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Abstract— Knowledge of the human grasp pose is crucial in
common control schemes for human-robot object manipulation
tasks. Biased estimates of the grasp pose cause undesired
interaction wrenches on the human partner, which disturbs
the interaction and the recognition of motion intention. A use
of wearable motion sensors for tracking the human motion
facilitates the grasp pose estimation without a global sensing
system. This paper presents an approach for estimating an
unknown grasp pose of the human using wearable motion sen-
sors while minimizing undesired interaction wrenches applied
to the human. A condition necessary for convergence of the
estimator together with appropriate robot motion strategies are

provided. Estimation of relative orientation and displacement
is performed online and based on minimizing the error in the
least-square sense. The estimation process does not rely on a
global sensing system and it considers only the measurements
of the velocity and acceleration of the cooperating partners in
their respective local frames. The approach is experimentally
evaluated in a physical human-robot interaction scenario.

I. INTRODUCTION

There is a vast interest in scenarios where robots are

closely interacting with humans and performing tasks co-

operatively. A broad set of challenges arises in tasks where

a human and a robot are physically interacting. Safety and

robustness issues are commonly in the focus of human-

robot interaction (HRI) strategies [1]. Typical applications of

physical HRI include human-robot object manipulation (as

in Fig. 1) used in manufacturing, construction, and logistics.

In cooperative manipulation tasks a human and a robot

are tightly coupled through the object and a coordination

strategy is employed to specify the reactive/compliant be-

haviour of the robot. The corresponding control strategy

involves kinematics of the manipulation task: either the

human imposes a desired trajectory and the robot needs to

continuously adapt during task execution [2] or the human

and robot agree in advance on a desired trajectory [3]. Thus,

a biased estimate of the grasp pose, i.e. the relative kinemat-

ics between the human hand and the robotic end-effector,

causes undesired interaction wrenches between partners [4]

and results in non-matching robot and human trajectories.

The undesired interaction wrenches bias human intention

recognition schemes based on interaction wrenches [3]. An

incompatible robot trajectory leads to collisions of the robot

with its environment, in particular when avoiding obstacles

or passing narrow passages. Thus, the robot requires accurate

knowledge of the human’s grasp pose.
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Fig. 1. Human-robot cooperative object manipulation scenario

Conventional approaches in physical HRI assume their

relative grasp kinematics is known [1], [3], [5]. This is clearly

an oversimplification since the human might not grasp the

object at a predefined location or the human might regrasp

it during the task. Visually tracking the human hand pose

may not have sufficient accuracy due to varying lighting

conditions and potential occlusions. In related work in multi-

robot cooperative manipulation, the relative kinematics be-

tween the robotic end-effectors is identified based on the

available end-effector motion signals [6], [7]. However, it

is not straightforward to extend the existing approaches to

human-robot manipulation. On the one side, the human is

unaware of the required trajectory for the identification. On

the other hand, the robot solely executing the identification-

relevant trajectory may lead to undesired wrenches at the

human hand unless human presence is considered.

Wearable motion sensors such as inertial measurement

units (IMU’s) facilitate grasp pose estimation in HRI. How-

ever, so far there are only few works addressing this issue.

The estimation of the relative position and orientation of the

human is treated by [8]: the human is assumed to behave as

a virtual passive revolute joint and the robot motion is driven

along the unconstrained circular direction around the human.

However, only a planar task is modelled and it is furthermore

not clear how to achieve the persistency of excitation (PE)

condition [9], assuring the convergence of the grasp pose

estimates. Identifying unknown kinematic properties in a

physical HRI scenario and deriving suitable robot motion

with the human in the loop is still an open issue.

The main contribution of this paper is a strategy for

identifying the unknown grasp pose of the human while

minimizing the undesired interaction wrenches applied to the

human. We model the task and derive an online estimation

strategy of the relative kinematics by minimizing the error

in the least-square sense: the relative orientation is estimated

using the quaternion estimator and the relative displacement



using the recursive least squares algorithm. We characterize

the persistency of excitation condition involving motion

inputs. We formulate a strategy in the case of a static human

pose and validate the approach with real-time measurements

in a human-robot manipulation setting.

The remainder of the paper is structured as follows. Sec. II

formulates the problem. Sec. III presents the estimation

strategy and discusses its convergence. Sec. IV treats the

robot trajectory selection and Sec. V evaluates the approach.

II. PROBLEM STATEMENT

Consider a scenario where a human, denoted with a coor-

dinate frame {h}, and a robot, {r}, cooperatively manipulate

a rigid object as depicted in Fig. 1. The grasps of the human

and the robot are assumed to be rigid, i.e. no slippage occurs

during manipulation. The end-effector pose is represented by

xi =

[
pi

qi

]

(1)

with xi ∈ SE(3) ∀i ∈ h, r containing the human/robot

translation pi ∈ R
3 in the world/inertial frame {w},

and orientation qi ∈ SO(3) represented by a

unit quaternion, i.e. qi = [ηi ǫ
T
i ]

T with ηi ∈ R

as the real part and ǫi = [ǫi1 ǫi2 ǫi3]
T ∈ R

3 as

the imaginary part of the quaternion. A rotation

matrix R(qi) ∈ R
3×3 of a quaternion qi is defined

as R(qi) = (2η2i − 1)I3 + 2S(ǫi) + 2ǫiǫ
T
i with S ∈ R

3×3

as a skew-symmetric matrix. Let ẋi = [vT
i ωT

i ]
T ∈ se(3)

be a twist vector containing the linear velocity vi ∈ R
3,

and the angular velocity ωi ∈ R
3 of the human/robot, and

let ẍi = [v̇T
i ω̇T

i ]
T contains linear and angular accelerations.

The position and orientation of the human and the robot

expressed in the world frame {w} are related by

ph = pr +R(qr)
rrh (2)

qh = qr ⊗ rqh (3)

where the relative kinematics is represented by rrh ∈ R
3 as

the relative displacement of {h} with respect to {r}, and rqh
as the relative orientation of {h} with respect to {r} (as in

Fig. 2). Symbol ⊗ denotes the quaternion multiplication.

We employ a human-centered task specification where the

desired trajectory of the human hand xd
h(t) is known as in [3]

with constant stiffness (eg. in [10]). In order to continuously

adapt the robot motion, a desired trajectory xd
r(t) of the

robot must be computed with respect to that of the human

using (2) and (3). The relative kinematics of the human and

robot end-effector, i.e. the relative translation and orientation

are critical.

The model relating the displacement of the human wrist

pose to the applied wrench as in [10] is assumed

xd
h − xh =

[
K−1

h,t 03

03 K−1
h,r

] [
fh

th

]

(4)

wherein Kh,t and Kh,r are the translational and rotational

stiffness of the human wrist respectively, and uh = [fT
h tTh ]

T

is the wrench at the human wrist composed of the

force fh ∈ R
3 and torque vector th ∈ R

3. As a result of (4),

the wrench at the human wrist diminishes when the desired

and the actual wrist pose coincide xd
h = xh. Human and

robot interaction wrenches are related by
[
fh

th

]

=

[
R(rqh)

T
03

−R(rqh)
TS(rrh) R(rqh)

T

] [
fr

tr

]

(5)

Given the desired trajectory of the human, xd
h(t), our aim

is to define a desired robot trajectory, xd
r(t), such that the

relative grasp pose estimates, rr̂h and rq̂h, converge to their

true values, rrh and rqh, i.e.

rr̂h → rrh and rq̂h → rqh as t → ∞ (6)

while minimizing the undesired interaction wrenches, i.e.

min
xd
r

‖uh(x
d
r)‖2 (7)

Achieving both (6) and (7) is challenging since the input

motions have to satisfy the persistency of excitation condition

in order to achieve the estimator convergence and hence, suc-

cessful identification of the relative kinematics. Performing

such motions causes an undesired interaction wrenches when

contradicting the human motions as illustrated by (4).
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Fig. 2. True r
rh,

r
qh and estimated r

r̂h,
r
q̂h relative displacement and

orientation between the human and robot frames.

A. Manipulation task kinematics

When grasped rigidly, the object mutually constrains the

translational and rotational motion of the human {h} and the

robot {r}. This implies a constant relative displacement of

the human hand with respect to the robot end-effector, i.e.

rrh = const. (8)

Differentiating (2) and defining rh = R(qr)
rrh we obtain

expressions for translational velocity

vh = vr + ωr × rh (9)

and for linear acceleration by differentiating again the pre-

vious expression

v̇h = v̇r + ω̇r × rh + ωr × (ωr × rh) (10)

The relative orientation between the robot and the human

frame is also constrained

rqh = const. (11)

By respective differentiation of (3), we obtain the expression

for relative angular velocity and acceleration

ωh = ωr and ω̇h = ω̇r (12)



The linear and angular velocities of the human and the

robot in their own local frames are related by

rẋr =

[
R(rqh) S(rrh)R(rqh)

03 R(rqh)

]

hẋh (13)

The relative linear acceleration is

rv̇r =R(rqh)
hv̇h + rω̇r × rrh + rωr × (rωr × rrh) (14)

We aim at defining xd
r(t) given xd

h(t).
Since xd

r = xd
r(

rrh,
rqh) as seen in (2) and (3), the

estimator of the relative kinematics is needed. For

simplicity, let us denote r = rrh and q = rqh.

III. GRASP POSE ESTIMATION

The parameter identification scheme aims at identifying

the unknown quantities in (6), contained in the kinematic

constraints. The objective of this section is to find a suitable

combination of a sensing system and an estimation strategy.

A. Selecting an appropriate sensing system

Any of the constraint representations (pose, velocity, ac-

celeration) is suitable to conclude on the actual parameters.

However, the available sensing equipment on the human

and the robot might privilege or limit the use of a certain

representation. If the human hand and the robotic end-

effector could be tracked by the robot vision or an optical

tracking system (yielding xh(t) and xr(t) in {w}), the

pose representation appears convenient. However, possible

occlusions during grasping and inaccuracies limit the use

of human grasp pose tracking by vision. Inertial sensors

are more appropriate for tracking the human motion. This

requires formulating an estimation strategy at the veloc-

ity/acceleration level.

Inertial sensors typically provide measurements of linear

acceleration v̇ and angular velocity ω of the motion. In order

to formulate an estimator at the velocity level, v̇ needs to

be integrated in order to obtain v, since only ω is directly

available. However, errors occur during integration. We for-

mulate an estimator based on relative angular velocity (13)

and linear acceleration (14) expressions and thus avoid the

noisy integration. Measurements of the human end-effector

(coinciding with the human grasp location) are obtained by

inertial sensors placed at the human hand. Robot end-effector

measurements are obtained through the forward kinematics.

B. Estimating relative kinematics

Given measurements of the angular velocity and

linear acceleration of the human and robot end-

effectors, hωh, rωr, hv̇h, and rv̇r, we derive an online

estimator of the relative kinematics. Let us define error

residuals of angular velocities and linear accelerations from

eqs. (13) and (14) as

eω,i =
rωr,i −R(q̂)hωh,i (15)

ev̇,i =
rv̇r,i −R(q̂)hv̇h,i −r ω̇r,i × r̂ (16)

−r ωr,i × (rωr,i × r̂)

where subscript i denotes estimates/measurements at time ti.

An optimization problem solving for unknown r and q

can be formulated in terms of least squares as in [7]. Solving

the multi-variable optimization problem for both kinematic

parameters might be difficult, computationally intensive, and

hence not applicable online. We decouple the problem of

orientation and displacement estimation in the following

sense: the orientation estimator minimizing (15) requires

no displacement estimate and can be computed separately,

the displacement estimator minimizing (16) is computed

using estimated orientation. For notational convenience, let

us remove superscripts of the local frames, e.g. hω̇h = ω̇h.

Estimating relative orientation: Let us define a cost func-

tion using the relative orientation error (15) up to time tk

Jω,k =
1

2

k∑

i=1

ai ‖eω,i‖2 s.t. ‖q̂‖ = 1 (17)

subject to the quaternion norm unity constraint. Measure-

ments are weighted by ai = e−µq(tk−ti) ∀i = 1, 2, . . . , k
with the forgetting factor µq < 1, and k as the total number

of measurements.

The quaternion estimator solving the Wahba’s prob-

lem [11] is employed to find the optimal estimate of the

relative orientation q̂∗ recursively for each sampling time ts
with respect to the cost function (15)

Φq,k = δqΦq,k−1 + φq,k ∀i = 1 . . . k (18)

where Φq,k =
∑k

i=1 aiφq,k and φq,k(ωr,k ,ωh,k) ∈ R
4×4

is a symmetric traceless matrix

φq,k =

[
ωh,kω

T
r,k + ωr,kω

T
h,k − ωT

r,kωh,kI3 ωh,k × ωr,k

(ωh,k × ωr,k)
T ωT

r,kωh,k

]

with an initial orientation q0 such that ‖q0‖ = 1. The weight

scalar is δq = e−µqts , and the factor µq is as in (17).

The optimal estimate q̂∗ is the eigenvector of the largest

eigenvalue of φq,k.

Estimating relative displacement: Relative displacement r

is estimated using a standard recursive least-squares estima-

tor minimizing the cost function from (16)

Jv̇,k =
1

2

k∑

i=1

ai||ev̇,i||2 (19)

Note that (14) can be expressed as a linear model

v̇r,k −R(q)v̇h,k = φr,kr (20)

with φr,k(ω̇r,k ,ωr,k) ∈ R
3×3 being the regressor matrix

φr,k = S(ω̇r,k) + S(ωr,k)S(ωr,k) (21)

The update of the displacement estimator is

r̂k+1 = r̂k +Kkev̇,k (22)

with the error ev̇,k as in (16) considering only measurements

and the orientation estimate at k, the gain Kk ∈ R
3×3 and

covariance matrix Pk+1 ∈ R
3×3 defined as

Kk = Pk φr,k(δrI3 − φr,kPkφr,k)
−1

Pk+1 =
1

δr
(I3 +Kkφr,k)Pk



with the initial displacement r0 and covariance matrix P0,

factor δr is the weight as in (18) with the forgetting factor µr.

C. Persistency of excitation condition

In order for the estimators (18) and (22) to converge

minimizing (15) and (16), the input motions need to sat-

isfy the persistency of excitation condition [9]. From a

system theoretic point of view this can be interpreted as

an identifiability condition of the parameter vector which

depends on a specific input for nonlinear systems. In our case

the PE condition describes sufficiently “rich” motions for

identifying the human grasp pose. The relative displacement

estimate r̂ will converge towards r if there are positive

constants T and α such that
∫ t+T

t

φT
r φr ≥ αI3 (23)

is satisfied ∀t, with φr being the regressor matrix as in (21).

The regressor matrix is composed of the sum and the product

of skew-symmetric matrices S(ωr) and S(ω̇r). Its rank

is rank(φr) ≥ 2. The corresponding skew-symmetric matrix

of a non-zero input motion vector ωr has rank(S(ωr)) = 2.

The associated null-space null(S(ωr)) = span(ωr). The

range of S(ωr) is the plane orthogonal to ωr. The same is

valid for a non-zero input motion vector ω̇r. The null-space

of the matrix product S(ωr)S(ωr) in (21) is also span(ωr)
with an analogue result for the range.

This means that in the case when ωr and ω̇r are non-

collinear, φr has full rank, i.e. rank(φr) = 3, since the

range of the sum of S(ωr) and S(ω̇r) span R
3. Thus φT

r φr

is full rank satisfying (23), i.e. the motion of the system

is persistently exciting (22). The motions also persistently

excite the orientation estimator (18).

Fulfilling the PE condition having a human in the loop is

challenging. Next section discusses how to achieve/guarantee

such motions given xd
h(t).

IV. TRAJECTORY SELECTION

In this section we are interested in finding a suitable

robot trajectory aiming at identifying the grasp pose and

minimizing the undesired interaction wrenches. We analyse

the case when the human motion is static. Although not

studied in depth, we illustrate strategies and give intuitive

explanations in cases of dynamic human behaviour.

A. Static human pose

Let us firstly consider the case when the desired human

wrist trajectory is static, i.e. the human wrist is at rest. In

this case the human hand pose is xd
h(t) = const. and any

force/torque applied by the robot in view of the grasp pose

identification is considered as a perturbation to the human.

In order to guarantee the parameter convergence (cf. (23)),

the robot needs to induce a motion of the object with a

non-collinear and a non-zero angular velocity, i.e. ωr 6= 0.

Since ωr = ωh, it follows that the torque at the human

wrist th cannot be avoided. The torque produced by the robot

to induce an angular velocity is determined by the desired

amplitude of the motion that the robot performs.

Inducing an angular motion by the robot requires consider-

ing the most appropriate axis of rotation. Since our aim is not

to perturb, i.e. move the human wrist satisfying vh = 0 (and

hence minimal force disturbance fh in (7)), let us consider

the expression of the kinematic constraint (9)

vh =
[
I3 S(rh)

]

︸ ︷︷ ︸

M

[
vr

ωr

]

(24)

By choosing an appropriate ẋr ∈ null(M), the translational

velocity of the human is vh ≡ 0. The null-space of the

matrix M such that Mẋr = 0 is

null(M) = span

([

S(rh)
T

I3

])

(25)

By choosing the human wrist rrh as the axis of

rotation there is no change of human wrist position,

i.e. ph =
∫
vh = const. and fh = 0 since pd

h − ph = 0.

The robot desired trajectory at the velocity level is defined

as

ẋd
r(t) =

[
vd
r (t)

ωd
r (t)

]

=

[
r̂ × ωd

r (t)
ωd

r (t)

]

(26)

where ωd
r (t) is defined such that at two consecutive time

instances, the vectors are non-collinear satisfying (23).

B. Planar human motion

Consider now the case when the human is performing a

task-relevant translational movement in a plane in SE(3).
Although more challenging due to the human dynamic

behaviour, the planar restriction enables identification of a

suitable identification strategy. Desired robot motion needs

to assure both tracking the human translational velocity and

inducing an identification-relevant motion.

Since we have 3D velocity/acceleration measurements of

the human and robot end-effectors, a projected plane spanned

by the human motions xd
h(t) can be defined with the normal

vector resulting from the cross-product of two non-collinear

measurements. In order to achieve (7), the human transla-

tional velocity vector can be chosen as the axis of rotation

for inducing angular motions satisfying (23). Since angular

motions are induced around a single motion direction, only

the subspace of the grasp parameters are identified, i.e. two-

dimensional components of the 3D grasp pose. In order to

estimate the complete parameter space, a rotational motion

around two non-collinear (piecewise constant) translational

velocity vectors of the human wrist vh is needed.

C. 6D human motion

Consider now human motions spanning the complete

6D motion space. In this case, the human either performs

angular motions that are already persistently exciting the

estimator such that (23) is satisfied. Alternatively, the task is

approximated by the strategies used in the cases of the static

motion or by identifying the planes of the human motion.

This challenging scenario requires an in-depth analysis of

potential subspaces of the human motion and we therefore

focus on the case when the human motion is static.



V. EXPERIMENTAL EVALUATION

A. Experimental setup

The proposed approach is evaluated in a human-robot

manipulation experiment. The robot and the human rigidly

grasp the object with a human wrist at rest (Fig. 3). A 7

DoF robotic manipulator is equipped with a two-fingered

Schunk PG70 gripper at the end-effector. An Xsens IMU

sensor is placed at the human wrist for measuring the

motions. The interaction wrenches are measured by a 6 DoF

JR3 force/torque sensor. The object is a rigid rectangular

aluminium frame (1.0×0.8 m) weighted 2 kg.

{h}

{r}

Fig. 3. Experimental setup and frame alignment: the x-axis of {h} and {r}
point towards each other, the z-axis of both frames point upwards.

The robot control scheme consists of an impedance-based

controller (enabling the robot compliant behaviour) and a

joint-space position controller with inverse kinematics (en-

abling the robot reference trajectory tracking in task-space).

This control architecture is commonly used in physical

HRI to assure human safety. Parameters of the impedance

controller are set to M =
[
10I3 kg, 03;03, 0.5I3 kgm2

]

for inertia, D =
[
180I3 Ns/m, 03;03, 10I3 Nms/rad

]
for

damping, and K =
[
300I3 N/m, 03;03, 50I3 N/m

]
for

stiffness. The sampling rate of the estimation and con-

trol is set to ts = 1 ms. A common reference frame

is not required. True values of the human grasp pose

are r = [1.11 0.16 0.08]T (m) and q = [0 0 0 1]T .

B. Results and discussion

In the first run, a robot reference trajectory is chosen

as ẋref
r = [vref

r ωref
r ]T with ωref

r = [10◦ 40◦ 20◦]T π rad
180◦ sin(t),

to satisfy (23), and vref
r = r0 × ωref

r , with the ini-

tial r0 = [0.5 0 0]T and q0 = [0.5 0.5 0.5 0.5]T . The

estimator factors are set to µr = 0.9 and µq = 0.5 to account

for the noisy measurements of the IMU and robot sensors.

The initial covariance is set to P0 = I3.

The absolute errors of the estimated relative orientation

and displacement are shown in Fig. 4. Within ∼ 10 s, the

orientation estimator approaches the true quaternion value

and after ∼ 30 s. it reaches the steady-state. The estimated

quaternion after 1 min. is q̂ = [0.012 0.001 0.026 0.999]T .

The displacement estimation is influenced by the estimated

orientation q̂t at time t as reflected through (20). The initial

error of the estimator is significantly reduced after 1 min.

The estimator reaches the estimate r̂ = [1.03 0.20 0.10]T .

The estimators show similar behaviour with different initial

guesses. The estimator’s convergence speed is influenced

by the choice of the selected reference trajectory which is

subject to the robot velocity limits. Although the simulation

results show fast convergence with the simulated input, the

mechanical limitations prevents us from experimenting with

higher end-effector velocities. Inertial sensor noise used for

human motion tracking also affects the performance of the

estimators: noise is 0.05◦/s
√
Hz for ωh and 0.002◦/s2

√
Hz

for v̇h. The noise occurring in the orientation calculated from

the gyroscope additionally affects the measurements of v̇h in

which the gravity is firstly compensated prior to displacement

estimation by v̇h = v̇raw
h −R(qraw

h ) [0 0 9.81]T with v̇raw
h

and qraw
h being the raw measurements of the inertial sensor.

An angle error of 0.1◦ in orientation causes 1.71 m/s2 error

in v̇h. Since the orientation estimation depends only on

measured ωh, its performance is superior with respect to the

displacement estimator performance which depends on both

the measured ωh and v̇h. Similar results of the displacement

estimation are obtained by performing the identification with

the known relative orientation. Strategies for improving the

estimators are currently being investigated.
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Fig. 4. Absolute error of the relative human grasp estimation: (top)
orientation error eq = |q − q̂| with individual errors eqi = |qi − q̂i|,
(bottom) translation error er = |r − r̂| with eri = |ri − r̂i|.

In the second and third run we show the effect of the

biased and the estimated grasp pose seen through the in-

teraction force applied on the human wrist. It is minimized

by choosing the human grasp pose as the axis of rotation.

As pointed out, the interaction torque is determined by the

amplitude of the applied rotational motion by the robot. We

focus on showing the effects of biased human grasp displace-

ment on the human interaction force. We set two different

values of the relative grasp position. The resulting interaction

force is shown in Fig 5. In the case of the initial/biased

guess r0 = rbias = [0.5 0 0]T which could be an incorrectly

measured pose, there exists a disturbance occurring during

the oscillatory motion of the robot. Measurements show the

force fluctuation ranges approximately by 1-3 N along x-



axis, from -3.5 to 1 N along y-axis, and 1.1 N along z-axis.

However, in the case of r̂ = [1.03 0.20 0.10]T , since the

estimate r̂ is closer to its true value, the force applied on the

human is smaller than in the case of the biased estimate. The

force in x-axis is the largest due to the largest estimation error

compared to y and z-axis. The disturbance on the human is

fluctuating approximately from -0.6 to 1.4 N in x, from -0.2

to 0.5 N in y, and from -0.3 N to 0.07 N in z-axis.
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Fig. 5. Interaction force on the human hand: (top)
with rbias = [0.5 0 0]T (m), (bottom) with r̂ = [1.03 0.20 0.10]T (m).
Dotted lines denote forces exerted by the human partner when no motion
is incurred. The z-axis shows the force that the human applies to hold
the object against the gravity and the small negative force in the x-axis
represents pulling force from the robot.

In this paper the case of the static human pose is treated

with no slippage and regrasp phases. The results are applica-

ble to a wider range of problems where a human and a robot

are physically coupled and unknown kinematic parameters

exist. During our experiments the human was instructed to

be passive at wrist in which the stiffness coefficients were

expected to be stable. In a more veridical human impedance

model, however, the joint stiffness of the human limbs are

known to be time-varying, particularly when the human is

actively involved in the task [12]. By assuming a desired

human trajectory with a known path (or a pattern) and

velocity the proposed approach can be applied on more

complex human motions. This results in further assumptions

on the task. Furthermore, slippage of the grip is commonly

encountered in dexterous tasks despite that we assumed the

rigid grasp in our study. The slippage effects can be treated

by modelling the human grasp with more complex contact

models or using a probabilistic approach where changes in

the human grasp can be expressed in terms of uncertainty.

Moreover, by improving the estimation convergence time the

phases of regrasp can be detected. Lastly, here the reference

trajectory is chosen purely for identifying the unknown

grasp pose. In a real-world scenario a task-relevant trajectory

can be adopted such as moving an object (with unknown

human grasp pose) from point A to point B. Techniques of

performing both the identification and the manipulation task

simultaneously are an ongoing development.

VI. CONCLUSION

This paper investigated an approach for estimating the

human grasp pose using wearable motion sensors in human-

robot manipulation tasks. The proposed estimation strategy

identifies the unknown relative displacement and orientation

of the human grasp. We treat the persistency of excitation

condition for the estimator convergence. We show that in

the case of a static human pose the undesired interaction

force on the human is minimized when the robot motion is

performed around the humans wrist. Experiments validating

the proposed approach are performed. Our future work will

consider more complex human motions and simultaneous

identification and task-relevant manipulation.
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