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Wiener Phase Noise Channel

Instabilities of the oscillators used for up- and down-conversion
of signals in communication systems give rise to the
phenomenon known as phase noise.

@ The impairment on the system performance can be severe even
for high-quality oscillators:

e If the continuous-time waveform is processed by long filters at
the receiver side;

e When the symbol time is very long, as happens when using
orthogonal frequency division multiplexing.

@ Typically, the phase noise generated by oscillators is a random
process with memory, and this makes the analysis of the
capacity challenging.

@ In the available literature, many papers do not consider the
continuous-time nature of phase noise, thus overlooking the
random amplitude fluctuations caused by filtering the phase
noise process.
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@ Analytical upper and lower bounds to the capacity of
discrete-time Wiener phase noise channels

@ Analytical lower bounds to the capacity of continuous-time
Wiener phase noise channels
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Phase Noise Models

@ Wiener phase noise (random walk)
o Lasers

o Free-running oscillators

@ 40-20 model, Pink frequency model
e Phase-locked loop oscillators

@ White model
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Wiener Phase Noise

The phase process is given by

O(t) = ©(0) +VTB(t/T), 0<t<T,

(1)
where B(-) is a standard Wiener process:
e B(0)=0,
o forany1>t>s>0, B(t)— B(s) ~N(0,t —s) is
independent of the sigma algebra generated by {B(v) : u < s},
@ B(:) has continuous sample paths.

One can think of the Wiener phase process as an accumulation of
white noise:

() = ©(0) +7/0t B(r)dr, 0<t<T, 2)

where B/(+) is a standard white Gaussian noise process.
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Discrete-Time Model
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Detector

Denoting by A and Tgymp, the sampling and symbol time, the model
obtained by sampling at time instants t = kA is

Ok = O4_1 + YWAN, (3)

Yie = X[k / Toymp] ek + W (4)

where the Wj's are independently and identically distributed (iid)
random variables with W ~ CN(0,1).

Continuous-Time Model With Integrate-and-Dump Receiver
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o Considering the filtering of ©(+) leads to the model [1]

Ok = O4_1 + WAN, (5)
Ye = X go L O gt LW, (6)
k |—kA/ Tsymb] A (k—l)A k

2F,

o Determine the probability density function (pdf) of Fy is
challenging [2], but some moments can be computed [1, 3].
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Limits of Reliable Communication

@ What is the best possible detector?

o Given input symbols X{V = (X1, Xa, ..., Xy) evaluate

vy A e L N .yN
0612 Jm 31 (1)
o 1 p(YYIX1)
= s ['°g2 oY) (7)
where Y, = Y((:__ll))LleL and L = Tgymp/A is the oversampling
factor.

@ Under an average transmit power constraint and assuming iid
input symbols, the best detector achieves the capacity

1(X;Y)

max

CONR) = L%

(8)
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Capacity pre-log

@ We derived analytical results on the so-called capacity prelog:

C(SNR)
— 9
SNR oo log(SNR) )
@ Example: for an additive white Gaussian noise channel,
C(SNR) = log(1 + SNR), therefore the prelog is 1
@ We let the sampling time A scale with the SNR as
A= L 0<ax<l (10)
~ SNR%’

Discrete-time Model With L =1 (o = 0) and v/ Tsymb = 0.5 [4]
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Discrete-Time Model: Analytical Bounds [1, 5, 6]
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A capacity achieving scheme for 0 < o < 1/2 is the following:
@ Choose a uniform pdf for ZX; and

A Ax —1
Pxe) = srar 1% (“sraz 7). * 21/
(11)
@ Amplitude modulation: Use the statistic
L
Vi = Z |Y(k—1)L+i|2 (12)
i=1
to detect | Xk|.
@ Phase modulation: Use the statistic
S Y-y \*
LYy =/ <Y(k—1)L+1 ( )(<ka > (13)

to detect £X.

Continuous-Time Model: Analytical Lower Bound [1, 3]

Prelog lower bound
— Amplitude modulation
Phase modulation
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@ For L =1 (o = 0) the capacity is proportional to loglog(SNR)
[7]

@ The input distribution is chosen uniform in the phase and as

{ 1 exp (—Xff_t) x> A"t
0

Pix, 2 (X) (14)

elsewhere

where A =SNRA — A"t >0with0 <t <o ' —1.
@ The detector is the same as in (12) and (13).
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