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Abstract

Accurate modeling of dynamical systems can lead to large-scale systems of ordinary
differential equations. For many applications, these systems additionally depend on
parameters, which, for example, describe geometric attributes. In order to be able to
perform tasks such as optimization, simulation or control, it is necessary to reduce the
computational effort of solving the system. For that reason, methods of parametric
model order reduction have been developed which reduce the order of the large-scale
system and at the same time preserve its parametric dependencies.
This thesis deals with a novel approach for model order reduction of parameter-

dependent systems. The method calculates a set of reduced systems with individual
projection matrices for a number of grid points. Subsequently, the bases of the local
systems are adjusted. In order to obtain a model for a new parameter value, the
reduced system matrices are interpolated. A general framework is proposed which
can be applied by the user as a construction kit. It illustrates the necessary steps
and presents the different options for each step. In particular, three approaches for
adjusting the bases are proposed and it is pointed out that the user can choose between
a large number of candidate interpolation methods and manifolds. In many cases,
the user lacks insight into the physics of the model in order to decide on the options
leading to the most accurate reduced model. Hence, a Black-Box method is proposed
that automatically determines the optimal interpolation method and grid points and
delivers a reduced system with the desired accuracy. In addition, the general framework
is extended to stability preservation. For this, a low-order optimization problem based
on semidefinite programming is solved for every grid point. Moreover, as common grid-
based approaches lead to costs that grow exponentially with the number of parameters,
sparse-grid-based interpolation is introduced for the interpolation of system matrices.
This allows the user to apply the framework to high-dimensional parameter spaces.
The general framework is also extended to the interpolation of differently-sized reduced
models. For this, a resizing procedure, which is based on pseudoinverses, is presented.
The effectiveness of the proposed methods is shown for examples from microsystems

technology, mechatronics and structural mechanics. In addition, the application of the
interpolation-based framework to control is demonstrated for a system on a test rig.
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1 Introduction

1.1 Motivation

Modern applications in engineering make high demands on the accuracy of dynamical
models. In many cases, technical or physical systems are modeled using partial differen-
tial equations (PDE) such as in the context of heat transfer, fluid dynamics or structural
mechanics. This is often followed by a spatial discretization using e.g. the finite element
method which results in a system of ordinary differential equations (ODE). Obviously, a
finer grid leads to a more accurate model, but on the other hand it increases the number
of ODEs. Therefore, the need for accurate models often leads to large-scale systems.
If these systems are used for the purpose of optimization, simulation or control, even
powerful computer systems reach their limitations, especially concerning execution time
and available memory. As a remedy, methods of model order reduction (MOR) have
been developed which approximate the input-output behavior of the original system by
a low-order one so that the error is supposed to be small with respect to a certain norm.
In addition, properties of the high-dimensional system like stability should be preserved
during the reduction step. For many engineering applications, the high-order system
additionally depends on parameters, for example geometry or material parameters. For
this case, methods of parametric model order reduction (pMOR) have been developed.
They construct a low-order system which approximates the large-scale one for the entire
parameter domain. Hence, one can obtain a reduced system for every parameter value
of the domain without the need to repeat the reduction procedure. The field of pMOR
has become increasingly important in the last years for both scientific and industrial
applications. Especially for the latter case, there is a demand for automatic and com-
putationally cheap procedures which deliver a reduced system with a desired accuracy.
For that reason, a method of pMOR is developed in this thesis which is particularly
efficient as it only requires the interpolation of low-order system matrices when a re-
duced system is requested for a new parameter value. Firstly, the different steps of this
method and the options for each step including properties like stability preservation are
presented. Secondly, a Black-Box method is proposed which automatically determines
the optimal design parameters and hence, can easily be applied by the user. Thirdly,
the benefit of this method is demonstrated for examples from simulation and control.



4 1 Introduction

1.2 Thesis Accomplishments and Outline

The following overview gives the outline of this thesis and briefly summarizes its ac-
complishments.

Part I: Preliminaries

In Section 2, the system of interest is introduced. In addition, background information
on model order reduction is presented and common methods are reviewed. Afterwards,
parametric model order reduction is introduced and a literature overview is given for
existing methods. Finally, the contributions of this thesis are arranged into the state
of the art of parametric model order reduction.

Part II: A Black-Box Method for Parametric Model Order Reduction by Matrix
Interpolation

In Section 3, a general framework for parametric model order reduction based on in-
terpolating reduced system matrices is proposed. It combines and extends existing
methods to a construction kit which illustrates the necessary steps and presents the
different options for each step. Parts of the results presented in this section have been
published in [76]. Selecting the options which lead to the most accurate reduced system
often confronts the user with difficult tasks. In order to provide the user a tool which
selects the best options, a Black-Box method is proposed in Section 4. It automatically
selects the best interpolation method, performs the refinement in the parameter space
iteratively and stops when the maximum predicted error of the interpolated system falls
below a given error tolerance.

Part III: Further Results for Interpolating Reduced System Matrices

In Section 5, the proposed framework for parametric model order reduction is extended
to stability preservation. The approach is based on semidefinite programming and
results in low-order optimization problems which can efficiently be solved. Parts of the
results presented in this section have been published in [77]. In Section 6, the general
framework is combined with sparse grids in order to extend it to multidimensional
parameter spaces. The results presented in this section have been published in [72]. In
Section 7, the framework is extended to the interpolation of differently-sized reduced
systems. This approach applies pseudoinverses which resize the reduced system matrices
to the same size. The results presented in this section have been published in [75]. In
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Section 8, the interpolation-based framework is applied to the control of a system at a
test rig using a two-degree-of-freedom control and a model predictive controller. Parts of
the results presented in this section have been published in [73]. In Section 9, concluding
remarks are presented and possible future directions of research are suggested.

Appendix

Supplementary material is provided in several appendices, referenced at appropriate
places. Appendix A gives a review of different interpolation methods. Appendix B
provides the proof of a proposition and in Appendix C the notion of convex cones is
introduced. In Appendix D, background information on pseudoinverses is presented.





2 Model Order Reduction

2.1 Parameter-Dependent Linear Time-Invariant Systems

2.1.1 System Representation

In this thesis a parameter-dependent, high-dimensional LTI system of order n is con-
sidered. Its representation in the time domain is given by

G(t,p) :
{E(p)ẋ(t) = A(p)x(t) + B(p)u(t)

y(t) = C(p)x(t),
(2.1)

where E(p) ∈ Rn×n, A(p) ∈ Rn×n, B(p) ∈ Rn×r and C(p) ∈ Rm×n are the system
matrices which depend on the parameter vector p ∈ D with domain D ⊆ Rd. The
vectors u(t) ∈ Rr, y(t) ∈ Rm and x(t) ∈ Rn denote the inputs, outputs and states of
the system at time t with initial value x(0) = x0. The parameter dependency of the
states and the outputs is omitted. The system G(t,p) realizes a multiple-input multiple-
output (MIMO) model, whereas G(t,p) is a single-input single-output (SISO) system
withm = r = 1. For the SISO case we have B(p)→ b(p) ∈ Rn, C(p)→ c(p)T ∈ R1×n,
u(t) → u(t) ∈ R and y(t) → y(t) ∈ R. Performing a Laplace transformation on
system (2.1) and setting x0 = 0, we obtain the representation of the system in the
frequency domain

G(s,p) = C(p)
[
sE(p)−A(p)

]−1
B(p), (2.2)

where s ∈ C is the complex frequency. When we refer in the following to the system
independent from its representation, it is denoted by G(p).

2.1.2 Stability

Stability is an important property of system (2.1). There exist various stability defini-
tions [15, 99, 100]. In this thesis, the following concept of stability is examined.

Definition 2.1. The system (2.1) is said to be asymptotically stable for parameter
vector p if one finds lim

t→∞
x(t) = 0 for all initial conditions x0.

The following theorem gives necessary and sufficient conditions.
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Theorem 2.1 ([155]). The system (2.1) with nonsingular E(p) is asymptotically stable
for parameter vector p if and only if . . .

◦ S1: . . . there exists a Lyapunov function, i.e. a function V (x(t),p) : Rn → R

with V (x(t),p) > 0 and V̇ (x(t),p) < 0 for all x(t) 6= 0.

◦ S2: . . . for any given Q ∈ S++
n there exists a unique solution P(p) ∈ S++

n to the
generalized Lyapunov equation

ET (p)P(p)A(p) + AT (p)P(p)E(p) = −Q. (2.3)

Then, a Lyapunov function is V (x(t),p) = x(t)TET (p)P(p)E(p)x(t).

◦ S3: . . . the eigenvalues of the pencil (A(p),E(p)) lie in the open left half of the
complex plane.

A special class of systems is of particular interest in this thesis.

Definition 2.2 ([127]). The system (2.1) is said to be strictly dissipative if it satisfies
E(p) > 0 and A(p) + A(p)T < 0.

These kind of systems have the following stability property.

Corollary 2.1 ([41]). A strictly dissipative system possesses the Lyapunov function
V (x(t),p) = x(t)TE(p)x(t) and hence, is asymptotically stable.

Proof. For all x(t) 6= 0 it holds

V (x(t),p) = x(t)T
>0︷ ︸︸ ︷

E(p) x(t) > 0, (2.4)

V̇ (x(t),p) = ẋ(t)TE(p)x(t) + x(t)TE(p)ẋ(t) (2.5)

= x(t)TA(p)TE(p)−1E(p)x(t) + x(t)TE(p)E(p)−1A(p)x(t) (2.6)

= x(t)T
(
A(p) + A(p)T

)
︸ ︷︷ ︸

<0

x(t) < 0. (2.7)

Strictly dissipative systems have another interesting property which is used in Sec-
tion 5 for proposing a stability-preserving interpolation method.

Corollary 2.2 ([27, 55]). Given a set of i ∈ {1, . . . , N} strictly dissipative LTI sys-
tems, then the system obtained by superposition of the system matrices with weighting
functions ωi(p) ∈ R+

0 and at least one ωi(p) ∈ R+ is asymptotically stable.
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Proof. With Ei > 0 and Ai + AT
i < 0 the matrices obtained by superposition

are A(p) = ∑N
i=1 ωi(p)Ai and E(p) = ∑N

i=1 ωi(p)Ei. The resulting system has the
Lyapunov function V (x(t),p) = x(t)TE(p)x(t) and hence, is asymptotically stable. It
holds for all x(t) 6= 0

V (x(t),p) = x(t)TE(p)x(t) = x(t)T
( N∑
i=1

ωi(p)Ei

)
x(t) =

N∑
i=1

ωi(p) x(t)TEix(t)︸ ︷︷ ︸
>0

> 0

(2.8)
and starting from equation (2.7), we obtain

V̇ (x(t),p) = x(t)T
(
A(p) + A(p)T

)
x(t) = x(t)T

( N∑
i=1

ωi(p)
(
Ai + AT

i

) )
x(t) (2.9)

=
N∑
i=1

ωi(p) x(t)T
(
Ai + AT

i

)
x(t)︸ ︷︷ ︸

<0

< 0. (2.10)

2.2 Projection-Based Model Order Reduction

2.2.1 Problem Formulation

In order to motivate the reduction of the parameter-dependent system G(p), let us
first discuss model order reduction (MOR) of nonparametric systems. Such systems are
obtained in this thesis when we compute the parametric system G(p) for a set of grid
points pi ∈ D with i ∈ {1, . . . , N}. We denote E(pi) by Ei and similarly for the other
matrices. Then, the i-th nonparametric system is given in the time domain by

Gi(t) :
{Eiẋi(t) = Aixi(t) + Biu(t)

yi(t) = Cixi(t).
(2.11)

The representation of the system in the frequency domain is

Gi(s) = Ci (sEi −Ai)−1 Bi. (2.12)

If we refer to the system independent from its representation, it is denoted by Gi.
Then, the goal of MOR is to find a low-dimensional system Ĝi of order q � n which

approximates the high-order system Gi. For this, projection matrices Vi := V(pi) ∈
Rn×q and Wi := W(pi) ∈ Rn×q which are referred to as reduced order bases (ROBs)
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are calculated, see for example [15]. The case Wi = Vi is called one-sided reduction
and the case Wi 6= Vi is referred to as two-sided reduction. The ROBs span the right
Vi = span(Vi) and left subspaceWi = span(Wi), respectively. Using the approximation
xi(t) ≈ Vix̂i(t) with the reduced state vector x̂i(t) ∈ Rq and enforcing the Petrov-
Galerkin condition

WT
i

(
EiVi

˙̂xi(t)−AiVix̂i(t)−Biu(t)
)

= 0 (2.13)

leads to the reduced order model

Ĝi :
{ Êi

˙̂xi(t) = Âix̂i(t) + B̂iu(t)

ŷi(t) = Ĉix̂i(t),
(2.14)

where the reduced system matrices are given by

Êi = WT
i EiVi, Âi = WT

i AiVi, B̂i = WT
i Bi, Ĉi = CiVi. (2.15)

To conclude, MOR aims to calculate the ROBs in such a way that the output of the
reduced order model Ĝi is a good approximation of the output of the original system Gi

with ŷi(t) ≈ yi(t).

2.2.2 Review of Model Order Reduction Methods

For calculating the ROBs, there are various projection-based reduction methods such
as moment matching techniques, truncated balanced realization (TBR) or proper or-
thogonal decomposition (POD), see for example [15] and the references therein. In the
following, two approaches are reviewed which are applied in this thesis.

Truncated Balanced Realization

A common method of MOR is TBR which was first derived in [122, 119]. For introducing
this approach, consider first the energy Jc,i(xe) which is the minimum energy required
to drive the system from the zero state at time t = −∞ to the state xe at time t = 0.
In a dual way, Jo,i(x0) is the energy which is obtained by observing the output due to
the initial state x0 with zero input:

Jc,i(xe) = min
xi(−∞)=0, xi(0)=xe

∫ 0

−∞
u(t)Tu(t)dt (2.16)

Jo,i(x0) =
∫ ∞

0
yi(t)Tyi(t)dt, xi(0) = x0, u(t) = 0, t ≥ 0. (2.17)
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These two energies can also be determined by

Jc,i(xe) = xTe P−1
i xe and Jo,i(x0) = xT0 ET

i QiEix0, (2.18)

where Pi,Qi ∈ S++
q solve for an asymptotically stable system the two dual generalized

Lyapunov equations

AiPiET
i + EiPiAT

i + BiBT
i = 0 (2.19)

AT
i QiEi + ET

i QiAi + CT
i Ci = 0. (2.20)

The two energies Jc,i(xe) and Jo,i(x0) measure the controllability of xe and observability
of x0, respectively: The smaller the energy Jc,i(xe), the easier the state xe can be
reached. The larger the energy Jo,i(x0), the easier the state x0 can be observed.
In the first step of TBR, a state representation of the high-order system is calculated

so the state variables are equally controllable and observable. For this, matrices Pi

and ET
i QiEi, which are denoted as Controllability and Observability Gramian, are used.

In the second step, the projection matrices Vi and Wi are calculated so the state vari-
ables, which are hard to reach and hard to observe at the same time, are eliminated. The
beneficial properties of TBR are the stability of the reduced system and the existence
of an a priori error bound. The basic procedure can only be applied for original systems
with a moderate order n because the high-order Lyapunov equations (2.19) and (2.20)
need to be solved. In order to reduce the computational effort of TBR, methods have
been developed which approximatively solve these equations [135, 109, 54].

Moment Matching Techniques

Moment matching techniques approximate the high-order model by matching moments
of the transfer function with regard to the Laplace variable s [85, 67]. These methods
are based on a Taylor series expansion of the transfer function of the original Gi(s) and
of the reduced system Ĝi(s) with expansion points s0 in the frequency space:

Gi(s) =
∞∑
j=0

Mi,j(s− s0)j (2.21)

Ĝi(s) =
∞∑
j=0

M̂i,j(s− s0)j, (2.22)

where Mi,j and M̂i,j are the moments of the transfer function of the original and reduced
system, respectively. The methods calculate Krylov subspaces spanned by the bases Vi
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and Wi such that qs0 ≤ 2q moments of the reduced system match the ones of the
high-order system:

M̂i,j = Mi,j, ∀ j ∈ {1, . . . , qs0}. (2.23)

The methods can be extended for multiple expansion points. As the choice of the expan-
sion points determines the accuracy of the reduced model, automatic selection proce-
dures have been proposed, such as the Iterative Rational Krylov Algorithm (IRKA) [86]
or the Stability-Preserving Adaptive Rational Krylov (SPARK) [126]. Moment match-
ing techniques have the beneficial property that they can easily be used to reduce
system Gi of very large order n. However, stability preservation is in general not
guaranteed for the reduced system Ĝi.

2.3 Parametric Model Order Reduction

2.3.1 Problem Formulation

The previous section presented the reduction of nonparametric systems. If we have
parameter-dependent systems, these systems could be reduced for every desired pa-
rameter value using MOR. However, this is computationally expensive as high-order
operations have to be performed for every new parameter value. As a remedy, methods
of parametric model order reduction (pMOR) have been developed. Their goal is to
find a low-dimensional system

G̃(p) :
{ Ẽ(p) ˙̃x(t) = Ã(p)x̃(t) + B̃(p)u(t)

ỹ(t) = C̃(p)x̃(t)
(2.24)

of order q � n which approximates the high-order system G(p) while preserving the
parameter-dependency. We demand that the output of the reduced order model G̃(p)
is a good approximation of the output of the original system G(p) with ỹ(t) ≈ y(t)
for the entire domain D. Hence, if we want to obtain a reduced system for a new
parameter vector p ∈ D, this is done without computing additional high-order solves
just by inserting the new parameter into the low-order model G̃(p).

2.3.2 Review of Parametric Model Order Reduction Methods

This section discusses several approaches for pMOR. One can distinguish between global
basis and local bases approaches [23]. The following review especially focuses on local
bases approaches because they include the method of interest of this thesis.
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Global Basis Approaches

A common basis is constructed by a single pair of matrices V and W which are sup-
posed to contain information regarding the entire parameter domain D. The resulting
parametric reduced model G̃(p) consists of the system matrices

Ẽ(p) = WTE(p)V, Ã(p) = WTA(p)V, B̃(p) = WTB(p), C̃(p) = C(p)V. (2.25)

As these matrix multiplications depend on the original order n, the procedure is ex-
pensive. The computational effort is reduced for affinely parameter-dependent systems.
In this case, the parametric reduced model is decomposed into nonparametric matrices
which can be precomputed. For the general case where the parametric dependencies are
non-affine, a suitable approximate affine decomposition of the system matrices (2.25)
can be provided by using, e.g., the Taylor series expansion or the Discrete Empirical
Interpolation Method (DEIM) [42, 23]. Another disadvantage is that the order q of the
parametric reduced model G̃(p) is often large, because the global basis needs to capture
the parametric dependency by embedding information regarding the entire parameter
space, and increases rapidly with the number of parameters. An advantage of global
basis approaches is that rigorous error estimates have been proposed which allow an
efficient greedy adaptive parameter sampling strategy.

There is a large variety of global basis approaches such as global proper orthogonal
decomposition (POD) [36, 129], the reduced basis method [84, 91, 90], the concatena-
tion of local bases for multiple parameter values [107, 131] or piecewise H2 tangential
interpolation [19]. In the following, one approach is described in more detail because it
is the first method suggested for pMOR.

Multiparameter Moment Matching
The method proposed in [161] approximates the high-order model by matching moments
of the transfer function with regard to the Laplace variable s and to one parameter p.
This method is based on a Taylor series expansion of the parametric transfer function
of the original G(s, p) and of the reduced system G̃(s, p) with expansion points s0 in
the frequency space and p0 in the parameter space:

G(s, p) =
∞∑
j=0

j∑
k=0

Mk
j (s− s0)j(p− p0)j−k (2.26)

G̃(s, p) =
∞∑
j=0

j∑
k=0

M̃k
j (s− s0)j(p− p0)j−k, (2.27)
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where Mk
j and M̃k

j are the moments of the transfer function of the original and reduced
system, respectively. Basically, these formulas are the generalization of the expansions
from equation (2.21) and (2.22) to parametric systems with one parameter. The method
calculates Krylov subspaces such that the reduced system shares some moments with
the original one with respect to both the Laplace variable s and the parameter p. This
method is extended in [88, 49, 60] to be applicable to the multiple parameter case.
These approaches differ in details, such as if mixed moments are matched or not.

Local Bases Approaches

Local bases approaches rely on a set of nonparametric systems G1, . . . ,GN which
are obtained when the parameter-dependent system G(p) is computed for vectors
p1, . . . ,pN ∈ D. For each i ∈ {1, . . . , N}, projection matrices Vi ∈ Rn×qi and
Wi ∈ Rn×qi with size qi are calculated for system Gi with any projection-based method,
such as the ones described in Section 2.2.2. Then, the parametric reduced system G̃(p)
is constructed by using only this local information. Local bases approaches have the
advantage that the parameter-dependency can be non-affine and does not need to be
analytically given as only local systems need to be available. In addition, some meth-
ods lead to a small reduced order as the ROBs only need to capture the parametric
dependency regarding the local parameter space. In the following, three approaches are
described for constructing the parametric reduced system G̃(p).

Interpolation of the Reduced Order Bases
One option for local bases approaches interpolates the ROBs of the local systems which
need to have the same number of columns q1 = . . . = qN = q. A few of the suggested
methods firstly perform congruence transformations which adjust the ROBs and lead to
a consistent set of coordinates Ṽ1, . . . , ṼN ∈ Rn×q and W̃1, . . . ,W̃N ∈ Rn×q [30, 95].
Afterwards, the transformed ROBs are interpolated with

Ṽ(p) =
N∑
i=1

ωi(p)Ṽi (2.28)

W̃(p) =
N∑
i=1

ωi(p)W̃i, (2.29)

where ω1, . . . , ωN : D → R are cardinal basis functions (A.2). Alternatively, the matrix
entries can be interpolated independently. Other approaches interpolate the ROBs on
the tangent space to the Grassmann manifold of q-dimensional subspaces [13, 10, 8,
150, 38, 168]. For this, the ROBs are mapped onto the tangent space, the interpolation
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process is performed on the tangent space and the resulting ROBs are mapped back
onto the original manifold. As these approaches preserve the full rank of the ROBs,
they do not require the adjustment procedure described above. For both methods, the
resulting parametric reduced model G̃(p) consists of the system matrices

Ẽ(p) = W̃(p)TE(p)Ṽ(p), Ã(p) = W̃(p)TA(p)Ṽ(p),

B̃(p) = W̃(p)TB(p), C̃(p) = C(p)Ṽ(p).
(2.30)

As these multiplications depend on the original order n, this procedure is expensive.
The computational effort is reduced for the special case of affinely parameter-dependent
systems [150]. Another disadvantage is that the local ROBs need to have the same size q.
In addition, stability is not guaranteed for the interpolated system. The advantage of
this method is that it leads to a parametric reduced system G̃(p) with small order q
which is independent of the number of the local systems.

Interpolation of Transfer Functions
The method proposed in [20, 21] firstly calculates for each i ∈ {1, . . . , N} the locally
reduced system Ĝi of order qi with projection matrices Vi ∈ Rn×qi and Wi ∈ Rn×qi

according to matrix multiplications (2.15). Then, we interpolate the transfer func-
tions Ĝi(s) for i ∈ {1, . . . , N} with cardinal basis functions ω1, . . . , ωN : D → R in
order to obtain the parameter-dependent reduced system

G̃(s,p) =
N∑
i=1

ωi(p)Ĝi(s) = C̃(p)
[
sẼ− Ã

]−1
B̃ (2.31)

=
[
ω1(p)Ĉ1, . . . , ωN(p)ĈN

] 
sÊ1 − Â1

. . .
sÊN − ÂN


−1 

B̂1
...

B̂N

 . (2.32)

For the interpolation on high-dimensional parameter spaces, the authors suggest a
sparse-grid-based approach. The reduced order of the interpolated system is q = ∑N

i=1 qi

and hence, grows rapidly for an increasing number of grid points. This method also
faces difficulties for systems which exhibit weakly damped modes. The main advantage
of the procedure is that it is very efficient as only low-order systems are involved in the
interpolation procedure. In addition, preservation of stability can be guaranteed for the
interpolated system if the locally reduced systems are asymptotically stable. The latter
can, e.g., be achieved if the local systems are reduced using TBR. Another advantage
is that the reduced orders qi of the local systems can be different.
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Interpolation of System Matrices
Another option for local bases approaches is the interpolation of the matrices of the
locally reduced systems, which need to have the same size q1 = . . . = qN = q. The
methods proposed in [6, 112, 128, 11, 137] firstly calculate for each i ∈ {1, . . . , N} the
locally reduced system Ĝi of order q with projection matrices Vi ∈ Rn×q and Wi ∈
Rn×q using matrix multiplications (2.15). Then, transformation matrices Ti and Mi

are introduced which adjust the ROBs and lead to a consistent set of coordinates. A
slightly different approach is suggested in [51, 143]. It concatenates the local ROBs to
common projection matrices V = [V1, . . . ,VN ] and W = [W1, . . . ,WN ] which result
in reduced systems Ĝi of order Nq. As the reduced systems share a common basis, the
adjustment procedure is not required. The resulting parametric reduced model G̃(p)
consists—taking the adjustment into account—of the interpolated system matrices

Ẽ(p) =
∑N

i=1 ωi(p)MT
i ÊiTi,

Ã(p) =
∑N

i=1 ωi(p)MT
i ÂiTi,

B̃(p) =
∑N

i=1 ωi(p)MT
i B̂i,

C̃(p) =
∑N

i=1 ωi(p)ĈiTi,

(2.33)

where ω1, . . . , ωN : D → R are cardinal basis functions (A.2). Alternatively, the matrix
entries can be interpolated independently. The approaches in [6, 51, 11] interpolate
the system matrices on the tangent space to a matrix manifold. For this, the system
matrices are mapped onto the tangent space, the interpolation process is performed
on the tangent space and the resulting matrices are mapped back onto the original
manifold. The disadvantage of the method is that stability is not guaranteed. The
main advantage of the procedure is that it is very efficient as only low-order matrices
are interpolated. In addition, it is well-adapted to systems with dominant eigenmodes
as mode veering and crossing are recognized. The approach using the transformation
also has the advantage that a parametric reduced system G̃(p) with small order q,
which is independent of the number of the local systems, is obtained. However, the
locally reduced systems need to have the same size q.

Comparison of Local Bases Approaches
In Table 2.1 it is listed if the reviewed local bases approaches in their general form
fulfill (+) or do not fulfill (-) some important properties. The properties are stability
preservation (StabPres), ability of interpolating locally reduced systems of different
orders (DiffOrder), the independence of the order of the parametric reduced system
from the number of grid points (RedOrderInd) and the operation based on low-order
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matrices which leads to a low computational effort (CompEffort). For all local bases
approaches it is still an open question how the interpolation method leading to the
most accurate reduced system can be chosen. In contrast to global basis approaches,
these methods also lack an efficient error indicator which would allow a computationally
cheap refinement strategy.

Table 2.1: Properties of different local bases approaches.
StabPres DiffOrder RedOrderInd CompEffort

Transfer functions + + - +
Reduced order bases - - + -
System matrices - - + +

To sum up, pMOR based on the interpolation of system matrices is a very promising
approach because it operates on low-order matrices—and hence, has a low computa-
tional effort—and because the size of the interpolated system is independent of the
number of grid points. However, there are still a lot of issues which need to be solved.

2.3.3 Thesis Contributions

It was pointed out in the previous section that pMOR based on the interpolation of
system matrices has a high potential. Hence, this thesis focuses on this interpolation-
based approach, develops solutions to the open questions and presents a self-contained
method which can easily be applied by the user. In detail, the following contributions
are made in this thesis:

1. The current methods of model order reduction by matrix interpolation have been
presented as different methods. A general framework is proposed in Section 3. It
combines and extends the existing methods to a construction kit which illustrates
the necessary steps and presents the different options for each step.

2. This interpolation-based method of model order reduction requires the user to
choose between many different design parameters. However, the user often does
not have enough insight into the physics of the model in order to decide on the
options leading to the most accurate reduced model. Hence, a new efficient error
indicator is introduced in model order reduction and, based on this indicator,
a Black-Box method is proposed in Section 4. It automatically selects the best
interpolation method, performs the refinement in the parameter space iteratively
and stops when the maximum predicted error of the interpolated system falls
below a given error tolerance.
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3. Model order reduction by the interpolation of reduced system matrices does not
necessarily lead to asymptotically stable systems even if the local systems are
asymptotically stable. Hence, a stability-preserving approach is presented in Sec-
tion 5 which results in low-order optimization problems and hence, can efficiently
be solved.

4. The existing methods of matrix interpolation suffer from the curse of dimension-
ality leading to costs that grow exponentially with the number of parameters. In
order to extend model order reduction by matrix interpolation to multidimensional
parameter spaces, a sparse-grid-based method is proposed in Section 6.

5. The current methods of matrix interpolation rely on a set of reduced systems which
are of equal size. However, it is necessary for some applications to have differently-
sized systems. For this, an interpolation procedure is proposed in Section 7 which
resizes the system matrices to the same size and hence, provides a tool for a
meaningful interpolation.

6. This interpolation-based method has rarely been applied to practical applications.
For that reason, the suitability of this approach for control applications is demon-
strated by means of an example at a test rig in Section 8.



Part II

A Black-Box Method for Parametric Model
Order Reduction by Matrix Interpolation





3 The General Framework for Interpolating Reduced
System Matrices

3.1 Motivation

It was pointed out in Section 2.3.2 that a few approaches for pMOR based on matrix
interpolation were developed independently and presented as different methods. In
this section, these methods are combined and extended to a general framework for the
reduction of parameter-dependent LTI systems. The reader can use the framework as
a construction kit for pMOR by matrix interpolation which illustrates the necessary
steps and presents the different options for each step.

Online

6. Evaluation of the interpolants

New value pint

Offline

1. Sampling of the parameter space

2. Reduction of the local systems

3. Adjustment of the ROBs

4. Mapping of the system matrices

5. Construction of the interpolants

Figure 3.1: Structure of the general framework including two parts.

The procedure which is shown in Figure 3.1 consists of two parts which altogether
comprise six steps. The first part is the offline or pre-processing phase which is per-
formed only once. To begin with, it computes a set of nonparametric high-order systems
for different parameter vectors. The resulting local systems are reduced by projection-
based MOR and the reduced order bases (ROBs) are adjusted to the reference ROBs.
Afterwards, the reduced system matrices are mapped onto the tangent space of a matrix
manifold. Finally, the mapped matrices are used to construct the matrix interpolants
with regard to an interpolation method. In the online phase, i.e. when a reduced order
model is supposed to be calculated for the new parameter vector pint, the interpolants
are simply evaluated and the resulting matrices are mapped back onto the manifold.
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The framework, which was published in [76], is presented in Sections 3.2–3.7 and the
options we have for each step are pointed out. An error analysis is given in Section 3.8
followed by the integration of two existing methods into the framework in Section 3.9.

3.2 Sampling of the Parameter Space

The parameter domain D is sampled for a set of vectors P = {p1, . . . ,pN} ⊂ D, where
N = |P| is the number of grid points. The grid type, i.e. if the parameter vectors are lo-
cated on a regular grid such as described in Appendix A.2 or on an irregular grid such as
described in Appendix A.3, is determined by the kind of application and its constraints
on the domain. The original system G(p) is computed for the parameter vectors in the
set P which results in a set of high-order systems G = {G(p1), . . . ,G(pN)}, where for
example the i-th system Gi := G(pi) with i ∈ {1, . . . , N} is

Gi :
{Eiẋi(t) = Aixi(t) + Biu(t)

yi(t) = Cixi(t).
(3.1)

To sum up, the selection of the parameter vectors P = {p1, . . . ,pN} is the option we
have and the set of high-order systems G = {G1, . . . ,GN} is the output of this step.

3.3 Reduction of the Local Systems

Each local system of the set G is reduced individually to order q � n. For this, every
projection-based reduction method such as described in Section 2.2 can be applied. As a
result, we obtain for each i ∈ {1, . . . , N} the subspaces Vi andWi which are spanned by
the bases Vi ∈ Rn×q and Wi ∈ Rn×q with linearly independent columns, respectively.
This delivers a set of low-order systems Ĝ = {Ĝ(p1), . . . , Ĝ(pN)}, where for example
the i-th system Ĝi := Ĝ(pi) is

Ĝi :
{ Êi︷ ︸︸ ︷

WT
i EiVi

˙̂xi(t) =
Âi︷ ︸︸ ︷

WT
i AiVi x̂i(t) +

B̂i︷ ︸︸ ︷
WT

i Bi u(t)

ŷi(t) = CiVi︸ ︷︷ ︸
Ĉi

x̂i(t).
(3.2)

To sum up, the selection of the reduction method and of the reduced order q are
the options we have. The set of low-order systems Ĝ = {Ĝ1, . . . , ĜN} and the bases
V1, . . . ,VN , W1, . . . ,WN are the outputs of this step.
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3.4 Adjustment of the Reduced Order Bases

If we interpolate the system matrices of the reduced systems from the set Ĝ, we have
to ensure that associated matrix entries are interpolated, see the following example.
Example: Consider two reduced systems ˙̂x1(t) = Â1x̂1(t) and ˙̂x2(t) = Â2x̂2(t) whose

matrices Â1, Â2 are shown in the left column of Figure 3.2. The reader can verify that
associated matrix entries, e.g. a11, are not located on the same spot and hence, element-
wise interpolation will fail. As a remedy, we adapt the columns of matrices Â1, Â2 by
multiplication from the right with matrices T1,T2 and we adapt the rows by multi-
plication from the left with matrices MT

1 ,MT
2 . Finally, associated matrix entries are

located on the same position. Note that the absolute position is of no importance.

a11  a12 a13

a21 a22 a23

a31 a32 a33

a31  a32 a33

a21 a22 a23

a11 a12 a13

a32    a31 a33

a22 a21 a23

a12 a11 a13

Interpolation

a11  a12 a13

a21 a22 a23

a31 a32 a33

a21  a22 a23

a11 a12 a13

a31 a32 a33

Adaption of columns

a23  a22 a21

a13 a12 a11

a33 a32 a31

Adaption of rows

Figure 3.2: Graphic depiction of the adjustment procedure.

Hence, we perform for each system Ĝi with i ∈ {1, . . . , N} the state transformation
x̂i(t) = Tix̃i(t) with Ti ∈ Rq×q which linearly combines the columns of the correspond-
ing system matrices. In addition, we multiply the system matrices with MT

i ∈ Rq×q

from the left which linearly combines their rows. Both operations leave the input-
output behavior of system Ĝi unchanged, but they can be used to ensure accurate
matrix interpolation. In the following, the computation of Ti and Mi is explained.

3.4.1 Adjustment of the Right Reduced Order Bases

The reduced systems of the set Ĝ have different subspaces V1, . . . ,VN which are spanned
by the bases V1, . . . ,VN , respectively. Hence, the state vectors x̂1(t), . . . , x̂N(t) do not
have a common meaning. In order to introduce a common set of states, we perform
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for each i ∈ {1, . . . , N} the state transformation x̂i(t) = Tix̃i(t) with Ti ∈ Rq×q. This
results in the new basis

Ṽi = ViTi ∈ Rn×q (3.3)

which of course spans the same subspace Ṽi = span(Ṽi) = span(Vi) = Vi. Hence, we
aim to determine the bases Ṽ1, . . . , ṼN which are adjusted to the basis V0 ∈ Rn×q of
a reference subspace in the sense that a quality function is minimized.

Reference Subspace

The reference subspace V0, which is spanned by the basis V0, should comprise the most
important directions of the subspaces V1, . . . ,VN . In the following, three possibilities
for calculating the reference basis V0 are presented:

◦ Fixed [11]: One selects the basis Vi0 of the i0-th reduced system:

V0 = Vi0 . (3.4)

This approach does not need any additional calculations. However, it requires
a-priori knowledge in order to decide which subspace Vi0 = span(Vi0) captures
the most important directions of all subspaces.

◦ Non-weighted SVD [128]: This approach sums up all bases V1, . . . ,VN and takes
the q most important directions by calculating the economy version of the SVD.
Then, the first q columns of UV are chosen as V0:

UVΣVZT
V = svd([V1, . . . ,VN ], ’econ’)

⇒ V0 = UV(:, 1 : q).
(3.5)

This approach is more expensive. However, it automatically captures the most
important directions of all subspaces provided that they are not too different.

◦ Weighted SVD [128]: This approach resembles method (3.5), but parameter-
dependent weights ω1(p), . . . , ωN(p) are introduced for the bases V1, . . . ,VN :

UVΣVZT
V = svd([ω1(p)V1, . . . , ωN(p)VN ], ’econ’)

⇒ V0 = UV(:, 1 : q).
(3.6)

This is the most expensive approach as the reference basis has to be calculated
online for every new parameter vector p.
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The three approaches are ordered with increasing computational effort. On the other
hand, we can expect the reduced model to become more accurate in the order of the
presented approaches. The reason is the non-weighted SVD automatically captures
the most important directions of all subspaces and the weighted SVD even allows to
consider their influence on the desired interpolation point. The non-weighted SVD
balances both tendencies and hence, is used for most examples in this thesis.

Objective Functions

For adjusting the bases V1, . . . ,VN to the reference basis V0 we present in the following
two quality functions and the corresponding optimal solution.

DS approach:
One objective function is for each i ∈ {1, . . . , N} the distance (DS) between the new
basis Ṽi and the reference basis V0 which is measured here in Frobenius norm [81]:

JDS,V,i(Ti) = ‖Ṽi −V0‖F = ‖ViTi −V0‖F . (3.7)

The transformation matrix Ti ∈ Rq×q describes a permutation, rotation and distortion
of the basis Vi in order to minimize the distance to the reference basis. The solution with
minimum value of the cost function JDS,V,i and equivalently with minimum distance of
the ROBs is obtained according to Appendix D by applying the left pseudoinverse [75]:

Ti = arg min
Ti∈Rq×q

JDS,V,i(Ti) = V(l)+
i V0 ∈ Rq×q. (3.8)

We calculate the pseudoinverse in (3.8) using the economy size SVD according to for-
mula (D.3). The procedure for calculating T1, . . . ,TN is shown in Algorithm 1.

Algorithm 1 Calculation of Ti using the DS approach
Input: N matrices Vi and V0
Output: N matrices Ti

1: for i = 1 to N do
2: Compute Vi = UV,iΣV,iZT

V,i // SVD
3: Compute Ti = ZV,iΣ−1

V,iUT
V,iV0

4: end for

Then, the new basis Ṽi, which we do not calculate explicitly, is found to be for the
purpose of illustration:
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Ṽi = ViTi = ViV(l)+
i V0

= Vi(VT
i Vi)−1VT

i︸ ︷︷ ︸
PVi⊥Vi

V0. (3.9)

One can verify that PVi⊥Vi
is a projector which projects the columns of V0 orthogonally

to the subspace Vi into the subspace Vi. This is demonstrated in Figure 3.3 for the
example of 1-dimensional subspaces.
For the case that Vi is an orthonormal basis with VT

i Vi = Iq, we want to preserve
that property for the transformed basis Ṽi = ViTi, which is known as the orthogonal
Procrustes problem [81, 11]. Hence, this is in the following referred to as PS approach.
For this, transformation matrix Ti ∈ Oq has to be an orthogonal matrix. It describes
a permutation and rotation of the basis Vi in order to minimize the distance to the
reference basis with regard to the objective function (3.7), but it does not distort the
basis. This is demonstrated in Figure 3.3. We rewrite the quality function (3.7) with
VT

0 V0 = Iq and with regard to the constraint TiTT
i = Iq and we obtain

JPS,V,i(Ti)2 = ||ViTi −V0||2F
= tr

(
TT
i VT

i ViTi

)
− 2tr

(
TT
i VT

i V0
)

+ tr
(
VT

0 V0
)

= tr
(
VT
i ViTiTT

i

)
− 2tr

(
TT
i VT

i V0
)

+ tr (Iq)

= 2tr (Iq)− 2tr
(
TT
i VT

i V0
)
.

(3.10)

Minimizing objective function (3.10) is equivalent to the maximization problem

Ti = arg max
Ti∈Oq

J∗PS,V,i(Ti) = arg max
Ti∈Oq

tr
(
TT
i VT

i V0
)
. (3.11)

After performing the SVD of VT
i V0 = UV,iΣV,iZT

V,i, we obtain

Ti = arg max
Ti∈Oq

tr
(
TT
i UV,iΣV,iZT

V,i

)
= arg max

Ti∈Oq
tr
(
ZT

V,iTT
i UV,iΣV,i

)
.

(3.12)

This objective function reaches its maximum value, J∗PS,V,i = tr (ΣV,i), for the case
ZT

V,iTT
i UV,i = Iq or equivalently

Ti = UV,iZT
V,i ∈ Oq. (3.13)

To sum up, the procedure for calculating T1, . . . ,TN is shown in Algorithm 2.
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Algorithm 2 Calculation of Ti using the PS approach
Input: N matrices Vi and V0
Output: N matrices Ti

1: for i = 1 to N do
2: Compute VT

i V0 = UV,iΣV,iZT
V,i // SVD

3: Compute Ti = UV,iZT
V,i

4: end for

MAC approach
The correlation between two vectors can be evaluated by the Modal Assurance Criterion
(MAC), see [57]. The maximum value of the MAC is 1 which corresponds to the best
correlation and the minimum value is 0. We define the MAC between the j-th vector
of V0 and the l-th vector of Ṽi as follows:

MAC(V0(:, j), Ṽi(:, l)) = |V0(:, j)T Ṽi(:, l)|2. (3.14)

Then, the diagonal elements of the matrix VT
0 Ṽi describe the square roots of the MACs

between the corresponding vectors of Ṽi and V0 and the off-diagonal elements describe
the square roots of the MACs between the non-corresponding vectors. Hence, we want
the diagonal elements of VT

0 Ṽi to have the maximum value 1 and the off-diagonal
elements to have the minimum value 0 [128, 76]:

VT
0 Ṽi = VT

0 ViTi
!= Iq. (3.15)

The transformation matrix Ti ∈ Rq×q describes a permutation, rotation and distortion
of the basis Vi in order to fulfill the MAC criterion. The solution is

Ti = (VT
0 Vi)−1 ∈ Rq×q. (3.16)

The new basis Ṽi is found to be—again we do not calculate it explicitly—for the purpose
of illustration with VT

0 V0 = Iq:

Ṽi = ViTi = Vi(VT
0 Vi)−1

= Vi(VT
0 Vi)−1VT

0︸ ︷︷ ︸
PVi⊥V0

V0, (3.17)

where PVi⊥V0 is a projector which projects the columns of V0 orthogonally to the
subspace spanned by V0 into the subspace Vi. This is demonstrated in Figure 3.3 for
the example of 1-dimensional subspaces.
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Again, we consider the case that Vi is an orthonormal basis with VT
i Vi = Iq and

hence, transformation matrix Ti ∈ Oq is desired to be orthogonal. For this, we formu-
late the following quality function for the MAC criterion (3.15):

JMAC,V,i(Ti) = ‖VT
0 Ṽi − Iq‖F = ‖VT

0 ViTi − Iq‖F . (3.18)

Of course, the minimum value of the quality function, JMAC,V,i = 0, is obtained for so-
lution (3.16). But now, we rewrite the cost function (3.18) with regard to the constraint
TiTT

i = Iq and obtain

JMAC,V,i(Ti)2 = ||VT
0 ViTi − Iq||2F

= tr
(
TT
i VT

i V0VT
0 ViTi

)
− 2tr

(
TT
i VT

i V0
)

+ tr (Iq)

= tr
(
VT
i V0VT

0 ViTiTT
i

)
− 2tr

(
TT
i VT

i V0
)

+ tr (Iq)

= tr
(
VT
i V0VT

0 Vi

)
− 2tr

(
TT
i VT

i V0
)

+ tr (Iq) .

(3.19)

Minimizing the objective function (3.19) is equivalent to the maximization problem (3.11)
from the PS approach and hence, we obtain the same solution (3.13).

Comparison

The three different possibilities for adjusting the ROBs are shown in Table 3.1. The
solutions of the DS and MAC approach differ for Ti ∈ Rq×q and coincide for Ti ∈ Oq,
which we refer to as PS approach.

Table 3.1: Comparison of the approaches for the adjustment of the right ROBs.
Ti ∈ Rq×q Ti ∈ Oq

DS Ti = V(l)+
i V0 Ti = UV,iZT

V,i PSMAC Ti = (VT
0 Vi)−1

The three approaches are demonstrated in Figure 3.3 for the example of 1-dimensional
subspaces Vi,V0 which are spanned by unit vectors v,v0, respectively. The adjusted
basis ṽ is obtained

◦ 1) for the MAC approach and Ti ∈ Rq×q according to formula (3.17) by projecting
the reference basis v0 into the subspace Vi orthogonally to the subspace V0.

◦ 2) for the DS approach and Ti ∈ Rq×q according to formula (3.9) by projecting
the reference basis v0 into the subspace Vi orthogonally to the subspace Vi.
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◦ 3) for the PS approach and T ∈ Oq by changing the direction of basis v. For this
case, ṽ is also a unit vector.

2

1
.

.

v

v0

 v
3

Figure 3.3: Comparison of the three approaches for adjusting the ROBs for the example
of 1-dimensional subspaces: 1) MAC 2) DS 3) PS.

One can verify the difference between the approaches increases for a growing angle
between the subspaces Vi,V0. A special case is given in the following proposition.

Proposition 3.1. If Vi,V0 are orthonormal bases and span the same subspace, the
MAC, DS and PS approaches are equivalent.

The proof is given in Appendix B. This result can also be observed in Figure 3.3 for
a diminishing angle between the subspaces Vi,V0. For this case, all three approaches
deliver the same solution.

3.4.2 Adjustment of the Left Reduced Order Bases

For the adjustment of the left ROBs, the concept of duality between the left and right
subspace is exploited. Duality is a well-known notion in control theory [99]. For each
i ∈ {1, . . . , N}, the system Ĝi has a dual or adjoint system ĜT

i with state vector ξ̂i:

ĜT
i :

{
ÊT
i

˙̂
ξi(t) = ÂT

i ξ̂i + ĈT
i ŷi(t)

u(t) = B̂T
i ξ̂i(t).

(3.20)

The right subspaces of the dual reduced systems are spanned by the columns of
W1, . . . ,WN . Therefore, the adjustment of the left ROBs of the systems Ĝ1, . . . , ĜN

is equivalent to the adjustment of the right ROBs of the dual systems ĜT
1 , . . . , ĜT

N . The
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latter can be done in analogy to the explanations in Section 3.4.1 and we introduce the
adjusted basis

W̃i = WiMi ∈ Rn×q. (3.21)

The reference subspace spanned by W0 can be calculated in the same way as V0 just
by replacing Vi with Wi. For example, we obtain in analogy to formula (3.5)

UWΣWZT
W = svd([W1, . . . ,WN ], ’econ’)

⇒W0 = UW(:, 1 : q).
(3.22)

The adjustment of the left ROBs for accuracy reasons is done in the same way as
proposed in Section 3.4.1 and we replace—due to duality—matrix Vi with Wi and V0

with W0. We obtain for the DS approach in analogy to the transformation matrix (3.8)

Mi = W(l)+
i W0 ∈ Rn×q. (3.23)

For the MAC approach we obtain in analogy to the transformation matrix (3.16)

Mi = (WT
0 Wi)−1 ∈ Rn×q. (3.24)

This is confirmed by the result from [128], where this choice of Mi was deduced
by a projection-based approach and without the notion of duality. If we want the
transformation matrix to be orthogonal for the PS approach, we perform the SVD of
WT

i W0 = UW,iΣW,iZT
W,i and we obtain in analogy to the transformation matrix (3.13)

Mi = UW,iZT
W,i ∈ Oq. (3.25)

The three approaches which are summarized in Table 3.2 adjust the ROBs to the
reference ROB in order to achieve accurate matrix interpolation.

Table 3.2: Comparison of the approaches for the adjustment of the left ROBs.
Mi ∈ Rq×q Mi ∈ Oq

DS Mi = W(l)+
i W0 Mi = UW,iZT

W,i PSMAC Mi = (WT
0 Wi)−1

Another design objective for matrices Mi could be to reduce the computational effort.
Then, the following formula can be used [11, 51, 76]:

Mi = (ÊiTi)−T . (3.26)
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This choice delivers for each transformed matrix Ẽi = MT
i ÊiTi = (ÊiTi)−1ÊiTi = Iq

the identity matrix which we can disregard for the interpolation process. Hence, it
reduces the number of interpolants which we will have to construct and evaluate. This
approach implicitly adopts the formula from (3.24) by choosing for every system its
own reference basis W0,i = EiVi instead of a common reference basis for all systems:

Mi = Ê−Ti T−Ti = (VT
i ET

i Wi)−1T−Ti = (WT
0,iWi)−1T−Ti . (3.27)

Hence, it might lead to an inaccurate adjustment of the ROBs.
The outputs of this step are the matrices T1, . . . ,TN and M1, . . . ,MN . Several

approaches can be used for their calculation. The ones summarized in Table 3.1 and 3.2
adjust the ROBs for accuracy reasons. The selection with minimum interpolation error
is problem-dependent. The approach (3.26) reduces the computational effort.

3.5 Mapping of the System Matrices

After adjusting the right and left ROBs, we finally obtain the set of compatible reduced
systems G̃ = {G̃1, . . . , G̃N}, where e.g. the i-th system is for i ∈ {1, . . . , N}

G̃i :
{ Ẽi︷ ︸︸ ︷

MT
i ÊiTi

˙̃xi(t) =
Ãi︷ ︸︸ ︷

MT
i ÂiTi x̃i(t) +

B̃i︷ ︸︸ ︷
MT

i B̂i u(t)

ỹi(t) = ĈiTi︸ ︷︷ ︸
C̃i

x̃i(t).
(3.28)

The system matrices Ẽi, Ãi, B̃i, C̃i are elements of a Riemannian manifold. Therefore,
the interpolated matrices should as well be elements of the respective manifold. The
concept of matrix manifolds was introduced for pMOR in [10, 6, 7, 11, 51]. The following
matrix manifolds are of interest:

◦ Matrix B̃i belongs to the manifold of real matrices Rq×r and C̃i to the manifold
of real matrices Rm×q.

◦ In general, matrices Ẽi, Ãi can belong to the manifold of real Rq×q or nonsingular
matrices GLq. Hence, we can choose between KMA = 2 candidate manifolds.

We choose a reference system G̃i0 and map the matrices Ẽi, Ãi, B̃i, C̃i onto the tan-
gent space of the respective matrix manifold by the logarithmic mapping with a formula
from Table 3.3. For example, take matrix Ãi of the i-th system G̃i and let Ãi0 belong
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to the reference system. Then, the mapped matrix is ΓÃ
i = LogÃi0

(Ãi). In analogy,
matrices Ẽi, B̃i and C̃i are mapped to ΓẼ

i , ΓB̃
i and ΓC̃

i , respectively.

Table 3.3: Exponential and logarithmic mappings for matrix manifolds of interest.
Real matrix X̃i ∈ Ra×b Nonsingular matrix X̃i ∈ GLa

LogX̃i0
(X̃i) X̃i − X̃i0 log(X̃iX̃−1

i0 )
ExpX̃i0

(ΓX̃) X̃i0 + ΓX̃ exp(ΓX̃)X̃i0

Remark: The mapping for nonsingular matrices is not always possible. If e.g. Ãi is
not in the neighborhood of Ãi0 and hence, the matrix ÃiÃ−1

i0 has negative eigenvalues,
then log(ÃiÃ−1

i0 ) may not be unique and delivers imaginary matrices. This follows from
the following theorem.

Theorem 3.1 ([48]). A real matrix has a unique and real logarithm if and only if it
is nonsingular and each Jordan block belonging to a negative eigenvalue occurs an even
number of times.

As a side note, a group of matrices is presented to which the mapping onto the
tangent space of nonsingular matrices can always be applied. Such matrices arise in
strictly dissipative systems from Definition 2.2.

Corollary 3.1. If Ãi+ ÃT
i < 0, then the product ÃiÃ−1

i0 only has complex and positive
eigenvalues and hence, has a unique and real logarithm.

Proof. It shall be investigated if the real eigenvalues λj to the real eigenvectors vj of
ÃiÃ−1

i0 can be negative.

(ÃiÃ−1
i0 )vj = λjvj ⇒ Ã−1

i0 vj = λjÃ−1
i vj

⇒ vTj Ã−1
i0 vj︸ ︷︷ ︸

<0

= λj vTj Ã−1
i vj︸ ︷︷ ︸

<0

⇒ λj > 0 ∀ j = {1, . . . , q}.

Hence, the eigenvalues of ÃiÃ−1
i0 can only be complex or positive. Therefore, the

logarithm is unique and real according to Theorem 3.1.
To sum up, we can choose between KMA = 2 candidate manifolds: the manifold of

nonsingular λMA
1 or real matrices λMA

2 . The output of this step are the mapped matrices
ΓẼ
i , ΓÃ

i , ΓB̃
i and ΓC̃

i for i ∈ {1, . . . , N}.
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3.6 Construction of the Interpolants

For the interpolation between the mapped matrices, an interpolant zjkÃ : D → R is
constructed for all q2 matrix entries of the matrices ΓÃ

1 , . . . ,ΓÃ
N . For example, the

interpolant of the jk-th matrix entry is

zjkÃ (p) =
∑N

i=1 α
jk

Ã,iω
jk

Ã,i(p) (3.29)

with basis functions ωjkÃ,1, . . . , ω
jk

Ã,N : D → R and coefficients αjkÃ,1, . . . , α
jk

Ã,N ∈ R. Then,
we obtain the matrix of interpolants

ΓÃ(p) =


z11

Ã (p) . . . z1q
Ã (p)

... ...
zq1Ã (p) . . . zqqÃ (p)

 =


∑N
i=1 α

11
Ã,iω

11
Ã,i(p) . . .

∑N
i=1 α

1q
Ã,iω

1q
Ã,i(p)

... ...∑N
i=1 α

q1
Ã,iω

q1
Ã,i(p) . . .

∑N
i=1 α

qq

Ã,iω
qq

Ã,i(p)

 . (3.30)

If we use the same basis functions ω1(p), . . . , ωN(p) for all matrix entries, we obtain
the matrix interpolant

ΓÃ(p) =


∑N
i=1 α

11
Ã,iωi(p) . . .

∑N
i=1 α

1q
Ã,iωi(p)

... ...∑N
i=1 α

q1
Ã,iωi(p) . . .

∑N
i=1 α

qq

Ã,iωi(p)

 =
N∑
i=1

ωi(p)


α11

Ã,i . . . α1q
Ã,i

... ...
αq1Ã,i . . . αqqÃ,i


︸ ︷︷ ︸

αÃ
i

, (3.31)

where αÃ
1 , . . . ,α

Ã
N are matrices containing the coefficients. In analogy, the matrix

interpolants ΓẼ(p), ΓB̃(p) and ΓC̃(p) comprise q2, qr andmq interpolants, respectively.
For constructing e.g. the interpolant (3.31), we firstly decide which basis functions

ω1(p), . . . , ωN(p) we use. Basically, we can use every interpolation method with corre-
sponding basis functions. The most promising types of methods are polynomial interpo-
lation (cf. Appendix A.2.1), piecewise polynomial interpolation (cf. Appendix A.2.2),
interpolation with radial basis functions (RBF) (cf. Appendix A.3.1) or Kriging (cf.
Appendix A.3.2). This results in a finite number KMI of candidate interpolation meth-
ods and corresponding basis functions λMI

1 , . . . , λMI
KMI

and we choose one of them.
Secondly, we calculate the coefficients αjkÃ,1, . . . , α

jk

Ã,N of each interpolant (3.29). For
example, if we use polynomial interpolation, we collect the data for the grid points
{(p1, γ

jk

Ã (p1)), . . . , (pN , γjkÃ (pN))} where γjkÃ (p1), . . . , γjkÃ (pN) are the jk-th entries of
the mapped matrices ΓÃ

1 , . . . ,ΓÃ
N . Then, we insert the data into the interpolant (3.29)

and obtain a system of linear equations:
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
ω1(p1) ω2(p1) . . . ωN(p1)
ω1(p2) ω2(p2) . . . ωN(p2)

... ... ...
ω1(pN) ω2(pN) . . . ωN(pN)


︸ ︷︷ ︸

ω


αjkÃ,1
αjkÃ,2
...

αjkÃ,N


︸ ︷︷ ︸

αjk
Ã

=


γjkÃ (p1)
γjkÃ (p2)

...
γjkÃ (pN)


︸ ︷︷ ︸

γjk
Ã

. (3.32)

We compute for the first interpolant z11
Ã (p) the LU decomposition Pω = LU with lower

and upper triangular matrix L and U and permutation matrix P. These matrices are
stored and reused in order to rapidly solve the system of linear equations (3.32) for the
remaining interpolants by forward and back substitution [152, 3]. Hence, we obtain the
matrices of coefficients αẼ

i ,α
Ã
i ,α

B̃
i ,α

C̃
i with i ∈ {1, . . . , N}.

For the special case of cardinal basis functions (A.2) such as for linear or Lagrange
polynomial functions we directly obtain the matrices containing the coefficients without
solving a system of linear equations (3.32), see the following proposition.

Proposition 3.2. For cardinal basis functions (A.2) the matrix interpolants consists
of the superposition of the mapped matrices:

ΓẼ(p) =
∑N

i=1 ωi(p)ΓẼ
i ,

ΓÃ(p) =
∑N

i=1 ωi(p)ΓÃ
i ,

ΓB̃(p) =
∑N

i=1 ωi(p)ΓB̃
i ,

ΓC̃(p) =
∑N

i=1 ωi(p)ΓC̃
i .

(3.33)

Proof. Calculate for example for the interpolant (3.29) the coefficients αjkÃ,1, . . . , α
jk

Ã,N
according to the system of linear equations (3.32). For cardinal basis functions with
ωi(pu) = δiu for i, u ∈ {1, . . . , N}, it follows

INαjkÃ = γjkÃ . (3.34)

Hence, we obtain αjkÃ = γjkÃ and consequently, the matrices containing the coefficients
are the mapped matrices αÃ

i = ΓÃ
i with i ∈ {1, . . . , N}. The same holds true for the

remaining matrix interpolants.

To sum up, we can choose between KMI basis functions λMI
1 , . . . , λMI

KMI
and we ob-

tain the matrices interpolants ΓẼ(p), ΓÃ(p), ΓB̃(p), ΓC̃(p). The system which is
constructed using these interpolants is referred to as G̃(p).
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3.7 Evaluation of the Interpolants

The steps discussed so far are performed in the offline phase and have to be done only
once. In the online phase, i.e. as soon as a reduced system is supposed to be calcu-
lated for a new parameter vector pint ∈ D, we simply evaluate the matrix interpolants
ΓẼ(pint), ΓÃ(pint), ΓB̃(pint) and ΓC̃(pint), see e.g. for (3.31)

ΓÃ(pint) =
N∑
i=1

ωi(pint)


α11

Ã,i . . . α1q
Ã,i

... ...
αq1Ã,i . . . αqqÃ,i

 . (3.35)

This means the parameter value pint is inserted into the basis functions and multiplied
with the coefficients. Then, the resulting matrices are mapped back onto the respective
manifold with exponential mappings ExpẼi0

,ExpÃi0
,ExpB̃i0

, and ExpC̃i0
according to

Table 3.3. The system matrices Ẽ(pint), Ã(pint) ∈ Rq×q, B̃(pint) ∈ Rq×r, C̃(pint) ∈
Rm×q thus obtained are used to construct the interpolated reduced system

G̃(pint) :
{ Ẽ(pint) ˙̃x(t) = Ã(pint)x̃(t) + B̃(pint)u(t)

ỹ(t) = C̃(pint)x̃(t).
(3.36)

3.8 Error Analysis

In this section, the error types which appear in the context of the proposed method
of pMOR are discussed. The following notations are introduced at the example of the
Hp-norm [15], but they also hold true for other norms. The total error eT : D → R+

0

of the interpolated reduced system G̃(p) is referred to as the error compared to the
original one G(p) for parameter p:

eT(p) = ||G(p)− G̃(p)||Hp
||G(p)||Hp

. (3.37)

Using the triangle inequality of a vector space yields an upper bound for the error:

eT(p) = ||G(p)− G̃(p)||Hp
||G(p)||Hp

= ||G(p)− Ĝ(p) + Ĝ(p)− G̃(p)||Hp
||G(p)||Hp

≤
||G(p)− Ĝ(p)||Hp
||G(p)||Hp︸ ︷︷ ︸

eP(p)

+ ||Ĝ(p)− G̃(p)||Hp
||Ĝ(p)||Hp︸ ︷︷ ︸

eI(p)

·
||Ĝ(p)||Hp
||G(p)||Hp︸ ︷︷ ︸

VP(p)

.
(3.38)
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The upper bound of the overall error can be decomposed into the error due to projection
eP : D → R+

0 between the original system and the directly reduced one Ĝ(p) obtained
by projection-based MOR from Section 2.2 at parameter vector p and the error due to
interpolation eI : D → R+

0 between the directly reduced system and the interpolated
one scaled with VP : D → R+ due to projection-based MOR. On the other hand, the
application of the reverse triangle inequality of the normed vector space delivers a lower
bound for the overall error:

eT(p) = ||G(p)− G̃(p)||Hp
||G(p)||Hp

=
||G(p)− Ĝ(p)−

(
− Ĝ(p) + G̃(p)

)
||Hp

||G(p)||Hp

≥
∣∣∣∣∣ ||G(p)− Ĝ(p)||Hp

||G(p)||Hp︸ ︷︷ ︸
eP(p)

−
||Ĝ(p)− G̃(p)||Hp
||Ĝ(p)||Hp︸ ︷︷ ︸

eI(p)

·
||Ĝ(p)||Hp
||G(p)||Hp︸ ︷︷ ︸

VP(p)

∣∣∣∣∣, (3.39)

where || − Ĝ(p) + G̃(p)||Hp = ||Ĝ(p)− G̃(p)||Hp was taken into account. Considering
the upper (3.38) and lower bound (3.39), the overall error is located in the interval

eT(p) ∈ [|eP(p)− eI(p)VP(p)|, eP(p) + eI(p)VP(p)]. (3.40)

Of course, the bounds (3.40) are only of a more theoretical nature, but they allow us
to understand that the overall error eT(p) consists of two parts: the error eP(p) due to
projection-based MOR, the error eI(p) due to interpolation and the correlation between
the two. If both have a positive correlation, the overall error assumes its upper bound
and if both have a negative correlation, it assumes its lower bound. Otherwise, it will
have a value between the bounds. The bounds (3.40) also give an insight into three
important special cases:

◦ Case 1: For accurate projection-based MOR at the grid points with eP(p) → 0
and VP(p) → 1 where eP(p) � eI(p) holds, the overall error can be computed
very efficiently as only the interpolation error remains with eT(p)→ eI(p).

◦ Case 2: For accurate interpolation with eI(p) → 0 where eI(p)VP(p) � eP(p)
holds, the overall error is dominated by the error due to projection-based MOR
with eT(p)→ eP(p). This leads more importantly to the next case.

◦ Case 3: At the grid points the interpolation error vanishes with eI(p) = 0 and the
overall error is the one due to projection-based MOR with eT(p) = eP(p). Hence,
the maximum error cannot be smaller than the error due to projection-based MOR
at the grid points no matter how accurate the interpolation method is.
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3.9 Integration of Existing Methods into the General Framework

3.9.1 Selection of the Degrees of Freedom for Existing Methods

It was pointed out in Section 2.3.2 that the approaches of pMOR by matrix interpolation
from [112, 128] and [6, 11] were developed independently and presented as different
methods. In fact, they can be integrated into the proposed general framework as special
cases with a different selection of the degrees of freedom. The selections corresponding
to the current approaches are shown in the left and right column of Table 3.4.

Table 3.4: Selection of the degrees of freedom for existing methods.
Panzer et al. [128] Amsallem et al. [11]

Reference ROB V0 non-/weighted SVD ∗ fixed
Adjust. right ROBs Ti = (VT

0 Vi)−1 ∗ Ti = UV,iZT
V,i

Reference ROB W0 W0 = V0 ∗ W0,i = EiVi

Adjust. left ROBs Mi = (WT
0 Wi)−1 ∗ Mi = (WT

0,iWi)−1Ti

Interpol. manifold real matrices real/nonsingular matrices ∗
Interpol. method cardinal basis functions element-wise ∗

Besides these two special selections, there are many other possible combinations.
Since the selection leading to the most accurate reduced model is problem-dependent
for the adjustment of the ROBs and the interpolation method and manifold, a restriction
to the two special choices is not useful. This is demonstrated in the next section by
means of a numerical example.

3.9.2 Numerical Example

The example describes the motion of a 3D cantilever Timoshenko beam which is shown
in Figure 3.4. The parameter of the beam is the length L ∈ [0.8, 2]m. The model input
is the vertical force F (t) which is applied at the tip of the beam and the model output
is the vertical displacement at this point. A finite element model which is proposed
in [125] comprises 100 nodes along the beam, each having six degrees of freedom: three
translational displacements u, v, w and three rotational degrees of freedom α, β, γ with
respect to the z1−, z2−, z3−axis, respectively. This delivers a parameter-dependent
SISO system of order n = 1200:

G(L) :
{E(L)ẋ(t) = A(L)x(t) + bF (t)

y(t) = cTx(t),
(3.41)
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where the state vector x(t) ∈ R1200 comprises the six degrees of freedom for all elements
and their derivatives. The system matrices E(L),A(L) have nonlinear parameter depen-
dencies. For testing the system, the H2-norm is used [15]. The magnitude of frequency
responses of the beam are shown for different parameter values in Figure 3.5.

F(t)

z3

L

z2

z1 h

Figure 3.4: Depiction of the
cantilever beam.
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Figure 3.5: Plots of the magnitude of frequency re-
sponses for different parameter values.

The parameter domain is sampled for the values L ∈ {0.8, 1.2, 1.6, 2}m and the
local models are reduced using a two-sided Krylov subspace method with the reduced
order q = 10 and expansion points s0 = 0. The remaining degrees of freedom for the
general framework are selected as a combination of the two existing methods where
the respective selection is labeled in Table 3.4 with (∗). For the calculation of V0

the non-weighted SVD is applied and the reduced system matrices are interpolated
element-wise using cubic spline interpolation. This selection is compared to the latest
methods from Panzer et al. [128] and Amsallem et al. [11]. The selection of the
degrees of freedom for Panzer et al. is given in the left column of Table 3.4 with the
non-weighted SVD for the calculation of V0 and Lagrange weighting functions (A.7)
for interpolation. For Amsallem et al. the degrees of freedom are selected according
to the right column of Table 3.4 where the reduced system matrices are interpolated
element-wise using cubic spline interpolation. The reference ROB V0 is the ROB of the
system at L = 1.6m. In Figure 3.6 the overall error eT in H2-norm is shown for directly
reduced order models (ROMs) using the above mentioned Krylov subspace method and
for interpolated systems in the interval L ∈ [0.8, 2]m. At the grid points all considered
methods share the overall error of the directly reduced models and between them an
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additional error due to interpolation occurs. In this example, the proposed selection
delivers more accurate results than the two existing approaches. Hence, one can verify
that it is not useful to restrict oneself to the two special cases. It will be explained in
the next section how we can find the most accurate selection.
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Direct ROMs
Interp. ROMs (Panzer et al.)
Interp. ROMs (Amsallem et al.)
Interp. ROMs (Geuss)

Figure 3.6: Overall error eT in H2-norm for different interpolated ROMs at various
lengths L for the cantilever beam.





4 A Black-Box Method for Interpolating Reduced
System Matrices

4.1 Motivation

We want to approximate a parameter-dependent high-order system G(p) by a reduced
system G̃(p) of order q � n on the domain D using the framework from Section 3. It
was pointed out that we have many options that we need to decide on. Firstly, we need
to select the parameter vectors P = {p1, . . . ,pN}. Secondly, the interpolation can take
place on different matrix manifolds. Thirdly, there are various candidate interpolation
methods. In most cases, the user does not have enough insight into the physics of the
model in order to decide on the options leading to the most accurate reduced model.
Hence, the user calls for an automatic approach which delivers a reduced model whose
error is below a given tolerance etol using as few grid points as possible.
For selecting the interpolation method and manifold, current approaches such as [62]

use a training grid for constructing the interpolated reduced system and an additional
test grid for evaluating its accuracy. However, this is computationally expensive because
of a large number of complex calculations and we lose a lot of grid points for training
the model. For selecting the method efficiently, a heuristic measure is proposed in [51]
for spline interpolation which selects the most appropriate matrix manifold. For the
general case, it is still an open question how to find the interpolation method and
manifold which result in the smallest error without performing high-order operations.
Refinement procedures for calculating the grid points P = {p1, . . . ,pN} have been

proposed for global POD and reduced basis methods which make use of efficient error
estimators, see e.g. [84, 36, 91, 90, 129]. Unfortunately, these error estimators cannot be
used for the framework from Section 3 as they disregard the effect of interpolation [23].
Therefore, current refinement schemes from [142, 38, 30] split the parameter domain into
cells and the corners are the training points, which are used to construct the interpolated
system. The center points of the cells or of the edges are the test points where the
error of the interpolated systems compared to the high-order ones is calculated. If the
errors are above a certain tolerance, the cells are divided into subcells. This iterative
algorithm terminates when the error is sufficiently small for all cells. Unfortunately,
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these methods are expensive as they require high-order model solves at the test points
and make inefficient use of the data as the test points cannot be used for training the
model. Another approach, which is based on differential geometry, is proposed in [5].
The method divides the parameter domain in Delaunay triangles and calculates the
geodesic distances of the subspaces at the grid points. Then, the next grid point is
inserted in the middle of the edge with the largest geodesic distance. As the method
does not provide an estimate for the model accuracy, it is an open question when to
stop the refinement procedure.
In order to overcome the limitations of the reviewed methods, especially the high

computational expense and the inefficient use of the data, we introduce in Section 4.2
a new error indicator in pMOR which is based on cross-validation. It only uses avail-
able data and allows us to efficiently choose the interpolation method minimizing an
error measure (method selection, cf. Section 4.3), to efficiently find the next best
grid points (model refinement, cf. Section 4.4) and to determine the accuracy of a
parameter-dependent reduced system (model error prediction, cf. Section 4.5). These
three methods are combined to a Black-Box method. This method automatically selects
the best interpolation method, performs the refinement in the parameter space itera-
tively and stops when the maximum predicted error of the interpolated system falls
below the given error tolerance etol. The procedure is shown in Figure 4.1. Numerical
examples for the Black-Box method are given in Section 4.7.

Start: G(p), q, etol

Stop:  G(p)

Method selection

(Section 4.3)

Model refinement

(Section 4.4)

Black-Box

C
ro

ss
-v

al
id

at
io

n
-b

as
ed

er
ro

r
in

d
ic

at
o
r

(S
ec

ti
o

n
4

.2
)

Model error prediction

(Section 4.5)

Figure 4.1: Structure of the proposed Black-Box method.
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4.2 Cross-Validation-Based Error Indicator

4.2.1 Overview

In this section we introduce a new a posteriori error indicator for interpolation-based
methods of pMOR such as the one proposed in Section 3. The only data we have is
the set of original G = {G1, . . . ,GN} and of reduced systems G̃ = {G̃1, . . . , G̃N} at the
grid points P = {p1, . . . ,pN} where N = |P| is the number of points. We demand the
calculation of the error indicator is based only on this available data. Therefore, we
use an approach called cross-validation which is well-known in many fields of research
[153, 4, 71]. In data mining it can be used to determine optimal parameters of an
approximation model or to compare the accuracy of different models, see e.g. [25, 93].
In the design of experiments community it is employed to determine the accuracy of
a surrogate model, see e.g. [18]. In this section we explain how we assign an error
obtained by cross-validation to every grid point in P which in the following is referred
to as cross-validation-based error indicator.

4.2.2 Assignment of the Error Indicator

Let us first describe the assignment procedure formally for the general case before we
go into details for the different grid types. We take kCV ≤ N subsets P1, . . . ,PkCV ,
G̃1, . . . , G̃kCV out of the sets P , G̃ with the following property: for each j ∈ {1, . . . , kCV}
we have a test set P∗j ⊆ Pj where P∗1 ∪ . . . ∪ P∗kCV

= P and P∗j ∩ P∗u = ∅ for u ∈
{1, . . . , kCV}\j. Hence, every grid point is a test point exactly once. Then, we construct
for each j a parametric reduced system G̃CV,j(p) with training sets P\Pj and G̃\G̃j such
as described in Section 3.6 and we evaluate each system G̃CV,j(p) at the grid points from
the corresponding test set P∗j according to Section 3.7. Finally, we calculate the error
indicator eCV,j : P∗j → R+

0 such as described in Section 4.2.3. This results—neglecting
index j—in the set of error indicators ECV = {eCV(p1), . . . , eCV(pN)}. The procedure is
described in Algorithm 3. How are the subsets Pj,P∗j , G̃j to be chosen? This depends
on the grid type and is explained in the following for two types: the irregular grid such
as described in Appendix A.3 and the regular grid such as described in Appendix A.2:

Irregular grid: We randomly partition the sets P , G̃ into kCV folds P1, . . . ,PkCV ,
G̃1, . . . , G̃kCV of approximately equal size and have P∗j = Pj for all j, see e.g. [105, 17].
For the prominent case kCV = N , which is referred to as leave-one-out cross-validation,
we have |Pj| = 1. This means the test sets contain only one grid point. This is
demonstrated in Figure 4.2. Leave-one-out cross-validation efficiently makes use of the
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Algorithm 3 Assignment of the error indicator
Input: Set of reduced systems G̃ and of grid points P
Output: Set of error indicators ECV
1: Initialize empty set ECV = ∅
2: Take kCV subsets P1, . . . ,PkCV , G̃1, . . . , G̃kCV from sets P , G̃
3: for j = 1, . . . , kCV do
4: for i = 1, . . . , |P∗j | do
5: Construct G̃CV,j(p) with sets P\Pj and G̃\G̃j
6: Evaluate G̃CV,j(pi) at grid point pi ∈ P∗j
7: Calculate the error indicator eCV,j(pi) with formula (4.1), (4.4) or (4.11)
8: Update the set ECV = ECV ∪ {eCV,j(pi)}
9: end for
10: end for

data as it uses nearly all data points for training but it requires the construction of N
parametric systems G̃CV,1(p), . . . , G̃CV,N(p) . Therefore, it is the method of choice for
a moderate number of grid points. For a large number of grid points it is recommended
to use, e.g., common values kCV = 10 or kCV = 5 because we have to construct only
kCV parameter-dependent systems G̃CV,1(p), . . . , G̃CV,kCV(p) [93, 17].

Regular grid: The points of a regular grid with dimension d have a certain structure
which must be preserved during the assignment procedure. The interior points belong
to a d-dimensional structure, the boundary points belong to d − 1, . . . , 1-dimensional
structures and the 0-dimensional structures are the corner points. Firstly, define the
test sets P∗1 = {p1}, . . . ,P∗N = {pN} and, consequently, kCV = N which means the
test sets contain only one grid point. Then, let pj with j ∈ {1, . . . , N} belong to a
l ∈ {1, . . . , d}-dimensional structure. Consider e.g. Figure 4.3 where an error indicator
is assigned to an interior point pj belonging to a l = 2-dimensional structure. We
imagine a coordinate system to be shifted into this grid point and we leave 1-dimensional
structures of points, which are lines spanned by the axes of the coordinate system, out.
In Figure 4.4 the assignment is shown for a point pj of a l = 1-dimensional boundary.
Here, we leave all interior points of the 2-dimensional structure, the other edges, which
are also 1-dimensional structures, and a 0-dimensional space, which is the point itself,
out. For the general case, if we want to calculate the error indicator for the point pj,
we imagine a coordinate system to be shifted into this grid point and we leave all grid
points Pj and systems G̃j out which lie on structures with dimension l − 1 spanned by
the axes and all points at other structures with dimensions greater or equal l. For 0-
dimensional boundaries, which are corner points, this procedure leads to extrapolation.
Hence, we use, e.g., the average of the error indicators of the neighbor points.
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Figure 4.2: Assignment of the error indicator for an irregular grid with two parameters
p1, p2. When the leave-one-out cross-validation error is to be calculated for the grid
point indicated with a blue circle, only the test point itself is left out for building the
interpolant. This point is denoted by a red cross.
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Figure 4.3: Assignment of the error indi-
cator for interior points of a regular grid
with two parameters p1, p2. When the
cross-validation error is to be calculated
for the grid point indicated with a blue
circle, all points marked with a red cross
which are on lines (1-dimensional spaces)
including the test point are left out for
building the interpolant.
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Figure 4.4: Assignment of the error indica-
tor for points on a 1-dimensional bound-
ary of a regular grid with two parameters
p1, p2. When the cross-validation error is
to be calculated for the grid point indi-
cated with a blue circle, all red points out-
side the boundary and the test point it-
self (0-dimensional space) are left out for
building the interpolant.
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4.2.3 Error Computation

The error indicator eCV,j(p) at grid point p ∈ P∗j is the error of the system obtained by
cross-validation G̃CV,j(p) from Section 4.2.2 compared to a reference system Gr(p) of
order nr at the same grid point. The reference system can either be the reduced system
Gr(p) := Ĝ(p) with nr = q (cf. Section 4.3) or the original system Gr(p) := G(p) with
nr = n (cf. Section 4.4). For the latter, we present formulas for the error computation
which are split into a large-scale solve and a low-order solve. We will benefit from this
in Section 4.4 as high-order operations will be done one time, the obtained values are
then stored and reused in every iteration where we have a new system G̃CV,j(p). In
this section, the calculation of the error indicator is explained for the norms of interest.

Lp-norm of the output

The error indicator in Lp-norm is the relative error between the output of the reference
system yr(t,p) and the reduced system obtained by cross-validation ỹCV,j(t,p):

e
Lp
CV,j(p) = ||yr(t,p)− ỹCV,j(t,p)||Lp

||yr(t,p)||Lp
. (4.1)

For approximating (4.1) we integrate system Gr(p) for KL time steps with step size ∆t
with a problem-specific input signal and obtain yr(·,p) = {yr(t0,p), . . . ,yr(tKL ,p)},
where for example the k-th value is yr(tk,p) ∈ Rm. This has for sparse system matrices
a computational complexity which is at most O(KLn

3
r ). Then, the Lp-norm of the

output of the reference system Gr(p) is approximately for 1 ≤ p <∞ [15]

||yr(t,p)||Lp ≈
∆t

KL∑
k=0
||yr(tk,p)||pp

1/p

. (4.2)

The calculation of yr(·,p) and ||yr(t,p)||Lp has to be done only once per parame-
ter vector p and the values are stored in order to reuse them. Every time the in-
dicator eLpCV,j(p) is to be determined for a new reduced system obtained by cross-
validation G̃CV,j(p), we calculate for the same time points the values ỹCV,j(·,p) =
{ỹCV,j(t0,p), . . . , ỹCV,j(tKL ,p)}, where for example the k-th value is ỹCV,j(tk,p) ∈ Rm.
The computational complexity involving these dense reduced system matrices is only
O(KLq

3). Together with the stored values we finally obtain for the error indicator

e
Lp
CV,j(p) ≈

(
∆t∑KL

k=0 ||yr(tk,p)− ỹCV,j(tk,p)||pp
)1/p

||yr(t,p)||Lp
. (4.3)
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To sum up, when we calculate the error indicator eLpCV,j(p) for system G̃CV,j(p) at a
new parameter p, the complexity is at most O(KLn

3
r ). We introduce a set of stored

values S which we update S = S ∪
{

(yr(·,p), ||yr(t,p)||Lp)
}
for each new parameter p.

For each additional calculation with a new system G̃CV,j(p) at a previously used point,
the complexity is only O(KLq

3) as the stored values S are reused.

H∞-norm

The error indicator inH∞-norm is the relative error between the reference system Gr(p)
and the reduced system obtained by cross-validation G̃CV,j(p) [15]:

eH∞CV,j(p) = ||Gr(p)− G̃CV,j(p)||H∞
||Gr(p)||H∞

=
sup
ω∈R

σmax(Gr(jω,p)− G̃CV,j(jω,p))

sup
ω∈R

σmax(Gr(jω,p)) (4.4)

where σmax is the largest singular value and j =
√
−1. For approximating (4.4) we

choose KH frequencies ω1, ω2, . . . , ωKH in the frequency range of interest and calculate
Gr(·,p) = {Gr(jω1,p), . . . ,Gr(jωKH ,p)}, where for example Gr(jωk,p) ∈ Cm×r is the
k-th value. This has for sparse system matrices a computational complexity which is
at most O(KHn

3
r ). The H∞-norm of the reference system Gr(p) is approximately

||Gr(p)||H∞ ≈ max
1≤k≤KH

σmax{Gr(jωk,p)}. (4.5)

The calculation of Gr(·,p) and ||Gr(p)||H∞ has to be done only once and the values are
stored in the set S in order to reuse them. Every time the indicator eH∞CV,j(p) is deter-
mined for a new reduced system obtained by cross-validation G̃CV,j(p), we calculate for
the same set of frequencies the values G̃CV,j(·,p) = {G̃CV,j(jω1,p), . . . , G̃CV,j(jωKH ,p)},
where for example the k-th value is G̃CV,j(jωk,p) ∈ Cm×r. The computational com-
plexity involving these dense reduced system matrices is only O(KHq

3). Together with
the stored values S we finally obtain for the error indicator

eH∞CV,j(p) ≈
max

1≤k≤KH
σmax{Gr(jωk,p)− G̃CV,j(jωk,p)}

||Gr(p)||H∞
. (4.6)

To sum up, when we calculate the error indicator eH∞CV,j(p) for system G̃CV,j(p) at a
certain parameter value p, the computational complexity is at most O(KHn

3
r ) and we

update the set S = S ∪
{

(Gr(·,p), ||Gr(p)||H∞)
}
. For each additional calculation with

a new system G̃CV,j(p) the complexity is only O(KHq
3) as the stored values S can be
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reused. For the case the reference system Gr(p) is low-dimensional, this approximation
method for calculating the error (4.4) is not required because we can simply apply
methods such as [34, 31] at a reasonable expense.

H2-norm

For the calculation of the error inH2-norm between the reference system Gr(p) with ma-
trices Er(p),Ar(p),Br(p),Cr(p) and the reduced system obtained by cross-validation
G̃CV,j(p) with matrices ẼCV,j(p), ÃCV,j(p), B̃CV,j(p), C̃CV,j(p), we firstly consider the
following error system

Ge,j(p) :



Ee,j(p)︷ ︸︸ ︷Er(p) 0
0 ẼCV,j(p)

 ẋr
˙̃xCV,j

 =

Ae,j(p)︷ ︸︸ ︷Ar(p) 0
0 ÃCV,j(p)

 xr

x̃CV,j

+

Be,j(p)︷ ︸︸ ︷ Br(p)
B̃CV,j(p)

u

ye,j =
[
Cr(p) −C̃CV,j(p)

]
︸ ︷︷ ︸

Ce,j(p)

 xr

x̃CV,j

 .
(4.7)

Then, the error indicator can be calculated as follows [15]

eH2
CV,j(p) = ||Gr(p)− G̃CV,j(p)||H2

||Gr(p)||H2

=

√
tr(Ce,j(p)Pe,j(p)Ce,j(p)T )√

tr(Cr(p)Pr(p)Cr(p)T )
(4.8)

where Pe,j(p) ∈ S++
n+q is the controllability Gramian of the error system Ge,j(p) and

Pr(p) ∈ S++
n is the one of the reference system Gr(p). These can be obtained as the

solution to the generalized Lyapunov equation

Ae,j(p)Pe,j(p)Ee,j(p)T + Ee,j(p)Pe,j(p)Ae,j(p)T + Be,j(p)Be,j(p)T = 0 (4.9)

and the partitioning

Pe,j(p) =
 Pr(p) Xj(p)
Xj(p)T P̃CV,j(p)

 (4.10)

where P̃CV,j(p) ∈ S++
q is the controllability Gramian of the system G̃CV,j(p). We

rewrite equation (4.8) using formula (4.10) as follows

eH2
CV,j(p) =

√
||Gr(p)||2H2 − 2tr(Cr(p)Xj(p)C̃CV,j(p)T ) + ||G̃CV,j(p)||2H2

||Gr(p)||H2

. (4.11)
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For calculating ||Gr(p)||H2 which is the H2-norm of the reference system Gr(p), we
have to solve the generalized Lyapunov equation of size nr

Ar(p)Pr(p)Er(p)T + Er(p)Pr(p)Ar(p)T + Br(p)Br(p)T = 0. (4.12)

For this, one can use iterative methods such as the alternating directions implicit iter-
ation method (ADI) [135, 109] or the rational Krylov subspace method (RKSM) [54]
which compute a low-rank approximation Pa(p) of Pr(p) and have a complexity which
is at most O(nsn

3
r ) where ns is the number of iterations. Then, we obtain approximately

||Gr(p)||H2 ≈
√

tr(Cr(p)Pa(p)Cr(p)T ). (4.13)

The calculation of ||Gr(p)||H2 has to be done only one time and the value is stored in the
set S in order to reuse it. Every time the indicator eH2

CV,j(p) must be determined for a
new reduced system obtained by cross-validation G̃CV,j(p), we solve for the second term
in the numerator of equation (4.11) the generalized sparse-dense Sylvester equation in
order to obtain Xj(p) ∈ Rn×q

Ar(p)Xj(p)ẼCV,j(p)T + Er(p)Xj(p)ÃCV,j(p)T + Br(p)B̃CV,j(p)T = 0. (4.14)

The solution can be obtained e.g. by using the sparse-dense solver [24] which has a
complexity which is at most O(qn3

r ). In addition, we have to solve for the third term
of the numerator the low-order generalized Lyapunov equation

ÃCV,j(p)P̃CV,j(p)ẼCV,j(p)T + ẼCV,j(p)P̃CV,j(p)ÃCV,j(p)T + B̃CV,j(p)B̃CV,j(p)T = 0.
(4.15)

As this dense generalized Lyapunov equation is low-order, we can use direct methods [44,
69, 134] which have the complexity O(q3). Then, the H2-norm of system G̃CV,j(p) is

||G̃CV,j(p)||H2 =
√

tr(C̃CV,j(p)P̃CV,j(p)C̃CV,j(p)T ). (4.16)

Hence, the error indicator eH2
CV,j(p) is obtained when Xj(p), ||G̃CV,j(p)||H2 together with

||Gr(p)||H2 from set S is inserted into equation (4.11). In analogy, this could be done
with the observability Gramian.
To sum up, when we calculate the error indicator eH2

CV,j(p) for system G̃CV,j(p) at a
certain parameter value p, the computational complexity is at most O(nsn

3
r ) and we

update the set S = S ∪
{
||Gr(p)||H2

}
. For each additional calculation with a new

system G̃CV,j(p) the complexity is at most O(qn3
r ) with q < ns as the stored values S
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can be reused. For the case the reference system Gr(p) is low-dimensional, this proposed
method for calculating (4.11) is not required because we can simply apply methods such
as [44, 69, 134] at a reasonable expense.

4.2.4 Motivating Example

In this section a motivating example for promoting the understanding of the error
indicator is given. It is an academic spring-mass-damper system [112] whose schematic
is shown in Figure 4.5.

m4 m3 m2 m1

c6 c4 c3 c2

d5 d4 d3 d2

c5

c1

u

z1z2z3z4

Figure 4.5: A schematic of the spring-mass-damper system.

Table 4.1: Mechanical properties of the spring-mass-damper system.
Springs [N/m] Masses [kg] Dampers [Ns/m]
c1 27 m1 1 d2 0.1
c2 9 m2 5 d3 0.4
c3 3 m3 25 d4 1.6
c4 1 m4 125 d5 α
c5 1 + 2α
c6 2 + 2α

The system consists of 6 springs ci, 4 masses mi and 4 dampers di whose values are
shown in Table 4.1. The stiffness and damping c5 and d5 and the stiffness c6 vary
within a certain given interval described by the parameter α ∈ [0, 1]. The input is
the displacement u(t) acting on the spring c1 and the output is the position of the
mass m4 which is y(t) = z4(t). Setting the state vector x = [z1, ż1, z2, ż2, z3, ż3, z4, ż4]T ,
the equations of translational momentum lead to a parameter-dependent SISO system
of order n = 8:

G(α) :
{Eẋ(t) = A(α)x(t) + bu(t)

y(t) = cTx(t).
(4.17)
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We have a set of five grid points P = {0, 0.25, 0.5, 0.75, 1} and reduce the local systems
at the nodes individually to order q = 4 using IRKA. The ROBs are adjusted using the
PS approach (3.13) and (3.25) to the reference ROBs which are calculated with the non-
weighted SVD (3.5) and (3.22). Figure 4.6 shows the error eT in H2-norm using linear
and cubic spline interpolation on the manifold of nonsingular matrices for the square
system matrices and the error due to projection eP using IRKA. In addition, leave-one-
out error indicators eCV(α) are shown for the interior points α ∈ {0.25, 0.5, 0.75}.
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Figure 4.6: Plots of the error with linear (LS) and cubic spline (CS) interpolation and
error indicators allocated to the interior grid points.

One can verify there is a correlation between the error indicator at a certain point
and the true error in its surroundings: If the error indicator allocated to a grid point
is large or small, then the true error in its surroundings is large or small. At the grid
points the true error itself has only a part due to projection, see Section 3.8. This and
the following observations motivate us to use the cross-validation-based error indicator
for three applications of pMOR by matrix interpolation:

1. Calculating, e.g., the mean of the error indicators in Figure 4.6 hints that cubic
spline interpolation has a better performance which is confirmed by the true error.
This will be generalized in Section 4.3 where an approach for the selection of the
interpolation method with minimum error in domain D is proposed. For this,
an aggregated error measure such as the mean is calculated for the set of error
indicators ECV of different candidate methods. Hence, the method delivering the
best accuracy is the one with minimum error measure.

2. In Figure 4.6 one can see the error indicators are largest for linear and cubic spline
interpolation at grid point α = 0.25. The true error shows that the interpolation
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error is largest around the same point. Hence, it makes sense to insert a new
grid point in its surroundings. Keeping this observation in mind, we propose an
adaptive refinement method in Section 4.4 where a surrogate model is constructed
using the set of error indicators ECV. This surrogate model can then be exploited
to identify points for unobserved regions with a high error indicator.

3. One can also see in Figure 4.6 the error indicator overestimates the true error
because of a smaller training data. Hence, a mapping function from the error
indicator to the true error is determined in Section 4.5. This is used to calculate
an upper bound for the accuracy of the reduced model. Then, the refinement
procedure is stopped as soon as a given error tolerance is reached.

4.3 Selection of the Interpolation Method

4.3.1 Overview

Consider a given set of grid points P = {p1, . . . ,pN} where N = |P| is the number
of grid points and a corresponding set of reduced systems G̃ = {G̃1, . . . , G̃N}. The
interpolation procedure between the local systems in set G̃, such as the method described
in Section 3, allows the user to choose betweenKMI interpolation methods λMI

1 , . . . , λMI
KMI

andKMA candidate manifolds λMA
1 , . . . , λMA

KMA
. This results in a set of candidate methods

K = {λ1, . . . , λKM} whereKM = |K| = KMIKMA is the number of combinations between
interpolation methods and manifolds. We aim to find the optimal method λ∗ which
is the one minimizing an aggregated quality criterion J(λ) on domain D. Hence, the
optimization problem of interest is

λ∗ = arg min
λ∈K

J(λ). (4.18)

In order to understand what the quality function looks like, recall Section 3.8 where
it was shown that the overall error consists of a part due to projection and one due to
interpolation. As the first one is the same for all candidate methods, only the latter
can be influenced by the interpolation method. That is why the quality criterion is
based on the error due to interpolation eI(p, λ) for λ ∈ K. Then, one common quality
criterion is the mean [148]

Jµ(λ) = 1
|D|

∫
D
eI(p, λ)dD. (4.19)
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Another common aggregated error measure is the root mean square

JRMSE(λ) =
√

1
|D|

∫
D
eI(p, λ)2dD. (4.20)

An estimation of the aggregated error measures could be obtained when the interpo-
lation error eI(p, λ) is calculated for a number Ntest of test points such as in [62]

Jµ(λ) ≈ 1
Ntest

Ntest∑
i=1

eI(pi, λ), (4.21)

JRMSE(λ) ≈

√√√√ 1
Ntest

Ntest∑
i=1

eI(pi, λ)2. (4.22)

However, this is computationally expensive since complex calculations such as projection-
based MOR from Section 2.2 have to be performed for the Ntest additional test points.
Hence, we use the cross-validation-based error indicator from Section 4.2 which is based
only on available data P , G̃ and we calculate an efficient estimate JCV

µ (λ) for (4.19) or
JCV

RMSE(λ) for (4.20). For every candidate interpolation method λ ∈ K we calculate
such an estimate and select the one with minimum error measure. The procedure is
demonstrated in Figure 4.7. It will be shown in numerical examples in Section 4.7 that
this procedure reliably identifies the interpolation method with minimum error measure
at a very low computational expense.
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Figure 4.7: Structure of the proposed selection method.
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4.3.2 Assignment of the Error Indicator

We start the method by assigning the cross-validation-based error indicator eCV(p, λ)
to all grid points p ∈ P for every interpolation method λ ∈ K using Algorithm 3. As
we want to measure the error due to interpolation eI(p, λ), we use the reduced systems
from set G̃ as reference systems for calculating the error norms in Section 4.2.3. Then,
the error norms comprise only low-order models of dimension q. Hence, the calculation
of the error indicators is cheap with complexity O(q3). The procedure results in KM

sets of error indicators ECV(λ) = {eCV(p1, λ), . . . , eCV(pN , λ)} with λ ∈ K.

4.3.3 Minimization of an Aggregated Error Measure

In order to compare the accuracy of the candidate methods, the error indicators in the
sets ECV(λ) are used to calculate an estimate JCV

µ (λ) for (4.19) or JCV
RMSE(λ) for (4.20)

for every method λ ∈ K:

JCV
µ (λ) = 1

N

N∑
i=1

eCV(pi, λ), (4.23)

JCV
RMSE(λ) =

√√√√ 1
N

N∑
i=1

eCV(pi, λ)2. (4.24)

The estimate (4.23) or (4.24) is inserted into the introductory optimization prob-
lem (4.18) and we minimize the following problem with regard to all methods λ ∈ K:

λ∗ = arg min
λ∈K

JCV(λ). (4.25)

Solving the optimization problem (4.25) is trivial because the set K is finite and
usually has only a few components. The entire procedure is summarized in Algorithm 4.
As the required systems are low-dimensional, this approach offers an efficient way with
complexity O(q3) for selecting the most accurate candidate method.

Algorithm 4 Selection of the interpolation method and manifold
Input: Set of reduced systems G̃, of grid points P and of candidate methods K
Output: Interpolation method λ∗ with minimum error measure
1: for j = 1, . . . , |K| do
2: Compute set ECV(λj) according to Algorithm 3 using sets P , G̃
3: Calculate the aggregated error measure JCV(λj) for method λj using ECV(λj)
4: end for
5: Minimize the aggregated error measure: λ∗ = arg min

λ∈K
JCV(λ)
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4.4 Model Refinement

4.4.1 Overview

Consider a given set of grid points P = {p1, . . . ,pN} where N = |P| is the number
of grid points. In addition, we have a corresponding set of high-dimensional systems
G = {G1, . . . ,GN} and of reduced systems G̃ = {G̃1, . . . , G̃N} and the interpolation
method which is obtained using Algorithm 4. In order to improve the accuracy of
the resulting parameter-dependent reduced system G̃(p), we aim to insert a new grid
point p∗ in the domain D where the overall error eT(p) is largest:

p∗ = arg max
p∈D

eT(p). (4.26)

Common methods [142, 38, 30] compute the overall error eT(p) for a large number of
test points and take the test point with the largest error as new grid point. However, this
procedure is computationally expensive as it requires evaluating the large-scale model
very often. We replace the error eT(p) by the cross-validation-based error indicator
from Section 4.2. As this error indicator is only available at the grid points, a surrogate
model ẽCV : D → R is constructed for the indicator which can cheaply be optimized
on domain D. Hence, we propose a refinement method which starts with an initial
grid in Section 4.4.2 and then, iteratively selects new grid points in Sections 4.4.3–
4.4.4 by maximizing the surrogate model ẽCV(p). The adaptive refinement is shown
in Figure 4.8. It stops as soon as the maximum predicted error falls below a given
tolerance etol, see Section 4.5. We show the procedure is efficient as it requires only one
high-order solve per new grid point instead of a large number like for current methods.
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Figure 4.8: Structure of the proposed refinement method.
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4.4.2 Selection of Initial Grid Points

We start with an initial set of grid points P = {p1, . . . ,pN} ⊂ D with domain D ⊆ Rd

and a corresponding set of original systems G = {G1, . . . ,GN}. The grid type, i.e. if the
parameter vectors are located on an irregular grid (cf. Appendix A.3) or on a regular
grid (cf. Appendix A.2), is determined by the kind of application and its constraints on
the domain D. As we want the error indicators, which are allocated to the grid points,
to have a reasonable approximation of the entire domain D, we choose N points which
have approximately the same distance from each other and capture all regions of the
domain D. In the case of a regular grid, we start, e.g., with a full grid. Then, the
points are equidistantly distributed in the domain with the same number of points in
every direction (cf. Figure A.2). Since the refinement procedure requires at least four
grid points per dimension for a regular grid (cf. Section 4.4.4), we start with N = 4d

grid points. For irregular grids, there are various methods for space-filling designs (cf.
Figure A.4), such as Latin hypercube sampling [116], Halton or Sobol quasi-random
sequence [92, 149]. A rule of thumb for the number of points is N = 10d [98, 65].
After we have decided on the starting grid, we reduce the local systems in set G ac-

cording to Sections 3.3–3.4 and we obtain the set of reduced systems G̃ = {G̃1, . . . , G̃N}.
In addition, we perform for the systems in set G certain high-order operations depending
on the error norm of interest which are described in Section 4.2.3 and we store the results
in the set S: If we want to measure the error indicators in the Lp-norm of the output,
we obtain the set of tuples S = {(y(·,p1), ||y(t,p1)||Lp), . . . , (y(·,pN), ||y(t,pN)||Lp)},
for the H∞-norm we obtain S = {(G(·,p1), ||G1||H∞), . . . , (G(·,pN), ||GN ||H∞)} and
for the H2-norm we obtain S = {||G1||H2 , . . . , ||GN ||H2}.

4.4.3 Assignment of the Error Indicator

In every iteration such as described in Figure 4.8, error indicators are assigned to the
grid points P = {p1, . . . ,pN} using Algorithm 3. As we want to measure the overall
error eT(p), we use the high-order systems from the set G as reference systems for
calculating the error norms in Section 4.2.3. Unfortunately, high-order solves appear in
the formulas for calculating the error indicators. In order to reduce the computational
effort, ways were presented to split the resulting error norms in one part using low-order
solves and another part using high-order solves. As we can reuse for the latter the data
which was computed one time and stored in the set S, only low-order solves have to
be performed for subsequent iterations. Hence, the assignment procedure is cheap with
complexity O(q3) and we obtain a set of error indicators ECV = {eCV(p1), . . . , eCV(pN)}.
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4.4.4 Construction and Optimization of a Surrogate Model

We extract the data {(p1, eCV(p1)), . . . , (pN , eCV(pN))} from sets P , ECV. As we want
to have the error indicator for the entire parameter domain D, we construct a surrogate
model ẽCV : D → R using this data. Then, the surrogate model is inserted into the
introductory optimization problem (4.26) and we maximize the following problem:

p∗ = arg max
p∈D

ẽCV(p). (4.27)

Optimization problem (4.27) can efficiently be solved because the evaluation of the
surrogate model is computationally cheap. Instead of using just the global maximum,
it is also possible to insert a set of new grid points P∗ = {p∗1, . . . ,p∗Nnew} at local maxima
of the surrogate model. The entire procedure is summarized in Algorithm 5. At the
end of each iteration, we calculate the high-order values S∗ according to Section 4.2.3
and the reduced systems G̃∗ at the new grid points P∗. Then, we update the sets
P = P ∪ P∗, S = S ∪ S∗, G̃ = G̃ ∪ G̃∗.

Algorithm 5 Calculation of the next best grid points
Input: Set of reduced systems G̃, of points P , of stored values S
Output: Next best grid points p∗1, . . . ,p∗Nnew

1: Compute set ECV according to Algorithm 3 using sets P , G̃,S
2: Build surrogate model ẽCV(p) using sets P , ECV
3: Solve the optimization problem

{p∗1, . . . ,p∗Nnew} = arg max
p∈D

ẽCV(p). (4.28)

What does the surrogate model ẽCV(p) look like and how can it be optimized? This
depends on the grid type and is explained in the following for two types: the irregular
and the regular grid, both of which are described in more detail in Appendix A.

Surrogate Models for an Irregular Grid

There is a large variety of surrogate models and ways to exploit them for irregular grids
[141, 97, 89, 66, 64]. We apply two promising, interpolation-based surrogate models:
Radial basis function model: We construct a surrogate ẽCV(p) for the error

indicator on the domain D by interpolating the data {(p1, eCV(p1)), . . . , (pN , eCV(pN))}
using RBF according to Appendix A.3.1. In order to find the optimal basis function
with respect to a quality criterion such as the root mean square error, one can use e.g.
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cross-validation. The next grid point is then obtained by finding the maximum value of
the surrogate ẽCV(p). In order to avoid that new data points are inserted too closely to
already sampled data, we introduce constraints for the parameter values around every
grid point ||p−pi||2 ≥ εi for i ∈ {1, . . . , N}. Let dmin(pi) be the distance from point pi
to its closest neighbor. The following strategies are proposed for the constraint εi:

◦ RB1: The common value εi = ε = 0.5 min
i∈{1,...,N}

dmin(pi) minimizes the minimum
distance between any two sample points and hence, finely distributes points in the
domain with high error indicator but might insert points too closely together.

◦ RB2: The common value εi = ε = 0.5 max
i∈{1,...,N}

dmin(pi) maximizes the minimum
distance between any two sample points and hence, broadly distributes the grid
points in the domain [96]. But it prevents from sampling very accurately in a
certain region if necessary.

◦ RB3: The individual value εi = 0.5 dmin(pi) balances the two effects by broadly
distributing where there are few grid points and allows fine sampling in areas
where there are many grid points.

◦ RB4: The fixed value εi = c is useful for a multidimensional parameter space
where the calculation of the distance between the points is expensive.

We can use one strategy for all iterations or switch in between. To sum up, we solve

{p∗1, . . . ,p∗Nnew} = arg max
p∈D

ẽCV(p)

s.t. ||p− pi||2 ≥ εi ∀ i ∈ {1, . . . , N}.
(4.29)

We use a multistart optimization method which runs a local gradient-based solver for
problem (4.29) from various starting points in order to find the global maximum and
multiple local maxima which give the new points P∗ = {p∗1, . . . ,p∗Nnew} [52]. For this,
take a large number of starting points and leave out all starting points which lie in the
constraints in order to reduce the number of optimization procedures. With growing
dimension d of the parameter space, it is useful to choose a growing number Nnew of new
grid points per iteration to decrease the computation time of the refinement process.
An example for the procedure with a 1-dimensional parameter space p ∈ [0, 1] with

N = 7 grid points is given in Figure 4.9. One can see the sampled data points
{(p1, eCV(p1)), . . . , (p7, eCV(p7))}, the RBF surrogate ẽCV(p) and the constraints for
strategy RB3. The next best grid point p∗ is obtained at the maximum value of the
surrogate which satisfies the constraints.
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Figure 4.9: A graphic interpretation of the RBF surrogate model with constraints for
strategy RB3 (grey surfaces).

Kriging model: We have the data {(p1, eCV(p1)), . . . , (pN , eCV(pN))}, but the error
indicator is unknown for the remaining points of the domain D. The Kriging predictor
models this uncertainty in such a way the indicator is assumed to be the realization of a
normally distributed random variable ECV(p) ∼ N

(
ẽCV(p), σ̃CV(p)2

)
where ẽCV(p) is

the mean and σ̃CV(p)2 the variance, see Appendix A.3.2. The hyperparameters of the
Kriging predictor can be determined by using the maximum likelihood estimation. In
Figure 4.10 the Kriging model is shown for a 1-dimensional space p ∈ [0, 1]. One can see
the data points and the Kriging mean ẽCV(p) as a surrogate for the error indicator. In
addition, a confidence interval ẽCV(p)± 2σ̃CV(p) with about 95% probability is shown.
The variance, which is a measure of uncertainty, is large where there are few sample
points and it is zero at the grid points because there is no uncertainty.
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Figure 4.10: A graphic interpretation of the Kriging surrogate model and the confidence
interval.
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A review of optimization methods based on Kriging surrogates is given in [97, 66].
We use the method Efficient Global Optimization from [98] because it gives the amount
of improvement which we can expect to achieve if we insert a grid point at a desired
parameter value. Firstly, let us introduce the improvement function which is the ran-
dom variable I(p) = max(ECV(p) − emax

CV , 0). Hence, an improvement is obtained for
parameter p when the realization of ECV(p) is higher than the so far highest value
emax

CV = max(ECV). This is the case for some probability given by the distribution
ECV(p) ∼ N

(
ẽCV(p), σ̃CV(p)2

)
. We give an example for demonstrating the improve-

ment function in Figure 4.11 where one can see the Kriging surrogate model from
Figure 4.10 and the maximum error indicator emax

CV given by the already sampled data.
In addition, the probability distribution at two parameter values p1, p2 centered around
the means ẽCV(p1) < ẽCV(p2) is shown with different variances σ̃CV(p1)2 > σ̃CV(p2)2.
An improvement occurs when the realization of the random distribution of the error
indicator is higher than emax

CV . The probability for that improvement is given by the
distribution, see an example in Figure 4.11. The probability for an improvement can
be high for two reasons: the first one is shown for p2 where the mean of the distribution
is high and the second one is shown for p1 where there is a high variance and hence, a
broad distribution. Below emax

CV there is no improvement.
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Figure 4.11: A graphic interpretation of the improvement function.

We can now calculate the expected improvement EI : D → R+
0 such as described in

[118, 145, 98]. It is obtained by taking the expected value of the improvement function

EI(p) = E[I(p)] = E[max(ECV(p)− emax
CV , 0)]

=
∫ ∞
emax

CV

(ECV(p)− emax
CV )φσ̃CV(p)

ẽCV(p) (ECV(p))dECV(p)
(4.30)
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where φσ̃CV(p)
ẽCV(p) (ECV(p)) is the probability density function corresponding to the distri-

bution ECV(p) ∼ N
(
ẽCV(p), σ̃CV(p)2

)
. The first term in the integral represents the

improvement over the current highest error indicator and the second term represents
the probability of that improvement. Performing some calculations such as described
in [146], one obtains the formula for the expected improvement

EI(p) =

(ẽCV(p)− emax
CV ) Φ

(
ẽCV(p)−emax

CV
σ̃CV(p)

)
+ σ̃CV(p)φ

(
ẽCV(p)−emax

CV
σ̃CV(p)

)
if σ̃CV(p) > 0

0 if σ̃CV(p) = 0
(4.31)

where Φ and φ are the cumulative distribution function and the probability density
function of the standard normal distribution, respectively. The expected improvement
can be large because of two reasons: firstly because the mean ẽCV(p) is large and
hence, because the error indicator is large, which is called exploitation, or secondly
because σ̃CV(p) is large because of a large uncertainty of the error indicator, which is
called exploration. A sketch of the expected improvement with the Kriging surrogate
model from Figure 4.10 is given in Figure 4.12 on a logarithmic scale. The expected
improvement is very small in most parts of the domain. It is large where the mean is
large, e.g. around p2, or where the uncertainty due to a lack of sample points is large, e.g.
around p1. These two tendencies are balanced by the expected improvement function
which finds a compromise between exploration and exploitation. In this example p∗

with largest value of the expected improvement is the next grid point. At the already
sampled grid points P , where we have σ̃CV(p) = 0, we can expect no improvement.
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Figure 4.12: A graphic interpretation of the refinement procedure for an irregular grid
exploiting the expected improvement.

As it can be seen in Figure 4.12, the expected improvement EI(p) is a function
with few peaks and in between it is very small, so it has a wide range in the order of
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magnitude. Therefore, we restrict it to EI(p) ≥ 10−14 and replace it by its logarithm
which can be searched by an optimizer more efficiently [65]. To sum up, we want to
find the points with maximum value of the expected improvement function by solving
the following optimization problem:

{p∗1, . . . ,p∗Nnew} = arg max
p∈D

log EI(p). (4.32)

We use a multistart method which runs a local gradient-based solver for problem (4.32)
from multiple starting points of domain D to find the new points P∗ = {p∗1, . . . ,p∗Nnew}
which are local (and the global) maxima of the expected improvement function [52].
For this, we have a large number of starting points and leave out all starting points
which do not lie in the basin of attraction of the local maxima in order to reduce the
number of optimization procedures. These points have the property that the expected
improvement is below EI(p) < 10−14.

Surrogate Model for a Regular Grid

For a regular grid of dimension d, we construct a surrogate ẽCV(p) for the error in-
dicator on the domain D by interpolating the data {(p1, eCV(p1)), . . . , (pN , eCV(pN))}
using linear interpolation between the interior points and otherwise nearest neighbor
interpolation. This is shown for a 1-dimensional parameter space p ∈ [0, 1] with N = 7
grid points in Figure 4.13. One can see the data points {(p1, eCV(p1)), . . . , (p7, eCV(p7))}
and the linear surrogate ẽCV(p).
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Figure 4.13: A graphic interpretation of the refinement procedure for a regular grid.

Then, we insert the surrogate ẽCV(p) into the optimization problem (4.27) which can
easily be solved making use of the following property of a regular grid: Each point is
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indexed along the coordinate directions and has a fixed number of predefined neighbors
which can be used to define a slope. Firstly, we calculate the maximum error indicator
emax

CV = max(ECV) with corresponding grid point pmax. Secondly, we calculate the slopes
∆epmax→pj

CV from point pmax to its Nnb neighbor points pj with j ∈ {1, . . . , Nnb}:

∆epmax→pj
CV = eCV(pj)− emax

CV
||pj − pmax||2

. (4.33)

Thirdly, we take the coordinate direction with the most negative slope and we insert a
d− 1-dimensional structure of new grid points P∗ orthogonal to this direction, but on
the opposite side of pmax in the center between the points so that the regularity of the
grid is preserved. For example, for a 2-dimensional grid we insert points lying on a line
and for a 1-dimensional grid we insert one point. The latter case is demonstrated in
Figure 4.13. One can observe the slopes from point pmax to its neighbor points p5, p7.
As the latter slope is most negative, we insert a new point p∗ in the center between grid
points p5, pmax.
Remark: New points are sometimes inserted in the same direction many times, espe-

cially at the boundaries, although it is not necessary. In such a case, choose the second
most negative slope and refine in the corresponding direction in the next iteration.
In contrast to current approaches [142, 38, 30] where the local structure is preserved

using cells—and hence only local interpolation schemes such as linear interpolation can
be applied—we preserve the global structure. For this, some points might be inserted
in regions, where they seem to be unnecessary but they are needed to preserve the
structure of the grid in order to apply global interpolation schemes such as higher order
polynomials, see e.g. Figure 4.22, which saves a lot of grid points.

4.4.5 Properties

The proposed refinement strategy has the following properties:

1. The refinement strategy does not revisit previously sampled points. For a Kriging
surrogate, the variance is zero at the grid points and hence, there is no expectation
of improvement at an already sampled point. For a RBF surrogate, constraints
around the grid points prohibit a re-sampling of a point. For a regular grid,
we insert new grid points in the center between grid points and therefore, the
approach will never sample at previously sampled points.

2. We insert grid points where the error indicator is large or where we can expect the
error indicator to be large for the Kriging surrogate. As the cross-validation-based
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error is a good indicator for the true error, we can expect to insert new points in
regions where the true error is large.

Hence, we may expect the overall error to quickly fall with growing iterations and to
converge to the maximum error due to projection, as the error due to interpolation
vanishes and only the one due to projection remains, see Section 3.8:

lim
N→∞

(
max
p∈P

eT(p)
)

= max
p∈D

eP(p). (4.34)

Global convergence is guaranteed for piecewise polynomial interpolation whereas poly-
nomial interpolation may not lead to global convergence [138]. A well-known coun-
terexample is the Runge’s phenomenon. In that case, the predicted upper bound in
Section 4.5 provides a tool to monitor the convergence.
The computational complexity for one iteration is shown in Table 4.2 for different

norms where we need only Nnew high-order solves. The sign � indicates that the
actual complexity which is dominated by the solution of a system of linear equations
is between O(n) and O(n3) depending on the sparsity of the system matrices. With
this method, it is now possible for interpolation-based methods of pMOR to have the
same computational complexity per iteration as global basis approaches based on error
indicators such as global POD which use the Lp-norm, see e.g. [129].

Table 4.2: Computational complexity per iteration for calculating the set of error indi-
cators and the set of high-order values for different error norms.

Lp H∞ H2

Calculation of set ECV NKLO(q3) NKHO(q3) � NqO(n3)
Calculation of set S∗ � NnewKLO(n3) � NnewKHO(n3) � NnewnsO(n3)

4.5 Model Error Prediction

4.5.1 Overview

The cross-validation error has so far been used as an indicator for the accuracy of the
reduced system. In most cases this indicator is larger than the (unknown) true error
because its computation relies on a smaller training set. Hence, we aim to predict the
true error with a desired probability (1− α) · 100% for α ∈ [0, 1]:

eT(p) . e1−α
est (p). (4.35)
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As the error indicator correlates well with the true error, we firstly determine a mapping
function from the error indicator to the error ẽCV(p) 7→ eT(p). Secondly, we measure
the uncertainty which results in the upper bound e1−α

est (p). In numerical examples in
Section 4.7, we find the cross-validation-based error indicator to exhibit an approxi-
mately linear dependence on the true error on a logarithmic scale. This assumption
especially holds true if the error has some orders of magnitude during the refinement
process. Hence, we create an error pool in Section 4.5.2 and calculate a predicted upper
bound assuming a linear error model in Section 4.5.3 which we use as a stopping crite-
rion for the refinement procedure such as described in Figure 4.8. Then, the refinement
process stops as soon as the maximum predicted error falls below a given tolerance.

4.5.2 Creation of an Error Pool

For the mapping we collect the error indicator and the true error assigned to the grid
points in an error pool E . According to Section 4.4.4 we insert Nnew grid points from
the set P∗ in every iteration. At these points we evaluate the surrogate model to obtain
the error indicators ẽCV(p1), . . . , ẽCV(pNnew). In addition, we evaluate the reduced sys-
tem G̃(p)—before it is updated—at the new grid points and compute the overall errors
eT(p1), . . . , eT(pnew) using set S∗. Then, the error pool is updated in every iteration
and grows for Nnew entries to E = E ∪ {(ẽCV(p1), eT(p1)), . . . , (ẽCV(pNnew), eT(pNnew))}.
For the initial set of grid points we go one step back, leave some points and reduced
systems out and assign error indicators according to Section 4.2.2. Then, we construct
a surrogate model according to Section 4.4.4 and evaluate it at the left-out points where
we also compute the overall error with set S.

4.5.3 Predicted Upper Bound

With the error pool E = {(ẽCV(p1), eT(p1)), . . . , (ẽCV(pN), eT(pN)), we calculate a map-
ping from the error indicator to the true error on a logarithmic scale. For this, we assume
a linear trend on domain D with added random noise [162, 148]

yreg(p) = xTreg(p)β + ε (4.36)

with the predictor xTreg(p) = [1 log(ẽCV(p))], response yreg(p) = log (eT(p)) and vector
β = [β0 β1]T with intercept β0 and slope β1. The random noise ε ∼ N

(
0, σ2

)
is assumed

to be normally distributed with zero mean and variance σ2 and it is independent for
each observation. Therefore, the response yreg(p) ∼ N

(
xTreg(p)β, σ2

)
is also random

with variance σ2 and mean ymean(p) = xTreg(p)β. Since the parameters β and σ2 of
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the error model are unknown, we firstly aim to construct unbiased estimates β̂ and σ̂2

which give the best fit to the data E . For this, we insert the logarithm of the observed
data points of the set E into the error model (4.36) and obtain the following estimation
problem, where each row corresponds to one data sample:


log (eT(p1))
log (eT(p2))

...
log (eT(pN))


︸ ︷︷ ︸

Yreg∈RN

=


1 log (ẽCV(p1))
1 log (ẽCV(p2))
... ...
1 log (ẽCV(pN))


︸ ︷︷ ︸

Xreg∈RN×2

β0

β1


︸ ︷︷ ︸
β

+


ε1

ε2
...
εN


︸ ︷︷ ︸
ε∈RN

. (4.37)

According to the Gauss-Markov-Theorem the best linear unbiased estimator β̂ of β is
given by the least squares solution

β̂ = (XT
regXreg)−1XT

regYreg, (4.38)

where β̂ is a random variable with normal distribution β̂ ∼ N (β, σ2(XT
regXreg)−1). An

unbiased estimator σ̂2 for σ2 is

σ̂2 = (Yreg −Xregβ̂)T (Yreg −Xregβ̂)
N − 2 (4.39)

which is also a random variable. Secondly, we are interested in the prediction error
which is the error between a future random observation yreg(p) from model (4.36) and
its predicted mean ŷmean(p) = xTreg(p)β̂

yreg(p)− ŷmean(p) = xTreg(p)(β − β̂) + ε, (4.40)

where the difference is drawn from the normal distribution

yreg(p)− ŷmean(p) ∼ N (0, σ̂2(1 + xTreg(p)(XT
regXreg)−1xreg(p))). (4.41)

Finally, we calculate a prediction y1−α
est (p) so that a future random observation yreg(p)

is lower than that value with (1− α) · 100% probability where α ∈ [0, 1]

yreg(p) . y1−α
est (p). (4.42)

The predicted value is the predicted mean superposed with the uncertainty from (4.41),
where tαN−2 is the cumulative distribution function of the t-distribution with N − 2
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degrees of freedom and (1− α) · 100% probability

y1−α
est (p) = xTreg(p)β̂ + tαN−2σ̂

√
1 + xTreg(p)(XT

regXreg)−1xreg(p). (4.43)

Hence, the predicted value considers three parts for the uncertainty: firstly the random
error, secondly the error of the estimator β̂ and thirdly the error of the estimator σ̂
which is taken into account using the t-distribution. A prediction for the true error
eT(p) . e1−α

est (p) with (1− α) · 100% probability can then be obtained as

e1−α
est (p) = 10xTreg(p)β̂+tαN−2σ̂

√
1+xTreg(p)(XT

regXreg)−1xreg(p). (4.44)

As an example for a 1-dimensional space p ∈ [0, 1], in Figure 4.14 one can see the
prediction e1−α

est (p) with (1− α) · 100% probability which is demonstrated for the value
ẽCV(p1) with the corresponding probability density function. The underlying data fol-
lows a linear trend on a logarithmic scale.
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Figure 4.14: A graphic interpretation of the linear error model and the predicted value.

In each iteration, we are interested in an upper bound e1−α
est,max for the true maximum

error with probability (1− α) · 100% which we refer to as predicted upper bound:

max
p∈D

eT(p) . e1−α
est,max. (4.45)

For this, we insert the maximum error indicator emax
CV = max(ECV) into (4.44) and

finally, we obtain with xTreg,max = [1 log(emax
CV )]

e1−α
est,max = 10xTreg,maxβ̂+tαN−2σ̂

√
1+xTreg,max(XT

regXreg)−1xreg,max . (4.46)
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The whole procedure is shown in Algorithm 6.

Algorithm 6 Model error prediction
Input: Error indicators ECV, error pool E and probability α
Output: Predicted upper bound e1−α

est,max

1: Compute Xreg,Yreg and unbiased estimators β̂, σ̂2 using set E
2: Compute emax

CV = max(ECV)
3: Calculate with xTreg,max = [1 log(emax

CV )]:

e1−α
est,max = 10xTreg,maxβ̂+tαN−2σ̂

√
1+xTreg,max(XT

regXreg)−1xreg,max . (4.47)

4.5.4 Properties and Application

The predicted upper bound e1−α
est,max leads to a notion of probabilistic rigor, i.e. the error

is bounded with the desired probability (1− α) · 100% assuming the error model holds
true [53]. Looking at its exponent, we can expect the upper bound to fall for growing
iterations for the following reasons:

1. The maximum error indicator emax
CV is expected to fall for the proposed refinement

method as a new point is inserted where the indicator is maximum and hence, the
left term xTreg,maxβ̂ decreases.

2. With each iteration, the error pool grows and we can expect the estimators β̂
and σ̂ to become more accurate and hence, the right term decreases.

We use the predicted upper bound to monitor the convergence of the refinement
method from Section 4.4. In addition, we apply it as a stopping criterion and we stop
the procedure when the predicted upper bound falls below a given tolerance:

e1−α
est,max ≤ etol. (4.48)

4.6 Algorithm

In the previous sections, the algorithms for method selection, model refinement and
error prediction have been presented. These steps are combined to the Black-Box
method which we have already seen in Figure 4.1 in the introductory section. The
method is given in Algorithm 7. We start with a space-filling design of grid points
and identify the most accurate interpolation method. Afterwards, new grid points are
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determined iteratively and the refinement procedure stops when the predicted upper
bound falls below a given tolerance or when the maximum number of iterations is
reached. Finally, the parameter-dependent reduced system is constructed.

Algorithm 7 Black-Box method
Input: Original system G(p), number of starting points N , error tolerance etol,

maximum number of iterations nmax
iter , reduced order q, set K, probability α

Output: Reduced order model G̃(p)
1: Choose a space-filling design with points P = {p1, . . . ,pN}
2: Calculate set S of high-order values at points of the set P
3: Calculate set of low-order systems G̃ at points of the set P
4: Calculate most accurate interpolation method for set K using Algorithm 4
5: Calculate starting error pool E
6: Initialize niter = 0
7: while niter < nmax

iter do
8: Calculate error indicators ECV at points P using data S with Algorithm 3
9: Calculate the predicted upper bound e1−α

est,max with Algorithm 6.
10: if e1−α

est,max ≤ etol then
11: Break
12: end if
13: Calculate surrogate model ẽCV(p) with error indicators ECV
14: Find set of new grid points P∗ using Algorithm 5
15: Calculate set S∗ of high-order values at grid points P∗
16: Calculate set of low-order systems G̃∗ at grid points P∗
17: Update error pool E = E ∪ {(ẽCV(p1), eT(p1)), . . . , (ẽCV(p|P∗|), eT(p|P∗|))}
18: Update the sets P = P ∪ P∗, S = S ∪ S∗, G̃ = G̃ ∪ G̃∗
19: Set niter = niter + 1
20: end while
21: Build interpolant G̃(p) using the reduced systems G̃ at grid points P

The complexity of the Black-Box method is summarized in Table 4.3, where N is the
final number of grid points. The method selection approach is computationally cheap as
it only relies on low-order solves. The error prediction method is cheap for a moderate
number of grid points. The complexity is dominated by the refinement procedure. This
requires N high-order solves, which is however much less than for current approaches.

Table 4.3: Computational complexity of the Black-Box method.
Method selection Model refinement Error prediction

Complexity O(q3) � NO(n3) O(N)
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4.7 Numerical Examples

4.7.1 Cantilever Beam (n = 1200)

The first example is the model of a cantilever beam with order n = 1200 which was
introduced in Section 3.9.2. Parameters of the beam are the length L ∈ [1, 2]m and
the height h ∈ [0.01, 0.02]m. The system is driven with the force F (t) = 10N in the
time interval t ∈ [0, 0.5]s with initial state vector x0 = 0. The integration is done using
the implicit Euler method with the step size ∆t = 10−4s. The accuracy of the output
signal will be measured with the L2-norm. Exemplary plots of the output for different
parameter values are shown in Figure 4.15.
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Figure 4.15: Plots of the output of the beam for different parameter values.

The parameter domain is normalized to D = [0, 1]× [0, 1] for the sake of an easier
presentation and we start with the grid P = {0, 1/3, 2/3, 1} × {0, 1/3, 2/3, 1} which is
shown in Figure 4.16(a). Then, we obtain N = 16 high-order systems which we reduce
to order q = 18 using the two-sided Krylov subspace method with expansion points
s0 = 0 according to Section 2.2.2. The adjustment of the ROBs is done with the PS
approach (3.13) and (3.25). The reference ROBs are calculated with the non-weighted
SVD approach (3.5) and (3.22).

Method Selection

We want to find the most accurate interpolation method for gridded data interpolation
or in other words for a regular grid. For this, we choose between linear (LIN) and
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Lagrange (LAG) interpolation and between the real (RE) or nonsingular (NO) matrix
manifold for the square matrices which give a set of four candidate methods. Using
Algorithm 3, we assign error indicators to the grid points in set P which we use to
calculate the estimated error measures JCV

µ and JCV
RMSE for every combination with for-

mula (4.23) and (4.24). The true error measures Jµ and JRMSE are approximated using
the test grid Ptest = {0, 1/40, . . . , 1} × {0, 1/40, . . . , 1} with formula (4.21) and (4.22),
respectively. Of course, this is very expensive and only done here for the reason of
comparison. The estimated and the true error measures are shown in Table 4.4.

Table 4.4: Comparison between the mean and the root mean square of the error indica-
tors at the grid points and of the errors of a test grid for different interpolation methods
ordered from small (1) to large (4).

LIN (RE) LIN (NO) LAG (RE) LAG (NO)
JCV
µ 0.2255 (4) 0.1078 (3) 0.0945 (2) 0.0339 (1)
Jµ 0.0678 (4) 0.0211 (3) 0.0066 (2) 0.0019 (1)

JCV
RMSE 0.2370 (4) 0.1154 (3) 0.1093 (2) 0.0364 (1)
JRMSE 0.0731 (4) 0.0269 (3) 0.0079 (2) 0.0021 (1)

One can verify the estimated error measures deliver the correct order of the candidate
methods, both for the mean and for the root mean square error. The estimated error
measures are larger than the true ones because they rely on a smaller training data. The
candidate method with Lagrange interpolation and the nonsingular matrix manifold is
identified as the method with smallest error measure, both for the mean and for the
root mean square error which is confirmed by the true error measures. We will use this
method for the refinement procedure in the next section.
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Figure 4.16: Grid for a) iteration niter = 0 and b) iteration niter = 11.
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Model Refinement and Error Prediction

We perform the refinement procedure from Algorithm 7 with nmax
iter = 11. Then, we

obtain an error pool which grows in every iteration and we calculate the predicted
error with 99% probability as a function of the error indicator in every iteration. The
respective values are plotted in Figure 4.17 for iterations niter ∈ {0, 3, 7, 11}. Iteration
niter = 0 describes the starting pool. One can verify there is an approximately linear
behavior on a logarithmic scale between the error indicator and the error which becomes
more accurate with growing error pool. In Figure 4.18 one can see the maximum error
indicator and the maximum error for a growing number of grid points. The latter is
obtained in every iteration using again the test grid Ptest. The true error converges
to the minimum value which is the maximum error due to projection according to
formula (4.34). The final grid is shown in Figure 4.16(b). One can see that the procedure
inserts more points at the boundaries and preserves the regular structure of the grid. For
comparison, the error obtained by full grids such as in Figure A.2 with N ∈ {42, . . . , 92}
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points is shown and one can verify that the proposed method leads to smaller errors. In
addition, one can see the predicted upper bound with 99% probability provides a tight
bound for the error and it becomes more accurate for a growing error pool. Hence, it
can be used as a stopping criterion for the refinement procedure.

10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
rr
o
r
e

N

 

 

e0.99est,max emax
CV emax

T emax
T (FG)

Figure 4.18: Predicted upper bound, maximum error indicator and maximum error
obtained by the proposed method and by full grids (FG) for the beam.

4.7.2 Microthruster Unit (n = 4257)

The next system is a microthruster unit. It is taken from the Oberwolfach Model
Reduction Benchmark Collection [2, 60]. The aim of a microthruster is to produce
propulsion or to generate pressure by igniting a solid fuel. The fuel is ignited by passing
an electric current which generates heat through a polysilicon resistor embedded in a
dielectric membrane. The model we consider is shown in Figure 4.19. It is a device
with a single heat source, where the generated heat dissipates through the device to the
surroundings. The heat generation rate is zero outside of the resistor. The temperature
distribution in the microthruster unit can be expressed by the heat diffusion equation

∇(κ∇T ) +Q− ρcp
∂T

∂t
= 0 (4.49)

with thermal conductivity κ, density ρ, specific heat capacity cp, heat source Q and
temperature T . The boundary is divided into three regions: top, bottom and side. For
each of them, we apply the convection boundary condition describing the heat exchange

QB
i = hi(T − Tair) ∀ i ∈ {1, 2, 3} (4.50)
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where Tair is the temperature of the surroundings which is assumed to be zero. The
two film coefficients h1, h2 vary in the interval hi ∈ [1, 103]Wm−2K−1 and the third
one is h3 = 1Wm−2K−1. The discretization of (4.49) and (4.50) using the finite element
method leads to a parameter-dependent state-space system of order n = 4257

EṪ(t) =
A(h1,h2)︷ ︸︸ ︷

(A0 − h1A1 − h2A2) T(t) + bQ(t)

y(t) = cTT(t),
(4.51)

where T(t) ∈ R4257 is the state vector containing the temperatures at the discretization
nodes. The input is the heat source Q(t) and the output is the temperature in the center
of the heater. For testing the system, we use the H∞-norm which is approximated
using an error grid at 50 frequencies which are logarithmically equally spaced in the
interval 10−1, . . . , 108. In Figure 4.20, the magnitude of frequency responses is shown
for different parameter values. There is a strong change for small parameter values
which the refinement procedure will have to discover. In the following, we perform the
Black-Box method using firstly a regular grid and secondly an irregular grid.
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Figure 4.19: Two-dimensional
asymmetrical model of the mi-
crothruster unit. The axis of
the symmetry is on the left
side.
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Method Selection (Regular Grid)

Firstly, we consider a regular grid for the Black-Box method. For this, the param-
eter domain is normalized to D = [0, 1] × [0, 1] and we start with the grid P =
{0, 1/3, 2/3, 1}×{0, 1/3, 2/3, 1} which is shown in Figure 4.21(a). This delivers N = 16
high-order systems which we reduce to order q = 30 using the one-sided Krylov sub-
space method with expansion points s0 = 40. The adjustment of the ROBs is done
with the PS approach (3.13) and (3.25). The reference ROBs are calculated with
the non-weighted SVD approach (3.5) and (3.22). For the interpolation process, we
consider linear (LIN) and Lagrange (LAG) interpolation and the real (RE) or nonsin-
gular (NO) matrix manifold for the square matrices which give a set with four can-
didate methods. The estimated error measures JCV

µ and JCV
RMSE are calculated with

formula (4.23) and (4.24) and the true ones Jµ and JRMSE are approximated using the
test grid Pselec

test = {0, 1/40, . . . , 1} × {0, 1/40, . . . , 1} with formula (4.21) and (4.22),
respectively. The estimated and the true error measures are shown in Table 4.5.

Table 4.5: Comparison between the mean and the root mean square of the error indica-
tors at the grid points and of the errors of a test grid for different interpolation methods
ordered from small (1) to large (4).

LIN (RE) LIN (NO) LAG (RE) LAG (NO)
JCV
µ 0.0057 (2) 0.2863 (4) 0.0003 (1) 0.1398 (3)
Jµ 0.0015 (2) 0.0802 (4) 0.0002 (1) 0.0348 (3)

JCV
RMSE 0.0066 (2) 0.5853 (4) 0.0003 (1) 0.2446 (3)
JRMSE 0.0019 (2) 0.3481 (4) 0.0006 (1) 0.1727 (3)

One can verify the estimated error measures predict the correct order of the candidate
methods, both for the mean and for the root mean square error. The candidate method
with Lagrange interpolation and the real matrix manifold is identified as method with
smallest error measure which is confirmed by the true error measures. We will use this
method for the refinement procedure.

Model Refinement and Error Prediction (Regular Grid)

We perform the refinement procedure from Algorithm 7 with nmax
iter = 5. In Figure 4.22

one can see the linear surrogate of the error indicator compared to the true error for
iterations niter ∈ {0, 3}. For niter = 0 the linear surrogate is still quite rough as there are
few grid points and the error indicators are assigned to these points. One can verify the
error indicator captures the behavior of the true error, i.e. it is large where the true error
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Figure 4.21: Grid for a) iteration niter = 0 and b) iteration niter = 4.

is large. As we have a regular grid of dimension d = 2, we insert a line of new points such
as described in Section 4.4.4. For some new points it seems they are inserted in regions
where the error is low. But these points are necessary in order to preserve the regular
grid so we can use Lagrange interpolation. In Figure 4.23 one can observe the maximum
error indicator and the true error for a growing number of grid points. The latter is
assessed in every iteration using the test grid Prefine

test = {0, 0.01, . . . , 0.1, 0.145, . . . , 1} ×
{0, 0.01, . . . , 0.1, 0.145, . . . , 1}. The maximum error indicator is smaller than the true
error in the first two iterations. The reason is there is a large parameter change around
the origin of the domain and this region is so far not explored enough. This means
there are not enough grid points so far where an error indicator could be assigned to,
see Figure 4.22(a). Starting with iteration niter = 2, there are enough grid points in the
domain in order to capture the error behavior. One can also see the true error converges
to the minimum value which is defined by the error due to projection according to
formula (4.34) at iteration niter = 4. The corresponding grid is shown in Figure 4.21(b).
The reader can verify the procedure especially refines around the origin where the largest
parameter change occurs, which is in agreement to Figure 4.20. For comparison, the
errors obtained by different full grids with N ∈ {42, 52, 62} points are shown and one
can observe the proposed method leads to smaller errors. In addition, the predicted
upper bound with 99% probability is plotted which underestimates the error in the first
two iterations. The reason is that it depends on the maximum error indicator which
is small in the first two iterations such as described above. Then, it provides a tight
bound for the true error.



4.7 Numerical Examples 77

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h1

h
2

a) Iteration 0: eT

 

 

−4

−3.5

−3

−2.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h1

h
2

c) Iteration 0: ẽCV
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Figure 4.22: True error in a)-b) and surrogate of the error indicator in c)-d) for different
iterations for the microthruster unit on a logarithmic scale. Current grid points are
shown in red and the next grid points in green.
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Figure 4.23: Predicted upper bound, maximum error indicator and maximum error
obtained by the proposed method and by full grids (FG) for the microthruster unit.
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Method Selection (Irregular Grid)

In the next two sections, we consider an irregular grid for the Black-Box method. For
this, we have an initial grid with N = 15 points obtained by Latin hypercube sampling
which is shown in Figure 4.24(a). We reduce the corresponding systems as explained
above. As we have an irregular grid, we interpolate the reduced systems using radial
basis functions, see Appendix A.3.1. We choose between linear (LH), cubic (CB) and
multiquadratic with parameter c = 0.1 (MQ) basis functions and between the real (RE)
or nonsingular (NO) matrix manifold for the square matrices. This gives a set of six
candidate methods. For selecting the most accurate method, we apply Algorithm 4
where we use leave-one-out cross-validation for assigning the error indicators. The
estimated error measures using the error indicators JCV

µ and JCV
RMSE are calculated with

formula (4.23) and (4.24). The true error measures Jµ and JRMSE are approximated
using the test grid Pselec

test with formula (4.21) and (4.22). The estimated and the true
error measures are shown in Table 4.6.

Table 4.6: Comparison between the mean and the root mean square of the error indica-
tors at the grid points and of the errors of a test grid for different interpolation methods
ordered from small (1) to large (6).

LH (RE) LH (NO) CB (RE) CB (NO) MQ (RE) MQ (NO)
JCV
µ 0.0423 (5) 0.0451 (6) 0.0013 (1) 0.0134 (2) 0.0339 (3) 0.0364 (4)
Jµ 0.0192 (5) 0.0221 (6) 0.0013 (1) 0.0082 (2) 0.0149 (3) 0.0177 (4)

JCV
RMSE 0.0808 (6) 0.0755 (5) 0.0021 (1) 0.0281 (2) 0.0648 (4) 0.0613 (3)
JRMSE 0.0523 (5) 0.0530 (6) 0.0186 (1) 0.0377 (2) 0.0433 (3) 0.0478 (4)

The candidate method with the cubic basis function and the real matrix manifold is
identified as the method with smallest error measure, both for the mean and for the
root mean square error which is confirmed by the true error measures. We will use
this method for the refinement procedure in the next section. One can also see the
estimated error measures predict the correct order of the candidate methods for the
mean error. For the root mean square error, the order of the interpolation methods is
obtained correctly, the order of the manifold is mixed up as the errors of the different
manifolds are very similar.
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Figure 4.24: Grid for a) iteration niter = 0 and b) iteration niter = 30 using the Kriging
surrogate.
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for different iterations with the RBF surrogate for the microthruster unit.



80 4 A Black-Box Method for Interpolating Reduced System Matrices

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h1

h
2

a) RBF: eT

 

 

−4

−3.5

−3

−2.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h1

h
2

b) RBF: ẽCV
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Figure 4.26: True error (left) and the corresponding surrogate model of the error indi-
cator (right) for the RBF surrogate (top) and Kriging surrogate (bottom) for iteration
niter = 2 on a logarithmic scale. Current grid points are shown in red and the next
Nnew = 2 grid points in green.

Model Refinement and Error Prediction (Irregular Grid)

We use the refinement method from Algorithm 7 with nmax
iter = 30 and Nnew = 2. Firstly,

we apply a RBF surrogate for every iteration and use strategy RB3 for defining the
constraints. In Figure 4.25 the error pool and the predicted error with 99% probability
as a function of the error indicator are shown for iterations niter ∈ {0, 10, 20, 30}. One
can observe an approximately linear behavior on a logarithmic scale between the error
indicator and the true error and the predicted error becomes more accurate when the
error pool grows. Secondly, we apply a Kriging surrogate which is calculated using
DACE [113] for all iterations and exploit it by maximizing the expected improvement.
For both surrogate models, the error indicator and the true error is shown in Figure 4.26
for iteration niter = 2. The latter is assessed in every iteration using the test grid Prefine

test .
The reader can verify the surrogate models identify regions with large error and insert
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points there. In addition, we can observe the expected improvement function is—such
as described in Section 4.4.4—mostly very small with the restriction EI(p) ≥ 10−14. In
Figure 4.27 and 4.28 the maximum error indicator and the maximum error are plotted
with a growing number of grid points for the RBF and Kriging surrogate, respectively.
For both approaches the maximum error decreases. The Kriging surrogate, whose final
grid is shown in Figure 4.24(b), reaches a smaller error because it balances exploitation
and exploration of the domain. This means that new points are inserted at the origin—
where the error indicator is large—and where we have a large uncertainty concerning
the error indicator. For comparison, the error obtained by 100 random procedures is
shown. For this, Nnew = 2 randomly chosen points are inserted in every iteration. One
can verify the proposed methods lead to smaller errors. One can also see the predicted
upper bound with 99% probability. It grows in the first two iterations as it depends on
the maximum error indicator which also grows. There is a large parameter-dependency
around the origin and we have in this region so far too few grid points that we assign an
error indicator to, see the initial grid in Figure 4.24(a). Starting with iteration niter = 2,
there are enough grid points in the domain in order to capture the error behavior. Then,
we have a tight bound for the error, especially for the case of the RBF surrogate as it
focuses on diminishing the error indicator, whereas the Kriging surrogate also explores
the domain. This is why we find the maximum error indicator and hence, the predicted
upper bound to be larger for the Kriging surrogate than for the RBF surrogate.
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Figure 4.27: Predicted upper bound, max-
imum error indicator and maximum error
obtained by the proposed method and by
100 random procedures (RD) (shown is
the mean with the range of obtained val-
ues per iteration) using the RBF surrogate
for the microthruster unit.
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Figure 4.28: Predicted upper bound, max-
imum error indicator and maximum error
obtained by the proposed method and by
100 random procedures (RD) (shown is
the mean with the range of obtained val-
ues per iteration) using the Kriging surro-
gate for the microthruster unit.
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4.7.3 Silicon Nitride Membrane (n = 60020)

The next example is a silicon nitride membrane with integrated heater and sensing
element which can be a part of a gas sensor, a microthruster unit or an optical filter
[22, 1]. The system is shown in Figure 4.29.

air

thin-film heater silicon substrate

silicon nitride membrane

Figure 4.29: A silicon nitride membrane with integrated heater and sensing element.

The governing equation is the heat diffusion equation (4.49) with initial condition
T0 = 273K with specific heat capacity cp = 400Jkg−1K−1, density ρ = 3000kgm−3 and
thermal conductivity which varies in κ ∈ [2, 5]Wm−1K−1. The Dirichlet boundary
condition is T = 273K at the bottom of the computational domain. The condition at
the top of the membrane is

QB = h(T − Tair), (4.52)

where h is the heat transfer coefficient between the membrane and the ambient air
with temperature Tair which is assumed to be zero. This parameter varies in h ∈
[10, 12]Wm−2K−1. Finite element discretization of the heat diffusion equation (4.49)
and the convection boundary condition (4.52) leads to the parameter-dependent state-
space system of order n = 60020

EṪ(t) =
A(κ,h)︷ ︸︸ ︷

(A0 + κA1 + hA2) T(t) + bQ(t)

y(t) = cTT(t),
(4.53)

where T(t) ∈ R60020 is the state vector containing the temperatures at the discretiza-
tion nodes. Input of the system is the heat generation rate Q(t) and output is the
temperature change within the heater. As a test signal, the system is driven with the
heating power of Q(t) = 2.49mW in time interval t ∈ [0, 0.02]s and the input is zero in
t ∈]0.02, 0.04]s. The integration is done using the implicit Euler method with the step
size ∆t = 10−4s and the accuracy of the output signal is measured with the L2-norm.
The parameter domain is normalized to D = [0, 1]× [0, 1] and we use an irregular grid.
Therefore, we start with an initial grid obtained by Latin hypercube sampling with
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N = 6 points. We obtain six high-order systems which we reduce to order q = 6 using
the one-sided Krylov subspace method with expansion points s0 = 0. The adjustment
of the ROBs is done with the PS approach (3.13) and (3.25). The reference ROBs are
chosen according to the non-weighted SVD approach (3.5) and (3.22).

Method Selection

For the interpolation process we choose between linear (LH), cubic (CB) and multi-
quadratic with parameter c = 0.1 (MQ) basis functions and between the real (RE)
and nonsingular (NO) matrix manifold for the square matrices. This delivers a set of
six candidate methods. For selecting the most accurate method we apply Algorithm 4
where we use leave-one-out cross-validation for assigning the error indicators. The esti-
mated error measures using the error indicators JCV

µ and JCV
RMSE are calculated with for-

mula (4.23) and (4.24). The true error measures Jµ and JRMSE are approximated using
the test grid Ptest = {0, 1/40, . . . , 1} × {0, 1/40, . . . , 1} with formula (4.21) and (4.22),
respectively. The estimated and the true error measures are shown in Table 4.7. The
candidate method with the cubic basis function and the real matrix manifold is iden-
tified as the method with smallest error measure, both for the mean and for the root
mean square error which is confirmed by the true error measures. We use this method
for the refinement procedure in the next section. One can also see that the estimated
error measures predict the correct order of the interpolation methods both for the mean
and the root mean square error using only a grid with N = 6 points. The order of the
manifold is mixed up as the errors of the different manifolds are very similar.

Table 4.7: Comparison between the mean and the root mean square of the error indi-
cators at the grid points and of the real errors of a test grid for different interpolation
methods ordered from small (1) to large (6).

LH (RE) LH (NO) CB (RE) CB (NO) MQ (RE) MQ (NO)
JCV
µ 0.0694 (5) 0.0764 (6) 0.0036 (1) 0.0230 (2) 0.0591 (3) 0.0664 (4)
Jµ 0.0221 (6) 0.0206 (5) 0.0006 (1) 0.0035 (2) 0.0177 (4) 0.0161 (3)

JCV
RMSE 0.0871 (5) 0.0906 (6) 0.0042 (1) 0.0260 (2) 0.0751 (3) 0.0795 (4)
JRMSE 0.0340 (6) 0.0322 (5) 0.0009 (1) 0.0052 (2) 0.0266 (4) 0.0252 (3)

Model Refinement and Error Prediction

We perform the refinement procedure from Algorithm 7 with nmax
iter = 24 and Nnew = 2.

Firstly, we apply a RBF surrogate and use strategy RB3 for defining the constraints
and secondly, we use the Kriging surrogate. In Figure (4.30) and (4.31) one can see the
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maximum error indicator and the maximum true error for a growing number of grid
points for the RBF and Kriging surrogate, respectively. The true error is assessed in
every iteration using the test grid Ptest = {0, 1/19, . . . , 1} × {0, 1/19, . . . , 1}. For both
approaches the maximum error decreases and the Kriging surrogate reaches a smaller
value as it leads to a better exploration of the parameter domain. For comparison,
the errors obtained by 100 random procedures are shown. For this, in every iteration
Nnew = 2 randomly chosen points are inserted. One can verify the proposed methods
lead to smaller errors. In addition, one can see the predicted upper bound with 99%
probability which provides a tight bound for the error for both the RBF and the Kriging
surrogate. It can be used as a stopping criterion for the refinement.
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Figure 4.30: Predicted upper bound, max-
imum error indicator and maximum error
obtained by the proposed method and by
100 random procedures (RD) (shown is
the mean with the range of obtained val-
ues per iteration) using the RBF surrogate
for the silicon nitride membrane.
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Figure 4.31: Predicted upper bound, max-
imum error indicator and maximum error
obtained by the proposed method and by
100 random procedures (RD) (shown is
the mean with the range of obtained val-
ues per iteration) using the Kriging surro-
gate for the silicon nitride membrane.
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Further Results for Interpolating Reduced
System Matrices





5 Stability-Preserving Interpolation of Reduced System
Matrices

5.1 Motivation

Asymptotic stability according to Definition 2.1 is an important issue in signal and
system theory which will be examined in this section for pMOR by matrix interpolation.
It is well-known that a system obtained by the interpolation of local system matrices
is not necessarily asymptotically stable even if the involved models fulfill this property.
This is demonstrated in the following example.

Example: Consider the two asymptotically stable systems ẋ1(t) = A1x1(t) and
ẋ2(t) = A2x2(t) with matrices

A1 =
−1 4

0 −1

 , A2 =
−1 0

4 −1

 . (5.1)

For example, the interpolated matrix

Aint = 0.5A1 + 0.5A2 =
−1 2

2 −1

 (5.2)

has the spectrum {-3,1} and the resulting system ẋ(t) = Aintx(t) is, therefore, unstable
according to criterion S3 of Theorem 2.1.

If we think back to the general framework from Section 3, we now have to realize
that it does not necessarily lead to asymptotically stable interpolated systems even
if the locally reduced systems are asymptotically stable. Some stability-preserving
approaches are suggested in the literature, most of them being restricted to systems
showing certain conditions concerning the structure of the large-scale model. In [11],
stable interpolation on matrix manifolds is proposed for systems of ODE in second-order
form. Stability-preserving matrix interpolation for dissipative systems is suggested
in [55], for Port-Hamiltonian systems in [78] and for passive systems in [61, 58]. All these
methods are efficient because they can make use of Corollary 2.2 as the structure of the
considered high-order systems meets the associated requirements. For the general class
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of parameter-dependent LTI systems, some stability-preserving methods are proposed
in [28, 27, 55]. The approaches have in common that they modify one of the two
ROBs of the local systems in a way that they can make use of Corollary 2.2 to enforce
stability for the interpolated systems. The approach from [55] requires the solution of
high-order generalized Lyapunov equations, which is computationally very expensive.
The method from [28, 27] determines an optimal stabilizing solution with regard to
a quality function which is found by solving high-order optimization problems. For
reducing the computational effort, the authors also propose low-order but suboptimal
optimization problems.
In the following, a procedure for stability-preserving pMOR for the general class of

parameter-dependent, linear time-invariant systems is presented, where all steps of the
(stability-preserving) matrix interpolation are exclusively performed in low-dimensional
vectors and matrices. The method starts with optimization steps similar to [28, 27].
However, it searches for the modified reduced order bases in the available low-order
subspaces and hence, the optimization steps can be done very efficiently.
Preliminary studies for the proposed method were published in [77]. The final

stability-preserving method is described in Sections 5.2–5.6. In Section 5.7, the method
is integrated into the general framework from Section 3 and compared to the prelim-
inary results and to an existing approach in the literature. In Section 5.8, numerical
examples are given which demonstrate the effectiveness of the method.

5.2 Calculation of a Set of Asymptotically Stable Reduced Systems

The proposed method starts with a set of high-order systems G = {G1, . . . ,GN}.
These systems are reduced individually to the order q � n with projection matrices
V1, . . . ,VN and W1, . . . ,WN according to formula (3.2), and we assume that the re-
duced systems Ĝ = {Ĝ1, . . . , ĜN} are asymptotically stable. In order to ensure this
stability, two general approaches are possible: (i) We can use stability-preserving reduc-
tion methods such as TBR or extended versions of Krylov subspace methods (For the
latter, the Stability-Preserving, Adaptive Rational Krylov (SPARK) from [126] guar-
antees stability and the Iterative Rational Krylov Algorithm (IRKA) from [86] delivers
asymptotically stable systems as long as it converges). (ii) For MOR methods which
do not implicitly guarantee stability, one can easily check if the reduced systems are
asymptotically stable by examining their eigenvalues according to criterion S3 from
Theorem 2.1. If a system is then found to be unstable, it can be stabilized via post-
processing, for example by modifying the left or right ROBs [29, 12].
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To sum up, the result of this step is a set of N asymptotically stable reduced sys-
tems Ĝ = {Ĝ1, . . . , ĜN} where e.g. Ĝi is

Ĝi :
{ Êi

˙̂xi(t) = Âix̂i(t) + B̂iu(t)

ŷi(t) = Ĉix̂i(t)
(5.3)

with eigenvalues of the pencil (Âi, Êi) lying in the open left half of the complex plane.

5.3 Adjustment of the Right Reduced Order Bases

The reduced systems of the set Ĝ have different bases V1, . . . ,VN and they need to
be adjusted to the basis of the reference subspace V0 which can be calculated such as
described in Section 3.4.1. For this, the right ROBs are transformed with matrices Ti ∈
Rq×q to Ṽi = ViTi so that a quality function is minimized. A possible quality function
is again the MAC between the local basis Ṽi and the reference basis V0 which can be
written according to (3.18):

JMAC,V,i(Ti) = ‖VT
0 Ṽi − Iq‖F = ‖VT

0 ViTi − Iq‖F . (5.4)

The solution with the minimum value of the cost function, which is zero, is again

Ti = arg min
Ti∈Rq×q

JMAC,V,i(Ti) = (VT
0 Vi)−1. (5.5)

A second possible quality function is like (3.7) the distance (DS) between the local
basis Ṽi and the reference basis V0 which is measured in the Frobenius norm:

JDS,V,i(Ti) = ‖Ṽi −V0‖F = ‖ViTi −V0‖F . (5.6)

The solution with minimum value of the cost function is again obtained by using the
pseudoinverse

Ti = arg min
Ti∈Rq×q

JDS,V,i(Ti) = V(l)+
i V0. (5.7)

To sum up, the matrices T1, . . . ,TN are calculated such as described in the framework
from Section 3.4.1 in order to adjust the right ROBs for accuracy reasons.
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5.4 Stabilizing Procedure Using Semidefinite Programming

In this section, a stabilization method is described for the interpolation of reduced matri-
ces. The demands that we impose on the method are—besides stability preservation—
accuracy and the operation on low-order systems. The main idea is the following: Start-
ing from the transformed bases W̃i = WiMi for i ∈ {1, . . . , N} with Mi = (WT

0 Wi)−1

using the MAC approach or with Mi = W(l)+
i W0 using the DS approach, we minimally

modify the new left ROBs W̃i until stability is guaranteed.

5.4.1 Feasibility Problem

An optimization problem is formulated in which a convex objective function JW is
minimized subject to the constraint that the interpolated system G̃(p) is asymptotically
stable. According to criterion S1 from Theorem 2.1, this constraint is equivalent to the
existence of a Lyapunov function V (x̃(t),p). Hence, we obtain the optimization problem

min JW s.t. ∃ V (x̃(t),p) ∀ p ∈ D. (5.8)

According to Corollary 2.2, the existence of a Lyapunov function is guaranteed for the
superposition of strictly dissipative systems when nonnegative weighting functions are
applied. Hence, the optimization problem (5.8) is rewritten as N problems, one for each
grid point. We introduce for each i ∈ {1, . . . , N} the basis W̃i as optimization variable
and we aim to calculate this variable so that the system G̃i is strictly dissipative and
the objective function JW,i reaches its minimum value:

min
W̃i∈Rn×q

JW,i(W̃i)

s.t. W̃T
i AiṼi + (W̃T

i AiṼi)T < 0

W̃T
i EiṼi > 0.

(5.9)

Unfortunately, the matrices W̃i are of high-order and hence, the optimization problems
are intractable. As a remedy, the new bases W̃i are searched in the available subspaces
Wi = span{Wi}. For this, the matrices Mi ∈ Rq×q are introduced as new variables
which provide the new bases W̃i = WiMi and the optimization problems

min
Mi∈Rq×q

JW,i(Mi) (5.10)

s.t. MT
i ÂiTi + (MT

i ÂiTi)T < 0 (5.11)

MT
i ÊiTi > 0 (5.12)
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which only contain low-order matrices. For solving these problems efficiently using inte-
rior point methods such as described e.g. in [159], they are transformed into semidefinite
programs. These kinds of optimization problems deal with symmetric positive or neg-
ative (semi-)definite matrices as variables. To get to this form, the change of variable

Mi = PiÊiTi (5.13)

is introduced, where the new variables Pi ∈ Sq are symmetric matrices [155]. Then,
formula (5.13) is inserted into (5.12) which gives the necessary constraint on the defi-
niteness of the optimization variables

MT
i ÊiTi = TT

i ÊT
i PiÊiTi =

(
ÊiTi

)T
Pi

(
ÊiTi

)
> 0

⇒ Pi > 0.
(5.14)

For constraint (5.11) it follows

MT
i ÂiTi + (MT

i ÂiTi)T = TT
i ÊT

i PiÂiTi + TT
i ÂT

i PiÊiTi

= TT
i

(
ÊT
i PiÂi + ÂT

i PiÊi

)
Ti < 0

⇒ ÊT
i PiÂi + ÂT

i PiÊi < 0.

(5.15)

Finally, the new optimization problems are

min
Pi∈Sq

JW,i(Pi)

s.t. ÊT
i PiÂi + ÂT

i PiÊi < 0

Pi > 0.

(5.16)

For assessing the solvability of problems (5.16), the theory of convex optimization
tells us that only the constraints have to be examined and the quality function can be
set to zero which is referred to as feasibility problem [82]. In this case, the constraints
are linear matrix inequalities (LMIs) which are equivalent to the generalized Lyapunov
inequality [32]. The problem (5.16) admits a solution because the eigenvalues of the
pencil (Âi, Êi) lie in the open left half of the complex plane as a result of Section 5.2.

5.4.2 Objective Functions

In the previous section the feasibility problem was introduced which guarantees stable
matrix interpolation for all solutions satisfying the constraints. In this section, amongst
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these solutions the optimal stabilizing one is determined with regard to an objective
function. The objective function, which needs to be minimized, is chosen in such a way
that we obtain an accurate matrix interpolation. For this, we can use the objective
functions described in Section 5.3 which adjust for each i ∈ {1, . . . , N} the basis Wi

to the basis of the reference subspace W0 by transforming it to W̃i = WiMi with
Mi ∈ Rq×q. The basis of the reference subspace W0 can be calculated according to
Section 3.4.2. Again, one can use the MAC criterion as an objective function:

JMAC,W,i(Mi) = ‖WT
0 WiMi − Iq‖F . (5.17)

After inserting the new choice for Mi from (5.13), it follows

JMAC,W,i(Pi) = ‖WT
0 WiPiÊiTi − Iq‖F . (5.18)

The matrices Xi = WT
0 Wi ∈ Rq×q and Yi = ÊiTi ∈ Rq×q can be precomputed and

hence, the objective function which only comprises low-order matrices is obtained:

JMAC,W,i(Pi) = ‖XiPiYi − Iq‖F . (5.19)

This objective function is convex as the composition of the Frobenius norm, which is a
convex function, with the affine map Pi 7→ XiPiYi − Iq is convex [33].

The second possible objective function is again the DS approach which describes the
distance between the ROBs:

JDS,W,i(Mi) = ‖WiMi −W0‖F . (5.20)

After inserting the new choice for Mi from (5.13), it follows

JDS,W,i(Pi) = ‖WiPiÊiTi −W0‖F . (5.21)

Unfortunately, this objective function is of large order since the matrices Wi,W0 have
the size n× q. As a remedy, we take the square of the Frobenius norm, rewrite it using
the trace and obtain

JDS,W,i(Pi)2 = ‖WiPiÊiTi −W0‖2
F

= tr(TT
i ÊT

i PiWT
i WiPiÊiTi)− 2tr(WT

0 WiPiÊiTi) + tr(WT
0 W0)

= ‖(WT
i Wi)1/2PiÊiTi‖2

F − 2tr(WT
0 WiPiÊiTi) + tr(WT

0 W0).
(5.22)
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Again, the low-order matrices Xi, Yi and Zi = (WT
i Wi)1/2 ∈ Rq×q can be precom-

puted. When the third, constant term is left-out, the final objective function is obtained:

JDS,W,i(Pi) = ‖ZiPiYi‖2
F − 2tr(XiPiYi). (5.23)

The first term is convex because the composition of the square which is a convex,
nondecreasing function for nonnegative arguments and the convex Frobenius norm is
convex. The whole quality function is convex as the sum of the first convex function
and the trace which is a linear function is also convex [33].

5.4.3 Algorithm

The proposed method modifies the left ROBs for an accurate interpolation while making
the local reduced models’ representations strictly dissipative and hence, guaranteeing
stability of any interpolated reduced model. For this, the objective function (5.19)
or (5.23) is minimized for every grid point subject to the constraint (5.14) and (5.15). As
the objective functions are convex and the constraints are linear, a convex optimization
problem is obtained which is referred to as STability Algorithm Based on Linear matrix
inequalitiEs (STABLE) and which is given in Algorithm 8. As STABLE is a low-order
optimization problem, it can easily be implemented and solved e.g. in MATLAB using
convex optimization solver packages which rely on semidefinite programming such as
CVX [83, 82] or YALMIP [108]. Then, STABLE delivers the matrices M1, . . . ,MN .

Algorithm 8 STABLE
Input: N matrices Êi, Âi,Ti, Wi, reference basis W0
Output: N matrices Mi

1: for i = 1 to N do
2: Compute Xi = WT

0 Wi, Yi = ÊiTi, Zi = (WT
i Wi)1/2

3: Solve the convex optimization problem:

min
Pi∈Sq

(
‖ZiPiYi‖2

F − 2tr(XiPiYi)
)

or

min
Pi∈Sq

‖XiPiYi − Iq‖F

s.t. ÊT
i PiÂi + ÂT

i PiÊi < 0
Pi > 0

4: Compute Mi = PiÊiTi

5: end for



94 5 Stability-Preserving Interpolation of Reduced System Matrices

5.5 A Dual Stabilizing Procedure

In Section 3.4.2 the notion of duality between the right and left ROBs was introduced.
Hence, in contrast to STABLE we can as well calculate Mi for accuracy reasons with
Mi = (WT

0 Wi)−1 for the MAC approach or Mi = W(l)+
i W0 for the DS approach

with i ∈ {1, . . . , N}. Then, the stabilizing procedure minimally modifies the right
ROBs Ṽ1, . . . , ṼN compared to the approach of the framework from Section 3.4.1. For
this, in analogy to the previous section we consider the transformation matrices Ti as
variables for the N low-order optimization problems

min
Ti∈Rq×q

JV,i(Ti)

s.t. MT
i ÂiTi + (MT

i ÂiTi)T < 0

MT
i ÊiTi > 0

(5.24)

where JV,i is a convex quality function which is minimized. These optimization prob-
lems are again supposed to be transformed into semidefinite programs. For this, we
introduce the change of variable

Ti = PiÊT
i Mi (5.25)

where the new variables Pi ∈ Sq are symmetric matrices [155] which lead to the following
optimization problems

min
Pi∈Sq

JV,i(Pi)

s.t. ÂiPiÊT
i + ÊiPiÂT

i < 0

Pi > 0.

(5.26)

In this case the constraints are again LMIs which are now equivalent to the dual gen-
eralized Lyapunov inequality [32]. Amongst all solutions satisfying the constraints, the
optimal stabilizing solution, which is the one minimizing a quality function for the
sake of accurate matrix interpolation, is supposed to be determined. As an objective
function one can again use the MAC approach

JMAC,V,i(Ti) = ‖VT
0 ViTi − Iq‖F (5.27)

which can be written with (5.25) to

JMAC,V,i(Pi) = ‖VT
0 ViPiÊT

i Mi − Iq‖F . (5.28)
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One can also take the DS approach with

JDS,V,i(Ti) = ‖ViTi −V0‖F (5.29)

which can be rewritten with formula (5.25) to

JDS,V,i(Pi) = ‖(VT
i Vi)1/2PiÊT

i Mi‖2
F − 2tr(VT

0 ViPiÊT
i Mi). (5.30)

With Xi = VT
0 Vi, Yi = ÊT

i Mi, Zi = (VT
i Vi)1/2 one obtains the dual stability-

preserving method d-STABLE which is given in Algorithm 9 and which is also a convex,
low-order optimization problem.

Algorithm 9 d-STABLE
Input: N matrices Êi, Âi,Mi, Vi, reference basis V0
Output: N matrices Ti

1: for i = 1 to N do
2: Compute Xi = VT

0 Vi, Yi = ÊT
i Mi, Zi = (VT

i Vi)1/2

3: Solve the convex optimization problem:

min
Pi∈Sq

(
‖ZiPiYi‖2

F − 2tr(XiPiYi)
)

or

min
Pi∈Sq

‖XiPiYi − Iq‖F

s.t. ÂiPiÊT
i + ÊiPiÂT

i < 0
Pi > 0

4: Compute Ti = PiÊT
i Mi

5: end for

5.6 Online Interpolation Process

Performing STABLE or d-STABLE for every grid point gives strictly dissipative reduced
systems with Ẽi > 0 and Ãi + ÃT

i < 0. According to Corollary 2.1 they have the
Lyapunov function V (x̃i(t),pi) = x̃i(t)T Ẽix̃i(t). The resulting systems are

G̃i :
{ Ẽi︷ ︸︸ ︷

MT
i ÊiTi

˙̃xi(t) =
Ãi︷ ︸︸ ︷

MT
i ÂiTi x̃i(t) +

B̃i︷ ︸︸ ︷
MT

i B̂i u(t)

ỹi(t) = ĈiTi︸ ︷︷ ︸
C̃i

x̃i(t).
(5.31)
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In the online phase, i.e. when a reduced order model for the new parameter vector pint

is supposed to be calculated, this is simply done by the interpolation of the precomputed
and stored matrices. According to Corollary 2.2 the interpolation has to take place with
nonnegative weighting functions ωi(pint) ∈ R+

0 and at least one positive ωi(pint) ∈ R+.
One example for such weighting functions are linear basis functions. Then, the new
reduced system for the parameter vector pint is given by

G̃(pint) :
{ Ẽ(pint) ˙̃x(t) = Ã(pint)x̃(t) + B̃(pint)u(t)

ỹ(t) = C̃(pint)x̃(t),
(5.32)

where
Ẽ(pint) =

∑N

i=1 ωi(pint)Ẽi,

Ã(pint) =
∑N

i=1 ωi(pint)Ãi,

B̃(pint) =
∑N

i=1 ωi(pint)B̃i,

C̃(pint) =
∑N

i=1 ωi(pint)C̃i.

(5.33)

Following Corollary 2.2, the interpolated system possesses the Lyapunov function
V (x̃(t),pint) = x̃(t)T

(∑N
i=1 ωi(pint)Ẽi

)
x̃(t). The procedure implicitly interpolates the

Lyapunov functions and hence, the interpolated system is asymptotically stable for the
entire domain D.

5.7 Classification of the Stability-Preserving Method

5.7.1 Integration into the General Framework

The proposed method can be formulated in the general framework from Section 3 and
hence, the Black-Box method from Section 4 and extends it to stability preservation
without any limiting conditions concerning the structure of the high-dimensional sys-
tem. The stability-preserving procedure is shown in Figure 5.1. In the first step the
parameter space is sampled and in the second step the local systems are reduced as-
suming a set of asymptotically stable reduced system. In the third step the ROBs are
adjusted to a reference basis. Here, we have two possibilities: we can either use STABLE
or d-STABLE. For STABLE, we first adjust the right ROBs with matrices Ti like the
general framework and the algorithm determines matrices Mi which minimally modify
the left ROBs compared to the general framework so that the stability constraints are
satisfied. For d-STABLE, this is the other way round and we adjust the left ROBs
with matrices Mi like the general framework and the algorithm determines matrices Ti
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which minimally modify the right ROBs compared to the general framework. For the
interpolation procedure, the proposed method has a limited number of options as it
is restricted to use the manifold of real matrices and to apply nonnegative weighting
functions such as linear ones. In the online phase, the weighting functions are again
evaluated and multiplied with the system matrices.

Adjustment of ROBs

STABLE →

New value pint

Interpolation with real matrix manifold

and nonnegative weighting functions

Sampling

Reduction

Adjustment of ROBs

d-STABLE →

offline

online

Figure 5.1: Structure of the stability-preserving method.

So far, it is still an open question if STABLE or d-STABLE leads to more accurate
interpolated systems on domain D in the sense of an aggregated error measure such as
the mean (4.19) or the root mean square (4.20). The best choice is problem-dependent
and it can be determined using Algorithm 4. For this, cross-validation-based error
indicators are calculated for both approaches in order to determine an estimate for the
error measure. Then, the approach with the minimum error measure is chosen. This is
demonstrated by means of an example in Section 5.8.2.

5.7.2 Comparison to the Literature

In the following, the proposed method is compared to preliminary results and to an
existing approach in the literature.

Comparison to Preliminary Results
A first approach for stability preservation was published in [77]. In principle, this
method resembles the explanations in Section 5.4.1, i.e. the locally reduced systems are
transformed to a strictly dissipative form and hence, stability preservation is guaranteed
for all solutions satisfying the Lyapunov inequality (5.14)–(5.15). However, it has so far
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been an open question which solution we should choose as—depending on this choice
and on the examined system—the interpolation can become very inaccurate. The new
method determines amongst these solutions automatically the optimal stabilizing one
such as described in Section 5.4.2 and hence, we can expect an accurate interpolation.
Due to this automatic selection procedure, the new method can easily be integrated into
the Black-Box method. By contrast, the method in [77] requires the user to interfere
which prohibits an automatic procedure. The new method is computationally more
expensive than the one in [77] as LMIs need to be solved. Nevertheless, this approach
is still very cheap as the optimization problems only contain low-order matrices.

Comparison to an Existing Approach
A method is proposed in [55] which guarantees stable interpolation of reduced system
matrices for the special case of strictly dissipative high-order systems. It applies for
each i ∈ {1, . . . , N} the one-sided reduction Wi = Vi, adjusts the right ROB with
Ti = (VT

0 Vi)−1 and chooses for the left ROB the matrices Mi = Ti.

Proposition 5.1. STABLE comprises the method from [55] as a special case for strictly
dissipative systems and extends it to the general case of LTI systems.

Proof. For high-order system Gi with Ei > 0 and Ai + AT
i < 0, perform a one-sided

reduction method with Wi = Vi which leads to a reduced system fulfilling Êi > 0 and
Âi + ÂT

i < 0 [41]. Take for the adjustment of the right ROBs, just like in [55], the
matrix Ti = (VT

0 Vi)−1 which corresponds to the MAC approach (5.5). Hence, we are
in the branch using STABLE in Figure 5.1. For adjusting the left ROBs, we consider
the objective function of the MAC approach (5.18)

JMAC,W,i(Pi) = ‖WT
0 WiPiÊiTi − Iq‖F = ‖VT

0 ViPiÊiTi − Iq‖F = ‖T−1
i PiÊiTi − Iq‖F

which reaches its minimum value, JMAC,W,i = 0, for Pi = Ê−1. The same holds true
for the objective function of the DS approach (5.21). The optimal solution belongs to
the feasible set because it fulfills the first constraint (5.14) owing to

Pi = Ê−1
i > 0

and the second constraint (5.15) because of

ÊT
i PiÂi + ÂT

i PiÊi = ÊT
i Ê−1

i Âi + ÂT
i Ê−1

i Êi = Âi + ÂT
i < 0.

Hence, STABLE gives Mi = PiÊiTi = Ê−1
i ÊiTi = Ti which is the result from [55].
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5.8 Numerical Examples

5.8.1 Academic Example

Consider a high-order system E(p)ẋ(t) = A(p)x(t) with x(t) ∈ Rn. The domain p ∈ D
with D = [0, 1] is sampled for two parameter values p1 = 0, p2 = 1. The resulting
systems Eiẋi(t) = Aixi(t) with i ∈ {1, 2} are reduced to order q = 2 � n using
projection matrices Vi = V0 ∈ Rn×2 and Wi = W0 ∈ Rn×2 where the columns are
an orthonormal basis. This is supposed to result according to formula (3.2) in the
asymptotically stable systems Êi

˙̂xi(t) = Âix̂i(t) with Êi = I2 and

Â1 =
−2 5

0 −2

 , Â2 =
−2 0

5 −2

 . (5.34)

Firstly, it will be shown what happens without using STABLE. The respective values
are labeled with WS. The transformation matrices are found to be TWS

i = I2,MWS
i = I2

according to formulas (3.16) or (3.8) and (3.24) or (3.23) which minimize the objective
functions to JWS

V,i = 0, JWS
W,i = 0. Then, the adjusted ROBs are ṼWS

i = V0,W̃WS
i = W0

and the transformed systems are ˙̃xi(t) = Âix̃i(t) according to (3.28). The interpo-
lated system is ˙̃x(t) = ÃWS(p)x̃(t) with ÃWS(p) = ∑2

i=1 ωi(p)Âi where ωi(p) are linear
weighting functions. Figure 5.2 shows the maximum value of the real part of the eigen-
values λmax of ÃWS(p) which is nonnegative for p ∈ [0.2, 0.8]. Hence, unstable systems
are obtained in this interval according to stability criterion S3 from Theorem 2.1.

Figure 5.2: Maximum real part of the eigenvalues λmax of the interpolated system with-
out and with STABLE. The unstable region is shown in red.

Secondly, the effect of the proposed stability-preserving method is demonstrated. For
adjusting the right ROBs, we obtain the transformation matrices Ti = I2 according
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to (5.5) or (5.7) which is equivalent to the approach without using STABLE. For ad-
justing the left ROBs, we use STABLE which is demonstrated graphically below. To
begin with, we introduce the variables of the algorithm

Pi =
p11,i p12,i

p12,i p22,i

 ∈ S2. (5.35)

Then, the first constraint (5.14) is described for the two systems by the convex cones

Pi = {Pi : Pi > 0}. (5.36)

The notion of convex cones is described in Definition C.2. The intersection of the convex
cone of positive definite matrices with the linear space from the second constraint (5.15)
provides for the two systems the convex cones

C1 = {P1 : P1 > 0, P1Â1 + ÂT
1 P1 < 0},

C2 = {P2 : P2 > 0, P2Â2 + ÂT
2 P2 < 0}.

(5.37)

The convex cones C1, C2 are non-empty as the systems Êi
˙̂xi(t) = Âix̂i(t) are asymptot-

ically stable [32, 115] and they comprise all stability-preserving solutions Pi.

Figure 5.3: Convex cones C1 (green), C2 (blue) and P1,P2 (red).

The convex cones P1,P2, C1, C2 are illustrated in Figure 5.3 and the axes show the
entries of Pi. It can be seen that the solutions MWS

i = PWS
i = I2 from the procedure

above without using STABLE are not included in the convex cones C1, C2 and hence,
do not guarantee stable matrix interpolation. It can also be seen that the convex
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cones C1, C2 do not intersect which shows that the proposed stability-preserving method
does not require a common Lyapunov function for the two systems such as known in
the field of switched systems [111, 110, 74]. In order to find the optimal solutions P∗i ,
consider the objective function (5.19) and (5.22)

JW,i = JMAC,W,i = ‖Pi − I2‖2
F = tr(PiPi)− 2tr(Pi) + tr(I2) = JDS,W,i

= p2
11,i + 2p2

12,i + p2
22,i − 2p11,i − 2p22,i + 2

= (p11,i − 1)2 + (p22,i − 1)2 + 2p2
12,i.

(5.38)

Then, STABLE minimizes the objective functions JW,i so that the optimal solutions P∗i
are elements of the respective convex cone Ci:

P∗1 =
0.7446 0

0 1.1635

 , P∗2 =
1.1635 0

0 0.7446

 . (5.39)

A graphical interpretation of the optimization problem is given in Figure 5.4. The axes
show the entries p11,i, p22,i of the matrices Pi with p12,i = 0. The objective functions JW,i

from equation (5.38) describe circles in the plane p12,i = 0 with midpoint (p11,i, p22,i) =
(1, 1) and radius

√
JW,i. The convex cones C1, C2 are shown as triangles which are the

intersection of the convex cones from Figure 5.3 with the plane p12,i = 0. STABLE
searches for the solutions (p∗11,i, p

∗
22,i) with minimum objective functions JW,i so that

the solutions lie in the convex cones C1, C2. This is the case for the solutions (5.39)
which are the points where the circle with radius

√
JW,i = 0.303 touches the cones.

p 11,i

p
2
2
,i

0.303

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.4: Convex cones C1 (green), C2 (blue) in the plane p12,i = 0 and opti-
mal (p∗11,i, p

∗
22,i) in red with minimum cost function JW,i = 0.3032.
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This results in transformation matrices Mi = P∗i which lead to reduced systems
P∗i ˙̃xi(t) = P∗i Âix̃i(t). Then, the interpolated reduced system is Ẽ(p) ˙̃x(t) = Ã(p)x̃(t)
with Ẽ(p) = ∑2

i=1 ωi(p)P∗i and Ã(p) = ∑2
i=1 ωi(p)P∗i Âi with linear ω1(p), ω2(p). The in-

terpolated system possesses the Lyapunov function V (x̃(t), p) = x̃(t)T
( 2∑
i=1

ωi(p)P∗i
)
x̃(t)

and hence, is asymptotically stable according to criterion S1 from Theorem 2.1 for the
whole domain D. This is confirmed in Figure 5.2 where the maximum value of the real
part of the eigenvalues λmax of the pencil (Ã(p), Ẽ(p)) is negative for domain D.
The price paid is a slight increase of the minimum value of the objective functions

JW,i(P∗i ) because the left ROBs are distorted to W̃i = W0P∗i which is shown in Ta-
ble 5.1. Due to duality, it would also be possible to use d-STABLE which distorts the
right ROBs as little as necessary and leaves the left ROBs unchanged.

Table 5.1: Comparison of the adjusted ROBs and of the respective minimum values of
the objective functions for matrix interpolation with and without STABLE.

Without STABLE With STABLE

ROBs ṼWS
i = V0 Ṽi = V0

W̃WS
i = W0 W̃i = W0P∗i

Objective functions JWS
V,i (I2) = 0 JV,i(I2) = 0
JWS

W,i(I2) = 0 JW,i(P∗i ) = 0.3032

5.8.2 Anemometer (n = 29008)

The next example is an anemometer which is a flow sensing device [1, 121]. It consists
of a heater and two temperature sensors which are located before and after the heater.
If there is no flow, the heat dissipates symmetrically into the fluid. This symmetry
is disturbed if a flow is applied to the fluid which leads to convection of the temper-
ature field. Then, the fluid velocity can be determined from the difference between
the temperatures measured with the sensors. The governing equation is given by the
convection-diffusion PDE

ρcp
∂T

∂t
= ∇(κ∇T )− ρcpv∇T +Q, (5.40)

where ρ denotes the mass density, cp = 0.5Jkg−1K−1 is the specific heat, T is the
temperature and Q the heat flow into the system caused by the heater. The thermal
conductivity varies in κ ∈ [1, 2]Wm−1K−1 and the fluid velocity in v ∈ [0.1, 2]ms−1.
Finite element discretization of the convection-diffusion equation (5.40) with Dirichlet
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boundary conditions, which are set to zero, leads to the parameter-dependent state-
space system of order n = 29008

EṪ(t) =
A(κ,v)︷ ︸︸ ︷

(A0 + κA1 + vA2) T(t) + bQ(t)

y(t) = cTT(t),
(5.41)

where T(t) ∈ R29008 is the state vector containing the temperatures at the discretiza-
tion nodes. The input is the heat source Q(t) and the output is the temperature
difference between the sensors. In the following, the parameter domain is normal-
ized to D = [0, 1] × [0, 1]. The domain is sampled for the set of grid points P =
{0, 1/5, . . . , 1} × {0, 1/5, . . . , 1} which result in N = 36 high-order systems. They are
reduced to order q = 10 using IRKA and deliver a set of asymptotically stable re-
duced systems. The reference bases V0,W0 are calculated with the non-weighted SVD
approach (3.5) and (3.22).
Firstly, it will be demonstrated what happens if we do not use the stability-preserving

method. The transformation matrices for adjusting the ROBs are calculated using
the MAC approach and DS approach according to formulas (3.16) or (3.8) and (3.24)
or (3.23) such as in the generalized framework. The transformed systems from (3.28)
are interpolated using linear weighting functions. In Figure 5.5 the overall error eT

of the interpolated reduced system is plotted for both quality functions using the test
grid Ptest = {0, 1/80, . . . , 1} × {0, 1/80, . . . , 1}. For testing the system, the H∞-norm
is approximated according to formula (4.6) using an error grid with 50 frequencies
which are equally spaced in the interval [101, . . . , 106]. For the regions with unstable
interpolated systems the H∞-norm equals infinity.
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Figure 5.5: Error eT measured in H∞-norm without the stability-preserving method
and a) MAC approach b) DS approach.
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Secondly, the proposed stability-preserving method is applied. For specifying and
solving the convex programs STABLE or d-STABLE, the package CVX is used [83, 82].
The results are obtained using solver SeDuMi [154] and verified with SDPT3 [158]. The
error eT of the interpolated reduced system is shown in Figure 5.6 for both STABLE and
d-STABLE with the MAC approach and the DS approach. The reader can verify that
the proposed methods preserve the stability of the interpolated system for domain D. In
addition, the methods deliver nearly as accurate results as the method without stability
preservation in regions where the latter is asymptotically stable.
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Figure 5.6: Error eT measured in H∞-norm using a) STABLE (MAC) b) STABLE (DS)
c) d-STABLE (MAC) d) d-STABLE (DS).

In order to decide which of the four combinations to use, we apply Algorithm 4.
For this, cross-validation-based error indicators are assigned to the grid points. In
Table 5.2 one can see the mean of the indicators JCV

µ with formula (4.23). The true
error measure Jµ is approximated using the test grid Ptest with formula (4.21). In this
example, the method selection algorithm identifies STABLE with the MAC approach
as the best combination which is confirmed by the true error.
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Table 5.2: Comparison between the estimated mean using the error indicator and the
true mean for different interpolation methods ordered from small (1) to large (4).

STABLE (MAC) STABLE (DS) d-STABLE (MAC) d-STABLE (DS)
JCV
µ 0.0561 (1) 0.0628 (2) 0.0926 (4) 0.0817 (3)
Jµ 0.0156 (1) 0.0170 (2) 0.0206 (4) 0.0187 (3)





6 Sparse-Grid-Based Interpolation for
High-Dimensional Parameter Spaces

6.1 Motivation

If we have many parameters, i.e., the dimension d of D ⊆ Rd is large, the interpola-
tion with the pMOR approach from Section 3 can become expensive. The reason is
that common grid-based approaches suffer from the curse of dimensionality, leading to
costs that grow exponentially with the number of parameters [37]. To overcome the
curse of dimensionality, we need to find a basis of the interpolant where the relevant
information is represented by as few basis functions as possible. Hence, we need to
identify and omit the basis functions from a full grid which contribute only little to
the quality of the interpolation. In order to find such a basis, we employ interpolation
methods based on sparse grids, see Appendix A.4, which allow us to have a grid-based
approach in (moderately) high-dimensional settings and which hierarchically set new
grid points based on a sparse tensor product construction with asymptotic error decay.
A d-dimensional sparse grid has O(h−1 log(h−1)d−1) grid points. Hence, it has signifi-
cantly fewer points than a corresponding full grid with mesh width h in each direction
which has O(h−d) points. In return, the accuracy deteriorates only slightly, e.g. from
O(h2) to O(h2 log(h−1)d−1) for linear basis functions. This beneficial cost-benefit ratio
enables us to achieve a similar approximation quality while the sparse grid needs much
fewer points in higher dimensions than common grid-based methods. In addition, the
sparse grid defines where to insert new grid points and provides error estimates which
can be used for developing a refinement method.
The beneficial combination of pMOR and sparse grids has already been exploited

in [20, 21] for the interpolation of transfer functions and in [130, 39] for the interpola-
tion of the output of interest derived from the solution of parametrized PDEs. Here, the
pMOR approach based on matrix interpolation from Section 3 is combined with sparse
grids in order to extend it to multidimensional parameter spaces. The resulting method
was published in [72]. It is divided into two parts: The first, offline part is the construc-
tion of the interpolants which is described in Section 6.2. It automatically calculates
the grid points and the interpolants according to an adaptivity criterion. The second,
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online part is the evaluation of the interpolants which is described in Section 6.3. A
comparison to the general framework concerning the computational effort is given in
Section 6.4. In Section 6.5, the method is demonstrated using two examples.

6.2 Sparse-Grid-Based, Iterative Construction of the Interpolants

6.2.1 Introduction

Before the algorithm is explained in detail in Section 6.2.2, a prerequisite and the main
principle for the application of sparse grids to matrix interpolation are discussed.
Prerequisite

According to Appendix A.4, sparse grid interpolation ensures—compared to a full-grid-
based approach—an optimal cost-approximation ratio, which means that optimal grid
points are chosen with respect to the interpolation error in the L2-norm. Besides, it
ensures that an asymptotic error decay is obtained when increasing the number of levels
provided that the parameter dependencies are smooth. This condition holds true for
the matrix coefficients in the considered applications as the parameter dependencies are
continuous and free of kinks in the domain D.
Main principle

We construct a sparse grid interpolant zj(p) = ∑N
i=1 α

j
iφ

j
i (p) for every matrix coeffi-

cient j which leads to matrices consisting of interpolants such as (3.30). In order to
keep the computational effort of the proposed method low, we use the same sparse grid,
i.e. the same set of grid points and the same set of basis functions φ1(p), . . . , φN(p) for
all matrix coefficients, but each coefficient has its own hierarchical surpluses αj1, . . . , αjN .
This enables us to reuse local systems which have already been reduced. In addition,
the interpolants of all matrix entries can be computed in parallel.

6.2.2 Algorithm

The algorithm for the construction of the interpolants performs steps 1–5 of the general
framework from Section 3 iteratively in order to determine the optimal level ` of the
sparse grid. Level ` and hence, the grid points of the sparse grid are automatically
determined by an adaptivity criterion based on hierarchical surpluses. The iterative
procedure is shown in Figure 6.1. Inputs of the algorithm are the grid type, dimension d,
order q of the reduced systems, maximum level lmax and the desired relative and absolute
error tolerance erel and eabs, respectively.
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Figure 6.1: Sparse-grid-based, iterative construction of the interpolants.

Firstly, the user chooses a grid type and the sparse grid points of the d-dimensional
sparse grid of level l are generated beginning from l = 1 such as described in Ap-
pendix A.4. These become the parameter vectors p1, . . . ,pNl at which the high-order
systems G(p1), . . . ,G(pNl) are computed. Afterwards, these systems are reduced to
order q according to Section 3.3 and transformed in order to adjust the ROBs such
as described in Section 3.4. As reference ROB we use the ROB of system Ĝ(pi0) at
pi0 = (0.5, . . . , 0.5) because its corresponding grid point already appears in the first level
and lies in the center of the domain. Afterwards, the system matrices are projected onto
the tangent space to obtain matrices ΓẼ

i , ΓÃ
i , ΓB̃

i , ΓC̃
i with i ∈ {1, . . . , Nl} according

to Section 3.5. The mapped matrices are reshaped into vectors γ(p1), . . . ,γ(pNl) of
length K = 2q2 + qr +mq where γj(pi) is the j-th entry of γ(pi) with j ∈ {1, . . . , K}.
Then, for each component j a sparse grid interpolant zj : D → R is constructed:

γ̂(p) = [z1(p), . . . , zK(p)]T . (6.1)

The vector γ̂(p) is an approximation of γ(p) which is the vector containing the elements
of the transformed and mapped system matrices of a directly reduced system obtained
by MOR from Section 2.2 at parameter value p. The interpolants

zj(p) = zj(p) +
Nl∑
i=1

αjl,iφl,i(p) (6.2)

grow in every iteration. In (6.2), the basis functions φl,1(p), . . . , φl,Nl(p) of level l are
equal for every matrix entry j and the best choice for the basis functions clearly depends
on the application. The surpluses αjl = (αjl,1, . . . , α

j
l,Nl

) ∈ RNl are computed for level l
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with the procedure described in Section A.4. Due to the hierarchical structure, the
surpluses αjl → 0 converge to zero as the level l→∞ tends to infinity. Hence, they are
appropriate for being used as error indicators to find the optimal number of sparse grid
levels and hence, of grid points concerning a desired accuracy. As adaptivity criteria we
employ error estimates presented in [103, 101]. An absolute error estimate is proposed
therein for the interpolation error ||γj(p) − zj(p)||L2 for every j where γj(p) is the
j-th entry of γ(p). The error estimate is the maximum of the absolute values of all
hierarchical surpluses of the current level l

ejabs,est = max(|αjl |). (6.3)

For the relative error estimate, the absolute one is divided by the difference between
γjmax = max{γj(p1), . . . , γj(p∑l

i=1 Ni
)} and γjmin = min{γj(p1), . . . , γj(p∑l

i=1 Ni
)}

ejrel,est =
ejabs,est

γjmax − γjmin
= max(|αjl |)
γjmax − γjmin

. (6.4)

These criteria are reasonable because the hierarchical surplus αjl,i measures the contri-
bution of the corresponding basis function φl,i(p) to the interpolant (6.2).

In this iterative procedure, level number l is increased until either the absolute (6.3)
or the relative (6.4) error estimates are less than the desired tolerances erel and eabs for
every coefficient j ∈ {1, . . . , K} determining the final level ` of the sparse grid. One
can use the maximum level lmax as an additional stopping criterion.

Remark: Note that the error estimates (6.3) and (6.4) hold true for the interpolation
error ||γj(p) − zj(p)||L2 of the separate K matrix entries of the parameter-dependent
reduced system. However, we are interested in the error of the reduced system, e.g.
||G(p) − G̃(p)||Hp , such as presented in Section 3.8 and to the best of the author’s
knowledge it is so far not possible to deduce the error of the system from the error of its
matrix entries. Nevertheless, the error indicators can be applied to monitor the decay
of the error of the matrix entries and the procedure stops as soon as a new level of grid
points has little impact on the interpolants (6.2).

To sum up, the procedure is given in Algorithm 10. It delivers the vector of inter-
polants (6.1). As all component functions z1(p), . . . , zK(p) share the same basis func-
tion, it is enough to save all hierarchical surpluses αj = (αj1, . . . , αjN) with N = ∑`

l=1Nl

of the sparse grid with level ` for all j matrix entries.



6.2 Sparse-Grid-Based, Iterative Construction of the Interpolants 111

Algorithm 10 Sparse-grid-based, iterative construction of interpolants
Input: d, q, erel, eabs, lmax
Output: Surpluses α1, . . . ,αK , grid points P
1: Initialize empty set P = ∅, empty αj = [ ], γjmin =∞,γjmax = −∞ for j ∈ {1, . . . , K}
2: for l = 1, . . . , lmax do
3: Generate points Pl = {p1, . . . ,pNl} of d-dimensional sparse grid of level l
4: Update the set P = P ∪ Pl
5: Compute systems G(p1), . . . ,G(pNl) of order n
6: Reduce and transform systems to G̃(p1), . . . , G̃(pNl) of order q � n

7: Map system matrices to ΓẼ
i , ΓÃ

i , ΓB̃
i , ΓC̃

i for i ∈ {1, . . . , Nl}
8: Reshape ΓẼ

i , ΓÃ
i , ΓB̃

i , ΓC̃
i into vector γ(pi) of length K for i ∈ {1, . . . , Nl}

9: for j = 1, . . . , K do
10: Construct surpluses αjl = (αj1, . . . , αjNl) with P , γj(p1), . . . , γj(pNl) and αj
11: Build αj = [αj,αjl ]
12: Compute γjmin = min{γjmin, γ

j(p1), . . . , γj(pNl)}
13: Compute γjmax = max{γjmax, γ

j(p1), . . . , γj(pNl)}
14: end for
15: if max(|αjl |) < max{erel · (γjmax − γ

j
min), eabs} ∀ j ∈ {1, . . . , K} then

16: Break
17: end if
18: end for

6.2.3 Implementation

Sparse grids are well-suited to deal with multiple model outputs and hence, allow to
construct the interpolants of all matrix elements (6.1) at the same time. Therefore,
we can use available sparse grid software packages, e.g. the Sparse Grid Interpolation
Toolbox [103, 102] for MATLAB, and can easily implement Algorithm 10 as follows:

1 Options = spset('NumberOfOutputs', K, 'GridType', Type, 'RelTol', ...

RelTol, 'AbsTol', AbsTol, 'MaxDepth', l_max);

2 z = spvals(@GetReducedMatrices, d, Range, Options);

The user feeds the toolbox with the number of matrix elements K, the grid type, the
error tolerances erel, eabs, the maximum level lmax, the domain D of the parameter space
which is specified with Range and the dimension of the parameter space d. The function
GetReducedMatrices includes all operations which are related to pMOR by matrix
interpolation and which are given in lines 5–8 of Algorithm 10. Then, the software will
automatically compute the interpolant of every matrix element.
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6.3 Evaluation of the Interpolants

In the online phase, i.e. when a reduced system is supposed to be calculated for the de-
sired parameter vector pint ∈ D, the vector of interpolants γ̂(p) from (6.1) is evaluated
for vector pint. Hence, for each component j ∈ {1, . . . , K} the corresponding sparse
grid interpolant zj is evaluated:

γ̂(pint) =


z1(pint)

...
zK(pint)

 =


∑N
i=1 α

1
iφi(pint)
...∑N

i=1 α
K
i φi(pint)

 . (6.5)

In the Sparse Grid Interpolation Toolbox [103, 102] the evaluation of the interpolants
can be conducted using:

1 for i=1:K

2 z{1}.selectOutput = i;

3 interpolant_eval(i) = spinterp(z{1}, p_int);

4 end

However, there is a more efficient way of implementing this step. As we use the same
basis function φi(pint) for all coefficients, we can simplify formula (6.5) to

γ̂(pint) =
N∑
i=1

φi(pint)


α1
i
...
αKi

 (6.6)

where every basis function φi(pint) is evaluated only once. Then, the vector γ̂(pint) is
rearranged into the matrix form. The first q2 coefficients are arranged into the matrix

ΓẼ(pint) =
N∑
i=1

φi(pint)


α11

Ẽ,i . . . α1q
Ẽ,i

... ...
αq1Ẽ,i . . . αqqẼ,i


︸ ︷︷ ︸

αẼ
i ∈Rq×q

. (6.7)

The matrices αẼ
i comprise the hierarchical surpluses and converge to the zero matrix

with increasing i which represents a growing number of layers. In analogy, the fol-
lowing q2 entries of γ̂(pint) are arranged into ΓÃ(pint), the next qr entries of γ̂(pint)
into ΓB̃(pint) and the lastmq entries into ΓC̃(pint) with matrices αÃ

i ∈ Rq×q,αB̃
i ∈ Rq×r

and αC̃
i ∈ Rm×q, respectively.
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Finally, the interpolated matrices are brought back to their manifold using exponen-
tial mappings ExpẼi0

,ExpÃi0
,ExpB̃i0

and ExpC̃i0
to obtain matrices Ẽ(pint), Ã(pint),

B̃(pint) and C̃(pint), respectively. These matrices are then used to construct the inter-
polated reduced system G̃(pint) for the parameter pint according to formula (3.36).

6.4 Comparison to the General Framework

The proposed approach performs the steps 1–5 of the general framework from Section 3
iteratively, see Figure 6.1. As explained before, the framework offers many options for
the different steps. The suggested method chooses in step 1 the grid points to be a
sparse grid space. In step 5 hierarchical basis functions are used. As a result, the
computation time of the offline and online phase is reduced considerably compared
to classical grid-based methods which enables the reduction of parameter-dependent
systems with high-dimensional parameter spaces.

6.4.1 Offline Part

The interpolants are formally equivalent for the sparse-grid-based approach (6.2) and
the general framework (3.29) from Section 3. However, their calculation is much faster
for the sparse-grid-based method because of three reasons: Firstly, the number of in-
volved grid points N is considerably smaller and hence, less local high-order systems
have to be reduced using projection-based MOR. Secondly, as less grid points are in-
volved, less coefficients for the interpolants have to be calculated. Thirdly, due to the
hierarchical basis it is not necessary to expensively solve a system of equations (3.32)
for calculating these coefficients.

6.4.2 Online Part

Comparing formula (6.7) to formula (3.35) one can see that the evaluation of inter-
polants is formally equivalent for the proposed sparse-grid-based approach and the gen-
eral framework from Section 3. However, the evaluation is much faster for the sparse-
grid-based method as the number of involved grid points N is considerably smaller.

6.5 Numerical Examples

Two examples are given in the following. We use the Sparse Grid Interpolation Tool-
box [103, 102] for constructing and evaluating the interpolants.
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6.5.1 Spring-Mass-Damper System

The first, rather academic example is the spring-mass-damper system which was intro-
duced in Section 4.2.4. In this section, the mechanical properties, which are given in
Table 6.1, depend on two parameters α ∈ [0, 1] and β ∈ [0, 1].

Table 6.1: Mechanical properties of the spring-mass-damper system.
Springs [N/m] Masses [kg] Dampers [Ns/m]
c1 27 m1 1 d2 0.1
c2 9 m2 5− 4β d3 0.4
c3 3 m3 5 + 20β d4 1.6
c4 1 + β m4 125 d5 α
c5 1 + 2α
c6 2 + 2α

We compare the sparse-grid-based approach to the framework from Section 3 using
a full grid. For the proposed sparse-grid-based approach—respective values are labeled
with SG—we use Algorithm 10 with a Clenshaw-Curtis grid from Figure A.5(c). The
iterative procedure with fixed level number ` = lmax = 2 delivers a sparse grid with N =
13 points which is shown in Figure 6.2. Then, a set of high-order systems GSG

1 , . . . , GSG
13

is computed. The full grid—respective values are labeled with FG—with the same mesh
width ∆α = ∆β = 0.25, which is depicted in Figure 6.3, possesses N = 25 grid points
and delivers a set of high-order systems GFG

1 , . . . , GFG
25 .
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Figure 6.2: Clenshaw-Curtis grid with ` =
2 for the proposed approach.
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Figure 6.3: Full grid for the conventional
approach.

The following steps are equivalent for the two approaches. The local systems are
reduced to order q = 4 with the two-sided Krylov subspace method with expansion
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points s0 = 0. The adjustment of the right ROBs is done with the PS approach (3.13)
and of the left ROBs with the MAC approach (3.26) in order to reduce the number
of interpolants. This results in the set of systems G̃SG

1 , . . . , G̃SG
13 and G̃FG

1 , . . . , G̃FG
25

according to (3.28) with Ẽi = I4. We choose for the system matrices Ãi the manifold
of nonsingular matrices and for B̃i and C̃i the manifold of real matrices.
For the construction of the interpolants we choose for the sparse-grid-based method

linear hierarchical basis functions such as demonstrated in Figure A.5 and for the con-
ventional approach we use bilinear basis functions.
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Figure 6.4: Error eI in H2-norm of
the spring-mass-damper system with the
sparse-grid-based approach.
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Figure 6.5: Error eI in H2-norm of the
spring-mass-damper system with the full-
grid-based approach.

In Figure 6.5 the error eI in H2-norm of the interpolated systems is shown for the
full-grid-based approach and the error eI for the sparse-grid-based method is shown
in Figure 6.4. For both approaches the grid points can be identified as points where
the interpolation error vanishes. One can verify that both error plots have a similar
shape although the sparse grid has 48% less grid points compared to the full grid. The
reason is that the sparse grid omits basis functions which contribute only little to the
interpolation and captures the ones which represent relevant information.

6.5.2 Cantilever Beam

The second example is a state-space model of a cantilever beam with order n = 2400
which was introduced in Section 3.9.2. This time, the system has 7 geometry and
material parameters which are shown in Table 6.2 with their range of values. All
parameters have a significant impact on the transfer behavior of the system within
their range. The parameter vector is defined as p = (L, t, h, ρ, E, d1, d2).
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Table 6.2: Parameters of the beam.
Parameter [Unit] Min =̂ 0 Max =̂ 1
Length L [m] 1 2
Thickness t [m] 0.01 0.05
Height h [m] 0.01 0.05

Density ρ [kg/m3] 6·103 10·103

Young’s modulus E [N/m2] 1.5·1011 2.5·1011

Rayleigh damping factor d1 [1/s] 5·10−6 15·10−6

Rayleigh damping factor d2 [s] 6 10

In order to reduce the high-order system, Algorithm 10 is used with the Chebyshev
sparse grid from Figure A.5(d) and polynomial basis functions [102]. The local systems
are reduced to order q = 10 using the two-sided Krylov subspace method with expansion
points s0 = 0. The adjustment of the right ROBs is done with the PS approach (3.13)
and of the left ROBs with the MAC approach (3.26). The latter choice reduces the
number of interpolants leading to reduced systems according to (3.28) with Ẽi = I10.
For matrices Ãi the manifold of nonsingular matrices and for matrices B̃i and C̃i the
manifold of real matrices are chosen.
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Figure 6.6: Maximum relative error estimate emax
rel,est of the beam with sparse grids of

level ` ∈ {1, . . . , 6}.

The maximum relative error estimate emax
rel,est = max{e1

rel,est, . . . , e
120
rel,est} which is the

maximum value for the estimates (6.4) of all 120 matrix entries and which is obtained in
every iteration of the hierarchical procedure is shown in Figure 6.6. We use the sparse
grid with level ` = 4 with emax

rel,est = 0.1315 as the relative estimate cannot be further
decreased for a reasonable number of grid points. This delivers N = 2465 points for
a 7-dimensional sparse grid. The calculation of the offline phase lasted 367.5s on an
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AMD Athlon II X2 255 Duo CPU with 3.1GHz. The corresponding full grid would
have (24 + 1)7 > 4 · 108 grid points and is computationally infeasible.
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Figure 6.7: Error eI in H2-norm of the
beam at pint = (L, t, 0.5, 0.5, 0.5, 0.5, 0.5).

0

0.25

0.5

0.75

1

0
0.25

0.5
0.75

1
0

0.02

0.04

L

t

e
I

Figure 6.8: Error eI in H2-norm of the
beam at pint = (L, t, 0.3, 0.3, 0.3, 0.3, 0.3).

In Figure 6.7, the error eI in H2-norm of the interpolated systems is shown for pa-
rameter vectors pint = (L, t, 0.5, 0.5, 0.5, 0.5, 0.5). One can verify that the error vanishes
at the grid points and between the grid points there is an error due to interpolation. In
Figure 6.8, the error is plotted for parameter vectors pint = (L, t, 0.3, 0.3, 0.3, 0.3, 0.3)
where no grid points lie in the shown (L, t)-layer. Therefore, the error is larger for
these parameter vectors and the maximum relative error of the interpolated systems
is emax

I = 0.038. The maximum error compared to the original system is found to be
emax

T = 0.045. This example shows that the sparse-grid-based method allows to accu-
rately reduce a parameter-dependent high-order system with a relatively small number
of grid points whereas a full-grid-based approach would be infeasible.





7 Interpolation of Differently-Sized Reduced Models
using Pseudoinverses

7.1 Motivation

So far, we have examined pMOR by matrix interpolation where we have a set of locally
reduced systems which all possess the same reduced order. However, there are some
cases where it is important that we have the possibility to allow different local orders:

◦ For most parameter-dependent systems the dynamics are harder or easier to ap-
proximate in different regions of the parameter space [23]. If we reduce these
systems at different parameter values e.g. with TBR using the same error bound,
we might obtain differently-sized reduced models.

◦ If a reduced system shall be more accurate for some regions in the parameter
domain than for others, we reduce the original system at the corresponding pa-
rameter values to larger reduced orders than at the remaining grid points.

The pMOR approaches which are based on the interpolation of system matrices such
as the methods in the literature, which are reviewed in Section 2.3.2, or the general
framework from Section 3 require a common reduced order of the local systems. The
reason why it is not intuitive for these approaches to have different orders is demon-
strated by means of the following example.

Example: Consider two high-dimensional systems G1, G2 which we reduce to order
q1 = 2, q2 = 3 and we obtain the reduced systems ˙̂x1 = Â1x̂1, ˙̂x2 = Â2x̂2 with

Â1 =
1 2

3 4

 , Â2 =


5 6 7
8 9 10
11 12 13

 (7.1)

and V1,W1 ∈ Rn×2 and V2,W2 ∈ Rn×3. At first glance we cannot interpolate matrices
Â1, Â2 because some matrix entries do not have an interpolation partner. The first idea
would be—considering that we do not want to touch the high-order systems G1, G2

anymore—to reduce the second system further from order q2 = 3 to q∗2 = 2. But what



120 7 Interpolation of Differently-Sized Reduced Models using Pseudoinverses

is the best way for the reduction? In addition, we loose accuracy for the second system.
A second possibility would be to insert information into the reduced matrix Â1 which
is redundant but which is important for the interpolation with matrix Â2. But what is
the best way for doing that?
We will find answers to these question in this section. For this, we extend the cur-

rent methods of pMOR by matrix interpolation to the general case where the local
systems have different reduced orders. The method was published in [75]. Here, the
proposed resizing procedure is described in Sections 7.3 and 7.4 and demonstrated using
a numerical example in Section 7.5.

7.2 Calculation of a Set of Differently-Sized Reduced Systems

The parameter space is sampled for N vectors p1, . . . ,pN ∈ D and the original sys-
tem G(p) is computed at these grid points which give a set of N high-order systems
G = {G1, . . . ,GN}. Every local system Gi with i ∈ {1, . . . , N} is reduced to an indi-
vidual reduced order qi � n applying a projection-based reduction method according
to Section 2.2. This provides subspaces Vi and Wi which are spanned by the bases
Vi ∈ Rn×qi and Wi ∈ Rn×qi with linearly independent columns. This leads to a set
of N reduced systems Ĝ = {Ĝ1, . . . , ĜN}, where e.g. the i-th system Ĝi is

Ĝi :
{ Êi

˙̂xi(t) = Âix̂i(t) + B̂iu(t)

ŷi(t) = Ĉix̂i(t)
(7.2)

with matrices Êi, Âi ∈ Rqi×qi , B̂i ∈ Rqi×r and Ĉi ∈ Rm×qi and bases Vi ∈ Rn×qi and
Wi ∈ Rn×qi of different sizes q1, . . . , qN .

7.3 Resizing Procedure Using Pseudoinverses

In this section a procedure for interpolating the system matrices Êi, Âi, B̂i, Ĉi with
different sizes is presented. The procedure is formally equivalent to the framework from
Section 3.4 but extends it to the general case where the transformation matrices Ti,Mi

are rectangular instead of square. These matrices offer us the possibility to resize the
system matrices to the reference size q0. The resizing procedure is depicted graphically
for the case that qi is smaller than the reference size q0 in Figure 7.1 and for the case
that qi is larger than the reference size q0 in Figure 7.2.
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Figure 7.1: Resizing procedure for
qi < q0.

Figure 7.2: Resizing procedure for qi > q0.

As the system matrices have the same size q0 after the resizing procedure, they can be
reasonably interpolated. In the following, it will be described how the transformation
matrices Ti,Mi can be calculated with regard to an objective function and it will
be pointed out why the pseudoinverse such as described in Appendix D is a crucial
component of the proposed method.

7.3.1 Adjustment of the Right Reduced Order Bases

In analogy to Section 3.4.1, the basis Vi ∈ Rn×qi has to be adjusted to the reference
basis V0 ∈ Rn×q0 . Let the latter for now be given as we need more information in order
to calculate it. Its calculation will be explained in Section 7.3.4. Then, the resizing and
adjusting procedure of the right ROBs is done with

Ṽi = ViTi ∈ Rn×q0 , (7.3)

where Ti ∈ Rqi×q0 is a rectangular matrix and the new basis Ṽi has the size of the
reference basis V0. For adjusting the ROBs we discuss in the following the two objective
functions such as described in Section 3.4.1:

DS approach:
In analogy to Section 3.4.1 we use as an objective function the distance of the bases Ṽi,V0

measured with the Frobenius norm which needs to be minimized:

Ti = arg min
Ṽi∈Rn×q0

‖Ṽi −V0‖F = arg min
Ti∈Rqi×q0

‖ViTi −V0‖F (7.4)

which is similar to the optimization problem (3.7). It is the generalization for different
sizes of the reduced bases. We apply the left pseudoinverse (D.1) and obtain the unique
best solution

Ti = V(l)+
i V0 ∈ Rqi×q0 (7.5)
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which can be implemented using Algorithm 1. Although we do not calculate the new
basis Ṽi explicitly, it is given—for the purpose of illustration—by

Ṽi = ViTi = ViV(l)+
i V0

= Vi(VT
i Vi)−1VT

i︸ ︷︷ ︸
PVi⊥Vi

V0 (7.6)

where PVi⊥Vi
is a projector which projects the columns of V0 orthogonally to the

subspace Vi into the subspace Vi. One can see that the calculation of the transformation
matrix (7.5) and of the new ROB (7.6) is formally the same for all reduced orders
qi, q0 ∈ {1, 2, . . . , n}. However, we have to distinguish between three cases in order to
understand the underlying mechanism:

◦ Case 1: qi = q0

This is the case which we already know from Section 3.4.1 where the transforma-
tion matrix Ti ∈ Rq0×q0 is square. As the bases Vi,V0 have the same number
of columns q0, we find the new basis Ṽi simply by projecting the columns of V0

orthogonally to the subspace Vi into the subspace Vi according to (7.6). As a
result, the basis Ṽi also comprises q0 linearly independent columns and spans the
subspace Ṽi = span(Ṽi) = span(Vi) = Vi. The procedure for adjusting the ROBs
is demonstrated for the example qi = q0 = 2 in Figure 7.3.

◦ Case 2: qi > q0

For this case, the transformation matrix Ti ∈ Rqi×q0 has more rows than columns.
As the basis Vi comprises more basis vectors than V0, the procedure (7.6) leaves
qi − q0 columns of Vi out and adjusts the remaining q0 basis vectors to V0 by
projecting the columns of V0 again orthogonally to the subspace Vi into the sub-
space Vi. This leads to the smaller basis Ṽi with q0 linearly independent columns
where span(Ṽi) ⊂ span(Vi) holds true and one obtains a new reduced system of
order q0 < qi with right subspace Ṽi spanned by the columns of Ṽi. The procedure
for resizing and adjusting the ROBs is demonstrated for the example qi = 2, q0 = 1
in Figure 7.4.

◦ Case 3: qi < q0

For this case, the transformation matrix Ti ∈ Rqi×q0 has more columns than
rows. As the basis Vi comprises less basis vectors than V0, the procedure (7.6)
adds q0 − qi columns to Vi and adjusts all basis vectors to V0 by projecting
the columns of V0 orthogonally to the subspace Vi into the subspace Vi. This
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leads to the larger basis Ṽi with q0 − qi linear dependent columns where Ṽi =
span(Ṽi) = span(Vi) = Vi holds true and one obtains a new reduced system of
order q0 > qi. The procedure for resizing and adjusting the ROBs is demonstrated
for the example qi = 1, q0 = 2 in Figure 7.5.
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Figure 7.3: A graphic depiction for adjust-
ing the ROBs for qi = q0.
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Figure 7.4: A graphic depiction for resiz-
ing and adjusting the ROBs for qi > q0.

.

.

v2

v1 v1

 v1

 v2

Figure 7.5: A graphic depiction for resiz-
ing and adjusting the ROBs for qi < q0.

MAC approach:
In analogy to Section 3.4.1 we use as an objective function the MAC criterion which
measures the correlation of the vectors of the bases Ṽi,V0. For an optimal criterion,
we again demand

MAC(V0, Ṽi) = VT
0 Ṽi = VT

0 ViTi
!= Iq0 . (7.7)

Then, there exist three cases to solve equation (7.7) which depend on the reduced
order qi of the local system compared to the size q0 of the reference subspace:
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◦ Case 1: qi > q0

For this case, the matrix VT
0 Vi ∈ Rq0×qi has more columns than rows and has a

full row rank. This results in an underdetermined system of equations (7.7) with
the following property.
Proposition 7.1. If qi > q0 holds true, a solution for matrix equation (7.7) with
minimum ‖Ti‖F is obtained when the right pseudoinverse (D.2) is used:

Ti = (VT
0 Vi)(r)+ ∈ Rqi×q0 . (7.8)

Proof. The Penrose condition (D.5) is fulfilled:

(VT
0 Vi)(VT

0 Vi)(r)+︸ ︷︷ ︸
Iq0

Iq0 = Iq0 . (7.9)

Then, the new right ROB is given for the purpose of illustration by

Ṽi = ViTi = Vi(VT
0 Vi)(r)+

= Vi(VT
0 Vi)T

[
VT

0 Vi(VT
0 Vi)T

]−1

= ViVT
i V0

[
VT

0 ViVT
i V0

]−1
.

(7.10)

With orthogonal V0 and hence, VT
0 V0 = Iq0 we obtain

Ṽi = ViVT
i V0

[
VT

0 ViVT
i V0

]−1
VT

0 V0. (7.11)

How can the new ROBs be interpreted? Let us define V∗i = ViVT
i V0 ∈ Rn×q0

and we obtain
Ṽi = V∗i (VT

0 V∗i )−1VT
0︸ ︷︷ ︸

PV∗
i
⊥V0

V0 ∈ Rn×q0 , (7.12)

where PV∗i⊥V0 is a projector which projects the columns of V0 orthogonally to the
subspace V0 spanned by V0 into the subspace V∗i spanned by V∗i . This leads to the
smaller basis Ṽi with q0 linearly independent columns where span(Ṽi) ⊂ span(Vi)
holds true. We can now answer the question which was raised in the introductory
section: What is the best way to reduce the original system Gi via the system Ĝi of
order qi to the system G̃i with reference order q0 < qi with regard to the quality
criterion (7.7)? This is shown in the following proposition which is, of course,
implicitly done by formula (7.8) without using the high-order system matrices.
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Proposition 7.2. Formula (7.8) is equivalent to reducing system Gi to G̃i with
the subspace spanned by V∗i = ViVT

i V0 and using T∗i = (VT
0 V∗i )−1 from (3.16).

Proof. Calculate Ti according to (3.16)

T∗i = (VT
0 V∗i )−1 = (VT

0 ViVT
i V0)−1. (7.13)

Determine the new right ROB

Ṽi = V∗iT∗i = ViVT
i V0

(
VT

0 ViVT
i V0

)−1
(7.14)

which is the result from (7.10).

◦ Case 2: qi < q0

For this case, matrix VT
0 Vi ∈ Rq0×qi has more rows than columns and has a

full column rank. This results in an overdetermined system of equations (7.7)
which in general does not have a solution. Hence, we formulate the least squares
optimization problem

Ti = arg min
Ti∈Rqi×q0

‖VT
0 ViTi − Iq0‖F , (7.15)

where the unique best approximate solution according to (D.6) is obtained by
applying the left pseudoinverse

Ti = (VT
0 Vi)(l)+ ∈ Rqi×q0 . (7.16)

The new right ROB is with VT
0 V0 = Iq0 given by

Ṽi = ViTi = Vi(VT
0 Vi)(l)+

= Vi

[
(VT

0 Vi)TVT
0 Vi

]−1
(VT

0 Vi)T

= Vi

[
(VT

i V0VT
0 )Vi

]−1
(VT

i V0VT
0 )V0.

(7.17)

How can the new ROB be interpreted? Let us define V∗0,i = V0VT
0 Vi ∈ Rn×qi in

order to obtain
Ṽi = Vi(V∗T0,iVi)−1V∗T0,i︸ ︷︷ ︸

PVi⊥V∗0,i

V0 ∈ Rn×q0 , (7.18)

where PVi⊥V∗0,i is a projector which projects the columns of V0 orthogonally to the
subspace spanned by V∗0,i into the subspace Vi. This leads to the larger basis Ṽi
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with q0 − qi linear dependent columns with Ṽi = span(Ṽi) = span(Vi) = Vi.

◦ Case 3: qi = q0

For this case, the matrix VT
0 Vi ∈ Rq0×qi is square and nonsingular. This results

in a system of equations (7.7) which we already know and which has the unique
solution Ti = (VT

0 Vi)−1 from (3.16). This, indeed, is a special case of the above
presented cases:
Proposition 7.3. If qi = q0 holds true, the choice Ti = (VT

0 Vi)−1 from (3.16)
results from (7.8) and (7.16).

Proof. With qi = q0 we obtain for formula (7.8)

Ti = (VT
0 Vi)(r)+ = (VT

0 Vi)T
[
VT

0 Vi(VT
0 Vi)T

]−1

= (VT
0 Vi)T (V0Vi)−T (VT

0 Vi)−1

= (VT
0 Vi)−1.

(7.19)

In analogy, this can be done for formula (7.16).

Then, the new right ROB is again obtained by projecting the columns of V0 into
subspace Vi orthogonally to the subspace spanned by V0

Ṽi = ViTi = Vi(VT
0 Vi)−1

= Vi(VT
0 Vi)−1VT

0︸ ︷︷ ︸
PVi⊥V0

V0. (7.20)

The three formulas (7.8), (7.16) and (3.16) for calculating Ti using the MAC approach
are formally different. But, as we determine the pseudoinverse using the economy size
SVD from (D.3), we can propose one procedure for all three cases in Algorithm 11. Note
that Σ+

i = Σ−1
i holds true since VT

0 Vi has full row rank for qi > q0 and accordingly,
full column rank for qi ≤ q0. Hence, there is no singular value at zero.

Algorithm 11 Calculation of Ti using the MAC approach
Input: N matrices Vi and reference matrix V0
Output: N matrices Ti

1: for i = 1 to N do
2: Compute VT

0 Vi = UV,iΣV,iZT
V,i // SVD

3: Compute Ti = ZV,iΣ−1
V,iUT

V,i
4: end for
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To sum up, there are two approaches for the resizing procedure and the adjustment of
the right ROBs: the MAC and DS approach. The choice leading to the most accurate
reduced model is problem-dependent. This can e.g. be observed by means of the
example in Section 7.5. The formulas for calculating matrix Ti are given in Table 7.1.

Table 7.1: Formulas for the calculation of matrix Ti.
MAC approach DS approach

qi < q0 Ti = (VT
0 Vi)(l)+

qi = q0 Ti = (VT
0 Vi)−1 Ti = V(l)+

i V0

qi > q0 Ti = (VT
0 Vi)(r)+

Relation between the two approaches
The MAC and DS approach for adjusting the ROBs have in common that the basis of
the reference subspace V0 is projected in a way which results in the new right ROBs Ṽi.
However, they differ in the kind of projection. A relation between the two approaches
is presented in the following proposition.

Proposition 7.4. Both approaches are equivalent for q0 = n and V0 ∈ On.

Proof. If the reference basis V0 ∈ On is chosen to be orthogonal with q0 = n, it holds
true that V0VT

0 = Iq0 . Then, it follows for the case qi < q0 with formula (7.17)

Ṽi = Vi

[
(VT

0 Vi)TVT
0 Vi

]−1
(VT

0 Vi)T

= Vi

[
VT
i V0VT

0 Vi

]−1
VT
i V0

= Vi(VT
i Vi)−1VT

i V0

(7.21)

which is the result from (7.6). For the (unrealistic) case q0 = qi = n with Vi ∈ Rn×n

formulas (7.21) and (7.17) additionally simplify to Ṽi = V0. Here, the case qi > q0

cannot occur as q0 = n is the maximum order.

7.3.2 Adjustment of the Left Reduced Order Bases

After the adjustment of the right ROBs, the left ROBs Wi ∈ Rn×qi are adjusted with
respect to a reference subspace spanned by W0 ∈ Rn×q0 which we again for now assume
to be given. The adjustment of the left ROBs is done in analogy to Section 3.4.2 with

W̃i = WiMi ∈ Rn×q0 , (7.22)
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where—due to duality—matrices Mi ∈ Rqi×q0 can be obtained using the explanations
for the right ROBs in Section 7.3.1. The formulas for calculating matrices Mi are shown
in Table 7.2.

Table 7.2: Formulas for the calculation of matrix Mi.
MAC approach DS approach

qi < q0 Mi = (WT
0 Wi)(l)+

qi = q0 Mi = (WT
0 Wi)−1 Mi = W(l)+

i W0

qi > q0 Mi = (WT
0 Wi)(r)+

We can use Algorithm 1 for implementing the DS approach and Algorithm 11 for the
MAC approach by replacing Vi with Wi and V0 with W0.

7.3.3 Selection of the Interpolation Manifold

After adjusting the right and left ROBs, we finally obtain the set of compatible reduced
systems G̃ = {G̃1, . . . , G̃N}, where e.g. the i-th system is given by

G̃i :
{ Ẽi

˙̃xi(t) = Ãix̃i(t) + B̃iu(t)

ỹi(t) = C̃ix̃i(t)
(7.23)

and where x̃i(t) ∈ Rq0 is the reduced state vector and

Ẽi = MT
i ÊiTi ∈ Rq0×q0 ,

Ãi = MT
i ÂiTi ∈ Rq0×q0 ,

B̃i = MT
i B̂i ∈ Rq0×r,

C̃i = ĈiTi ∈ Rm×q0

(7.24)

are the system matrices which now all have the same size q0. At this point it is advisable
for the reader to shortly look back to Figures 7.1 and 7.2 where the resizing procedure
is illustrated graphically.
As we know from Section 3.5, the system matrices are mapped onto the tangent

space of a certain matrix manifold. Here, the matrices B̃i belong to the manifold of
real matrices Rq0×r and the matrices C̃i to the manifold of real matrices Rm×q0 . For the
manifold of the matrices Ẽi and Ãi we have to distinguish between two cases depending
on the reduced sizes qi, q0:
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◦ Case 1: qi < q0

Consider the following proposition.
Proposition 7.5. The matrices Ti introduce a common kernel of dimension q0−qi
for matrices Ẽi and Ãi.

Proof. Matrix Ti ∈ Rqi×q0 has a kernel of dimension q0 − qi. Then, for all
vectors v ∈ ker(Ti) we obtain

Ẽiv = MT
i ÊiTiv = MT

i Êi0 = 0,

Ãiv = MT
i ÂiTiv = MT

i Âi0 = 0.
(7.25)

Hence, the matrices Ẽi and Ãi are singular. Therefore, they have to be interpo-
lated on the manifold of real matrices.

◦ Case 2: qi ≥ q0

In general, the matrices Ẽi and Ãi are nonsingular. Hence, we can choose be-
tween the manifold of real and nonsingular matrices. However, they can also be
singular because either the high-order system matrices Ei and Ai are singular or
the reduction step is performed improperly. In this case, we are restricted to use
the manifold of nonsingular matrices.

7.3.4 Calculation of the Reference Subspaces

So far, the reference subspace which is spanned by V0 ∈ Rn×q0 was assumed to be given.
Now we have enough insight into the proposed approach so that we can motivate the
calculation of V0 and hence, the determination of the reference size q0. The reference
basis should span a subspace which comprises the directions which describe the most
important dynamics of all reduced models. For this, we sum up all Vi ∈ Rn×qi for
i ∈ {1, . . . , N} and calculate the economy version of the SVD according to (3.5):

UVΣVZT
V = svd([V1, . . . ,VN ], ’econ’)

⇒ V0 = UV(:, 1 : q0).
(7.26)

Then, the first q0 columns of UV are chosen as reference basis V0. Another possibility
is a weighted SVD approach such as (3.6). In contrast to the case of identical reduced
orders from Section 3.4.1, we now have the option to select every order q0 ∈ {1, . . . , N}.
In the following, two strategies for determining the reference size q0 are proposed:
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◦ Strategy 1:
The first strategy aims to capture all important directions of the subspaces. For
this, we define a tolerance for the singular values in (7.26) and we take the size q0

for which the singular values are above that tolerance. This strategy leads to the
case qi < q0 and it results in singular matrices Ẽi and Ãi according to Section 7.3.3.
Hence, a restriction of this strategy is that we do not have the option to decide
between the interpolation manifold of real and nonsingular matrices.

◦ Strategy 2:
It was demonstrated in Section 4.7 that the selection of the most accurate in-
terpolation manifold is problem-dependent. Therefore, the second strategy aims
to obtain nonsingular matrices Ẽi and Ãi so that we have the option to decide
between the interpolation manifold of real and nonsingular matrices which is the
case qi ≥ q0 in Section 7.3.3. For this, we select the smallest reduced order
q0 = min{q1, . . . , qN}. A disadvantage of this strategy is that the local systems,
which have a reduced order larger than q0, are reduced to the smaller reference
size and hence, we loose accuracy at the grid points.

Due to duality, the reference basis W0 can be calculated with formula (7.26) only
by replacing Vi with Wi. The size of W0 ∈ Rn×q0 is determined by the same q0 from
above because different sizes of V0 and W0 would lead to under- or overdetermined
systems of linear equations (7.23).

7.4 Interpolation Process

We construct the interpolants with the mapped matrices such as described in Sec-
tion 3.6. As soon as a new reduced system for parameter vector pint ∈ D is supposed
to be calculated, we evaluate the interpolants according to Section 3.7. The resulting
matrices are mapped back to the original space and we obtain the interpolated reduced
system

G̃(pint) :
{ Ẽ(pint) ˙̃x(t) = Ã(pint)x̃(t) + B̃(pint)u(t)

ỹ(t) = C̃(pint)x̃(t)
(7.27)

where the matrices Ẽ(pint), Ã(pint) ∈ Rq0×q0 , B̃(pint) ∈ Rq0×r, C̃(pint) ∈ Rm×q0 have
the reference size q0.
Remark: It was pointed out in Section 7.3.3 that the local system matrices Ẽi, Ãi

share a common kernel for the case qi < q0 and hence, are singular. However, the
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interpolation generally leads to nonsingular matrices Ẽ(pint), Ã(pint) because every local
system adds a part to the dynamics of the interpolated system.

7.5 Numerical Example

The considered example is a model of a cantilever beam with order n = 1200 which was
introduced in Section 3.9.2. The parameter of the beam is the length L ∈ [0.8, 1.4]m.
We compute N = 4 high-order systems G1, . . . , G4 for lengths L1 = 0.8m, L2 = 1m,
L3 = 1.2m and L4 = 1.4m. These local systems are reduced using the one-sided Krylov
subspace method with expansion points s0 = 0 and reduced orders q1 = 14, q2 = 12,
q3 = 12, and q4 = 10 which result in the reduced systems Ĝ1, . . . , Ĝ4. We choose
decreasing reduced orders so that the reduced systems are more accurate for small
lengths. For determining the reference size q0, we compare the two strategies presented
in Section 7.3.4. For strategy 1 we choose q0 to capture all relevant singular values with
formula (7.26) up to the relative tolerance of 10−1 resulting in q0 = 14. For strategy 2 we
choose the smallest reduced order q0 = q4 = 10 and we use the manifold of nonsingular
matrices for interpolating Ẽi, Ãi. For both strategies we apply linear interpolation. In
Figure 7.6, the overall error eT in H2-norm between the interpolated and the original
systems for the two strategies and the MAC and DS approach is shown.
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Figure 7.6: Error eT in H2-norm at various lengths L for the cantilever beam.

The reader can verify that the proposed methods enable a meaningful interpolation
of differently-sized reduced models. In this example, strategy 1 performs better than
strategy 2 except for a small parameter interval. It can also be seen that there is only a
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small difference between the MAC and DS approach. For the plots of strategy 2 there
is a loss of accuracy at the grid points L1, L2, L3 as the systems are approximated by
reduced systems of the smaller order q = 10 although systems Ĝ1, Ĝ2, Ĝ3 have order
q1 = 14, q2 = 12, q3 = 12, respectively. The error increases with growing discrepancy
q0− qi. As the system Ĝ4 already possesses order q4 = 10, there is no loss of accuracy.



8 Controller Design by Interpolating Reduced System
Matrices

8.1 Motivation

In control applications it is fundamental that a controller fulfills the real-time require-
ment. However, if a controller is to be designed for a high-dimensional plant model,
it might be too complex compared to the power of the processor. As a remedy, one
can either employ a more powerful, but also more expensive, hardware or reduce the
complexity of the controller. For the sake of cost reduction one might choose the latter.

In order to design low-order controllers that function in real-time, basically two types
of methods have been proposed [167, 124, 45, 165]. The first type is based on designing a
controller for the high-order plant model and on reducing the controller afterwards e.g.
with a H∞ controller reduction [80, 123, 167], frequency-weighted balancing related
controller reduction [56, 14, 144, 160] or controller reduction based on the rational
Krylov method [87]. The second type reduces the high-order plant model and constructs
a controller for the reduced model, see e.g. [79, 94]. As the latter approaches do not
explicitly consider the effects which the reduction has on the closed-loop stability or
performance, it is necessary to check if the desired closed-loop behavior is achieved [14,
167] or even to use an iterative reduction and design procedure [124, 16, 164]. For the
control of high-dimensional systems which depend on parameters only few publications
can be found. For example in [9], the combination of pMOR and control was proposed
in order to optimize aircraft trajectories. Based on this, we propose a more general
procedure for the control of parameter-dependent high-order systems.

We reduce the high-dimensional system using the general framework from Section 3
which enables the application of common methods of control unit design and ensures a
fast calculation of the controller. The procedure was published in [73]. In this thesis,
the proposed method is described in Section 8.2. Numerical and experimental results
are presented for a practical example on a test rig for a gantry crane operating with
different loads in Section 8.3, where flatness-based tracking control and model predictive
control (MPC) is applied to the high-order system.
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8.2 Controller Design Using a Database of Reduced Models

Assume a high-dimensional parameter-dependent LTI system G(p) with domain p ∈ D.
A controller is to be designed for the system for a given parameter vector using only
low-order operations. Therefore, the combination of pMOR by matrix interpolation
such as described in Section 3 and common methods of control unit design is proposed.
The steps of the procedure are depicted in Figure 8.1. It consists of an offline part that
is performed only one time and an online part that is performed every time a controller
is supposed to be calculated for a desired parameter pint.

Online

6. Eval. of interpolants

7. Controller design

New value pint

Offline

1. Sampling

2. Reduction

3. Adjustment of ROBs

4. Mapping of matrices

5. Constr. of interpolants

Figure 8.1: Structure including two phases of the controller design.

In the offline phase, steps 1–5 of the general framework are performed such as de-
scribed in Section 3. To begin with, a set of high-order systems is obtained by inserting
parameter values p1, . . . ,pN into system G(p). Subsequently, the high-order systems
are reduced according to Section 3.3 which results in a database of reduced systems.
For these systems the ROBs are adjusted such as proposed in Section 3.4. Finally, the
system matrices are mapped onto a matrix manifold such as described in Section 3.5
and the interpolants are constructed according to Section 3.6.
In the online phase, the interpolants are evaluated according to Section 3.7. Then,

the matrices are mapped back from the tangent space and they are used to construct
the interpolated reduced system (3.36) which is considered as the control plant for
parameter pint. Since it is low-order, it can be used to design a controller or observer
using common methods of control unit design, see e.g. [99, 167].
Remark: Note that in general controllability and observability is not guaranteed for

a system obtained by matrix interpolation even if the locally reduced systems are con-
trollable and observable. But if the grid points p1, . . . ,pN have a reasonable distance,
we can expect controllability and observability for the interpolated system.
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In order to highlight the advantage of the proposed approach, it is compared to a
local reduction of the high-order system for a new parameter vector pint with projection-
based MOR such as described in Section 2.2. The comparison showing the necessary
steps of the two approaches for the offline and online part is given in Table 8.1. For a
local reduction of the system at a desired parameter vector, the online phase includes
computationally expensive MOR followed by the controller design. The advantage of
the proposed method is that computational effort is shifted from the online to the offline
phase and only operations using low-order matrices are performed in the online phase,
which enables a fast controller design for a new parameter value.

Table 8.1: Comparison of the structure of local MOR and pMOR applied to controller
design for the system at a desired parameter value.

Method Local MOR pMOR

Offline -

Sampling
Reduction

Adjustment of ROBs
Mapping of matrices

Construction of interpolants

Online Local reduction Evaluation of interpolants
Controller design Controller design

 

Figure 8.2: Experimental setting of the
hanging chain.
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Figure 8.3: Schematic depiction of the
hanging chain.
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8.3 Control of the Hanging Chain

8.3.1 Experimental Setting

In the following, a hanging chain on a test rig is used as a practical example for demon-
strating the proposed controller design process. The experimental setting is shown in
Figure 8.2 and a schematic depiction of the system is given in Figure 8.3. The system
consists of a car and a chain that is attached to the car. The chain has 62 links, the
length L = 1.2m and a load with mass m ∈ [0, 2]kg which is located at the tip of the
chain yn. The input of the system is the force F which is applied to the car. Sensors
are available for the position of the car yw and for the angle of the first chain link φ1.
The real-time target machine has a 3.60Ghz processor and is operated with a sampling
interval of 1ms.

8.3.2 Modeling

The hanging chain is modeled as a multibody system in order to demonstrate the
proposed method for a high-order practical example in a lab.1 The car and the load are
assumed to be mass points and the chain links are considered as rigid bars with mass
and moment of inertia. Then, the state vector is x = (yw, ẏw,φ, φ̇) ∈ R126, where yw, ẏw

are the position and velocity of the car and φ = (φ1, . . . , φ62) is the vector of angles
of the chain links. The output y = (yw, φ1, yn) consists of the two measured signals
ym = (yw, φ1) and the position yn of the load. The mass of the load m ∈ [0, 2]kg is
the parameter of this system. The equations of translational and angular momentum
of the car and the chain links deliver the nonlinear model

ẋ(t) = f(x(t),m, F (t))

y(t) = h(x(t),m, F (t))
(8.1)

which is subsequently linearized around the steady-state x0 = (yw, 0,0,0) and F0 = 0.
This provides the high-order parameter-dependent LTI system2 of order n = 126

G(m) :
{ ẋ(t) = A(m)x(t) + b(m)F (t)

y(t) = C(m)x(t)
(8.2)

1It shall be noted that for this system there are also other possibilities of modeling. Based on the
PDE of a rope, one can also use a modal description, a discretized model or an infinite-dimensional
model for constructing the control law, see e.g. [136, 70, 139, 157].

2For simplifying the notation, the values x, y, F denote the deviation from the steady-state for the
remainder of this section.
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with A(m) ∈ R126×126,b(m) ∈ R126×1,C(m) ∈ R3×126. In order to fulfill the linearity
assumption, the constraint on the force |F | ≤ 300N is taken into account.

We apply the proposed method combining controller design with pMOR by matrix in-
terpolation from Section 3. In the offline phase, we choose N = 9 uniformly distributed
grid points in the parameter space m ∈ [0, 2]kg with mesh width ∆m = 0.25kg. Hence,
the high-order system G(m) is computed for the parameter values m1 = 0, . . . ,m9 =
2kg, which provides nonparametric high-order systems G1, . . . ,G9. These systems are
reduced to order q = 12 using TBR which result in the reduced systems Ĝ1, . . . , Ĝ9.
The adjustment of the right ROBs is done with the MAC approach (3.16) and of the left
ROBs with the MAC approach (3.26) with reference ROBs V0 = V1 and W0 = W1.
This leads to reduced systems G̃1, . . . , G̃9 according to formula (3.28) with system
matrices Ẽi = I12 and Ãi ∈ R12×12, b̃i ∈ R12×1, C̃i ∈ R3×12 for i ∈ {1, . . . , 9}.

As soon as a controller is to be constructed for a new system with parameter valuemint,
the corresponding system G̃(mint) is obtained by the interpolation of the stored low-
order matrices Ãi, b̃i, C̃i on the manifold of real matrices with i ∈ {1, . . . , 9}:

G̃(mint) :
{ ˙̃x(t) = Ã(mint)x̃(t) + b̃(mint)F (t)

ỹ(t) = C̃(mint)x̃(t)
(8.3)

with
Ã(mint) =

∑N

i=1 ωi(mint)Ãi,

b̃(mint) =
∑N

i=1 ωi(mint)b̃i,

C̃(mint) =
∑N

i=1 ωi(mint)C̃i

(8.4)

with ỹ = (ỹw, φ̃1, ỹn) ≈ y and Ã(mint) ∈ R12×12, b̃(mint) ∈ R12×1, C̃(mint) ∈ R3×12. In
this example, linear weighting functions ωi(m) = max(1− |m−mi|∆m , 0) for m ∈ [m1, m9]
with i ∈ {1, . . . , 9} are used. They are shown in Figure 8.4.
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Figure 8.4: Weighting functions wi := wi(m) corresponding to points m1, . . . ,m9.
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8.3.3 Control Task

A controller is to be designed using the interpolated system (8.3) which enables the
change of the steady-state point x(tS) = x(0) = (0, 0,0,0) → x(tE) = (0.5m, 0,0,0)
with t ∈ [0, 5]s and tS = 1s for the hanging chain with mass mint. It is required that

◦ the end time tE is as small as possible.

◦ the constraint on the force |F | ≤ 300N is taken into account.

◦ the chain is free of oscillations as soon as it reaches its target.

For this, we set the following reference trajectory yn,ref for the control variable ỹn ≈ yn

yn,ref(t) = 0.5m σ(t− tS) (8.5)

where σ(t) is the Heaviside step function. In the following we consider two control
concepts which are expected to fulfill the requirements of the control task: a two-
degree-of-freedom control in Section 8.3.4 and MPC in Section 8.3.5.

8.3.4 Two-Degree-of-Freedom Control

Controller design

At first, a two-degree-of-freedom control which is shown in Figure 8.5 is designed. It
consists of a feedforward trajectory control and a feedback loop including a controller in
order to tackle deviations from the trajectory. Additionally, an observer is implemented
in order to estimate the reduced state vector.

Control

plant

Observer 

Controller

+       -

+      

+      

Trajectory

control

Figure 8.5: Structure of a two-degree-of-freedom control with a trajectory generation
and a feedback loop including an observer and a controller.

Firstly, the feedforward trajectory control is designed. One prominent method for this
is a flatness-based tracking control, see e.g [166]. As the interpolated LTI system (8.3)
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is found to be controllable, a flat output zf is defined as

zf = λ(mint)T x̃f (8.6)

where x̃f is the flatness-based state vector of the plant model and λ(mint)T is taken as
the last row of the inverse controllability matrix

λ(mint)T = [0, . . . , 0, 1][b̃(mint), Ã(mint)b̃(mint), . . . , Ã(mint)q−1b̃(mint)]−1. (8.7)

Then, the vector containing the flatness coordinates is

x̃∗f =


zf
...

(q−1)
zf

 =


λ(mint)T

...
λ(mint)T Ã(mint)q−1


︸ ︷︷ ︸

Tf(mint)

x̃f . (8.8)

The flatness-based output ỹf of the plant is with c̃c(mint)T = C̃(mint)(3, :) as the third
row of the output matrix which corresponds to the control variable

ỹf = c̃c(mint)TTf(mint)−1︸ ︷︷ ︸
c̃∗c (mint)T

x̃∗f . (8.9)

Next, the trajectory of the flat output zf , which has to be differentiable q = 12 times,
is calculated with a polynomial approach of degree 2q + 1 = 25 in the time interval
t ∈ [tS, tE], see [166]. This is obtained by allocating initial and final conditions with
tE = tS + Tf to the flat output and its derivatives. As we use steady-state working
points for the initial and final conditions, the derivatives of the flat output are found to
be zero with (1)

z (tS) = (1)
z (tE) = . . . = (q)

z (tS) = (q)
z (tE) = 0. Then, the remaining initial

and final conditions for the flat output can by calculated using (8.9) with

zf(tS) = ỹf(tS)
c̃∗c,1(mint)T

= 0, (8.10)

zf(tE) = ỹf(tE)
c̃∗c,1(mint)T

= 0.5m
c̃∗c,1(mint)T

(8.11)

where c̃∗c,1(mint)T is the first entry of c̃∗c(mint)T . Finally, the trajectory for the input is

Ff = −λ(mint)T Ã(mint)qT(mint)−1x∗f + (q)
zf . (8.12)
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The left-over design variable Tf is iteratively increased until the flatness-based feedfor-
ward control meets the constraint |Ff | ≤ 300N.
Secondly, the control law of the state feedback controller with a constant feedback

gain rc(mint)T ∈ R1×12, see e.g. [99], is

Fc = rc(mint)T (x̃f − x̃o), (8.13)

where x̃o is the state estimate provided by an observer. We use a linear-quadratic regula-
tor which is obtained by solving the Riccati equation using the interpolated plant (8.3).
The equation of the observer is

˙̃xo =
(
Ã(mint)− Lo(mint)C̃m(mint)

)
x̃o + b̃(mint)F + Lo(mint)ym, (8.14)

where Lo(mint) ∈ R12×2 is the observer gain which we choose according to the Kalman
filter design, see e.g. [99], and C̃m(mint) = C̃(mint)(1 : 2, :) are the first two rows of the
output matrix which correspond to the measured signals.

Numerical and experimental results

In this section numerical and experimental results for maneuver (8.5) are presented
using the two-degree-of-freedom control for the mass of the load mint = 1.6kg, where
the design variable is calculated to be Tf = 3.6s.
Firstly, simulation results of the chain using two different controllers which both

drive the nonlinear system (8.1) are compared. The movement of the chain and of
the load is shown in Figure 8.6, where the time is represented by the transition from
transparent to nontransparent. The red line illustrates the chain driven by the controller
that is designed based on the interpolated system, whereas for the chain represented
by the black line the controller is constructed based on a directly reduced system for
mint = 1.6kg and q = 12 using TBR. One can verify there is a relatively small error due
to interpolation which is indicated by the discrepancy between the red and black line.
One can also see that there is no oscillation at the end of the maneuver.
Secondly, results for maneuver (8.5) obtained by a simulation with the nonlinear

model and measurement results obtained for the system on the test rig are compared
for the case where the controller is designed using the interpolated reduced system.
The simulated and measured force F is compared in Figure 8.7. It can be seen that the
force does not violate the constraint of |F | ≤ 300N. In Figure 8.8 and 8.9 the measured
position of the car yw and the measured angle of the first chain link φ1 are compared
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Figure 8.6: Simulation results of the chain for the maneuver from 0m to 0.5m comparing
two controllers which both drive the nonlinear model: a controller designed by using
the directly reduced system (black) and one by using the interpolated reduced system
(red) at parameter value mint = 1.6kg.

to their simulated counterparts, respectively. One can verify that the simulated and
measured signals match well. Additionally, the position of the load yn obtained by
the simulation is plotted in Figure 8.8. It reaches its target without oscillations which
can also be observed in the experiment. To conclude, the controller based on the
interpolated model fulfills the requirements of maneuver (8.5).
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Figure 8.7: Comparison of the force obtained from simulation with the nonlinear model
and from measurement on the test rig in each case using the two-degree-of-freedom
control designed with the interpolated model at parameter value mint = 1.6kg.
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Figure 8.8: Comparison of the position of
the car from simulation and measurement
and simulated position of the load.
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Figure 8.9: Comparison of the angle of
the first chain link from simulation and
measurement.

8.3.5 Model Predictive Control

Controller Design

An alternative to the two-degree-of-freedom control is a feedback control whose struc-
ture is depicted in Figure 8.10. It consists of a model predictive controller and an
observer in order to estimate the reduced state vector. For the latter a Kalman filter is
implemented according to Section 8.3.4. The advantages of MPC are, firstly, that con-
straints can be directly incorporated into the controller design process and, secondly,
that it reacts to future values of the reference trajectory.

Control

plant
MPC

Observer 

Figure 8.10: Structure of a feedback loop including a model predictive controller and
an observer.

For the design of a model predictive controller please refer to e.g. [114, 40]. We use
the following design process: Firstly, the interpolated model (8.3) is converted to a
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discrete-time LTI state-space system with discrete time variable k ∈ Z+
0

x̃(k + 1) = Ãd(mint)x̃(k) + b̃d(mint)F (k)

ỹn(k) = c̃d(mint)T x̃(k)
(8.15)

with c̃d(mint)T = C̃(mint)(3, :) as the third row of the output matrix corresponding to
the control variable. The current state is provided by the observer. Secondly, a cost
function is minimized subject to some constraints for current and future time steps up
to the prediction horizon Np = 850. Here, a quadratic cost function with weighting
matrices QMPC = 16INp and RMPC = INp is considered:

Jk = (ỹn,k − yn,ref,k)TQMPC(ỹn,k − yn,ref,k) + ∆FT
kRMPC∆Fk. (8.16)

The predicted output ỹn,k and input signal Fk are

ỹn,k :=
(
ỹn(k + 1), . . . , ỹn(k +Np)

)T
(8.17)

Fk :=
(
F (k), . . . , F (k +Np − 1)

)T
. (8.18)

The vector yn,ref,k is the reference trajectory and ∆Fk = Fk − Fk−1 is the control
deviation for the prediction horizon. The following constraints are applied to the input
and control deviation

(−300N, . . . ,−300N) ≤ Fk ≤ (300N, . . . , 300N)

(−0.7N, . . . ,−0.7N) ≤ ∆Fk ≤ (0.7N, . . . , 0.7N).
(8.19)

In every time step, the optimization problem (8.16) and (8.19) delivers the solution ∆F∗k.
In order to reduce the computational effort, only the first Nc = 10 deviations are
assumed to have a non-zero value, where Nc is the control horizon. Then, the input
signal F∗k is calculated and the first entry F ∗(k) is applied to the system.

Numerical and Experimental Results

Numerical and experimental results for maneuver (8.5) are presented using the feedback
control for the mass of the load mint = 0.6kg.
Firstly, simulation results of the chain using again two different controllers which

both drive the nonlinear system (8.1) are compared. The movement of the chain and
load varying in time is shown in Figure 8.11. The red line illustrates again the chain
driven by the controller that is designed based on the interpolated system, whereas for
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the chain represented by the black line the controller is constructed based on a directly
reduced system for mint = 0.6kg and q = 12 using TBR. One can verify that there
is a relatively small error due to interpolation which is indicated by the discrepancy
between the red and black line and which grows in time. One can see there is a small
oscillation at the end of the maneuver.

0 0.1 0.2 0.3 0.4 0.5
y [m]

Figure 8.11: Simulation results of the chain for the maneuver from 0m to 0.5m comparing
two controllers which both drive the nonlinear model: a controller designed by using
the directly reduced system (black) and one by using the interpolated reduced system
(red) at parameter value mint = 0.6kg.

Secondly, results for maneuver (8.5) obtained by a simulation with the nonlinear
model and measurement results obtained for the system on the test rig are compared
for the case where the feedback control is designed using the interpolated reduced
system. The simulated and measured force F is compared in Figure 8.12. It can be
seen that the force does not violate the constraint of |F | ≤ 300N. In Figure 8.13 and
8.14 the measured position of the car yw and the measured angle of the first chain
link φ1 are compared to their simulated counterparts, respectively. One can verify
that the simulated and measured signals match well. The car starts moving 0.85s,
which is the prediction horizon, before the change of the setpoint from yn,ref = 0m to
yn,ref = 0.5m at tS = 1s. Hence, the target value is reached earlier than for the case
of the flatness-based approach, but it is computationally more expensive as in every
time step an optimization problem needs to be solved. Additionally, the position of
the load yn obtained by the simulation is plotted in Figure 8.13. One can see for the
simulation there is one oscillation at the tip until it reaches its target which can also
be seen in Figure 8.11 and which is confirmed in the experiment. To conclude, the
controller based on the interpolated model fulfills the requirements of maneuver (8.5).
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Figure 8.12: Comparison of the force obtained from simulation with the nonlinear model
and from measurement on the test rig in each case using the model predictive controller
designed with the interpolated model at parameter value mint = 0.6kg.
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Figure 8.13: Comparison of the position of
the car from simulation and measurement
and simulated position of the load.

0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

φ
1
[◦
]

t [s]

 

 

Measurement
Simulation

Figure 8.14: Comparison of the angle of
the first chain link from simulation and
measurement.





9 Conclusions

9.1 Summary

This thesis deals with model order reduction of parameter-dependent LTI systems. The
considered approach is based on the interpolation of reduced system matrices obtained
for a set of grid points. A general framework was proposed which can be applied by
the user as a construction kit for pMOR by matrix interpolation. It illustrates the
steps and presents the different options for each step. In most cases, the user does not
have enough insight into the physics of the model in order to decide on the options
leading to the most accurate reduced model. As a remedy, a Black-Box method was
presented which automatically determines the best interpolation method and the opti-
mal grid points in the parameter space and, additionally, monitors the accuracy of the
reduced model. Hence, this automatic approach enables users without deep knowledge
of pMOR to obtain a parameter-dependent reduced system of a desired accuracy using
as few grid points as possible. The benefit of this method was demonstrated to decrease
the simulation time for examples arising in microsystems technology, mechatronics and
structural mechanics. It was pointed out that the interpolation of system matrices does
not necessarily lead to asymptotically stable systems even if the locally reduced systems
are asymptotically stable. Hence, a stability-preserving method based on semidefinite
programming was presented which minimally modifies the ROBs compared to the ones
which are adjusted for accuracy reasons. Since common grid-based approaches suffer
from the curse of dimensionality, leading to costs that grow exponentially with the num-
ber of parameters, sparse-grid-based interpolation was introduced for pMOR by matrix
interpolation. This enables us to apply interpolation procedures for high-dimensional
parameter spaces. In addition, the general framework was extended for the case that
the locally reduced system can have different sizes. For this, the system matrices are re-
sized using pseudoinverses for a meaningful interpolation. Finally, it was demonstrated
using an example at a test rig that pMOR by matrix interpolation can easily be used
for controller design of parametric high-order systems.
It was pointed out in this thesis that the transformation matrices Ti and Mi play a

crucial role in the proposed framework. Hence, the possible choices are summarized in
the following. The matrices Ti are calculated so that the right ROBs of the local systems
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are adjusted for accuracy reasons using the DS/MAC/PS approach (3.8)/(3.16)/(3.13).
With the calculation of Mi we can enforce one of the following objectives:

◦ O1) It can be used to adjust the left ROBs of the local systems for accuracy
reasons with the DS/MAC/PS approach (3.23)/(3.24)/(3.25).

◦ O2) One can use STABLE which delivers Mi = PiÊiTi. It minimally modifies
the choice from O1) so that stability preservation is guaranteed.

◦ O3) The matrices Mi = (ÊiTi)−T from equation (3.26) reduce the number of
interpolants and hence, the computational effort as it leads to Ẽi = Iq.

Due to duality, we can calculate matrices Mi so that the left ROBs are adjusted for
accuracy reasons with the DS/MAC/PS approach. Then, matrices Ti can be computed
so that one of the objectives above is satisfied.

9.2 Outlook

It was pointed out in Section 2.3.2 that interpolating locally reduced system matrices is
a very promising approach for the reduction of parameter-dependent systems. However,
a lot of open questions were raised such as stability preservation or the interpolation of
differently-sized models. In this thesis, solutions were developed for all these issues. In
addition, an efficient method selection and refinement algorithm was presented. These
methods were proposed for the interpolation of system matrices. However, they can
directly be applied to other local bases approaches such as the interpolation of trans-
fer functions or the interpolation of the ROBs because the presented algorithms are
independent of the interpolated values.
As a next step, model order reduction of nonlinear systems based on the interpolation

of locally reduced system matrices can be examined. First approaches are proposed
in [112, 104]. However, the authors found that there are many design parameters
which confront the user with difficulties to apply this method. The results presented in
this thesis for the reduction of parameter-dependent systems might contribute to the
development of a self-contained reduction method for nonlinear systems. Intermediate
steps for developing a Black-Box method with stability preservation could be:

◦ A special case of nonlinear systems are switched systems. Instead of interpolat-
ing the locally reduced systems, we switch between them with regard to a time-
dependent switching signal. First results for the reduction of switched systems
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with stability preservation are proposed in [74]. This method is influenced by the
results presented in Section 5.

◦ In the next step, the reduction of systems whose matrices comprise time-dependent
parameters can be considered. First results are presented in [156, 63, 47] which
trace the interpolation of locally reduced system matrices at different time points
back to a spatial sampling of the parameter domain. Hence, it seems promising to
apply the Black-Box method presented in this thesis for an automatic reduction
of these systems.





Appendix A

Interpolation

A.1 Interpolation Problem

Consider a d-dimensional function f : D → R with domain D ⊆ Rd that is to be
interpolated [50, 43]. Assume one has sampled f at the grid points P = {p1, . . . ,pN} ⊂
D to obtain the values y1, . . . , yN ∈ R where yi = f(pi) for each i ∈ {1, . . . , N}.
From the data {(p1, y1), . . . , (pN , yN)} an approximation f̂ : D → R with f̂(p) =∑N
i=1 αiωi(p) is constructed with basis functions ω1, . . . , ωN : D → R and coefficients

α1, . . . , αN ∈ R that satisfies the interpolation condition:

f̂(pi) = yi ∀ i ∈ {1, . . . , N}. (A.1)

A special class of basis functions is given in the following definition.

Definition A.1 ([59]). The basis functions ω1(p), . . . , ωN(p) are called cardinal basis
functions if they fulfill

ωi(pj) = δij =

1, if j = i

0, if j 6= i.
(A.2)

A.2 Gridded Data Interpolation

Introduction

Gridded data interpolation relies on an ordered relationship among the grid points
which are indexed along the coordinate directions [151]. Assume that the u-th direction
includes Nu points which are arranged as follows:

pu1 < pu2 < . . . < puNu ∀ u ∈ {1, . . . , d}. (A.3)
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Then, the grid is defined by arranging all dimensions

P = {p1
1, . . . , p

1
N1} × . . .× {p

d
1, . . . , p

d
Nd
}. (A.4)

The resulting grid is called a regular grid for which an example is given in Figure A.1.
A special case is the full grid for which the neighboring points in every direction have
equal spacing. An example for a full grid is given in Figure A.2.
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Figure A.1: Regular grid with two param-
eters p1, p2 and refinement in the top left
corner.
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Figure A.2: Full grid with two parameters
p1, p2 and grid mesh width ∆p1 = ∆p2 =
0.25.

Application

We can use a regular grid if the domain allows the rectangular structure of the grid.
This is the case if the domain is rectangular itself and if there are no constraints on the
domain which prohibit the regularity of the grid.

Discussion

A regular grid has the beneficial property that the gridded structure allows to locate
the neighbor points of a grid point easily because every point has a fixed number of
predefined neighbors. Hence, the distance between two points can easily be obtained.
In addition, it allows to define operations such as the derivative. A disadvantage of
such a grid is the difficulty to keep its structure during a refinement procedure. This
can be observed in Figure A.1, where we wish local refinement in the top left corner.
However, we must insert additional points to preserve the rectangular structure of the
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grid. In the following, two approaches for gridded data interpolation are reviewed by
means of a 1-dimensional parameter space.

A.2.1 Polynomial Interpolation

A set of N distinct data points {(p1, y1), . . . , (pN , yN)} is given. We are looking for a
polynomial of degree at most N − 1

f̂(p) =
N∑
i=1

αip
i−1 (A.5)

fulfilling the interpolation condition (A.1). The resulting system of linear equations has
a unique solution and delivers the coefficients α1, . . . , αN [152, 3]. The interpolation
polynomial in the Lagrange form is given by

f̂(p) =
N∑
i=1

yiωi(p), (A.6)

where the coefficients are the function values at the grid points y1, . . . , yN and the basis
functions are given by

ωi(p) =
N∏

j=1,j 6=i

p− pj
pi − pj

∀ i ∈ {1, . . . , N}. (A.7)

The Lagrange basis functions fulfill the property of cardinal basis functions (A.2).

A.2.2 Piecewise Polynomial Interpolation

One can also look for a piecewise polynomial in each interval p ∈ [pi, pi+1] [152, 3]. A
common choice is the linear spline which represents a set of line segments between two
neighboring data points. The linear spline interpolant can be represented by

f̂(p) =
N∑
i=1

yiωi(p), (A.8)

where the coefficients are the function values at the grid points y1, . . . , yN and the basis
functions for i ∈ {1, . . . , N} are given by

ωi(p) =


p−pi−1
pi−pi−1

, if p ∈ [pi−1, pi]
pi+1−p
pi+1−pi , if p ∈ [pi, pi+1].

(A.9)
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These basis functions are often referred to as hat functions. They fulfill the property
of cardinal basis functions (A.2). Another common choice is the cubic spline which
constructs in each interval k ∈ {1, . . . , N − 1} a cubic polynomial:

f̂k(p) =
4∑
j=1

αkj (p− pi)j−1. (A.10)

The polynomials need to fulfill the interpolation condition (A.1) and they need to be
two times differentiable at the interior nodes. Together with two boundary conditions,
this leads to a strictly diagonally dominant system of linear equations. Its solution
delivers the coefficients αk1, . . . , αk4 for each k.

A.3 Scattered Data Interpolation

Introduction

Scattered data interpolation assumes a set of points which have no structure or order
between their relative locations [163]. A corresponding grid is called an irregular grid for
which an example is given in Figure A.3. A grid whose grid points have approximately
the same distance from each other and capture all regions of the domain D is referred to
as space-filling design for which an example is shown in Figure A.4. There are various
methods for space-filling designs such as Latin hypercube sampling [116], Halton or
Sobol quasi-random sequence [92, 149].

0          0.25          0.5         0.75      1
0

0.25

0.5

0.75

1

Figure A.3: Irregular grid with two param-
eters p1, p2 and refinement in the top left
corner.
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Figure A.4: Irregular grid with two pa-
rameters p1, p2 and a space-filling de-
sign.
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Application

We can use irregular grids for every set of grid points. Hence, there are no demands on
the domain. The domain does not have to be rectangular and can have any constraints.
For that reason, we can use irregular grids in situations where it is not possible to have
a regular grid. This is for example the case for models arising in meteorology because
weather measurements are only available at irregularly located observation stations.

Discussion

Irregular grids have the advantage that they can easily be applied for multidimensional
parameter spaces. In addition, they can easily take constraints on domain D into
account. A disadvantage is that the grid points do not have predefined neighbor points
and hence, operations such as calculating the distance are expensive or even not possible
such as calculating a derivative. In the following, two approaches for scattered data
interpolation are presented.

A.3.1 Radial Basis Functions

Consider again a d-dimensional function f : D → R that we want to interpolate using
the scattered data {(p1, y1), . . . , (pN , yN)}. The interpolant of the radial basis function
(RBF) scheme is

f̂(p) =
N∑
i=1

αiφi(||p− pi||2, c) (A.11)

with basis functions φ1, . . . , φN : R+
0 → R and coefficients α1, . . . , αN ∈ R [163, 35]. A

radial basis function φi(||p− pi||2, c) is a function which is radially symmetric around
a point pi defined in terms of the Euclidean distance. It can depend on the shape
parameter c which influences the smoothness of the function. Some common radial
basis functions are shown in Table A.1.

Table A.1: Some common radial basis functions.
Name of RBF Definition

Linear φi(||p− pi||2) = ||p− pi||2
Thin plate spline φi(||p− pi||2) = ||p− pi||22ln(||p− pi||2)
Cubic φi(||p− pi||2) = ||p− pi||32
Gaussian φi(||p− pi||2, c) = e−(c||p−pi||2)2 , c > 0
Multiquadric φi(||p− pi||2, c) =

√
||p− pi||22 + c2, c > 0

Inverse multiquadric φi(||p− pi||2, c) = 1√
||p−pi||22+c2

, c > 0
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Once the basis functions are chosen, the coefficients α1, . . . , αN are computed by
solving a system of linear equations which arises when the data is inserted into the
interpolation condition (A.1):

φ1(||p1 − p1||2, c) φ2(||p1 − p2||2, c) . . . φN(||p1 − pN ||2, c)
φ1(||p2 − p1||2, c) φ2(||p2 − p2||2, c) . . . φN(||p2 − pN ||2, c)

... ... ...
φ1(||pN − p1||2, c) φ2(||pN − p2||2, c) . . . φN(||pN − pN ||2, c)


︸ ︷︷ ︸

φ


α1

α2
...
αN


︸ ︷︷ ︸
α

=


f(p1)
f(p2)

...
f(pN)


︸ ︷︷ ︸

f

.

(A.12)
The N × N interpolation matrix φ is symmetric because of ||pi − pj||2 = ||pj − pi||2
for i, j ∈ {1, . . . , N}. A unique solution exists for the system of equations (A.12) if
and only if φ is nonsingular. This is guaranteed for the linear, Gaussian, multiquadric
and inverse multiquadric basis functions from Table A.1 if N ≥ 2 and if the data
points are all different [117]. The thin plate spline and the cubic basis function may or
may not lead to nonsingular φ. For such cases it is useful to add low order polynomials
p1(p), . . . , pM(p) and the corresponding coefficients γ1, . . . , γM to the interpolant (A.11)

f̂(p) =
N∑
i=1

αiφi(||p− pi||2, c) +
M∑
j=1

γjpj(p). (A.13)

As now the system of equations (A.13) is underdetermined, we use the side conditions

N∑
i=1

αipj(pi) = 0 ∀ j ∈ {1, . . . ,M} (A.14)

and solve the linear system of N +M equations φ P
PT 0

α
γ

 =
f
0

 (A.15)

with γ = [γ1, . . . , γM ]T and

P =


p1(p1) . . . pM(p1)

... ...
p1(pN) . . . pM(pN)

 . (A.16)
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A.3.2 Kriging

Consider again a d-dimensional function f : D → R that we want to interpolate
using the scattered data {(p1, y1), . . . , (pN , yN)}. Kriging or Gaussian process regression
models this function by a Gaussian process F (p) ∼ N

(
f̂(p), σ̂(p)2

)
with mean f̂(p)

and variance σ̂(p)2 [106, 46, 140]. The Gaussian correlation function is

φi(||p− pi||2) = e−θ||p−pi||22 (A.17)

with correlation length θ. The vector of correlations is

r(p) = [φ1(||p− p1||2), φ2(||p− p2||2), . . . , φN(||p− pN ||2)]T (A.18)

and the correlation matrix is

R = [r(p1), r(p2), . . . , r(pN)]. (A.19)

This delivers the Kriging predictor for the mean

f̂(p) = r(p)TR−1(f̄ − µ̄) + µ(p) (A.20)

with a low-order polynomial obtained from regression µ(p) and

f̄ = [f(p1), . . . , f(pN)]T , (A.21)

µ̄ = [µ(p1), . . . , µ(pN)]T . (A.22)

The Kriging predictor also gives a variance estimate σ̂(p)2 as a measure of precision us-
ing an estimate of the unadjusted variance σ2. The hyperparameters θ and σ2 can be de-
termined using maximum likelihood estimation. Comparing the RBF interpolant (A.13)
and the Kriging predictor (A.20), it can be observed that RBF interpolation and Krig-
ing can be written in the same form. However, the first one is constructed using various
basis functions whereas the latter employs a correlation matrix and vector. In addition,
Kriging provides a variance estimate [148].
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A.4 Sparse-Grid-Based Interpolation

Consider again the interpolation problem defined in Section A.1 where function f(p) is
approximated by f̂(p) = ∑N

i=1 αiφi(p) with coefficients α1, . . . , αN and basis functions
which we denote with φ1(p), . . . , φN(p) in the context of sparse grids. They span the
approximation space V = span{φ1(p), . . . , φN(p)}. The sparse-grid-based interpolation
method, see e.g. [37], firstly specifies what basis functions φ1(p), . . . , φN(p) to use,
secondly, on which points p1, . . . ,pN to sample the function f(p), and, thirdly, how to
construct the coefficients α1, . . . , αN . Furthermore, this is done optimally with respect
to the interpolation error in the L2-norm if the function f(p) has bounded mixed
derivatives up to order two.

Firstly, take the standard hat function φ : [−1, 1] → R with φ(p) = max(1 − |p|, 0).
Then, the one-dimensional hierarchical basis function φl,i : [0, 1] → R centered at the
sparse grid point pl,i = i · 2−l is defined as

φl,i(p) = φ(2l · p− i) . (A.23)

The l ∈N is called the level and the i ∈N the index of the basis function φl,i and grid
point pl,i, respectively. In Figure A.5(left), the hierarchical basis is plotted up to level
three. We extend (A.23) to the d-dimensional case with

φl,i(p) =
d∏
j=1

φlj ,ij(pj), (A.24)

where level l = (l1, . . . , ld) and index i = (i1, . . . , id) are vectors in Nd and p =
(p1, . . . , pd) is a vector in [0, 1]d. We associate these hierarchical basis functions in so-
called hierarchical increments: Let Φl be a set that contains all basis functions (A.24)
with level l and index in {i ∈Nd | 1 ≤ ij < 2lj , ij odd, 1 ≤ j ≤ d}. Such a set Φl spans
the hierarchical space Wl = span(Φl). These hierarchical increments give us a versatile
way to define approximation spaces. For example,

V FG
` =

⊕
||l||∞≤`

Wl (A.25)

is the space of piecewise d-linear functions of level ` ∈ N. This space corresponds to
a full grid shown in Figure A.5(a) with mesh width h = 2−`. The level ` controls how
many grid points we want to have. Figure A.5(left) shows the grid points and the basis
functions spanning V FG

3 . Of course, this full grid approach becomes computationally
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Figure A.5: On the left, hierarchical basis functions from level 0 (boundary points) to
level 3. On the right, a comparison of full and sparse grids. In (a) a full grid with mesh
width h = 2−4 and in (b) the classical sparse grid of level 4 corresponding to (A.26).
Two variants, the Clenshaw-Curtis and the Chebyshev sparse grid, in (c) and (d).

infeasible for large dimensions d due to the curse of dimensionality. The number of
grid points and basis functions is in O(2`d) and thus grows exponentially with the
dimension d. It is well known that the interpolation accuracy is in O(2−2`) for this type
of grids and spaces. The sparse grid space is then defined as

V SG
` =

⊕
||l||1≤`+d−1

Wl (A.26)

which determines the basis functions of a sparse grid space and thus the grid points of a
sparse grid. The sparse grid space V SG

` is spanned only by O(2``d−1) hierarchical basis
functions, and the accuracy of the sparse grid interpolant f̂SG ∈ V SG

` is in O(2−2``d−1)
in L2-norm if the function f(p) has bounded mixed derivatives up to order two. Thus,
we save a lot of grid points while the accuracy of the interpolant deteriorates only
slightly compared to the interpolation on the full grid.

The discussion above with definition (A.26) and basis functions (A.24) leads to the
classical sparse grid structure shown in Figure A.5(b). There exist other sparse grid
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structures—see Figure A.5(c) and (d)—which all have similar asymptotic properties
but which might lead to different results for some applications, see [103, 102] and the
references therein.
So far, we have introduced the basis functions (A.24) as well as the grid points of

a sparse grid space (A.26). Finally, we have to discuss how to compute the sparse
grid interpolant f̂SG(p) = ∑`

l=1
∑Nl
i=1 αl,iφl,i(p) with ∑`

i=1Nl = N . We denote in the
remainder of this thesis for simplicity’s sake with φl,1(p), . . . , φl,Nl(p) all basis functions
of current level l with number of points Nl. For this, we need to determine the coeffi-
cients α1,1, . . . , α`,N` ∈ R which are also called hierarchical surpluses. This is done by
the so-called hierarchisation procedure. This is a highly recursive algorithm that allows
us to compute these coefficients with linear complexity in the number of grid points.
Thus, this is cheaper than to solve a system of linear equations as required in, e.g.,
Kriging or RBF approaches. We do not go into details of the hierarchisation procedure
here but refer to [37] for details.
Overall, the three introduced building blocks—hierarchical basis, sparse grid struc-

ture, hierarchisation procedure—form an efficient interpolation method that is well-
suited for (moderately) high-dimensional problems.



Appendix B

Proof of Proposition 3.1

Proof. Recall the two conditions:

◦ C1: Orthonormal bases Vi,V0 with VT
i Vi = Iq and VT

0 V0 = Iq.

◦ C2: The orthonormal bases span the same subspace with span(Vi) = span(V0)
and rank([Vi,V0]) = rank(Vi) = rank(V0) = q.

Firstly, we proof that VT
i V0 ∈ Oq is orthogonal. For this, we start with the overdeter-

mined system of linear equations
ViTi = V0 (B.1)

which has a single unique solution Ti ∈ Rq×q because of condition C2 [68]. Hence, the
Penrose condition (D.5) is fulfilled:

Vi(VT
i Vi)−1VT

i V0 = V0 (B.2)

or with condition C1
VT

0 ViVT
i V0 = Iq (B.3)

and finally
(VT

i V0)T (VT
i V0) = Iq. (B.4)

Hence, we know that VT
i V0 ∈ Oq is orthogonal. Secondly, we compare the three

different approaches:

◦ For the MAC approach (3.16) we obtain

Ti = (VT
0 Vi)−1 = (VT

i V0)−T = VT
i V0. (B.5)

◦ For the DS approach (3.8) we obtain using condition C1

Ti = (VT
i Vi)−1VT

i V0 = IqVT
i V0 = VT

i V0. (B.6)
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◦ For the PS approach (3.13) recall the optimization problem

Ti = arg max
Ti∈O(q)

tr
(
TT
i VT

i V0
)
. (B.7)

It reaches its maximum value tr(Iq) for Ti = VT
i V0 ∈ Oq.

Hence, all three approaches lead to the solution Ti = VT
i V0 ∈ Oq.



Appendix C

Convex Cones

Consider the following definitions:

Definition C.1 ([82]). A set C is called a cone if for every x ∈ C and θ ≥ 0 we have
θx ∈ C.

Definition C.2 ([82]). A set C is called a convex cone if for every x1, x2 ∈ C and
θ1, θ2 ≥ 0 we have θ1x1 + θ2x2 ∈ C.





Appendix D

Pseudoinverse

As we will employ the pseudoinverse as introduced by [120, 26, 132] in this thesis,
the nomenclature is introduced in this appendix. Consider a matrix Q ∈ Ra×b. If
its columns are linearly independent for a ≥ b, the left inverse Q(l)+ ∈ Rb×a with
Q(l)+Q = Ib is denoted with

Q(l)+ = (QTQ)−1QT . (D.1)

If matrix Q has linearly independent rows for a ≤ b, the right inverse Q(r)+ ∈ Rb×a

with QQ(r)+ = Ia is
Q(r)+ = QT (QQT )−1. (D.2)

For the calculation of the pseudoinverse there exists a numerically more efficient ap-
proach using Singular Value Decomposition (SVD), see [147]. It calculates the SVD
of Q = UΣZT , where Σ is a diagonal matrix containing the singular values. Then,
Σ(r/l)+ is a diagonal matrix containing the reciprocal singular values of Σ. This leads
to the (right/left) pseudoinverse Q(r/l)+:

Q(r/l)+ = ZΣ(r/l)+UT . (D.3)

We use formula (D.3) for the calculation of the pseudoinverse. One application of the
pseudoinverse is the solution of the matrix equality

QX = Y (D.4)

with X ∈ Rb×o,Y ∈ Ra×o. A solution exists for matrix equation (D.4) if and only if
the Penrose condition

QQ(r/l)+Y = Y (D.5)

is fulfilled [132]. Then, the solution with minimum ‖X‖F is X = Q(r/l)+Y, where ‖ · ‖F
denotes the Frobenius norm. If (D.5) holds, then the solution X is unique if and only
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if Q has full column rank. If the Penrose condition is not fulfilled, X = Q(r/l)+Y is the
unique best approximate solution of equation (D.4) in the sense of the method of least
squares minimizing the optimization problem [133]

X = arg min
X∈Rb×o

‖QX−Y‖F . (D.6)
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