Ps−Pσ can be seen as the break-even time

of the processing unit.

Based on (4.10), the energy minimization problem of a m-stage pipeline can be formulated

as minimizing following function:

P (~Ton, ~Toff) =

m∑
i

Eisw + T ion · (P is − P iσ)

T ion + T ioff
(4.12)

where ~Ton = [T 1
on T

2
on . . . Tmon] and ~Toff = [T 1

off T
2
off . . . T

m
off]. Now we can define the problem

that we studied as follows:

Given pipelined platform with m stages, an event stream S processed by this pipeline,

and an end-to-end deadline requirement D, we are to find a set of periodic power

managements characterized by ~Ton and ~Toff that minimize the average idle power

consumption P defined in (4.12), while guaranteeing that the worst-case end-to-end

delay does not exceed D.

4.4 Motivation Example

A phenomenon called pay-bursts-only-once is well known that can give a closer upper estimate

on the delay, when an end-to-end service curve is derived prior to delay computations [131].

When a workload flow with a burst traverses a number of stages in sequence, the effect of the

burst of the flow on the end-to-end delay bound is the same as if the flow traversed only one

node. The end-to-end delay bound computed with this property can be tighter than the sum

of delay bounds of each node.

86

4.4 Motivation Example

This section presents a motivation example, where an event stream passes through a 2-stage

pipeline with a deadline requirement D. For simplicity, arrival curves in the leaky-bucket form

and service curves in rate-latency form [45] are used. In this representation, an arrival curve is

modeled as α(∆) = b + r ·∆, where b is the burst and r is the leaky rate. Correspondingly, a

service curve is modeled as β(∆) = R · (∆− T), where R is service rate and T is the delay. A

graphical illustration of the example is shown in Fig. 4.3, where D = 20, b = 5, r = 0.5, and

R1 = R2 = 1.

We first inspect the strategy of partitioning the end-to-end deadline and using the parti-

tioned sub-deadlines for the two pipeline stages. For simplicity, we split the D equally, i.e., D/2

for each stage. As shown in Fig. 4.3(a), given D/2 deadline requirement for the first pipeline

stage, we obtain the maximal T1 = D
2 −

b
R1

= 5, corresponding to the minimal service demand

β1 = ∆− 5. To derive the minimal β2 for the second stage of the pipeline is more involved. We

need the output arrival curve α′ from the first stage. According to [45], α′(∆) = b+r ·T1 +r ·∆.

Now again with a deadline requirement D/2 for α′, we have T2 = D
2 −

b+r ·T1

R1
= 2.5.

Lets take a close look at this solution. According to the concatenation theorem βR1,T1
⊗

βR2,T2
= βmin(R1,R2),T1+T2

, we get a concatenated service curve β = ∆− (T1 + T2) = ∆− 7.5.

With this concatenated service curve, the maximal overall end-to-end deadline for β1 and β2

is 12.5 which is far too stricter than D. This example indicates that the obtained β1 and β2

based on partitioning the end-to-end deadline is too pessimistic.

The reason for the pessimism comes from paying the burst b/R1 for the second stage of

the pipeline as well as the additional delay r ·T1

R2
from the first stage, as the pay-burst-only-

once principle points out. These effects will be accumulated for every stage of the pipeline,

leading to even more pessimistic results, as the number of the pipeline stages increases. In

addition, computing the resource demand of each stage requires the lower bound of the output

arrival curve from the previous stage. Computing this output curve requires numerical min-plus

convolution which will incur considerable computational and memory overheads. In conclusion,

the strategy based on partitioning the end-to-end deadline is not a viable approach, in particular

for the cases of pipelined systems with many stages.

On the other hand, one can first derive the total concatenated server demand βTl, in this

case T = 15 as shown in Fig. 4.3(b). Any partition based on this T will result in smaller but

valid service curves for each pipeline stage, as we can always retrieve the original end-to-end

deadline by means of the pay-burst-only-once principle. For example, by an equal partition of

87

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 ∆

#
o
f
ev
en
ts

α

D1 = 10

α′

D2 = 10

β1

β2

D = 20

T2 = 2.5

T1 = 5

(a) Partition deadline

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 ∆

#
o
f
ev
en
ts

α

β1, β2

βTl

D = 20

T = 15

T1, T2 = 7.5

(b) Pay-burst-only-once principle

Figure 4.3: Motivation example.

88

4.5 Proposed Approach

T , both T1 and T2 are 7.5 and D is still preserved. This brings the basic idea of our approach

that will be presented in the next section.

4.5 Proposed Approach

Our approach lies in an inverse use of the pay-burst-only-once principle, as mentioned in the

previous section. Rather than directly partitioning the end-to-end deadline, we compute one

service curve for the entire pipeline which serves as a constraint for the minimal resource

demand. The energy minimization problem is then formulated with respect to the resource

demands for individual pipeline stages. To solve this minimization problem, the formulation is

transformed into a quadratic programming form and solved by a 2-phase heuristic.

Without loss of generality, a pipelined system with m heterogeneous stages (m ≥ 2) is

considered. The processor of the i stage can provide minimal βGli service. Since periodic power

management is considered, the minimal service βGli can be modeled as an T ion and T ioff pair:

βGli (∆) = (T ion

⌈ ∆− T ioff
T ion + T ioff

⌉
)⊗∆ (4.13)

The derivation of Eqn. (4.13) is presented in Lem. 3. In addition, to obtain a tight lower bound

of service curve of the entire pipeline, we restrict T ion as a multiple of the worst case execution

time ci, i.e., T ion = ni ci, ni ∈ N+.

Lem. 3. The service curve of period power management specified by Ton and Toff can be

represented as follows.

βGli (∆) = (T ion

⌈ ∆− T ioff
T ion + T ioff

⌉
)⊗∆ (4.14)

Proof. According to [41], the service curve of period power management specified by Ton and

Toff can be represented as Eqn. (4.15).

βGl(∆) = max (
⌊ ∆

Ton + Toff

⌋
·Ton,∆−

⌈ ∆

Ton + Toff

⌉
·Toff) (4.15)

This proof presents the derivation of Eqn. (4.14), which is used to represent the service curve

of period power management, to indicate that Eqn. (4.15) and Eqn. (4.14) are equivalent.

According to the definition of the min-plus convolution,

βGl(∆) = (Ton

⌈ ∆− Toff
Ton + Toff

⌉
)⊗∆

= inf
0≤s≤∆

(∆− s+ Ton · d
s− Toff
Ton + Toff

e)

89

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

We make some transformations as follows.

T = Ton + Toff

∆ = k∆ ·T + r∆, k∆ ∈ N+, 0 ≤ r∆ < T

s = ks ·T + rs, ks ∈ N+, 0 ≤ rs < T

Then, we have:

βGl(∆) = inf
0≤s≤∆

((k∆ − ks) ·T + (r∆ − rs) + Ton · ks + Ton · d
rs − Toff

T
e) (4.16)

As s ≤ ∆, there are two possibilities between the parameters r∆ and rs: (1) when ks = k∆,

rs ≤ r∆ should be held for s ≤ ∆. (2) when ks ≤ k∆ − 1, there is no constraint between r∆

and rs because ks ≤ k∆ − 1 is sufficient to guarantee s ≤ ∆.

• Case 1: ks ≤ k∆ − 1

For this case, there is no constraints between r∆ and rs. Thus, we can have Eqn. (4.17)

by calling Eqn. (4.16).

βGl(∆) = inf
0≤s≤∆

((k∆ − ks) ·T + (r∆ − rs) + ks ·Ton + Ton · d
rs − Toff

T
e)

= inf
0≤s≤∆

(k∆ ·T + r∆ − ks · (T − Ton)− rs + Ton · d
rs − Toff

T
e)

= inf
0≤s≤∆

(k∆ ·T + r∆ − ks ·Toff − rs + Ton · d
rs − Toff

T
e) (4.17)

• When Toff < rs < T holds, we have Eqn. (4.18) by calling Eqn. (4.17).

βGl(∆) = inf
0≤s≤∆

(k∆ ·T + r∆ − ks ·Toff − rs + Ton)

> (k∆ ·T + r∆ − ks ·Toff − T + Ton)

= (k∆ ·T + r∆ − ks ·Toff − Toff)

≥ (k∆ ·T + r∆ − k∆ ·Toff) (4.18)

• When 0 ≤ rs ≤ Toff holds, we have Eqn. (4.19) by calling Eqn. (4.17).

βGl(∆) = inf
0≤s≤∆

(k∆ ·T + r∆ − ks ·Toff − rs)
inf

============⇒
rs=Toff ,ks=k∆−1

k∆ ·T + r∆ − k∆ ·Toff

(4.19)

For above two cases, the infimum of βGlks≤k∆−1(∆) for the case ks ≤ k∆ − 1 can be obtained

as Eqn. (4.20) by calling Eqn. (4.18) and Eqn. (4.19).

βGlks≤k∆−1(∆) = k∆ ·T + r∆ − k∆ ·Toff = ∆− k∆ ·Toff (4.20)

• Case 2: ks = k∆

90

4.5 Proposed Approach

For this case, rs ≤ r∆ should be held for s ≤ ∆. Thus we have Eqn. (4.21) by calling

Eqn. (4.16).

βGl(∆) = inf
0≤s≤∆

((r∆ − rs) + k∆ ·Ton + Ton · d
rs − Toff

T
e) (4.21)

As rs should be constrained by r∆, there are two cases for r∆.

• r∆ ≤ Toff : For this case, we have 0 ≤ rs ≤ r∆ ≤ Toff . Thus, we have Eqn. (4.22)

by calling Eqn. (4.21).

βGlks=k∆,r∆≤Toff (∆) = inf
0≤s≤∆

((r∆ − rs) + k∆ ·Ton)
inf

====⇒
rs=r∆

k∆ ·Ton (4.22)

By integrating the cases of ks = k∆ and ks ≤ k∆ − 1, we have Eqn. (4.23) by calling

Eqn. (4.20) and Eqn. (4.22)

βGlr∆≤Toff (∆) = min (∆− k∆ ·Toff , k∆ ·Ton) = k∆ ·Ton (4.23)

• r∆ > Toff : For this case, there are two sub-cases for rs, i.e., 0 ≤ rs ≤ Toff < r∆ < T

and Toff < rs ≤ r∆ < T .

♦ 0 ≤ rs ≤ Toff < r∆ < T : For this case, we have Eqn. (4.24) by calling

Eqn. (4.21).

βGl(∆) = inf
0≤s≤∆

((r∆ − rs) + k∆ ·Ton)
inf

=====⇒
rs=Toff

r∆ − Toff + k∆ ·Ton < Ton + k∆ ·Ton

(4.24)

♦ Toff < rs ≤ r∆ < T : For this case, we have have Eqn. (4.25) by calling

Eqn. (4.21).

βGl(∆) = inf
0≤s≤∆

((r∆ − rs) + k∆ ·Ton + Ton)
inf

====⇒
rs=r∆

Ton + k∆ ·Ton (4.25)

For above two cases, the infimum of βGlks=k∆,r∆>Toff
(∆) can be obtained as Eqn. (4.26)

by calling Eqn. (4.24) and Eqn. (4.25).

βGlks=k∆,r∆>Toff
(∆) = r∆ − Toff + k∆ ·Ton = ∆− (k∆ + 1) ·Toff (4.26)

By integrating the cases of ks = k∆ and ks ≤ k∆ − 1, we have Eqn. (4.27) by calling

Eqn. (4.26) and Eqn. (4.22)

βGlr∆>Toff (∆) = min (∆− k∆ ·Toff ,∆− (k∆ + 1) ·Toff) = ∆− (k∆ + 1) ·Toff
(4.27)

91

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

With Eqn. (4.23) and Eqn. (4.27), we can obtain the service curve as Eqn. (4.28).

βGl =

k∆ ·Ton r∆ ≤ Toff
∆− (k∆ + 1) ·Toff r∆ > Toff

(4.28)

When 0 ≤ r∆ ≤ Toff holds, we have k∆ ·Ton ≥ ∆− (k∆ + 1) ·Toff and k∆ =
⌊

∆
Ton+Toff

⌋
.

When r∆ > Toff holds, we have k∆ ·Ton < ∆− (k∆ + 1) ·Toff and k∆ + 1 =
⌈

∆
Ton+Toff

⌉
.

Then, we can obtain the service curve as Eqn. (4.29).

βGl = max (k∆ ·Ton,∆− (k∆ + 1) ·Toff) (4.29)

By transforming Eqn. (4.29), we can obtain Eqn. (4.15). Thus, the service curve of period

power management can be represented as Eqn. (4.14).

4.5.1 Problem Formulation

Regarding the problem formulation, we firstly present an approximation approach (See Lemma

5.1) to derive a lower bound of the PPM service curve. By using this approximated curve,

we derive the concatenated service curve directly (See Lemma 5.2), which can be used to

guarantee the real time properties (See Theorem 5.3). Then, the energy minimization problem

is then formulated with respect to the resource demands for individual pipeline stages. Before

presenting the formulation, we first state a few bases. By defining Ki =
T ion

T ion+T ioff
, we have the

following two lemmas.

Lem. 4. β̄Gli (∆) ≥ Ki
ci

(∆− T ioff − ci)

Proof. According to the definition of min-plus convolution operation
⊗

, the inequality ba+ bc ≥
bac+ bbc, and the inequality Eqn. (4.13), we have:

β̄Gli (∆) ≥
⌊T ion⌈ ∆−T ioff

T ion+T ioff

⌉
ci

⌋
⊗
⌊

∆

ci

⌋
With the restriction T ion = ni ci, ni ∈ N+ and dae ≥ a, we have:

⌊T ion⌈ ∆−T ioff
T ion+T ioff

⌉
ci

⌋
= ni ·

⌈ ∆− T ioff
T ion + T ioff

⌉
≥ Ki

ci
(∆− T ioff)

According to bac ≥ a− 1, we have
⌊

∆
ci

⌋
≥ 1

ci
(∆− ci).

92

4.5 Proposed Approach

According to the rule of min-plus convolution of rate-latency service curve βR1,T1
⊗βR2,T2

=

βmin(R1,R2),T1+T2
in [45] and Ki ≤ 1, we have:

Ki

ci
(∆− T ioff)⊗ 1

ci
(∆− ci) = min(

Ki

ci
,

1

ci
)(∆− T ioff − ci) =

Ki

ci
(∆− T ioff − ci)

Then, we get the right side of the inequality.

Lem. 5.
m⊗
i=1

β̄i
Gl ≥

m
min
i=1

(Kici)
(
∆−

m∑
i=1

(T ioff + ci)
)

Proof. According to the rule of min-plus convolution of rate-latency service curve βR1,T1
⊗

βR2,T2
= βmin(R1,R2),T1+T2

in [45] and Lem. 4, we have:

m⊗
i=1

β̄i
Gl ≥

m⊗
i=1

Ki

ci
(∆− T ioff − ci) =

m
min
i=1

(
Ki

ci
)
(
∆−

m∑
i=1

(T ioff + ci)
)

With Lem. 5, we state below theorem.

Thm. 1. Assuming an event stream modeled with arrival curve α is processed by an m-stage

pipeline and the lower service curve of each pipeline stage is defined by a T ion and T ioff pair,

the pipelined system satisfies an end-to-end deadline D, if the following condition holds:

m
min
i=1

(
Ki

ci
)
(

∆−
m∑
i=1

(T ioff + ci)
)
≥ αu(∆−D) (4.30)

Proof. In Lem. 5, the right hand side of inequality is a lower bound of
m⊗
i=1

β̄i
Gl

which is the

concatenated service curve of the pipeline. With
m⊗
i=1

β̄i
Gl ≥ αu(∆ −D), the end-to-end delay

of the pipeline is no more than D, according to the pay-burst-only-once principle. Therefore,

the theorem holds.

The left hand side of the inequality Eqn. (4.30) can be considered as a bounded-delay

function bdf(∆, ρ0, b0) = max(0, ρ0(∆ − b0)) with slope ρ0 = minmi=1(Kici) and bounded-delay

b0 =
∑m
i=1(T ioff + ci). For the stream S with deadline D, a set of minimum bounded-delay

functions bdfmin(∆, ρ, b) can be derived by varying b (See Section 4.5.2). Therefore, we should

find a solution of [~K, ~Toff] such that the resulting bounded-delay function bdf(∆, ρ0, b0) is no

less than minimum bounded-delay functions bdfmin(∆, ρ, b). Therefore, we can formulate our

optimization problem as following:

93

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

minimize
~K, ~Toff

P (~K, ~Toff)

subject to
m

min
i=1

(
Ki

ci
) ≥ ρ

m∑
i=1

(T ioff + ci) ≤ b

0 ≤ Ki ≤ 1, i = 1, . . . ,m

T ioff ≥ 0, i = 1, . . . ,m

(4.31)

where ~K = [K1, . . . ,Kn]. P (~K, ~Toff) is obtained as follows by conducting a transformation

Ki =
T ion

T ion+T ioff
to the average power consumption (4.10) of each stages.

P (~K, ~Toff) =

m∑
i

(
Eisw (1−Ki)

T ioff
+ (P is − P iσ)Ki)

The advantage of the formulation (4.31) is two-fold. First of all, the service curves of individual

pipeline stages are the variables of the optimization problem, which on the one hand overcomes

the problem of paying burst multiple times, on the other hand avoids the costly
⊗

computation

during the optimization. Second, this formulation allows us to use more efficient method to

analyze the problem, which will be present in the following sections.

4.5.2 Quadratic Programming Transformation

How to solve the minimization problem (4.31) is not obvious. The constraints b and ρ indeed are

not fixed values. In addition, these two constraints are correlated. For a fixed b, the minimum

bounded-delay function bdfmin(∆, ρ, b) can be determined by computing ρ:

ρ = inf {ρ : bdf(∆, ρ, b) ≥ αu(∆−D),∀∆ ≥ 0} (4.32)

In this chapter, we conduct the optimization by varying b and computing ρ for every possible

b. For a fixed b, we can transform (4.31) into a quadratic programming problem with box

constraints(Qpb), as stated in the following lemma.

Lem. 6. The minimization problem in (4.31) can be transformed as the following quadratic

programming problem with box constraints:

minimize
~x=[x1 ... xm]

~xTQ~x

subject to 0 ≤ xi ≤
√
Eisw(1− ρ ci), i = 1, . . . ,m.

(4.33)

where Q = A−B, A is m×m matrix of ones and B is m×m diagonal matrix with ith diagonal

element
(b−∑m

j=1 cj)(P
i
s−P iσ)

Eisw
.

94

4.5 Proposed Approach

Denote ~x∗ as the optimal solution for the Qpb problem in (4.33), then the optimization

solution for (4.31) can be obtained with Ki = 1− (x∗i)2

Eisw
and T ioff =

x∗i∑m
j=1 x

∗
j
(b−

∑m
j=1 cj).

Proof. With Cauchy-Buniakowski-Schwartz’s inequality, we can get that:

m∑
i=1

T ioff ·
m∑
i=1

Eisw(1−Ki)

T ioff
≥ (

m∑
i=1

√
Eisw(1− ki))2

The minimum value of
∑m
i=1

Eisw(1−Ki)
T ioff

can be obtained at
(
∑m
i=1

√
Eisw(1−ki))2

b−∑m
j=1 cj

when the follow-

ing equation holds.

T ioff =

√
Eisw(1−Ki)∑m

j=1

√
Ejsw(1−Kj)

(b−
m∑
j=1

cj)

Then optimization formulation in (4.31) can be formulated as:

minimize
K1,K2,...,Km

(
∑m
i=1

√
Eisw(1−Ki))

2

b−
∑m
j=1 cj

+

m∑
i=1

(P is − P iσ)Ki

subject to ρ ci ≤ Ki ≤ 1, i = 1, . . . ,m

By defining xi =
√
Eisw(1−Ki), formulation (4.31) can be transformed as the Qpb problem

in (4.33).

Note that there is a feasible region for b. To guarantee all the resulting T ioff ≥ 0, the

bound-delay b should not be less than
∑m
i=1 ci. According to (4.30), the maximum slope ρ

of bound-delay function will not exceed 1
maxmi=1 ci

. Correspondingly, we derive the minimum

bound-delay function bdfmin(∆, 1
maxmi=1 ci

, b). By inverting (4.32), we can derive the maximum

delay bu by (4.34), which can guarantee that all the resulting Ki will not exceed 1. In summary,

the feasible region of b ∈ [bl, bu] can be bounded as follows:

bu = sup {d : bdf(∆,
1

maxmi=1 ci
, d) ≥ αu(∆−D),∀∆ ≥ 0}

bl =

m∑
i=1

ci (4.34)

4.5.3 Quadratic Programming Heuristic

With above information, we can now present the overall algorithm to the energy minimization

problem defined in Section 4.3.4. Basically, bounded-delay b is scanned by step ε within the

range [bl, bh]. For each b, we first solve the sub-problem (4.33) with a Qpb solver. Then, the

obtained solution is repaired to fulfill further constraints (will explain later on). The pseudo

code of the algorithm is depicted in Algo. 1.

95

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

Algorithm 1 Quadratic Programming Heuristic

Input: αu, bl, bh, ε, and Pmin =∞
Output: ~Kopt, ~Toff, opt

1: for b = bl to bh with step ε do

2: compute ρ by Eqn. (4.32);

3: obtain ~K and ~Toff by solving (4.33);

4: repair ~K and ~Toff ;

5: if P (~K, ~Toff) < Pmin then

6: ~Kopt ← ~K ; ~Toff, opt ← ~Toff ;

7: Pmin ← P (~Kopt, ~Toff, opt);

8: end if

9: end for

Thm. 2. ∃i ∈ {1, 2, . . . ,m} and
Eisw
P is−P iσ < b−

∑m
j=1 cj, then the problem is NP-hard.

Proof. If it exists an stage pi that the condition
Eisw
P is−P iσ < b −

∑m
j=1 cj holds, the matrix Q

in Lem. 6 is not positive semi-definite. Thus, Qpb is the non-convex quadratic programming

problem which is NP-Hard [132].

To solve the sub-problem (Line 3 in Algo. 1), we apply existing Qpb solver. According to

Thm. 2, Qpb is NP-Hard when the scanned bounded-delay b is bigger enough (i.e.,
Eisw
P is−P iσ <

b−
∑m
j=1 cj). It is, in general, difficult to solve the problem optimally. Nevertheless, there are

approximation schemes [133] that can efficiently solve the non-convex Qpb and there are many

excellent off-the-shelf software packages [134] available. In this chapter, state-of-the-art finite

B&B algorithm [134] is applied to solve our Qpb problem.

After obtaining a pair of ~K and ~Toff , the repair phase (Line 4 in Algo. 1) is conducted

to fulfill further constraints. This repair scheme is represented in Algo. 2. First of all, the

resulting T ioff of pipeline stage i may be smaller than tisw. In the case that T ioff < tisw, turning

off the processor of stage i is not possible. Therefore, the solution for stage i is repaired by

[K
′

i , T
i′

off] = [1, 0], stage i is on all the time (Line 2 in Algo. 2). However, this repair step will

lead to the loss of sleep time Qi for each stage(Line 21 in Algo. 2). We record this loss and try to

reassign the loss to each stage at the end of algorithm (Line 21–Line 32 in Algo. 2) to minimize

the power consumption further. Second, the resulting T ion may not be a multiple of ci, which

is one of our basic requirement. The repair steps are conducted to make T ion to be a multiple

of ci (Line 6–Line 20 in Algo. 2). To guarantee the resulting K
′

i is constant with respect to Ki,

T i
′

off should be adjusted to
T i
′
on

Ki
−T i′on. ∆Ti indicates how much sleep time of the stage i should

adjust comparing to the original T ioff (Line 14 in Algo. 2). If ∆Ti > 0 holds, it means that

96

4.5 Proposed Approach

Algorithm 2 Repair Scheme

Input: solution of Qpb problem:[~K, ~Toff]

Output: [~K
′
, ~T
′

off]

1: compute the stage set: S1 = {pi|T ioff < tisw};
2: repair [K

′
, T
′

off] of the stage p ∈ S1 as [1, 0];

3: update budget ∆Ti ← T ioff and power increase ∆Ei ← 0 for stages p ∈ S1;

4: compute Ton and the stage set: S2 = {pi|T ioff ≥ tisw};
5: for each stage pi ∈ S2 do

6: if T ion < ci then

7: T i
′

on ← ci ;

8: else

9: T i
′

on ← b
T ion
ci
c ci ;

10: if
T i
′
on

Ki
− T i′on < tisw then

11: T i
′

on ← d
T ion
ci
e ci ;

12: end if

13: end if

14: compute budget ∆Ti = T ioff − (
T i
′
on

Ki
− T i′on) ;

15: if ∆Ti >= 0 then

16: T i
′

off ←
T i
′
on

Ki
− T i′on ; ∆Ei ← 0 ;

17: else

18: T i
′

off ← T ioff ; ∆Ei ← P (T ion, T
i
off)− P (T i

′

on, T
i′

off) ;

19: end if

20: end for

21: compute total budget Q =
∑

∆Ti>0 ∆Ti;

22: while Q > 0 do

23: find stage pi with maximum power increase ∆Ei;

24: if ∆Ti < 0 then

25: compute available allocation allo = min(Q, |∆Ti|);
26: T i

′

off ← T i
′

off + allo ; ∆Ti ← ∆Ti + allo;

27: ∆Ei ← P (T i
′

on, T
i′

off)− P (T ion, T
i
off) ;

28: Q← Q− allo ;

29: else

30: break ;

31: end if

32: end while

33: update [~K
′
, ~T
′

off];

T i
′

on decreases and the stage i should decrease sleep time T ioff to make K
′

i constant (Line 16

in Algo. 2), which will result the loss Qi and this part can be reassigned to prolong the sleep

97

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

time of other stages. ∆Ti ≤ 0 indicates T i
′

on increases and the stage should increase sleep time

T ioff to make K
′

i constant. For this case, we make T i
′

off constant with respect to T ioff , which

results K
′

i increase and power consumption increase ∆Ei (Line 18 in Algo. 2). In the end, the

total loss Q should be reassigned to the stage with ∆Ti < 0 to reduce the power consumption

further (Line 21–Line 32 in Algo. 2). The reassignment heuristic uses power increase ∆Ei

as a metric to decide which stage should be assigned first. Specifically, the heuristic iterates

through all stages which need to compensate. In each iteration, it picks the stage with maximum

power increase ∆Ei and increase T ioff without causing K
′

i < Ki. The reassignment heuristic

terminates when there is no loss to reassign or no stage need to compensate. It is worth

noting that the repair phase we conduct can still guarantee the repaired solution to satisfy the

constraints, as stated in Lem. 7.

Lem. 7. The solution repaired by Algo. 2 satisfies the constrains in (4.31).

Proof. The operation in line 2-line 20 will not increase the term
∑m
i=1 T

i
off without causing

K
′

i < Ki, which satisfy the constrains in (4.31). Reassignment heuristic in (line 21–line 32)

reassign the total loss Q to each stage which need to compensate and increase its sleep time T ioff
without increasing the total sleep time

∑m
i=1 T

i
off and causing K

′

i < Ki. Thus, the solution

repaired by Algo. 2 satisfies the constrains in (4.31).

4.5.4 Fast Heuristic

In Section 4.5.3, we present an quadratic programming heuristic with Qpb transformation.

According to Thm. 2, Qpb is NP-Hard when the scanned bounded-delay b is bigger enough.

Assume that bounded-delay b is scanned by n steps, then the heuristic in Section 4.5.3 needs

to solve this NP-Hard problem for several times, which is time-consuming. Besides, in the

first optimization step, quadratic programming heuristic do not consider the break-even time

constraint (i.e., T ioff of pipeline stage i is not smaller than T iBET), which could also makes the

result be pessimistic. To overcome above drawbacks, we present a fast heuristic to find a sub-

optimal solution, running with O(mn) time complexity (m is the stage number). Different with

the heuristic in Section 4.5.3, we consider the break-even time constraint in the optimization

phase and partition stage set P into two stage sets according to this constraint, rather than

decoupling the break-even time constraint and optimization. Based on this stage set partition,

we can derive a sub-optimal solution, as stated in Lem. 8.

Lem. 8. Give a fixed bounded-delay b and denote [~K, ~Toff] as the optimal solution for the

problem. Partition the stage set P into two subsets S1 and S2, where S1 = {pi|T ioff < T iBET }
and S2 = {pi|T ioff ≥ T iBET }. Then, the optimal solution [~K, ~Toff] can be determined as:

98

4.5 Proposed Approach

(1) For the stage pi ∈ S1, [Ki, T
i
off] = [1, 0].

(2) For the stage pi ∈ S2, [Ki, T
i
off] = [ρci, xi], where xi = wi∑

pi∈S2 wi
(b −

∑m
i=1 ci) and

wi =
√
Eisw(1− ρ · ci).

Proof. For the stage subset S2, T ioff ≥ T iBET ≥
Eisw
P is−P iσ holds. The average power consumption

P (Ki, T
i
off) gets its minimum at Ki = ρci according to Prop. 4. Thus, the average power

consumption of the stage subset S2 can be transformed as
∑
pi∈S2

w2
i

T ioff
+
∑
pi∈S2 ρci(P

i
s − P iσ)

with constraint
∑
pi∈S2 T

i
off ≤ b−

∑m
i=1 ci −

∑
pi∈S1 T

i
off . According to Cauchy-Buniakowski-

Schwartz’s inequality, the optimal average power consumption of the stage subset S2 can be

determined as (4.35) when [Ki, T
i
off] = [ρci,

wi∑
pi∈S2 wi

(b−
∑m
i=1 ci −

∑
pi∈S1 T

i
off)] holds.

∑
pi∈S2

P (Ki, T
i
off) =

(
∑
pi∈S2 wi)

2

b−
∑m
i=1 ci −

∑
pi∈S1 T

i
off

+
∑
pi∈S2

ρci(P
i
s − P iσ) (4.35)

According to (4.35),the average power consumption of the stage subset S2 gets the minimum

when
∑
pi∈S1 T

i
off gets the minimum.

For the stage set S1, there are two cases: (a) T iBET = tisw: For this case of T ioff < tisw,

turning off the processor of stage i is not possible as we stated in repair scheme, due to hardware

requirement that the sleep time T ioff of the processor should not be smaller the overhead tisw.

Thus, the solution for stage i is forced as [Ki, T
i
off]pi∈S1 = [1, 0]. (b) T iBET =

Eisw
P is−P iσ : With

Prop. 5, the optimal average power consumption of the stage subset S1 gets its minimum at

[Ki, T
i
off]pi∈S1 = [1, 0].

At this point,
∑
pi∈S1 T

i
off gets the minimum as 0. Thus, the average power consumption

of the stage subset S2 gets it minimum.

According to Lem. 8, the optimal solution can be derived directly if the stage partition

P = {S1, S2} is determined. Thus, optimal solution can be derived by exhaustive exploring all

possible stage partition with the complexity Ø(2n). When the stage number is increasing, the

complexity will increase exponentially. To reduce its complexity, fast stage partition scheme

is proposed in this chapter. In this scheme, we first greedily put all stage into the stage set

S2 = {pi|T ioff ≥ T iBET } (i.e, we assume all the stage can enter sleep mode). Under this greedy

partition, we compute the optimal Toff according to Lem. 8, as descried in Line (1) and Line (2)

in Algo. 3. Then, we can assign the stages by checking whether the resulting optimal Toff under

greedy partition is greater than T iBET (see Line (3)-Line (9) in Algo. 3). The feasibility of this

partition scheme can be guaranteed by Lem. 9.

Lem. 9. Stage partition P = {S1, S2} generated by Algo. 3 is feasible.

Proof. In Algo. 3, wi∑
pi∈P

wi
(b−

∑m
i=1 ci) ≥ T iBET holds for S2. According to Lem. 8, T ioff in S2

can be determined as wi∑
pi∈S2 wi

(b−
∑m
i=1 ci). As S2 ⊆ P , we can gets T ioff ≥

wi∑
pi∈P

wi
(b−

∑m
i=1 ci) ≥

T iBET holds for S2. Thus, Stage partition generated by Algo. 3 is feasible.

99

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

Algorithm 3 Greedy Partition Scheme

Input: ρ, b, P

Output: S1,S2

1: Compute wi =
√
Eisw(1− ρ · ci) for each stage pi;

2: Compute xi = wi∑
pi∈P

wi
(b−

∑m
i=1 ci) for each stage pi;

3: for pi ∈ P do

4: if xi < T iBET then

5: Insert stage pi into set S1;

6: else

7: Insert stage pi into set S2;

8: end if

9: end for

For each b, we can first obtain a sub-optimal partition by greedy partition scheme, depicted

in Algo. 3. Then, the optimal solution under the obtained partition can be determined. The

pseudo code of the algorithm is depicted in Algo. 4.

Algorithm 4 Fast Heuristic

Input: αu, bl, bh ε, Pmin =∞
Output: [Ki, T

i
off]mi=1

1: for b = bl to bh with step ε do

2: compute ρ by Eqn. (4.32);

3: generate the feasible partition S1 and S2 by Algo. 3;

4: obtain ~K and ~Toff according to Lem. 8;

5: repair ~K and ~Toff by Algo. 2;

6: if P (~K, ~Toff) < Pmin then

7: ~Kopt ← ~K ; ~Toff, opt ← ~Toff ;

8: Pmin ← P (~Kopt, ~Toff, opt);

9: end if

10: end for

4.6 Performance Evaluations

In this section, we demonstrate the effectiveness of our approach. We compare three approaches

in this section: (1) Pay-burst-only-once Algorithm based on Quadratic Programming (PBOOA-

QP) presented in Section 4.5.3; (2) Pay-burst-only-once Algorithm based on Fast Heuris-

tic (PBOOA-FH) presented in Section 4.5.4; (3) Deadline Partition Algorithm (DPA): DPA

partitions the end-to-end deadline into sub-deadlines for individual pipeline stages and explore

100

4.6 Performance Evaluations

Table 4.1: Constants for 70 nm technology [3, 4].

Const Value Const Value Const Value

K1 0.063 K6 5.26× 10−12 Vth1 0.244

K2 0.153 K7 -0.144 Ij 4.8× 10−10

K3 5.38× 10−7 Vdd [0.5,1] Ceff 0.43× 10−9

K4 1.83 Vbs [-1,0] Ld 37

K5 4.19 α 1.5 Lg 4× 106

Table 4.2: Power parameters

Vdd Pa Ps Pσ Esw tsw

0.7V 656mW 390mW 50µW 483µJ 10ms

all the possible deadline partition combinations to find deadline partition with the minimum

energy consumption. For each deadline partition combination, DPA use the scheme in [41] to

minimize the energy consumption of individual pipeline stages to optimizes the overall energy

consumption. To show the effects of our scheme, we report the average idle power that is

computed as Eqn. (4.10) as well as the computation time of all the schemes. The simulation is

implemented in Matlab using RTC-toolbox [135] and the finite B&B algorithm [134] is used to

solve Qpb. All results are obtained from a 2.83GHz processor with 4GB memory.

4.6.1 Simulation Setup

The experiments are conducted based on classical energy model of 70nm technology processor

in [3,4,129], whose accuracy has been verified with SPICE simulation. Tab. 4.1 lists the energy

parameter under 70nm technology [3, 4, 129]. According to [129], executing at Vdd = 0.7V is

more energy efficient than executing at lower voltages levels. To achieve the minimize the overall

energy consumption of the system, we assume that the processor runs at this critical frequency

level when the processor is in the active state. From [4,129], body bias voltage Vbs is obtained

as −0.7V . From [129], Pon related to idle power can be obtained as 100mW and the power

consumption in sleep mode Pσ is set as 50µW . In [129], we can obtain energy overhead Esw of

state transition as 483µJ . We set time overhead tsw of state transition as 10ms. According to

the energy parameter in Tab. 4.1 and the energy model in Section 4.3.2, we can calculate the

corresponding active power Pa and stand-by power Ps under voltage level Vdd = 0.7V . Tab. 4.2

lists all the power parameters used in the experiment.

101

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

Table 4.3: Average power savings with respect to DPA

H.263 MP3 TDE H.263 MP3 TDE

2-stages 2-stages 2-stages 3-stages 3-stages 3-stages

PBOOA-QP 10.46% 11.57% 39.62% 23.59% 26.37% 30.60%

PBOOA-FH 10.46% 11.57% 39.65% 23.31% 25.69% 34.09%

An event stream is specified by the PJD model with period p, jitter j, and minimal inter-

arrival distance d. It is worthy noting that a worst-case execution time c is associated with the

service curve of different stage, as stated in Section 4.3.3. The jitter j and the relative deadline

D of the stream are respectively defined as j = ϕ · p and D = γ · p and varies according to the

corresponding factors.

To evaluate the effectiveness of our approach, we conduct the experiments with three appli-

cations. We collected results for these three applications with deadline and jitter varied with

the corresponding factor γ and ϕ. In following, we give a brief overview of the three appli-

cations. The H.263 decoder application [130] was modeled by four tasks consisting of: packet

decoding(PD1), inverse-quantization operation(deQ),inverse DCT operation(IDCT) and mo-

tion compensation(MC). The execution time of each subtask in H.263 decoder application can

be found in [130]. The activation period of the H.263 decoder application is 100ms with varying

the jitter and the end-to-end deadline. MP3 decoder application is implemented in a pipeline

fashion [130], which can be split into five tasks including packet decoding(PD2), Huffman

decoding(HD), inverse-quantization operation(deQ), inverse DCT operation(IDCT), antialias-

ing(FB). The execution time of each subtask in H.263 decoder application can be found in [130].

The activation period of the MP3 decoder application is 100ms with varying the jitter and the

end-to-end deadline. Time Delay Equalization (TDE) comes from the GMTI (Ground Moving

Target Indiciator) application, which is obtained from StreamIt Benchmarks [136]. Time Delay

Equalization (TDE) application contains 4 tasks including tasks like FFT reorder, combined

DFT, FFT reorder, and combined IDFT. We set activation period of the consumer application

as 30ms.

4.6.2 Simulation Result

We first evaluate how the power consumptions of the compared approaches change as the jitter

and deadline vary. Cases of 2-stage and 3-stage pipeline architectures with homogeneous 70-

nm processors are evaluated. We vary the jitter factor ϕ from 0 to 3 with step 0.5 and the

102

4.6 Performance Evaluations

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(a) H.263 on 2-stages pipeline (PD1, deQ → Core 1,

IDCT, MC → Core 2)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(b) H.263 on 3-stages pipeline (PD1, deQ → Core 1,

IDCT → Core 2, MC → Core 3)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(c) MP3 on 2-stages pipeline (PD2, HD, deQ → Core

1, IDCT, FB → Core 2)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(d) MP3 on 3-stages pipeline (PD2, HD, deQ → Core

1, IDCT → Core 2, FB → Core 3)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(e) TDE on 2-stages pipeline (FFT, DFT → Core 1,

FFT, IDFT → Core 2, FB → Core 3)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Jitter Facter

P
ow

er
 (

W
at

t)

DPA (γ=1.5)
PBOOA−QP(γ=1.5)
PBOOA−FH(γ=1.5)
DPA (γ=2)
PBOOA−QP(γ=2)
PBOOA−FH(γ=2)

(f) TDE on 3-stages pipeline (FFT → Core 1, DFT →
Core 2, FFT, IDFT → Core 3)

Figure 4.4: Average idle power consumption for three applications on 2-stage and 3-stage pipeline

architectures

103

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

deadline factor γ from 1.5 to 2 with step 0.5. The simulation results of three approaches are

shown in Fig. 4.4. In Fig. 4.4, each line represents the average energy consumption under the

varied jitter factor settings with the fixed deadline factor and task mapping. From figures,

we can make the following observations: (1) Pay-Bust-Only-Once based approaches always

outperform deadline partition approach for all settings on both pipeline architectures. We

list average normailized power savings of PBOOA-QP and PBOOA-FH with respect to DPA

in Tab. 4.3. (2) The average idle power consumptions of three approaches increase as jitter

increases, since the bigger jitter requires the longer Ton to gurantee the worst-case end-to-end

deadline. (3) The average idle power consumptions of three approaches decrease as end-to-end

deadline increases. This is expected becasue the loose end-to-end deadline requirement could

result smaller execution time Ton and longer sleep time Toff . (4) One interesting obervation

is that Pay-Bust-Only-Once based approaches could achieve more power savings on 3-stage

pipeline than 2-stage pipeline for different jitter and deadline settings. This is caused by the

fact that DPA on 3-stage pipeline pay burst for more times than 2-stage pipeline, which leads

PBOOA-QP and PBOOA-FH can achieve more power savings on 3-satge pipeline.

5 6 7 8 9 10 11 12 13 14 15
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Period (ms)

P
ow

er
 (

W
at

t)

DPA PBOOA−QP PBOOA−FH

Figure 4.5: Average power consumption with tsw varying.

Next, we conduct the experiment to show the impact of time overhead of state transition tsw

to the effectiveness of our approaches. H.263 application with jitter factor ϕ = 0.5 and deadline

104

4.6 Performance Evaluations

factor γ = 1 runs in 3-stage pipeline architectures with homogeneous 70-nm processors. We vary

the time overhead of state transition tsw from 5ms to 15ms with fixed step size 1ms. Fig. 4.5

illustrates the average power consumptions for the three compared approaches. In Fig. 4.5, we

can observe that our approaches can find efficient solutions and outperform DPA at all of tsw

settings. Besides, when tsw increases, the average power consumptions of DPA increases faster,

compared to pay-burst-only-once based approaches. This is because, DPA generates the less

idle time due to suffering from paying burst for many times, compared to pay-burst-only-once

based approaches, as we show in Section 4.4. The increase of tsw will reduce the opportunities

of turnning off the processor, which results entering sleep modes should be more difficult for

DPA.

70 80 90 100 110 120 130
0.3

0.4

0.5

0.6

0.7

0.8

Period (ms)

P
ow

er
 (

W
at

t)

DPA PBOOA−QP PBOOA−FH

Figure 4.6: Average power consumption with period varying.

Then, we discuss the impact of the period setting to the effectiveness of the approaches.

MP3 application with jitter factor ϕ = 1 and deadline factor γ = 1.5 runs in 2-stage pipeline

architectures with homogeneous 70-nm processors. We vary period settings from 70ms to 130ms

with fixed step size 10ms. Fig. 4.6 illustrates the average power consumptions for the three

compared approaches under different period settings. From Fig. 4.6, we can see that the pay-

burst-only-once based approaches outperforms DPA at all the period settings. Furthermore,

the average power consumption of all approaches decreases when the period increases. This is

105

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

expected because the bigger period of the application can prolong the idle intervals.

In the end, we demonstrate the scalability of our approaches. We test our approaches by

up to 20-stage heterogeneous pipeline. The execution time of subtasks mapped on each stage

are randomly generated between 5ms and 15ms. According to power model presented in Sec-

tion 4.3.2, power profile of each stage can be generated by randomly select voltage Vdd between

0.5V and 0.8V . The activation period of the event stream is 40ms with jitter factor ϕ = 1. The

end-to-end deadline for the test case with different stage number is determined by n · 20, where

n is the stage number. The overhead value of state transition tsw and Esw of different stages

are randomly selected between [1ms, 5ms] and [400uJ, 800uJ], respectively. Based on the ob-

servation that deadline partition algorithm may suffer from the deadline combination explosion

and the costly
⊗

computation, we set search step as 5 for three compared approaches. Fig. 4.7

shows the power consumption and computation overhead on different pipelines architecture.

From this figure, we can have below observations: (1) As shown in Fig. 4.7(a), the compu-

tation overhead of deadline partition algorithm increases exponentially. When stage number

exceeds 10, deadline partition algorithm (DPA) fail to generate the results due to expiration

of time budget of 8 hours. For the case of 9-stage pipeline, DPA takes almost 420 minutes,

which is 9182 times longer than the the 3-stage pipeline case. This is expected because the

deadline combinations will increase exponentially as stage number increases. In addition, as

the stage number is increasing, the times of computing the resource demand of each following

stage, which requires the lower bound of the output arrival curve from the previous stage, are

increasing. Computing this output curve requires numerical min-plus convolution which will

incur considerable computational and memory overheads. (2) Compared to deadline partition

algorithm, Pay-Burst-Only-Once based approaches are fast and the computation time increases

slowly with respect to the stage number, especially for PBOOA-FH. With the case of 20-stage

pipeline, PBOOA-QP approach takes 3.7 minutes, 124 times more computing time than the

3-stage case. PBOOA-FH takes only 0.08 minutes to generate the result, only 7.5 times than

the 3-stage case. (3) In the context of average idle power consumption, Pay-Burst-Only-Once

based approaches are more energy-efficient than deadline partition algorithm. In Fig. 4.7(b),

we can see PBOOA-QP and PBOOA-FH approaches always outperform DPA for all pipeline

architectures. It indicate that our approaches are not only faster but also more energy-efficient

than DPA approach. Besides, as observed in above experiments, the gap of power consumption

between deadline partition algorithm and Pay-Burst-Only-Once based algorithm are increasing

as the stage number is increasing. This is expected because, as the stage number increases,

106

4.6 Performance Evaluations

5 10 15 20

10
−2

10
0

10
2

Stage Number

C
o

m
p

u
ta

tio
n

 T
im

e
 (

M
in

u
te

s)

DPA PBOOA−QP PBOOA−FH

(a) Time consumption

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Stage Number

P
o

w
e

r
(W

a
tt
)

DPA PBOOA−QP PBOOA−FH

(b) Power consumption

Figure 4.7: Computation time and power computation and for heterogeneous pipelined system

107

4. POWER MANAGEMENT FOR REAL-TIME MULTI-CORE SYSTEMS

the times that DPA should pay burst also increases. In contrast, the proposed approaches only

need to pay burst only once, which leads the tighter end-to-end delay bound and prolong the

idle intervals of the stages for energy efficiency. (4) PBOOA-FH approach can achieve almost

identical average idle power consumption with respect to PBOOA-QP approach with almost

10x speedup. In some cases, PBOOA-FH approach can even achieve more energy savings than

PBOOA-QP. This is because that, in contrast to PBOOA-QP approach, PBOOA-FH approach

integrates break-even time constraints into the optimization phase, which leads PBOOA-FH

approach can find the better solutions than PBOOA-QP approach.

4.7 Summary

In this chapter, we study the problem of energy minimization for coarse-grained pipelined

systems under hard real-time constraints and propose new approaches based on an inverse use of

the pay-burst-onlyonce principle. We formulate the problem by means of the resource demands

of individual pipeline stages and propose two new approaches, a quadratic programming-based

approach and fast heuristic, to solve the problem. In the quadratic programming approach, the

problem is transformed into a standard quadratic programming with box constraint and then

solved by a standard quadratic programming solver. Observing the problem is NP-hard, the

fast heuristic is designed to solve the problem more efficiently. Moreover, our approaches are

scalable with respect to the numbers of pipelined stages. Proof-of-concept simulation results

demonstrate the effectiveness of our approaches.

In the future, we intent to extend our approaches to dynamic voltage frequency scal-

ing (DVFS) to reduce dynamic power for pipelined system. Another interesting future work

would be to target the multi-dimensional issues such as energy and thermal constraints simul-

taneously. In addition, how to combine our approaches with the consideration of the mapping

of the application is also deemed for our future work.

108

Chapter 5

Conclusion and Future Work

5.1 Main Results

In this thesis, we present a set of novel techniques to efficiently manage the resource for real-time

multi-core systems. We categorize the challenges into a few major topics and provide corre-

sponding solutions. Both hardware implementations and algorithms are presented to overcome

part of these challenges in real-time multi-core system design. The main results of this work

are summarized in the following:

• We present a dynamic partitioned cache architecture for real-time multi-core systems and

provide a implementation prototype on FPGA platform. The proposed cache architecture

allows us to dynamically allocate the cache resource with minimal timing overhead. In

this cache architecture, the cache resources are strictly isolated to prevent the cache

interference among cores. Therefore, the proposed cache can provide predictable cache

performance for real-time applications. To efficiently use cache resource and maximize

the performance of applications, the proposed cache allows cores to dynamically allocate

cache resource according to the demand of applications. Comparing to most existing

research work [35–40] in the literature, which are devoted to analyze theoretical proposals

and the simulation of reconfigurable caches, the proposed cache is physically implemented

and prototyped on FPGA. The usage of the proposed cache within a real C code has been

examined by a functionality test, which validates the correctness of the proposed cache

prototype implementation. Besides, we also investigates the chip design process for the

proposed cache memory and find the proposed cache has reasonable implementation for

the chip area and power consumption under SMIC 130nm standard cell library.

109

5. CONCLUSION AND FUTURE WORK

• We present an integrated cache management framework that improves the execution pre-

dictability for real-time multi-core systems. Our designed framework tackles schedule-

aware cache management scheme for real-time multi-core systems. The interactions be-

tween the task scheduling and the shared cache interference are studied and verified in

this framework. Comparing to most of the state-of-art work [33–35] which statically par-

titioning cache at core level, our framework partition the shared cache in task-level based

on the developed dynamic partition cache memory and manage the shared cache resource

in an efficient manner. By given design requirement, the proposed framework can auto-

matically generate fully deterministic time-triggered non-preemptive schedule and cache

configurations for system performance optimization while preventing deadline misses and

cache overflow. Besides, we discuss the design of the back-end for automatic generation

of implementation artifacts on target hardware platforms.

• We also investigate system-level power-efficient design for the pipelined real-time multi-

core system. We target the streaming application with non-deterministic workload arrivals

under hard real-time constraints. By an inverse use of the well-known pay-burst-only-once

principle [45], we develop new approaches to solve the energy-minimization problem for

pipelined multi-core embedded systems while guarantee the worst-case end-to-end delay.

Rather than directly partitioning the end-to-end deadline, we compute for the entire

pipeline one service curve which serves as a constraint for the minimal resource demand

and formulate an energy minimization problem with respect to the individual resource

demands of pipeline stages. Two heuristics, i.e., a quadratic programming heuristic and a

fast heuristic are porposed to solve this energy minimization problem. With this approach,

we can not only guarantee the overall end-to-end deadline requirement but also retrieve

the pay-burst-only-once phenomena, achieving resulting in a significant reduction in both

the energy consumption and computing overhead. Moreover, our approaches are scalable

with respect to the numbers of pipelined stages.

5.2 Future Work

This thesis presented partial solutions to various resource management problems in real-time

multi-core embedded systems. As future work, a few interesting issues and extensions can be

studied further:

110

5.2 Future Work

• In general, not all tasks in embedded system are equally critical for the system [137].

Co-hosting non-safety and safety critical tasks on a common powerful multicore proces-

sor is of paramount importance in the embedded system market. In one platform which

offer support for multiple applications, the typical case is that some of these tasks will

be more critical to the overall welfare of the platform than others. In the mixed-critical

real-time systems, co-hosting tasks with different criticalities on the same platform, cache

interferences of non-critical tasks will degrade the predictability of critical tasks. There-

fore, the cache component in mixed-critical real-time systems should be able to protect

critical tasks from cache interferences of non-critical tasks and guarantee the predicable

cache performance for critical tasks. Apart from enforcing predictability for critical tasks,

achieving the highest possible performance for the non-critical workload is another im-

portant optimization object in the cache resource management scheme for mixed-critical

real-time systems. As future work, it would be interesting to extent and apply the current

dynamic partitioned cache memory for mixed-critical real-time multi-core systems.

• Cache memories are a key target for energy reduction due to its large on-chip area and

high access frequency. Several studies [2, 35] show that the energy consumption of the

cache subsystem accounts for over 50% of the overall chip. The results presented in

Section 2.6.2 also shows that reducing one more cache ways can on average reducing 127

mW power consumption under the specific cache settings. This means turning off cache

ways can significantly reduce the power consumption of the system. This brings another

potential research direction about how to dynamic manage the cache ways resource to

achieve energy efficiency for the cache subsystem. Besides, clock/power gating circuit can

be introduced into our cache design and our proposed cache memory also be extended for

low power design implementation.

• Thermal issues are not covered in this thesis. However, thermal issues are becoming

increasingly important in the design of modern multi-core embedded systems. The power

density of the chip has rapidly increased with every new generation of silicon. Power

converts to heat and too much heat can destroy a chip beyond use. To avoid over-

heating, the overall effect is to force the multi-core chip to shut a part of the cores down

and move workload from core to core to spread the heat across the chip. This effect will

in turn limits the performance scale of the multi-core. As a future work, we would like to

pay more attention on temperature optimization for real-time multi-core systems.

111

5. CONCLUSION AND FUTURE WORK

112

Appendix A

List of Publication

The following list summarizes the publications on which this thesis are based. The pertinent

chapters of this thesis are given in brackets.

Journal Paper

1. Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, Todor Stefanov, Feng Li. Re-

configueable Cache for Real-time MPSOCs: Scheduling and Implementation. In Micro-

processors and Microsystems (MICPRO), 2016. (chapter 2)

2. Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Applying Pay-burst-only-

once Principle for Periodic Power Management in Hard Real-time Pipelined Multiproces-

sor Systems. In ACM Transactions on Design Automation of Electronic Systems (TO-

DAES), 2015. (chapter 4)

Conference Paper

1. Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Kai Huang, and Di Liu. Shared L2 Cache

Management in Multicore Real-Time System. In 22nd Annual IEEE International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM), 2014. (chapter

2)

2. Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, and Todor Stefanov. Automatic

cache partitioning and time-triggered scheduling for real-time mpsocs. In 2014 Inter-

national Conference on Reconfigurable Computing and FPGAs (ReConFig 2014), 2014

(chapter 2)

113

A. LIST OF PUBLICATION

3. Gang Chen, Kai Huang, Jia Huang, and Alois Knoll. Cache partitioning and scheduling

for energy optimization of real-time mpsocs. In 24th IEEE International Conference on

Application-specific Systems, Architectures and Processors (ASAP), 2013. (chapter 3)

4. Gang Chen, Kai Huang, Christian Buckl, and Alois Knoll. Energy optimization with

worst-case deadline guarantee for pipelined multiprocessor systems. In Design, Automa-

tion and Test in Europe (DATE), 2013. (chapter 4)

It follows a list of publications that are not fully covered in this thesis.

Journal Paper

1. Gang Chen, Kai Huang, Long Cheng, Biao Hu, and Alois Knoll. Dynamic Partitioned

Cache Memory for Real-Time MPSoCs with Mixed Criticality. In Journal of Circuits,

Systems and Computers (JCSC), 2016.

2. Gang Chen, Kai Huang, and Alois Knoll. Energy optimization for real-time multipro-

cessor system-on-chip with optimal dvfs and dpm combination. In ACM Transactions on

Embedded Computing Systems (TECS), 2014.

Conference Paper

1. Biao Hu, Kai Huang, Gang Chen, Long Cheng and Alois Knoll. Adaptive Runtime

Shaping for Mixed-Criticality Systems. 2015 ACM International Conference on Embedded

Software (EMSOFT), 2015. (Accepted)

2. Long Cheng, Kai Huang, Gang Chen, Alois Knoll and Biao Hu. Evaluation of Runtime

Monitoring Methods for Real-Time Event Stream. In 10th IEEE International Symposium

on Industrial Embedded Systems (SIES), 2015.

3. Biao Hu, Kai Huang, Gang Chen, and Alois Knoll. Evaluation of Runtime Monitoring

Methods for Real-Time Event Stream. In 20th Asia and South Pacific Design Automation

Conference (ASP-DAC), 2015.

4. Gang Chen, Kai Huang, and Alois Knoll. Adaptive Dynamic Power Management for

Hard Real-time Pipelined Multiprocessor Systems. In 20th IEEE International Confer-

ence on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2014.

(23% acceptance rate)

114

5. Di Liu, Jelena Spasic, Jiali Teddy Zhai, Todor Stefanov, and Gang Chen. Resource

optimization of csdf-modeled streaming applications with latency constraints. In Design,

Automation and Test in Europe (DATE), 2014. (23% acceptance rate)

6. Gang Chen, Kai Huang, and Alois Knoll. Extended abstract: Energy optimization for

real-time multiprocessor system-on-chip with optimal dvfs and dpm combination. In 11th

IEEE Symposium on Embedded Systems for Real-time Multimedia (ESTIMedia), 2013.

(Best Paper Award)

7. Gang Chen, Kai Huang, Jia Huang, Buckl Christian, and Alois Knoll. Effective on-

line power management with adaptive interplay of dvs and dpm for embedded real-time

system. In 16th Euromicro International Conference on Digital System Design (DSD),

2013.

8. Kai Huang, Hardik Shah, Karan Savant, Dexin Chen, Gang Chen, Sebastian Klose, and

Alois Knoll. A lego/fpga-based platform for the education of cyber-physical/embedded

systems. In Workshop on Embedded and Cyber-Physical Systems Education (WESE),

2013.

9. Kai Huang, Gang Chen, Christian Buckl, and Alois Knoll. Conforming the runtime in-

puts for hard real-time embedded systems. In Proceedings of the 49th Design Automation

Conference (DAC), 2012. (Top Conference in EDA Field, 22% acceptance rate)

10. Kai Huang, Gang Chen, Nadine Keddis, Michael Geisinger, and Christian Buckl. Demo

abstract: An inverted pendulum demonstrator for timed model-based design of embedded

systems. In 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems

(ICCPS), 2012.

115

A. LIST OF PUBLICATION

116

References

[1] Robert Jones. Modeling and design techniques reduce 90 nm power. EE Times,

August 2004. ix, 8, 9

[2] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly configurable

cache for low energy embedded systems. ACM Transactions on Embedded Com-

puting Systems, pages 363–387, 2005. ix, 18, 19, 20, 43, 111

[3] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic

voltage scaling and adaptive body biasing for lower power microprocessors

under dynamic workloads. In Proceedings of the 2002 IEEE/ACM international con-

ference on Computer-aided design (ICCAD), 2002. xi, 82, 101

[4] W.X. Wang and P. Mishra. Leakage-Aware Energy Minimization Using Dy-

namic Voltage Scaling and Cache Reconfiguration in Real-Time Systems. In

Proceedings of the 23rd International Conference on VLSI Design (VLSID), 2010. xi, 82,

101

[5] M. Lukasiewycz, S. Steinhorst, F. Sagstetter, Wanli Chang, P. Waszecki,

M. Kauer, and S. Chakraborty. Cyber-Physical Systems Design for Electric

Vehicles. In Proceedings of 2012 15th Euromicro Conference on Digital System Design

(DSD), pages 477–484, Sept 2012. 1

[6] Peter Marwedel. Embedded System Design: Embedded Systems Foundations of Cyber-

Physical Systems. Springer, 2011. 2

[7] Jiayin Li Meikang Qiu. Real-Time Embedded Systems: Optimization, Synthesis, and

Networking. CRC Press, 2011. 2

117

REFERENCES

[8] Giorgio Buttazzo. Research Trends in Real-time Computing for Embedded

Systems. ACM SIGBED Review, 3(3):1–10, July 2006. 2

[9] Hardik Shah, Andreas Raabe, and Alois Knoll. Challenges of WCET Anal-

ysis in COTS Multi-core due to Different Levels of Abstraction. In Proceedings

of 1st Workshop on High-performance and Real-time Embedded Systems (HiRES), 2013.

4

[10] JohnA. Stankovic and Krithi Ramamritham. What is predictability for real-

time systems? Real-Time Systems, 2(4):247–254, 1990. 4

[11] Lothar Thiele and Reinhard Wilhelm. Design for Timing Predictability. Real-

Time Systems, 28(2-3):157–177, November 2004. 4

[12] International Technology Roadmap for Semiconductors.

http://www.itrs.net/reports.html. 5, 10

[13] P. Gepner and M.F. Kowalik. Multi-Core Processors: New Way to Achieve

High System Performance. In Proceedings of 2006 International Symposium on Par-

allel Computing in Electrical Engineering (PARELEC), pages 9–13, Sept 2006. 5, 8

[14] David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. Morgan Kaufmann, 2013. 5

[15] Goojin Jeong, Young-Ugk Kim, Hansu Kim, Young-Jun Kim, and Hun-Joon

Sohn. Prospective materials and applications for Li secondary batteries. Energy

and Environmental Science, 4:1986–2002, 2011. 5

[16] Yen-Kuang Chen, Chaitali Chakrabarti, Shuvra Bhattacharyya, and Bruno

Bougard. Signal processing on platforms with multiple cores: Part 1 -

Overview and methodologies. IEEE Signal Processing Magazine, 2009. 6

[17] D. Dasari, B. Akesson, V. Nelis, M.A. Awan, and S.M. Petters. Identifying

the sources of unpredictability in COTS-based multicore systems. In Proceedings

of 2013 8th IEEE International Symposium on Industrial Embedded Systems (SIES), 2013.

6, 7, 8, 40

118

REFERENCES

[18] B.C. Ward, J.L. Herman, C.J. Kenna, and J.H. Anderson. Making Shared

Caches More Predictable on Multicore Platforms. In Proceedings of 2013 25th

Euromicro Conference on Real-Time Systems (ECRTS), 2013. 7, 10, 17, 18, 41, 43

[19] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications

of the Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, March

1995. 7

[20] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors.

IEEE Signal Processing Magazine, 26(6):26–37, November 2009. 7

[21] ARM Cortex-A15 series. http://www.arm.com/products. 7, 16

[22] OpenSPARC. http://www.opensparc.net/. 7, 16

[23] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara DÃ¶rr, Sebas-

tian Hahn, Florian Haupenthal, Michael Jacobs, AmirH. Moin, Jan Reineke,

Bernhard Schommer, and Reinhard Wilhelm. Impact of Resource Sharing on

Performance and Performance Prediction: A Survey. In Proceedings of 24th

Conference on Concurrency Theory (CONCUR). 2013. 8, 17, 40, 42, 72

[24] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling

and analysis for multicores. In Proceedings of 2009 ACM International Conference

on Embedded Software (EMSOFT), 2009. 8, 10, 17, 41, 42

[25] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fe-

dorova, and Manuel Prieto. Survey of Scheduling Techniques for Addressing

Shared Resources in Multicore Processors. ACM Computing Surveys, pages 4:1–

4:28, 2012. 8, 16, 17, 18, 72

[26] Intel 22nm Technology. http://www.intel.com/silicon-innovations. 8

[27] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark Silicon and the End of Multicore Scaling.

In Proceedings of the 38th Annual International Symposium on Computer Architecture

(ISCA), pages 365–376, 2011. 9, 77

119

REFERENCES

[28] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Ngoc Dao, David Patter-

son, and Krste Asanovic. A Hardware Evaluation of Cache Partitioning to

Improve Utilization and Energy-Efficiency while Preserving Responsiveness.

In Proceedings of 40th ACM/IEEE International Symposium on Computer Architecture

(ISCA), 2013. 10, 18, 41, 42

[29] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and

P. Sadayappan. Gaining Insights into Multicore Cache Partitioning: Bridging

the Gap between Simulation and Real Systems. In Proceedings of IEEE 14th

International Symposium on High Performance Computer Architecture (HPCA), 2008.

10, 17, 18, 41, 42, 43

[30] Stuart Fisher. Certifying Applications in a Multi-Core Environment: The

World’s First Multi-Core Certification to SIL 4. White paper, SYSGO AG, 2014.

10, 17

[31] Hyoseung Kim, A. Kandhalu, and R. Rajkumar. A Coordinated Approach for

Practical OS-Level Cache Management in Multi-core Real-Time Systems. In

Proceedings of 2013 25th Euromicro Conference on Real-Time Systems (ECRTS), 2013.

10, 17, 18, 43, 67

[32] Weixun Wang, Prabhat Mishra, and Ann Gordon-Ross. Dynamic Cache Re-

configuration for Soft Real-Time Systems. ACM Transactions on Embedded Com-

puting Systems, 2012. 10, 42

[33] Xing Fu, K. Kabir, and Xiaorui. Cache-Aware Utilization Control for En-

ergy Efficiency in Multi-Core Real-Time Systems. In Proceedings of 2011 23rd

Euromicro Conference on Real-Time Systems (ECRTS), 2011. 10, 40, 42, 43, 74, 110

[34] Tiantian Liu, Yingchao Zhao, Minming Li, and Chun Jason Xue. Joint task

assignment and cache partitioning with cache locking for WCET minimization

on MPSoC. Journal of Parallel and Distributed Computing, 2011. 10, 40, 42, 43, 74,

110

[35] Weixun Wang, P. Mishra, and S. Ranka. Dynamic cache reconfiguration and

partitioning for energy optimization in real-time multi-core systems. In Pro-

ceedings of 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), 2011.

10, 11, 37, 40, 41, 42, 43, 44, 65, 69, 74, 109, 110, 111

120

REFERENCES

[36] D.H. Albonesi. Selective cache ways: on-demand cache resource allocation.

In Proceedings of 1999 32nd Annual International Symposium on Microarchitecture (MI-

CRO), pages 248–259, 1999. 11, 15, 19, 37, 43, 109

[37] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache

Memory. Journal of Supercomputing, 28(1):7–26, 2004. 11, 15, 19, 37, 109

[38] D. Benitez, J.C. Moure, D. Rexachs, and E. Luque. A reconfigurable cache

memory with heterogeneous banks. In Proceedings of Design, Automation Test in

Europe Conference Exhibition (DATE), pages 825–830, 2010. 11, 15, 19, 37, 109

[39] Karthik T. Sundararajan, Timothy M. Jones, and Nigel Topham. A Recon-

figurable Cache Architecture for Energy Efficiency. In Proceedings of the 8th ACM

International Conference on Computing Frontiers (CF), 2011. 11, 15, 19, 37, 109

[40] S. Mittal, Zhao Zhang, and J.S. Vetter. FlexiWay: A cache energy saving

technique using fine-grained cache reconfiguration. In Proceedings of 2013 IEEE

31st International Conference on Computer Design (ICCD), 2013. 11, 37, 42, 109

[41] K. Huang, L. Santinelli, J.J. Chen, L. Thiele, and G.C. Buttazzo. Periodic

power management schemes for real-time event streams. In Proceedings of the

48th IEEE International Conference on Decision and Control (CDC), 2009. 13, 79, 81,

85, 89, 101

[42] K. Huang, J.J. Chen, and L. Thiele. Energy-Efficient Scheduling Algorithms

for Periodic Power Management for Real-Time Event Streams. In Proceedings of

the 17th IEEE International Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA), 2011. 13, 79, 81

[43] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling

hard real-time systems. In Proceedings of the 2000 IEEE International Symposium on

Circuits and Systems, 2000. 13, 81, 84

[44] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time Inter-

faces for Composing Real-time Systems. In Proceedings of International Conference

On Embedded Software (EMSOFT), pages 34–43, 2006. 13

121

REFERENCES

[45] J.Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queu-

ing Systems for the Internet. Springer, 2001. 13, 78, 79, 81, 84, 87, 93, 110

[46] Seongbeom Kim, Dhruba Chandra, and D. Solihin. Fair cache sharing and

partitioning in a chip multiprocessor architecture. In Proceedings of 2004 13th

International Conference on Parallel Architecture and Compilation Techniques (PACT),

pages 111–122, Sept 2004. 16

[47] Ravi Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP

Platforms. In Proceedings of the 18th Annual International Conference on Supercom-

puting, 2004. 16

[48] Gang Chen, Kai Huang, Jia Huang, and Alois Knoll. Cache Partitioning and

Scheduling for Energy Optimization of Real-Time MPSoCs. In Proceedings of

24th IEEE International Conference on Application-specific Systems, Architectures and

Processors (ASAP), June 2013. 17, 24

[49] Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Kai Huang, and Di Liu. Shared

L2 Cache Management in Multicore Real-Time System. In Proceedings of 22nd

Annual IEEE International Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), 2014. 17, 40

[50] Sangyeun Cho and Lei Jin. Managing Distributed, Shared L2 Caches Through

OS-Level Page Allocation. In Proceedings of the 39th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), 2006. 17

[51] Brian N. Bershad, Dennis Lee, Theodore H. Romer, and J. Bradley Chen.

Avoiding Conflict Misses Dynamically in Large Direct-mapped Caches. ACM

SIGOPS Operating Systems Review, pages 158–170, 1994. 17

[52] Wang Jing and Rui Fan. The research of Hibernate cache technique and ap-

plication of EhCache component. In Proceedings of 2011 IEEE 3rd International

Conference on Communication Software and Networks (ICCSN), pages 160–162, 2011.

17

[53] Lixin Zhang, Evan Speight, Ram Rajamony, and Jiang Lin. Enigma: Archi-

tectural and Operating System Support for Reducing the Impact of Address

122

REFERENCES

Translation. In Proceedings of 2010 24th ACM International Conference on Supercom-

puting (ICS), 2010. 17

[54] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pelliz-

zoni. Real-time cache management framework for multi-core architectures. In

Proceedings of 2013 IEEE 19th Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2013. 18

[55] N. Suzuki, Hyoseung Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, and

R. Rajkumar. Coordinated Bank and Cache Coloring for Temporal Protection

of Memory Accesses. In Proceedings of 2013 IEEE 16th International Conference on

Computational Science and Engineering (ICESS), 2013. 18, 43

[56] A.D.S. Gil, J.I.B. Benitez, M.H. Calvino, and E.H. Gomez. Reconfigurable

Cache Implemented on an FPGA. In Proceedings of 2010 International Conference

on Reconfigurable Computing and FPGAs (ReConFig), pages 250–255, Dec 2010. 18, 19,

20

[57] AD. Santana Gil, F.J. Quiles Latorre, M. Hernandez Calvino, E. Her-

ruzo Gomez, and J.I Benavides Benitez. Optimizing the physical implemen-

tation of a reconfigurable cache. In Proceedings of 2012 International Conference on

Reconfigurable Computing and FPGAs (ReConFig), pages 1–6, 2012. 18, 19, 20

[58] Afzal Malik, Bill Moyer, and Dan Cermak. A Low Power Unified Cache

Architecture Providing Power and Performance Flexibility. In Proceedings of the

2000 International Symposium on Low Power Electronics and Design (ISLPED), pages

241–243, 2000. 18, 19, 20

[59] Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di Liu, and Todor Stefanov.

Automatic Cache Partitioning and Time-triggered Scheduling for Real-time

MPSoCs. In Proceedings of the 2014 9th International Conference on Reconfigurable

Computing and FPGAs (ReConfig), 2014. 20, 40

[60] Creating Multiprocessor Nios Systems Tutorial. http://www.altera.com. 21

[61] Arthur Pyka, Mathias Rohde, and Sascha Uhrig. A Real-Time Capable First-

level Cache for Multi-cores. In Proceedings of 2013 1st Workshop on High-performance

and Real-time Embedded Systems (HiRES), 2013. 21, 73

123

REFERENCES

[62] Adapteva Parallella. http://www.adapteva.com/parallella/. 22

[63] Jianwei Dai and Lei Wang. An Energy-efficient L2 Cache Architecture Using

Way Tag Information Under Write-through Policy. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 21(1):102–112, January 2013. 24

[64] Poonacha Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way

multithreaded Sparc processor. IEEE Micro, 25(2):21–29, March 2005. 25

[65] Daniel Henderson Jim Mitchell and George Ahrens. IBM POWER5

Processor-based Servers: A Highly Available Design for Business-Critical Ap-

plications. White paper, IBM, 2005. 25

[66] Nhon Quach. High Availability and Reliability in the Itanium Processor. IEEE

Micro, 20(5):61–69, September 2000. 25

[67] Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. FIFO Cache Analysis

for WCET Estimation: A Quantitative Approach. In Proceedings of Design,

Automation Test in Europe Conference Exhibition (DATE), 2013. 26

[68] Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla, Guillem Bernat,

and Mateo Valero. Hardware Support for WCET Analysis of Hard Real-time

Multicore Systems. In Proceedings of 2009 36th Annual International Symposium on

Computer Architecture (ISCA), 2009. 26

[69] Synopsys Design Compilers. http://www.synopsys.com. 30, 31

[70] Semiconductor Manufacturing International Corporation.

http://www.smics.com. 30, 31

[71] ARM Artisan Physical IP Solutions. http://www.artisan.com. 31

[72] Martin Lukasiewycz, Sebastian Steinhorst, Florian Sagstetter, Wanli

Chang, Peter Waszecki, Matthias Kauer, and Samarjit Chakraborty.

Cyber-Physical Systems Design for Electric Vehicles. In Proceedings of 2012

Euromicro Conference on Digital System Design (DSD), 2012. 39, 44

[73] Junqing Wei, J.M. Snider, Junsung Kim, J.M. Dolan, R. Rajkumar, and

B. Litkouhi. Towards a viable autonomous driving research platform. In Pro-

ceedings of 2013 IEEE Intelligent Vehicles Symposium (IV), 2013. 40

124

REFERENCES

[74] M.K. Qureshi et al. Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches. In Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2006. 42

[75] D. Sanchez et al. Vantage: Scalable and efficient fine-grain cache partitioning.

In Proceedings of 2011 38th Annual International Symposium on Computer Architecture

(ISCA), 2011. 42

[76] Karthik T. Sundararajan, Timothy M. Jones, and Nigel P. Topham. Energy-

efficient Cache Partitioning for Future CMPs. In Proceedings of the 21st Interna-

tional Conference on Parallel Architectures and Compilation Techniques, pages 465–466,

2012. 42

[77] C.M. Patrick, R. Garg, Seung Woo Son, and M. Kandemir. Improving I/O

performance using soft-QoS-based dynamic storage cache partitioning. In Pro-

ceedings of 2009 IEEE International Conference on Cluster Computing and Workshops,

pages 1–10, Aug 2009. 42

[78] Bach D. Bui, Marco Caccamo, Lui Sha, and Joseph Martinez. Impact of Cache

Partitioning on Multi-tasking Real Time Embedded Systems. In Proceedings

of 2008 14th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2008. 42

[79] Rakesh Reddy and Peter Petrov. Cache partitioning for energy-efficient and

interference-free embedded multitasking. ACM Transactions on Embedded Com-

puting Systems, March 2010. 42

[80] Andrew Wolfe. Software-based Cache Partitioning for Real-time Applica-

tions. Journal of Computer and Software Engineering, pages 315–327, 1994. 43

[81] Frank Mueller. Compiler Support for Software-Based Cache Partitioning. In

Proceedings of ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for

Real-Time Systems, 1995. 43

[82] C.E. Lin, Hung-Ming Yen, and Yu-Shang Lin. Development of Time Triggered

hybrid data bus System for small aircraft digital avionic system. In Proceedings

of IEEE/AIAA 26th Digital Avionics Systems Conference (DASC), 2007. 44

125

REFERENCES

[83] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered Scheduling

of Mixed-Criticality Systems. In Proceedings of 2011 IEEE 32nd Real-Time Systems

Symposium (RTSS), 2011. 44

[84] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty. Schedule integration

for time-triggered systems. In Proceedings of 2013 18th Asia and South Pacific Design

Automation Conference (ASP-DAC), 2013. 44

[85] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. Time-

triggered implementations of mixed-criticality automotive software. In Pro-

ceedings of the 15th Conference for Design, Automation and Test in Europe (DATE),

2012. 44

[86] Truong Nghiem, George J. Pappas, Rajeev Alur, and Antoine Girard. Time-

Triggered Implementations of Dynamic Controllers. ACM Transactions on Em-

bedded Computing Systems (TECS), pages 58:1–58:24, 2012. 44, 54

[87] Truong Nghiem, George J. Pappas, Rajeev Alur, and Antoine Girard. Time-

triggered Implementations of Dynamic Controllers. In Proceedings of the 6th

ACM/IEEE International Conference on Embedded Software (EMSOFT), 2006. 44

[88] Jia Huang, J.O. Blech, A. Raabe, C. Buckl, and A. Knoll. Static scheduling

of a Time-Triggered Network-on-Chip based on SMT solving. In Proceedings of

the 15th Design, Automation Test in Europe Conference Exhibition (DATE), 2012. 44

[89] A.K. Gendy and M.J. Pont. Automatically Configuring Time-Triggered Sched-

ulers for Use With Resource-Constrained, Single-Processor Embedded Sys-

tems. IEEE Transactions on Industrial Informatics, pages 37–46, 2008. 44, 56

[90] Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng, and Ge Yu. New schedulabil-

ity test conditions for non-preemptive scheduling on multiprocessor platforms.

In Proceedings of 2008 Real-Time Systems Symposium (RTSS), 2008. 46

[91] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A free, commercially representative embedded benchmark

suite. In Proceedings of 2001 IEEE International Workshop on Workload Characteriza-

tion (WWC), 2001. 46, 64

126

REFERENCES

[92] SimpleScalar LLC. http://www.simplescalar.com. 46

[93] Michael J. Pont. Patterns for Time-Triggered Embedded Systems: Building Reliable

Applications with the 8051 Family of Microcontrollers. Addison-Wesley Professional, 2001.

54, 69

[94] Richard Barry. Using the FreeRTOS Real Time Kernel. Real Time Engineers Ltd,

2010. 57

[95] Jean J Labrosse. uC/OS-III: The Real-Time Kerne. Micrium Press, 2009. 57

[96] Creating a System With Qsys. https://www.altera.com/. 63

[97] IBM ILOG CPLEX. http://www.ibm.com/software/. 64

[98] CHStone. http://www.ertl.jp/chstone/. 64

[99] DSPstone. http://www.ice.rwth-aachen.de/. 64

[100] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-

versity, 2011. 65

[101] UTDSP. http://www.eecg.toronto.edu/UTDSP.html/. 65

[102] Versabench. http://groups.csail.mit.edu/versabench. 65

[103] H. Nikolov et al. Systematic and Automated Multiprocessor System Design,

Programming, and Implementation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, pages 542–555, 2008. 65

[104] Malardalen Real-Time Research Center. http://www.es.mdh.se/. 65

[105] S. Carta, A. Alimonda, A. Pisano, A. Acquaviva, and L. Benini. A control

theoretic approach to energy-efficient pipelined computation in MPSoCs. ACM

Transactions on Embedded Computing Systems, 2007. 78, 80

[106] Y. Yu and V.K. Prasanna. Power-aware resource allocation for independent

tasks in heterogeneous real-time systems. In Proceedings of 9th International Con-

ference on Parallel and Distributed Systems, 2002. 78, 80

127

REFERENCES

[107] R.B. Xu, R. Melhem, and D. Mosse. Energy-Aware Scheduling for Streaming

Applications on Chip Multiprocessors. In Proceedings of 28th IEEE International

Real-Time Systems Symposium, 2007. 78

[108] H. Javaid, M. Shafique, S. Parameswaran, and J. Henkel. Low-power adaptive

pipelined MPSoCs for multimedia: An H.264 video encoder case study. In

Proceedings of 48th ACM/EDAC/IEEE Design Automation Conference (DAC), 2011.

78, 80

[109] S.L. Shee and S. Parameswaran. Design methodology for pipelined heteroge-

neous multiprocessor system. In Proceedings of the 44th annual Design Automation

Conference (DAC), 2007. 80

[110] H. Javaid and S. Parameswaran. A design flow for application specific hetero-

geneous pipelined multiprocessor systems. In Proceedings of 2009 46th ACM/IEEE

annual Design Automation Conference (DAC), 2009. 80

[111] S.L. Shee, A. Erdos, and S. Parameswaran. Heterogeneous multiprocessor

implementations for JPEG: a case study. In Proceedings of the 4th international

conference on Hardware/software codesign and system synthesis (CODES+ISSS), 2006.

80

[112] I. Karkowski and H. Corporaal. Design of heterogenous multi-processor em-

bedded systems: applying functional pipelining. In Proceedings of 1997 Interna-

tional Conference on Parallel Architectures and Compilation Techniques, 1997. 80

[113] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini. A Feedback-

Based Approach to DVFS in Data-Flow Applications. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2009. 80

[114] H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran. System-level

application-aware dynamic power management in adaptive pipelined MP-

SoCs for multimedia. In Proceedings of 2011 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), nov. 2011. 80

[115] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-

Vincentelli. Period Optimization for Hard Real-time Distributed Automotive

128

REFERENCES

Systems. In Proceedings of 44th ACM/IEEE Design Automation Conference (DAC),

2007. 80

[116] S.Y. Hong, T. Chantem, and X.S. Hu. Meeting End-to-End Deadlines through

Distributed Local Deadline Assignments. In Proceedings of 2011 IEEE 32nd Real-

Time Systems Symposium (RTSS), 2011. 80

[117] P. de Langen and B. Juurlink. Leakage-aware multiprocessor scheduling for

low power. In Proceedings of 20th International Parallel and Distributed Processing

Symposium (IPDPS), 2006. 80

[118] P. de Langen and B. Juurlink. Leakage-Aware Multiprocessor Scheduling.

Journal of Signal Processing Systems, 2009. 80, 82

[119] D. Liu, J. Spasic, J.T. Zhai, T. Stefanov, and G. Chen. Resource Optimiza-

tion of CSDF-modeled Streaming Applications with Latency Constraints. In

Proceedings of Design, Automation and Test in Europe (DATE), March 2014. 80

[120] S. Maxiaguine, A. Chakraborty and L. Thiele. DVS for buffer-constrained

architectures with predictable QoS-energy tradeoffs. In Proceedings of the 2005

IEEE/ACM International Conference on Hardware/Software Codesign and System Syn-

thesis (CODES+ISSS), 2005. 81, 85

[121] J.J. Chen, N. Stoimenov, and L. Thiele. Feasibility Analysis of On-Line DVS

Algorithms for Scheduling Arbitrary Event Streams. In Proceedings of the 2009

30th IEEE Real-Time Systems Symposium (RTSS), 2009. 81, 85

[122] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU

energy. In Proceedings of 36th Annual Symposium on Foundations of Computer Science,

1995. 81

[123] S. Perathoner, K. Lampka, N. Stoimenov, L. Thiele, and J.J. Chen. Com-

bining optimistic and pessimistic DVS scheduling: An adaptive scheme and

analysis. In Proceedings of the 2010 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2010. 81

[124] K. Huang, L. Santinelli, J.J. Chen, L. Thiele, and G.C. Buttazzo. Adaptive

Dynamic Power Management for Hard Real-Time Systems. In Proceedings of

2009 30th IEEE Real-Time Systems Symposium (RTSS), 2009. 81, 85

129

REFERENCES

[125] K. Huang, L. Santinelli, J.J. Chen, L. Thiele, and G.C. Buttazzo. Applying

real-time interface and calculus for dynamic power management in hard real-

time systems. Real-Time Systems, 2011. 81

[126] K. Lampka, K. Huang, and J.J. Chen. Dynamic counters and the efficient

and effective online power management of embedded real-time systems. In

Proceedings of the 7th IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis (CODES+ISSS), 2011. 81, 85

[127] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and Automated

Multiprocessor System Design, Programming, and Implementation. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

27(3):542–555, March 2008. 82

[128] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System Architecture

Evaluation Using Modular Performance Analysis - A Case Study. International

Journal on Software Tools for Technology Transfer (STTT), 2006. 82

[129] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage

scaling for real-time embedded systems. In Proceedings of 2004 41st ACM/IEEE

Design Automation Conference (DAC), 2004. 82, 101

[130] H. Oh and S. Ha. Hardware-software cosynthesis of multi-mode multi-task

embedded systems with real-time constraints. In Proceedings of 10th International

Symposium on Hardware/Software Codesign (CODES+ISSS), 2002. 84, 102

[131] M. Fidler. Extending the Network Calculus Pay Bursts Only Once Principle

to Aggregate Scheduling. In Quality of Service in Multiservice IP Networks. 2003. 86

[132] V. Jeyakumar, A.M. Rubinov, and Z.Y. Wu. Sufficient Global Optimality

Conditions for Non-convex Quadratic Minimization Problems With Box Con-

straints. Journal of Global Optimization, 2006. 96

[133] M. Fu, Z. Luo, and Y. Ye. Approximation Algorithms for Quadratic Program-

ming. Journal of Combinatorial Optimization, 1998. 96

[134] J. Chen and S. Burer. Globally solving nonconvex quadratic programming

problems via completely positive programming. Mathematical Programming Com-

putation, 2012. 96, 101

130

REFERENCES

[135] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.

http://www.mpa.ethz.ch/Rtctoolbox, 2006. 101

[136] W. Thies and S. Amarasinghe. An empirical characterization of stream pro-

grams and its implications for language and compiler design. In Proceedings

of the 19th international conference on Parallel architectures and compilation techniques

(PACT). 102

[137] S. Baruah et al. Scheduling Real-Time Mixed-Criticality Jobs. IEEE Transac-

tions on Computers, 2012. 111

131

http://www.mpa.ethz.ch/Rtctoolbox

	List of Figures
	List of Tables
	1 Introduction
	1.1 Real-time Embedded Systems
	1.2 Multi-core Embedded Systems
	1.3 Challenges and Opportunities
	1.3.1 Opportunities
	1.3.2 Challengs

	1.4 Thesis Outline and Research Contributions
	1.5 Summary

	2 Dynamic Partitioned Shared Cache Memory
	2.1 Introduction
	2.2 Related Work
	2.3 Dynamic Partitioned Cache Design and Implementation
	2.3.1 Design Consideration and Challenge
	2.3.2 Reconfigurable Cache Architecture
	2.3.3 Cache Ways Management Unit (CWMU)
	2.3.4 Cache Control Unit (CCU)
	2.3.5 Implementation of Partitioned FIFO Replacement Policy

	2.4 Cache Generation
	2.5 Software Programming Interface
	2.6 Hardware Prototype and Verfication
	2.6.1 FPGA Synthesis Results
	2.6.2 Physical Chip Synthesis Results
	2.6.3 Functionality Verification
	2.6.4 Reconfiguration Overhead Measurement

	2.7 Summary

	3 Shared Cache Management Framework for Real-time Multicore Systems
	3.1 Introduction
	3.2 Related Work
	3.2.1 Cache Partitioning
	3.2.2 Time-triggered Scheduling

	3.3 Background
	3.3.1 Way-based Cache Partitioning
	3.3.2 Hardware Platform
	3.3.3 Task Model

	3.4 Motivation
	3.5 Framework Overview
	3.6 Synthesis Approach for Scheduling and Cache Management
	3.6.1 Time-Triggered Task Scheduling
	3.6.2 Cache Partitioning Constraints
	3.6.3 MILP Formulation Refinement

	3.7 Time-triggered Scheduling Implementation on Multi-core System
	3.7.1 Share-clock Multi-port Timer IP
	3.7.2 Implementation of Time-triggered Scheduling

	3.8 Automatic Generation
	3.8.1 Input Specifications
	3.8.2 Software Code Generation
	3.8.3 Hardware Component Generation

	3.9 Performance Evaluations
	3.9.1 Experiment Setup
	3.9.2 Timing Predictability
	3.9.3 Runtime Performance

	3.10 Case Study
	3.11 Discussion
	3.12 Summary

	4 Power Management for Real-time Multi-core Systems
	4.1 Introduction
	4.2 Related Work
	4.3 Models and Problem Definition
	4.3.1 Hardware Model
	4.3.2 Energy Model
	4.3.3 Task Model
	4.3.4 Problem Statement

	4.4 Motivation Example
	4.5 Proposed Approach
	4.5.1 Problem Formulation
	4.5.2 Quadratic Programming Transformation
	4.5.3 Quadratic Programming Heuristic
	4.5.4 Fast Heuristic

	4.6 Performance Evaluations
	4.6.1 Simulation Setup
	4.6.2 Simulation Result

	4.7 Summary

	5 Conclusion and Future Work
	5.1 Main Results
	5.2 Future Work

	A List of Publication
	References

