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“Prediction is very difficult, especially about the future.”
Niels Bohr (1885–1962)





Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit einem nichtlinearen Sollsignal-Vorfilter für mecha-
tronische Antriebssysteme. Dieses Vorfilter stellt einen Zusatz zu einem existierenden Reg-
ler dar. Es verändert ein Sollsignal dahingehend, dass der unterlagerte Regler System-
grenzen, wie beispielsweise Spannungs- und Stromgrenzen, einhält sowie voll ausnutzt, um
ein schnelles Regelverhalten zu erreichen. Das Prinzip dieses Vorfilters orientiert sich an
der modellprädiktiven Regelung, die es erlaubt, eine Kostenfunktion unter Einhaltung von
Grenzen zu minimieren.

Abstract

This work deals with predictive reference governors for mechatronic drive systems. A predic-
tive reference governor is an add-on device to an existing feedback controller and adapts a
reference signal such that constraints of the underlying control system, for example voltage
and current limitations, are respected and simultaneously fully exploited in order to achieve
a fast transient response. The concept of a predictive reference governor is closely related to
model predictive control, where a cost function is minimized in the presence of constraints.
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1

1 Introduction

The steadily increasing demand for a higher productivity in many industrial processes puts
the focus on advanced control strategies for mechatronic drive systems. These control strate-
gies try to achieve minimum-time results, which means that a reference value (set-point)
should be reached in the shortest time that is physically possible. However, constraints that
limit the dynamic performance (e.g., actuator limitations) are the bottleneck in many control
applications. Traditional linear control methods, for example the well-known proportional-
integral-derivative (PID) controller, often lead to unsatisfactory results in presence of con-
straints. To achieve minimum-time or at least near minimum-time results, it is necessary
to directly incorporate the respective constraints into the control algorithm in order to fully
exploit and respect the constraints.

1.1 State of the Art

Every practical control system is subject to certain constraints—common constraints in
electrical drive systems are voltage, current, speed and position constraints. The actuator,
i.e. the inverter, operates with a limited voltage, whereas the current constraints result from
thermal considerations. Speed and position constraints are dependent on the type of the
electrical motor and on the application. A widely known control structure for the control
of electrical drives—especially in industry—is cascaded control, which consists of an inner
current/torque control loop and outer speed and position control loops (Ellis and Lorenz,
1999; Zirn, 2008). A cascaded control structure traditionally consists of PID controllers,
or variants thereof, with limited outputs to account for constraints. A problem that arises
if the output of a controller with an integral part is limited is so-called integrator wind-
up, which can lead to large control errors (Gilbert and Kolmanovsky, 1995). Anti wind-up
approaches aim to tackle this problem, but the resulting control performance is often not
satisfactory for applications that require a precise and fast transient response (Maciejowski,
2002). Apart from the control performance, constraints can also affect the stability of a
control system. Even a stable linear system that is subject to input constraints cannot be
globally stabilized by a linear control law (Saberi et al., 1996). This means, in general, that
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a nonlinear control law is necessary to achieve a stable control system and a good control
performance (Bemporad et al., 2002b).

Common design compromises to prevent constraints from being exceeded are: Limitations
of the reference, a reduced dynamic performance of the linear controller, and an increased
saturation (Gilbert and Kolmanovsky, 1995). If a linear controller is tuned such that con-
straints are respected, for example, even for the worst-case reference step height, the dynamic
performance is degraded for smaller step heights, as the controller is linear. Increasing the
saturation through a more powerful actuator might be inefficient if the full input range is
only needed for short amounts of time. A popular method—especially in the fields of com-
puter numerical control (CNC) machining and in robotics—is to limit the first and even
higher order derivatives of the reference signal in order to respect constraints (Kröger, 2010;
Weck, 1995; Lambrechts et al., 2005). Nevertheless, the discussed methods all represent
design compromises—constraints are respected but often not fully exploited. Therefore, the
control results can be improved in terms of dynamic performance.

Control methodologies that try to overcome the design compromises are: Anti wind-up
schemes, model predictive control (MPC), reference governors (RGs), and other nonlinear
control methods. Even though anti wind-up schemes are widely used, they pose several draw-
backs. Besides the often unsatisfactory control results, traditional anti-wind up schemes can
only deal with input constraints. Anti-wind up schemes in the outer control loops in a
cascaded control structure can only limit the reference values of the underlying controllers
and therefore have only indirect influence on the state constraints. MPC is a promising
approach that makes use of constrained optimization, which allows minimizing a previously
defined cost function in presence of input and state constraints. Hence, MPC can inherently
handle constraints. Furthermore, MPC can deal with multivariable systems (Rawlings and
Mayne, 2009; Maciejowski, 2002). The flexibility of the MPC formulation allows to include
various design goals; for example, robust model predictive control (RMPC) aims to improve
the robustness against uncertain or varying plant parameters (Campo and Morari, 1987;
Casavola et al., 2000a; Schuurmans and Rossiter, 2000). In general, the MPC optimiza-
tion problem has to be solved in real-time at every controller sampling instant—this is the
reason why MPC first gained importance in the process industry, where sampling times in
the range of seconds or minutes are involved. Nevertheless, due to the steadily increasing
computational power, in recent years, MPC also found its way to the field of electrical drives,
where sampling times in the range of tens of microseconds are common (Linder et al., 2010;
Bolognani et al., 2011). An RG is an add-on to a feedback controller (see Figure 1.1). The
feedback controller stabilizes a possibly unstable system in absence of constraints, whereas
the RG adapts a reference signal such that input and state constraints of the underlying
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Figure 1.1: A basic RG/PRG structure

system are respected. If the reference signal can be tracked by the underlying controller
without violating the constraints, the RG does not adapt the reference signal (Gilbert and
Kolmanovsky, 1995; Kolmanovsky et al., 2012). In contrast to MPC, the RG structure al-
lows to decouple the handling of constraints and the stabilization of a possibly unstable
plant. A predictive reference governor (PRG) combines the advantages of the RG structure
with the advantages of MPC, like the minimization of a cost function and the possibility
to handle constraints (Bemporad and Mosca, 1995). An RG or a PRG can operate with or
even without feedback (Sugie and Yamamoto, 2001; Hirata and Kogiso, 2001).

This section represents an overview of the state of the art of control methodologies for con-
strained systems. Further details and the corresponding references are given in the ongoing
chapters of this thesis.

1.2 Problem Formulation and Contributions of this Thesis

The general goal of this work is to bring a control system to its physical limits. More precisely,
it is intended to fully exploit input and state constraints to achieve a fast response. In order
to directly incorporate constraints into a control scheme, the PRG approach, which relies on
the ideas of MPC, is employed here. However, as the underlying optimization problem must
usually be solved in real-time, this structure is not yet applicable to fast sampling systems.
To overcome this drawback, a multi-rate PRG scheme is proposed, where the sampling time
of the PRG can be higher than the sampling time of the feedback controller. In the extreme
case, the PRG can be operated offline and without state feedback. This multi-rate scheme
allows to exploit the features of MPC, like the handling of constraints and a flexible design
of the cost function, even for fast sampling systems.

Typical MPC and PRG formulations use a quadratic form based cost function, which leads
to a non-uniform weighting of high and low cost function values. Speaking in terms of a step
response, this non-uniform weighting often leads to overshoots if a fast response is needed.
These overshoots can be critical when precise and fast control results are needed. In this
work, a PRG that relies on an `1-norm based cost function is proposed. The `1-norm (sum of
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absolute values) ensures a uniform weighting and is able to decrease the overshoot in a step
response. It is shown that an `1-norm based PRG leads to a response that is comparable
with the minimum-time response, which represents the physical limit.

In order to improve the robustness of PRGs against uncertain or varying system parame-
ters, it is proposed to use the ideas of RMPC for the design of robust PRGs. The robustness
can be improved by the robust PRG formulation, even if no state feedback is available.
Furthermore, the transient response is only marginally affected by using a robust PRG.

The ability to handle multivariable systems is demonstrated by a biaxial positioning ex-
ample, where two electrical drives should follow a predefined path in two dimensions. It is
shown that PRGs, like MPC, can inherently handle multivariable systems. Furthermore,
the flexibility of the cost function is illustrated by PRGs that take into account the contour
error, which is the main performance measure in biaxial positioning. An `1-norm based PRG
that minimizes the contour error is proposed in order to achieve near minimum-time control
results.

1.3 Outline

Chapter 2 introduces the concepts of convex optimization in order to efficiently formulate the
optimization problems that arise in this thesis. Furthermore, the principles of MPC, RMPC,
and RGs are discussed. The proposed multi-rate PRG control structure is presented in detail
in Chapter 3. The system model and the feedback control structure of an industrial laser
positioning system, which is used to validate the proposed control schemes, is introduced
in Chapter 4. This laser positioning system consists of two permanent magnet (PM) direct
current (DC) motors and is operated with a sampling time of 10 µs. The proposed near
minimum-time PRG is validated by experimental results in Chapter 5. It is compared
with a quadratic form based PRG, with an industry related standard method, and with
the minimum-time solution that originates from a minimum-time optimal control problem.
Chapter 6 introduces the robust PRG formulation that is based on RMPC and provides
extensive experimental validation. The ability to handle multivariable systems is emphasized
in Chapter 7, where PRGs are used for biaxial contouring. Furthermore, it is shown that
the contour error, which is the main performance measure, can be incorporated in a PRG
cost function. The proposed schemes are again validated by the industrial laser positioning
system. Finally, conclusions and possible future research directions are given in Chapter 8.
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2 Background

This chapter sets the foundation for an efficient formulation of the algorithms that are de-
veloped in this thesis; subsequent chapters often refer to the background information that is
given here. As this work extensively makes use of optimization, the most important types
of constrained convex optimization problems are discussed in Section 2.1. The control algo-
rithms that are presented in this work rely on the ideas of model predictive control (MPC),
so the most important principles and properties of MPC are presented in Section 2.2. The
robust counterpart of MPC, namely robust model predictive control (RMPC), is described in
Section 2.3 in order to introduce some concepts to increase the robustness against uncertain
parameters. The presented MPC and RMPC schemes are in turn based on convex optimiza-
tion problems. To complete this background section, the so-called reference governor (RG)
is discussed in Section 2.4. An RG can be considered to be an add-on device that ensures
constraint satisfaction, whereas the underlying feedback controller ensures—in absence of
constraints—closed-loop stability of the plant.

2.1 Convex Optimization

This section provides the mathematical background for the control approaches that are
presented in this thesis. Convex optimization problems are a subclass of mathematical
optimization problems that play an important role in many fields, for example in finance,
statistics, signal processing, and—most important for this work—control engineering. The
goal of mathematical optimization is to determine an optimization variable such that a
cost function is minimized while constraints, which are represented by equalities and/or
inequalities, are respected. Due to the convexity of an optimization problem, any local
minimum is also a global minimum; in contrast to non-convex optimization problems, where
theoretically all local minima have to be evaluated to find the global minimum. This key
property of convex optimization allows solving a problem in a reliable and efficient way.

Well-known convex optimization problems are, for example, least squares optimization
problems, which can be solved analytically. Another example is a linear program (LP), which
requires a numerical algorithm, a so-called solver, to solve the constrained optimization
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problem. However, in recent decades other types of convex optimization problems, like
quadratic programs (QPs) or second-order cone programs (SOCPs) gained attention (Boyd
and Vandenberghe, 2004). As for LPs, numerical solvers are required to solve QPs and
SOCPs.

Some important optimization problems are defined in this section in order to refer to
them later on when the respective control algorithms are discussed. Furthermore, some
useful transformations are given in order to formulate the problems that arise in this work
in a standard form that is used by the respective LP, QP, or SOCP solver. The notation
used in this section is detached from the rest of this work and is therefore not listed in the
symbols section1.

2.1.1 Convex Optimization Problem Definition

A function f(x) : Rm 7→ R is convex if it satisfies

f(ax1 + bx2) ≤ af(x1) + bf(x2), (2.1)

for all x1 ∈ Rm, x2 ∈ Rm and all a ∈ R, b ∈ R. Furthermore, a + b = 1, a ≥ 0, and b ≥ 0
must hold. The function f(x) = x2 serves as an example: For this parabola in the Euclidean
space, the inequality (2.1) requires that two points on the graph, (x1, f(x1)) and (x2, f(x2)),
can be connected by a line segment that lies above the graph in the interval between x1

and x2. This requirement is satisfied by the function f(x) = x2, which implies its convexity.

Another property, which is often needed in convex optimization, is the affinity of a function.
A function f(x) : Rm 7→ Rn is affine if it has the form of

f(x) = Ax+ b, (2.2)

where A ∈ Rn×m and b ∈ Rn.

A general convex optimization problem can be stated as

minimize
ξ

f0(ξ)

subject to fi(ξ) ≤ 0, i ∈ {1, 2, . . . ,mi},
a>j ξ = bj, j ∈ {1, 2, . . . ,mj},

(2.3)

1The optimization problems that are discussed in this section set the mathematical foundation for the
specific optimization problems that arise in this work. The notation for these specific problems is in turn
listed in the symbols section.
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where ξ ∈ Rmξ is the optimization variable and f0(ξ) : Rmξ 7→ R is the cost function. The
functions fi(ξ) : Rmξ 7→ R define the inequality constraints fi(ξ) ≤ 0 and the conditions
a>j ξ = bj (where aj ∈ Rmξ and bj ∈ R are known parameters) are called equality constraints.

Conditions for the convexity of the optimization problem (2.3) are (Boyd and Vanden-
berghe, 2004, p. 137):

• The cost function f0(ξ) is convex,

• the inequality constraint functions fi(ξ) are convex, and

• the equality constraints a>j ξ = bj are affine in ξ (this is true for constant problem
parameters aj and bj).

The solution of the convex optimization problem (2.3) is the minimizer ξ?, which mini-
mizes the cost function f0(ξ) while the inequality and equality constraints are met. If it is not
possible to find a solution, the problem is infeasible. Infeasibility might arise, for example,
if conflicting constraints are chosen. As (2.3) is convex, the minimizer ξ? represents a global
optimum if the problem is feasible (Boyd and Vandenberghe, 2004, p. 138). This fact is a
key property of convex optimization problems. Contrary to this, non-convex optimization
problems might have several local minima that have different cost function values. These
several local minima can make solving the optimization problem time-consuming. It might
be hard or even impossible to determine all local minima in order to find the global mini-
mum, which is usually of interest. A problem that often occurs in non-convex optimization
problems is that a solver gets stuck in a local minimum.

In the following, some standard convex optimization problems that are important in the
field of control engineering are stated and briefly discussed.

2.1.2 Linear Programming

A linear program (LP) with the optimization variable ξ ∈ Rmξ can be expressed as

minimize
ξ

b>0 ξ + a0

subject to F1ξ ≤ b1,

F2ξ = b2,

(2.4)

where a0 ∈ R, b0 ∈ Rmξ , b1 ∈ Rmb1 , b2 ∈ Rmb2 , F1 ∈ Rmb1×mξ , and F2 ∈ Rmb2×mξ define
the LP and are problem specific (Boyd and Vandenberghe, 2004, p. 146). The less than
or equal symbol “≤” is used here to state component-wise inequalities, which means that
every element of the vector F1ξ must be less than or equal to the respective element of
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the vector b1. Checking the conditions for convexity stated in Section 2.1.1 shows that the
LP (2.4) is convex.

Linear programming is used in this work to minimize a cost function consisting of the
sum of absolute values of a vector (`1-norm). How to cast an `1-norm based optimization
problem as an LP is shown in a later part of this thesis.

2.1.3 Quadratic Programming

A quadratic program (QP) with the optimization variable ξ ∈ Rmξ can be stated as

minimize
ξ

1
2ξ
>F0ξ + b>0 ξ + a0

subject to F1ξ ≤ b1,

F2ξ = b2,

(2.5)

where a0 ∈ R, b0 ∈ Rmξ , b1 ∈ Rmb1 , b2 ∈ Rmb2 , F0 ∈ Rmξ×mξ , F1 ∈ Rmb1×mξ , and
F2 ∈ Rmb2×mξ are the problem data (Boyd and Vandenberghe, 2004, p. 152). The constraints
have the same form as in the LP (2.4); the cost function, however, is now quadratic. In
order to get a convex cost function 1

2ξ
>F0ξ+ b>0 ξ+ a0, it is necessary that F0 is symmetric

(F0 = F>0 ) and that F0 is positive definite (F0 � 0) (Boyd and Vandenberghe, 2004, p. 458).
The LP (2.4) is a sub-problem of the stated QP, as (2.5) reduces to an LP if F0 = 0.

Quadratic programming is often used in the field of model predictive control (MPC), as
QPs can be solved efficiently. Hence, QPs play an important role in this work, as the control
algorithms that are presented are based on the ideas of MPC.

2.1.4 Second-Order Cone Programming

Another convex optimization problem, a so-called second-order cone program (SOCP) can
be written as

minimize
ξ

b>0 ξ

subject to ‖Fiξ + ci‖2 ≤ b>i ξ + ai, i ∈ {1, 2, . . . ,mi},
Fmξ = bm,

(2.6)

where ai ∈ R, b0 ∈ Rmξ , ci ∈ Rmci , bm ∈ Rmbm , bi ∈ Rmξ , Fi ∈ Rmci×mξ , and Fm ∈ Rmbm×mξ

are the respective problem data (Boyd and Vandenberghe, 2004, p. 156). The optimization
variable is ξ ∈ Rmξ .
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Figure 2.1: Graphical representation of the exemplary second-order cone constraint ‖[ x1
x2 ]‖2 ≤ x3

Figure 2.2: Relation between some convex optimization problems

This SOCP is again convex (see Boyd and Vandenberghe, 2004, p. 30, for details). An
exemplary second-order cone is shown in Figure 2.1, which illustrates why second-order cones
are also often called “ice-cream cones”. SOCPs can arise, for example, in the field of robust
model predictive control (RMPC), where the robustness of MPC against uncertain system
parameters is improved.

LPs and QPs are sub-problems of SOCPs. A rough and not complete overview of convex
optimization problems and their sub-problems is shown in Figure 2.2.

2.1.5 Useful Transformations

Some useful transformations for convex optimization problems are given in the following. The
aim is to transform optimization problems that arise in the course of this work to convex
standard forms (LPs, QPs, and SOCPs). It is desirable to express optimization problems in
a standard form, as there exist reliable and efficient solvers for these types of problems.
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Figure 2.3: Graphical representation of the epigraph transformation for an optimization problem
with a single optimization variable ξ and without constraints except the constraints
introduced by the transformation. The feasible set (grey shaded) is expressed by
f0(ξ) ≤ γ.

2.1.5.1 Epigraph Transformation

The epigraph transformation transforms the general convex optimization (2.3) such that the
cost function becomes linear and the original cost function is expressed as a constraint. This
transformation is used, for example, to formulate the RMPC optimization problem that
arises in this work as an SOCP. Furthermore, the epigraph transformation can be used to
show that a QP is a sub-problem of an SOCP.

Applying the epigraph transformation (Boyd and Vandenberghe, 2004, p. 134) to the gen-
eral convex optimization problem (2.3) leads to

minimize
ξ, γ

γ

subject to f0(ξ) ≤ γ,

fi(ξ) ≤ 0, i ∈ {1, 2, . . . ,mi},
a>j ξ = bj, j ∈ {1, 2, . . . ,mj},

(2.7)

where an additional optimization variable γ ∈ R is introduced by the epigraph transfor-
mation. The original cost function f0(ξ) in (2.3) is now located in the constraints section
of (2.7); the other constraints remain the same. The new cost function only consists of the
scalar γ.

Figure 2.3 illustrates the idea of the epigraph transformation. If γ is decreased—while
respecting f0(ξ) ≤ γ—as far as possible, the optimal point (ξ?, γ?) is found. This means
that the same optimal value of ξ? is found if the epigraph transformation is not used. Hence,
the optimization problems (2.3) and (2.7) are equivalent.
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2.1.5.2 Transformation of an `1-Norm based Cost Function to a Linear Program

The transformation of an `1-norm based optimization problem to an LP in standard form is
important in this work.

The `1-norm of a vector z = [ z1 z2 ... zmz ]> ∈ Rmz is defined as

‖z‖1 =
mz∑
i=1
|zi| . (2.8)

An optimization problem that aims at minimizing an `1-norm based cost function is stated
as

minimize
ξ

‖F0ξ + b0‖1

subject to F1ξ ≤ b1,

F2ξ = b2,

(2.9)

where b0 ∈ Rmb0 , b1 ∈ Rmb1 , b2 ∈ Rmb2 , F0 ∈ Rmb0×mξ , F1 ∈ Rmb1×mξ , and F2 ∈ Rmb2×mξ are
problem specific data. The optimization problem (2.9) is convex, because the `1-norm of the
affine function F0ξ + b0 is convex (Boyd and Vandenberghe, 2004, p. 24). This constrained
`1-norm based minimization problem can be cast as the LP (Boyd and Vandenberghe, 2004,
p. 294)

minimize
ξ,β

1>mb0β

subject to − β ≤ F0ξ + b0 ≤ β,
F1ξ ≤ b1,

F2ξ = b2,

(2.10)

where the vector β ∈ Rmb0 is introduced by this transformation to an LP and is now—
besides ξ—part of the optimization variables. This transformation is illustrated in Figure 2.4.
The basic idea of the transformation to an LP is related to the epigraph transformation. The
LP (2.10) can in turn be written as

minimize[
ξ> β>

]>
0mξ
1mb0

> ξ
β



subject to


F0 −Imb0×mb0
−F0 −Imb0×mb0
F1 0mb1×mb0


ξ
β

 ≤

−b0

b0

b1

 , [
F2 0mb2×mb0

] ξ
β

 = b2,

(2.11)
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Figure 2.4: Illustration of the transformation of an `1-norm based cost function (see (2.9)) to a
constraint in an LP (see (2.10)). This simple example shows the principle for scalar
values of ξ, β, F0 and b0.

which is a standard form used by many LP solvers. The vector [ ξ> β> ]> ∈ Rmξ+mb0 is the
optimization variable.

Summing up, this section shows that the constrained optimization problem of minimizing
the `1-norm of an affine function can be transformed to an LP.

2.1.6 Optimization Problem Solvers

Most convex optimization problems do not have an analytical solution—especially if con-
straints are considered. Therefore, numerical solvers have been developed to solve these
problems.

LPs can be efficiently solved by using, for example, Dantzig’s simplex method (Dantzig,
1965). Recent LP solvers are based on interior-point methods. In contrast to the simplex
algorithm, interior-point algorithms try to find an optimum by passing through the interior
of the feasible region. According to (Boyd and Vandenberghe, 2004), linear programming can
be considered to be a “mature technology”, which means that there are plenty of well-tested
and efficient solvers available. The solver used here for LPs is called qpOASES (Ferreau
et al., 2008) and is an active-set solver for QPs. It turned out that this QP solver, which can
naturally handle LPs, is faster than Mathwork’s MATLAB R© LP solver linprog. The reason
is qpOASES’ efficient warm starting feature, which means that previous optimization result
can be efficiently used as an initial value for the actual optimization process.

The QPs arising in this work are also solved with qpOASES (Ferreau et al., 2008) following
the same reasoning as for LPs. qpOASES turned out to be even faster than the fast gradient
algorithm of FiOrdOs (Ullmann, 2011) and Mathwork’s MATLAB R© QP solver quadprog.

When dealing with SOCPs here, the solver SeDuMi (Sturm, 1999) is used. Other SOCP
solvers were presented, for example, by Domahidi (2013) or Mittelmann (2003).
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Figure 2.2 on page 9 illustrates the computational complexity of the solvers for the re-
spective optimization problems. A solver for SOCPs can be considered more complex than
a solver for QPs, which is, in turn, more complex than a solver for LPs. This seems natural,
as SOCPs include QPs and LPs as sub-problems.

Advanced methods in control engineering often involve optimization problems. A chal-
lenge is the need to solve the respective problem in real-time. This is especially the case
if high sampling rates are needed due to the high dynamic requirements of the considered
application. The controller sampling rates are normally in the kHz range for the control of
electrical drives (Stumper et al., 2012) or even in the MHz range for the control of atomic
force microscopes (Jerez et al., 2013). Hence, it becomes necessary to solve optimization
problems within fractions of a second. Recently, fast gradient methods have been used to
solve QPs on digital signal processors (DSPs) and field programmable gate arrays (FPGAs)
with sampling rates of up to 1MHz (Zometa et al., 2013; Jerez et al., 2013; Giselsson, 2013).
Other methods that are capable of real-time optimization rely on automatic problem specific
code generation (Ullmann, 2011; Mattingley and Boyd, 2012; Domahidi et al., 2013). An-
other approach for real-time optimization is multi-parametric programming (Herceg et al.,
2013). The result of multi-parametric programming is an explicit control law (explicit MPC).
The real-time task is reduced to the evaluation of a binary search-tree, where the optimal
feedback control law is stored depending on the actual state in the state-space. There is
even research in the field of analog optimization (Vichik and Borrelli, 2013, 2014) where the
optimization problem is solved by an analog electronic circuit.

2.2 Model Predictive Control

The concept of model predictive control (MPC) has its roots in the 1960s (Propoi, 1963)
and basically has been developed and used in industry for quite a long time before it gained
importance in the academic field. MPC is a control methodology that determines the control
inputs by solving a finite horizon open-loop optimal control problem at each sampling instant.
Thereby, the actual state of the plant is used, as the initial state of this optimal control
problem. MPC has several advantages compared to the widespread classic proportional-
integral-derivative (PID) control and other standard control methods (Maciejowski, 2002;
Camacho and Bordons, 2004):

• The underlying idea of MPC is easy to understand and offers great flexibility for a
large number of control problems.

• System constraints can be directly incorporated in the formulation of the control prob-
lem. This is essential especially in the presence of safety constraints, or when operation
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close to the constraints is desired, for example, in order to improve the dynamic per-
formance.

• MPC can inherently handle multivariable control problems.

Of course, there are also drawbacks: Even though the idea of MPC is easy to understand,
it might not be that simple to derive an optimization problem that leads to satisfying re-
sults. The design of MPC consists of the formulation of a cost function, the incorporation
of constraints, and the tuning of respective weights in the cost function to achieve the de-
sired control results. The real-time execution of MPC is another problem—the optimization
problem has to be solved within one sampling interval. The real-time application can be a
challenging task if low sampling times are involved. This is the reason why MPC first has
been mainly used in the process industry, where slow system dynamics and the therefore
low sampling times in the range of seconds or even minutes allow the real-time computation
of the optimization problem (Maciejowski, 2002). However, in recent years, MPC has also
gained importance in the field of power electronics and control of electrical drives, where
sampling times in the range of tens of microseconds are common (Cortes et al., 2008; Linder
et al., 2010; Stumper et al., 2012). A survey of industrial applications of MPC can be found
in (Qin and Badgwell, 2003). Historical background about MPC is given in (Morari and H.
Lee, 1999; Goodwin, 2012).

The following sections introduce the basic principles and concepts of MPC. As the control
approaches that are presented in this work are strongly related to MPC, the foundation for
the developed algorithms is set here.

2.2.1 Principle

The basic ingredients of MPC are a plant model, a cost function that should be minimized,
and constraints that have to be respected. The plant model is needed to predict the system
behavior over a certain time-span, the prediction horizon, in order to consider the future
evolution of system states and system inputs in the cost function. In most of the cases, the
predicted errors between the reference values and the system outputs are incorporated in the
cost function. Bringing together the cost function and the system constraints leads to an
optimization problem that has to be solved at every sampling instant. Another reason for
the necessity to predict the system behavior results from the fact that—as dynamic systems
are involved—it is normally not enough to just check the constraints for the actual sampling
instant.
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An important fact about MPC is that even applying the principle of MPC to a linear plant
leads to a nonlinear control law if constraints are considered in the optimization problem
(Mayne et al., 2000).

Figure 2.5 illustrates the basic principle of MPC using a simple example. Assuming that
the actual time instant is k, the optimal input trajectory U ?[k] = [ u?[k]> ... u?[k+N−1]> ]> is
determined by solving a previously defined optimization problem in order to steer the system
output trajectory Y [k] = [ y[k+1]> ... y[k+N ]> ]> as close as possible to a certain reference
trajectory Y r[k] = [ yr[k+1]> ... yr[k+N ]> ]>. The system output trajectory Y [k] is a prediction
depending on the actual system state x[k] and the optimal input trajectory U ?[k]. Once the
optimal input trajectory is available after solving the respective open-loop optimal control
problem, the first value u?[k] is applied to the plant, whilst the other values of U ?[k] are
disregarded. At the next sampling instant, the whole procedure is repeated—this is a shift of
the prediction horizon by one sampling interval, which leads to the common term of receding
horizon control. The receding horizon strategy allows to react to a change in the reference
trajectory and to external disturbances. Figure 2.5 shows open-loop trajectories, which
represent future signals that have not been realized yet, whereas the closed-loop trajectories
lie in the past.

MPC is often compared to car driving (Camacho and Bordons, 2004). This analogy shall
be recalled here to further clarify the basic idea of MPC. The car characteristics have been
gained through driving experience, which can be seen as a kind of system identification. A
driver of a car has a desired reference trajectory for a finite time horizon (prediction horizon)
in his or her mind. For car driving, this prediction horizon is related to the range of vision.
Constraints, for example, especially on the deceleration should be considered by the driver,
as the car is not able to stop instantly. By taking into account the specific characteristics of
the car, the driver determines a sequence of future control actions that allow him or her to
follow the reference trajectory as close as possible. The first control action—a combination
of acceleration/deceleration, and steering—is then realized by the driver. The rest of the
control actions in the mind of the driver are disregarded. The whole procedure is then
repeated in a receding horizon fashion in order to be able to react to a changing driving
situation, which might be seen as a disturbance.

2.2.2 Preliminaries

An essential part of a successful application of MPC is a precise model of the plant that
is controlled. This model might be gathered through physical modeling with subsequent
parametrization (grey box identification) or through black box identification where prior
knowledge about the system is not available (Ljung, 1999).
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Figure 2.5: The principle of MPC for a system with one input and one output. The future input is
determined to steer the predicted output to the reference. Predicted/future values are
open-loop values; the closed-loop values are in the past.

Classical MPC applications rely on a linear time-invariant (LTI) discrete-time model in
state-space representation (Maciejowski, 2002; Camacho and Bordons, 2004) in the form of

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k],
(2.12)

where x[k] ∈ Rnx is the state vector, u[k] ∈ Rnu is the system input vector, and y[k] ∈ Rny

is the output vector. The numbers of system states, inputs, and outputs are nx, nu and ny,
respectively. The matrices A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx are the state matrix,
the input matrix, and the output matrix, respectively. The formulation of (2.12) in matrix-
vector form describes a multiple-input, multiple-output (MIMO) system. When dealing with
single-input, single-output (SISO) systems in this work, the notation of (2.12) is maintained,
however, the number of inputs nu reduces to nu = 1 and the number of outputs ny reduces
to ny = 1.

LTI state-space models often contain y[k] = Cx[k] +Du[k] as their output equation,
where the matrix D ∈ Rny×nu is a so-called feed-through matrix which means that the
input u[k] can directly influence the output y[k] at the same time instant. Practical discrete-
time control systems always introduce a time-delay between the measurement of y[k] and
the time where u[k] is applied to the plant, because the control algorithm needs some time
to be calculated (computational delay). Furthermore, actuators, for example a pulse width
modulation (PWM) stage, always introduce some delay. Hence, there is no direct feed-
through in practice (Maciejowski, 2002, p. 37), which is the reason why D is omitted here.
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Linear time-invariant (LTI) systems in the form of (2.12) are governed by linear difference
equations. Time-invariant means that the system matrices A, B, and C do not vary with
time.

MPC relies on the availability of the full state vector x[k] for all k. If the full state vector
is not available, the plant needs to be observable (Franklin et al., 1997, p. 345ff.) by fulfilling

rank
([
C> CA> . . . CAnx−1>

]>)
= nx (2.13)

in order to use a state estimator like a Kalman filter (Kalman, 1960) or a Luenberger observer
(Luenberger, 1964) to estimate the actual state x[k] through measurement(s).

MPC takes the future behavior of the system into account. The trajectories of future
statesX[k], inputs U [k], outputs Y [k], and reference values Y r[k] are written as the stacked
vectors

X[k] =
[
x[k + 1]> x[k + 2]> . . . x[k +N ]>

]> ∈ RN ·nx ,

U [k] =
[
u[k]> u[k + 1]> . . . u[k +N − 1]>

]> ∈ RN ·nu ,

Y [k] =
[
y[k + 1]> y[k + 2]> . . . y[k +N ]>

]> ∈ RN ·ny ,

Y r[k] =
[
yr[k + 1]> yr[k + 2]> . . . yr[k +N ]>

]> ∈ RN ·ny ,

(2.14)

where N is the prediction horizon. The reference vector Y r[k] consists of yr[k + 1] =
yr[k + 2] = . . . = yr[k + N ] if the reference is not known in advance. The terms preview
(used in this work), look-ahead, or anticipative-action describe the case where the reference
is known in advance.

The predicted states2 X[k] and the predicted outputs Y [k] can be calculated as

X[k] = Axx[k] + BxU [k],

Y [k] = Ayx[k] + ByU [k],
(2.15)

depending on the future inputs U [k] and the actual state x[k] (Camacho and Bordons, 2004,
p. 29). The future input vector U [k] is the optimization variable, which is determined by an

2The predicted states are denoted by X[k] and not X[k + 1] because X[k] is already defined with its first
element being x[k + 1] (see (2.14)); the same holds for Y [k] and Y r[k]
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optimization problem solver. The prediction matrices for the states, Ax and Bx, are defined
as

Ax =
[
A1 A2 . . . AN

]> ∈ RN ·nx×nx ,

Bx =



A0B 0nx×nu . . . . . . 0nx×nu
A1B A0B

. . . ...
... . . . . . . . . . ...
... . . . . . . 0nx×nu

AN−1B AN−2B . . . . . . A0B


∈ RN ·nx×N ·nu .

(2.16)

The prediction matrices for the outputs, Ay and By, are

Ay =
(
⊕Ni=1C

)
Ax ∈ RN ·ny×nx ,

By =
(
⊕Ni=1C

)
Bx ∈ RN ·ny×N ·nu .

(2.17)

The rate of input change ∆U [k], which is often used for the MPC problem formulation, is
defined as

∆U [k] =



u[k + 1]− u[k]
u[k + 2]− u[k + 1]

...
u[k +N − 1]− u[k +N − 2]

u[k +N − 1]


∈ RN ·nu , (2.18)

and can be written in matrix-vector notation depending on the optimization variable U [k]
as

∆U [k] = B∆U [k], (2.19)

with

B∆ =



−Inu Inu 0nu×nu . . . . . . 0nu×nu
0nu×nu −Inu Inu

. . . ...
... . . . . . . . . . . . . ...
... . . . . . . . . . 0nu×nu
... . . . −Inu Inu

0nu×nu . . . . . . . . . 0nu×nu Inu


∈ RN ·nu×N ·nu . (2.20)
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Choosing u[k + N − 1]—and not, for example, zero—as the last entry of ∆U [k] leads to a
full rank matrix B∆. This fact, which is discussed in detail in Section 2.2.3, is important to
ensure convexity of the cost function.

The handling of constraints is another key part of MPC problems. Symmetric constraints
on the input are expressed as

|U [k]| ≤ Umax, (2.21)

where

Umax =
[
u>max u>max . . . u>max

]> ∈ RN ·nu . (2.22)

The maximum input vector umax ∈ Rnu contains the maximum input values of the nu inputs.
Symmetric constraints on the states are defined using (2.16) as

|Axx[k] + BxU [k]|︸ ︷︷ ︸
|X[k]|

≤Xmax, (2.23)

where

Xmax =
[
x>max x>max . . . x>max

]> ∈ RN ·nx . (2.24)

The maximum state vector xmax ∈ Rnx contains the maximum state values of the nx states.

Expressing the input and state constraints as component-wise linear inequalities leads to

GU [k] ≤ H[k], (2.25)

with

G =


IN ·nu×N ·nu

−IN ·nu×N ·nu
Bx
−Bx

 ∈ R2·N ·(nu+nx)×N ·nu ,

H[k] =


Umax

Umax

Xmax −Axx[k]
Xmax +Axx[k]

 ∈ R2·N ·(nu+nx).

(2.26)
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The matrices G and H[k] are valid if constraints on every input and state are imposed,
which leads to 2 ·N · (nu + nx) constraints. Other configurations can easily be achieved by
deleting the rows corresponding to unconstrained inputs and states in G and H[k] leading to
a reduced number of constraints. The constraints that are considered in this thesis represent
symmetric limitations; however, it is also possible to use maximum and minimum values that
have different absolute values. Furthermore, the constraints Umax and Xmax are allowed to
be time dependent (Umax[k] and Xmax[k]).

2.2.3 Model Predictive Control Optimization Problem Formulation

One of the most essential steps in MPC is the formulation of the underlying optimization
problem. This optimization problem consists of a cost function that should be minimized
and constraints that should simultaneously be respected.

A cost function based on a quadratic form is the de facto standard in MPC formulations,
because this type of cost function can be cast as a quadratic programming problem for which
reliable and efficient solvers are available.

The future control error Er[k] is a key component of cost functions used in MPC and is
defined as

Er[k] = Y [k]− Y r[k] ∈ RN ·ny . (2.27)

A popular cost function, which is also used in this work, is given as (Maciejowski, 2002;
Camacho and Bordons, 2004)

Jq(U [k],x[k],Y r[k]) =
∥∥∥∥∥∥
 (Qq)

1
2 Er[k]

(Rq)
1
2 ∆U [k]

∥∥∥∥∥∥
2

2

. (2.28)

This cost function has multiple objectives: The future control error Er[k] is weighted with
the diagonal matrixQq and the second objective, the rate of input change∆U [k], is weighted
with the diagonal matrixRq. Hence, the resulting control performance is a trade-off between
the minimization of the future control error Er[k] and the minimization of∆U [k] depending
on the chosen weights. Incorporating the rate of input change∆U [k] is a common approach
to directly influence the shape of the input, for instance to attenuate high-frequency content
in the input. Other common forms of cost functions include U [k] instead of ∆U [k]; the
difference between both choices is discussed in detail later (see Section 5.2). The close
relationship of the cost function (2.28) to MPC with integral action is shown in (Maciejowski,
2002, p. 49).



2.2 Model Predictive Control 21

The weighting matrices are defined as

Qq = ⊕Ni=1diag{qq} ∈ RN ·ny×N ·ny ,

Rq = ⊕Ni=1diag{rq} ∈ RN ·nu×N ·nu ,
(2.29)

where qq ∈ Rny
+ and rq ∈ Rnu

+ are the weights for the control error and the rate of input
change, respectively. The weighting matrices Qq and Rq are forced to be positive definite
(Qq � 0 and Rq � 0) by choosing every element of qq and rq positive. This choice leads to
a convex cost function.

The cost function (2.28) is expressed, depending on the optimization variable U [k], as

Jq(U [k],x[k],Y r[k])
(2.17)
(2.19)=

∥∥∥∥∥∥∥
(Qq)

1
2 By

(Rq)
1
2 B∆


︸ ︷︷ ︸

Fq

U [k] +
(Qq)

1
2 (Ayx[k]− Y r[k])

0N ·nu


︸ ︷︷ ︸

gq[k]

∥∥∥∥∥∥∥
2

2

. (2.30)

Applying ‖a‖2
2 = a>a to (2.30) leads to the quadratic form

Jq(U [k],x[k],Y r[k]) = U [k]>F>q FqU [k] + 2gq[k]>FqU [k] + gq[k]>gq[k]. (2.31)

By combining the cost function (2.31) with the constraints (2.25), the final MPC optimization
problem is

minimize
U [k]

U [k]>F>q FqU [k] + 2gq[k]>FqU [k] + gq[k]>gq[k]

subject to GU [k] ≤ H[k].
(2.32)

This QP in standard form (see (2.5)) represents the key part of MPC based on quadratic
forms—it is solved at every sampling instant while the first entry of the optimal input
vector U ?[k], namely u?[k], is applied to the plant.

Neglecting the inequality constraints GU [k] ≤ H[k] in (2.32) would allow deriving the
analytic solution

U ?[k] = −
(
F>q Fq

)−1 (
F>q gq[k]

)
, (2.33)

which is the solution of an unconstrained finite horizon optimal control problem.

A required property of a QP is its convexity, as it determines if the optimal input vec-
tor U ?[k] represents a global minimum. Following the reasoning of Section 2.1.3, the con-
straints of (2.32) are affine and therefore form a convex set. It remains to show that the cost
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function of (2.32) is convex, which is equivalent to the positive definiteness of the quadratic
term

F>q Fq = B>y Qq︸︷︷︸
�0

By + B>∆ Rq︸︷︷︸
�0

B∆ ∈ RN ·nu×N ·nu . (2.34)

A positive definite weight Qq � 0 leads to B>y QqBy � 0. As B∆ has full rank, it follows
that B>∆RqB∆ � 0 which leads to the final result F>q Fq � 0. Hence, the optimization
problem (2.32) is convex. Convexity simultaneously leads to the existence of the inverse
in (2.33).

2.2.4 Feasibility

If no solution to an optimization problem exists, the problem is infeasible. A problem is
feasible if the cost function is bounded and all constraints can be satisfied. Reasons for
infeasibility might be unobtainable control objectives and conflicting constraints (Camacho
and Bordons, 2004, p. 197). Unobtainable control objectives can be prevented by a careful
choice of reference values. For example, if constraints on the manipulated variable need
to be considered, reference values should be chosen that do not violate these constraints.
A common approach to improve feasibility is the proper management of constraints. It is
important to distinguish between input and state constraints. State constraints can cause
infeasibility, for example, in the presence of a disturbance or a model mismatch when the
actual state (gained through measurement or estimation) lies outside the state constraints.
Input constraints are usually not that critical, as the input is resulting from the optimiza-
tion problem and is therefore, for example, not directly influenced by a disturbance. It is
common to introduce hard and soft constraints. Examples for hard constraints are critical
limitations that must not be violated and actuator limitations that cannot be violated. Soft
constraints are limitations that are allowed to be exceeded (normally for a short time); they
are usually realized using so-called slack variables (Camacho and Bordons, 2004, pp. 198–
199). A drawback of slack variables is the increased optimization problem size, which usually
leads to a prolonged solution time (Maciejowski, 2002, p. 101). Input constraints are usually
considered hard, whereas state constraints are considered soft. Another possibility to im-
prove the feasibility concerning constraints is to remove the state constraints for the first few
time instants, where constraint infeasibility often occurs because of sudden perturbations or
measurement noise (Camacho and Bordons, 2004, p. 199).
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2.2.5 Stability

Stability is an elementary issue in control systems engineering, only stable closed-loop sys-
tems are applicable in practice and allow safe operation.

• A system is stable if the unforced response (input is zero) of a system approaches zero
as time approaches infinity.

• A system is unstable if the unforced response gets unbounded as time approaches
infinity.

• A system is marginally stable if the unforced response remains constant or oscillates
with a constant amplitude as time approaches infinity (Nise, 2011, p. 302).

These definitions lead to the following stability conditions for a discrete-time LTI system in
the form of (2.12) (Nise, 2011, p. 743):

• Stable: All eigenvalues of the state matrix A lie inside the unit-circle.

• Unstable: One or more eigenvalues of the state matrix A lie outside the unit-circle.
Furthermore, if an eigenvalue of multiplicity greater than one is located on the unit-
circle, the system is unstable3.

• Marginally stable: An eigenvalue of the state matrix A of multiplicity one lies on the
unit-circle and all other eigenvalues are inside the unit-circle.

These stability conditions are valid as long as constraints do not get active. As MPC is
a control method that inherently handles constraints, the closed-loop system is nonlinear
even if the plant to be controlled is linear. This complicates the theory of stability for MPC.
Saberi et al. (2000) pointed out that an unstable LTI system with input constraints cannot
be globally stabilized; statements of stability for MPC are therefore always local in the case of
an unstable system. The feasibility of an optimization problem is a prerequisite for stability
considerations of MPC.

Mayne et al. (2000) consider the stability theory of MPC in their paper (with more than
3800 Google ScholarTM citations) to be at a “relatively mature stage”. However, the ma-
jority of stability proofs deal with regulation problems whose goal is to regulate the states
to the origin. Nevertheless, a system can be transformed such that the origin represents a
constant reference (Mayne et al., 2000). The fact that MPC of constrained systems repre-
sents a nonlinear control approach necessitates the use of the stability theory of Lyapunov
originating from his dissertation in 1892 (Lyapunov, 1992, English reprint). Most stability

3A simple double integrator has two eigenvalues on the unit-circle and is therefore unstable.
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proofs employ the cost function as a Lyapunov function. Stabilizing MPC is gained through
modifications of the optimization problem. Well-known modifications of the MPC problem
for unstable systems are the use of terminal constraints and a terminal cost. If the sys-
tem that is controlled is stable, terminal constraints can be omitted (Mayne et al., 2000).
The design of a stable MPC scheme for an unstable plant is therefore more complex than
the design for a stable plant. The basic idea behind the modifications of the optimization
problem is to emulate infinite horizon control, with its advantages of stability and robust-
ness. Cairano and Bemporad (2010) presented an MPC design method based on controller
matching, which means that the MPC optimization problem is designed such that the con-
trol results correspond to a given linear controller, for example a linear quadratic regulator
(LQR), if the constraints are not active. The problem of stability was not directly addressed
in industry; engineers often restricted the applications to stable plants and chose a large
prediction horizon compared to the plant settling time—these measures also emulate infinite
horizon control (Mayne et al., 2000). Stability issues and measures for direct MPC, where
the input variable belongs to a finite control set, are discussed in (Aguilera and Quevedo,
2011).

The discussed modifications to the optimization problem allow to proof stability for MPC
regulation problems. In order to deal with arbitrary varying reference signals, the concept
of reference governors (RGs) was developed simultaneously by Gilbert and Tan (1995) and
Bemporad and Mosca (1995). An RG allows to decouple—in contrast to MPC—the problems
of stabilizing a possibly unstable plant and the handling of constraints. It is assumed that the
plant, in absence of constraints, is equipped with a stabilizing controller with good tracking
behavior. The handling of constraints is the task of the RG, which modifies the reference
signal in order to prevent the plant inputs and states from saturating.

2.2.6 Tuning of the Cost Function Weights

The concept of MPC is often described as “intuitively appealing” (Maciejowski, 2002, p. 31)
or as “intuitive and easy to understand” (Cortes et al., 2008). These statements might
be true for the basic concept of MPC, but they are also often generalized for the tuning
of the respective cost function weights. However, when it comes to weights tuning, only
“rules of thumb” are available most of the time—especially for the multivariable case of
MIMO systems or for the case where multiple objectives, which might even be conflicting,
are included in a single cost function (Maciejowski, 2002, p. 188).

The tuning of weights influences the control performance. Hackl et al. (2013) illustrated in
their work by a simple third order system (position control) that the tuning of cost function
weights might be not intuitive; even for this simple example, the control performance is
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shown to be a non-convex function of the weights. This means in this case that increasing
the control error weight does not necessary lead to better control performance, as the control
performance contour shows multiple local minima.

Garriga and Soroush (2010) collected various MPC tuning methods in their review; the
sheer number of methods in their work illustrates that the tuning of weights is not straight-
forward and is still an open research topic. Hackl et al. (2013) suggested small changes
of the weighting matrices that can make tuning more intuitive. Other researchers aim to
ease the process of weight tuning through automatic tuning methods (Garriga and Soroush,
2010; Waschl et al., 2012). Guidelines for weighting factor design for direct MPC are given
in (Cortes et al., 2009).

The critical reflection about the tuning of weights should not discourage the application
of MPC; it should rather strengthen the awareness of this often underestimated topic. For
applications that require a fast dynamic response and simultaneous handling of constraints,
it might be challenging or even impossible to tune traditional linear controllers to meet both
requirements.

2.2.7 Choice of the Prediction Horizon

Besides the weighting matrices in the cost function, the prediction horizon N is another
important parameter in the design of MPC laws. A long prediction horizon increases the
problem size and therefore the time that is required to solve the optimization problem. It is
therefore necessary to find a trade-off between computation time and stability considerations.
The influence of the prediction horizon on the control result can be illustrated by comparing
open-loop predictions with the closed-loop trajectories for a perfectly known plant. An im-
portant proposition drawn from Bellman’s principle of optimality (Bellman, 1956) is that for
an infinite prediction horizon, open-loop and closed-loop trajectories coincide (Maciejowski,
2002, p. 173). As discussed in Section 2.2.5 an infinite prediction horizon is often desired to
achieve a stable closed-loop system (Mayne et al., 2000).

Figure 2.6 illustrates possible consequences of a short prediction horizon and a long predic-
tion horizon. The MPC scheme with the short prediction horizon leads to a fast increasing
output. However, this could lead to a large overshoot, as the horizon is too short for the
controller to “see” that it is approaching the reference too fast. Consequently, the open- and
closed-loop trajectories differ. A large enough prediction horizon covers the whole time span
in which the reference is reached. The open- and closed-loop trajectories coincide because a
long prediction horizon emulates an infinite horizon.

From another point of view, open-loop and closed-loop trajectories that do not coincide
lead to suboptimal control results. Suboptimal in this context means that the value of the
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Figure 2.6: Choice of the prediction horizon: The top figure shows two open-loop trajectories of
the output for a short prediction horizon—as the open-loop predictions of the output
computed at k and k + 1 do not coincide, the open- and closed-loop trajectories will
also differ. The behavior for a long (enough) prediction horizon is shown in the bottom
figure: The predicted output trajectories at k and k + 1 coincide, which will lead to
coinciding open- and closed-loop trajectories.

cost function calculated for the closed-loop response is higher than the cost of the open-loop
response (Stumper, 2013, p. 91).

Summing up, it is advisable to choose a prediction horizon that is higher than the settling
time of the plant in order to achieve stability properties equivalent to infinite horizon control
and to get optimal trajectories with respect to the chosen cost function.

2.2.8 Numerical Aspects

A crucial task when dealing with optimization problems is to provide a well conditioned prob-
lem to the respective optimization problem solver. The numerical conditioning of a problem
can change the convergence rate and termination tests—hence, a badly scaled problem can
make a good optimization algorithm bad (Betts, 2001, p. 35). The convergence rate and
termination tests in turn influence the computation time of the respective optimization al-
gorithm.
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The numerical conditioning of an optimization problem is influenced by:

• The tuning of the cost function weights Qq and Rq: The tuning is to a large extent
“fixed” because of dynamic requirements. However, setting a weight much larger or
smaller than necessary deteriorates the numerical conditioning.

• The prediction horizon: Mainly determined through stability and optimality consider-
ations (see Sections 2.2.5 and 2.2.7), the prediction horizon N has a large influence on
the conditioning of the optimization problem, because N appears as an exponent in
the prediction matrices (2.17). It is therefore reasonable to keep the prediction hori-
zon as short as possible while still fulfilling stability and optimality requirements. As
discussed in Section 2.2.7, the prediction horizon is often chosen to be slightly higher
than the settling time of the plant.

• The conditioning of the system model: In contrast to the first two points, the condi-
tioning of the system model can be improved without having a large influence on the
overall control performance. Unfortunately, due to the interaction with a solver, there
are no straight rules to get a well-scaled optimization problem. Still, a first step often
is the scaling of the system states and inputs such that they are all in the same order
of magnitude (Betts, 2001, p. 35).

In order to improve the numerical conditioning of the optimization problems of this work,
scaling of system states and system inputs is applied through the following transformation
(Franklin et al., 2002, p. 74)

x̃[k] = S−1
x x[k],

ũ[k] = S−1
u u[k],

(2.35)

where x̃ and ũ are the scaled state and input vectors, respectively. The matrices Sx and Su
are the corresponding diagonal transformation matrices

Sx = diag {xmax} ∈ Rnx×nx ,

Su = diag {umax} ∈ Rnu×nu ,
(2.36)

where xmax and umax are the maximum (or perhaps nominal) values of the respective states
and inputs in order to bring the values of x̃ and ũ to the range of ±1.
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Applying this transformation to an unscaled discrete-time system in the form of (2.12)
leads to

x̃[k + 1] = S−1
x ASx︸ ︷︷ ︸
Ã

x̃[k] + S−1
x BSu︸ ︷︷ ︸
B̃

ũ[k],

ỹ[k] = Cx̃[k].
(2.37)

The scaled quantities x̃[k], ũ[k], ỹ[k], Ã, and B̃ are used internally in the presented control
algorithms. The scaled output ỹ[k] is based on the unchanged output matrix C. The whole
notation of this work and the experimental results are, however, for the sake of notational
simplicity, based on unscaled quantities. Scaling of a continuous-time state-space model can
be done analogously to the discrete-time case.

The scaling of the system description is not only advantageous in order to improve the
optimization problem conditioning, it can also make the tuning of MPC weighting factors
easier (Hackl et al., 2013), as the terms in the cost function are brought to approximately
the same numerical range.

Another possibility of scaling is to determine the transformation matrices (2.36) such that
approximately equal row and column norms in the system matrices Ã and B̃ are achieved.
This so-called balancing can lead to an improved numerical robustness (Parlett and Reinsch,
1969).

Other approaches to improve the numerical conditioning try to scale the optimization
problem after it has been formulated (in contrast to the scaling of the state-space model).
These preconditioning methods aim to improve the conditioning of the Hessian (the quadratic
term) of the cost function (Bradley, 2010; Richter et al., 2012). The term pre in this case
refers to the phase immediately before solving the optimization problem.

2.3 Robust Model Predictive Control

The robustness of a control system against uncertainties is—besides the dynamic behavior
and stability—another important topic in the design of a controller. Uncertainties can
originate from external disturbances, model mismatch, and unmodeled dynamics (Zhou and
Doyle, 1998). In general, control properties (e.g., dynamic behavior, constraint satisfaction,
etc.) of a robust control system are only marginally influenced by uncertainties. This section
focuses on parametric uncertainties resulting from a model mismatch, which is either caused
by system parameters that change over time or by an inaccurately parametrized model.

Usually, there are three different objectives when the topic of robustness is discussed (Be-
mporad and Morari, 1999)
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• Robust stability: Stability properties can be guaranteed even for an uncertain system.

• Robust constraint handling: Constraints are maintained even for an uncertain system.

• Robust performance: Certain performance criteria (e.g., dynamic performance) are
met even for an uncertain system.

As one of the main points of this work is to exploit the features of MPC to improve the
dynamic control performance, the focus lies on robust performance here. Nevertheless, the
objective of robust performance is only reasonable if stability is maintained in presence of
uncertain parameters.

Robust model predictive control (RMPC) based on a min-max formulation was introduced
by Campo and Morari (1987) with the intention to minimize the worst-case tracking error
for an uncertain system. Further improvements were reported by Kothare et al. (1996) where
the approach was extended to state-space models and robust stability was proven. However,
first simulations showed that the approach of Kothare et al. (1996) is too conservative to
achieve a fast dynamic control performance for the application considered in this work. In
this context, conservative means that the constraints were not fully exploited, which led
to a dynamic behavior that was not satisfactory. Therefore, the approach that is used in
this work is based on (Casavola et al., 2000a; Schuurmans and Rossiter, 2000), where so-
called enumerative schemes together with a polytopic uncertainty description are used to
formulate a robust optimization problem. A min-max formulation based on semidefinite
relaxation was introduced by Löfberg (2003) in order to simplify the enumeration based
optimization problem, but simulations also showed too conservative control results for this
approach.

The basic principle of RMPC is the same as described in Section 2.2.1 for MPC. The
comments on feasibility, the choice of the prediction horizon, the tuning of the cost function
weights, and the numerical aspects in Section 2.2 also remain unchanged for the RMPC case.

2.3.1 Preliminaries

To deal with parametric uncertainties it is necessary to formulate a system model that
includes uncertain parameters. Linear time-varying (LTV) systems in the form of

x[k + 1] = A[k]x[k] +B[k]u[k],

y[k] = Cx[k],
(2.38)

can model such parametric uncertainties. The difference to an LTI system is that the system
matrices A[k] and B[k] can vary over time.
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Figure 2.7: Illustration of a polytopic uncertainty model

In order to model the parametric uncertainties in A[k] and B[k], a polytopic uncertainty
model is used (Kothare et al., 1996; Wan and Kothare, 2003), where these matrices lie within
the polytope Ω

[
A[k] B[k]

]
∈ Ω. (2.39)

The polytope Ω (see Figure 2.7) is defined as

Ω = Co
{[
A(1) B(1)

]
,
[
A(2) B(2)

]
, . . . ,

[
A(L) B(L)

]}
, (2.40)

which is the convex hull Co {·} of extreme system realizations. The number of extreme
realizations L is calculated through combinatorial reasoning as

L = 2np ∈ N, (2.41)

where np ∈ N0 is the number of uncertain parameters.

The following example illustrates the concept of a polytopic uncertainty model. For sim-
plicity, a system without an input is considered (B[k] = 0nx×nu). The time varying matrix

A[k] =
1 0.1

0 a21[k]

 (2.42)

serves as an example. The parameter a21[k] is considered to be uncertain in the range of
±10% of its nominal value anom21 (infinitely many values). The polytope Ω of the polytopic
uncertainty model is described by finitely many extreme realizations

Ω = Co
{
A(1),A(2)

}
, (2.43)
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where the extreme realizations A(1) and A(2) are given by

A(1) =
1 0.1

0 1.1 · anom21

 , A(2) =
1 0.1

0 0.9 · anom21

 . (2.44)

In order to use the polytopic uncertainty model in an RMPC scheme it is necessary to
predict the system behavior. However, formulating a robust optimization problem requires—
in contrast to the prediction (2.15)—predictions based on an uncertain system. A polytopic
uncertainty model with one uncertain parameter (np = 1) leads to L = 2np = 2 extreme
realizations. Starting with the actual state x[k], the state at the next sampling instant is
predicted as

x[k + 1] = A[k]x[k] ∈ Co
{
A(1)x[k]︸ ︷︷ ︸
x(1)[k+1]

, A(2)x[k]︸ ︷︷ ︸
x(2)[k+1]

}
. (2.45)

This means that x[k + 1] is not a certain vector but lies within the convex polytope
Co

{
x(1)[k + 1], x(2)[k + 1]

}
. In other words, for the exemplary time varying matrix (2.42),

every prediction with the parameter a21 in the range of ±10% of its nominal value anom21 lies
within the predictions x(1)[k + 1] and x(2)[k + 1]. It is essential to determine the polytopic
uncertainty model such that all system realizations of the system that varies over time
lie inside the convex hull of the extreme realizations. According to Kothare et al. (1996),
a practical approach to determine the polytopic uncertainty model is to identify various
discrete-time system models at relevant operating points (e.g., temperatures) and at different
times. The polytope Ω is then filled with the identified models.

Predicting the next state x[k + 2] using x[k + 1] leads to

x[k + 2] ∈ Co
{
A(1)x(1)[k + 1]︸ ︷︷ ︸

x(1)[k+2]

, A(1)x(2)[k + 1]︸ ︷︷ ︸
x(2)[k+2]

,A(2)x(1)[k + 1]︸ ︷︷ ︸
x(3)[k+2]

, A(2)x(2)[k + 1]︸ ︷︷ ︸
x(4)[k+2]

}
. (2.46)

The principle of uncertain prediction is also illustrated in Figure 2.8. This prediction tree
illustrates why the later discussed RMPC scheme is called enumerative; finitely many paths
through this tree have to be considered. This leads to a high computational complexity.

If the uncertainties are assumed to be time-invariant over the prediction horizon, the
prediction tree has nseq = L possible sequences that lead to uncertain predictions. If the un-
certainties are considered to be time-variant over the prediction horizon, nseq = LN possible
sequences have to be considered (illustrated in (2.46)) which leads to exponential complexity.
Time-invariant uncertainties are caused, for example, by inaccurate system identification
(parameter mismatch). Further time-invariant parameters are parameters that vary only
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Figure 2.8: Prediction for the polytopic uncertainty model using an enumerative scheme. The
time-invariant and the time-variant cases are indicated.

marginally over the prediction horizon (e.g., the resistance of an electric motor that varies
slowly with the temperature). The inductance of an electric motor is an example for a pa-
rameter that is time-variant over the prediction horizon—magnetic saturation that depends
on the electric current can be modeled by a fast changing inductance.

In this work—in order to reduce the computational complexity—the uncertainties are
assumed to be time-invariant over the horizon. Speaking in terms of example (2.46), a
constant uncertainty leads to x[k + 2] ∈ Co{A(1)x(1)[k + 1], A(2)x(2)[k + 1]}.

The l-th uncertain predictions of the states X(l)[k] and outputs Y (l)[k] are written as

X(l)[k] = A(l)
x x[k] + B(l)

x U [k],

Y (l)[k] = A(l)
y x[k] + B(l)

y U [k], ∀l ∈ {1, 2, . . . , nseq}.
(2.47)

The stacked vectors X(l)[k], Y (l)[k] and U (l)[k] are defined analogously to (2.14). As the
uncertainties are considered to be constant over the prediction horizon, the number of se-
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quences reads as nseq = L = 2np . The interested reader is referred to the work of Schuurmans
and Rossiter (2000) for a detailed derivation of A(l)

x , A(l)
y , B(l)

x and B(l)
y .

The formulation of the rate of input change ∆U [k] and the constraints on the states
|X| ≤Xmax and the inputs |U | ≤ Umax remain the same as in the MPC preliminaries
Section 2.2.2. As the constraints remain the same, robust constraint fulfillment is not con-
sidered here. This means that it is not guaranteed that state constraints are fulfilled for the
uncertain plant; input constraints are fulfilled, as the formulation of the input constraints
does not contain any uncertainties. The robust fulfillment of state constraints can lead to
a conservative control behavior (Bemporad and Morari, 1999) and is therefore out of the
focus of this work. The choice of non-robust constraints in this work is reasonable, as input
constraints are often hard constraints (through actuator limitations) and state constraints
are often allowed to be slightly violated. Furthermore, state constraints are usually softened
through slack variables and are therefore not exactly fulfilled even when no uncertainties are
present (nominal case).

2.3.2 Robust Model Predictive Control Optimization Problem
Formulation

The RMPC scheme considered here is based on a so-called min-max formulation introduced
by Campo and Morari (1987). The basic idea is to find the worst-case system realization
and to minimize the respective worst-case cost function. An enumeration based min-max
RMPC scheme, introduced in (Casavola et al., 2000a; Schuurmans and Rossiter, 2000), is
presented in detail in the following.

The basic ingredients of the MPC cost function such as the control error and the rate
input change remain unchanged in the RMPC formulation. However, the control error is
now dependent on uncertain predictions. The cost function for RMPC based on enumeration
is written as

J
(l)
q,rob(U [k],x[k],Y r[k]) =

∥∥∥∥∥∥
(Qq)

1
2 Er,(l)[k]

(Rq)
1
2 ∆U [k]

∥∥∥∥∥∥
2

2

, (2.48)

where l ∈ {1, 2, . . . , nseq}. This cost function has again two objectives, namely, the future
control error Er,(l)[k] and the rate of input change ∆U [k]. The index l identifies the re-
spective path of the prediction tree in Figure 2.8. The weighting matrices R`1 and Q`1 are
defined by (2.29).
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Figure 2.9: Graphical representation of the min-max problem (2.50), with nseq = 3. In this illus-
tration, it is assumed that all components of U [k] have the value u[k], which is in turn
varied along the abscissa. The optimal value of u[k] is denoted by u?[k].

The cost function (2.48) is expressed, depending on the optimization variable U [k], as

J
(l)
q,rob(U [k],x[k],Y r[k])

(2.47)
(2.19)=

∥∥∥∥∥∥∥
(Qq)

1
2 B(l)

y

(Rq)
1
2 B∆


︸ ︷︷ ︸

F
(l)
q

U [k] +
(Qq)

1
2
(
A(l)
y x[k]− Y r[k]

)
0N ·nu


︸ ︷︷ ︸

g
(l)
q [k]

∥∥∥∥∥∥∥
2

2

,
(2.49)

The min-max based robust optimization problem including the cost function (2.49) and
the constraints (2.25), which are already known from the MPC formulation, is stated as

minimize
U [k]

max
l∈{1,2,...,nseq}

J
(l)
q,rob(U [k],x[k],Y r[k])

subject to GU [k] ≤ H[k].
(2.50)

The max part of the cost function (2.50) represents the worst-case cost function realization.
This worst-case realization is minimized over the future control actions U [k]. Figure 2.9
illustrates the idea of the min-max formulation by a simple scalar example. What remains,
is to bring the optimization problem (2.50) to a standard form. Applying the epigraph
transformation of Section 2.1.5 to (2.50) leads to

minimize
U [k],γ

γ

subject to max
l∈{1,2,...,nseq}

J
(l)
q,rob(U [k],x[k],Y r[k]) ≤ γ

GU [k] ≤ H[k].

(2.51)
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In order to eliminate the max operator from the inequalities, the first inequality of the
equivalent optimization problem

minimize
U [k],γ

γ

subject to J
(l)
q,rob(U [k],x[k],Y r[k]) ≤ γ, ∀l ∈ {1, 2, . . . , nseq},
GU [k] ≤ H[k],

(2.52)

must hold for all l ∈ {1, 2, . . . , nseq}, which means that the number of inequalities increases.
Nevertheless, the absence of the max operator allows bringing the optimization problem to a
standard form. Using the specific cost function formulation (2.49), the optimization problem
reads as

minimize
U [k],γ

γ

subject to
∥∥∥F (l)

q U [k] + g(l)
q [k]

∥∥∥2

2
≤ γ, ∀l ∈ {1, 2, . . . , nseq},

GU [k] ≤ H[k],

(2.53)

which is transformed once more to get second-order cone constraints4 in the optimization
problem

minimize
U [k],γ

γ

subject to
∥∥∥∥∥∥
2
(
F (l)
q U [k] + g(l)

q [k]
)

1− γ

∥∥∥∥∥∥
2

≤ 1 + γ, ∀l ∈ {1, 2, . . . , nseq},

GU [k] ≤ H[k].

(2.54)

This optimization problem is the key ingredient of RMPC and now has the form of an SOCP,
which represents a convex optimization problem. This problem is solved at every sampling
instant k while the first entry of the resulting optimal input vector U ?[k], namely u?[k],
is then applied to the plant. The remaining transformation to the exact standard form
(see (2.6)) is omitted here for reasons of brevity. The optimization problem (2.54) can be
considered the robust counterpart of (2.32). It is emphasized that the weighting matrices Qq

and Rq remain the same as in the MPC formulation—no re-tuning is necessary. However,
the RMPC formulation requires an SOCP solver in contrast to the MPC formulation, which
requires a QP solver.

4This transformation is necessary because (2.53) contains a quadratic form in the constraints. In order to
apply a standard SOCP solver this quadratic form needs to be expressed as a second-order cone.
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2.3.3 Stability

Ensuring stability for RMPC, where uncertain parameters are involved, is even more com-
plex than for MPC (Mayne et al., 2000). The basic principle is to add a terminal constraint
and a terminal cost to the respective optimization problem as in MPC. Zheng (1995) in-
troduced robust contraction constraints for stable plants. These constraints ensure that the
states converge to an equilibrium for all possible uncertainty realizations. Another approach
is the use of so-called robustly invariant terminal sets (Bemporad and Morari, 1999), which
also guarantee robust stability. More details about robust stability are given in the works
of Rawlings and Mayne (2009, p. 213ff.) and Bemporad and Morari (1999). However, the
approaches to ensure robust stability are again mostly for regulation problems. In order to
track arbitrary reference signals, once more a trend towards the decoupling of the stabiliza-
tion of a possibly unstable plant and handling of constraints through reference governors
(RGs) can be observed (Mayne et al., 2000).

2.4 Reference Governors

The general aim of reference governors (RGs) is to modify an existing arbitrary varying
reference signal such that constraints of an underlying control system are respected. This
implies that if the reference signal can be tracked by the underlying control system without
violating constraints, the reference is not adapted by the RG (Kolmanovsky et al., 2012). In
contrast to MPC, an RG is an add-on to a probably existing feedback controller—an MPC
scheme replaces an existing controller.

Considering a reference in the shape of a ramp that is fed to an RG, the exact tracking
of this exemplary reference signal would require a very high acceleration5 over one sampling
interval of a discrete-time control system. In practice, the acceleration is limited and cannot
be changed instantly. An RG adapts the reference signal, i.e. “smoothens”, the ramp such
that the underlying controller maintains the constraints and thus is able to track the adapted
reference.

A stable design of MPC and RMPC schemes for unstable systems is quite complex (Mayne
et al., 2000), as the topics of stabilization, control performance, and constraint satisfaction
are handled by a single controller. This is the point where the concept of RGs leads to
simplifications in the controller design phase. The underlying feedback controller is designed
to achieve a stable closed-loop system and a good tracking behavior in the absence of con-
straints, whereas the RG ensures that system constraints are not violated.

5In the continuous-time case, even an infinite acceleration would be necessary.
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Figure 2.10: A basic reference governor (RG) structure

The basic structure of a system that includes an RG is depicted in Figure 2.10. The
trajectory planning part delivers the reference signal that consists of simple shapes (e.g., steps
or ramps) or more sophisticated shapes (e.g., acceleration- and jerk-limited trajectories).

The original concept of an RG presented in (Gilbert and Tan, 1995) is inspired by the
maximal output admissible set theory developed by Gilbert and Tan (1991). The initial
state of an LTI system without an input (unforced) is said to be output admissible with
respect to an output constraint if the respective unforced output response does not violate
the constraint. The set of all possible initial conditions that fulfill this definition is called
maximal output admissible set. The first RG by Gilbert and Tan (1995) makes use of
this theory to adapt the reference if constraints would be exceeded. Simultaneously, but
independently, Bemporad and Mosca (1995) developed a predictive reference governor (PRG)
that relies on some ideas of MPC. Nowadays, the concept of RGs often blends into MPC
(Kolmanovsky et al., 2012).

Many variants of RGs have been proposed since their development. The RG variants differ
in some key properties. For instance, Kogiso and Hirata (2006) presented an RG that can
cope with an arbitrary reference, whereas Aghaei et al. (2013) treated constant references.
A further objective that can be considered is robustness, which is treated in (Bemporad and
Mosca, 1998; Guzman et al., 2009; Casavola et al., 2000b). Another point of distinction is
whether the RG receives feedback of the plant as in (Gilbert and Tan, 1995; Bemporad and
Mosca, 1995) or if no feedback is used (Sugie and Yamamoto, 2001; Hirata and Kogiso, 2001).
Further recent developments in the field of RGs can be found in the work of Kolmanovsky
et al. (2012).
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3 The Concept of Predictive Reference
Governors (PRGs)

This chapter introduces the concept of predictive reference governors (PRGs). Subsequent
chapters treat several different variants of PRGs including near minimum-time and multiple-
input, multiple-output (MIMO) formulations.

PRGs were introduced by Bemporad and Mosca (1995). A PRG is a combination of
the concept of a reference governor (RG) presented in Section 2.4 and the ideas of model
predictive control (MPC) (see Section 2.2). The main task of a PRG remains the modification
of a reference signal in order to satisfy constraints that are present in the underlying control
system. The theory of maximal output admissible sets is often used for the design of classical
RGs, whereas PRGs rely on the concept of MPC to deal with constraints and simultaneously
minimize the deviation of the reference signal by making use of a cost function. The PRG
approach comes with the same advantages as a classical RG: The two important control
objectives of constraint handling and stabilization of a possibly unstable plant are decoupled,
which simplifies the overall design procedure. A PRG can be seen as an add-on to an
existing (proven) feedback controller—an MPC scheme would completely replace the existing
feedback controller. Traditionally, PRG formulations rely on quadratic form based cost
functions: Aghaei et al. (2013) showed simulation results for constant reference signals and
Stoican et al. (2012) used the PRG concept for fault detection purposes while tracking an
arbitrary varying reference. Huber et al. (2013) used nonlinear MPC in a scheme they call
model control loop, which can also be interpreted as a PRG approach.

Figure 3.1 illustrates the concept of the proposed PRG scheme. The structure consists of
three main parts: The trajectory planning section, the PRG, and a two-degrees-of-freedom
(2-DoF) based control scheme with a sampling time Ts. The 2-DoF based scheme, which is
presented in detail in Chapter 4, consists of the dynamic, model-based feedforward control
(DynFF) part and the feedback controlled plant. The part consisting of the PRG can be
executed with a sampling time of nmr · Ts (with nmr ∈ N), which makes the overall structure
a multi-rate control scheme, or even offline if the computational requirements are too high.
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Figure 3.1: Detailed predictive reference governor (PRG) structure

The trajectory planning section generates the reference trajectory. This reference tra-
jectory can be, for example, a step, a trajectory in the shape of a ramp, or a completely
arbitrary varying reference signal. The stacked reference vector Y r[k] is delivered by the
trajectory planning section to the PRG. As discussed in Section 2.2.2, Y r[k] is assumed to
be constant if the reference is not known in advance and Y r[k] contains future reference
values if they are known in advance (preview = true).

The PRG in Figure 3.1 is the key component of the whole structure. It is responsible for
modifying the reference trajectory such that constraints in the closed-loop control system
are maintained and that the deviation from the reference is as small as possible. If Y r can be
tracked by the underlying controller without violating the constraints, Y r is not modified.
The concept of MPC is perfectly suited for the needs of a PRG, as a cost function can be
minimized in the presence of constraints. The general optimization problem of a PRG reads
as

minimize
U [k]

J(U [k],x[k],Y r[k])

subject to GU [k] ≤ H[k].
(3.1)

The optimization problem (3.1) is up to now quite general1—the only prerequisites are that
it is convex and that it can be solved efficiently. Examples for the general optimization
problem (3.1) are a quadratic program (QP) that arises in MPC (see (2.32)) or a second-
order cone program (SOCP) that arises in RMPC (see (2.54))—the ongoing chapters deal
with different types of cost functions and define the respective optimization problems more
precisely.

The optimization problem (3.1) is solved in a receding horizon fashion as it is done in
MPC. The optimal value of the optimization variable is denoted by U ?[k].

1The element-wise constraints GU [k] ≤ H[k] serve as an example here.
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The choice of the prediction horizon N depends on the settling time of the plant for the
worst-case reference signal; N should be higher than the settling time to cover the complete
dynamic behavior of the plant. A choice like this leads to coinciding open-loop and closed-
loop trajectories (see Section 2.2.7) and therefore to optimal trajectories with respect to the
cost function for the open- and closed-loop response.

Furthermore, a long prediction horizon is in close relationship with a stable overall PRG
structure, because a long prediction horizon emulates infinite horizon control with its advan-
tages of stability and robustness (Mayne et al., 2000). Well-known approaches from MPC
like the use of terminal constraints and a terminal cost can be used to design a stable PRG—
stability can be proofed for regulation problems (Mayne et al., 2000). A stability proof for
a PRG that tracks of a constant reference is given in (Bemporad, 1997). As the PRGs in
this work deal with the tracking of arbitrary varying reference signals, a rigorous proof of
stability of the overall system cannot be given here. Nevertheless, compared with MPC, a
PRG does not have to deal with the stabilization of a possibly unstable plant, as the plant
is already stabilized by a feedback controller. The design of a stable overall system that
includes the PRG and the stable closed-loop system is considered to be simplified compared
with the design of a single MPC scheme.

The tuning of cost function weights is mainly done heuristically, as is the case for MPC.
Keeping the number of tuning parameters as low as possible simplifies the tuning.

The overall PRG scheme presented in Figure 3.1 is a multi-rate scheme, which means that
the PRG can operate with a higher sampling time nmr · Ts than the digital control system
that operates with the sampling time Ts. The factor nmr ∈ N is mainly dependent on the
time it takes to solve the optimization problem (3.1) and therefore dependent on the problem
type, the problem size and the used solver. If the sampling times in the overall scheme differ
(nmr > 1), the optimization problem (3.1) is solved with a sampling time of nmr · Ts and is
therefore the receding horizon needs to be shifted by Nshift = nmr ∈ N. In the extreme case
where nmr is required to be larger than the prediction horizon N , the PRG scheme needs
to be evaluated offline. This means that the whole reference trajectory is optimized offline;
afterwards, the optimized trajectory is tracked by the controller. If the PRG is working
offline, Nshift can be chosen in the range between 1 and the prediction horizon N . Increasing
the value of the prediction horizon shift Nshift leads to a decreased computation time of the
whole trajectory. Nevertheless, regarding the preview feature, a value of Nshift that is close
to the prediction horizon might lead to suboptimal results, which is illustrated in Figure 3.2
by an example.

If the PRG is executed offline (especially for fast sampling systems), it is not possible
to take the measured or estimated state x[k] into account. In this case, the state predic-



42 3 The Concept of Predictive Reference Governors (PRGs)

Figure 3.2: Choice of the prediction horizon shift Nshift for a PRG with preview. The top figure
shows the initial iteration, where the reference in the shape of a ramp is just not “visible”
for the PRG. The bottom figure shows the next iteration, after the prediction horizon
N = 6 has been shifted for Nshift = 4 sampling instants. Through this relatively large
shift compared with the prediction horizon it might not be possible to react on the
changing reference in time. This means the resulting output might significantly differ
from the case Nshift = 1.

tion (2.15) is used to “simulate” the plant to determine the state xpred = x[k+Nshift] which is
then used as the actual system state in the next iteration. In the presence of an external dis-
turbance, model mismatch, or unmodeled phenomena the feedback controller is responsible
for steering back the output to its reference trajectory.

The term receding horizon is also used in this thesis if it is larger than one, which is the
standard case in MPC, and also if no feedback is available.

The overall principle of the PRG scheme is also shown as pseudo-code in Algorithm 1 (see
Appendix A). The main loop that is executed with a sampling time of nmr · Ts or offline
(without a predefined sampling rate) is shown in Algorithm 2 (see Appendix A).

The trajectories of the optimized inputs and states, U r,opt[k] and X r,opt[k], are resulting
from solving the optimization problem (3.1) and are gathered in a receding horizon fashion.
As the system output is a linear combination of the system states, the output trajectory
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is included in X r,opt[k]. In this work, however, the output trajectory is not used directly.
Chapter 4 shows that the inherently available signals U r,opt[k] and X r,opt[k] can be efficiently
used as feed-forward signals in a 2-DoF controller using the so-called DynFF concept (Rop-
penecker, 2009). Figure 3.1 already includes this feedforward strategy between the PRG and
the closed-loop controlled plant.

The PRG algorithm that is presented here uses the open-loop model (2.12) without a
feedback controller for the formulation of the optimization problem—the reason for this is
the close relationship to MPC. However, if the open-loop system is unstable, it is necessary
to use a stable closed-loop model that includes the feedback controller for the PRG design.
This can be achieved through slight modifications that are sketched in Section 4.2.2.1, where
the feedback controller design is discussed.

The proposed multi-rate PRG scheme allows to scale the sampling times in order to
evaluate the optimization algorithm in real-time, or, in the extreme case, even offline. This
flexibility enables the use of a long prediction horizon, which ensures closed-loop optimality
and contributes to the overall stability of the control scheme. The offline application of a PRG
allows to exploit the features of MPC, like the handling of constraints and the minimization
of a cost function, even for fast sampling systems that do not yet allow operating a PRG
scheme in real-time.
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4 Modeling and Control Structure of an
Industrial Positioning System

The common demand in many processes for an increased speed/productivity and an in-
creased precision is the driving force behind model-based control methods. Simple struc-
tures, for example consisting of proportional-integral-derivative (PID) or linear state-space
controllers, can often not fulfill these modern control requirements, especially in the presence
of constraints.

The predictive reference governor (PRG) schemes presented in this work are validated
with a highly dynamic industrial laser positioning system. Such positioning systems are
needed, for example, in the fields of laser welding and cutting, rapid prototyping, or in med-
ical technology. A schematic drawing of this system is presented in Figure 4.1. Deflection
of a laser in two dimensions is achieved with mirrors that are mounted on two independent
electric motors. This setup allows positioning a laser beam with high speed, as the involved
motor-mirror combinations offer low moments of inertia compared to the positioning of the
whole laser unit. The respective electric motor is a single-phase motor with a permanent
magnet (PM) on its rotor. As the motor in such a positioning system is only required to
rotate about ±10◦ there is no need for a commutator. A position detector placed at the
end of the motor (opposite to the mirror) is used to measure the angular position of the
rotor. This position detector together with a current sensor and a digital control system
form a servomechanism. The high dynamic and precision requirements of these applications
demand fast sampling control systems and precise modeling of the electromechanical system.
Due to finite stiffness, the mechanical system of the mirror and the rotor is modeled as a
two-mass system that is connected through a spring-damper system. This means that the
angular load position1 (mirror) and the angular motor position differ especially for fast po-
sitioning. As the sensor (position detector) and the actuator (motor) are placed in the same
location—assuming a stiff coupling between the position detector and the rotor—this con-
trol scheme is called collocated control. If the angular load position would be measured, the
sensor and the actuator would be in different locations, which would lead to non-collocated

1Angular load position is used from here on synonymously with angular mirror position, in order to stick
to the common “motor/load” notation.
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Figure 4.1: Positioning system with the optical path, position sensitive device (PSD), and control
system. The control system measures the angular motor positions (ϕmeas

m,1 and ϕmeas
m,2 ) and

the currents (imeas
1 and imeas

2 ). The input voltages of the motors are denoted by v1 and
v2, respectively. The position sensitive device (PSD) measures the spot position, which
is converted to the measured angular load positions ϕmeas

l,1 and ϕmeas
l,2 . This experimental

setup is only used for validation purposes—in normal operation, the PSD is replaced
by a workpiece.

control (Preumont, 2011, p. 117ff.). The performance measure of a laser positioning sys-
tem is the position of the laser spot, which is typically focused on a workpiece. Optical
measurement systems, for example a camera, are necessary to measure the position of the
spot. However, these measurement systems often have a slow dynamic response, which make
them unusable for control purposes. The spot position is dependent on the two angular load
positions (mirrors) by a nonlinear geometric transformation (Tang et al., 2004). This posi-
tion transformation in turn is given by the mechanical design of the positioning system and
is used to determine the angular load positions that correspond to a given spot position.
Hence, it is possible to control the spot position by controlling the respective load positions.
Nevertheless, it is also hard to measure the load positions without a high additional cost
and effort. In order to bypass the problems of measuring the spot or the load positions, in
this work the load position is estimated in order to use this position as the output that is
controlled.

The following sections describe how the electromechanical system is modeled, identified,
and controlled. They also show that it is reasonable to use the estimated load position for
control. Measurements with a PSD, which allows measuring the laser spot position, validate
this approach.
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4.1 System Modeling and Identification

The foundation of model-based control (e.g., state-space control, model predictive control
(MPC), etc.) is a system model that is detailed enough to represent the most important
system dynamics.

The considered application consists of two permanent magnet (PM) direct current (DC)
motors with mirrors attached to them. The following remarks concerning the modeling
and the identification of the system parameters deal with a single motor. The principles,
however, apply to both used motors, as they just differ in the system parameters and not in
their general design.

The PM DC motor is modeled according to standard references (Schröder, 2013; Iser-
mann, 2005). The stator winding of the single-phase motor is modeled by an inductance L
in series with a resistance R. The current in the stator windings i(t) interacts with the
part of the magnetic field of the PM on the rotor that is perpendicular to the current and
thus generates a radial force, which leads to a torque; this interaction is modeled through
the torque constant Kt. The fact that this motor has no commutator and only one pole
pair makes the torque “constant” dependent on the position Kt(ϕm(t)) = Ψpm cos(ϕm(t)),
where Ψpm is the flux linkage of the permanent magnet. This position dependency is ne-
glected (Kt = Ψpm = constant) in this work because of the relatively small angles of ±10◦

that are needed for the specific positioning application—the maximum relative error of the
torque constant Kt in this position range is ±1.52%. The generated torque can accelerate
the rotor and thus influences the motor position ϕm(t) and motor speed ωm(t). The re-
sulting induced voltage in the stator winding (back electromotive force (EMF)) is modeled
as Ktωm(t). This back EMF counteracts the input voltage v(t). The unit of the torque
constant Kt is NmA−1, which corresponds to V s.

The input voltage v(t) is applied to the windings through pulse width modulation (PWM)
together with an H-bridge consisting of four MOS-FETs. The influence of this power elec-
tronics based actuator (dead-times, switching times, etc.) is neglected in the modeling of
the system, as the involved PWM sampling time TPWM = 1/fPWM = 3.33 µs is much lower
than the electrical time constant τel = L/R ≈ 60 µs.

Supping up, the differential equation of the current i(t) (electrical subsystem) reads as

L
d
dti(t) = −Ri(t)−Ktωm(t) + v(t). (4.1)

The acceleration is dependent on the torque and the moment of inertia. The topic of
friction plays a minor role for the application that is considered here; the involved moment
of inertia is small compared to the available torque. Hence, friction is modeled as simple
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viscous friction depending on the motor speed ωm(t) and the viscous friction coefficient Kf.
More advanced friction models can be found, for example, in (Olsson et al., 1998) or (Hackl,
2012, p. 17–28).

The final part in the modeling of the plant is the interaction between the load and the
motor. The load position and the load speed are denoted by ϕl(t) and ωl(t), respectively.
The high dynamic capabilities of the motor together with the finite stiffness of the rotor-load
system make it necessary to model this mechanical system as a two-mass system consisting of
the motor moment of inertia Jm and the load moment of inertia Jl (Ellis, 2000, p. 331–349).
The connection of the motor and the load is modeled by a spring-damper system with the
spring constant c and the damping d.

The differential equations of the mechanical subsystem are

Jm
d
dtωm(t) = Kti(t)− cϕm(t)− (d+Kf)ωm(t) + cϕl(t) + dωl(t),

Jl
d
dtωl(t) = cϕm(t) + dωm(t)− cϕl(t)− dωl(t),

(4.2)

with

d
dtϕm(t) = ωm(t),

d
dtϕl(t) = ωl(t).

(4.3)

The differential equations that govern the discussed subsystems of the overall model are
brought together to a general continuous-time multiple-input, multiple-output (MIMO) lin-
ear time-invariant (LTI) system in the form of

ẋ(t) = Acx(t) +Bcu(t),

y(t) = Cx(t),
(4.4)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the system input vector, and y(t) ∈ Rny

is the output vector. The numbers of system states, inputs, and outputs are nx, nu and ny,
respectively. The matrices Ac ∈ Rnx×nx , Bc ∈ Rnx×nu , and C ∈ Rny×nx are the continuous-
time state matrix, the input matrix, and the output matrix, respectively.

The state vector x(t) and the input vector u(t) for the PM DC motor are written as

x(t) =
[
i(t) ϕm(t) ωm(t) ϕl(t) ωl(t)

]>
,

u(t) =
[
v(t)

]
.

(4.5)
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Figure 4.2: Signal flow graph of the continuous-time LTI model of a single PM DC motor that
forms a two-mass system with the load

The output vector y(t), which consists of the measurable states, is defined as

y(t) =
[
i(t) ϕm(t)

]>
. (4.6)

The dimensions of the input (nu = 1) and output vector (ny = 2) suggest that the system
considered here is a single-input, multiple-output (SIMO) system which is a subclass of the
more general MIMO systems.

Considering (4.1)–(4.3), the matrices of the state-space representation are

Ac =



−R
L

0 −Kt
L

0 0
0 0 1 0 0
Kt
Jm

− c
Jm
−d+Kf

Jm
c
Jm

d
Jm

0 0 0 0 1
0 c

Jl
d
Jl

− c
Jl
− d
Jl


, Bc =



1
L

0
0
0
0


. (4.7)

The system output matrix that follows from (4.5) and (4.6) is

C =
1 0 0 0 0

0 1 0 0 0

 . (4.8)

The output defined by (4.6) is needed for system identification and state estimation. How-
ever, for feedback control and for the predictive reference governor (PRG) approaches another
choice of the output y(t) is necessary in order to control the load position ϕl(t). The system
flow graph of the system described by (4.4)–(4.8) is shown in Figure 4.2.

Figure 4.3 schematically illustrates the most important parts of the system that is con-
trolled. It includes—besides the PM DC motor and the load—the PWM, the power electron-
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Figure 4.3: Schematic representation of a single PM DC motor that forms a two-mass system with
the load. This structure represents the discrete-time plant that is “seen” by the digital
control system.

ics, and the data acquisition (measurement of imeas[k], ϕmeas
m [k]). Hence, this figure represents

the plant that is “seen” by the digital control system.

The discrete-time nature of the digital control system makes it necessary to transform the
matrices Ac and Bc to their discrete equivalents A and B. The general discrete-time MIMO
LTI model (2.12) is repeated here for reasons of completeness

x[k + 1] = Ax[k] +Bu[k],

y[k] = Cx[k].
(4.9)

The discrete equivalentsA andB are determined using the zero-order hold (ZOH) discretiza-
tion (Franklin et al., 1997, p. 203) to account for a constant plant input u[k] between two
sampling instants. The discrete matricesA andB are determined by the ZOH discretization
such that the states of the continuous-time model (4.4) and the states of the discrete-time
model (4.9) are equal at the sampling instants for a constant input u[k]. Furthermore,
the ZOH discretization ensures stability of the discrete-time system if the continuous-time
system is stable. Other discretization methods like the popular and simple Euler forward ap-
proximation can lead to an unstable discrete-time system even if the continuous-time system
is stable. Nevertheless, the Euler forward approximation can lead to a discrete-time model
that is in good agreement with the continuous-time model if the controller sampling time Ts
is small compared with the smallest system time constant. In this work, however, the ZOH
discretization is used because the smallest system time constant, the electrical time con-
stant τel = L/R ≈ 60 µs, is already in the range of the controller sampling time Ts = 10 µs,
which cannot be lowered further due to computational constraints. The output y[k] and the
output matrix C remain the same as for the continuous time-case (see (4.6) and (4.8)).
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The discrete-time transfer function (TF) matrix H(z) of a system in the form of (4.9)
reads as

H(z) = Xtf(z)
U tf(z) = (zInx×nx −A)−1B, (4.10)

where U tf(z) and Xtf(z) are z-transforms of the input u[k] and the state x[k], respectively.
Hence, the TF matrix H(z) contains all possible combinations of TFs from the inputs to
the states. The TF from v[k] to ϕl[k], for example, is denoted by Hv→ϕl(z).

The experimental setup (see Figure 4.1) comprises a personal computer (PC) running
Mathwork’s MATLAB R©. The computer interacts with a digital signal processor (DSP)
through a dynamic link library (DLL). This DSP is operated in real-time and is respon-
sible for control, measurement, and communication. Hence, the experimental results (for
identification, analysis, etc.) are directly available in MATLAB.

The next step is to identify the parameters of the continuous-time state-space matrices Ac

and Bc, which subsequently lead to their discrete-time equivalents A and B. An impor-
tant difference of the application considered here—in comparison to most standard control
systems—is that the state that needs to be controlled, the load position ϕl[k], is not mea-
sured. In the case where this state can be measured, it is enough to identify a system model
that reproduces the input-output behavior of the system. This means the model does not
reproduce physically motivated internal states. This reproducibility, however, is essential for
this work because it is desired to control the load position ϕl[k] while only the measurements
of the current imeas[k] and the motor position ϕmeas

m [k] are available. Furthermore, if states
that are not measured are required to respect constraints, it is also essential to keep the
physical connection between the states in the identification procedure. Summing up, it is
necessary to identify the physical parameters of the state-space matrices Ac and Bc in order
to ensure the physical connection between the system states.

The two most general system identification approaches are called black box identification
and grey box identification (Ljung, 1999; Isermann and Münchhof, 2011). Black box identi-
fication refers to the case where little or even no information about the system under control
is available or to the case where the system is too complex to be modeled from a physical
perspective. This would mean that all entries ofAc andBc are identified without knowledge
about the (physical) connection between these values; this in turn leads to (internal) states
that do, in general, not correspond to physical values2. As already discussed, the physical
connection between the system states is essential in this work. Hence, grey box identifica-

2A specific input-output behavior can be achieved through infinitely many state-space representations.
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tion is used here, where a model is constructed that often relies on physical reasoning and
contains free parameters that need to be identified.

The basic process of grey box system identification consists of the following steps:

• Define a model (often physics based) with free parameters.

• Collect training-data, a sequence of output values ymeas[k], using a suitable sequence
of input values u[k] that excites all important system dynamics. In this case, the
measured output is ymeas[k] = [ imeas[k] ϕmeas

m [k] ]> and the system input is u[k] = [ v[k] ].

• Estimate the free model parameters based on the sequences of the output error
ymeas[k] − y[k] and the input u[k], where y[k] is the output of the identified model.
This parameter identification is often based on an unconstrained optimization problem.

• Validate the identified model using data that are different from the training-data and
again excite all important system dynamics.

The identification of a rotational two-mass system is a quite common problem in literature.
In the field of electrical drive systems, it is often essential to take into account the oscillatory
behavior of two-mass systems. Endisch et al. (2009) used a dynamic neural network to
identify two-mass parameters and a nonlinear friction model. An identification method in
the frequency domain is presented in (Villwock and Pacas, 2008; Pacas et al., 2010). The so-
called Welch method, which originates from the field of signal processing, is used to identify
the frequency response of the system. The model that has a previously defined structure, but
consists of the free parameters, is fitted to the identified frequency response. This process of
model fitting is a nonlinear, unconstrained optimization problem, which is solved by using
the Levenberg-Marquardt algorithm. An identification procedure based on the recursive
least squares (RLS) algorithm was used by Saarakkala and Hinkkanen (2013); the collected
discrete-time signals are processed by the RLS approach to gain a discrete-time TF. The
gathered TF is then transformed to a continuous-time function and compared with the TF
that consists of the free parameters. This comparison might lead to a non-unique result
for the parameters; as shown in (Endisch, 2009, p. 225) the parameters of the mechanical
subsystem of a two-mass system cannot be determined uniquely from a previously identified
transfer function. An approach presented by Unterholzner and Wünsche (2009) relies on the
RLS algorithm to identify the system parameters of a one-mass system online in an adaptive
control scheme.

System identification is an important part of this work, as model-based control as well as
constraint satisfaction require precise system models. The identification process, however, is
not the focus of this thesis. Therefore, only the rough process of system identification that
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is used here is described in the following. The system is operated in closed-loop in order
to prevent damage, as the angular position is mechanically constrained. The first part of
this identification method is the same as in (Saarakkala and Hinkkanen, 2013). Discrete-
time sequences for v[k], imeas[k], and ϕmeas

m [k] are collected. The gathered sequences are used
together with an RLS algorithm to determine two discrete-time TFs, namely, Hv→imeas(z) and
Hv→ϕmeas

m (z). Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) is then used
in this work to fit the discrete-time TFs of the model (Hv→i(z) and Hv→ϕm(z)) to the two
TFs gained through the RLS algorithm (Hv→imeas(z) and Hv→ϕmeas

m (z)). PSO is a promising
approach for global and nonlinear optimization. It has the advantage that constraints on
the parameters can be easily incorporated—for example, if values for nominal parameters
are available, the parameters that are identified can be constrained to lie in a certain range
around these nominal values. By using this approach, all free parameters of the two motors
were identified, except the torque constant Kt, which was fixed (gained from a finite element
analysis (FEA) of the motor) to prevent problems of parameter uniqueness (Endisch, 2009,
p. 225). Furthermore, the viscous friction coefficient Kf was determined empirically3.

The plant parameters, important control system parameters, and constraints are listed
in Table 4.1. To distinguish between the system matrices of the two motors, a subscript
identifies the respective axis (e.g., A1, A2, ϕl,1[k], ϕl,2[k]). The maximum voltage vmax that
is considered in the PRG and trajectory planning approaches is slightly below the supply
voltage vDC (hard constraint) to establish a control reserve (CR) vDC− vmax that is reserved
for the feedback controller to react to disturbances or model mismatch. The maximum motor
current imax is based on thermal considerations and is seen as a soft constraint that is allowed
to be exceeded for short periods of time. The reason for the rather different two-mass system
parameters of both axes is the mirror design of axis 2, which is different to the design of
axis 1 because a larger deflection area is needed on axis 2.

Considering the identified system parameters in Table 4.1, the respective state matrices
(A1 and A2) have five eigenvalues. Figure 4.4 shows the pole zero map exemplary for
the motor/axis 1. Nevertheless, the conclusions that can be drawn are the same for both
motors. One eigenvalue lies exactly at 1 on the real axis, which makes the open-loop system
marginally stable, as only one eigenvalue is on the unit-circle and the other eigenvalues are
inside the unit-circle (Nise, 2011, p. 743). Another eigenvalue is located on the real axis very
close to 1 inside the unit-circle4. The two eigenvalues that are at 1 or at least close to it
represent the basic double integrator behavior of a positioning system. The reason why the

3The input signal that led to good PSO identification results led to small angular velocities. For the
identification of the viscous friction coefficient Kf, however, comparably high velocities are necessary;
this is the reason why Kf was determined empirically.

4The eigenvalue that is very close to 1 is not distinguishable from the eigenvalue that is exactly at 1 in
Figure 4.4.
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Figure 4.4: Pole zero map of the TF Hv1→ϕl,1(z) of the motor/axis 1: Poles ( ), zeros ( ), and
unit-circle ( ).

second eigenvalue is not exactly at 1 is the viscous friction and the back EMF. A system
consisting of a pure double integrator, with two eigenvalues on the unit-circle, would be
unstable. The third eigenvalue is located on the real axis inside the unit-circle and is caused
by the dynamics of the electrical subsystem. The remaining two eigenvalues are complex
and are caused by the non-ideal coupling of the load to the motor (two-mass system). These
two complex eigenvalues lead, due to their proximity to the unit-circle, to slightly damped
oscillations in the step response of the open-loop system. The discussed eigenvalues are the
poles of the discrete-time TF Hv→ϕl(z), which represents the input-output behavior from
the input voltage v[k] to load position ϕl[k]. Another crucial property of TFs is the location
of the zeros. For the identified parameters (see Table 4.1), the discrete-time TF Hv→ϕl(z)
comprises four zeros (see Figure 4.4). The respective continuous-time TF, however, has only
one zero. Hence, three of the four discrete-time zeros are introduced through the process of
discretization of the continuous-time system model. These additional zeros are often called
sampling zeros (Aström et al., 1984; Tesfaye and Tomizuka, 1995). Two of the sampling zeros
lie outside the unit-circle of the complex plane and are therefore non-minimum-phase zeros
(see Figure 4.4). Depending on the sampling time Ts, sampling zeros might even occur if the
continuous time TF is minimum-phase. Non-minimum-phase zeros need special attention
if a system inversion technique is used for feedforward control in a two-degrees-of-freedom
(2-DoF) control structure.
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Controller sampling time Ts 10 µs
PWM frequency fPWM 300 kHz
Supply voltage vDC 29.4V
Maximum voltage vmax 28V
Maximum current imax 5A

Motor/axis 1 Motor/axis 2
Motor resistance R 3.33 Ω 3.29 Ω
Motor inductance L 190.13 µH 190.43 µH
Motor torque constant Kt 6.40 · 10−3 NmA−1 6.40 · 10−3 NmA−1

Motor moment of inertia Jm 20.36 · 10−9 kgm2 14.46 · 10−9 kgm2

Load moment of inertia Jl 40.25 · 10−9 kgm2 34.07 · 10−9 kgm2

Coupling spring constant c 117.58Nmrad−1 153.22Nmrad−1

Coupling damping constant d 5.61 · 10−6 Nms rad−1 9.35 · 10−6 Nms rad−1

Viscous friction coefficient Kf 4 · 10−6 Nms rad−1 4 · 10−6 Nms rad−1

Electrical time constant τel = L/R 57.58 µs 57.88 µs

Table 4.1: Control system and plant parameters for both PM DC motors

4.2 Control Structure

The overall control goal is to achieve a stable and fast closed-loop position control while
respecting state and input constraints. Here, these constraints are voltage and current
limitations that have to be maintained.

Classical control approaches for position control consist of an inner current/torque control
loop, a speed controller, and an outer position control loop. These structures consist of
cascaded proportional-integral-derivative (PID) controllers (or variants thereof, for example
PI, PD, etc.) with limited outputs to account for constraints. The problem of integrator
wind-up often arises in these approaches. Even schemes that are equipped with anti wind-
up mechanisms might lead to unsatisfactory control results. Furthermore, when dealing
with resonant systems, for example, notch-filters have to be introduced in order to prevent
excitation of the resonance frequency. Another common but conservative approach is to
keep the controller bandwidth low in order to avoid exciting the resonance of the two-mass
system.

More advanced control methods for position control include, for example, the use of high-
gain adaptive control for speed control of a two-mass system (Hackl, 2012, p. 199). This
approach efficiently damps oscillations that are excited by the high-gain in a short amount
of time, but it is hardly possible to consider constraints in the formulation of the control law.
Another possibility to control a two-mass system is the use of a so-called biquad filter in the
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feedback path (Alders et al., 2005). Due to its ability to handle constraints, MPC gained
importance in the control of electrical drives. Modern MPC methods for electrical drives are
roughly divided into two groups, namely standard MPC and direct MPC approaches. Stan-
dard MPC approaches (Linder et al., 2010; Bolognani et al., 2011) rely on the formulation
presented in Section 2.2 and are based on continuous valued variables—a modulator is needed
to drive the power electronics. Examples of standard MPC applied to two-mass systems can
be found in (Serkies and Szabat, 2013; Szabat et al., 2010); both approaches were realized
with explicit MPC (Herceg et al., 2013). Direct MPC methods (Karamanakos et al., 2014b;
Rodriguez et al., 2013) are based on mixed integer optimization problems, which directly
consider the switching states of the power electronics. These optimization problems are of-
ten solved by evaluating all possible switching states of the power electronics. A problem
of direct methods—in contrast to standard MPC—is the exponentially growing computa-
tional effort with an increasing prediction horizon (if all switching states are evaluated).
Karamanakos et al. (2014a), for example, decreased the computational burden by so-called
sphere decoding—this approach is a kind of a branch and bound algorithm, which does
not need to evaluate all switching states. Another problem of direct MPC is the increased
current or torque ripple because of a poor time resolution compared to modulator based
schemes. The time resolution is constrained by the minimum sampling time that is needed
to solve the optimization problem. Landsmann et al. (2011) and Stolze and Karamanakos
(2013) reduced the current ripple through a variable switching point that can lie between
two sampling instants. Direct MPC applied to a two-mass system is presented, for example,
in (Fuentes et al., 2012).

An essential part of the overall PRG structure that is presented here (see Figure 3.1 on
page 40) is a stabilized closed-loop plant, or more precisely, closed-loop stability must be
ensured while the system constraints are inactive. The handling of constraints is the task of
the PRG that is presented in Chapter 3. The discrete-time LTI model (4.9) is used to design
a model-based closed-loop control scheme. The servomechanism considered here represents
closed-loop position control for a two-mass system with the following specialties compared
to most other position control systems:

• The involved sampling time Ts = 10 µs is comparably low for an electrical drive system.
Nevertheless, comparing Ts with the electrical time constant τel ≈ 60 µs, which repre-
sents the smallest time constant of the system, it is desirable to lower Ts even further
in order to avoid discretization problems. However, Ts = 10 µs is limited by the com-
putation speed of the used DSP. The consequence for the PRG scheme of Chapter 3 is
that the schemes presented in this thesis need to be executed offline (onlinePRG = false)
and therefore no feedback information can be used (feedbackPRG = false). The reason
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for the offline execution is the time it takes to solve the involved PRG optimization
problems, which is not possible in 10 µs for the DSP used here. There are, however,
efforts in academia to solve these optimization problems in the µs range using field
programmable gate arrays (FPGAs) (Jerez et al., 2013). These efforts and the steadily
increasing computational power suggest that the algorithms presented here can be
executed in real-time in the near future.

• The state ϕl[k], which should be controlled, cannot be measured in normal operation
without high additional cost and effort. Hence, the load position ϕl[k] is estimated
using a state estimator.

• In contrast to most electrical drive systems, the application that is treated here does
not involve an external load torque. Hence, the control reserve (CR) can be kept low
if a precise system model is available. This allows the PRG to nearly exploit the full
dynamic range of the system. A CR represents the difference between the voltage limit
vmax considered in the PRG and the “real” voltage limit vDC of the power supply. The
small CR allows the feedback controller to compensate for small disturbances (e.g.,
unmodeled nonlinear friction or model mismatch).

• The current dynamics and the position dynamics lie within the same range. Hence, a
classical assumption of cascaded control that the dynamics of the current control loop
can be neglected does not hold here. The current and position dynamics also influence
the handling of constraints. There exist trajectory planning approaches that deliver
reference trajectories with limited acceleration, which is proportional to the current, in
order to account for current constraints. These approaches, however, assume that the
current dynamics can be neglected. For the application considered here this assumption
would lead to reference trajectories that cannot be tracked by the control system, as
the hard voltage constraints are reached because of non-negligible current dynamics.
Summing up, it is necessary to account for current and voltage constraints in this work.

Similar problems arise for the control of atomic force microscopes (Schitter and Astrom,
2007; Jerez et al., 2013) or for the control of hard disc drives (Guo et al., 2011). These
applications also involve resonant modes, low sampling times, and constraints that have to
be handled. The sampling times, which are often in the µs range, make it challenging to
execute optimization-based control algorithms in real-time.

The PRG structure used in this work makes use of 2-DoF based control in order to
track the optimized trajectories of the PRG. A 2-DoF controller consists of a feedback part,
which makes the control scheme robust against disturbances, and a feedforward part, which
is responsible for a fast transient response. The feedback controller is a linear quadratic
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regulator (LQR) that requires the full state vector x[k], as it is a state-space based method.
As not all states are measured, a state estimator is needed to reconstruct the complete state
vector including the load position ϕl[k], which needs to be controlled but is not measured.

The following sections roughly describe the feedback and feedforward control design pro-
cess for a single motor. The 2-DoF structure is designed separately for each motor but the
control algorithms for both axes/motors run on a single DSP.

4.2.1 State Estimation

State-space based control methods make use of the complete state vector in order to design
a suitable feedback controller. Most of the time, only a fraction of the states is measured—it
is therefore necessary to use state estimation5 to get the complete vector.

The classical state estimator for deterministic systems originates from (Luenberger, 1964)
and uses the measured output, the system input, and the system model to determine the
full state vector. The difference between the estimated output and the measured output
(estimator error) multiplied by a gain matrix represents the feedback part in the classical
Luenberger observer. The gain matrix determines how fast the estimated states converge to
the “real” states in presence of disturbances or an initial state error.

The Kalman filter, invented by Kalman (1960), has the same structure as the estimator
proposed by Luenberger (1964). The essential difference, however, is the method to deter-
mine the estimator gain matrix. The so-called Kalman gain is determined such that the
mean square error of the estimated states is minimized in the presence of Gaussian (white)
noise (process and measurement noise). The identified model in the form of the discrete-time
LTI system (4.9) and the output matrix C (4.8) are the foundation for the design of the
Kalman filter that is used in this work.

In order to account for unmodeled phenomena, for example nonlinear friction, the identi-
fied system model is extended in order to estimate a disturbance current id[k]. This distur-
bance current should be able to compensate the slow components of the nonlinear friction
torque, for example, Coulomb friction. The used disturbance estimator belongs to the fam-
ily of estimators introduced in (Hostetter and Meditch, 1973). A survey of other available
disturbance estimator schemes is presented in (Radke and Gao, 2006). Moreover, the distur-
bance estimator replaces an integral action in state-space control and thus avoids wind-up
problems, which are common when an integral action is involved.

Further details on state estimation are omitted here, as the focus of this work lies on
PRGs.

5Another common term—instead of estimator—is observer. The term estimator, however, describes its
function more precisely because observe normally implies measurement (see Franklin et al., 1997, p. 281).



4.2 Control Structure 59

4.2.2 Two-Degrees-of-Freedom based Control

A two-degrees-of-freedom (2-DoF) based approach allows to separate basic control system
specifications in terms of controller design. The feedforward part of the 2-DoF part ensures
a fast dynamic response, whereas the feedback part ensures stability and robustness.

4.2.2.1 Feedback Control Design

The feedback part of the 2-DoF based control approach shall stabilize a possibly unstable
plant. Furthermore, feedback introduces robustness against uncertain plant parameters,
unmodeled dynamics, and disturbances.

Controller design in state-space is used here to design the feedback controller. A classical
state-space controller (Franklin et al., 1997, p. 279ff.) for a general discrete-time MIMO LTI
system in the form of (4.9) reads as

u[k] = V yr,ff[k]−Kx[k], (4.11)

which leads to the following system model

x[k + 1] = (A−BK)︸ ︷︷ ︸
Â

x[k] +BV︸ ︷︷ ︸
B̂

yr,ff[k],

y[k] = Cx[k].
(4.12)

This closed-loop system exhibits a new input yr,ff[k] ∈ Rny that represents the feedforward
processed reference signal for the feedback controller (see Figure 4.5). The choice of the
feedback matrix K ∈ Rnu×nx determines the eigenvalues of the matrix Â ∈ Rnx×nx and
therefore the closed-loop poles of the system. The matrix V ∈ Rnu×ny is chosen such that
the steady-state value of the control error yr,ff[k]− y[k] is zero.

For simple systems with a small number of states nx there exist simple rules to place
the eigenvalues of Â (and subsequently determine K) in order to achieve a desired system
response. For higher order systems, the closed-loop poles can be placed, for example, by
choosing dominant second-order poles in order to get a desired step response (Franklin
et al., 2002, p. 530).

A popular method to determine the feedback gainK is the LQR approach (Franklin et al.,
1997, pp. 371), which is also used in this work. The feedback gain K is the solution of an
algebraic Riccati equation that originates from an infinite horizon optimal control problem.
This optimal control problem involves weighting matrices that allow to find a trade-off
between the control effort and a fast response to disturbances and reference changes. If the
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Figure 4.5: Illustration of the closed-loop controlled plant. The signal yr,ff[k] represents the output
of a respective feedforward part. The discrete-time plant that includes the analog-to-
digital converters (ADCs) and power-electronics is shown in Figure 4.3.

respective LQR weights are chosen larger than zero, assuming controllability, the closed-loop
system is stable even if the open-loop system is unstable.

A single motor of the positioning system described in Section 4.1 represents a discrete-
time single-input, single-output (SISO) LTI system, where nx = 5, nu = 1, and ny = 1. In
contrast to the output matrix C that is used for identification and state estimation (4.8),
the output matrix used for feedback control is defined as

C =
[
0 0 0 1 0

]
, (4.13)

which makes the load position ϕl[k] the output of the system. The LQR relies on the
estimated state vector6 x[k] that is provided by the Kalman filter. The operation of a
Kalman filter together with an LQR leads to a so-called linear quadratic Gaussian (LQG)
controller.

As discussed in Section 4.2.1, in addition to the “normal” states, a disturbance current id[k]
is estimated. In order to compensate the disturbance, the current i[k] is replaced by i[k]−id[k]
in the estimated state vector x[k].

If the discrete-time LTI system (4.9) is unstable, the stable closed-loop model (4.12) should
be used for the design of the PRG to ease the overall design process. The closed-loop system
has yr,ff[k] as its input instead of u[k]. Nevertheless, as u[k] can be considered to be a virtual
system output in the form of u[k] = V yr,ff[k]−Kx[k], it is straightforward to constrain u[k]
and to determine ur,opt[k].

6Estimated states are not denoted by the commonly used “hat” (e.g., x̂[k]) in this work. Instead, measured
states are marked, for example, by ϕmeas

m [k], whereas the corresponding estimated value reads as ϕm[k].
Most experimental results in this work are estimated values, which is reasonable as the estimates are
validated by comparing them with the respective measured values in Section 4.3.
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4.2.2.2 Feedforward Control Design

The second part that belongs to a 2-DoF based control structure is the feedforward part.
The aim of feedback is to stabilize and increase the robustness of the controlled system;
feedforward methods aim to improve the dynamic behavior and to achieve tracking of the
trajectories that are fed to the feedforward part. However, these trajectories can only be
tracked if they are designed such that system constraints are maintained—especially hard
constraints are critical. The first feedforward method is called dynamic, model-based feed-
forward control (DynFF) and relies on the optimized state xr,opt[k] and input ur,opt[k], which
are naturally available in a PRG scheme. The second method is a classical system inversion
method called zero-phase-error tracking control (ZPETC), which aims to invert the TF of
the closed-loop system. The fact that the plant model comprises sampling zeros that are
non-minimum-phase plays an important role for system inversion.

Dynamic, Model-based Feedforward Control (DynFF) In order to track the optimized
trajectory, which is delivered by the PRG, the 2-DoF controller design is completed with
a feedforward approach. As the trajectories of the complete state vector xr,opt[k] and the
trajectory of the input ur,opt[k] are naturally available as outputs of the PRG (see Figure 3.1
on page 40), it is advisable to use the DynFF concept for tracking (Roppenecker, 2009). The
DynFF approach is also used, for example, in differential flatness based control (Graichen,
2006; Thomsen and Fuchs, 2011).

A 2-DoF based state-space controller with DynFF according to (Roppenecker, 2009) for
a system in the form of (4.9) is written as

u[k] = ur,opt[k] +K
(
xr,opt[k]− x[k]

)
, (4.14)

where xr,opt[k] is the optimized state vector and ur,opt[k] is the optimized input vector. These
values are outputs of the PRG. The DynFF law (4.14) is not compatible with the input yr,ff[k]
of the feedback control scheme that is shown in Figure 4.5. Nevertheless, it is shown later that
this feedback control scheme can still be used without structural modifications. Furthermore,
the scheme presented in Figure 4.5 is needed for the second feedforward control concept that
is presented later. The feedback gain K in (4.14) remains as designed for feedback control.
The difference equation for the state error es[k] = xr,opt[k]− x[k] is given, combining (4.14)
and (4.9), as

es[k + 1] = (A−BK)︸ ︷︷ ︸
Â

es[k] + xr,opt[k + 1]−
(
Axr,opt[k] +Bur,opt[k]

)
. (4.15)
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As xr,opt[k] and ur,opt[k] are determined by the PRG to fulfill

xr,opt[k + 1] = Axr,opt[k] +Bur,opt[k], (4.16)

the state error difference equation (4.15) reduces to

es[k + 1] = Âes[k]. (4.17)

This error difference equation shows that the controller only controls an initial state error
es[0] = xr,opt[0] − x[0] to zero if (4.16) is satisfied and no disturbances are present. This
means that the feedback controller is inactive once es[k] = 0 is reached—even in dynamic
operation, which implies perfect tracking of the reference. These positive properties are
attenuated in presence of model mismatch or unmeasurable disturbances. In both cases, the
feedback controller gets active.

The closed-loop feedback controlled system (4.12) in Section 4.2.2.1 has yr,ff as its input.
This input, which is the output of the DynFF part, can be determined by using (4.14) and
comparing it with the standard feedback control law (4.11) as

yr,ff[k] = V −1
(
ur,opt[k] +Kxr,opt[k]

)
, (4.18)

if V is a square matrix (ny = nu). Here, for the SISO case, V is a scalar value. The control
structure can be slightly changed to allow a non-square V (see Roppenecker, 2009).

Zero-Phase-Error Tracking Controller (ZPETC) The second feedforward concept, which
is presented here, was introduced by Tomizuka (1987) and is called ZPETC. This feedforward
concept is also model-based but relies—in contrast to DynFF—on system inversion. System
inversion means in principle that the poles and zeros of the closed-loop TF are compensated
by the respective poles and zeros of the inverse TF (feedforward). Therefore, ideally, the
poles of the closed-loop TF become the zeros of the feedforward TF and vice versa. The
exact location of the closed-loop poles is determined by the tuning of the LQR. Nevertheless,
they lie within the unit-circle of the discrete-time complex plane and are therefore stable—
this leads to minimum-phase zeros in the inverse TF. The closed-loop zeros, however, are not
influenced by the LQR and therefore the non-minimum-phase zeros (sampling zeros) remain.
The closed-loop TF of the application considered here comprises two non-minimum-phase
zeros. These zeros cannot be canceled by the respective poles, as the inverse TF would
get unstable. The ZPETC approach handles these non-minimum-phase zeros such that the
overall (2-DoF) TF has zero phase delay (see Tomizuka, 1987, for details). Furthermore,
the ZPETC approach ensures unity gain in the low and medium frequency regions. If the
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Figure 4.6: Detailed trajectory tracking structure including the zero-phase-error tracking control
(ZPETC) feedforward part

resulting ZPETC based feedforward TF is non-causal, simple unit delays are used to make
it causal, which leads to a phase delay that is non-zero. This leads for the plant treated here
to a constant phase delay of 2 ·Ts. A ZPETC based feedforward path is used in this work to
track trajectories for which only the optimized reference yr,opt[k] is available—and not the
complete state xr,opt[k] and input ur,opt[k] as is the case for DynFF. The closed-loop plant
together with ZPETC does not have unity gain for high frequencies, therefore—compared
to the DynFF approach—a tracking error is present for references with a considerable high-
frequency content. Other system inversion techniques for non-minimum-phase systems are
discussed and compared to the ZPETC approach in (Butterworth et al., 2008).

The detailed control and trajectory planning structure that relies on ZPETC based feed-
forward control is shown in Figure 4.6. It is a multi-rate scheme analog to the PRG scheme
(see Figure 3.1 on page 40). The overall scheme presented in Figure 4.6 is considered in
this work to be an advanced industry standard and is used for comparison with the PRG
schemes. The main difference to the PRG approach is that the trajectory planning part di-
rectly outputs yr,opt[k], or more precisely Yr,opt[k], as there is no PRG used in this approach.
The lack of a PRG causes the need of a more “intelligent” trajectory planning part. This
means that, if no PRG is used, the trajectory planning part has to handle constraints in
order to ensure stability of the overall system. For example, simple references in the shape
of a step or a ramp may become problematic. A trajectory planning method, which is de
facto standard in industry, is presented in Section 5.3.2. The whole scheme is considered to
be an advanced industry standard because a single model-based controller is used here in
contrast to the mainly used cascaded structure.
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4.3 Validation of the Estimated Load Position

In this section, experimental results are shown, which confirm that it is reasonable to omit
a cost-intensive, or even impractical sensor for the load position. Two steps are necessary to
control the load position without a sensor. First, the plant has to be modeled and identified
using the underlying physics in order to preserve the physical connection between states—the
sole identification of the input-output behavior is not enough (see Section 4.1). The second
step is the use of a state estimator that delivers estimates of the plant states, including the
load position ϕl[k], which should be controlled (see Section 4.2.1).

In order to measure the load positions of both axes (ϕmeas
l,1 [k] and ϕmeas

l,2 [k]) for validation
purposes, the experimental setup illustrated in Figure 4.1 on page 46 was used. A position
sensitive device (PSD) allows measuring the position of the laser spot in two dimensions.
The position measured by the PSD is dependent on the load positions of both PM DC motors
by a nonlinear geometric position transformation (Tang et al., 2004). For the application
considered here, a small angle approximation that leads to a linear relationship between the
measured PSD positions and the load positions of the motors is reasonable. Hence, after a
calibration process including two offsets and two gain values, the PSD delivers the measured
load angles ϕmeas

l,1 [k] and ϕmeas
l,2 [k]. The experimental setup illustrates why a measurement of

the spot position might not be possible in normal operation—often, a workpiece has to be
placed at the position of the PSD.

The following estimation errors are defined to quantify the estimation quality

eestm,1[k] = ϕmeas
m,1 [k]− ϕm,1[k],

eestm,2[k] = ϕmeas
m,2 [k]− ϕm,2[k],

eestl,1 [k] = ϕmeas
l,1 [k]− ϕl,1[k],

eestl,2 [k] = ϕmeas
l,2 [k]− ϕl,2[k].

(4.19)

To cover the relevant range of systems dynamics, linearly increasing chirp signals (fre-
quency sweep) ranging from 0 to 22 kHz are used as the references yr,ff1 [k] and yr,ff2 [k] of the
feedback controllers. The feedforward paths are not used in order to prevent the hard input
constraint of ±vmax from getting active. It turned out that the chirp signals cause actuator
saturation even for relatively low amplitudes if the feedforward path is used. As tracking
is not the objective here, the feedforward path is omitted and the amplitude of the chirp
signals was chosen such that the actuator constraints do not get active.

Figure 4.7 on page 66 shows the chirp signal yr,ff1 [k], the resulting motor positions ϕm,1[k]
and ϕmeas

m,1 [k], as well as the resulting load positions ϕl,1[k] and ϕmeas
l,1 [k] (including zoom-

in plots for the anti-resonant and resonant frequencies). The motor position estimation
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error eestm,1[k] and the load position estimation error eestl,1 [k] are shown in the middle plot in
order to quantify the errors between the estimated and the measured values. Over a large
frequency range, the estimation errors lie within about ±10 µrad, except in the range of the
resonance frequency, where the errors lie within about ±30 µrad. The resolution of the motor
position sensor—considering the quantization of the analog-to-digital converter (ADC)—is
about 1 µrad. The analysis of the noise (with a disabled feedback controller), however, led to
a standard deviation of the noise of about 4.9 µrad. Hence, this standard deviation mainly
determines the accuracy of the position sensor. Comparing the noise level of the sensor to the
estimation errors (especially to the load position error), it is confirmed that it is reasonable to
omit a load position sensor and to rely on the estimated load position ϕl,1[k]. The estimation
errors that are comparably low but still above the noise level might result from unmodeled
dynamics, model mismatch, nonlinear friction, the small angle approximation of the optical
path, and the assumption that the torque constant does not vary with the angular position.

The estimation errors are almost identical in the low-frequency region, where the system
behaves like a one-mass system, which means that the motor and the load position are
identical. The estimation errors of about ±15 µrad in the low-frequency range probably
result from nonlinear friction. An improved disturbance model might reduce these low-
frequency estimation errors. In the mid-frequency region, where the motor position and the
load position start to differ, both estimation errors are in the range of ±10 µrad—an error
in this range is considered to be sufficiently small. The high-frequency range around the
resonance frequency exhibits the highest estimation errors of about ±30 µrad. The reason for
this might be a slight mismatch of the damping d and of the spring constant c. Furthermore,
high motor and load speeds that are reached in the high-frequency range might be another
reason for the comparably high estimation errors, as modeling errors might lead to speed
dependent estimation errors. Nevertheless, considering the relatively high frequency, the
estimation errors are still satisfactory.

The zoom-in plots on the anti-resonant and resonant frequencies show two extreme cases.
The signals around the anti-resonant frequency show that the load position follows the
reference quite well, although the signal of the motor position approaches zero7. The other
extreme case is the frequency range around the resonance frequency. Again, the reference
signal yr,ff1 [k] is followed, due to the feedback controller dynamics, quite well by the load
position ϕl,1[k]. The amplitude of the motor position ϕm,1[k] is higher than the amplitude
of ϕl,1[k] and the signals show a phase shift of about 180◦. The voltage v1[k] approaches zero
in the region of the resonant frequency—this is an interesting aspect in consideration of power

7Traditional control methods that neglect the two-mass system cannot achieve this behavior.
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Figure 4.7: Axis 1 load position validation: A linearly increasing chirp signal from 0–22 kHz excites
all relevant system dynamics (e.g., 10 kHz =̂ 10ms).

Top plot: Reference signal of the feedback controller yr,ff1 [k] ( ), estimated motor
position ϕm,1[k] ( ), measured motor position ϕmeas

m,1 [k] ( ), estimated load position
ϕl,1[k] ( ), measured load position ϕmeas

l,1 [k] ( ).

Middle plot: Motor estimation error eestm,1[k] ( ), load estimation error eestl,1 [k] ( ).

Bottom plot: Voltage v1[k] ( ), maximum/minimum voltage ±vmax ( )
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Figure 4.8: Axis 1 Bode plot: Closed-loop TF (LQR design without feedforward) for the load
position H

yr,ff1 →ϕl,1
(z) ( ), open-loop TF for the motor position Hv1→ϕm,1(z) ( ),

open-loop TF for the load position Hv1→ϕl,1(z) ( )
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Figure 4.9: Axis 2 load position validation: A linearly increasing chirp signal from 0–22 kHz excites
all relevant system dynamics (e.g., 10 kHz =̂ 10ms).

Top plot: Reference signal of the feedback controller yr,ff2 [k] ( ), estimated motor
position ϕm,2[k] ( ), measured motor position ϕmeas

m,2 [k] ( ), estimated load position
ϕl,2[k] ( ), measured load position ϕmeas

l,2 [k] ( ).

Middle plot: Motor estimation error eestm,2[k] ( ), load estimation error eestl,2 [k] ( ).

Bottom plot: Voltage v2[k] ( ), maximum/minimum voltage ±vmax ( )
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Figure 4.10: Axis 2 Bode plot: Closed-loop TF (LQR design without feedforward) for the load
position H

yr,ff2 →ϕl,2
(z) ( ), open-loop TF for the motor position Hv2→ϕm,2(z) ( ),

open-loop TF for the load position Hv2→ϕl,2(z) ( )
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losses, especially for applications that require to follow a reference with a fixed frequency
and allow to use the resonant frequency of the positioning system for this purpose.

The main observations of the time-domain plots of Figure 4.7 on page 66 can also be
made in the Bode plot presented in Figure 4.8 on page 66. Three different TFs are shown,
namely, the closed-loop TF without feedforward Hyr,ff1 →ϕl,1

(z), the open-loop TF with the
motor position as the output Hv1→ϕm,1(z), and the load position open-loop TF Hv1→ϕl,1(z).
These TFs originate from the model with identified parameters. The characteristic properties
of a two-mass system are visible in Hv1→ϕm,1(z) and Hv1→ϕl,1(z). In the range of the anti-
resonant frequency, the amplitudes of the load and motor positions significantly differ. The
amplitudes do not differ that much in the range of the resonant frequency, however, the
overall gain is relatively high and the motor and load positions are about 180◦ phase shifted.
The closed-loop TF (without feedforward) Hyr,ff1 →ϕl,1

(z) originates from the LQR design and
exhibits unity gain over a large frequency range which is also visible in the time-domain
plots.

The results discussed up to now originate from axis/motor 1, the corresponding results for
axis/motor 2 are shown in Figures 4.9 and 4.10 on page 67. The basic insights remain the
same—the characteristic two-mass frequencies, however, are shifted to a higher frequency
range because of a different ratio of the load/motor moments of inertia (see identified plant
parameters in Table 4.1 on page 55).

Summing up, the experimental results show estimation errors that are only slightly above
the noise level in the frequency range of interest. Hence, the model comprising the identified
parameters is precise enough to rely on the estimated load position for control. Following
this reasoning, the experimental results, which are presented in the following chapters, show
estimated values. The use of estimated values allows to show the complete state vector.
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5 Near Minimum-Time PRGs for
Constrained SISO LTI Systems

This chapter presents an application of the predictive reference governor (PRG) approach
that is introduced in Chapter 3. Two PRG approaches with different cost functions are
analyzed and compared. The first PRG relies on the standard model predictive control
(MPC) cost function (quadratic form) of Section 2.2. It is shown with a simple point-
to-point positioning example that a quadratic form based cost function can exhibit a large
overshoot in the step response. This is especially the case when the weights are tuned to get a
fast response. In order to reduce this overshoot, which might be critical in some applications
that require precise positioning, a PRG based on the `1-norm (sum of absolute values) is
introduced. A PRG with an `1-norm based cost function shows—compared with a quadratic
form based PRG—a step response where the reference value is reached in near minimum-
time and with a reduced overshoot. The proposition that the reference value is reached in
near minimum-time is validated for various step heights by comparing the `1-norm based
step response to the minimum-time solution that is gained through optimal control. To
complete the comparison, the two PRGs and the minimum-time solution are compared to
an advanced industry standard, which is based on acceleration- and jerk-limited trajectories.

The proposed near minimum-time PRG formulation aims to exploit the constraints. In
other words, the constraints should not just be respected but rather fully exploited to achieve
a fast transient response. A near minimum-time response is achieved by an `1-norm based
cost function and the respective tuning of the involved weighting factors.

Due to the low sampling time of Ts = 10 µs and the relatively large prediction horizon,
the two PRG approaches have to be executed offline (onlinePRG = false) and therefore no
feedback information can be used (feedbackPRG = false). Hence, the behavior of the plant
is simulated in order to propagate the receding horizon of the PRGs over the reference
trajectory.
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5.1 Standard PRG Formulation

The here called standard PRG is based on the PRG scheme of Chapter 3, the underlying
optimization problem is the standard MPC formulation of Section 2.2. This optimization
problem consists of a cost function based on a quadratic form together with input and state
constraints.

More specific, the MPC optimization problem (2.32) that represents a quadratic program
(QP) is solved in a receding horizon manner according to the PRG Algorithm 1, which is
presented in Chapter 3. The underlying cost function of the optimization problem (2.32) is
repeated here for reasons of completeness

Jq(U [k],x[k],Y r[k]) =
∥∥∥∥∥∥
 (Qq)

1
2 Er[k]

(Rq)
1
2 ∆U [k]

∥∥∥∥∥∥
2

2

. (5.1)

The two objectives of the cost function (5.1) are the control error Er[k] and the rate of input
change ∆U [k]. These two terms are weighted with the weighting matrices Qq and Rq.

A general aim of this work is to fully exploit the constraints in order to get a fast control
result, which means that the weighting of the control error needs to be much higher than
the weighting of the rate of input change. If the rate of input change is omitted in the
cost function, it is not guaranteed that the resulting optimization problem is convex (see
Section 2.2.3 for details). Furthermore, even a small weight on the rate of input change
can attenuate high-frequency content in the input signal with only a marginal effect on the
overall control performance. An attenuated high-frequency content often plays a role when
unmodeled higher-order dynamics (e.g., further resonances) are present.

PRG approaches based on quadratic cost functions are presented in (Stoican et al., 2012;
Aghaei et al., 2013). These approaches, however, do not focus on minimum-time responses.

A cost function based on a quadratic form weights large control errors much higher than
small values. Speaking in terms of a reference step, the large control error that is present
at the beginning dominates the overall cost function value. This predominance leads to a
fast rise time in order to quickly decrease the value of the quadratic cost function and a
subsequent overshoot. The non-uniform control error weighting of a quadratic form based
cost function undervalues the comparably small control errors of an overshoot compared
with the large control errors at the beginning of a step. These propositions are validated
by experimental results that are presented in Section 5.3.4. As there are many applications
that require a small or even no overshoot (e.g., in precise positioning) together with a fast
settling time, this drawback of quadratic form based PRGs is tackled in the next section.
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5.2 Near Minimum-Time PRG Formulation

The presented standard PRG scheme is adapted in this section to achieve near minimum-
time control results. It is proposed to substitute the quadratic form based cost function
by an `1-norm based cost function. Compared to a quadratic form based cost function, the
`1-norm formulation ensures a uniform weighting of the cost function values, which efficiently
decreases the overshoot in the step response. Furthermore, experimental results, which are
presented later on, show that the step response of an `1-norm PRG only marginally differs
from the minimum-time response gained through optimal control. Compared to the standard
PRG formulation, which can be cast as a QP, an `1-norm based optimization problem can
be cast as a linear program (LP) (see Section 2.1.5.2). An LP requires a computationally
less complex solver than a QP.

It is interesting to note that historically MPC, which is the foundation of PRGs, first
started with LPs in 1963 (Propoi, 1963). Nowadays, MPC based on QPs is the de facto
standard—LPs are rarely used, mostly to reduce the computational complexity of MPC al-
gorithms that originally rely on a quadratic form (Dave et al., 1997; Stumper et al., 2012).
LPs can also originate from `1-norm or `∞-norm based cost functions, for example. Bempo-
rad et al. (2002a) present `1-norm and `∞-norm based MPC approaches—the focus, however,
does not lie on a minimum-time response. Van den Broeck et al. (2010) introduced a predic-
tive reference prefilter based on the `∞-norm to achieve near minimum-time results—mainly
for step references and not for arbitrary reference signals.

In this work, the advantage of a reduced computational complexity of a solver for LPs
is combined with a smaller overshoot and a near minimum-time control behavior through
a PRG based on an `1-norm formulation. However, Rao and Rawlings (2000) showed that
this norm introduces some drawbacks: The `1-norm can introduce idle and deadbeat control
behavior. Idle control means that even though a non-zero control error is present, the
solution of the `1-norm based optimization problem is zero control action (see Rao and
Rawlings, 2000, for illustrative examples). Penalizing the rate of control input change∆U [k]
instead of the often used absolute value U [k] can reduce the size of the regions in state-space
where idle and deadbeat control occur (see Saffer and Doyle, 2004, for details). Another
reason for choosing ∆U [k] instead of U [k] is the intention to achieve an improved dynamic
control behavior. Penalizing ∆U [k] influences the rate of input change and therefore the
frequency content of the resulting input but not the absolute value of the input. Furthermore,
penalizing ∆U [k] allows large absolute values of the input over relatively long periods of
time, which are necessary to increase the controller dynamics. The general tendency of an
`1-norm based optimization problem to deadbeat control is not necessarily a drawback, it
can lead to near minimum-time control results, as deadbeat and minimum-time control are
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closely related (Crossley and Porter, 1974). This feature is exploited in this work to achieve
near minimum-time control results. Nevertheless, deadbeat behavior can be a drawback in
the presence of noise and when the system output is close to the reference—noise can lead
to “nervous” control behavior in this case. However, in the offline variant of the PRG there
is no noise fed to the PRG, as there is no feedback. The problem of deadbeat control will
require further attention if a PRG is operated with feedback.

In contrast to the standard PRG formulation of Section 5.1, the near minimum-time PRG
formulation is presented in more detail in the following, as the concepts have not yet been
presented in a previous section. The cost function based on the `1-norm consists of the same
terms as the quadratic form based cost function (5.1). It is given as

J`1(U [k],x[k],Y r[k]) =
∥∥∥∥∥∥
 Q`1E

r[k]
R`1∆U [k]

∥∥∥∥∥∥
1

. (5.2)

This cost function consists of the future control error Er[k], which is weighted with the
diagonal matrix Q`1 , and the rate of input change ∆U [k], which is weighted with the
diagonal matrix R`1 . Hence, the resulting control performance is a trade-off between the
minimization of the future control error Er[k] and the minimization of ∆U [k].

The weighting matrices are defined analogously to the quadratic case as

Q`1 = ⊕Ni=1diag{q`1} ∈ RN ·ny×N ·ny ,

R`1 = ⊕Ni=1diag{r`1} ∈ RN ·nu×N ·nu ,
(5.3)

where q`1 ∈ Rny
+ and r`1 ∈ Rnu

+ are the weighting vectors for the control error and the rate
of input change, respectively.

The cost function (5.2) is expressed depending on the optimization variable U [k] as

J`1(U [k],x[k],Y r[k])
(2.17)
(2.19)=

∥∥∥∥∥∥
Q`1By
R`1B∆


︸ ︷︷ ︸

F`1

U [k] +
Q`1 (Ayx[k]− Y r[k])

0N ·nu


︸ ︷︷ ︸

g`1 [k]

∥∥∥∥∥∥
1

.
(5.4)

This cost function is a convex function, as the `1-norm of an affine and therefore convex
function (here F`1U [k] + g`1 [k]) is again convex (Boyd and Vandenberghe, 2004, p. 24).
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Bringing the input and state constraints (2.25) together with the cost function (5.4), the
optimization problem reads as

minimize
U [k]

‖F`1U [k] + g`1 [k]‖1

subject to GU [k] ≤ H[k].
(5.5)

This constrained `1-norm minimization problem can be cast as the LP

minimize
β, U [k]

1>β

subject to − β ≤ F`1U [k] + g`1 [k] ≤ β,
GU [k] ≤ H[k].

(5.6)

This transformation to an LP introduces the vector β, which is now part of the optimiza-
tion variables. Details about this transformation and the final transformation to an LP in
standard form are given in Section 2.1.5.2.

A solver for LPs is in general computationally less complex than a solver for QPs.
The transformation of (5.5) to (5.6), however, introduces additional inequality constraints.
Therefore, the time needed to solve the LP (5.6) is not necessarily shorter than the time
needed to solve the corresponding QP based optimization problem of Section 5.1. The
transformation of the LP (5.6) to its dual problem, as proposed in (Camacho and Bordons,
2004, p. 203), could lead to an improved computation time. A first investigation, however,
did not confirm this for the application that is treated in this work.

5.3 Example: Point-to-Point Positioning of a PM DC
Motor

This section validates the standard PRG approach and the proposed near minimum-time
PRG for a point-to-point positioning application using a single axis of the positioning system
that is presented in Chapter 4. The simple point-to-point position control example (step
reference signals) allows to focus on the timing of the different approaches and on some
common performance indicators, namely, overshoot (OS), rise time (RT), and settling time
(ST). In order to validate the proposed near minimum-time PRG formulation, a minimum-
time optimal control problem is solved to get the fastest step response that is physically
possible. A traditional minimum-time optimal control problem deals with initial and final
states and not with arbitrary varying reference signals, which can be handled by the PRG
approaches. This is another reason why this chapter focuses on step responses; various other
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reference signal shapes are shown later on. Furthermore, to complete the comparison, a
trajectory planning method is presented that constrains the acceleration and the jerk of
the reference position. This trajectory planning method together with the two-degrees-of-
freedom (2-DoF) based controller is considered to be an advanced industry standard.

Additional contents of this section are considerations about the tuning of the PRG ap-
proaches and an estimation of the calculation times of the involved optimization problem
solvers.

5.3.1 Tuning of the PRG Approaches

The `1-norm and the quadratic form based approaches require the tuning of weights. For the
single-input, single-output (SISO) system considered here the number of tuning parameters
reduces to a single parameter for each PRG approach, as the control error weights can be
fixed as the scalar1 values qq =

[
1 rad−2

]
and q`1 =

[
1 rad−1

]
. The remaining weights,

namely the rate of input change weights rq and r`1 , are tuned to achieve comparable, fast
RTs that lead to fully exploited constraints and to achieve similar times for the damping of
induced oscillations of the two-mass system for the standard and the near minimum-time
PRG (see Table 5.1). The fact that a single tuning parameter is enough makes the tuning
comparably simple (keeping in mind that tuning might not be an intuitive task, i.e., non-
convex). This tuning is done for a nominal reference step height of ϕr

l = 0.5mrad and is
kept constant for other step heights.

Another essential parameter for PRG schemes is the prediction horizon N . As discussed
in Section 3, a long prediction horizon ensures the optimality of open- and closed-loop
trajectories. To achieve optimality, a prediction horizon that covers the whole settling time
is necessary. The prediction horizon N = 20 is chosen here for a worst-case reference step
height. In addition, a large prediction horizon emulates infinite horizon control (Mayne
et al., 2000) and therefore contributes to the stability of the PRG.

5.3.2 Acceleration- and Jerk-limited Trajectory Planning: An
Advanced Industry Standard

In order to classify the PRG approaches concerning constraint handling and time-optimality,
a trajectory planning method that is used in industry is presented in this section. Figure 4.6
on page 63 presents the structure consisting of a trajectory planning part and a 2-DoF con-
trolled plant (see Section 4.2.2.2). Due to the lack of a PRG, which handles constraints,

1The notation introduced before treats a general multiple-input, multiple-output (MIMO) system. When
dealing with SISO systems in this thesis the notation is not changed. To keep the notation consistent, a
scalar value is written in bold as a one-dimensional vector.
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Maximum voltage vmax 28V
Maximum current imax 5A
onlinePRG false
feedbackPRG false
preview (reference known in advance) false
Prediction horizon N 20
Receding horizon shift Nshift 1
Standard PRG

Control error weight qq
[
1 rad−2

]
Rate of input change weight rq

[
(0.00005)2 V−2

]
Near minimum-time PRG

Control error weight q`1
[
1 rad−1

]
Rate of input change weight r`1

[
0.0002V−1

]
Table 5.1: PRG parameters and system constraints of the SISO point-to-point positioning example

the trajectory planning part has to handle constraints now. A common approach is to
limit the acceleration and the jerk (derivative of the acceleration) of a trajectory. Exam-
ples for such trajectory planning approaches in academia can be found in (Kröger, 2010;
Lambrechts et al., 2005; Macfarlane and Croft, 2003; Erkorkmaz and Altintas, 2001). Nev-
ertheless, acceleration- and jerk-limited trajectory planning is also widely used in industry.
The PLCopen R© Motion Library (Van der Wal, 2001) is non-proprietary and can be used in
programmable logic controllers (PLCs) of leading companies in the field of motion control
(e.g., ABB, Beckhoff, B&R, Siemens, etc.). Hence, acceleration- and jerk-limited trajec-
tories are considered to be industry standard. The overall scheme is an advanced industry
standard, as the 2-DoF state-space based control structure used in this work differs from the
common cascaded control schemes with velocity and acceleration feedforward.

In the following, the choice of the maximum acceleration and the maximum jerk for
the application considered here is discussed. Some simplifications of the state-space model
(see (4.4) and (4.7)) are necessary in order to determine these maximum values.

The differential equation that determines the motor speed ωm(t) reads as

d
dtϕm(t)︸ ︷︷ ︸

speed

= ωm(t). (5.7)
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Assuming a stiff coupling of the load to the motor and neglecting friction leads to

d
dtωm(t)︸ ︷︷ ︸
acceleration

= Kt

Jm + Jl
i(t), (5.8)

which represents the acceleration depending on a single state, namely the current i(t). Hence,
it is possible to consider the maximum value of the current imax in the planning of position
trajectories through the choice of the maximum acceleration.

By differentiation of the acceleration, the jerk reads as

d2

dt2ωm(t)︸ ︷︷ ︸
jerk

= Kt

Jm + Jl

d
dti(t), (5.9)

where the jerk now depends on the derivative of the current d
dti(t) which means that the

maximum jerk is proportional to the maximum current derivative d
dti(t)

∣∣∣
max

.

The current dynamics with a neglected back electromotive force (EMF),

d
dti(t) = −R

L
i(t) + 1

L
v(t), (5.10)

show that the current derivative, and therefore the jerk, depend on the value of the cur-
rent i(t) and the voltage v(t). Considering (5.10), the choice of the maximum jerk allows to
respect the voltage limit vmax.

Figure 5.1 shows the current response i(t) to a constant input voltage v(t) = vmax with
an initial current i(0) = −imax to account for the worst-case current change from −imax

to imax. Two possibilities for the choice of the maximum current derivative d
dti(t)

∣∣∣
max

, which
is proportional to the jerk, are shown. Approach (A) uses the slope of the tangent to the
current trajectory i(t) at imax to determine the maximum jerk. Approach (B) determines the
maximum jerk through the slope of the secant that connects the initial current i(0) = −imax

and maximum current imax.

Table 5.2 shows characteristic values for approaches (A) and (B) for a linear current
trajectory starting at −imax with a constant slope of d

dti(t)
∣∣∣
max

. For this evaluation, the
linearly increasing current trajectory

i(t) = t
d
dti(t)

∣∣∣∣∣
max
− imax (5.11)
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Figure 5.1: Choice of the maximum jerk illustrated with a current response to v(t) = vmax. The
initial current value is i(0) = −imax to account for the worst-case current change. (A)
Tangent at imax. (B) Secant from −imax to imax.

is realized through the linearly increasing voltage trajectory

v(t) = R

(
t

d
dti(t)

∣∣∣∣∣
max
− imax

)
+ L

d
dti(t)

∣∣∣∣∣
max

. (5.12)

The voltage vi=imax is reached when the current reaches its maximum value i = imax at ti=imax .
Approach (A) leads to a voltage vi=imax = 28V, which is exactly the maximum voltage
vmax = 28V. By taking the tangent at imax, it is ensured that the maximum voltage is only
reached when the maximum current is reached at ti=imax = 165.2 µs. Hence, method (A)
maintains the voltage constraints if the current is between −imax and imax. However, for
position trajectories that require only low current values (e.g., small step heights), this
choice is conservative in terms of constraint exploitation. Approach (B), which is based on
the current secant, cannot guarantee voltage constraint satisfaction. As shown in Table 5.2,
a voltage of v = 41.2V would be reached when the current reaches its maximum value at
ti=imax = 77.9 µs. The maximum voltage vmax would be exceeded for a time span of Tv>vmax =
30.4 µs, which corresponds to about three sampling instants. Nevertheless, the time when
the maximum current is reached is ti=imax = 77.9 µs, compared with ti=imax = 165.2 µs for
approach (A). It is shown later on that for the application considered here approach (B)
leads to a good trade-off between a fast response and the handling of constraints—the few
sampling instants where the voltage constraints are exceeded do not lead to unsatisfactory
results. Approach (A) is not used, as first tests showed slow responses.

If an application has a non-negligible back EMF, the current evolution for the worst-case
back EMF (proportional to the worst-case speed) has to be considered—this introduces
conservatism for slow speeds.

The process of the choice of the maximum jerk emphasize that it is advantageous to
directly incorporate the voltage constraints in a control scheme—as it is done in the design
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Approach d
dti(t)

∣∣∣
max

[kA s−1] ti=imax [µs] Tv>vmax [µs] vi=imax [V]
(A) Tangent at imax 60.52 165.2 0.0 28.0
(B) Secant from −imax to imax 128.36 77.9 30.4 41.2

Table 5.2: Characteristic values concerning the choice of the maximum jerk for approaches (A)
and (B). These values result from a linear current trajectory starting at −imax with a
slope of d

dt i(t)
∣∣∣
max

.

of PRG schemes—instead of limiting the jerk, which often leads to a trade-off between a
fast response and the handling of constraints. Furthermore, if voltage constraints have to be
respected in any case, the limitation of the jerk can lead to conservative results.

The use of a jerk limited trajectory to account for the voltage limit is especially important
when the current and position dynamics lie within the same range. Nevertheless, there are
many applications where a current control loop can be considered sufficiently fast. In these
applications, reasons for a constrained jerk are often the reduction of vibrations (e.g. in
robotics and computer numerical control (CNC) machining) or an increased comfort (e.g. in
elevator applications through a smoother reference trajectory).

5.3.3 Minimum-Time Optimal Control: The Benchmark Problem

Minimum-time optimal control (Kirk, 2004) serves as a benchmark for the two PRG
approaches—it delivers the system input trajectory u?(t) which steers the system from
one state to another in minimum-time while respecting system constraints. Hence, this
benchmark problem delivers the minimum final time tfinal that is physically possible. In con-
trast to PRG based approaches, there is no reference trajectory in minimum-time optimal
control, the reference consists of an initial state xinitial and a final state xfinal which should
be reached in minimum time. This fact represents a difference between the PRG approach
and minimum-time optimal control—PRGs can deal with arbitrary varying reference sig-
nals. Nonetheless, this work shows that it is possible to approximate minimum-time optimal
control with an `1-norm based PRG. Solving a minimum-time optimal control problem is,
in general, computationally more complex than solving the optimization problems that arise
for PRGs. For simple systems, like a double integrator, it is possible to derive an analytic
solution to the minimum-time optimal control problem. More complicated problems, how-
ever, often lead to nonlinear programs (Rao et al., 2010), which generally take longer to be
solved than the optimization problems of PRGs.
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A minimum-time optimal control problem is represented by

minimize
u(t),x(t)

tfinal

subject to (4.4)

x(0) = xinitial,

x(tfinal) = xfinal,

|u(t)| ≤ umax,

|x(t)| ≤ xmax.

(5.13)

The aim is to minimize the final time tfinal considering the continuous system dynamics (4.4),
while maintaining input and state constraints. The boundary conditions are the initial state
xinitial and the final state xfinal. As the system considered for the experimental validation is
a SISO system, the number of inputs is nu = 1. The number of outputs ny is not relevant
here, as the complete state vectors xinitial and xfinal are needed for this sort of optimal control
problem.

A solution for the minimum-time optimal control problem (5.13) exists if the real parts of
the eigenvalues of Ac (see (4.4)) are non-positive (Pontryagin et al., 1962). It is well known
that, if it exists, the optimal input trajectory u?(t) for linear time-invariant (LTI) systems
with input constraints is bang-bang (Kirk, 2004, p. 249), which means that it only consists
of extreme realizations u?(t) ∈ {−umax,umax}. Furthermore, if this solution exists, it is
unique (Pontryagin et al., 1962). If all nx eigenvalues of Ac are real and non-positive, the
bang-bang input trajectory consists of at most nsw = (nx − 1) switchings (Kirk, 2004, p.
249). The transition from umax to −umax, or vice versa, is called switching. For complex
eigenvalues, the number of switchings nsw is limited but no analytical value for an upper
bound can be given.

For the plant that is treated here, all eigenvalues of the system matrix Ac have a non-
positive real part. Hence, a unique (bang-bang) solution to the minimum-time optimal
control problem exists. The system matrix Ac has three real and two complex eigenvalues
originating from the two-mass behavior. Therefore, the number of switchings nsw is limited,
but the limit is unknown.

The optimal control problem (5.13) also includes constraints on the states. If these state
constraints get active, the resulting input trajectory does not contain extreme realizations
only.

The reason for choosing a continuous-time optimal control problem is that the principal
shape of the resulting trajectories is known before the problem is solved. This makes it easy to
validate the results of a respective optimal control problem solver. Discrete-time minimum-
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time optimal control problems, which directly take into account the discrete nature of the
control system, are treated, for example, in (Rothwangl, 2001; Van den Broeck et al., 2009;
Chen et al., 2012). First tests comparing these three approaches showed that they deliver the
same discrete final time. The respective trajectories were, however, not the same—this can be
explained by the fact that the continuous minimum final time might lie between two sampling
instants. The discrete-time approaches deliver the next higher sampling instant (compared
with the continuous-time solution). Since this time is not exactly minimal anymore, there
exist multiple trajectories that achieve this result. This observation is a further reason why
the continuous-time optimal control problem is solved in this work.

The minimum-time optimal control problem (5.13) is solved using the optimal control
toolbox GPOPS 4.1 (Rao et al., 2010) for MATLAB, which transforms continuous-time
optimal control problems to nonlinear programming problems. This toolbox delivers optimal
continuous-time2 trajectories for the input u?(t) and the state x?(t).

A remaining issue is the interaction between the continuous-time control problem (5.13)
and the discrete-time control system on which it is implemented. Traditionally, it is assumed
that the sampling time Ts of the control system is sufficiently small compared to the plant
dynamics. The sampling time Ts = 10 µs of the application considered here is relatively large
compared to the plant dynamics. The experimental validation is based on the dynamic,
model-based feedforward control (DynFF) concept of Section 4.2.2.2, as the trajectories of
the input ur,opt[k] and the state xr,opt[k] are available.

The optimal state trajectory x?(t) is discretized using the zero-order hold (ZOH) method

xr,opt[k] = x?(kTs). (5.14)

However, it turned out that the ZOH method applied to the optimal input trajectory u?(t)
leads to non-satisfactory results. The input u?(t) consists, in the extreme case, only of
switchings between extreme realizations. In general, the switching times do not coincide
with the sampling instants of the discrete-time control system. Hence, to reproduce this
input shape, a very fine time resolution of the discrete-time system would be necessary.
However, as the involved sampling time Ts = 10 µs cannot be lowered further, it is proposed
to discretize the plant optimal input trajectory u?(t) as

ur,opt[k] = 1
Ts

∫ (k+1)Ts

kTs
u?(t) dt. (5.15)

2Continuous-time means in this case that the signals are available with a much higher time-resolution than
the sampling time Ts of the discrete-time control system.
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This approach preserves the input-time-area when the continuous-time signal is discretized.
The validity of this discretization method is shown experimentally later on.

5.3.4 Experimental Results

The experimental results for all four discussed approaches of this chapter are presented here.
This extensive comparison allows to classify the PRG approaches in between the advanced
industry standard and the minimum-time solution, which represents the physical limit. The
experimental results show step responses for different step heights to evaluate the different
responses concerning the performance criteria and the handling of constraints. The reason
for choosing a reference in the shape of a step is that the minimum-time solution can be
gathered relatively easily (compared to other reference shapes) and that there are common
performance indicators for step responses that allow a simple comparison of the approaches.

The digital control system introduces a delay of one sampling instant because of the
time it takes to calculate the control algorithm. This so-called computational delay was
compensated in all approaches of this thesis through a shift of the reference signal by one
step.

The preview feature of the two PRGs of this chapter was disabled in order to allow a fair
comparison to the other two approaches (advanced industry standard and minimum-time
optimal control). All important PRG parameters are shown in Table 5.1.

The experimental results shown here involve a SISO system and therefore a single motor3

(axis 2) of the positioning system of Chapter 4.

Performance criteria
The following common performance criteria for a step response are used to compare the four
discussed approaches:

• Overshoot (OS): Peak value of the step response in [%] of the reference step height

• Rise time (RT): Time in sampling instants [kTs] to bring the system output from 10%
to 90% of the reference step height

• Settling time (ST): Time in sampling instants [kTs] to bring the system output into
the common error band of ±2% of the reference step height

Dealing with minimum-time optimal control, an interesting value is the number of switch-
ings nsw that the bang-bang profile exhibits. The number of switchings depends on the initial
and final states, as complex eigenvalues are involved here.

3The results of axis 1 are omitted because they show a similar behavior. Results for a simultaneous
application of both axes (biaxial contouring) are shown in Chapter 7.
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Another important performance measure is the control error er[k]

er[k] = ϕr
l [k]− ϕl[k], (5.16)

which gives a measure of the tracking accuracy of the plant output ϕl[k] compared with the
unoptimized reference ϕr

l [k].
A further performance measure is the error between the optimized reference ϕr,opt

l [k] and
the plant output ϕl[k]

er,opt[k] = ϕr,opt
l [k]− ϕl[k]. (5.17)

This here called optimized control error er,opt[k] is ideally zero, which corresponds to perfect
tracking of the optimized reference. The optimized control error is deteriorated by model
mismatch and if hard constraints are not respected.

Description of an exemplary experimental results figure
As the four approaches of this chapter are validated for different step heights, this paragraph
introduces the notation and colors of the presented figures in order to keep the repeating
figure captions simple and focused.

Figure 5.3b on page 89 serves as an example here:

• First plot (from top): Reference load position ϕr
l [k] ( ), load position ϕl[k] ( ),

motor position ϕm[k] ( ). The dash dotted lines ( ) show the 10% and 90%
values of the reference to determine the RT. The optimized reference ϕr,opt

l [k] is not
shown, as this value almost overlaps with ϕl[k]. Optional continuous-time signals
(minimum-time solution) are ϕl(t) ( ) and ϕm(t) ( ).

• Second plot: This is a zoomed version of the first plot to determine the ST. The ±2%
lines ( ) show the error band. Furthermore, a possible overshoot is clearly visible
in this plot.

• Third plot: Control error er[k] ( )

• Fourth plot: Optimized control error er,opt[k] ( ). Even though ϕr,opt
l [k] is not shown

in the first two plots, the optimized control error er,opt[k] allows to evaluate the tracking
of the optimized reference.

• Fifth plot: Load speed ωl[k] ( ), motor speed ωm[k] ( ). Optional continuous-
time signals (minimum-time solution) are ωl(t) ( ) and ωm(t) ( ).
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• Sixth plot: Motor current i[k] ( ) and current constraints ±imax ( ). An optional
continuous-time signal (minimum-time solution) is i(t) ( ).

• Bottom plot: Motor voltage v[k] ( ) and voltage constraints ±vmax ( ). The
complete range of the ordinate represents the hard input voltage constraints ±vDC.
An optional continuous-time signal (minimum-time solution) is v(t) ( ).

In general, the color scheme uses red for load-side values (ϕl[k] and ωl[k]) and values
that depend on the load position (er[k], er,opt[k], etc.). Blue is used for the motor-side
values (v[k], i[k], ϕm[k], and ωm[k]). Constraints (vmax and imax) are indicated by black
dashed lines ( ). These general conventions are valid for the whole thesis unless stated
otherwise.

Discussion of the experimental results
The experimental results for a step reference with a height of ϕr

l = 0.5mrad are shown in
Figures 5.2 and 5.3 on pages 88/89 to allow a convenient comparison. The reference step is
applied at t = 0.4ms for all four approaches, which results in a control action (voltage v)
at t = 0.4ms, as the computational delay was compensated. The control action affects the
states at t = 0.41ms when the next measurements takes place.

The results for the advanced industry standard (acceleration- and jerk-limited trajectory)
are shown in Figure 5.2a. The reference value of ϕr

l = 0.5mrad is reached without an
overshoot. The voltage constraints ±vmax, however, are not fully exploited; this results
from the relatively low current values that are reached (see approach (B) in Section 5.3.2).
The fact that these constraints are not exploited indicates that the reference value is not
reached in minimum-time. The values of the RT and the ST are therefore comparably high
(numerical values are shown in Table 5.3 on page 94). The optimized control error er,opt[k]
is comparably high because of a delay of two sampling instants, which is introduced by
designing a causal zero-phase-error tracking control (ZPETC) feedforward transfer function
(TF). The plot of the optimized control error er,opt[k] is cropped for the advanced industry
standard to allow the evaluation of the small values that the other three approaches show.

Figure 5.2b shows the experimental results of the standard PRG approach. The voltage
constraints are well exploited which leads to a small RT. This small RT, however, comes with
a relatively high OS. Due to this OS, the ST of the standard PRG is in the same range as the
ST of the advanced industry standard. The optimized control error er,opt[k] is in the range of
±10 µrad which is just slightly above the noise level. This small error indicates nearly perfect
tracking of the optimized reference through the DynFF concept. Hence, the overshoot is a
result of the optimization that takes place in the PRG and is not a result of, for example,
a model mismatch. A small optimized control error er,opt[k] is only achievable through a
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precise system model and the handling of constraints—especially the voltage constraints
of ±vmax need to be respected through the optimized reference. The voltage constraint are
of special importance because the control reserve (CR) is relatively small and therefore a
violation of ±vmax can easily lead to a violation of the hard voltage constraints of ±vDC.

The resulting signals for the near minimum-time PRG are presented in Figure 5.3a. The
uniform weighting of the control error by the use of the `1-norm leads to a reduced overshoot,
which is even in the error band of the ST. This leads to a reduced ST compared with the
STs of the two previously discussed approaches. Again, the optimized control error er,opt[k]
is in the range of ±10 µrad. The shape of the input voltage v[k] almost entirely consists
of extreme realizations of ±vmax. The behavior of the two-mass system is clearly visible—
the motor-side values (ϕm[k] and ωm[k]) differ significantly from the respective load-side
values (ϕl[k] and ωl[k]). Especially at t = 0.45ms, the load speed ωl[k] reaches its maximum
value, whereas the motor speed ωm[k] is nearly zero. Idle control, which is a disadvantage
of `1-norm based cost functions, was not observed in the experiments that were carried
out for various step heights. Deadbeat behavior, which is considered to be a disadvantage
in literature (Rao and Rawlings, 2000), is exploited here to achieve a near minimum-time
transient response.

The minimum-time optimal control problem, which serves as a benchmark in this
work, is shown in Figure 5.3b. The reference step is also plotted in this figure for
timing and comparison reasons although there is no real reference. The reference only
consists of the initial state xinitial = [ 0A 0mrad 0 rad s−1 0mrad 0 rad s−1 ]> and the final state
xfinal = [ 0A 0.5mrad 0 rad s−1 0.5mrad 0 rad s−1 ]>. The continuous-time signals, resulting from
the minimum-time optimal control solver, are depicted as dashed lines. The good agree-
ment of the optimized continuous-time state signals with the experimental discrete-time
signals validates the proposed discretization method (5.15). The discrete-time input volt-
age is—compared with the continuous one—not bang-bang anymore, but it preserves the
voltage-time area. The continuous-time bang-bang voltage profile shows nsw = 4 switch-
ings. An OS is barely visible. The RT and the ST are equal to the values of the near
minimum-time PRG.

The respective signals for the four approaches for a step height of ϕr
l = 2mrad are shown

in Figures 5.4 and 5.5 on pages 90/91. The input voltage v[k] of the advanced industry
standard approach is again conservative but already higher than the input voltage of the
0.5mrad step. However, this response is again obviously not time-optimal. For this step
height, the current i[k] of the two PRGs slightly touches the current constraints of ±imax.
Furthermore, the minimum-time solution now shows six switchings nsw = 6, which confirms
that this number depends on the initial and final values for the two-mass system of this work



5.3 Example: Point-to-Point Positioning of a PM DC Motor 85

(complex eigenvalues). The minimum-time current trajectory i[k] does not yet saturate—
this is the reason why the input v[k] again only consists of extreme realizations. The near
minimum-time PRG again shows a much smaller OS compared with the standard PRG.
Nevertheless, the OS of the near minimum-time approach is slightly outside the ST error
band; this leads to ST that is slightly higher than the minimum-time ST.

The four approaches for a step height of ϕr
l = 10mrad are presented in Figures 5.6 and 5.7

on pages 92/93. In contrast to the smaller step heights, the voltage limit of ±vmax is now
even exceeded for time spans of about three sampling instants (see approach (B) in Sec-
tion 5.3.2). The shape of the current trajectory shows that a constant (limited) jerk leads
to a nearly constant current slope. The current limitation is reached but not exceeded
by both PRGs. The ST of the near minimum-time approach is equal to the ST of the
minimum-time solution. The minimum-time current response also exploits the full current
range. As input and state constraints are active now, the continuous-time input profile is
not bang-bang anymore. Comparing the continuous-time current trajectory i(t) (solution of
the minimum-time problem) with the discrete-time voltage i[k] (determined experimentally)
emphasizes—together with a small error er,opt[k]—the quality of the plant model. The good
agreement of the continuous- and discrete-time currents even for currents in the full range
of ±imax validates—besides the quality of the proposed discretization method—that it is a
reasonable approach to model the electrical subsystem as an LTI system, i.e., neglecting
magnetic saturation.

Table 5.3 on page 94 compares the performance criteria of the four discussed methods
for different reference step heights. The advanced industry standard, in general, does not
show an OS. Nevertheless, the STs of the advanced industry standard are considerably
higher than the minimum-time STs—especially for low step heights. The weights of the
PRG formulations are kept constant, they are tuned for the step height of ϕr

l = 0.5mrad
(marked in gray in Table 5.3). Throughout this table, the near minimum-time PRG shows
an ST that is close to the ST of the minimum-time approach, but shows a small OS that is
usually inside the ST error band. For the step height of ϕr

l = 5mrad, the ST of the near
minimum-time PRG is, due to a small overshoot, even one sampling instant smaller than
the ST of the minimum-time optimal control problem. The step response of minimum-time
optimal control does not show an OS. The standard PRG approach shows compared with the
near minimum-time PRG a higher OS and a significantly higher ST especially for small step
heights. Table 5.3 also illustrates that the near minimum-time approach, compared with the
standard PRG, shows a smaller variation in the performance criteria for different reference
step heights. This suggests that, at least for the application treated here, the `1-norm based
cost function leads to a quite balanced near minimum-time performance for a broad range of
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reference values. The prediction horizon N = 20 does not cover the entire step dynamics for
ϕr
l = 5mrad and ϕr

l = 10mrad—nevertheless, the results are still satisfying. The reference
range up to ϕr

l = 10mrad is quite realistic for the positioning system of this work. However,
in order to achieve comparable control results also for step heights larger than 10mrad, it
would be necessary to increase the prediction horizon N to cover to the whole step dynamics.
Another interesting observation is that the number of switchings nsw for the time-optimal
problem varies depending on the step height (here nsw = 4 or nsw = 6). The occurrence of
nsw = 6 confirms that nsw is not bounded by (nx − 1) = 4 because complex eigenvalues are
involved.

Summary
Summing up, the experimental results show that an `1-norm based PRG (near minimum-
time formulation) is able to approximate minimum-time optimal control quite well, while
representing a computationally less complex optimization problem. Furthermore, it is shown
that a near minimum-time behavior is achieved for a broad range of reference values without
the need of re-tuning. The reference signals in the shape of a step allow to directly compare
the two presented PRG approaches with the minimum-time solution of an optimal control
problem. The solution of this problem exhibits the minimum final time that is physically
possible. The presented PRGs—unlike the minimum-time optimal control problem—can
deal with arbitrary varying reference signals.



5.3 Example: Point-to-Point Positioning of a PM DC Motor 87

5.3.5 Computation Time

The used software to solve the optimization problems arising in this work is shortly discussed
in Section 2.1.6. Optimization of the computation time of the respective algorithms is not
the focus of this work, much more the principle and the applicability of the schemes are
important. Nevertheless, this section gives a rough estimation of the achievable sampling
times using the two PRG schemes of this chapter4.

The investigations concerning the reachable sampling time were carried out with an
Intel R© CoreTM i5 @2.5GHz processor (only one core was used) by using MATLAB for pre-
and post-calculations and a C++ implementation of the solver qpOASES (Ferreau et al.,
2008) for solving the optimization problem. The minimum sampling time consists of pre-
and post-calculations and the maximum solver time of the respective optimization algo-
rithm, which is usually reached when constraints get active. The pre- and post-calculations
were estimated to be 0.5ms. The standard PRG approach led to a maximum solver time
of 3.8ms, which makes a sampling time of 4.3ms possible. The problem size of the near
minimum-time PRG optimization problem is larger than the one of a standard PRG, because
of the necessary transformation to an LP. Hence, only a maximum solver time of 17ms was
achieved, leading to a sampling time of 17.5ms. These investigations rely on the parameters
of Table 5.1 on page 75 including state and input constraints. The given estimated sampling
times are based on a receding horizon shift of Nshift = 1. For example, assuming an offline
operation of a PRG, choosing Nshift = 5 would lead to a decreased overall computation
time by factor 5. Assuming an online operation of a PRG, Nshift = nmr = 5 would allow a
sampling time of 5 · Ts for the PRG, which allows a larger optimization problem size (e.g., a
larger prediction horizon or more constraints).

Summing up, the reachable sampling time is, up to now, not suitable for the application
considered here, which needs a maximum sampling time of Ts = 10 µs. Even though the real-
time execution of the PRG schemes is not the focus of this thesis, the steadily increasing
computational power of embedded hardware suggest that the presented PRG algorithms will
soon be applicable for real-time operation even on fast sampling systems. Furthermore, the
steady improvement of optimization algorithms, especially for parallel computing on field
programmable gate arrays (FPGAs) (Jerez et al., 2013), is the driving force behind real-time
PRG applications.

4The computation times of the approaches of the following chapters are not given because this section
already gives a first impression of the involved computation times.
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Figure 5.2: Step response comparison (ϕr
l = 0.5mrad) for the advanced industry standard and the

standard PRG (see page 82 for the description of the signals)
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l = 0.5mrad) for the near minimum-time PRG and the
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Figure 5.4: Step response comparison (ϕr
l = 2mrad) for the advanced industry standard and the

standard PRG (see page 82 for the description of the signals)
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6 Robust Near Minimum-Time PRGs for
Constrained SISO LTI Systems

Apart from stability, robustness against uncertain plant parameters is another important
property of a control system. The focus of this chapter lies on robust performance, which
means that the dynamic performance of the overall system should be influenced as little
as possible by uncertain plant parameters. Nevertheless, a controller that leads to a stable
closed-loop system—even in the presence of uncertain parameters—is a prerequisite for the
design of predictive reference governors (PRGs) that focus on robust performance. This
chapter deals with PRGs that are based on robust model predictive control (RMPC), more
precisely, on min-max RMPC based on an enumerative scheme (see Section 2.3). It is
proposed in this work to use the ideas of RMPC to design PRGs that focus on robust
performance.

As in Chapter 5, two PRGs are introduced here: The robust PRG is based on the RMPC
approach of Section 2.3 and therefore consists of a cost function based on a quadratic form.
The robust near minimum-time PRG incorporates an `1-norm based cost function—it is
shown that this formulation again leads to near minimum-time results.

A single axis of the positioning system considered in this work is used to validate and
compare the robust PRGs to the non-robust PRG approaches of Chapter 5. A difference to
the experimental results of Chapter 5 is that now the preview feature of the PRG approaches
is used to track the reference signal. The experimental evaluation of this chapter is based
on a reference in the shape of a step and a ramp in order to show that PRGs can deal
with arbitrary varying reference signals. The experimental results show that the robust
performance can indeed be improved for the majority of the uncertain parameters considered
here.

The PRG approaches again have to be executed offline (onlinePRG = false) and therefore
no feedback information can be used (feedbackPRG = false) due to the fast sampling control
system. The lack of feedback in the PRG approaches is a further motivation to evaluate and
to improve the robustness against uncertain parameters.
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6.1 Robust PRG Formulation

This section introduces a robust PRG that is based on the general PRG approach of Chap-
ter 3. The basis of this robust PRG formulation is the RMPC approach of Section 2.3.

The cost function (2.48) of the RMPC formulation is repeated here for reasons of com-
pleteness

J
(l)
q,rob(U [k],x[k],Y r[k]) =

∥∥∥∥∥∥
(Qq)

1
2 Er,(l)[k]

(Rq)
1
2 ∆U [k]

∥∥∥∥∥∥
2

2

, (6.1)

where l ∈ {1, 2, . . . , nseq}. The index l identifies the respective prediction sequence (see
prediction tree in Figure 2.8 on page 32). The min-max based optimization problem (2.50)
is also repeated

minimize
U [k]

max
l∈{1,2,...,nseq}

J
(l)
q,rob(U [k],x[k],Y r[k])

subject to GU [k] ≤ H[k].
(6.2)

More details and the transformation to a second-order cone program (SOCP) are given in
Section 2.3.

The robust PRG formulation is considered to be the robust counterpart of the standard
PRG presented in Section 5.1. It is shown later on that the control performances of the robust
PRG and the non-robust PRG are almost identical for the nominal case. This behavior
is achieved by the use of the ideas of RMPC based on enumerative schemes (Casavola
et al., 2000a; Schuurmans and Rossiter, 2000). An RMPC approach based on semidefinite
relaxations (Löfberg, 2003) worked in principle, but first simulations showed a quite different
(conservative) behavior from the non-robust case. As it is a main goal of this work to achieve
a fast dynamic behavior, the approach based on semidefinite relaxations is not eligible. An
advantage of the enumerative schemes used here is that the weighting matrices can remain
the same as in the non-robust PRG formulation.

The basic properties of a quadratic form based cost function are the same for the robust
PRG. The non-uniform weighting of the control error again leads to the tendency to show
an overshoot in the step response. Hence, as already shown in the experimental results of
Chapter 5, the reference value is not reached in minimum-time.

Compared to the standard PRG optimization problem that can be cast as a quadratic
program (QP), the underlying optimization problem of a robust PRG can be cast as an
SOCP. An SOCP also represents an optimization problem in standard form; a respective
solver is, however, computationally more complex than a solver for a QP.
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If the robust PRG is operated without feedback, it is not clear which system model should
be used to simulate the plant to get the next state. As only extreme realizations of the
model are known, it is reasonable to use the nominal plant model to simulate the plant.
This approach represents a difference compared to a robust PRG with feedback, where the
state is measured/estimated at each sampling instant. Thus, the measured/estimated state
of a robust PRG with feedback originates from the uncertain plant and not from the nominal
plant. Therefore, it is not clear whether the theory of RMPC, which is executed online with
feedback, also holds for a robust PRG that is operated without feedback.

Existing robust PRG schemes rely on cost functions based on quadratic forms. The PRG
approaches of Bemporad and Mosca (1998), Casavola et al. (2000b), and Sugie and Fukui
(2003)1 mainly focus on robust constraint fulfillment, which leads to conservative control
results compared to the PRGs of this thesis.

Robust constraint fulfillment is not considered here in order to reduce the rather high
computational complexity and to avoid conservatism that is often introduced by robust
constraint fulfillment. Hence, it cannot be guaranteed that the constraints are fulfilled for
all uncertain system realizations. The PRG outputs ur,opt[k] and xr,opt[k], which serve as
feedforward signals, respect the imposed input and state constraints. In the case of uncertain
parameters the feedback controller gets active2 and contributes together with the feedforward
input ur,opt[k] to the total plant input u[k]. Hence, it cannot be guaranteed to fulfill the
input constraints, which makes it necessary to establish a control reserve (CR) to allow the
feedback controller to react in the presence of uncertain parameters. The state constraints
can also be slightly violated—it is shown exemplary for the current constraints that these
slight violations are not critical. For applications where state constraints have to be respected
for all uncertainty realizations, it is recommended to impose a state constraint reserve in the
PRG formulation.

6.2 Robust Near Minimum-Time PRG Formulation

The robust near minimum-time PRG relies—like the corresponding non-robust formulation—
on an `1-norm based cost function. The uniform weighting of the `1-norm is exploited to
achieve near minimum-time control results.

1The cited literature also uses the terms reference management, reference shaping, command governor, com-
mand shaping, and receding horizon based trajectory planning for PRGs. Nevertheless, these approaches
rely on prediction and the receding horizon approach. Thus, only the term PRG is used in this thesis.

2This statement is general, i.e., it is valid for robust PRGs and non-robust PRGs in combination with the
dynamic, model-based feedforward control (DynFF) approach.
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The cost function based on the `1-norm is given as

J
(l)
`1,rob(U [k],x[k],Y r[k]) =

∥∥∥∥∥∥
Q`1E

r,(l)[k]
R`1∆U [k]

∥∥∥∥∥∥
1

. (6.3)

The predicted control error Er,(l)[k] is weighted with the diagonal matrix Q`1 and is depen-
dent on l ∈ {1, 2, . . . , nseq}. The rate of input change ∆U [k] is weighted with the diagonal
matrix R`1 . The weighting matrices Q`1 and R`1 are defined by (5.3). It is emphasized
that these weighting matrices can remain the same as in the non-robust near minimum-time
PRG formulation—no re-tuning is necessary.

The cost function (6.3) is expressed depending on U [k] as

J
(l)
`1,rob(U [k],x[k],Y r[k])

(2.47)
(2.19)=

∥∥∥∥∥∥
Q`1B(l)

y

R`1B∆


︸ ︷︷ ︸

F
(l)
`1

U [k] +
Q`1

(
A(l)
y x[k]− Y r[k]

)
0N ·nu


︸ ︷︷ ︸

g
(l)
`1

[k]

∥∥∥∥∥∥
1

.
(6.4)

This cost function is again a convex function, as the `1-norm of an affine function is convex.
Bringing the input and state constraints (2.25) together with the cost function (6.4) and

the min-max formulation for the enumerative scheme of Section 2.3, the optimization problem
reads as

minimize
U [k]

max
l∈{1,2,...,nseq}

∥∥∥F (l)
`1 U [k] + g(l)

`1 [k]
∥∥∥

1

subject to GU [k] ≤ H[k].
(6.5)

This optimization problem aims at minimizing the worst-case cost function (max) with
respect to U [k], while respecting input and state constraints.

In order to eliminate the max part, the cost function
∥∥∥F (l)

`1 U [k] + g(l)
`1 [k]

∥∥∥
1
is minimized

for all realizations l ∈ {1, 2, . . . , nseq} (see Section 2.3.2). Furthermore, to transform the
`1-norm based optimization problem (6.5) to a linear program (LP), the transformation of
Section 2.1.5.2 is used. The resulting optimization problem is stated as

minimize
β, U [k]

1>β

subject to − β ≤ F (l)
`1 U [k] + g(l)

`1 [k] ≤ β, ∀l ∈ {1, 2, . . . , nseq},
GU [k] ≤ H[k],

(6.6)

where the vector β is now part of the optimization variables, it is introduced by transform-
ing (6.5) to the LP (6.6). The final transformation to an LP in a standard form that is used
by many solvers is given in Section 2.1.5.2. The optimization problem (6.6) is the main part
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of the general PRG algorithm presented in Chapter 3—solving this problem in a receding
horizon based manner leads to a robust near minimum-time PRG. As it is the case for the
robust PRG, the nominal plant model is simulated to shift the prediction horizon if feedback
is not available.

The necessary solver for the robust near minimum-time PRG is an LP solver, which is in
general computationally less complex than an SOCP solver, which is needed for the robust
PRG. As for the robust PRG, robust constraint fulfillment is not considered here.

6.3 Example: Position Tracking Control of a PM DC
Motor

The two proposed robust PRG approaches are validated for axis 2 of the positioning system
that is described in Chapter 4. Furthermore, the PRGs that are based on RMPC are
compared with the non-robust approaches. By comparing the respective control errors, it is
shown that the robust performance can indeed be improved through the ideas of enumeration
based min-max RMPC.

The experimental evaluation is done for two different reference shapes—a step and a
ramp. The use of a ramp shaped reference indicates the possibility of dealing with arbitrary
varying references. The use of the preview feature of the robust and non-robust PRGs makes
it possible to track the reference signals if the constraints are not active. If the constraints
are active, it is the task of the PRG to keep the error to the unoptimized reference signal as
small as possible.

6.3.1 Tuning of the PRG Approaches

The tuning of the robust PRGs is essentially the same as the tuning of the non-robust
approaches of Section 5.3.1. Therefore, an existing PRG can be robustified without the need
of re-tuning. This is validated by the experimental results that are presented later; they
show that the dynamic performance of the nominal case of the non-robust and the robust
approaches is essentially the same. Nevertheless, if the performance of the robust approaches
is not satisfying the robust approaches of course allow independent tuning.

Table 6.1 shows an overview of the most important parameters for the PRGs of this
chapter. The difference compared with the parameters of Chapter 5 is that the maximum
voltage vmax (input constraint) is lowered to 25V to establish a larger CR (difference between
the supply voltage vDC = 29.4V and vmax = 25V). This CR is available for the feedback
controller to get active in presence of uncertain parameters if the feedforward voltage is
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Maximum voltage vmax 25V
Maximum current imax 5A
onlinePRG false
feedbackPRG false
preview (reference known in advance) true
Prediction horizon N 20
Receding horizon shift Nshift 1
Standard PRG (robust/non-robust)

Control error weight qq
[
1 rad−2

]
Rate of input change weight rq

[
(0.00005)2 V−2

]
Near minimum-time PRG (robust/non-robust)

Control error weight q`1
[
1 rad−1

]
Rate of input change weight r`1

[
0.0002V−1

]
Table 6.1: PRG and robust PRG parameters and system constraints of the SISO reference tracking

example

already saturated. A further difference is the use of the preview feature that allows to react
to changing reference values before the respective change (e.g., a reference step).

6.3.2 Experimental Results

Emulation of uncertain parameters
A perturbed parameter of, for example, +10% is emulated in the control system by changing
the respective parameter by −9.09% in the model for the feedback controller design. As the
PRGs are operated offline without feedback, the model that is used to simulate the plant in
order to shift the prediction horizon is also changed in the same way to emulate a perturbed
parameter. This approach is necessary, as it was impracticable to physically change system
model parameters.

It is emphasized in Section 2.3 that it is essential that the polytopic uncertainty model en-
closes all system realizations of the linear time-varying (LTV) system that arise in practice.
As in this work the parameters of the continuous-time model are considered to be uncertain,
it is not clear if the polytopic uncertainty model is valid after the zero-order hold (ZOH)
discretization is applied to the continuous-time model. This means it is not clear if the con-
vex polytope consisting of the discrete-time models for a perturbed parameter of +10% and
−10% contains all system realizations that lie in between this range (e.g., +5%). Neverthe-
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Figure 6.1: Illustration of the control error difference ∆er±p% which is the absolute value of the
difference between er+p% ( ) and er−p% ( ). The nominal control error is denoted
by er0% ( ).

less, the experimental results show that it is reasonable to neglect the ZOH discretization in
terms of the polytopic uncertainty model.

The measurement results that are presented here show an extensive comparison for an
uncertain torque constant Kt of ±10%. Summarizing figures show the robust performance
for most other system parameters (except Jm, Jl, and Kf)3.

Performance criteria
To evaluate the performance of the proposed approaches, two performance criteria are
defined—one to quantify robust performance and another one for dynamic control perfor-
mance.

The dynamic performance is evaluated with the common integral square error (ISE) cri-
terion

CISE[k] = T 2
s

k∑
j=1

(er[j])2 , (6.7)

where er[k] = ϕr
l [k]− ϕl[k] is the control error.

In order to rate robust performance, the following criterion is introduced

CROB[k] = Ts
k∑
j=1

∆er±p%[j], (6.8)

where the control error difference ∆er±p%[k] is defined as

∆er±p%[k] =
∣∣∣er+p%[k]− er−p%[k]

∣∣∣ . (6.9)

Figure 6.1 illustrates this robustness criterion. The difference of the control error of two
extreme system realizations ∆er±p%[k] (±10% in this work) is considered to represent robust
performance, i.e., a small value would mean that the control error is only marginally af-
fected by an uncertain parameter. A prerequisite for the validity of the robust performance

3Measurements concerning these parameters do not provide further insights and are therefore omitted.
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index CROB[k] is that the nominal control error er is surrounded by the control errors er+p%

and er−p%, as this is a sign that the polytopic uncertainty model is valid.
Furthermore, the control error er[k] and the optimized control error er,opt[k] are evaluated

(already defined in Section 5.3.4).

Description of exemplary experimental results figures
Figure 6.2a on page 108 serves as an example for a figure that shows the time evolution of
important control system signals:

• First plot (from top): Reference load position ϕr
l [k] ( ), load position ϕl[k] ( ).

The motor position ϕm[k] is not shown here.

• Second plot: Control error er[k] ( )

• Third plot: Optimized control error er,opt[k] ( )

• Fourth plot: Load speed ωl[k] ( ). The motor speed ωm[k] is not shown here.

• Fifth plot: Motor current i[k] ( ) and current constraints ±imax ( )

• Bottom plot: Motor voltage v[k] ( ) and voltage constraints ±vmax ( ). The
complete range of the ordinate represents the hard input voltage constraints ±vDC.

For the nominal cases, the already introduced color scheme is used: Red for load-side values
(ϕl[k] and ωl[k]) and values that depend on the load position (er[k], er,opt[k], etc.); blue is used
for the motor-side values (v[k] and i[k]). The respective signals for a perturbed parameter are
for +10% indicated by ( ) and for −10% indicated by ( ) (see Figure 6.1). Constraints
(±vmax and ±imax) are indicated by black dashed lines ( ).

Figure 6.4a on page 110 is an exemplary figure that evaluates the introduced dynamic per-
formance and robust performance criteria:

• Top plot: Control error difference ∆er±p%[k] ( ) and its integrated value, the robust
performance criterion CROB[k] ( )

• Bottom plot: ISE criterion CISE[k] for the nominal case ( ), for +10% ( ), and
for −10% ( )

Figure 6.5a on page 110 serves as an example for a figure of the robust performance cri-
terion CROB[k] for multiple system parameters and allows evaluating the influence of the
different parameters on the robust performance.
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Discussion of the experimental results for a reference in the shape of a ramp
Experimental results comparing the non-robust and robust approaches for a reference in the
shape of a ramp (slope 30 rad s−1) are presented here. The preview feature of the PRGs
is exploited to track the reference when the system constraints are not active. An obvious
effect of the preview feature is that the optimized reference ϕr,opt

l [k] is starting to change
before the ramp starts.

Figure 6.2 on page 108 shows measurement results for a perturbed torque constant Kt.
Comparing the standard PRG (Figure 6.2a) with the robust PRG (Figure 6.2b) shows that
the robust performance is improved through the robust PRG formulation: The span of the
control error signals er[k] (nominal and ±10%) of the non-robust approach is much higher
than those of the robust approach. The optimized control error er,opt[k] is almost zero for the
nominal case, which validates the nominal system model, the handling of constraints, and
the quality of the applied two-degrees-of-freedom (2-DoF) controller design. It is important
to note that the feedback controller is the same for the standard PRG and the robust PRG.
The hard input voltage constraints ±vDC = 29.4V are not violated because the voltage
constraints ±vmax = 25V that are considered in the PRGs introduce a CR for the feedback
controller. The current limits (state constraints) are slightly touched here; it can, however,
not be guaranteed that these limits are respected. The slight oscillations visible in the
control error er[k] before and after the position turn are again caused by the non-uniform
weighting of the control error when using quadratic form based PRGs. The preview feature
of the PRGs leads to evolutions of the control error er[k] for the nominal case that are nearly
symmetric to the time instant where the slope of the reference changes (t = 0.40ms and
t = 0.56ms).

The experimental results for the near minimum-time PRG and for the robust near
minimum-time PRG are presented in Figure 6.3 on page 109. A first observation is that
the oscillations in the control error are reduced compared with the quadratic form based
PRGs. Nonetheless, the maximum control error is increased using the `1-norm based PRGs,
but the control error shows hardly any over- and undershoots. Again, the preview feature
of both near-minimum time PRGs leads for the nominal case to control errors er[k] that
are symmetric. One of these symmetric responses is visible in the range from t = 0.34ms
to t = 0.45ms. This time span represents the acceleration phase from zero speed to the
desired speed of 30 rad s−1. The full voltage range is exploited in the first part of this
acceleration phase, where the current is increased. The second part of the acceleration
phase, where the current is decreased, does not exploit the full voltage range. The reason
for this conservative use of the available voltage is the preview feature. Using preview and a
long prediction horizon, all PRGs (not only the robust variants) tend to symmetric control
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error responses. After the fast current increase at the beginning, a symmetric control error
response is achieved through a current trajectory that takes the same time to decrease to
zero as it takes the current to increase. However, the voltage that is necessary to decrease
the current does not exploit the full voltage range. Hence, it is reasonable to assume that the
constant speed that the shape of the reference position commands could be reached faster
through a response that is not symmetric. This example illustrates why the `1-norm based
approaches are called near minimum-time PRGs. The robust near minimum-time PRG
(Figure 6.3b) again shows an improved robust performance compared with the non-robust
near minimum-time PRG (Figure 6.3a); the span of the control error signals er[k] (nominal
and ±10%) is efficiently reduced for a perturbed torque constant Kt. The robust near
minimum-time PRG and the non-robust near minimum-time PRG lead to nearly the same
nominal responses—this shows that the idea of RMPC based on enumerative schemes is
advantageous for the design of robust PRGs.

The criteria for robust performance and for dynamic performance are shown in Figure 6.4
on page 110 for the perturbed torque constant Kt. Looking at the end values of the robust
performance index CROB[k], the robust PRG improves (decreases) this value by over 50%
compared with the non-robust PRG. The improved robustness is also visible in the CISE

criterion, where the curves for the individual system representations come closer together
for the robust PRG. The end-values of CISE[k] for the nominal cases of the standard PRG
and for the robust PRG are comparable. Hence, the robust PRG shows nearly the same
dynamic performance in the nominal case and increases the robust performance.

Figure 6.6 on page 111 shows the dynamic performance criterion CISE and the robust
performance criterion CROB[k] for the robust and non-robust near minimum-time PRGs.
The robust performance for a perturbed torque constant Kt is again improved by more than
50% through the robust near minimum-time formulation and the curves of CISE[k] come
closer together. Furthermore, the nominal dynamic performance is not deteriorated by the
robust near minimum-time formulation. Comparing the end values of CISE[k] of the two
`1-norm based approaches to the two quadratic form based approaches (see Figure 6.4 on
page 110), the `1-norm based PRGs show a worse dynamic behavior according to the ISE
criterion. This is not surprising, as the ISE criterion relies—just like the quadratic form
based PRGs—on the squared control error.

The robust performance criterion CROB strongly depends on the uncertain system param-
eter that is under investigation. Figure 6.5 on page 110 compares the robust performance
index CROB[k] of the standard PRG with the robust PRG for various system parameters
(R,L,Kt, c and d). Quite large improvements compared with the standard PRG can be
achieved for parameters Kt and c, moderate improvements are visible for R and L. For
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the damping ratio d the robust performance is slightly decreased when the robust PRG is
used. The damping ratio d is a parameter of low importance, as a comparably low value of
CROB[k] in Figure 6.5 illustrates. The decreased robust performance might be the result of a
slight mismatch of the nominal value of d. The shape of the reference also influences robust
performance—measurements for a step reference that are shown later confirm this.

Figure 6.7 on page 111 shows the comparison of multiple system parameters for the
`1-norm based near minimum-time and robust near minimum-time approaches. This fig-
ure shows quite large robustness improvements for the parameters Kt and R, a moderate
improvement is visible for L. The robust performance for c is nearly equal for both ap-
proaches. For the damping ratio d, the robust performance is again slightly decreased using
the robust near minimum-time PRG.

Discussion of the experimental results for a reference in the shape of a step
Figures 6.8–6.13 on pages 112–115 show the respective evaluations for a reference signal
in the shape of a step with a height of 1mrad. As the basic behavior of the four PRG
approaches for a reference in the shape of a ramp has already been evaluated, the discussion
here focuses on new insights.

Figures 6.8 and 6.9 on pages 112/113 present the evolution of important control system
signals. It is shown that both robust approaches are able to increase the robust performance
for an uncertain torque constant Kt. The near minimum-time PRGs show only a small
over- and undershoot. The load position ϕl[k] reaches the reference value fast and shows a
response that is symmetric to the time instant where the step is commanded (t = 0.41ms)
because of the preview feature.

The robust performance evaluation for multiple system parameters for the standard PRG
and the robust PRG is shown in Figure 6.11 on page 114. Compared to the reference in the
shape of a ramp, the order of the parameters is different. Now, the spring constant c is the
most important parameter of the standard PRG approach concerning robust performance.
The explanation for this is twofold: First, a reference in the shape of a step has a considerable
high-frequency content compared to a ramp reference. Second, the oscillations that are
present in the quadratic form based PRGs can easily excite the resonance frequency of the
two-mass system (ca. 19.7 kHz) in case of an uncertain spring constant c. Nevertheless, the
robust PRG is able to increase the robust performance of most parameters (again except for
the damping constant d).

The comparison of multiple parameters for the two near minimum-time approaches is pre-
sented in Figure 6.13 on page 115. The two-mass parameter c is not that critical here, as the
tendency to show oscillations in the optimized reference is not present in the `1-norm based
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PRGs. The robust near minimum-time formulation is again able to achieve more robust
results compared with the non-robust formulation (except d).

Summary
The experimental results of this section show—at least for the system considered here—
that the ideas of RMPC based on enumerative schemes can be transferred to robust PRGs,
even if a robust PRG is operated without feedback. The robust PRG and the robust near
minimum-time PRG improve the robust performance compared with their respective non-
robust counterparts. This increased robust performance is achieved for nearly all system
parameters. The `1-norm based robust near minimum-time PRG is validated to exploit
the constraints well and to show less oscillations as well as smaller over- and undershoots
compared with the quadratic form based robust PRG. The underlying optimization problem
of a robust near minimum-time PRG is an LP, which requires a computationally less complex
solver than the robust PRG formulation, which leads to an SOCP. The two reference signals
illustrate that the relative importance of the different parameters is dependent on the shape
of the reference signal—for example, two-mass related parameters are more important for a
step reference, as a step excites the resonance stronger than a ramp. Results for a reference
in the shape of a ramp represent a first indication that all presented PRGs can deal with
arbitrary varying reference signals—more reference shapes are shown in Chapter 7. All
results of this section are based on PRGs that makes use of the preview feature, where the
reference is known in advance. It is also emphasized that the robust formulations do not need
re-tuning, as these approaches essentially deliver the same nominal results as their non-robust
counterparts. Hence, an existing PRG can be adapted to improve the robust performance—
accepting a higher computational effort—without changing the weighting factors. A robust
PRG is advantageous if a system parameter is only known up to a certain accuracy or if a
system parameter varies over time. Examples for parameters that vary over time are the
resistance that varies with temperature or the viscous friction coefficient that is influenced
by the aging of the bearings.
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Figure 6.2: Comparison concerning robust performance for an uncertain torque constant Kt
(±10%) for a reference in the shape of a ramp: Standard PRG vs. robust PRG (see
page 102 for the description of the signals)
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Figure 6.3: Comparison concerning robust performance for an uncertain torque constant Kt
(±10%) for a reference in the shape of a ramp: Near minimum-time PRG vs. robust
near minimum-time PRG (see page 102 for the description of the signals)
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Figure 6.4: Comparison of robust and dynamic performance criteria for an uncertain torque con-
stant Kt (±10%) for a reference in the shape of a ramp: Standard PRG vs. robust
PRG (see page 102 for the description of the signals)
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Figure 6.5: Comparison of robust performance criteria for multiple parameters (±10%) for a ref-
erence in the shape of a ramp: Standard PRG vs. robust PRG (see page 102 for the
description of the signals)
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Figure 6.7: Comparison of robust performance criteria for multiple parameters (±10%) for a refer-
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Figure 6.8: Comparison concerning robust performance for an uncertain torque constant Kt
(±10%) for a reference in the shape of a step: Standard PRG vs. robust PRG (see
page 102 for the description of the signals)
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Figure 6.9: Comparison concerning robust performance for an uncertain torque constant Kt
(±10%) for a reference in the shape of a step: Near minimum-time PRG vs. robust
near minimum-time PRG (see page 102 for the description of the signals)
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Figure 6.10: Comparison of robust and dynamic performance criteria for an uncertain torque con-
stant Kt (±10%) for a reference in the shape of a step: Standard PRG vs. robust
PRG (see page 102 for the description of the signals)
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Figure 6.11: Comparison of robust performance criteria for multiple parameters (±10%) for a ref-
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Figure 6.12: Comparison of robust and dynamic performance criteria for an uncertain torque con-
stant Kt (±10%) for a reference in the shape of a step: Near minimum-time PRG vs.
robust near minimum-time PRG (see page 102 for the description of the signals)
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Figure 6.13: Comparison of robust performance criteria for multiple parameters (±10%) for a ref-
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7 Near Minimum-Time PRGs for
Constrained MIMO LTI Systems

This chapter emphasizes the ability of predictive reference governors (PRGs) to inherently
handle multiple-input, multiple-output (MIMO) systems. A biaxial contouring application
consisting of two electric motors (see Chapter 4) is considered. Biaxial contouring aims at
following a two-dimensional contour, which is also called path, as close as possible. Further-
more, a predefined path speed should be maintained whenever this is possible.

First, the key cost functions for the standard PRG and the near minimum-time PRG
for MIMO systems are given here. After a short introduction to biaxial contouring, two
PRGs that minimize the contour error are introduced—one is based on a quadratic form
and the other one relies on an `1-norm based cost function. The contour error is the main
performance measure in biaxial contouring. A cost function based on the contour error
introduces a virtual coupling between the two motors in order to reduce the contour error.
The transformations to optimization problems in standard form are omitted in this chapter,
as this topic is extensively treated in previous chapters.

The approaches that are presented here are validated by experimental results for the
positioning system that is described in Chapter 4. Two different shapes of a biaxial path
are evaluated: One path includes sharp corners and the other path is preprocessed to avoid
these sharp corners.

7.1 Standard PRG Formulation

The standard PRG for MIMO systems is based on the general1 model predictive control
(MPC) formulation of Section 2.2.3. The difference to the SISO PRG formulation of Sec-

1General means that the optimization problems in this work are formulated for MIMO systems. The
respective single-input, single-output (SISO) applications lead to a different number of in- and outputs.
The basic formulation remains untouched, as SISO systems are a special case of MIMO systems.
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tion 5.1 is just the dimension of the in- and outputs. The cost function (5.1) is stated here
again for reasons of completeness

Jq(U [k],x[k],Y r[k]) =
∥∥∥∥∥∥
 (Qq)

1
2 Er[k]

(Rq)
1
2 ∆U [k]

∥∥∥∥∥∥
2

2

. (7.1)

The principles for a transformation of (7.1), together with the constraints (2.25), to
a quadratic program (QP) in standard form can be found in Section 2.2.3. The use of
the cost function (7.1) in an MPC scheme for biaxial contouring is called model predictive
tracking control (MPTC) (Lam et al., 2013).

7.2 Near Minimum-Time PRG Formulation

The cost function (5.2) of a near minimum-time PRG is repeated here

J`1(U [k],x[k],Y r[k]) =
∥∥∥∥∥∥
 Q`1E

r[k]
R`1∆U [k]

∥∥∥∥∥∥
1

. (7.2)

Again only the input and output dimensions are changed compared with the PRG for-
mulation of Section 5.2, which is stated generally but is applied to a SISO system. The
transformation of (7.2), together with the constraints (2.25), to a linear program (LP) in
standard form is stated in Section 2.1.5.2.

7.3 Example: Biaxial Contouring Using Two PM DC
Motors

This section introduces the basics of biaxial contouring, including a possibility to approxi-
mate the contour error in order to make it usable for the design of PRGs. The PRGs that
minimize the contour error (`1-norm based and quadratic form based) emphasize the flexibil-
ity of the PRG cost function design and the applicability to MIMO systems. The four PRG
approaches of this chapter are validated by experimental results and compared with each
other and with an approach that is considered to be an advanced industry standard.

7.3.1 Introduction to Biaxial Contouring

Biaxial contouring problems often arise in computer numerical control (CNC) machin-
ing (Renton and Elbestawi, 2000; Erkorkmaz and Altintas, 2001). The positioning applica-
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Figure 7.1: Illustration of the contour error econ[k] for a biaxial system with the axes y1 and y2

tion of this work (see Chapter 4) is another example of biaxial contouring. The intention
of biaxial contouring is to follow a predefined path (contour) in two dimensions. The main
performance measure in these applications is generally the contour error (see Figure 7.1),
which is defined as the shortest distance between the actual position and the reference
path (Ramesh et al., 2005). The two-dimensional path does not contain any timing informa-
tion. The timing information is introduced by the path speed (also called feedrate), which
determines how fast a certain contour is followed. The contour error strongly depends on the
path speed—the slower the path is followed, the smaller is the contour error. The reasons
for this dependence are constraints of the two motors, which, for example, do not allow
changing the acceleration instantly.

Conventional contouring control systems consist of separate controllers for each axis, which
reduce the control error of the respective axis. A widespread example of control error mini-
mization is the use of two zero-phase-error tracking control (ZPETC) approaches (Tomizuka,
1987)—the constant phase delay, which is equal for both axes, leads to an improvement of
the contouring accuracy. However, separate single axes control approaches do not explicitly
consider the contour error. In order to consider the contour error in the control system
the cross-coupling controller (CCC), which couples both axes in the control scheme, was
introduced by Koren (1980). In the context of contouring control, only a few schemes based
on predictive control are known. A generalized predictive control (GPC) scheme for cross-
coupling design without constraints is presented in (Zhu and Chen, 2001). Model predictive
contouring control (MPCC) including path speed and current constraints is shown in (Lam
et al., 2013). However, the non-trivial path parametrization leads to a nonlinear optimiza-
tion problem with a high computational complexity. An unconstrained MPCC scheme is
presented in (Tang and Landers, 2012), which makes it necessary to adapt the path speed
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by a supervisory controller in order to maintain constraints and reduce the contour error.
Susanu and Dumur (2005) proposed a PRG that minimizes the contour error (based on a
quadratic form)—an unconstrained GPC scheme acts as the underlying feedback controller.
Another PRG approach that minimizes the contour error was introduced by Chang and
Tsao (2014)—this approach relies on a cost function based on a quadratic form and is able
to constrain the path speed and the control input. A review of the state of the art in biaxial
contouring is presented in (Tang and Landers, 2013).

7.3.1.1 Contour Error Approximation

The contour error, which is defined as the shortest distance between the actual position
and the reference path, is traditionally gained through a search process, where shortest
distance of the actual position to the reference path is determined. However, as there is
no closed-form expression for the contour error, such a search process is unsuitable for
the use in control applications. In order to design PRGs that are capable of minimizing
the contour error, it is necessary to approximate the contour error through a closed-form
expression. This approximation is illustrated in Figure 7.2—the tangent to the reference
path at the reference position is used to determine the approximated contour error ẽcon[k]
and the approximated lag distance ẽlag[k] (Tang and Landers, 2012; Lam et al., 2013). A
system with the output y[k] = [ y1[k] y2[k] ]>, which contains the two positions of a biaxial
positioning system, is considered in the following.

Trigonometric considerations (see Figure 7.2) lead to the approximations

ẽcon[k] = sin (θ[k]) (y1[k]− yr1[k])− cos (θ[k]) (y2[k]− yr2[k]) ,

ẽlag[k] = − cos (θ[k]) (y1[k]− yr1[k])− sin (θ[k]) (y2[k]− yr2[k]) ,
(7.3)

where

θ[k] = atan2 (yr2[k]− yr2[k − 1], yr1[k]− yr1[k − 1]) . (7.4)

The atan2 (·, ·) function returns—in contrast to the standard atan (·) function—the angle in
the correct quadrant by evaluating the signs of both arguments. The subscripts 1 and 2 de-
termine the respective axis of the biaxial system. This approximation makes ẽcon[k] explicitly
dependent on the reference positions (yr1[k], yr2[k]) and therefore on time; this is not the case
for the exact value econ[k]. This fact makes it possible to include the approximated contour
error ẽcon[k] systematically into a cost function—this would not be possible for the exact
value where a search process is necessary. In order to minimize the difference between the
exact and the approximated value, the approximated lag distance ẽlag[k] has to be minimized
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Figure 7.2: Illustration of the contour error econ[k] and its approximation ẽcon[k]

as well and therefore has to be included in a cost function together with the approximated
contour error ẽcon[k].

The stacked vectors of the approximated contour error Ẽcon[k] and the approximated lag
distance Ẽlag[k] are defined as

Ẽcon[k] =
[
ẽcon[k + 1]> ẽcon[k + 2]> . . . ẽcon[k +N ]>

]> ∈ RN ,

Ẽlag[k] =
[
ẽlag[k + 1]> ẽlag[k + 2]> . . . ẽlag[k +N ]>

]> ∈ RN .
(7.5)

The approximations Ẽcon[k] and Ẽlag[k] can be calculated as

Ẽcon[k] = T con[k] (Y [k]− Y r[k]) = T con[k]Er[k],

Ẽlag[k] = T lag[k] (Y [k]− Y r[k]) = T lag[k]Er[k],
(7.6)

with

T con[k] = ⊕Ni=1t
con[k + i] ∈ RN×2·N ,

T lag[k] = ⊕Ni=1t
lag[k + i] ∈ RN×2·N ,

(7.7)

and

tcon[k] =
[
sin(θ[k]) − cos(θ[k])

]
∈ R1×2,

tlag[k] =
[
− cos(θ[k]) − sin(θ[k])

]
∈ R1×2.

(7.8)
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The matrix vector notation (7.6) of the approximated contour error Ẽcon[k] and the approx-
imated lag distance Ẽlag[k] is used in the following sections to formulate the PRGs that rely
on the contour error.

7.3.2 Contouring PRG Formulation

The contouring PRG presented here includes a cost function based on a quadratic form and
is related to the cost function of the MPCC formulation presented in (Tang and Landers,
2012). The cost function for the contouring PRG is defined as

Jq,con(U [k],x[k],Y r[k]) =

∥∥∥∥∥∥∥∥∥∥


(
Qcon

q

) 1
2 T con[k]Er[k](

Qlag
q

) 1
2 T lag[k]Er[k]

(Rq)
1
2 ∆U [k]


∥∥∥∥∥∥∥∥∥∥

2

2

. (7.9)

The three main terms of this cost function represent the approximated contour error Ẽcon[k],
the approximated lag distance Ẽlag[k], and the rate of input change ∆U [k] (from top to
bottom), which are multiplied by the respective weighting matrices. The approximated lag
distance Ẽlag[k] also needs to be included in the cost function, as the minimization of this
value ensures the validity of the contour error approximation (see Figure 7.2). More specific,
a small lag distance leads to a small error between the contour error and its approximation
(Tang and Landers, 2012).

The weighting matrices are defined as

Qcon
q = ⊕Ni=1diag{qconq } ∈ RN×N ,

Qlag
q = ⊕Ni=1diag{qlagq } ∈ RN×N ,

Rq = ⊕Ni=1diag{rq} ∈ R2·N×2·N ,

(7.10)

where qconq ∈ R, qlagq ∈ R, and rq ∈ R2 are the weights for the contour error, the lag distance,
and the rate of input change, respectively. The transformation of (7.9), together with the
constraints (2.25), to a QP in standard form is given in Section 2.2.3.

The expressions
(
Qcon

q

) 1
2 T con[k] and

(
Qlag

q

) 1
2 T lag[k] in (7.9) can be seen as time-varying

weighting matrices, in contrast to time independent weighting matrices that are used in
the PRGs that do not rely on the contour error. These time-varying weighting matrices
introduce a virtual coupling between the two axes in order to minimize the contour error.
By setting qconq = qlagq and using the trigonometric identity (sin(θ[k]))2 +(cos(θ[k]))2 = 1, the
contouring PRG cost function (7.9) would reduce to the standard PRG cost function (7.1).
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7.3.3 Near Minimum-Time Contouring PRG Formulation

As in the previous chapters, an `1-norm based PRG is introduced here to achieve near
minimum-time control results with reduced over- and undershoots. The PRG proposed here
is called near minimum-time contouring PRG and is based on the cost function

J`1,con(U [k],x[k],Y r[k]) =

∥∥∥∥∥∥∥∥∥


Qcon
`1 T

con[k]Er[k]
Qlag
`1 T

lag[k]Er[k]
R`1∆U [k]


∥∥∥∥∥∥∥∥∥

1

. (7.11)

The `1-norm based cost function (7.11) consists of the same terms as the quadratic form
based contouring PRG cost function (7.9).

The weighting matrices are defined as

Qcon
`1 = ⊕Ni=1diag{qcon`1 } ∈ RN×N ,

Qlag
`1 = ⊕Ni=1diag{qlag`1 } ∈ RN×N ,

R`1 = ⊕Ni=1diag{r`1} ∈ R2·N×2·N ,

(7.12)

where qcon`1 ∈ R, qlag`1 ∈ R, and r`1 ∈ R2 are the weights for the contour error, the lag distance,
and the rate of input change, respectively. The transformation of (7.11) together with the
constraints (2.25) to an LP in standard form is given in Section 2.1.5.2.

7.3.4 Tuning and System Model of the PRG Approaches

The contouring application treated here consists of two motors which leads to a MIMO
system with two inputs nu = 2 and two outputs ny = 2. Considering these dimensions,
the weights of the standard PRG (qq and rq) and of the near minimum-time PRG (q`1
and r`1) are two-dimensional vectors. The tuning principle remains the same as presented
for the SISO case in Section 5.3.1—except that the tuning theoretically needs to be done
separately for each axis. Nevertheless, as the system consists of motors that only differ in
their two-mass behavior, the weights for both axes are chosen to be equal (see Table 7.1).
More specific, the scalar weights of the SISO case remain unchanged and are just extended
to two-dimensional vectors.

The weights for the contouring PRG (qconq , qlagq , and rq) and the near minimum-time
contouring PRG (qcon`1 , qlag`1 , and r`1) require some more attention. The weights of the rate
of input change rq and r`1 are chosen to be same as for the standard PRG and the near
minimum-time PRG. The lag weights are chosen to be qlagq = 1 rad−2 and qlag`1 = 1 rad−1, as
one term of the three cost function terms can be chosen arbitrarily without loss of generality.
The remaining contour error weights qconq and qcon`1 have to be chosen to achieve the desired
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contouring accuracy—an increased value usually leads to a decreased contour error. The
heuristically determined weights are shown in Table 7.1.

As in the PRG applications of the other chapters, the PRGs presented here are executed
offline (onlinePRG = false) and therefore no feedback information can be used (feedbackPRG =
false). Just like for the robust approaches, the preview feature, where the reference is known
in advance, is used here. The MIMO PRGs of this chapter use a receding horizon shift
of Nshift = 5 which reduces the calculation time for the whole reference trajectory by a factor
of five compared with Nshift = 1 (offline operation of the PRGs).

The PRG approaches of this chapter require a single state-space model that incorporates
both axes of the positioning system of Chapter 4. To achieve this, the discrete-time state-
space model (4.9) is equipped with the following state-space matrices

A =
 A1 05×5

05×5 A2

 , B =
 B1 05×1

05×1 B2

 , C =
 C1 01×5

01×5 C2

 , (7.13)

whereA ∈ R10×10 is the state matrix,B ∈ R10×2 is the input matrix, and C ∈ R2×10 denotes
the output matrix. The subscripts 1 and 2 identify the respective axis of the biaxial system.
The respective state, input and output vectors are

x[k] =
x1
x2

 , u[k] =
u1

u2

 , y[k] =
y1

y2

 . (7.14)

7.3.5 Acceleration- and Jerk-limited Trajectory Planning: An
Advanced Industry Standard

The advanced industry standard presented in Section 5.3.2 is also used here for the biaxial
contouring example to compare the presented PRGs with an approach that is well known in
industry. The acceleration and the jerk are limited separately for both axes of the biaxial po-
sitioning system in order to account for the respective voltage and current constraints. The
advanced industry standard does not deliver feedforward signals that can be used for dy-
namic, model-based feedforward control (DynFF). Hence, it is necessary to use ZPETC in
the two-degrees-of-freedom (2-DoF) based control structure. The use of ZPETC introduces
a constant delay of two sampling instants for the application considered here—this delay is
compensated to allow a fair comparison with the other approaches concerning the control
error and the optimized control error.
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Maximum voltage vmax 28V
Maximum current imax 5A
onlinePRG false
feedbackPRG false
preview (reference known in advance) true
Prediction horizon N 20
Receding horizon shift Nshift 5
Standard PRG

Control error weight qq
[
1 rad−2 1 rad−2

]>
Rate of input change weight rq

[
(0.00005)2 V−2 (0.00005)2 V−2

]>
Near minimum-time PRG

Control error weight q`1
[
1 rad−1 1 rad−1

]>
Rate of input change weight r`1

[
0.0002V−1 0.0002V−1

]>
Contouring PRG

Contour error weight qconq (100)2 rad−2

Lag weight qlagq 1 rad−2

Rate of input change weight rq
[
(0.00005)2 V−2 (0.00005)2 V−2

]>
Near minimum-time contouring PRG

Contour error weight qcon`1 100 rad−1

Lag weight qlag`1 1 rad−1

Rate of input change weight r`1
[
0.0002V−1 0.0002V−1

]>
Table 7.1: PRG parameters and system constraints of the biaxial contouring example

7.3.6 Experimental Results

Measurement results for the MIMO PRG approaches and for the advanced industry standard
applied to the positioning system of Chapter 4 are presented in this section. The results are
shown for a path that includes sharp corners and a preprocessed path that avoids these sharp
corners. Preprocessed means in this context that the reference, which is fed to the PRGs,
already respects given acceleration and jerk limits.

The parts of the control structures of Figures 3.1 and 4.6 that are working online are im-
plemented separately for each axis. These online parts represent the 2-DoF based controllers.
Nevertheless, the PRGs deal with the MIMO system that is described by the matrices (7.13).
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Performance criteria
The main performance measure that is evaluated here is the exact value of the contour
error econ[k], which is gained through a search process. The approximated contour error,
which is used for the formulation of the PRG approaches that minimize the contour error,
is not shown here—a validation of this approximation is given in (Dötlinger and Kennel,
2013b).

Other performance measures are the control error er[k] and the optimized control er-
ror er,opt[k], which are defined in Section 5.3.4.

Furthermore, the path speed is evaluated. The path speeds for the motor ωpath
m [k] and the

load ωpath
l [k] are defined as the Euclidean norms of the respective speeds of the two single

axes

ωpath
m [k] =

√
(ωm,1[k])2 + (ωm,2[k])2,

ωpath
l [k] =

√
(ωl,1[k])2 + (ωl,2[k])2.

(7.15)

Description of exemplary experimental results figures
Figures 7.3a and 7.3b on page 131 serve as example figures that show the time evolution of
important control system signals for the axes 1 and 2:

• First plot (from top): Reference load position ϕr
l [k] ( ), load position ϕl[k] ( ),

motor position ϕm[k] ( )

• Second plot: Control error er[k] ( )

• Third plot: Optimized control error er,opt[k] ( )

• Fourth plot: Load speed ωl[k] ( ), motor speed ωm[k] ( )

• Fifth plot: Motor current i[k] ( ) and current constraints ±imax ( )

• Bottom plot: Motor voltage v[k] ( ) and voltage constraints ±vmax ( ). The
complete range of the ordinate represents the hard input voltage constraints ±vDC.

Figure 7.3c on page 131 exemplary shows the two-dimensional (biaxial) reference path ( ),
the load position path ( ), and the motor position path ( ).

Figure 7.3d on page 131 evaluates the contour error econ[k] ( ).

Figure 7.3e on page 131 is an exemplary figure that shows the path speed for the load
ωpath
l [k] ( ) and the motor ωpath

m [k] ( ).
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Discussion of the experimental results for contouring of a path with sharp corners
The results presented here are based on a path that exhibits sharp corners and is therefore
quite challenging for biaxial contouring. Furthermore, the path contains three quarters of a
circle and a diagonal line segment; the shape is therefore related to the ISO standards for
machine tools (ISO 230-4:2005, 2005; ISO 230-6:2002, 2002; Weck and Brecher, 2006). The
two reference trajectories for the respective axes/motors are gained through constant path
speed interpolation, where the reference trajectories are determined such that a constant
path speed is achieved. Hence, sharp corners in the path lead to speed changes in the
shape of a step for the respective axis. Due to these step like speed changes as well as the
voltage and current constraints of the motors, the reference path cannot be exactly followed
by the advanced industry standard, the standard PRG, and the near minimum-time PRG.
The PRGs that minimize the contour error, however, make it possible to follow the path
almost perfectly through the coupling of both axes, which is introduced by the contour
error minimization. The two-dimensional path was transferred to the respective reference
trajectories through a constant path speed of ωpath

l = 30 rad s−1.

Figure 7.3 on page 131 shows experimental results for the advanced industry standard.
The voltage constraints are violated for short amounts of time due to the choice of the max-
imum jerk according to approach (B) of Section 5.3.2, where a trade-off is found between a
fast response and the handling of constraints. Additionally, the neglected two-mass behav-
ior and the neglected back electromotive force (EMF) for the choice of the maximum jerk
might be reasons for exceeding the voltage constraints. The current constraints are only
slightly violated. The limitation of the acceleration and the jerk leads to a relatively high
contour error econ[k] and a decreased path speed in the two sharp corners. The evolution
of the optimized control error er,opt[k] exhibits values that are a few times higher than the
noise level. These comparably high values result from modeling errors and from the use
of a ZPETC based 2-DoF approach that exhibits non-unity gain for high frequencies. The
PRG approaches presented later make use of DynFF and therefore show smaller values in
the evolution of the optimized control error er,opt[k]. The plot of the contour error shows
that there are nearly no over- and undershoots in the corners.

The results for the standard PRG approach that are presented in Figure 7.4 on page 132
show—compared with the advanced industry standard—decreased maximum values of the
contour error econ[k]. The voltage and current constraints are respected and fully exploited.
However, the evolutions of the contour error and the control errors show the typical over-
and undershoots of the quadratic form based cost functions.

Figure 7.5 on page 133 presents the results for the near minimum-time PRG. The peak
values of the contour error econ[k] lie in between the values of the advanced industry stan-
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dard and the standard PRG. However, compared with the standard PRG, the over- and
undershoots are almost completely removed—a behavior that is also shown by the near
minimum-time formulations of the previous chapters. Furthermore, the evolution of the in-
put voltage contains less high-frequency content, which is advantageous as unmodeled higher
order dynamics are involved here.

The experimental results for the contouring PRG and the near minimum-time contouring
PRG are shown in Figures 7.6 and 7.7 on pages 134/135, respectively. Both approaches
can reduce the contour error econ[k] to a value that is in the range of the optimized control
error er,opt[k]. Hence, it is likely that the contour error evolutions of both PRGs mainly
result from modeling errors. Nevertheless, both approaches enable following the path with
sharp corners almost perfectly; this is a result of the coupling of the axes, which is introduced
by the contour error minimization. In order to follow the path even in the corners a path
speed of zero is necessary—this is shown in the plot of the path speed. In order to regain
the overall timing with respect to the reference positions, the path speed increases before
and after the sharp corners. In the regions of the sharp corners this timing is lost in order
to minimize the contour error econ[k]—the high values of the control errors er[k] confirm
this—nevertheless, the contour error, which is the performance measure here, is efficiently
minimized. The biggest difference between the contouring PRG and the near minimum-time
contouring PRG is the shape of the input voltage v[k]. The considerable high-frequency
content of the contouring PRG leads to high-frequency oscillation in the optimized control
error because of an unmodeled higher order resonance. The evolution of the input voltage v[k]
of the near minimum-time contouring PRG is smoother.

The three quarters of a circle that are also present in the two-dimensional path again
emphasize the two-mass behavior. The motor position ϕm[k] clearly differs from the load
position ϕl[k]. This can be explained by the gain difference that the respective transfer
functions show when leaving the low-frequency range (see Bode plots in Figures 4.8 and 4.10
on pages 66/67). Furthermore, both positions differ especially in the corners.

Discussion of the experimental results for contouring of a preprocessed path
The experimental results for a preprocessed path demonstrate the advantages of the con-
touring PRGs for paths that do not show sharp corners. The two-dimensional path used
here (see, e.g., Figure 7.8 on page 137) was preprocessed using the idea of acceleration and
jerk limitation; this approach is considered here being an advanced industry standard. This
means that the sharp corners of the path are replaced by curvatures2—this should allow the
underlying control system to follow the path without violating the constraints. The path

2The sharp corner that is visible at the origin of the two-dimensional path is the result of the starting and
end point of the path.
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speed is set to ωpath
l = 60 rad s−1, which is twice the path speed of the contouring results

for sharp corners. The respective reference position trajectories are gained through constant
path velocity interpolation. As the basic results for all five approaches are discussed in the
previous section, this section mainly deals with new insights.

The experimental results were gained for an acceleration that corresponds to a current
limit of ±7.5A. In order to show the contouring capability of the presented contouring
PRG and the near minimum-time contouring PRG, their current limit remains unchanged
at ±5A. Hence, the preprocessed path exhibits high curvatures that traditionally cannot
be followed if the current limit of ±5A needs to be respected. This means that an existing
trajectory planning scheme—acceleration- and jerk-limited in this case—can be equipped
with limits that lead to high curvatures, which is advantageous for precise positioning. A
PRG that minimizes the contour error can then be used to follow the two-dimensional path.

Figure 7.8 on page 137 shows the results for the acceleration- and jerk-limited trajectories
with a current limit of ±7.5A. ZPETC is used to track the references. A logical result is
that the current limit that is valid for the PRG approaches (±5A) is violated. The voltage
constraints are again exceeded for some sampling instants due to the choice of the maximum
jerk according to approach (B) (see Section 5.3.2). Nevertheless, the evolution of the contour
error econ[k] shows comparably small values, as the preprocessed path mostly respects the
hard voltage constraints.

The results for the standard PRG and the near minimum-time PRG are shown in Fig-
ures 7.9 and 7.10 on pages 138/139. As both schemes respect the reduced current constraints
of ±5A, the contour error is much higher compared with the advanced industry standard
(Figure 7.8).

Figures 7.11 and 7.12 on pages 140/141 present the experimental results for the contour-
ing PRG and the near minimum-time contouring PRG. Both approaches efficiently minimize
the contour error by reducing the path speed in the curvatures and even respect the reduced
current limit of ±5A. The magnitude of the contour error is even slightly smaller than the
contour error of the advanced industry standard, which does not respect the reduced current
limitations. The main difference between the contouring PRG and the near minimum-time
contouring PRG is again the high-frequency content of the input voltage v[k].

Summary
The experimental results show that the general PRG approach can inherently handle MIMO
systems. The near minimum-time PRG leads again to reduced over- and undershoots com-
pared with the standard PRG. Furthermore, the biaxial positioning example motivates PRG
formulations that incorporate the contour error, which is the main performance measure in
biaxial contouring, in the cost function. The measurement results confirm that the contour
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error can be efficiently decreased by using PRGs that minimize the contour error compared
with an advanced industry standard, the near minimum-time PRG, and the standard PRG.
The contouring PRG and the near minimum-time contouring PRG lead to contour error evo-
lutions that are only marginally above the noise level—the main difference is that the near
minimum-time approach shows less high-frequency content. The evaluated reference paths
show once more that the PRG approaches can efficiently handle arbitrary varying reference
signals. The use of Nshift > 1 illustrates the flexibility of the general PRG scheme—the
control system can be operated at a higher sampling rate than the respective PRG, or if the
PRG is operated offline, the overall calculation time can be reduced.
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Figure 7.3: Biaxial contouring for a path with sharp corners: Advanced industry standard (see
page 126 for the description of the signals)
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Figure 7.4: Biaxial contouring for a path with sharp corners: Standard PRG (see page 126 for the
description of the signals)
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Figure 7.5: Biaxial contouring for a path with sharp corners: Near minimum-time PRG (see
page 126 for the description of the signals)
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Figure 7.6: Biaxial contouring for a path with sharp corners: Contouring PRG (see page 126 for
the description of the signals)
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Figure 7.7: Biaxial contouring for a path with sharp corners: Near minimum-time contouring PRG
(see page 126 for the description of the signals)
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Figure 7.8: Biaxial contouring for a preprocessed path: Advanced industry standard (see page 126
for the description of the signals)
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Figure 7.9: Biaxial contouring for a preprocessed path: Standard PRG (see page 126 for the de-
scription of the signals)
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Figure 7.10: Biaxial contouring for a preprocessed path: Near minimum-time PRG (see page 126
for the description of the signals)
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Figure 7.11: Biaxial contouring for a preprocessed path: Contouring PRG (see page 126 for the
description of the signals)
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Figure 7.12: Biaxial contouring for a preprocessed path: Near minimum-time contouring PRG (see
page 126 for the description of the signals)
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8 Conclusions and Outlook

A predictive reference governor (PRG) scheme is proposed in this work in order to approach
the physical limits of a constrained control system. A PRG is an add-on to a probably
existing feedback controller and adapts the reference signal such that constraints on the
control input and states are respected. Furthermore, the constraints should not only be
respected but also exploited in order to achieve a fast transient response. The PRG concept
is strongly related to model predictive control (MPC): It is based on the minimization of a
cost function, inherently handles constraints, and is well suited for multiple-input, multiple-
output (MIMO) systems. The involved optimization problem, however, is computationally
intensive and is therefore hard to solve in real-time, especially for fast sampling control
systems. To overcome this drawback, a multi-rate PRG scheme is introduced in Chapter 3,
which allows to scale the sampling times to allow a real-time execution. In the extreme case,
the PRG can be operated offline.

It is shown in Chapter 5 that a PRG that is based on a quadratic form, which is considered
de facto standard, can lead to an overshoot in the step response. A PRG that is based on the
`1-norm (sum of absolute values) is proposed in order to reduce this overshoot. Experimental
results for a highly dynamic positioning system with a sampling time of Ts = 10 µs show that
the `1-norm based approach can efficiently reduce this overshoot in a step response. Further-
more, compared with minimum-time optimal control, which represents the fastest transient
response that is physically possibly, an `1-norm based PRG is able to achieve control results
that are close to the minimum-time solution. Due to the low sampling time, however, all
PRG approaches of this work were executed offline and therefore without feedback.

The concepts of robust model predictive control (RMPC) are used in Chapter 6 to design
PRGs that offer an increased robustness against uncertain parameters. It is demonstrated
experimentally that the ideas of RMPC can be used for the design of PRGs—even when
they are operated offline and without feedback.

The flexibility of PRGs concerning the design of the cost function and the inherent han-
dling of MIMO systems is emphasized in Chapter 7. An industrial biaxial positioning system,
consisting of two electric motors, serves as an exemplary application. The positioning system
is modeled as a MIMO system, which is used to design the PRGs. Furthermore, it is shown
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that the contour error, which is the main performance measure in biaxial positioning, can
be incorporated in the cost function. The experimental results demonstrate that the PRGs
can efficiently decrease the contour error.

The PRG approaches of this thesis were executed offline because of the fast sampling con-
trol system that is needed for the considered positioning system and because of a comparably
high prediction horizon. Therefore, an essential future step will be the real-time implemen-
tation of the PRG approaches. As the real-time operation allows using state feedback, a
thorough analysis of the influence of the state feedback on the control results is necessary,
especially concerning measurement noise.

A future research direction could be the use of PRGs for fault detection. The experi-
mental results for the considered positioning system show that nearly perfect tracking of
the adapted/optimized reference trajectories is achieved by the underlying controller. The
optimized control error, which is the difference between the adapted/optimized reference
and the system output, is a measure for the tracking behavior. It is shown in this work
that an optimized control error that is slightly higher than the noise level can be achieved
through the handling of constraints and the use of a precise system model. Thus, it should
be possible to detect faults by analyzing the evolution of the optimized control error.

Summing up, this thesis shows that the concept of PRGs enables to exploit the features
of MPC even for fast sampling control systems, which do not yet allow real-time opera-
tion. Furthermore, by designing a PRG that relies on an `1-norm based cost function, near
minimum-time control results can be achieved.
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A Predictive Reference Governor
Algorithms

Algorithm 1 Predictive reference governor (PRG)
1: initialize the system model
2: k = 0
3: xpred[0] = x0 (initial state)
4: set the prediction horizon N
5: determine the cost function weights through tuning
6: calculate the matrices/vectors in the optimization problem (3.1) that do not vary over

time
7: is feedback available? (feedbackPRG = true or feedbackPRG = false)
8: should the PRG work online? (onlinePRG = true or onlinePRG = false)
9:

10: if onlinePRG then
11: determine nmr such that the main loop of this algorithm can be executed at nmr · Ts
12:
13: if nmr > N then
14: online execution of the main loop is not possible
15: onlinePRG = false
16: else
17: Nshift = nmr
18: initialize interruptPRG at nmr · Ts
19: end if
20: end if
21:
22: if not onlinePRG then
23: feedbackPRG = false
24: set Nshift, where Nshift ≤ N must hold
25: end if
26:
27: main loop: see Algorithm 2
28:
29: if not onlinePRG then
30: copy U r,opt[k] and X r,opt[k] to the controller reference buffer
31: start the controller
32: end if
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Algorithm 2 Main loop predictive reference governor (PRG)
1: while reference signal available do
2: if onlinePRG then
3: while not interruptPRG do
4: wait
5: end while
6: end if
7:
8: if feedbackPRG then
9: x[k] is determined through measurement or estimation
10: else
11: x[k] = xpred is determined by prediction/simulation in the previous iteration
12: end if
13:
14: read the reference signal Y r[k]
15: determine the optimization problem in standard form (3.1) and solve it
16: the optimal sequence of inputs is U ?[k] = [ u?[k]> ... u?[k+Nshift−1]> ... u?[k+N−1]> ]>
17:
18: predict the state trajectories X[k] = Axx[k] + BxU ?[k] (see (2.15))
19: where X[k] = [ x[k+1]> ... x[k+Nshift−1]> x[k+Nshift]> ... x[k+N ]> ]>

20: xpred = x[k +Nshift]
21:
22: U ?

shift[k] = [ u?[k]> ... u?[k+Nshift−1]> ]>

23: Xshift[k] = [ x[k]> ... x[k+Nshift−1]> ]>
24:
25: if onlinePRG then
26: U r,opt[k] = U ?

shift[k]
27: X r,opt[k] = Xshift[k]
28: copy U r,opt[k] and X r,opt[k] to the buffer of the rate transition
29: else
30: if k == 0 then
31: U r,opt[k] = U ?

shift[k]
32: X r,opt[k] = Xshift[k]
33: else
34: append: U r,opt[k] = [ Ur,opt[k−Nshift]> U?shift[k] ]>

35: append: X r,opt[k] = [ X r,opt[k−Nshift]> Xshift[k] ]>
36: end if
37: end if
38:
39: k = k +Nshift
40: end while
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Nomenclature

A> Transpose of matrix A
A−1 Inverse of matrix A
A−> Transpose and inverse of matrix A
A � (�) 0 Positive (semi-)definite matrix
A ≺ (�) 0 Negative (semi-)definite matrix
Co {} Convex hull
det (A) Determinant of matrix A
rank (A) Rank of matrix A
⊕Nk=1Ak Block diagonal matrix with matrices A1 to AN along its diagonal
diag{a} Diagonal matrix with a vector a on its diagonal
Ix Identity matrix of dimension x× x
1x×y One matrix of dimension x× y
0x×y Zero matrix of dimension x× y
|a| Element-wise absolute value of vector a
‖a‖ or ‖a‖2 Euclidean norm of vector ‖a‖2 =

√
a>a =

√∑na
i=1 a

2
i

‖a‖2
2 Quadratic form of vector ‖a‖2

2 = a>a = ∑na
i=1 a

2
i

‖a‖1 `1-norm of vector ‖a‖1 = ∑na
i=1 |ai|
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Symbols

A Discrete state matrix (gained through ZOH transformation of the respec-
tive continuous matrix Ac). For the SISO case only one axis is consid-
ered (A = A1 or A = A2); in the MIMO case two axes are combined
(A =

[
A1 0
0 A2

]
)

Ax State prediction matrix for a prediction in the form of
X[k] = Axx[k] + BxU [k]

Ay Output prediction matrix for a prediction in the form of
Y [k] = Ayx[k] + ByU [k]

B Discrete input matrix (gained through ZOH transformation of the respec-
tive continuous matrix Bc). For the SISO case only one axis is consid-
ered (B = B1 or B = B2); in the MIMO case two axes are combined
(B =

[
B1 0
0 B2

]
)

B∆ Rate of input change transformation matrix (∆U [k] = B∆U [k])
β Auxiliary variable introduced by the transformation of an `1-norm based

optimization problem to an LP
Bx State prediction matrix for a prediction in the form of

X[k] = Axx[k] + BxU [k]
By Output prediction matrix for a prediction in the form of

Y [k] = Ayx[k] + ByU [k]
C Discrete and continuous output matrix. For the SISO case only one axis

is considered (C = C1 or C = C2); in the MIMO case two axes are
combined (C =

[
C1 0
0 C2

]
)

c Two-mass system (motor and load) spring constant
CISE ISE criterion
CROB Robust performance criterion
D Discrete and continuous feedthrough matrix
d Two-mass system (motor and load) damping constant
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∆er Difference of the control errors of two uncertainty realizations
∆U Stacked vector of the rate of input change
Er Stacked control error vector (predicted)
econ Contour error of a biaxial positioning system
Ẽcon Stacked approximated contour error vector (predicted) of a biaxial posi-

tioning system
ẽcon Approximated contour error of a biaxial positioning system
eest Estimation error. Angular motor position estimation errors: eestm,1, eestm,2;

angular load position estimation errors: eestl,1 , eestl,2

elag Lag distance of a biaxial positioning system
Ẽlag Stacked approximated lag distance vector (predicted) of a biaxial posi-

tioning system
ẽlag Approximated lag distance of a biaxial positioning system
es State error used for DynFF
er Control error (difference between the unoptimized reference and the sys-

tem output)
er,opt Optimized control error (difference between the optimized reference and

the system output)
F`1 Auxiliary variable in an `1-norm based cost function in the form of

‖F`1 [k]U [k] + g`1 [k]‖1

Fq Auxiliary variable in a quadratic form based cost function in the form of
‖Fq[k]U [k] + gq[k]‖2

2

f Frequency
fPWM Sampling frequency of the PWM stage
G Constraint matrix for element-wise constraints in the form of

GU [k] ≤ H[k]
g`1 Auxiliary variable in an `1-norm based cost function in the form of

‖F`1 [k]U [k] + g`1 [k]‖1

gq Auxiliary variable in a quadratic form based cost function in the form of
‖Fq[k]U [k] + gq[k]‖2

2

H Stacked constraint vector for element-wise constraints in the form of
GU [k] ≤ H[k]

H(z) Matrix of discrete-time transfer functions
θ Angle of the tangent to a reference path in biaxial contouring
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i Motor current. The specific axes are denoted by i1 and i2.
id Estimated disturbance current
imax Maximum motor current
imeas Measured motor current. The specific axes are denoted by imeas

1 and imeas
2 .

Jl Load moment of inertia
Jm Motor moment of inertia
J (·) General cost function
J`1 (·) Cost function based on the `1-norm
J`1,con (·) Cost function based on the `1-norm (contour error formulation)
J`1,rob (·) Cost function based on the `1-norm (robust formulation)
Jq (·) Cost function based on a quadratic form
Jq,con (·) Cost function based on a quadratic form (contour error formulation)
Jq,rob (·) Cost function based on a quadratic form (robust formulation)
K State-space feedback control gain matrix used for pole-placement
k Sampling instant
Kf Motor viscous friction coefficient
Kt Motor torque constant
L Motor inductance
N Prediction horizon
nmr Multi-rate factor (the slower part of a multi-rate scheme is operated with

a sampling time of nmr · Ts)
np Number of uncertain parameters
nseq Number of uncertain prediction sequences
Nshift Receding horizon shift
nsw Number of switchings of an input constrained minimum-time optimal con-

trol problem for an LTI system
nu Number of system inputs
nx Number of system states
ny Number of system outputs
Q`1 Control error weighting matrix Q`1 = ⊕Ni=1diag{q`1} depending on the

weighting vector q`1 (for an `1-norm based cost function)
Qcon
`1 Biaxial contour error weighting matrix Qcon

`1 = ⊕Ni=1diag{qcon`1 } depending
on the weight qcon`1 (for an `1-norm based cost function)



152 Symbols

Qlag
`1 Biaxial lag distance weighting matrix Qlag

`1 = ⊕Ni=1diag{qlag`1 } depending on
the weight qlag`1 (for an `1-norm based cost function)

Qq Control error weighting matrix Qq = ⊕Ni=1diag{qq} depending on the
weighting vector qq (for a quadratic form based cost function)

Qcon
q Biaxial contour error weighting matrix Qcon

q = ⊕Ni=1diag{qconq } depending
on the weight qconq (for a quadratic form based cost function)

Qlag
q Biaxial lag distance weighting matrix Qlag

q = ⊕Ni=1diag{qlagq } depending on
the weight qlagq (for a quadratic form based cost function)

R Motor resistance
R`1 Rate of input change weighting matrix R`1 = ⊕Ni=1diag{r`1} depending

on the weighting vector r`1 (for an `1-norm based cost function)
Rq Rate of input change weighting matrix Rq = ⊕Ni=1diag{rq} depending on

the weighting vector rq (for a quadratic form based cost function)
Su Input scaling matrix
Sx State scaling matrix
t Time
τel Electrical time constant
T con Biaxial contour error transformation matrix T con[k] = ⊕Ni=1t

con[k + i] de-
pending on the vector tcon

tfinal Time when the final state xfinal is reached (minimum-time optimal control
problem)

T lag Biaxial lag distance transformation matrix T lag[k] = ⊕Ni=1t
lag[k + i] de-

pending on the vector tlag

TPWM Sampling time of the PWM stage
Ts Sampling time of the control system
U Stacked input vector (optimization variable)
u System input. For the SISO case only one axis is considered (u = [ u1 ] or

u = [ u2 ]); in the MIMO case two axes are combined (u = [ u1 u2 ]>)
Umax Stacked maximum input vector consisting of the maximum input vec-

tor umax

U r,opt Stacked optimized input vector consisting of the sequence of optimized
input vectors ur,opt

U ? Optimal value of the optimization variable U (optimization result)
u? A single entry of the optimization result U ?
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U tf(z) Input vector in z-domain
V State-space control gain matrix to achieve zero steady-state error
v Motor input voltage. The specific axes are denoted by v1 and v2.
vDC Supply voltage
vmax Maximum motor input voltage
ϕ Angular position. The specific axes are denoted by ϕ1 and ϕ2.
ϕl Angular load position. The specific axes are denoted by ϕl,1 and ϕl,2.
ϕmeas
l Measured angular load position. The specific axes are denoted by ϕmeas

l,1

and ϕmeas
l,2 .

ϕr,opt
l Optimized angular load position

ϕr
l Unoptimized reference for the angular load position

ϕm Angular motor position. The specific axes are denoted by ϕm,1 and ϕm,2.
ϕmeas
m Measured angular motor position. The specific axes are denoted by ϕmeas

m,1

and ϕmeas
m,2 .

X Stacked state vector (predicted)
x System state. For the SISO case only one axis is considered (x = x1 or

x = x2); in the MIMO case two axes are combined (x = [ x1 x2 ]>)
xfinal Final state xfinal (minimum-time optimal control problem)
xinitial Initial state xinitial (minimum-time optimal control problem)
Xmax Stacked maximum state vector consisting of the maximum state vec-

tor xmax

X r,opt Stacked optimized state vector consisting of the sequence of optimized
input vectors xr,opt

xpred Predicted state vector
Xtf(z) State vector in z-domain
Y Stacked output vector (predicted)
y System output. For the SISO case only one axis is considered (y = [ y1 ]

or y = [ y2 ]); in the MIMO case two axes are combined (y = [ y1 y2 ]>)
yr Unoptimized reference vector. The specific axes are denoted by yr1 and yr2.
yr,ff Input signal of the state-space controller and output of the feedforward

part in the 2-DoF based controller design. The specific axes are denoted
by yr,ff1 and yr,ff2 .
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Yr,opt Stacked optimized output vector consisting of the sequence of optimized
output vectors yr,opt

Y r Stacked reference vector
Y tf(z) Output vector in z-domain
Ψpm Motor permanent magnet flux linkage
ωl Angular load speed. The specific axes are denoted by ωl,1 and ωl,2.
ωm Angular motor speed. The specific axes are denoted by ωm,1 and ωm,2.
ωpath Path speed of a biaxial positioning system
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Acronyms

2-DoF Two-degrees-of-freedom
AC Alternating current
ADC Analog-to-digital converter
CCC Cross-coupling controller
CNC Computer numerical control
CR Control reserve
DC Direct current
DLL Dynamic link library
DSP Digital signal processor
DynFF Dynamic, model-based feedforward control
EMF Electromotive force
FEA Finite element analysis
FPGA Field programmable gate array
GPC Generalized predictive control
IAE Integral absolute error
ISE Integral square error
ITSE Integral of time multiplied by squared error
LMI Linear matrix inequality
LP Linear program
LQG Linear quadratic Gaussian
LQR Linear quadratic regulator
LTI Linear time-invariant
LTV Linear time-varying
MIMO Multiple-input, multiple-output
MPC Model predictive control
MPCC Model predictive contouring control
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MPTC Model predictive tracking control
OS Overshoot
PC Personal computer
PID Proportional-integral-derivative
PLC Programmable logic controller
PM Permanent magnet
PRG Predictive reference governor
PSD Position sensitive device
PSO Particle swarm optimization
PWM Pulse width modulation
QP Quadratic program
RG Reference governor
RLS Recursive least squares
RMPC Robust model predictive control
RT Rise time
SDP Semidefinite program
SIMO Single-input, multiple-output
SISO Single-input, single-output
SOCP Second-order cone program
ST Settling time
TF Transfer function
ZOH Zero-order hold
ZPETC Zero-phase-error tracking control
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