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Abstract— One of the key challenges in dynamic manipula-
tion is to establish continuous contact between a moving object
and a manipulator. Direct robotic catching is a benchmark
in this context, especially without grasping devices. In this
paper, we explain why it is unrewarding to aim for an ideal
initial dynamic contact if only imprecise knowledge of the
object states is available. Robust initial contacts are proposed
such that a successful quasi-direct catch can be predicted.
The proposed robustness originates in a negative relative
acceleration between object and catching end-effector. Sets,for
which an upper negative relative acceleration bound holds, are
evaluated throughout an exemplary catching motion. Reachable
set computations allow to express and visualize these sets of
successful object states at any point in time before contact.
The paper closes with a robot-robot experiment that shows
successful quasi-direct catches without feedback on the object
states for a robotic throw.

I. I NTRODUCTION

Dynamic and reliable manipulation is of great relevance
for industrial applications or robotic sports. Solutions to
growing dynamical task requirements mostly originate in
more complex robotic systems that are specially developed
for a particular application. If the task changes, a new robot
or at least a new end-effector must be designed. In order to
provide reliability, these systems are typically oversized and
thus have high costs per unit.

The framework of dynamic manipulation intends to
counter this development with simple robot structures that
can execute dynamically complex tasks. The term dynamic
manipulation was formed and discussed by Mason and
Lynch [1]. They stated that task dynamics can or should be
actively used to enhance the manipulation capabilities of low
degree of freedom (DoF) robots. Mason and Lynch differenti-
ate between form or force closure grasps and nonprehensile
dynamic manipulation [2]. The latter term summarizes all
interactions between manipulators and objects without grasp-
ing devices. Instead, generic end-effector structures areused,
which reduce cost, mechanical complexity, and increase the
applicability to multiple types of tasks or objects.

Within nonprehensile manipulation, the goal is to modify
the states of the object making use of instantaneous and
continuous contacts. Continuous contacts can be further
divided into the problem of establishing and maintaining
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contact. Nonprehensile robotic catching is a benchmark for
both subproblems, each coming with individual challenges.
A successful catch typically relies on a combination of
sophisticated solutions in robot control, multiple types of
sensory feedback, dynamic modeling and trajectory planning.
The first two components aim at improving the repeatability
of a task. Since dynamic modeling implies the definition of
successful contact situations, it is the foundation for planning
robust catching trajectories.

In the presence of imprecise information about the object
states, continuous contacts in nonprehensile catching cannot
be guaranteed initially as re-bounces may occur. Hence, non-
prehensile catching must not only consider the initial contact
but rather the entire catching motion. For situations wherea
direct catch, which requires to match all states of an objectat
the same time instant, is not possible, indirect catches were
proposed [3], [4]. These indirect catches prepare the object
with an instantaneous contact such that a subsequent direct
catch becomes possible. The proposed quasi-direct catch is
located in between these two approaches: intentional impacts
without requiring full motion prediction of the consecutive
object flight.

Hove and Slotine [5] presented one of the first experiments
in dynamic catching, where a robot end-effector matches
position and velocity with an object. They managed to follow
the flight path of an object with a robotic manipulator for a
finite time. Some years later, dynamic catching was discussed
in Lynch and Mason’s dynamic manipulation framework [2].

However, until today, most approaches in object catching
are closed-loop by means of complex vision systems. Re-
search thus focuses on efficient image processing and flight
trajectory estimation. Overcoming these challenges allows
for enough time to find a robot motion that intercepts the
object trajectory with a grasping manipulator [6]. Some
approaches took a step further and defined the kinematic
trajectory interception as an optimization problem [7]. Bäuml
et al. [8] are even able to plan a kinematically optimal robot
interception trajectory online. In all these grasping based
approaches, the contact time estimation is crucial to close
the gripper at the right time. They all focus on kinematic
interception leading to high impact forces if both manipulator
and object are not designed specifically.

Dynamic object manipulation is one possibility to reduce
these high impact forces, but it demands a physical investi-
gation of the expected contacts. They can range from the
desire of keeping contact [9] to intentional impacts [3].
For nonprehensile catching, the impact model is of great
importance, which is a classic research area itself with
many approaches and publications. Most important for our



Fig. 1. Experimental setup with two symmetric 2-DoF planar robots.

work is the basic impulse-based framework introduced by
Wang and Mason [10], [11] that builds on Routh’s graphical
approach [12]. The role of negative acceleration was first
discussed by Schaal [13] for robotic juggling.

In this work, we investigate how to find sets of object
states for nonprehensile catching that lead to continuous
contact and thus to task success. It is explained why it is
unrewarding to aim for an ideal initial dynamic contact if no
precise knowledge of the object states is available. Hence,a
set of successful object states is defined, based on negative
relative acceleration between object and end-effector. The
negative acceleration must be shown to hold after initial
contact throughout the remaining catching motion. Only
then, a strictly monotonically decreasing re-bounce height
for any consecutive impact can be guaranteed. The sets are
calculated for an exemplary catching motion to evaluate the
restriction of the negative acceleration assumption.

The remainder of the paper is organized as follows. Sec-
tion II simplifies the modeling process as it defines all object
states and dynamics relative to the end-effector coordinate
frame. Section III introduces a bounded set of successful
object states. Exemplary sets are discussed in Sec. IV.
An experiment in Sec. V shows repeatedly successful task
executions based on the success sets. Section VI concludes
the paper.

II. RELATIVE OBJECTDYNAMICS

In this section, we introduce transformations that allow for
kinematic and differential object representations with respect
to the end-effector frames. Furthermore, relevant physical
models for gravitation and impacts are specified.

A. Kinematics and Differential Kinematics

Consider an-DoF planar robot with an angle shaped end-
effector as depicted in Fig. 2. Given that the robot dimensions
are fixed, the end-effector position and orientation is entirely
described by the vector of joint anglesq = [q1 . . . qn]

T.
The forward kinematic map is defined by the transformation
matrix

T 0
e(q) =

[

R0
e(q) o0

e(q)
0

T 1

]

, (1)

where R0
e is a rotation matrix ando0

e is a translational
vector. The inertial frame and the catching robot base frame
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Fig. 2. Two symmetric planar robots with end-effector frames and relative
object position.

coincide, cf. Fig. 2. The distance of the throwing robot from
the catching robot is described by the vectord. The inverse
transformation is known asT e

0(q) = (T 0
e(q))

−1. Thus, the
position of an object with respect to the end-effector frame
pe is calculated from the position in the reference framep0

as
p̃e(q,p0) = T e

0(q)p̃
0, (2)

with p̃ = [p 1]
T. The relative velocities and accelerations

with respect to the end-effector frame of a flying object
described in the base frame(p0, ṗ0, p̈0) and for a given
manipulator catching motion(q, q̇, q̈) are

ẋe =
[

ṗe p̈e
]T

=
[

J(q,p0)q̇ +Re
0(q)ṗ

0

J(q,p0)q̈ + J̇(q, q̇,p0, ṗ0)q̇ +Re
0(q)p̈

0 + Ṙ
e
0(q, q̇)ṗ

0

]

,

(3)

where the terms with the JacobianJ(q,p0) = ∂pe

∂q
represent

the relative dynamics due to the end-effector motion. The
terms with the rotational matrixRe

0 and its time derivative
Ṙ

e
0 add the object motion according to the end-effector

orientation.

B. Relative Dynamic Contacts

If a catching motionq(t) is given, its time derivatives
q̇(t), q̈(t) are known. From here on, only the planar case
is considered since all problems can be projected into the
object flight plane. With transformations according to Fig.2,
the relative object position vector denotes aspe = [p⊥ p‖]

T.
Velocities ṗe = [ṗ⊥ ṗ‖]

T and accelerations̈pe = [p̈⊥ p̈‖]
T

are defined accordingly. In order to simplify the notation,
the superscript is omitted for the parallel and perpendicular
components in the catching end-effector frame.

For all calculations in this paper, a single collision modelis
introduced based on a rigid-body assumption for end-effector
and object. From the detailed discussion on two-dimensional



rigid-body collisions in [10] and [11], we choose the case
of a frictionless central collision. A frictionless collision
treatment is already conservative because possibilities for
energy dissipation are neglected. Hence, re-bounce heights
calculated with the chosen model, mark a conservative upper
bound. Fast rotating non-circular objects are an exception,
which is typically avoided by robotic throws.

From the rigid-body assumption follows that collisions
can be considered instantaneous as well as inelastic and
are therefore fully described by a coefficient of restitution
0 < cr < 1. For this coefficient of restitution, an upper
bound must be found experimentally to be able to determine
an upper bound for the re-bounce height. The post impact
velocities of objects according to the frictionless model are
given by

ṗ⊥(t
+
c ) = −crṗ⊥(t

−
c ) , (4)

ṗ‖(t
+
c ) = ṗ‖(t

−
c ). (5)

This reset of the object velocitẏpe in the end-effector frame
is analogous to a reset of the object velocityṗ0 in the inertial
frame, calculated by rearranging (3). Note that situationsin
which the Jacobian becomes singular need no consideration
because rearranging the first line of (3) forṗ0 does not
require the inverse Jacobian.

III. SUCCESSFULNONPREHENSILECATCHING

A direct robotic catch describes the instantaneous estab-
lishment of continous contact between an object and an end-
effector that were previously separated. It is most desirable
to achieve a direct catch since it reduces the problem to find
a single common state of object and end-effector. In case
of nonprehensile catching, position and velocity are relevant
states to avoid object re-bounce.

A. The Perfect Direct Catch

A perfect dynamic contact with a flat end-effector and an
object happens at the distinct time instantt∗c , at which the
perpendicular components of the statexe are zero:

x⊥(t
∗
c) =

[

p⊥(t
∗
c)

ṗ⊥(t
∗
c)

]

= 0. (6)

In order to hit the catching end-effector of lengthp‖,max, the
parallel component has to fulfill

0 ≤ p‖ (t
∗
c) ≤ p‖,max (7)

at the same point in time.
For an infinitesimal short time instantt−c before t∗c , two

approach scenarios are possible, namelyp⊥(t
−
c ) > 0 and

p⊥(t
−
c ) < 0. With regard to the frame definition in Fig. 2,

only the first scenario is reasonable. The latter statement is
not feasible because the object would lie behind the end-
effector in its direction of motion. Hence, in order to allow
the object to approach the end-effector, the perpendicular
constraint of negative velocity

ṗ⊥(t
−
c ) < 0 (8)
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Fig. 3. Object trajectories for three academic contact scenarios in the end-
effector coordinate frame: a perfect direct catch (solid), too early contact
with undesireable large re-bounce (dotted), and a late contact with little and
decreasing re-bounce (dashed). The relative accelerationis the same for all
three scenarios, e.g. one dimensional object and end-effector motion.

must hold. In consideration of (6), this requires a positive
relative perpendicular acceleration

p̈⊥(t
−
c ) > 0. (9)

The transition from a perfect dynamic contact to a perfect
dynamic catch relies on a guaranteed negative perpendicular
acceleration

p̈⊥(t) < 0, ∀ t > t∗c , (10)

to ensure continuous contact. The solid lines in Fig. 3 depict
such a perfect dynamic catch.

In practice however, it is difficult to achieve contact
situations (6)-(10) reliably as they require an ideal object
state. Any deviation from the desired object state most likely
eliminates any possible solutiont∗c from (6). In case of
early contacts, situations arise, where the relative post-impact
accelerationp̈⊥(t+c ) is still positive, shown by the dotted
lines in Fig. 3. The consequence is a large re-bounce that
needs to be modeled until the next contact. Modelling such
a long lasting re-bounce suffers from the typically imprecise
knowledge of the coefficient of restitutioncr, which relates to
an imprecise prediction of the post-impact velocityṗ⊥(t

+
c ).

Impacts later thant∗c are less problematic, as shown by
the dashed lines in Fig. 3. Here, the re-bounce occurs during
negative perpendicular acceleration, which has a limiting
effect on the re-bounce height. Together with a coefficient
of restitutioncr < 1, the re-bounce height is strictly mono-
tonically decreasing. Too late contacts however, must deal



with high relative velocities and thus again with larger re-
bounces.

B. The Successful Quasi-Direct Catch

Due to the unique solution of a perfect direct catch and
in the presence of uncertain object states, re-bouncing con-
tacts are inevitable. In order to provide successful catching
for a whole set of initial contact states, the two major
results from the previous discussion are considered. Firstly,
contacts with positive perpendicular acceleration must be
prevented. Secondly, if negative perpendicular acceleration
can be guaranteed between multiple contacts, the re-bounce
height decreases strictly monotonically. Consequently, an
initial contact can establish continuous contact successfully if
negative perpendicular acceleration is guaranteed duringall
re-bounces. This is what we define as aquasi-directcatch.

For an explicit discussion on the re-bounce height a max-
imum negative perpendicular acceleration constraintp̈⊥,max

is introduced as

p̈⊥(t,p
e, ṗe) < p̈⊥,max < 0 . (11)

This constraint must hold for all possible object velocities
after contact until the end-effector comes to rest. Due to the
dependencies of̈p⊥ on the relative positionpe and velocity
ṗ

e of the object, the constraint can only be shown to hold for
a restricted set of relative object states. Therefore, a success
areaS is defined originating from the end-effector design.
This area should never be left by the object after a successful
initial contact. The upper acceleration bound can then be
defined as

p̈⊥,max = max{p̈⊥(t,p
e, ṗe) | t ∈ [ td, tf ] ∧

xe ∈ S ∧ xe ∈ V)} , (12)

where the velocity setV needs to be chosen according
to (11). The time instanttd specifies the start of an arbitrary
decelerating catching motion. The time instanttf denotes the
end of the catching motion where the end-effector comes
to rest. The acceleration of the catching end-effector is not
regarded here.

From (4) and (11)-(12) it follows that the maximum re-
bounce distance is strictly monotonically decreasing with
every cycle. Hence, once the perpendicular relative velocity
after initial contactṗ⊥(t+) is lower than some upper bound
ṗ⊥,max > 0, the trial can be labeled successful.

In this work, ṗ⊥,max is calculated based on the worst case
which is the assumption of a guaranteed constant negative
acceleration of at leasẗp⊥,max after td. This allows for linear
time treatment of

trb =
ṗ⊥(t

+
c )

−p̈⊥,max
=

−crṗ⊥(t
−
c )

−p̈⊥,max
, (13)

which is the worst case duration of positive post-impact
velocities. The maximum re-bounce heighthr can thus be
calculated by

hr = −crṗ⊥(t
−
c )trb +

1

2
p̈⊥,maxtrb

2

=
cr

2ṗ2⊥(t
−
c )

−p̈⊥,max
+

cr
2ṗ2⊥(t

−
c )

2p̈⊥,max
=

cr
2ṗ2⊥(t

−
c )

−2p̈⊥,max
, (14)

which is the well-known free flight parabola with
p⊥(tc) = 0. Rearranging leads to the negative bounded ve-
locity range

ṗ⊥,lb = −

√

−2p̈⊥,maxhr

cr
< ṗ⊥(t

−
c ) < 0 , (15)

whereashr depends on the end-effector design andp̈⊥,max

is a design parameter. The positive solution ofṗ⊥(t
−
c ) to

(14) would result in a negativetrb due to (13) and is thus
not feasible. In combination with a rearranged (3), it is
now possible to calculate bounds forṗ0(t) which result in
successful catches. Note thatcr is a considerable source of
uncertainty here.

C. Sets of Successful Object States

With the above discussion, it is now possible to define a set
of object states that lead to successful quasi-direct catching.
For this purpose, a sampled robot catching motionq(tk) is
regarded. For each time steptk ∈ [td, tf ] of the robot catching
motion, a set of object states

Xk(tk) = {xk | Hkxk ≤ bk ∧Ekxk = gk} (16)

can be defined based on the previous discussion. The entries
of the matrixHk and the vectorbk formulate a set of half
spaces that serve as multi-dimensional inequality constraints,
while Ek and gk formulate equality constraints. The unity
of these constraints results in a polytope for every time step
tk, each with a bounded set of successful contact states.

In order to express the the set of object states at an
arbitrary point in time, reachable set computations are used.
Since the free object flight is an autonomous linear affine
dynamic, we define the reachable set similar to [14] as

Xk(t) = Reach(Xk(tk), t). (17)

For multiple consecutive sets, their intersection is always
empty:Xi(t)∩Xj(t) = ∅, ∀i 6= j. This is due to the presence
of at least one equality constraint for the precise contact at
a certain point in timetk.

IV. SIMULATION AND NUMERICAL SOLUTION

For the evaluation and discussion of the previously intro-
duced sets, we consider two planar symmetric robot arms,
each withn = 2 revolute joints. The link lengthsl1 and l2
are listed in Tab. I. The choice of this setup is additionally
challenging as position and orientation of the end-effector
are coupled. Thus, the higher the velocities required for the
dynamic catch, the shorter the time becomes in which the
robot can match an object’s flight trajectory.

TABLE I

K INEMATIC DIMENSIONS AND PARAMETERS.

|d| [m] l1 [m] l2 [m] p‖,max [m] hr [m]
1.12 0.32 0.345 0.035 0.005
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Fig. 5. The isolines mark the top right bound of setV in (19) for
examplary values̈p⊥,max. Additionally, two example setsV1(t1) (dotted)
and V100(t100) (filled) are plotted forp̈⊥,max = −2. The run of the
isolines highly depends on the definition of the success areain Fig. 4 and
the catching motion.

A. Verification of Constraints and Assumptions

Primarily, it has to be verified that (8) holds throughout
the catching phase. For the regarded catching motion, this
already holds by design. The angular velocities of the catch-
ing robot q̇ is always smaller than the throwing motioṅqt

at the object release instanttr and the desired contacts lie
lower: p0z(t) < p0z(tr), ∀t ∈ [td, tf ].

An intermediate step is necessary to find the upper per-
pendicular acceleration bound̈p⊥,max based on (12) because
p̈⊥ depends on the object positionp0 and velocity ṗ0. In
order to find a viable set of the velocity vector for which
p̈⊥,max holds, the further discussion is limited to a success
area

S =
{

x0 |pe ∈ [0, hr]× [0, p‖,max]
}

, (18)

which is marked in Fig. 4. This restriction is possible if the
choice ofV in (12) ensures that the object never leaves this
area again after an initial contact. The velocity set in (12)is
then

V =
{

x0 | p̈⊥(t,p
e, ṗe) < p̈⊥,max ∀x

0 ∈ S ∧ t ∈ [td, tf ]
}

.

(19)
The simulation results of this set for a given catching motion
are shown in Fig. 5. The isolines illustrate the upper border
of V for a choice ofp̈⊥,max. This upper acceleration bound
in the velocity space is guaranteed for all object positions
S during the entire catching periodt ∈ [td, tf ]. From (18)
and (19), it can further be concluded that the shapes of these
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Fig. 6. Object positionsC1(t) at multiple points in time beforetd that
lead to a successful catch. If the object velocity att lies in the according
setV1(t), the trial is successful. The cross marks a position for whichthe
velocity solution sets are discussed.

isolines highly depend on the success area definition and the
catching motion.

B. Successful Sets

After validating the assumption, the setsXk(tk) that lead
to a successful catch can be found for every time step
tk ∈ [td, tf ] of the robot catching motion. For this purpose,
only contact situationsp⊥ = 0 in the success area are
considered, represented by the set

Ck(tk) =
{

x0(tk) |x
0 ∈ S ∧ p⊥ = 0

}

. (20)

For these positions, a prior-impact velocity subset ofV for
every time stept−k is defined as

V−
k (t−k ) =

{

x0(t−k ) | ṗ⊥ ∈ [ṗ⊥,lb, 0] ∀ p‖ ∈ [0, p‖,max]

∧ ṗ‖ < 0 ∧ x0(t−k ) ∈ V
}

. (21)

This definition ensures that all prior-impact velocities full-
fil (15) independently of the contact position in the success
area. In Fig. 5 this produces the boundaries 1 and 3 for
ṗ⊥ = 0 andṗ⊥ = ṗ⊥,lb, respectively. Major dependencies of
ṗ⊥,lb from (15) are the coefficient of restitutioncr, the maxi-
mum desired re-bounce heighthr, and the maximum negative
velocity p̈⊥,max. In order to avoid disadvantageous contacts
with the end-effector edge atp‖ = p‖,max, we choose the
parallel velocityṗ‖ to be negative, represented by boundary
2. Additionally, it must be ensured that (11) holds also for
post-impact velocities leading to the set

Vk(tk) =
{

x0(tk) |x
0(t−k ) ∈ V−

k ∧ x0(t+k ) ∈ V
}

, (22)

represented by boundary 4.
According to the model assumptions made, the set of states

that lead to successful catching can now be formulated as the
intersection

Xk(tk) = Ck(tk) ∩ Vk(tk). (23)
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Fig. 7. Left: Object velocitiesV1(t) at multiple points in time beforetd
that may lead to a successful catch (filled). The dot in the filled area shows
the set of successful object velocities att = td − 0.55 s for the position
marked in Fig. 6. The dotted area indicates possible release velocities of
the robot in use for this position and joint configuration.Right: A zoom of
valid release velocities fromk = 1 to k = 21 in steps of five for the same
point in time t.

C. Discussion of Results

The result of the success analysis is presented with Figs. 6
and 7. The first plot shows potentially successful object
states at different points in time as a projection ofXk(t)
onto the position dimensions. It can be interpreted such that
for every time-position combination within the sets, there
exists a corresponding one dimensional set of velocities that
leads to a successful catch. For further reference we denote
the length of this one dimensional solution set as|v|. One
possibility to calculatev is to take the difference of the first
and the last velocity vectoṙp0(t) that is in the velocity set
Vk(t) given a positionp0(t).

If the position p0, the time t and the catching stepk
are fixed, the length|v| is only influenced by the size
of the catching surface defined in (7). The chosen release
position does not directly influence the size of the velocity
solution set. The zoomed plot on the right hand side in
Fig. 7 illustrates valid velocities for consecutive stepsk of
the sampled catching motion.

The only parameter that does have an influence on the size
of Vk(t) is the timing, more precisely the time until impact.
As Fig. 8 shows, the velocity set size increases if the time
until impact is reduced. For a given position and a particular
catching stepk, this can be done by changingt in Xk(t)
until the position is close to the set border. Figure 8 shows
this size fork = 1 at several points in timet. If the chosen
position is too close to the boundary of its set, the respective
velocity set size is reduced to zero. Consequently, the choice
of the position influences the velocity set size indirectly by
the time range that can possibly be covered. However, the
maximum velocity set size is not the best choice since in
turn the amount of valid catching setsk for the position-
time combination would be reduced.

V. EXPERIMENT

For the experimental evaluation, two symmetric serial
manipulators with end-effectors moving in a vertical plane
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Fig. 8. The one-dimensional set length ofVk(t) for the position marked
in Fig. 6 over timet. The longer the flight time until impact, the smaller
the velocity set size. When the fixed position reaches the edgeof Ck(t) the
size ofVk(t) goes down to zero.
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0.02 s 0.06 s 0.20 s

Fig. 9. Frames of the catching experiment withtd = 0 s.

were built. Each of the manipulators is driven by two PD-
controlled revolute joints based on angular displacement
sensing with resolution1.5× 10−5 rad. Angular velocities
are based on numerical differentiation of the angular dis-
placement with resolution1.5× 10−2 rad s−1 considering
the time sampling in steps of0.001 s. Every joint is ac-
tuated with a150W Maxon motor attached to a 1:100
Harmonic Drive gear. The maximum possible joint velocities
are7 rad s−1 on the load side. The distance|d| between the
two robot bases and the kinematic dimensions are given in
Tab. I.

Each of the two robots is able to perform both tasks throw-
ing and catching with the same end-effector. An exemplary
catching motion is given and performs open-loop without
knowledge of the current object state, cf. Fig. 9. For this
motion, successful object states were defined and calculated
in Sec. IV. From the set of successful object states, one
object state is chosen which is not close to any bounds of the
success set. Furthermore, this one object state is amongst the
reachable end-effector states of the throwing robot, depicted
in Fig. 7 by the dotted area. Considering possible release
and catching positions, the overall open-loop flight distance
is about1.8m.



Fig. 10. End-effector for throwing and catching spherical objects in
a vertical plane. The middle track minimizes the contact surface whilst
keeping the object at a defined position for throwing. Inclined side planes
increase the catching area.

The plastic end-effector shown in Fig. 10 is particularly
designed for planar throwing and catching of spherical ob-
jects, here an aluminum ball with radius1.5 cm and thus
negligible aerodynamic drag. The planar surfaces, left and
right of the middle track, are slightly inclined towards the
middle. This directs the object back into the vertical plane
during the catch if distortions in the direction of the non-
actuated dimension appear. In the center, the end-effector
provides 3-point contact to minimize the contact surface and
to fix the object in the vertical plane for (re-)throwing.

Experimental results verify the discussion of the successful
object states with 18 successful catches out of 20. The
attached video shows one of the successful throwing and
catching cycles. Furthermore, it illustrates what happensin
case of undesirable early contacts as they were described in
Sec. III.

The release configuration on the throwing side is chosen
such that a sufficient range of release velocities is available
and such that the absolute velocity is sufficiently high. The
configurationqt

1 = 0.175 rad andqt
1 = 2.094 rad has shown

to be a good trade-off, cf. Fig. 2. For similar desired release
velocities, these angles cannot be chosen much larger as
the motors already operate close to their power limits. The
resulting release position isp0x = −1.5m andp0z = 0.54m,
which is also marked by a cross in Fig. 6.

On the throwing side, limiting effects on the task success
originate in release state inaccuracies that are larger than
the currently found success sets. On the catching side, the
so far heuristically chosen catching motion contains unused
potential. For example, the catching motion could be re-
planned by using the presented method.

VI. CONCLUSION AND FUTURE WORK

In this work, quasi-direct catching has been proposed as
an effective way to deal with uncertain object states as a
set of potentially successful object states becomes available.
It was explained how these sets of successful object states
can be calculated efficiently for given catching motions at
any point in time before contact. The time until contact has
been identified as the most crucial and complex parameter
for which generalized statements cannot be made.

The flexibility of the implementation enables intense cause
and effect discussions on all relevant constraints and param-
eters beyond this work. The representations can be extended

to additional degrees of freedom like object orientation and
rotational velocity. For such extensions, the physical model
needs further attention in terms of a range of successful
contacts. The set description and calculation scales well for
this purpose unless nonlinear models for free object flight
are considered.

In future work, the algorithm will be enhanced to also
consider undesirable contacts, e.g. when the object trajectory
crosses parts of the accelerating robot motion. In the sequel,
it will be possible to investigate and improve the catching
trajectory itself jointly with the end-effector design.
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