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Abstract—The two-receiver broadcast packet erasure channel
with feedback and memory is studied. Memory is modelled using
a finite-state Markov chain representing a channel state. The
channel state is unknown at the transmitter, but observations
of this hidden Markov chain are available at the transmitter
through feedback. Matching outer and inner bounds are derived
and the capacity region is determined. The capacity region
does not have a single-letter characterization and is, in this
sense, uncomputable. Approximations of the capacity region
are provided and two optimal coding algorithms are outlined.
The first algorithm is a probabilistic coding scheme that bases
its decisions on the past L feedback sequences. Its achievable
rate-region approaches the capacity region exponentially fast in
L. The second algorithm is a backpressure-like algorithm that
performs optimally in the long run.

I. INTRODUCTION

In many communication protocols, information transmission
is done in a packet by packet manner, and the receiving devices
either correctly receive the transmitted packet or detect an
erasure. Packet erasure channels (PECs) model such systems.
Broadcast PECs (BPECs), in particular, are interesting models
to study the broadcast nature of wireless systems.

The capacity region of the general broadcast channel (BC)
remains unresolved both without and with feedback. It is
known that feedback increases the capacity of general BCs
and even partial feedback can help [1]–[3].

Remarkably, capacities of memoryless BPECs are known
both with and without feedback. The former is a special
case of the work in [4] which characterizes the capacity
of degraded broadcast channels. The latter was derived in
[5]. Generalizations of the idea presented in [5] have led to
optimal coding schemes for BPECs with three receivers and
near-optimal coding schemes for more receivers in [6]–[8].

This work studies BPECs with feedback and channel
memory. Without feedback, one can use erasure correcting
codes for memoryless channels in combination with
interleavers to decorrelate the erasures. Interestingly, feedback
enables more sophisticated coding techniques [9]. In a related
work, [10] derived an infinite-letter capacity characterization
for two special cases of the general BC with feedback,
memory, and unidirectional receiver cooperation.

We model the memory of a channel by a finite state machine
and a set of state-dependent erasure probabilities. This is a
well-studied approach for wireless channels [11, Chapter 4.6].

In a previous work [12], we studied BPECs with feedback
and memory under the assumption that the channel state is

causally known at the transmitter. We derived close inner
and outer bounds on the capacity region. This problem was
also studied in parallel by Kuo and Wang in [13], [14].
They proposed a new coding strategy and characterized its
corresponding rate region. The outer bound in [12] and the
inner bound in [13], [14] match and thus characterize the
capacity region.

This paper extends the previous results to the case where the
channel state is no longer observable at the transmitter (except
through the receivers’ feedback) and thus evolves according to
a hidden Markov model from the transmitter’s point of view.

Our contribution in this paper is as follows. We propose
an outer bound on the capacity region that has an n-letter
characterization in terms of a feasibility problem. This region
is not computable because its computation needs n →
∞, and the number of parameters in the corresponding
feasibility problem grows exponentially in n. Nevertheless,
under mild conditions, we find a sequence of inner and outer
approximations on this region for every L ≥ 1. The Lth

order approximation of the region approaches the outer bound
exponentially fast in L. For every L, we propose a probabilistic
encoding strategy at the transmitter that bases its decisions
on the past L feedback symbols and achieves the Lth order
approximation of the outer bound. Finally, a deterministic
algorithm is outlined that bases its decisions on the entire past
feedback symbols, is implementable, and optimal in the long
run.

This paper is organized as follows. We introduce the system
model in Sec. II. An outer bound on achievable rates is derived
in Sec. III. Achievable schemes are discussed in Sec. IV before
we conclude in Sec. V. Proofs and detailed derivations can be
found in the extended version [15].

II. NOTATION AND SYSTEM MODEL

A. Notation

Random variables (RVs) are denoted by capital letters. A
finite sequence (or string) of RVs X1, X1, . . . , Xn is denoted
by Xn. Sequences can have subscripts, e.g. Xn

j is shorthand
for Xj,1, Xj,2, . . . , Xj,n. Vectors are written with underlined
letters, e.g., Zt = (Z1,t, Z2,t). Sets are denoted by calligraphic
letters, e.g., X . The indicator function 1{·} takes on the value
1 if the event inside the brackets is true and 0 otherwise.
The conditional probability is written equivalently as Pr[X =
x|Y = y], PX|Y (x|y) or sometimes P (x|y) if the involved
RVs are clear from the context.
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Fig. 1. Block diagram for the BPEC. The box marked with d = 1 represents
a delay of one time unit.

B. System Model

A transmitter wishes to communicate two independent
messages W1 and W2 (of nR1, nR2 packets, respectively)
to two receivers Rx1 and Rx2 over n channel uses.
Communication takes place over a BPEC with memory and
feedback as shown in Fig. 1 and described below.

The input to the BPEC at time t is denoted by Xt ∈ X , t =
1, . . . , n. The channel inputs correspond to packets of ` bits;
i.e. X = Fq with q = 2`, and `� 1. All rates are measured in
packets per slot and entropies and mutual information terms
are with respect to logarithms to the base q.

The channel output at Rxj at time t is written as Yj,t ∈ Y ,
j ∈ {1, 2}, where Y = X ∪ {E}. Each Yj,t is either Xt

(received perfectly) or E (erased).
We define binary RVs Zj,t, j ∈ {1, 2}, t = 1, . . . , n, to

indicate erasure at Rxj at time t; i.e. Zj,t = 1{Yj,t = E}.
Yj,t can be expressed as a function of Xt and Zj,t but Yj,t
also determines Zj,t. We collect (Z1,t, Z2,t) into the vector
Zt, with Zt ∈ Z , Z = {(0, 0), (0, 1), (1, 0), (1, 1)}.

The memory of the BPEC under study is modelled with a
finite state machine with state St at time t. The underlying
homogeneous finite state Markov chain is assumed to be
irreducible and aperiodic with state space S and steady-state
distribution πs, s ∈ S. The initial state S0 is distributed
according to the steady-state distribution, so the sequence
Sn is stationary. The state-dependent erasure probabilities are
specified through PZt|St

that does not depend on t. We permit
arbitrary correlation between (Z1,t, Z2,t). The erasures Zn are
correlated in time in general, hence the channel has memory.
The sequence Zn is stationary due to stationarity of Sn.

After each transmission, an ACK or negative ACK (NACK)
feedback is available at the encoder from both receivers. As
opposed to our previous work in [12], we assume no separate
feedback of the channel state; i.e. the channel state is not
known at the transmitter. The channel input at time t may be
written as

Xt = ft(W1,W2, Z
t−1). (1)

The probability of erasure in each channel state is
described based on the past channel state. Nevertheless, at
the transmitter, the channel state is not available and thus the
probabilities of erasure events depend on all the past observed

feedback messages, zt−1, as follows:

ε12(zt−1) = PZt|Zt−1(1, 1|zt−1),
ε1̄2(zt−1) = PZt|Zt−1(0, 1|zt−1),
ε2(zt−1) = ε12(zt−1) + ε1̄2(zt−1).

(2)

ε12̄(zt−1) and ε1(zt−1) are defined similarly.
Each decoder Rxj has to reliably estimate Ŵj from its

received sequence Y n
j . A rate-pair (R1, R2) is said to be

achievable if the error probability Pr[Ŵ1 6= W1, Ŵ2 6= W2]
can be made to approach zero as n gets large. The capacity
region Cmem

fb is the closure of the achievable rate pairs.

III. THE OUTER BOUND

Define C̄mem
n,fb , for every integer n, as the closure of

all rate pairs (R1, R2) for which there exist variables
x(zt−1), y(zt−1), zt−1 ∈ Zt−1, t = 1, . . . , n, such that

0 ≤ x(zt−1), y(zt−1)≤1, ∀t=1, . . . , n, ∀ zt−1∈Zt−1 (3)

R1≤
1

n

n∑
t=1

∑
zt−1∈Zt−1

PZt−1(zt−1)(1−ε1(zt−1))x(zt−1) (4)

R1≤
1

n

n∑
t=1

∑
zt−1∈Zt−1

PZt−1(zt−1)(1−ε12(zt−1))(1−y(zt−1)) (5)

R2≤
1

n

n∑
t=1

∑
zt−1∈Zt−1

PZt−1(zt−1)(1−ε2(zt−1))y(zt−1) (6)

R2≤
1

n

n∑
t=1

∑
zt−1∈Zt−1

PZt−1(zt−1)(1−ε12(zt−1))(1−x(zt−1)). (7)

Define C̄mem
fb as the limsup of C̄mem

n,fb , when n → ∞. With
similar steps as in [12, Section IV], we have:

Theorem 1. Any achievable rate pair (R1, R2) is such that
(R1 − δ,R2 − δ) ∈ C̄mem

fb , for δ > 0.

The proof can be found in [15].
This result establishes an outer bound on the capacity

region. The above characterization is, however, in an
infinite-letter form and thus uncomputable. We find an
approximation of the region next.

A. Approximation of the Outer Bound

The derived outer bound is an infinite-letter characterization
because St−1 is not fed back to the transmitter, but an
estimate of it is available through the feedback symbols
Zt−1. From the transmitter’s perspective, the predicted erasure
probabilities PZt|Zt−1 depend on all the past Zt−1. Intuitively,
one expects that the effect of past feedback diminishes rapidly.
We thus approximate the infinite-letter bound in (3) - (7)
with a finite-letter bound where channel erasure events depend
only on the past finite L feedback symbols, as follows: The
predicted erasure probabilities for slot t are:

P (zt|zt−1) =
∑
s∈S

PZt|St
(zt|s)PSt|Zt−1(s|zt−1). (8)

PZt|St
does not depend on t, but PSt|Zt−1 does. In practice,

one observes that the latter distribution is “close” to PSt|Zt−1
t−L



which predicts channel states from the past L feedback
symbols if L is reasonably large. This is made precise by
the adapted result from [16, Theorem 2.1]:

Theorem 2 (cf. [16]). Suppose that all entries of both the state
transition matrix PSt|St−1

and the distribution matrix PZt|St

are strictly positive. For any observed sequence zt−1 ∈ Zt−1,
the variational distance is bounded by∑

s∈S

∣∣∣PSt|Zt−1(s|zt−1)− PSt|Zt−1
t−L

(s|zt−1
t−L)

∣∣∣ ≤ 2(1− σ)L,

where σ>0 depends on the smallest entry of matrix PSt|St−1

and the ratio of the largest and smallest values in matrix PZt|St
.

Zt−1
t−L is shorthand for Zt−L, Zt−L+1, . . . , Zt−1.

Corollary 1. Under the conditions of Theorem 2, the total
variation between PZt|Zt−1 and PZt|Z

t−1
t−L

is bounded for any
sequence zt−1 ∈ Zt−1 by∑

zt

∣∣P (zt|zt−1)− P (zt|zt−1
t−L)

∣∣ ≤ 2(1− σ)L. (9)

Hence an approximate characterization of the outer bound
C̄mem

fb is given by the following feasibility problem.

0 ≤ x(zL), y(zL) ≤ 1, ∀ zL ∈ ZL (10)

R1 ≤
∑

zL∈ZL

PZL(zL)(1− ε1(zL))x(zL) + CL (11)

R1 ≤
∑

zL∈ZL

PZL(zL)(1− ε12(zL))(1− y(zL)) + CL (12)

R2 ≤
∑

zL∈ZL

PZL(zL)(1− ε2(zL))y(zL) + CL (13)

R2 ≤
∑

zL∈ZL

PZL(zL)(1− ε12(zL))(1− x(zL)) + CL, (14)

where −2(1−σ)L ≤ CL ≤ 2(1−σ)L and εj(zL), ε12(zL) are
computed via the distribution PZt|Z

t−1
t−L

. A detailed derivation
can be found in [15].

By setting CL = 0, we obtain what we call the Lth

order approximation of the outer bound and we denote it by
C̄mem

fb (L). Clearly, C̄mem
fb (L) approaches C̄mem

fb exponentially fast
in L. C̄mem

fb (L) is of finite-letter form and thus computable.
The number of parameters in the corresponding feasibility
problem is exponential in L. Since the approximate rate-region
approaches the outer bound exponentially fast in L, it can give
good approximations for reasonable values of L.

IV. ACHIEVABILITY

We develop codes that achieve the outer bound in Sec. III.
The coding strategy is based on the coding techniques
discussed in [13]. More precisely, it uses network coding
techniques of [5] and a proactive coding strategy that was
proposed in [13] for the problem with causal channel state
information. We discuss this coding scheme in our own
framework as we believe our analysis is simpler than the one
provided in [13].

Q
(1)
1 Q

(2)
1

Q
(1)
2 Q

(2)
2

Q
(1)
3 Q

(2)
3

Q
(1)
4 Q

(2)
4

R1

f
(1)
12

f
(1)
14

f
(1)
24

f
(1)
13

f
(1)
34

f
(1)
32

R2

f
(2)
12

f
(2)
14

f
(2)
24

f
(2)
13

f
(2)
34

f
(2)
32

Fig. 2. Networked system of queues.

A. Queue Model

To analyze the coding scheme, we build on the idea of
tracking packets through a network of queues, as done in
[5], [6]. The transmitter has two buffers, Q(1)

1 and Q
(2)
1 , to

store packets destined for Rx1, Rx2, respectively. We consider
dynamic arrivals, where packets for Rx1, Rx2 arrive in each
slot according to a Bernoulli process with probability R1, R2,
respectively. These packets are called original packets. An
analysis for more general arrival processes is possible. The
transmitter maintains two additional buffers, Q(1)

2 and Q
(2)
2 ,

for packets that were received by the wrong receiver only.
Buffer Q(1)

2 contains packets that are destined for Rx1 and
were received at Rx2 only, and vice versa for Q(2)

2 . If both Q(1)
2

and Q(2)
2 are nonempty, the transmitter can take a packet from

both queues and send their XOR combination. Such coded
packets are useful to both receivers, for each can decode a
desired original packet upon reception of the coded packet.

Another coding operation that turned out to be necessary
in [13, Example 2] is as follows. The transmitter takes one
packet from Q

(1)
1 , e.g. p(1), and one packet from Q

(2)
1 , e.g.

p(2), and sends the XOR combination of the two; i.e. p(1) +
p(2). The packets involved have not been transmitted before;
hence, we call this action proactive coding or poisoning. A
poisoned packet is not immediately useful for any receiver.
However, it becomes useful together with a remedy packet
that enables decoding of the original packet involved in the
poisoned packet. For example, assume that the poisoned packet
p(1) + p(2) was received at Rx2. If, at a later stage, the
corresponding remedy p(1) is received at Rx2, both p(1) and
p(2) can be decoded at Rx2. Therefore, upon arrival of the
poisoned packet at Rx2, p(1) becomes as useful to Rx2 as
p(2). Since p(1) is desired also at Rx1, it is more efficient to
send p(1) rather than p(2) in later channel uses; i.e., p(2) could,
in principle, be replaced by the remedy packet p(1).

Remark 1. If the poisoned packet is received only at Rxj ,
then the remedy packet is p(j̄), for j, j̄ ∈ {1, 2}, j 6= j̄. If the
poisoned packet is received at both receivers, the remedy is
p(1) or p(2). We fix it to p(1).

Remedy packets are useful to both receivers. We put remedy



packets into additional queues Q
(1)
3 and Q

(2)
3 . These two

queues are conceptually the same queue to track the remedy
packets. We draw them separately to account for correct packet
arrival for each receiver separately.

The system exit for Rxj is represented by buffer Q(j)
4 . Once

a packet reaches Q(j)
4 , it leaves the system. These buffers are

always empty by definition.
The full networked queuing system is shown in Fig. 2.

This queuing system is drawn as a graphical tool to track
the packets that are sent and received. We restrict the set of
actions at the transmitter to A = {1, 2, 3, 4, 5}:
• At = 1: send an original packet for Rx1 from Q

(1)
1

• At = 2: send an original packet for Rx2 from Q
(2)
1

• At = 3: send a coded packet from Q
(1)
2 and Q(2)

2

• At = 4: send a poisoned packet from Q
(1)
1 and Q(2)

1

• At = 5: send a remedy packet from Q
(1)
3 or Q(2)

3 .

B. Packet Movement and Network Flow

As the algorithm evolves in time, packets flow on the
network of Fig. 2. Packet movements that are due to At =
1, 2, 3 are based on [5], and are discussed in detail in [5], [6],
[12]. Packet movements that are due to At = 4, 5 are based
on [13]. We discuss them in our framework in the following.

Packets may move to Q(1)
3 and Q(2)

3 only if they are involved
in a poisoned packet that is received by at least one of the
receivers. To explain the packet movement from Q

(1)
1 to Q(1)

3 ,
for example, consider two cases:
(i) Packet p(1) is a remedy packet (i.e., the poisoned packet

was received at Rx2). In this case, p(1) is moved from
Q

(1)
1 to Q(1)

3 (to be transmitted in later channel uses).
(ii) Packet p(1) is not a remedy packet (i.e. the poisoned

packet was received only at Rx1). In this case, as
discussed, p(2) is as useful as p(1) to Rx1. So p(1) may
be replaced by p(2) and moved from Q

(1)
1 to Q(1)

3 .

Remedy packets leave Q
(j)
3 when At = 5, according to

Table I. This table appears in a similar form in [13].
For clarification, we elaborate the case where the remedy

packet sent with At = 5 is received only at Rx1. A remedy
packet can only be sent if a poisoned packet, say p(1) + p(2),
was previously received at Rx1 or Rx2. The remedy packet is
either p(1) or p(2). We consider the two cases separately:

1) If p(1) is the remedy packet, then its arrival at Rx1 (and
not at Rx2) is captured by Q

(1)
3 → Q

(1)
4 . Furthermore,

since p(1) is a remedy packet, it is as useful to Rx2 as
p(2). So its arrival at Rx1 lets us move the packet from
Q

(2)
3 to Q(2)

2 , because Rx1 knows p(1).
2) If p(2) is the remedy packet, then the poisoned packet

p(1) +p(2) must have been received only at Rx1. Arrival
of p(2) at Rx1 (and not at Rx2) lets Rx1 decode p(1),
hence Q

(1)
3 → Q

(1)
4 . Also, since p(2) is received at

Rx1 and not at Rx2, we have the packet movement
Q

(2)
3 → Q

(2)
2 .

Finally, we outline two algorithms that ensure network
stability for rates in C̄mem

fb :

Action 5
(a remedy packet sent)

received
only at Rx1

received
only at Rx2

received
at Rx1, Rx2

Packet movement Q
(1)
3 →Q

(1)
4

Q
(2)
3 →Q

(2)
2

Q
(1)
3 →Q

(1)
2

Q
(2)
3 →Q

(2)
4

Q
(1)
3 →Q

(1)
4

Q
(2)
3 →Q

(2)
4

TABLE I
PACKET MOVEMENT FOR REMEDY PACKETS IN Q

(1)
3 AND Q

(2)
3 .

Theorem 3. Rate-pairs (R1, R2) are achievable if (R1 +
δ,R2 + δ) ∈ C̄mem

fb , for δ > 0.

C. Probabilistic Scheme

The first scheme is a probabilistic scheme that bases
its decisions on the past L feedback symbols. We prove
achievability of C̄mem

fb (L) for any integer L > 0.
Fix L to be an integer and consider an encoding strategy

that bases its decisions on the past L feedback symbols Zt−1
t−L.

The decisions are random and independent from previous
decisions, according to a stationary probability distribution
PAt|Zt−1

t−L
(a|zL), a ∈ {1, . . . , 5}, zL ∈ ZL. To simplify

notation here, we write P (a|zL) for PAt|Zt−1
t−L

(a|zL) and
P (zL) for PZL(zL). Based on the chosen probabilities,
each link of the network in Fig. 2 has an effective
capacity. This is the maximum number of packets that, on
average, can go through each link. Denote the capacity of
the link between Q

(j)
r and Q

(j)
l by c

(j)
rl , where (r, l) ∈

{(1, 2), (1, 3), (1, 4), (2, 4), (3, 2), (3, 4)} and j ∈ {1, 2}.
According to the packet movement in Sec. IV-B, we calculate
the following link capacities:

c
(j)
12 =

∑
zL∈ZL P (zL)(εj(z

L)− ε12(zL))P (j|zL)

c
(j)
13 =

∑
zL∈ZL P (zL)(1− ε12(zL))P (4|zL)

c
(j)
14 =

∑
zL∈ZL P (zL)(1− εj(zL))P (j|zL)

c
(j)
24 =

∑
zL∈ZL P (zL)(1− εj(zL))P (3|zL)

c
(j)
32 =

∑
zL∈ZL P (zL)(εj(z

L)− ε12(zL))P (5|zL)

c
(j)
34 =

∑
zL∈ZL P (zL)(1− εj(zL))P (5|zL).

(15)

Using a max-flow analysis similar to [12], the rate pair
(R1, R2) is achievable if there exists a distribution PAt|Zt−1

t−L

such that the following flow optimization problem is feasible:

Rj≤f (j)
12 + f

(j)
13 + f

(j)
14

f
(j)
12 + f

(j)
32 ≤f

(j)
24

f
(j)
13 ≤f

(j)
32 + f

(j)
34

f
(j)
rl ≤c

(j)
rl ∀(r, l)∈

{
(1, 2), (1, 3), (1, 4)
(2, 4), (3, 2), (3, 4)

}
, ∀j∈{1, 2}.

(16)

This is a classical flow optimization problem where link
capacities can be adjusted by PAt|Zt−1

t−L
. Note that the flow

networks for Rx1 and Rx2 are coupled only through PAt|Zt−1
t−L

.
Using the max-flow min-cut duality theorem, the above flow
problem is equivalent to the following min-cut problem:

Rj ≤ c(j)
12 + c

(j)
13 + c

(j)
14 , ∀ j ∈ {1, 2} (17)

Rj ≤ c(j)
13 + c

(j)
14 + c

(j)
24 , ∀ j ∈ {1, 2} (18)

Rj ≤ c(j)
12 + c

(j)
14 + c

(j)
32 + c

(j)
34 , ∀ j ∈ {1, 2} (19)

Rj ≤ c(j)
14 + c

(j)
24 + c

(j)
34 , ∀ j ∈ {1, 2} (20)



At Weight depending on queue lengths and Zt−1 = zt−1

1 [1− ε1(zt−1)]Q
(1)
1,t + ε12̄(z

t−1)(Q
(1)
1,t −Q

(1)
2,t )

2 [1− ε2(zt−1)]Q
(2)
1,t + ε1̄2(z

t−1)(Q
(2)
1,t −Q

(2)
2,t )

3 [1− ε1(zt−1)]Q
(1)
2,t + [1− ε2(zt−1)]Q

(2)
2,t

4 [1− ε12(zt−1)]
(
Q

(1)
1,t −Q

(1)
3,t +Q

(2)
1,t −Q

(2)
3,t

)
5 ε12̄(z

t−1)(Q
(1)
3,t −Q

(1)
2,t ) + [1− ε1(zt−1)]Q

(1)
3,t

+ε1̄2(z
t−1)(Q

(2)
3,t −Q

(2)
2,t ) + [1− ε2(zt−1)]Q

(2)
3,t

TABLE II
DETERMINISTIC SCHEME WITH At ∈ A. Q(j)

l,t DENOTES THE NUMBER OF

PACKETS IN QUEUE Q
(j)
l AT TIME t.

where (17) - (20) correspond to different cuts that separate
Q

(j)
1 from Q

(j)
4 , j ∈ {1, 2}.

The achievable rate-region is thus given by the feasibility
problem defined in (17) - (20) over the set of probabilities
P (1|zL), . . . , P (5|zL), zL ∈ ZL. We show in [15] that, for
the link capacities defined in (15), constraints (18), (19) are
redundant and can be omitted. We are left with two bounds
on Rj , j ∈ {1, 2}:

Rj≤
∑

zL∈ZL

P (zL)(1−εj(zL))
[
P (j|zL)+P (3|zL)+P (5|zL)

]
(21)

Rj≤
∑

zL∈ZL

P (zL)(1−ε12(zL))
[
P (j|zL)+P (4|zL)

]
. (22)

A feasible set of distributions P (1|zL), . . . , P (5|zL), zL ∈
ZL can be found if (R1, R2) ∈ C̄mem

fb (L).
One can verify that the region described by (21) - (22)

is equivalent to C̄mem
fb (L) by choosing a feasible set

P (1|zL), . . . , P (5|zL), zL ∈ ZL such that

x(zL) = P (1|zL)+P (3|zL)+P (5|zL), ∀zL ∈ ZL

y(zL) = P (2|zL)+P (3|zL)+P (5|zL), ∀zL ∈ ZL.
(23)

D. Deterministic Scheme

For the probabilistic scheme, one must compute the optimal
set of probability distributions in advance. This set depends
on R1, R2 which might be unknown to the transmitter ahead
of time. Furthermore, in the probabilistic approach, it might
happen that an action is chosen but there is no packet in
the corresponding queues to be transmitted. We avoid both
drawbacks by a max-weight backpressure-like algorithm [17],
[18] that bases its actions on both the queue state and the
feedback. In each slot t, a weight function is computed for
each action and the action with the higher weight is chosen.
Table II lists the weights for each action depending on the
current queue state and the previous feedback state Zt−1. Note
that the values of ε1(zt−1), ε2(zt−1) and ε12(zt−1) can be
computed recursively.

Proposition 1. The strategy in Table II stabilizes all queues
in the network for every (R1 + δ,R2 + δ) ∈ C̄mem

fb , δ > 0.

Hence, the strategy in Table II provides an implicit way to
compute the capacity region. The proof of Prop. 1 in [15] uses
a finite-horizon Lyapunov drift analysis [18] that is adapted
to account for previous observations (rather than the current
channel state).

V. CONCLUSION

We studied the two-receiver broadcast packet erasure
channel with feedback and hidden channel memory. The
channel memory evolves according to a Markov chain that is
not observable by the transmitter. We developed outer bounds
that are achievable with two outlined coding schemes.
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