
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Bioinformatik

Incremental Linear Model Trees on Big Data

Andreas Hapfelmeier

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. M. Bichler

Prüfer der Dissertation:
1. Univ.-Prof. Dr. B. Rost
2. Univ.-Prof. Dr. St. Kramer

Johannes Gutenberg Universität Mainz

Die Dissertation wurde am 27.07.2015 bei der Technischen Univer-
sität München eingereicht und durch die Fakultät für Informatik am
17.05.2016 angenommen.

Ich versichere, dass ich diese Dissertation selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 10.07.2015

ii

Abstract

The data revolution has a similar deep impact to the society as the in-
dustrial and the digital revolution. Due to the digital revolution computer
were more and more integrated into daily life. Consequently, data volume
was steadily increasing. It is assumed that the increase of data volume
will even be, for the time being, exponential. This is due to new concepts
as, e.g., social networks or the Internet of Things and new data formats
to be stored (e.g. video). Big Data is the most well known term describ-
ing this phenomenon. Besides challenges in transferring (I/O bottlenecks)
and storing this massive amount of data volume, an important task lies in
the interpretation and analysis. For the task of knowledge extraction and
exploitation, machine learning approaches are well accepted and used. Nev-
ertheless, normal (batch) algorithms are not capable to handle Big Data and
are especially not designed to be applied to data streams. Consequently, Big
Data systems and algorithms have emerged for this task. The usual Big Data
approach is to use increased storage and processing power. This is costly
and under specific situations not feasible (e.g. algorithms running directly
on sensors or small machines). For this purpose, efficient machine learning
algorithms are needed which can process Big Data even in a constrained
environment (by time, main memory and storage space). One class of these
efficient algorithms are incremental linear model trees (ILMTs), which are
still a young field of active research. Their behavior is neither well studied
on massive datasets nor on high-speed data streams. Therefore, this work,
for the first time, systematically compares the performance of ILMTs on
massive stationary datasets under equal conditions. The usefulness of dif-
ferent parameter settings are tested for each ILMT on several data sources.
Results give useful insights on the choice of the appropriate ILMT algo-
rithm and its parameter setting. Furthermore, this thesis introduces the
incremental pruning approach GuIP as an extension of ILMTs. Although
pruning is standard in batch learning, in the incremental online setting,
model trees are often only adjusted or pruned if concept drift occurs. For
stationary datasets, where no concept drift occurs, no pruning would ap-
pear. This results in overly large trees where wrong split decisions are not
corrected. Overly large trees are time consuming and hinder the application
of ILMTs on high-speed data sources. Evaluation results show that GuIP
significantly reduces tree size and runtime, while the prediction error spans
from a reduction to a marginal increase with increasing dataset complexity.
The third problem tackled in this thesis is that examples from data streams
may arrive at a higher speed than the learning algorithms can process. As
a consequence, examples have to be dropped and can either not be used for
further model improvement or, worse, predictions cannot be made on these
examples. To avoid this the data stream processing system PAFAS is intro-
duced. It guarantees a prediction for all unlabeled examples promptly after

iii

arrival time, while the model is still constantly improved. Compared with
two other processing systems, algorithms in the PAFAS framework showed
better prediction accuracy in the majority of cases. In summary, this thesis
provides new insights to ILMTs on stationary Big Data. It introduces for
the first time a systematic ILMT comparison under equal conditions and a
new pruning approach, further improving the applicability of ILMTs. Fur-
thermore, a new data stream processing framework is introduced, improving
the usage of incremental learning algorithms on high-speed data streams.

iv

Zusammenfassung

Die Datenrevolution hat eine ähnlich starke Auswirkung auf die Gesell-
schaft wie die industrielle oder die digitale Revolution. Aufgrund der di-
gitalen Revolution wurden Computer immer mehr in das tägliche Leben in-
tegriert. Folglich hat sich auch das Datenvolumen stetig erhöht. Zurzeit wird
angenommen, dass der Anstieg des Datenvolumens sogar exponentiell ver-
laufen wird. Dieser wird durch neue Konzepte wie zum Beispiel soziale Netz-
werke oder das Internet der Dinge und aber auch durch neue zu speichernde
Formate (z.B. Videodateien) verursacht. Big Data ist der wohl bekann-
teste Begriff der dieses Phänomen beschreibt. Neben Herausforderungen im
Transfer (I/O Engpässe) und der Speicherung dieser massiven Datenvolu-
men liegt eine wichtige Aufgabe in deren Interpretation und Analyse. Zur
Wissensextraktion und -verwertung werden Algorithmen des maschinellen
Lernens seit langem angewendet. Normale (batch) Algorithmen sind jedoch
nicht in der Lage, Big Data zu verarbeiten und außerdem nicht dafür konzi-
piert, auf Datenströmen angewendet zu werden. Deshalb sind neue Big Data
Systeme und Algorithmen entstanden. Der übliche Big Data Ansatz ist,
den Speicher und die Prozessierungskraft zu erhöhen. Das ist kosteninten-
siv und unter bestimmten Umständen nicht umsetzbar, zum Beispiel, wenn
Algorithmen direkt auf Sensoren oder kleinen Maschinen laufen sollen. In
diesem Fall sind effiziente maschinelle Lernverfahren notwendig, welche Big
Data auch unter beschränkten Ressourcen (Zeit, Hauptspeicher und Spei-
chergröße) verarbeiten können. Eine Klasse solcher effizienter Algorithmen
sind inkrementelle lineare Modellbäume (ILMTs), welche erst seit kurzem
aktiv erforscht werden. Ihr Verhalten ist weder auf massiven Datensätzen
noch auf hoch frequenten Datenströmen genügend untersucht worden. Des-
halb vergleicht diese Arbeit zum ersten Mal ILMTs systematisch auf mas-
siven Datenmengen unter gleichen Bedingungen. Der Nutzen verschiedener
Parametereinstellungen wird für jeden ILMT auf mehreren Datenquellen
getestet. Die Ergebnisse geben nützliche Einsichten in sowohl die Wahl des
passenden ILMTs, als auch dessen Parametereinstellung. Des Weiteren stellt
diese Arbeit den inkrementellen Pruning-Ansatz GuIP als eine Erweiterung
für ILMTs vor. Obwohl Pruning Standard im Batch-Lernen ist, werden
Modellbäume im inkrementellen online Ansatz meist nur angepasst oder
beschnitten, wenn Konzeptdrift auftritt. Für stationäre Datensätze, welche
keinen Konzeptdrift aufweisen, würde kein Pruning angewendet werden. Die
dadurch entstehenden Bäume sind übermäßig groß und falsche Splitentschei-
dungen werden nicht korrigiert. Folglich wird mehr Rechenzeit benötigt und
somit die Anwendung der ILMTs auf Hochgeschwindigkeitsdatenquellen ver-
hindert. Ergebnisse der Evaluierung zeigen, dass GuIP die Baumgröße und
die Laufzeit signifikant reduziert, während der Vorhersagefehler mit steigen-
der Datensatzkomplexität von einer Reduktion bis zu einem marginalen
Anstieg reicht. Das dritte in dieser Arbeit aufgegriffene Problem ist, dass

v

Beispiele aus Datenströmen in einer höheren Geschwindigkeit eintreffen als
sie die Lernalgorithmen verarbeiten können. Als Konsequenz werden Bei-
spiele verworfen und können entweder nicht verwendet werden, um das
Modell weiter zu verbessern oder, im schlimmeren Fall, stehen sie nicht
für Vorhersagen zur Verfügung. Um das zu umgehen, wird das daten-
stromverarbeitende System PAFAS vorgestellt. Es kann für alle ungela-
belten Beispiele eine Vorhersage zeitnah nach deren Eintreffen garantieren,
während das Modell weiterhin regelmäßig verbessert wird. Vergleiche mit
zwei weiteren datenstromverarbeitenden Systemen zeigen, dass Algorith-
men im PAFAS System in der Mehrheit der Fälle bessere Vorhersagege-
nauigkeiten aufweisen. Zusammenfassend gibt diese Arbeit neue Einsichten
in ILMTs auf stationärem Big Data. Sie stellt zum ersten Mal einen systema-
tischen ILMT-Vergleich unter gleichen Bedingungen und den neuen Pruning-
Ansatz GuIP, welcher die Anwendbarkeit von ILMTs erhöht, vor. Des
Weiteren wird das neue datenstromverarbeitende System PAFAS eingeführt,
welches die Nutzung von inkrementellen Algorithmen auf hochfrequenten
Datenströmen verbessert.

vi

Acknowledgements

All over the years, I have met many interesting people, I could share my
ideas with and who, on the other hand, inspired me. I want to thank all
of them. To be more specific, I want to thank all of my bachelor and mas-
ter students for their work and their trust (Guokun Zhang, Yassine Azyrit,
Christina Mertes and Noelia Ruiz), and all my colleagues at the lab. It was
a pleasure to work with you.
I want to especially thank four persons with the most impact on my work.
First of all many thanks to Dr. Jana Schmidt. For all the discussions, sup-
port and encouragements. You always managed to show me the light... I
also want to thank Prof. Dr. Bernhard Pfahringer for his great support
during his visit in Munich. All the discussions helped me a lot to make big
steps forward. Special thanks to my supervisor Prof. Dr. Stefan Kramer
who motivated and inspired me to further go into the area of Machine Learn-
ing and Data Mining and who made my PhD position possible. Last but
not least, I want to thank Prof Dr. Burkhard Rost for all his support in the
final stages.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Processing Big Data - Under Plenty Resources 4

1.1.2 Processing Big Data - Under Limited Resources 9

1.2 Thesis Outline . 11

2 Online and Incremental Learning 13

2.1 Learning Process . 13

2.2 Model Evaluation . 18

2.2.1 Error Measures . 19

2.2.2 Performance Evaluation Techniques 20

Batch Techniques . 21

Online Techniques . 22

2.3 Concept Drift . 26

2.4 WINNOW – An Exemplary Incremental Algorithm 28

3 Decision Trees 31

3.1 Learning Task . 31

3.2 Decision Tree Fundamentals 32

3.2.1 Definition of Decision Trees 33

3.2.2 Induction of Decision Trees 34

3.2.3 Prediction with Decision Trees 37

3.2.4 Splitting Criteria . 38

Classification Splitting Criteria 38

Regression Splitting Criteria 42

3.2.5 Pruning of Decision Trees 45

Prepruning . 45

Postpruning . 46

3.2.6 The Lookahead Strategy 48

3.3 Decision Tree Algorithms . 49

3.3.1 Classification Trees . 49

Batch Algorithms . 49

Incremental Algorithms 52

ix

x CONTENTS

3.3.2 Regression Trees . 54

Batch Algorithms . 54

Incremental Algorithms 59

4 Data Sources 65

4.1 Artificial Sources . 65

4.1.1 2DimTree . 65

4.1.2 2DimFunction . 66

4.1.3 4DimTree . 67

4.2 Real-World Sources . 67

4.2.1 Census . 67

4.2.2 Airline . 68

5 ILMTs - An Experimental Evaluation 69

5.1 Introduction . 69

5.2 Related Work . 70

5.3 ILMT . 70

5.4 Experimental Evaluation . 71

5.4.1 Evaluation Setting . 72

5.4.2 Datasets . 72

5.4.3 Online - Batch Comparison 72

5.4.4 ILMT Performance Evaluation 73

Parameter Settings . 74

Evaluation Method . 74

Results . 74

5.5 Conclusion . 77

6 Pruning ILMTs with Approximate Lookahead 81

6.1 ILMT with Approximate Lookahead 82

6.2 Related Work . 83

6.3 Guarded Incremental Pruning / GuIP 84

6.3.1 Adaptations . 84

6.3.2 Prune Guard . 85

6.3.3 Prune Decision . 87

6.3.4 Guarded Incremental Pruning Algorithm 88

6.4 Experimental Evaluation . 91

6.4.1 Experimental Setup 91

Parameter Settings . 92

Evaluation Method . 92

Datasets . 93

6.4.2 Results . 93

Influence of the ξ Parameter 93

Final Results . 97

Outlook . 98

CONTENTS xi

6.5 GuIP Application Scenarios 98
6.5.1 Stationary Data Streams 98
6.5.2 Massive Datasets . 99

6.6 Conclusion . 101

7 Towards Real-Time Machine Learning 107
7.1 Introduction . 107
7.2 Related Work . 108
7.3 Prediction Assured Framework for Arbitrarily Fast Data Streams

(PAFAS) . 109
7.3.1 Problem Setting . 110
7.3.2 Approach Specification 110

7.4 Experimental Evaluation . 112
7.4.1 Data Streams . 112
7.4.2 Alternative Frameworks 112
7.4.3 Experimental Setup 114
7.4.4 Results . 115

Processed Instances 116
Response Time . 117
Prediction Accuracy 118

7.5 Conclusion and Future Work 119

8 Summary and Outlook 123
8.1 Summary . 123
8.2 Outlook . 126

9 Bibliography 127

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

We’re drowning in information and starving for knowledge.
- Rutherford D. Rogers, University Librarian at Yale University,
1985

We are living in a century of knowledge. Information is collected at a huge
amount and frequency, with the great aspiration to extract new and, hope-
fully, world changing knowledge from it. The information collecting process
was first started by the libraries: They collected and stored books, period-
icals and documents for the public. Already in 1985, Mr. Rogers, one of
the world‘s most respected librarians, was worried that more information is
produced than anybody could ever read or adopt. Since then, the amount of
information growth has increased drastically due to advanced digital tech-
niques and the establishment of the world wide web. Nowadays, library
information is further expanded by audio and video material, and physical
items, e.g. books, periodicals and documents, are gradually digitized. Tak-
ing the US Library of Congress as an example, the approximate amount
of available material via the internet is about 74 terabytes for about 15.3
million digital items (of a physical collection of about 142 million items)
in 2009 [113] and 235 terabytes in April 2011 [97]. But information and
knowledge is not only collected in and distributed through libraries. Since
the development and propagation of the world wide web and the techno-
logical achievements, information is available for everyone at any place of
the world at any time. Humans, as well as computers, are connected world-
wide and information is collected, distributed and stored at a high scale.
Networked sensors are, apparently hidden, integrated in everyday life. The
human environment (e.g. houses, clothes, mobile phones, vehicles) are more
and more equipped with sensors and intelligence to create and communi-
cate information (Internet of Things [8] / cyber-physical systems [22]). For
example, an airline jet collects 10 terabytes of sensor data for every 30 min-

1

2 CHAPTER 1. INTRODUCTION

utes flight and gas turbines of type 8000H generate from 1500 up to 5000
signals per turbine per second. Humans easily interact and share informa-
tion from everywhere at any time via computers or devices. In 2010, e.g.,
5 billion mobile phones were in use world wide. Smartphones, the main in-
formation providers, covered 12 percent of all mobile phones with a growing
penetration at more than 20 percent a year [97]. Communication via social
networks (Facebook1, Twitter2, etc.) became very popular, producing con-
stantly huge amounts of data. For example, 30 billion pieces of content were
shared on Facebook every month [97]. File sharing and storing offerings in
the cloud (e.g. Dropbox3, Box4, Google Drive5 and SkyDrive6) are very
popular and frequently used. Megaupload, for example, stored 28 petabytes
of user data in 2012 [82]. Companies are collecting trillions of bytes of in-
formation about their operations, suppliers and customers. The McKinsey
Global Institute (MGI) estimates that enterprises globally stored more than
7 exabytes of new data on disk drives solely in 2010 [97].

Over the years, several studies were initiated to get a feeling for the total
amount of data generated, stored, and consumed in the world [95, 56, 51, 52,
53, 54, 55, 17, 124, 65, 97]. Although the methodologies and definitions were
different and therefore their results vary, all agree on a fundamental point:
The data volume in the world is expanding rapidly with an exponential grow
within the next future. Figure 1.1 exemplary shows the size of the ‘digital
universe’(a measure of all the digital data created, replicated, and consumed
in a single year) from 2010 with a forecast to 2020. New challenges arising
with the increasing amount of data are concentrated under the buzz word
‘Big Data’. The definition of Big Data slightly differs.
McKinsey defines Big Data as the reference

‘[...] to datasets whose size is beyond the ability of typical
database software tools to capture, store, manage, and analyze.’[97]

Gartner recently updated its definition to the following:

‘Big data are high volume, high velocity, and/or high variety in-
formation assets that require new forms of processing to enable
enhanced decision making, insight discovery and process opti-
mization.’
- Douglas, Laney. Gartner. June 2012. [37]

1http://www.facebook.com; Dec. 2013
2http://www.twitter.com; Dec. 2013
3http://www.dropbox.com; Dec. 2013
4https://www.box.com/; Dec. 2013
5https://drive.google.com/; Dec. 2013
6https://skydrive.live.com; Dec. 2013

1.1. MOTIVATION 3

Figure 1.1: The Digital Universe: 50-fold growth from the beginning of 2010
to the end of 2020 (Source: [55])

This definition shortly reviews the main challenges arising with Big Data
that are also known as the 4 V‘s:

• Variety: Data and information can be available in a structured, semi-
structured or unstructured form and has direct impact on the complex-
ity of storage and knowledge extraction.

• Velocity: Data retrieval, data processing and knowledge extraction
can underlie different speed requirements – batch, near time, real time,
streams.

• Volume: The pure amount of data itself needs new approaches for
storage and processing.

• Veracity: Quality and provenance of received data can be diverse
(good, bad, undefined, inconsistent, incomplete, ambiguous)

Therefore, a fundamental question is, how to make use of Big Data. In the
following two different approach domains for Big Data are presented. First
of all, widely used, classic approaches are shown which are handling Big
Data under potentially high resources. Next, approaches are introduced for
handling Big Data under limited resources.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: The Big Data ecosystem of different systems (Source: [9])

1.1.1 Processing Big Data - Under Plenty Resources

To store, process and visualize Big Data, different approaches and systems
have been developed. A surely not complete overview of different systems /
products in the Big Data ecosystem can be found in Figure 1.2. There is no
best system for all use cases. Choosing the adequate system depends on the
circumstances and the goals that should be reached. For example, what kind
of data should be stored and processed (structured, semi- or unstructured),
at which speed, etc. (see 4 V‘s).

Relational databases improved their performance on structured data
mostly by parallel processing. A famous relational database management
system for Big Data was developed by TERADATA7, but there are also
solutions from Microsoft, Oracle or IBM.

Another way to improve the calculation speed on Big Data is to use
the main memory more broadly. SAP HANA8, for example, is the most
prominent in-memory database and platform. It offers a performance gain
through combined software and hardware techniques. On the software side,

7http://www.teradata.com; Dec. 2013
8http://www.saphana.com; Dec. 2013

1.1. MOTIVATION 5

a hybrid (column and row oriented) in-memory database approach is chosen
with additional algorithms optimized for in-memory processing. This is
additionally supported by replacing the main memory by the CPU-Cache
and the data storage on the hard drive by a main memory storage. This
reduces significantly the access time.

As conventional relational databases are not flexible and fast enough to
store a huge amount of incoming data, while still enabling reads, new systems
have been developed. These systems are NoSQL databases (e.g. Cassan-
dra9, CouchDB10, MongoDB11, Redis12, Riak13, Neo4J14, and FlockDB15),
which are high performance non-relational databases. Their performance is
achieved by trading away the power of a relational database: the ACID rules
are mostly not guaranteed, resulting in processing advantages. On the down-
side, packages can be lost and NoSQL databases only guarantee an eventual
consistency. Other performance boosts are that no table schema is needed
and the system has a horizontal scaling. That means that parallelization is
possible by adding new nodes to gain higher performance. Furthermore, col-
umn or row oriented database versions are available to achieve the additional
performance tip.

A famous system to store and handle unstructured data is the Hadoop
system. It is an open source software project that enables distributed pro-
cessing of large data sets across clusters of commodity servers. It enjoys
great popularity through the following user-friendly facts:

• Automatic parallelization, coordination and distribution of calcula-
tions (jobs)

• Error tolerance in the face of hardware and software failures

• Automatic load spreading

• Optimization of network and data transfer

• Status and monitoring messages to overview the system

• Cheap and easy expandability

By horizontal scaling, additional processing power as well as storage space
can be added to the system. This is done by integrating new nodes (com-
modity servers). Consequently, processing power and storage space can be
cheaply extended without the need for changes to the existing system. The

9http://cassandra.apache.org/; Dec. 2013
10http://couchdb.apache.org/; Dec. 2013
11http://www.mongodb.org/; Dec. 2013
12http://www.redis.io/; Dec. 2013
13http://docs.basho.com/riak/latest/; Dec. 2013
14http://www.neo4j.org/; Dec. 2013
15https://github.com/twitter/flockdb; Dec. 2013

6 CHAPTER 1. INTRODUCTION

Figure 1.3: Exemplary Hadoop architecture. Blue blocks are used for data
storage and gray blocks for job processing.

file system of Hadoop is based on the Google File System (GFS [59]) devel-
oped in 2003 and is called HDFS (Hadoop Distributed File System). HDFS
is a highly available file system, optimized for very large data amounts. Usu-
ally, few but large data files are stored in data blocks with a typical size of
64 MByte. These data blocks are stored redundantly (at least three times)
in the file system and are usually only written once and often read.
The architecture of a Hadoop system can be seen in Figure 1.3. The data
blocks are redundantly distributed over the so called Slave Nodes (or Data
Nodes in the perspective of data storage) and, by that, an error tolerance
can be guaranteed. To coordinate the redundancy and to store the location
information of the data blocks, a Master Node (Name Node) is needed. For
backup reasons, a Helper Node (an additional Secondary Name Node) can
be used in the system. Each node represents a server or virtualization. If
the system is now queried by a job, transmitted by the user / client, the
code is transferred to the Master Node, where the Job Tracker is activated
to supervise the job. As the Master Node knows where the necessary data is
located, the code is further transferred to the Slave Nodes, the calculations
start on each data block in parallel and the results are finally combined.
Task Trackers in the Slave Nodes overview the tasks and return status mes-
sages to the Job Tracker. The Job Tracker itself overviews the process of the

1.1. MOTIVATION 7

Figure 1.4: Simple MapReduce example: Word count

whole job. It knows the status of each slave node: which results returned
manifold and which are still missing. Missing results due to errors can then
be recalculated on other slave nodes. Transferring the job (code) to the
data, instead of the, usually used, other way round, is a key feature of the
Hadoop system. Consequently, the resources used for data transfer can be
reduced, which are high in the case of Big Data.
Dividing the data to several slave nodes, enabling parallel processing and
merging the information to a final result is known as the MapReduce ap-
proach, which was originally developed by Google in 2004 [32]. In the
Hadoop framework, the complexity of that system is hidden to the user
as he only needs to define a Map and a Reduce step to start the calculation.
In the following, the steps of the MapReduce approach are explained by the
example shown in Figure 1.4. The task in this example is to count the words
of a given file. To do so, the file is split and redundantly stored in the HDFS.
In this example, the file is split and stored line by line. The next step is the
Map step. This step is the first step, that has to be defined by the user. As
input, the step takes a list of key-value pairs (List(< Key1, V alue1 >)). In
this example, the line number is the key and the line text is the value. Then,
within this step, the user defines some projections, filtering and transforma-
tion and returns a new list of key-value pairs (List(< Key2, V alue2 >)).
Here, each key is a word in the line and its paired value is the number of
occurrences. Now follows the shuffling step, which is provided by Hadoop
itself. Identical keys over all Slave Nodes are combined and handed over
to the Reduce step. Depending on the number of available Slave Nodes for

8 CHAPTER 1. INTRODUCTION

the Reduce step calculation, more than one key has to be transferred to one
reduce step. In detail, each Slave Node with a Reduce job receives a list of
key-value pairs. This time, the value itself is the value list of all keys of this
type (List(< Key2, List(V alue2) >)). In our example, each key is passed
to one Reduce job with a list of the number of occurrences of the word in
each line. The next step, the Reduce step, has to be defined by the user.
Depending one the user code, the information is now reduced / aggregated
to a new list of key-values pairs, where the values are again single entries
(Lists(< Key3, V alue3 >)). In our example, the number of occurrences
of each key / word is simply summed up and returned. The calculations
from each Reduce job are now collected, aggregated and written back to the
HDFS.
To sum up, it can be said that Hadoop scales out rather than scales up and
that data throughput is by far more important than access time. Hadoop is
not designed for real-time or low latency queries. It is designed to process
indefinitely huge amount of unstructured data. To make Hadoop more user
friendly and to open new application areas, the Hadoop ecosystem now con-
sists of a huge amount of additional programs. As the amount is steadily
increasing, the following list can be only an excerpt:

• HBase16: Hadoop column database; supports batch and random
reads and limited queries

• Zookeeper17: Highly-Available Coordination Service

• Oozie18: Hadoop workflow scheduler and manager

• Pig19: Data processing language and execution environment

• Hive20: Data warehouse with SQL interface

• Mahout21: Machine learning and data mining algorithms

Many companies as e.g. IBM, Cloudera or Hortonworks adjusted Hadoop
and additional programs to commercial products with further support.

Big Data is often associated with gaining new insights and information
which would not be available with less data. This is known as generat-
ing Smart Data. Analyzing Big Data leads to Smart Data, which is done
more and more with machine learning and data mining algorithms. They are
implemented in additional packages and adopted to the specific system tech-
niques. For example, for TERADATA, TERADATA Aster is available and

16http://hbase.apache.org/; Dec. 2013
17http://zookeeper.apache.org/; Dec. 2013
18http://oozie.apache.org/; Dec. 2013
19http://pig.apache.org/; Dec. 2013
20http://hive.apache.org/; Dec. 2013
21http://mahout.apache.org/; Dec. 2013

1.1. MOTIVATION 9

for the Hadoop system, Mahout is available as an add-on, implementing al-
gorithms for recommendation mining, clustering, classification and frequent
itemset mining.

Overall, it can be said that the answer to Big Data seems to be twofold:
using more memory and / or multiprocessing. This approach is feasible, as
the needed hardware is steadily becoming cheaper. Data storage, for exam-
ple, is cheap. All worlds music data in 2011 can be stored on a disk drive
bought for $ 600 [97]. Nevertheless, buying and maintaining the hardware
is still expensive in the dimensions of Big Data. The additional specialized
software is another big burden. For all those who cannot afford the step to
buy several servers, to build a Hadoop cluster, or to use servers with huge
amounts of RAM, cloud services are cost efficient alternatives. For example,
AWS (Amazon Web Services)22 or Google Cloud Platform23 offer a variety
of possibilities to process Big Data and to extract information. The service
is paid for the time used and for the data volume stored and transferred. For
short term projects, where data is only collected and analyzed for a short
period, using such a service could be profitable. Unfortunately, when a data
management and analysis project is planned over a longer period, an own
system still seems to be mandatory.

1.1.2 Processing Big Data - Under Limited Resources

Processing and handling Big Data with the afore mentioned methods is not
always possible due to the needed resources. Either because the needed
resources are too expensive or not available in the area of application. In
general, two application areas are possible to handle Big Data (see Figure
1.5): processing the data directly at the origin of creation (e.g. sensors)
or on a server structure where the data is sent to and combined (area of
classical methods).
For the first application area, consider the Internet of Things. Especially
there, more and more sensors are applied to daily products for environment
measurements and controls. Companies invest in sensor applications for
their products or in companies doing so. The most recent example is the
buyout of Nest Labs Inc. by Google [74]. Nest develops intelligent devices
for home control, as, e.g., learning thermostats or protection systems with
smoke and CO alarms. Fortunately, this trend is not only reserved to big
companies as Google. Several systems as the RasperryPi24 or Arduino25, to
mention just a few, make it possible for every hobbyist to build cost-efficient
sensor systems to produce data. This new generation of devices is not only
able to send the data to servers, which are collecting and processing the

22http://aws.amazon.com; Dec. 2013
23https://cloud.google.com/; Dec. 2013
24http://www.raspberrypi.org/; Dec. 2013
25http://www.arduino.cc/; Feb. 2014

10 CHAPTER 1. INTRODUCTION

Figure 1.5: Internet of Things – Daily devices are equipped with sensors
and processors. Data can be processed directly on the devices or / and sent
to a global server.

data from several devices. They also have integrated processing and stor-
age units, making them to small computers that are able to process their
own sensor measurements and to gain knowledge from that. By intelligent
data analysis through machine learning and data mining tasks, information
and actions can be directly derived and alarms or counter actions can be
initiated. As the systems only have up to 1Gb of RAM and one or two
processors of low speed, the arriving data is already by definition [97] Big
Data for such systems. Consequently, very resource efficient algorithms are
needed to process the data. The classical Big Data methods are not appli-
cable under these constraints.
Even on the server side, the second application area, where all data from
different sources is collected, combined and where knowledge is extracted,
efficient knowledge extraction methods are needed. The available resources
should be used efficiently or even be reduced. Classical Big Data processing
approaches need a huge amount of resources, resulting in high maintenance
and energy costs. To reduce these kinds of costs, the new challenge is to

1.2. THESIS OUTLINE 11

handle Big Data in a responsible way. This trend is known by green comput-
ing. Hardware costs can almost be neglected in comparison to the energy
costs accumulated over time. Constantly huge amount of energy is needed
for running the needed environment. This is further increased with process-
ing / computing requirements. Consequently, algorithmic efficiency plays a
main role in green computing.

A group of algorithms working very well under limited resources are
incremental learning algorithms. They are fast and memory efficient learn-
ing algorithms designed for online learning tasks on data streams. Due to
their ability to learn fast under a given amount of memory, they can be
ideally used for machine learning or data mining tasks on sensor devices
itself. Additionally, due to their efficiency, they can be considered as algo-
rithms for green computing. While developed for stream processing, they
can be deployed on massive datasets as well, showing all the benefits for
green computing. Although the domain of incremental learning algorithms
is yet a relatively young research area, it shows a high research activity.
Unfortunately, even if there is great research, only small effort is put into
creating reusable algorithm code. Fortunately, there are two open source
projects collecting incremental learning algorithms in a toolkit. The first
one is the VFML (Very Fast Machine Learning) framework26, initiated by
Pedro Domingos and Geoff Hulten and written in C and Python. It has
a collection of important learning algorithms for mining high-speed data
streams and very large datasets. By using its API, new algorithms can be
easily developed. The second toolkit is the MOA framework27, written in
Java and developed at the University of Waikato. It is under active develop-
ment and has a collection of learning algorithms supporting stream classifi-
cation, stream clustering, outlier detection and recommender systems. New
algorithms can be easily added to the existing system.

1.2 Thesis Outline

This thesis concentrates on the second domain of Big Data processing ap-
proaches: algorithms working under limited resources. A class of efficient
algorithms which could be applied in this domain are incremental linear
model tree algorithms. The focus lies on the application of incremental lin-
ear model tree algorithms on massive data sources: massive datasets as well
as data streams with massive examples.
This thesis is organized as follows:
Chapter 2 gives an introduction to online and especially incremental learn-
ing. The incremental learning process is explained and differences to the
batch learning approach is shown. Next, model evaluation approaches are

26http://www.cs.washington.edu/dm/vfml/; Dec. 2013
27http://moa.cms.waikato.ac.nz, Dec. 2013

12 CHAPTER 1. INTRODUCTION

introduced for the batch as well as for the online setting. At last, an exem-
plary incremental algorithm WINNOW is explained in detail.
Chapter 3 explains decision trees in detail. From tree fundamentals to the
explanation of the most important algorithms, everything is explained for
an understanding of regression and classification trees in the batch and the
incremental setting.
Chapter 4 gives an overview of the data sources used throughout this thesis.
Chapter 5 shows, for the first time, a systematic performance evaluation
of incremental linear model trees which are not well studied on massive
stationary datasets. The evaluation is performed under equal conditions
in three different dimensions: prediction error, running time, and memory
consumption. The performance evaluation tests the algorithms within the
same framework on large-scale artificial and real-world datasets, under var-
ious parameter settings.
Chapter 6 introduces GuIP, a new pruning approach for ILMTs with ap-
proximate lookahead based on the actual prediction error of the models. It
is an extension of incremental linear model trees with approximate looka-
head in general and is exemplary integrated into the FIMT algorithm. GuIP
can be used to produce smaller trees, which increases their processing speed
and consequently, favors their application on high-speed data sources.
Chapter 7 will focus on the problem of high-speed data streams in combi-
nation with processing-speed limited learning algorithms. High-speed data
streams can overwhelm the learning algorithms by delivering examples faster
than the algorithms can process them. As a consequence, examples have to
be dropped and can either not be used for further model improvement or,
worse, predictions cannot be made on these examples. Missing predictions
are, e.g., a problem in emergency systems where prompt predictions are
needed on each example. Otherwise, severe consequences could arise. Con-
sequently, frameworks are needed to make the best use of the examples
arriving. For this purpose, we introduce a new framework called PAFAS
which guarantees a prediction for all unlabeled examples promptly after ar-
rival time, while the model is still constantly improved.
The thesis closes with Chapter 8, a summary of this thesis and an outlook
on future work.

Chapter 2

Online and Incremental
Learning

Machine learning and data mining algorithms are used to automatically ex-
tract knowledge from data. Most of the algorithms were once developed on
only few examples, due to data shortage at the time when the fields were
emerging. Consequently, the developed algorithms were designed to store all
training examples in main memory for processing (batch approach), which
was possible back then. Ever since, the data amount, as well as the data
availability has changed. Data is now abundantly available, resulting in
huge amounts of data to be processed, or it is constantly growing over time
by receiving new examples from data streams [3]. Big Data solutions have
been developed to target this challenge (see section 1.1). But the disadvan-
tage of these solutions are the amount of required resources. Solutions are
needed to process large amounts of data and data from data streams under
limited resources. Online learning algorithms, processing examples on the
fly and updating their model incrementally after each example, are one kind
of these algorithms.
This chapter gives an overview of the principles of online learning and in-
troduces incremental learning. First, the learning process is shown and dif-
ferences to the batch approach are highlighted. Second, methods for online
model evaluation are shown. Then, concept drift is introduced and finally,
an exemplary incremental learning algorithm (Winnow) is explained in more
detail.

2.1 Learning Process

The conventional learning approach for batch learners (see Figure 2.1) is
based on two assumptions:

• All training data is available at once at training time

13

14 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

Figure 2.1: Batch learning approach

• The main memory is large enough to store all data during the learning
phase

If these assumptions hold, the training examples are loaded in the main
memory and are used on the learning algorithm to build the model. Ad-
ditionally, loops can be created to show the training examples several times
to the learning algorithm to constantly improve the model on the examples.
Nevertheless, it can be assumed that for Big Data, the amount of available
memory is too small for devices with limited resources. Training examples
have to be stored and several data processing steps have to be performed
in the main memory. To be able to create the desired model with the given
restricted resources, techniques are needed to reduce the amount of exam-
ples. Two areas of research for this purpose are sampling and load shedding
techniques. Sampling is a method to draw examples from a distribution
or dataset under specific conditions. Common methods are for example:
rejection sampling, importance sampling, Gibbs sampling or slice sampling
[15], to mention just a few. Load shedding, on the other hand, reduces the
example load by discarding unprocessed examples and is often used in the
domain of network analysis.
All these approaches have one thing in common: examples are ignored which
carry potentially important information for the algorithm. Even if the best
is done to identify the most important examples, memory can still be too
small to store all important examples, or not all important examples are
found. Consequently, an efficient approach to integrate all examples in the
model building process should be preferred.
Another drawback of batch algorithms is their problem to handle data
streams. In the online setting, new examples are constantly arriving from
data streams. Batch algorithms need their training examples at once to
calculate the model. An exemplary workflow of a wrapper approach, using

2.1. LEARNING PROCESS 15

Figure 2.2: Online learning with a batch approach

a classical batch algorithm for online learning, can be found in Figure 2.2.
New examples are constantly coming in from the data stream. Then, the
model that was created by the batch algorithm on the examples so far, can-
not be updated solely by the new examples. But, if all the data from the
data stream can be stored, e.g., if the data stream is limited or the data
storage is unlimited, a model can be periodically induced from all available
data stored so far. The periodicity is strongly dependent on the necessity
of recalculation and the induction time of the batch algorithm. In most
cases this setting does not hold. Storage space is somehow limited and data
streams are unlimited. Thus, there will always be the time point where
there is too much data for the storage space. For this setting, a window
based approach can be used, collecting a specific amount of new incoming
examples. From these examples in the window, a model is induced by ap-
plying the batch algorithm. Over time, several models are built, which can
be combined for prediction. One possibility for this is to introduce a weight
for each model in the prediction, to favor specific models. This could be
that models having a higher prediction accuracy could be stronger weighted
or models created on more recent examples. An advantage of this window
based approach is that only the data for the current learning batch has to
be stored. This has an storage advantage in comparison to storing all exam-

16 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

Table 2.1: Online algorithm main requirements

Requirement 1 Process one example at a time,
and inspect it only once

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

ples. Nevertheless, it is a challenge to determine the window size with the
correct amount of data. By using too big window sizes, the batch learning
algorithms could take too much time to induce the model and the model
induction on the next, newly arrived data window is delayed. This may
produce a chain reaction: Examples which are not yet used for learning, but
are now too old for the current data window, have to be dropped, or a much
higher storage amount is needed to store all examples not yet processed.
Setting the window sizes too small will result in a high number of models,
which will increase the storage size, but can be fixed by deleting the oldest
models. This may impact the combined prediction power, which could be
overall weak due to the reduced amount of training examples during each
model induction. With too few examples during the training process, the
induced model may be poor at generalizing to new examples, which results
in higher prediction errors. An overall disadvantage of a wrapper approach
is that the memory management can only be done on a per model basis as
classical batch algorithms are used. A more fine granular memory manage-
ment could be necessary. Exemplary wrapper approaches can be found by
Wang et al. [139], Street and Kim [126] and Chu and Zaniolo [28].
A more convenient possibility to learn on data streams is to create new
learning algorithms adjusted to the new real-time requirements posed by
the data stream setting. There are four main requirements an online algo-
rithm should meet to properly learn on data streams (see Table 2.1). To
meet these requirements on data streams, incremental algorithms are de-
veloped for efficient learning. A schematic example for the application of
incremental algorithms on data streams (as well as on big datasets) is shown
in Figure 2.3. As data is coming in, possibly fast, from data streams, the
learning algorithms have to adapt the current model to the new information
by requiring only a limited amount of time before the next example arrives.
Consequently, only one example is processed at a time and is discarded
afterwards1 (Requirement 1). Furthermore, the algorithm has no control

1Under normal conditions, the examples cannot be used for several iterations due to
strong memory and processing time restrictions and have to be discarded after updating
the model once. But, in principle, it would be possible to store some examples in the short
term for further refinement, as long as requirement 2 is met. Also redirecting a stream to
use it a second time would be possible. However, in practice, these options are normally

2.1. LEARNING PROCESS 17

Figure 2.3: Online learning with an incremental approach

over the order of the observed examples and has to process the examples
in the order they are coming in. During the whole process, only a limited
amount of memory is available (Requirement 2), which has direct impact
on the learning process. Due to the huge amount of data which has to be
processed by the learning algorithm and the memory constraint, not all ex-
amples observed so far can be stored. Only limited and abstract information
representing the examples can be stored. This is a hard constraint for the
online algorithm update process and one of the main differences to the batch
algorithm. This challenge is usually solved by storing some statistics over
all observed examples. These statistics consist of aggregated values over all
examples which can be incrementally updated and, for that, are memory
efficient. The model induction process is based on these statistics and can
then also be updated.
The model update process has only a specific maximal time to finish (Re-
quirement 3), as new examples are steadily coming in. The algorithm has to
be ready to accept the next example as soon as it comes in. Otherwise the
example is lost or has to be temporarily stored on secondary storage. Chap-
ter 7 discusses in more detail the impact of data stream speed on learning

not possible.

18 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

algorithms. Even though the time between the incoming examples can vary,
most learning algorithms cannot benefit from that fact. It would be bene-
ficial if the learning process could be performed stepwise by updating the
model over several stages. The more time the algorithm has before the next
example comes in, the more time can be spent for the model update process
and the better it becomes. As most learning algorithms are not supporting
this concept, the main agreement is that the update process should be as
fast as possible. At least as fast as the smallest time difference between the
possible shortest example arrivals, so that no example will be lost.
Once a model has been induced from training examples from the stream,
it should always be ready to make predictions on new unlabeled examples
(Requirement 4). The learning algorithm should have induced the best pos-
sible model from the data seen so far and provide it for prediction. As new
examples are steadily coming in, the learning algorithm constantly updates
the algorithm, which should be no drawback for the prediction. Quite the
contrary, after seeing more examples, the algorithm should further improve
the model to gain better predictions. Consequently, changing models and
the subsequent predictions on different model states poses special new chal-
lenges to the model evaluation process, discussed in the next section.

2.2 Model Evaluation

To evaluate the current performance of an existing model, or to compare dif-
ferent algorithm approaches and to find the best model, performance mea-
sures of the models can be compared. Therefore, three different performance
measures are mainly of interest:

• Algorithm speed: Evaluates how fast the algorithm can process
examples. The training speed is often of main interest, but the time
needed for new predictions is important as well.

• Memory usage: Evaluates how much memory is needed by the al-
gorithm during the learning process and how much space is needed by
the final model.

• Prediction error: Evaluates how well the induced model is able to
predict the target variable.

While the error measure seems to be the most important one in the batch
setting, all three measures are equally important for the online setting. Even
the most correct algorithm is useless if it cannot be applied due to too high
memory consumption or because it is too slow. Although this also holds
for the batch setting, it is more severe in the online setting with its strong
restrictions. While the measurement of memory consumption and processing
speed is straightforward, the error of the induced model can be measured in

2.2. MODEL EVALUATION 19

Table 2.2: Confusion matrix of the classification task

Predicted Class
C1 C2

A
ct

u
al

C
la

ss C1 true positives (TP)
false negatives (FN)

- type II error -

C2
false positives (FP)

true negatives (TN)
- type I error -

Table 2.3: Error measures for the classification task

Sensitivity TP
P

Specificity TN
N

Precision TP
TP+FP

Accuracy TP+TN
TP+FP+FN+TN

F-Measure 2TP
2TP+FP+FN

different ways. In the following, different error measures are presented for
the classification and the regression task. Afterwards, techniques are shown
to correctly estimate the performance measures, by introducing common
approaches for the batch setting and adaptations developed for the online
setting.

2.2.1 Error Measures

The error measure shows how well a target value y is fitted by the model
prediction ŷ.
For the classification task, the target value is a class value (a value from
a possibly infinite set, mostly two values). The classification error is nor-
mally based on the confusion matrix (see Table 2.2), and consequently, on
the number of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) examples. Different error measures can be calcu-
lated based on these numbers, to evaluate the classification model (e.g.,
sensitivity, specificity, precision, accuracy and F-measure; see Table 2.3).
Additionally, the decision can be supported by visualizations. Prominent
examples are the Recall-Precision-Chart and the ROC-Curve.
For the regression task, where a numerical value is predicted, it is not suf-
ficient to use error measures judging if the correct target value has been
predicted or not. Evaluation measures are needed taking into account the
distance of the predicted value ŷ from the correct value y. The most com-

20 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

Table 2.4: Error measures for the regression task

Absolute error yi − ŷi

Squared error (yi − ŷi)2

Mean absolute error
∑d

i=1 |yi−ŷi|
d

Mean squared error
∑d

i=1(yi−ŷi)2
d

Relative absolute error
∑d

i=1 |yi−ŷi|∑d
i=1 |yi−ȳ|

Relative squared error
∑d

i=1(yi−ŷi)2∑d
i=1(yi−ȳ)2

monly used error measures for the regression task, are shown in Table 2.4.
Detailed information on evaluation measures can be found in several publi-
cations and books (e.g. [142, 61]).
The thoughtful reader might have recognized that the above mentioned er-
ror measures can represent the correctness (e.g. accuracy) as well as the
error (e.g. absolute error) of the predictions. All over this thesis, error mea-
sures are seen from the error perspective. Consequently, an increase of an
error measure results in an increase of the error (e.g. absolute error) and a
decrease of the correctness (e.g. accuracy).

2.2.2 Performance Evaluation Techniques

To find the best fitting model, the performance measures have to be applied
in a way, that the results are reliable. Testing the error with the same dataset
the model has been learned on (the training set), is not valid. The achieved
results would be too optimistic, as they do not represent the error on new,
so far unseen, examples. Consequently, the performance of the model has to
be tested on unseen examples by the learning algorithm during the model
induction. This group of examples is called test set. Another complication
in the learning process is overfitting: the learning algorithm tries too hard
to explain the training data. By that, the model weakens its generality, the
ability to perform good predictions on yet unseen examples, by overadapting
to the training data. Consequently, the performance on the test set will be
poor. To avoid these and other problems, evaluation techniques have been
developed which are introduced in the following. To show the necessity of
adapted techniques for the online setting, commonly used techniques for the
batch setting are shown for comparison in advance.

2.2. MODEL EVALUATION 21

Batch Techniques

Techniques for the batch setting were originally designed to optimally use
a limited amount of data for the training process. As data was available at
once, but very limited in size, techniques were needed to use as much exam-
ples for the training process as possible and yet to give valid performance
evaluation results. In the following the most common evaluation techniques
are shown. Further information can be found in the literature [61, 142, 86].

Holdout and Random Sampling The holdout method is the intuitive
approach of using one part of the available dataset as training set and the
other as the test set (holdout set). To avoid biases in the distribution of
the target and feature values in the newly created sets, the examples are
randomly selected from the overall set. Typically, two thirds of the overall
examples are randomly chosen in the training set and the remaining third is
forming the test set. Other combinations are possible as well. The learning
algorithm is now executed on the training set to induce the model. The
performance of the induced model is then tested by predicting the target
of all examples in the test set and calculating error measures as mentioned
above. The main criticism of the holdout method in the batch setting is that
a large amount of examples are only used for testing instead of improving
the model by adding them to the learning set. Consequently, the estimates
of the error measures are assumed to be pessimistic.
As the estimations can vary greatly depending on how the test and training
set is divided, the random subsampling method tries to approximate the
actual error measures by repeating the holdout measure k times. Each
time the examples in the training and test set change due to the random
partitioning. Consequently, for each of the k runs, performance measures
are retrieved and a final score can be found by averaging over all runs.

Cross-validation The cross-validation method is the next step to opti-
mize the example use for the training and testing. In k-fold cross-validation,
the data is randomly partitioned into k mutually exclusive and approxi-
mately equally sized subsets (folds) F1, F2, ..., Fk. Similar to the random
subsampling method, training and testing is performed k times. Each time,
k − 1 folds are used for training and the remaining fold is used as the test
set. This means that in the first run, F1 is used as test set and the remaining
folds F2−Fk are used in combination as the training set. In the second run,
F2 is used as test set and F1, F3 − Fk as the combined training set. This is
continued over all k runs. Performance measures are obtained by dividing
the sum of the performance measures over all runs by the total number of
examples. In contrast to the random sampling approach, each example is
used the same number of times (k − 1) for training and exactly once for
testing, reducing the introduced bias. Nevertheless, an imbalanced class

22 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

distribution between the folds can still occur by this approach. Stratified
k-fold cross-validation tries to cope with the class distribution by creating a
class distribution in each fold similar or hopefully identical to the one of the
entire dataset. On top of that, the cross-validation method can be addition-
ally performed several times, each time with another random partitioning of
the folds, enabling the calculation of the variance of the performance mea-
sure. Most commonly, ten-fold cross-validation is recommended [86], but
the results should still be treated with caution [18].
The Leave-one-out method is a special case of the cross-validation approach.
The principle is pursued to its extreme: k is set to the amount of examples in
the dataset and, consequently, each of the k folds contain only one example.
In each run, the maximal amount of training examples is used by still get-
ting a performance evaluation with one example. A valid estimation of the
error measure can only be achieved by taking the results over all runs into
account. This method has two main benefits: As many examples as possible
are used for the learning process, and random effects by fold splitting are
avoided. But these benefits also come with some disadvantages: It needs
much more time and computing resources than the k-fold cross-validation
method, and stratification is not possible. Consequently, it is possible to
construct scenarios where the methods fails in measuring the generalization
power.

Bootstrap The Bootstrap method [38] samples the training examples
from the whole dataset, in contrast to the methods already shown, with
replacement. The most commonly used Bootstrap method is called 0.632
Bootstrap and creates a bootstrap sample (training set) of the size of the
whole dataset, by sampling with replacement. By that, on average, 63.2%
of the original examples will end up, maybe several times, in the training
set. Examples not chosen for the training set are used in the test set (ap-
prox. 36.8% of the original examples). Performance measures are estimated
by combining estimates on the training as well as on the test set (0.632 x
MeasureTest + 0.362 x MeasureTrain) to compensate the lack of unique
training examples. Further reliability of the measures can be gained by re-
peated random runs. While this method works well on very small datasets,
this method also has its critics [86].

Online Techniques

The online setting has other requirements to the performance measure vali-
dation process than the batch setting. While for the batch setting the focus
is on the optimal data usage due to example shortage, data can be consid-
ered as abundant available in the online setting. Especially test sets can be
large without having the problem of sacrificing training examples. Conse-
quently, the concerns of repeatedly reusing the examples from the dataset

2.2. MODEL EVALUATION 23

in training and test sets to make the most of the limited available data, is
not a concern in the online setting. There, the following new challenges are
mainly in focus and have to be solved by the online evaluation techniques:

• Model development: Online or incremental models are constantly
developed with every training example from the data stream, used to
hopefully increase the model quality. Consequently, there is no static
final model available which can be evaluated with a test set to achieve
the performance measures. Instead, the model has to be evaluated
over time to see the development of the performance measures with
an increasing number of training examples. From these time courses,
extrapolations can be made during the development phase of the al-
gorithm to estimate the performance on a possibly unlimited amount
of training data. In the application phase of the algorithm, when the
model is used in a live scenario, the performance is constantly available
and counter investigations can be initiated if the performance drops.

• Concept drift: Online algorithms are normally used on data streams
where the examples are arriving over time. Consequently, a time de-
pendency is introduced which can be of importance in the evaluation
phase. An increasing error during evaluation must not be because of
wrong decisions of the learning algorithm. It can also be a hint for
a concept drift in the data (further explained in Section 2.3). If con-
cept drift changes are not handled by the learning algorithm itself,
it should be tested or evaluated on the data sources in advance or in
parallel. Otherwise, the error increase over time could be for a number
of different reasons.

• Memory limitation: Running under limited memory resources is an
important focus in online learning. Constantly calculating the per-
formance measures, in the development as well as in the application
phase, to judge the model performance, needs at least temporal mem-
ory. Intermediate and final results have to be stored and, with certain
evaluation techniques as the holdout method, test examples have to be
stored as well. Consequently, the memory has to be shared between
the model learning and the evaluation process. This could raise some
challenges under strongly limited resources.

• Time limitation: Online learning algorithms should be as fast as
possible to be able to process all examples from the stream. Evalu-
ation techniques need additional time, depending on the complexity
of the used evaluation method. This time needs to be available to
meanwhile evaluate the learning algorithm. In the development phase,
interrupting the data stream to evaluate the model is a common pro-
cedure. During the application phase, this approach is not possible as

24 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

the examples are still continuously coming in. Stopping the process
for an evaluation task would result in unprocessed examples which are
lost forever in the worst case. These examples could, e.g., be outliers
which would have been of great interest. Consequently, fast evaluation
methods, not affecting the algorithm processing speed too much, are
needed in the application phase. In the development phase, more time
can be spent for the evaluation under certain circumstances.

• Example order: The performance results are strongly dependent on
the order of the examples coming in. Applying the algorithm on the
same stream at slightly different times will result in, hopefully only
marginal, different performance measures. This is due to the fact,
that different examples or examples in different orders are available
for the learning process. To get an overview of the learning algorithm
performance on any example ordering, performance measures should
be averaged during the development phase over several runs with dif-
ferent example orderings. By additionally showing the variance over
the runs, the influence of the example order on the learning algorithm
can be estimated. During the application phase, this fact has no im-
pact on the evaluation process as there is only one example order on
which the performance is needed.

For the online setting, mainly two performance evaluation methods exist:
the prequential and the holdout evaluation [14, 13], which are explained in
the following in more detail.

Prequential The prequential, or also called Interleaved Test-Then-Train,
method [31] constantly evaluates the model. Each example arriving from the
data stream is first used as a test example to evaluate the model and then as
a training example to further improve it. The prediction error of the current
example is added to the sequentially accumulated error measure over all test
examples seen so far. This value can now be used in the development phase
to compare different runs or algorithm approaches, or in the application
phase, to monitor the model performance. The advantage of this method
is, that only a small amount of additional memory is needed to store the
accumulated performance measures. Additionally, if the testing method
is fast enough, this approach is very useful to monitor the model quality
in the application phase as the process has not to be stopped for a long
testing phase. The downside of this approach is that the learning curve
of the prequential error measure is known to be a pessimistic estimator.
It suffers from potentially large errors committed during the early phases
of training. To reduce or eliminate the influence of such early prediction
errors, fading factors [50] or sliding windows can be used on the prequential
error measure. These methods are especially useful in the application phase

2.2. MODEL EVALUATION 25

where the current performance is of importance. Another disadvantage of
this approach is that it is hard to accurately measure the training and testing
times, as they can be hardly separated.

Holdout The holdout evaluation method is similar to the one already
discussed for the batch setting. Examples from the data stream are selected
in a separate holdout test set. This test set is used to evaluate the model and
to retrieve the performance measures. As there is no final static model in
the online setting, the model performance has to be repeatedly tested with
the holdout test set. By this approach, the development of the performance
measures can be observed over time. In contrast to the holdout approach
in the batch setting, using examples for the test set is not harmful for the
algorithm quality, as examples are abundantly available. The holdout test
set is formed by fetching a predefined number of examples from the data
stream prior to training. This holdout test set can now be used to repeatedly
test the model quality and new examples arriving can be used to further
improve the model. This approach has the advantage that varying estimates
between different test sets are avoided and it is valid as long as there is no
concept drift in the data. In the case of existing concept drift, the model
would be updated with the examples of the changing or finally the new
concept, while the stored holdout set still consists of examples from the
old concept. This would result in a wrong performance evaluation. To
cope with concept drift, the holdout test set can be used as a queue prior
to the learning algorithm. Equivalent to the FIFO principle, new examples
from the data stream are stored in the holdout test set queue and with every
example coming in, the example stored for the longest time is released. This
example is then transferred to the training algorithm to further improve the
model. This approach has the advantage, that the current performance of
the model can be tested without the influence of early made mistakes. On
the downside, this approach needs additional memory to store the holdout
test set. Depending on the size of the test set and the type of information
stored, this could be too much for devices with strongly limited resources.
Additionally, the repeatedly performed test phases need the time to make
predictions for all examples in the holdout test set. During the development
phase, the data stream can be repeatedly stopped and holdout evaluation
tests can be performed. During the application phase, this approach would
result in example loss as the data stream can not be stopped. More advanced
approaches as cloning the model for the holdout evaluation in the application
phase are imaginable, but under limited resources, these approaches are
highly challenging or impossible.

Realization of evaluation methods As online learning itself is still a
relatively young field of research, the evaluation techniques in this matter

26 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

are not yet well studied. Recent work [14] analyzed several publications
[35, 49, 48, 75, 104, 126, 43, 28] in the field of online learning to get an
impression of the quality of the currently used evaluation techniques. The
main findings are described as follows: Memory limits are not in the focus
of the publications. Mostly no explicit memory limitations are placed on
the algorithms. Consequently, the impact of limited memory on the overall
performance is mostly not well studied. Furthermore, most algorithms are
trained on datasets with less than one million examples. Only some use up to
10 million examples and tens of millions examples are used only rarely. This
is a problematic fact, as online algorithms should be developed to run on an
indefinite amount of examples. Extrapolating the performance from a couple
of examples to an unlimited amount is problematic. This usually gives only
a very limited insight to the useability of the algorithms on unlimited data
streams. Performance measures as time, memory and accuracy can change
significantly and learning curves can still cross after substantial training has
occurred [83]. An exemplary evaluation of this topic can be found in Chapter
5. Most publications use the holdout method as evaluation technique during
the development phase. Calculated performance measures are mostly based
in a single holdout run, making it impossible to quantify the uncertainty of
the results based on, e.g., confidence intervals. Reruns due to the example
ordering are often not performed with the note that the method is not highly
order sensitive and results would not significantly change. Unfortunately,
this is mostly not proved. Exceptions to the above mentioned, are available
throughout the considered publications, where one can find more detailed
analyses.

This overview shows that, in contrast to the evaluation methods in the
batch area, the requirements for a valid evaluation of online algorithms are
not yet realized by the scientists. They are still on the way to find a common
understanding, or a so called gold standard, of the validation process of
online learning algorithms. For Richard Kirkby, to mention an example,
a learning algorithm on data streams is only adequately evaluated, if it is
tested on large streams of hundreds of millions of examples and with explicit
memory restrictions. In his opinion, any less than this would not test the
algorithms in a realistic setting [83].

2.3 Concept Drift

Massive amounts of data can be collected in two ways: Either by fetching
the information at once at one specific time point or by collecting and ac-
cumulating it over time (e.g. datasets achieved from data streams). Each
dataset has its own underlying information dependencies and logic. With
introducing a time dependency in the dataset, evolution of data can appear.
The logic can evolve over time illustrating different challenges from logic

2.3. CONCEPT DRIFT 27

change recognition to logic change handling. If it can be assumed that there
is no logic change over time within the dataset, as e.g. when the dataset is
collected at once, the dataset is called static or stationary, otherwise evolv-
ing. As stated by Gao et al. [57], there are three different possibilities that
the data distribution P (x, y) = P (y|x) ∗P (x) can evolve over time. First of
all, changes in P (x) can occur, also known as virtual concept drift, sampling
shift or distribution / sampling change. Additionally, changes in the condi-
tional probability P (y|x) or in both, P (x) and P (y|x) are possible. Changes
in the conditional probability are also known as concept drift. Depending
on the speed of change, the concept drift can be further divided into gradual
concept drift and abrupt concept drift. Sometimes, the abrupt concept shift
is also called concept shift [14]. Furthermore, concept drift is either local or
global. A local concept drift happens only over a limited set of ranges for a
sub-sample of the measured attributes, while a global concept drift targets
all possible values of all attributes, including the target variable. Evolution
of data is interesting from the following two perspectives:

• Finding and visualizing concept changes in the dataset can give valu-
able insights. Understanding the chances in the data can have finan-
cial as well as knowledge impact. Further analysis or direct counter
measures can be initiated. Several methods can be used to detect
and handle concept change, as e.g., CUSUM (cumulative sum) test
[105, 121], Page-Hinkley test [101], GMA (geometric moving average)
test [114], statistical tests [12, 10], DDM (drift detection method) [48],
EWMA (exponential weighted moving average) [14], velocity density
estimation method [2] and KL-distance [30], to mention just a few
besides many others (e.g. [60, 80]). Detecting concept change is use-
ful in a variety of domains as, e.g., network traffic monitoring [120],
monitoring of gas turbines [11] or cement rotary kilns [89].

• Data evolution has direct impact on learning algorithms. The concept
in the data changes over time and differs from the one the model was
learned on. Although the model generality should slightly compen-
sate the effect, this harms the model quality. The prediction error will
increase and the model should be relearned to adapt to the new con-
cept. One possible approach is to frequently scan the data stream for
a concept change. If detected, a new model can be learned on the new
concept and replace the old one. Two different methods are commonly
used to detect change: Evaluating the performance with a defined set
of performance indicators (e.g. accuracy, recall and precision over
time [85]) or comparing the data distribution over two different time-
windows (e.g. [80]). Instead of relearning the complete model under
concept change detection, more sophisticated, model specific methods
can be used. The detection method can be directly integrated into
the learning algorithm, enabling recalculation of specific parts of the

28 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

Algorithm 1 Winnow(Example e < x1, ..., xn, y >)

1: if
∑n

i=1wixi > ψ then
2: ŷ := 1
3: else
4: ŷ := 0
5: end if
6: if ŷ == y then
7: do nothing
8: else if ŷ == 1 AND y == 0 then
9: Demotion(wi), if xi == 1

10: else if ŷ == 0 AND y == 1 then
11: Promotion(wi), if xi == 1
12: end if

model. This saves time and unnecessary calculations. This method
should be especially preferred under massive data, when fast process-
ing is needed. Exemplary learning algorithms are CVFDT [67] and
FIMT-DD [70].

As this work mainly focuses on stationary data (as data files or data streams),
this is only a coarse overview of concept change. Therefore, not all details
of the above mentioned literature are explained. More detailed information
can be found under the afore mentioned citations.

2.4 WINNOW – An Exemplary Incremental Al-
gorithm

The WINNOW algorithm [90, 91] is a simple and fast incremental learning
algorithm developed by Nick Littlestone, similar to the perceptron algorithm
[115, 116]. In contrast to the perceptron algorithm, a multiplicative scheme
is used with the advantage of performing better with many irrelevant di-
mensions. It is a simple algorithm scaling well to high dimensional data and
consequently, it is an ideal example to illustrate the online learning setting
with an existing incremental learning algorithm.
A pseudocode of the learning algorithm [90] is given in Algorithm 1. Each
example shown to the WINNOW learning algorithm consists of n Boolean-
valued attributes as well as one Boolean-valued target variableX = {0, 1}n+1.
For each attribute xi, where i ∈ {1, ..., n}, the algorithm stores a weight wi
initialized with 1. First of all, the model is tested with the new example e
(lines 1-5). A prediction is made by summing up the multiplications of each
attribute value with the specific stored weight (

∑n
i=1wixi). If this value is

greater than a given threshold ψ (line 1), the prediction ŷ for example e is 1
(line 2), otherwise 0 (line 4). A common value for the threshold is n/2. This

2.4. WINNOW – AN EXEMPLARY INCREMENTAL ALGORITHM 29

prediction can now be compared with the target value y of the example and
the error can be added to the error measure to evaluate the algorithm (not
shown here, but explained in the sections above). Then the algorithm tries
to improve its prediction with the example e by starting the learning task
(line 6-12). Depending on the error of this prediction, the algorithm adjusts
its weights to improve further predictions. If the prediction was correct (line
6), the weights are well adjusted and no changes are needed. When a type
I error occurs (line 8), a demotion step is needed, as the weights have been
too high. Consequently, all weights contributed to the result (weights on
attributes of the example with value 1) are set to 0 in the first version of
Winnow (line 9). On the other hand, too low weights result in type II errors
and need a promotion step (line 10-11). All weights contributing to the
wrong prediction are now multiplied by α. A typical value for α is 2. After
adjusting the weights, the next example is processed by the algorithm. An
improvement of the algorithm [91] changed the demotion step to decrease
the weights by dividing them by α instead of setting them to 0. While this
approach is known as the positive winnow, many modifications are available
as, e.g., the balanced winnow or snow winnow.
This short introduction of a simple incremental algorithm should recall the
following important facts of an incremental online learning algorithm:

• Each example is observed one by one.

• Examples are first used to test and then to train the algorithm. Chang-
ing this order would result in wrong evaluation measures.

• Each incremental algorithm needs to store some statistics over the
past examples as examples cannot be stored. In the winnow algorithm,
these statistics are the weights wi. This is a lightweight statistic. More
complex algorithms have to store more complex statistics.

• A memory limit is needed and available as the maximal memory con-
sumption is the current example, the stored weights and the interme-
diate calculations.

• Time is also a strong limitation and the time consumption, for this
learning algorithm, is the same for each example. Seeing more exam-
ples does not result in longer training times. This behavior is bench-
mark and often not accomplished by the majority of the online algo-
rithms.

30 CHAPTER 2. ONLINE AND INCREMENTAL LEARNING

Chapter 3

Decision Trees

Algorithms for the induction of decision trees are a famous and well de-
veloped family of learning algorithms. One of the main advantages is the
expressiveness of the resulting models. In comparison to other learning al-
gorithms, the output of the model gives the user valid information about the
learned concept. Consequently, the user may gain further insights into her
or his data. In this chapter, the learning task is explained first. Then, the
fundamentals of decision trees are explained. How they are trained, further
improved and adapted to the regression and classification task. Knowing
the basics, an overview of existing regression and classification algorithms
are given for both, the batch and the incremental setting.

3.1 Learning Task

Let a dataset DSet = {e1, . . . , en} or a data stream DStream = {e1, . . . , e∞}
be given. Each example ei is represented as a vector < xi1, . . . , xim, yi >.
The data contains a variable of interest Y and several descriptive variables
Xj . The overall goal in the prediction task is to find the underlying con-
cept to explain the characteristics of the variable of interest Y by the other
variables Xj . Error measures extracted from the learning task can be used
to show how well the underlying concept could be explained through the
learned model. For a regression task, the target variable (variable of inter-
est) Y is a numeric variable and, for that, contains continuous and possibly
unlimited values. A classification task is defined by a categorical target vari-
able Y . An example showing two underlying concepts from simple datasets,
containing only one descriptive and one target variable, can be found in
Figure 3.1 for a regression and a classification task. The examples show the
dependency between the number of people on a party and its attractiveness.
Usually, every party gets more attractive with an increasing number of par-
ticipants. When the party gets too crowded, its attractiveness is decreasing
again. This fact can be observed for a regression and a classification task

31

32 CHAPTER 3. DECISION TREES

Figure 3.1: The dependency between the number of people on a party and
its attractiveness is displayed for a regression (left side) and a classification
task (right side). A party is more attractive with more people participating.
Too many people on the other hand can turn the atmosphere.

in the example. In both tasks, we want to predict the attractiveness of the
party from the number of people participating as the input variable. For
the regression task, we want to predict the percentage of people liking the
party (continuous target variable) and for the classification task if the party
is good or bad (categorical target variable). For both tasks, the specific
model should detect the underlying concept:

• Regression Task: With increasing number of participants, the party
is more liked. The acceptance is linear increasing and the maximal
attractiveness is found with 100 participants. This maximal attrac-
tiveness is maintained until 200 participants. Including more people
results in a linear decrease in the attractiveness.

• Classification Task: With less than 50 participants, a party is con-
sidered as bad. From 50 to 250 participants, it is good, and with more
people it is too crowded and bad again.

3.2 Decision Tree Fundamentals

In the following, the fundamentals of decision trees are shown. First, deci-
sion trees are defined. Then, an overview of the induction process is given
for batch and incremental learners, followed by an explanation of the pre-
diction process. Then, different splitting criteria are shown in detail for the

3.2. DECISION TREE FUNDAMENTALS 33

Figure 3.2: An exemplary decision tree based on the party example. Edges,
containing the decision thresholds, are leaving the internal nodes (round
rectangles) which are displaying the splitting attributes. At the end of each
path, the leaf nodes (angled rectangles) can be found, holding some kind of
prediction instruction.

regression and the classification task. Finally, the principles of pruning and
lookahead are explained.

3.2.1 Definition of Decision Trees

A tree is a directed acyclic graph T that consists of nodes N and edges E =
(ni, nj), were ni, nj ∈ N . A tree is spanned over several levels, beginning
with one node, the so called root node. Nodes are further divided into inner /
internal nodes IN and leaf nodes LN . Including the root node, each internal
node has a splitting decision sd and two or more child nodes, connected by
an edge. The splitting decision is based on an attribute Xj and one or several
thresholds th of the attribute value on which the input space is partitioned.
The specification of the splitting decision can be different, depending on the
type of the chosen attribute. Splitting decisions on categorical attributes
have thresholds consisting of subsets of the categorical values. For numerical
attributes, the thresholds are either specific numerical values or ranges. The
splitting decision can produce trees with internal nodes having more than
two edges. In the most common case, a binary tree with two edges per
internal node is constructed. The last category of leaves, the leaf nodes, have
no child nodes and are the last nodes on the path from the root towards the
last level. They are used for prediction and, consequently, contain a model m
or some other prediction instructions. Depending on the algorithm, internal

34 CHAPTER 3. DECISION TREES

nodes can be deployed with a model or prediction instructions as well.
If the decision tree should be used in the online setting, additional properties
are needed. In this setting, the decision tree is improved and extended over
time with every example arriving. The training data is never available at
once and examples should not be stored or accumulated due to memory
limitations. However, to base the tree improvement decisions, as e.g. the
node splitting decision, on valid information, statistics over the so far seen
examples are stored. These statistics are called split statistics spst in this
work and are stored with each leaf node in the online setting.
An exemplary decision tree is shown in Figure 3.2 and its induction process
is explained in the next section.

3.2.2 Induction of Decision Trees

The main idea behind the decision tree induction process is to divide the
input space into subregions with stable and good predictions. This is per-
formed by a divide-and-conquer approach. Subspaces are chosen and are
further divided to finally get the best division in the perspective of the error
measure of the prediction task. To illustrate this, consider Figure 3.1. For
the regression task, it would be beneficial to split the input space in the
dimension of the number of guests on the party. Dividing this dimension
at 100 and 200 would result in three subspaces. For each subspace a linear
model should result in low error measures as the ideal splits of the input
space have been chosen. A less good choice would be a division in two
subspaces by dividing at, e.g., 150 guests. Linear models in each subspace
would result in higher error measures. Finding the best splitting decision is
part of the splitting and look-ahead strategy and is explained in the next
sections. Depending on the availability of the data and if a batch or an
online approach is needed, the induction process slightly differs.

In the batch setting, all data is available at once and the tree can
be learned on the complete dataset. That means that the given dataset
is divided into subsets of examples for which the lowest error measures are
achieved with adequate models. This is done in an iterative process as shown
in Algorithm 2. This algorithm illustrates a general induction method for
the batch setting. At each iteration, a node n is created and a splitting
criterion is used to find the best splitting decision sd on the available subset
of examples. This is done by taking into account already made splitting
decisions stored in the splitDecisionList, to avoid resplits (line 2). If there
is no beneficial split or all splitting possibilities are already used, splitting is
not possible. Consequently, the splitting decision will be empty (line 3), the
iterative process is stopped, and the current subspace is not further divided.
In that case, node n is considered as a leaf node ln. A model or some
kind of prediction instruction is learned on the dataset D and attached
to ln, which is then returned (lines 4-5). Otherwise, if there is still an

3.2. DECISION TREE FUNDAMENTALS 35

Algorithm 2 BatchInduction(Dataset D, List splitDecisionList, split-
tingCriterion)

1: createNode n
2: splittingDecision sd := splittingCriterion(D, splitDecisionList)
3: if sd == NULL then
4: learn model m or prediction instructions on D
5: return N as a leaf node ln including model ln.m
6: end if
7: addSplitDecisionToNode(n, sd)
8: splitDecisionList := append(splitDecisionList,sd)
9: for each threshold th of sd do

10: Dj := getSubset(D, sd)
11: if Dj == ∅ then
12: learn model m or prediction instructions on D
13: createChildWithPrediction(n,newNode, ln.m)
14: else
15: attachChild(n, BatchInduction(Dj , splitDecisionList, splittingCri-

terion))
16: end if
17: end for
18: return n

improvement possible, the found splitting decision sd is attached to the
node n and added to the splitDecisionList (lines 7-8). The next step is to
further divide the current subset and apply the induction process on the
subsets. Consequently, the dataset D is split into subsets Dj by applying sd
on D (line 10). The number of created subsets depends on the amount of
thresholds th in sd. Please remember, a threshold can be any subset of values
for categorical attributes and any value or value range for a numerical value.
Each split decision can have several thresholds, depending on the algorithm.
Under very special conditions, the application of sd on D can result in an
empty subset Dj . In that case, a leaf node is created and added to n with
prediction instructions formed on the subset D. This can be considered as
the best instructions possible for the subspace (line 12-13). Under normal
conditions, the resulting subset Dj is not empty and can be used to further
extend the decision tree. A child node is added to the node n by recursively
applying the method on the subset Dj .

In the online setting the data is not available at once and consequently,
the decision tree has to be extended and improved over time. In comparison
to the batch approach, there will probably never be a final model to use.
With each example arriving in the online setting, the model will change.
An exemplary induction pseudocode for a decision tree in the online setting
can be found in Algorithm 3. Just as the batch algorithm, a root node is

36 CHAPTER 3. DECISION TREES

Algorithm 3 OnlineInduction(Node n, Example ei < xij , ..., xin, yi >, List
splitDecisionList)

1: if n type of internal node then
2: in := n
3: Node nchild = getLeafNode(in, in.sd, ei)
4: OnlineInduction(nchild, ei)
5: else
6: // n is a leaf node ln
7: ln := n
8: update model ln.m with ei
9: update ln.spst with ei

10: // test for split
11: if split ln preferable using a sd /∈ splitDecisionList then
12: add sd to splitDecisionList
13: in := ln
14: attach sd to in
15: createChildNodes(in, in.sd)
16: end if
17: end if

first created and the algorithm is then called for every example ei arriving
(OnlineInduction(root node, ei)). Beginning with the root node, each node
is tested if it is an internal or a leaf node. If it is still an internal node, the
example is tested on the splitting decision sd located at the internal node, to
find the next child node on its path to the proper leaf node (line 3-4). This
is iteratively done until a leaf node is reached. Having found the end of the
tree path, the example is first used to update the model m or the prediction
instructions in the leaf node (line 8). Additionally, the stored split statistics
spst in this leaf node are enriched with ei (line 9). spst is then used to test if
a tree extension is preferable and which sd, not yet used on the path, should
be chosen (line 11). This sd is then stored in splitDecisionList as a decision
already used on the path (line 12) and ln is split using sd (line 13-15). This
means that ln is transformed to an internal node in having sd as its splitting
decision. Additionally, new child nodes are added to the node. Depending
on the chosen splitting decision the number of children could vary.

Additional steps could be possible for the batch, as well as for the online
induction algorithm. The above shown algorithms are only general descrip-
tions of the process. Depending on the algorithm, extensions as, e.g., models
in the internal nodes or additional statistics could be possible. Furthermore,
pruning approaches could be included to keep the tree small and to increase
its expressiveness. Pruning approaches are explained in detail in Section
3.2.5. To evaluate the performance of the model, error measures can be
calculated on the tree. Different calculation approaches are possible and are

3.2. DECISION TREE FUNDAMENTALS 37

Algorithm 4 Prediction(Node n, Example ei < xij , ..., xin >)

1: if n type of internal node then
2: in := n
3: Node nchild := getLeafNode(in, in.sd, ei)
4: Prediction(nchild, ei)
5: else
6: // n is a leaf node ln
7: ln := n
8: Prediction ŷ := prediction(ln.m, ei)
9: return ŷ

10: end if

extensions to the general induction process. These approaches have been
explained in Section 2.2.
Specific decision tree induction algorithms mostly differ in the following as-
pects [88]:

1. Which type the target variable has (numeric or categorical)

2. Which splitting criterion they use (cf. Section 3.2.4)

3. How the final tree is pruned (cf. Section 3.2.5)

4. Whether they use lookahead strategies to avoid locally optimal trees
(cf. Section 3.2.6)

On top of these aspects, online learning algorithms also have to store split-
ting statistics to be able to perform valid split decisions. These splitting
statistics are also algorithm specific and will be discussed with the afore
mentioned aspects in the following sections.

3.2.3 Prediction with Decision Trees

In the batch setting, the final learned model can be used to perform predic-
tions on examples where the target variable y is missing (unlabeled exam-
ples). In the online setting, there is no final model. The model is constantly
improved with every example arriving. However, it should be possible to
make predictions on arriving examples at any time. Nevertheless, the pro-
cess of the prediction task is the same for a model built in the batch or the
online setting. A general pseudocode describing the process can be found
in Algorithm 4. The example ei, for which a prediction is needed, traverses
the tree from the root node to the leaf (Prediction(root node, ei), lines 1-
4). This is again done by constantly applying the splitting decision of the
internal node on the example to choose the appropriate child node. Finally
arriving at the leaf node, the prediction instructions are used on ei to get a
prediction ŷ, which is returned (lines 7-9).

38 CHAPTER 3. DECISION TREES

An exemplary decision tree based on the party example can be found in
Figure 3.2. Besides the information of how many people are at the party,
the information of the apartment size and the sound volume is considered as
useful to predict the attractiveness of the party. A possible party example
is classified by this tree by starting with the root node, which checks the
apartment size where the party is located at. The root node separates the
input space of all possible parties into parties in apartments less than 50
sqm, between 50 and 100 sqm, and greater than 100 sqm. If the apartment
size of the current party example is less than 50 sqm, the decision tree model
would give a prediction based on the prediction instructions “Prediction 1”.
If it is between 50 and 100 sqm, the example would follow the second edge
to the next internal node. This one would now test how many people are
on the party. Depending on the amount of people at the current party
example, one of the three leaf nodes (Prediction 2, 3, or 4) would be used
to predict the attractiveness. For the last path (larger than 100 sqm), the
sound volume has been considered as useful to make predictions for the
examples. It further separates the input space into two groups, with specific
prediction instructions.

3.2.4 Splitting Criteria

In general, a splitting criterion is a heuristic that chooses a splitting decision
for an inner node of the tree. This splitting decision is chosen in a way
that the prediction tasks in the created subspaces have a lower error. Each
possible split has a score representing its error gain. By ranking them,
the one with the lowest score can be chosen as the final splitting decision.
This section presents some possibilities of splitting criteria. Note that these
criteria do not provide a complete survey of split statistics that are used in
decision tree induction but only give some basic ideas and commonly used
statistics. In the following, splitting criteria for the classification, as well as
for the regression task are shown.

Classification Splitting Criteria

In the following, a couple of splitting criteria for the classification task are
shown. The majority of the approaches try to increase the purity of the
class distribution in the subspaces. An increased class distribution purity
naturally increases the prediction task performance, as the distribution is
biased towards only a few or one class.

Information gain The information gain [107] is based on an idea of Shan-
non who proposed a measure for the information content of messages [122].
Basically, the idea behind the splitting criterion is that an attribute which
leads to the purest separation or classification of the examples is chosen as

3.2. DECISION TREE FUNDAMENTALS 39

splitting attribute. The purest separation is measured with the information
gain. The information gain of an attribute X in a dataset D is given by
Equation 3.1.

IG(X) = I(D)− IX(D) (3.1)

It reflects the difference of the information that is needed to classify an
instance before and after a split with attribute X. I(D) (refer Equation 3.2)
reflects the expected information that is needed to classify an example in
D and is also known as the entropy of D. This is estimated by the class

distribution in D: pi =
|Ci,D|
|D| , where pi is the probability of class Ci (out of

m classes) in dataset D.

I(D) = −
m∑
i=1

pilog2(pi) (3.2)

IX(D) (refer Equation 3.3) represents the amount of information that is still
needed for the classification after the split was made with attribute X. X
contains v values and thus divides the dataset D into v subsets Dj for which
X = xj .

IX(D) =
v∑
j=1

|Dj |
|D|
× I(Dj) (3.3)

For each subset Dj , the entropy is calculated and the weighted sum repre-
sents the entropy of the split. Over all possible splitting attributes Xj in D,
the one with the maximal entropy reduction is finally chosen as the splitting
attribute.

While explained for categorical attributes, this measure can also be
adapted to continuous valued attributes. A drawback of the information
gain is that it prefers attributes with many values. The more individual
values an attribute can take, the higher the information gain can be. As an
example consider a dataset with a unique identifier as class per example. If
this attribute is taken for a split, a perfect classification is achieved and the
information gain is maximized. However, such a model is unsuited for the
application on unknown instances because it is essentially rote learning and
no generalization takes place.

Gain ratio To compensate this shortcoming of the information gain, the
gain ratio was introduced. The basic idea is to normalize the information
gain to get rid of the bias towards multi-valued attributes [110]. The nor-
malization is defined in Equation 3.4

SIX(D) = −
v∑
j=1

|Dj |
|D|
× log2

|Dj |
|D|

(3.4)

40 CHAPTER 3. DECISION TREES

Again, attribute X has v values and Dj is the set of examples where X = xj .
SIX(D) takes into account the subset sizes compared to the whole data set.
Therefore, the goal is not to get the purest separation of the training data
but a good proportion of classification error and data set size. The gain
ratio is then defined as shown in Equation 3.5.

GRX(D) =
IG(X)

SIX(D)
(3.5)

One shortcoming of the gain ratio is that it prefers attributes that lead to
unbalanced splits, i.e. one resulting partition is much larger than the other
one.

Gini gain The Gini index [21] measures the impurity of a dataset D as
shown in Equation 3.6, where m gives the number of classes in the dataset

D and pi =
|Ci,D|
|D| estimates the probability that a tuple belongs to class i.

Gini(D) = 1−
m∑
i=1

p2
i (3.6)

The Gini gain measures the impurity reduction of a split on attribute X
subdividing dataset D in n datasets Di. As shown in Equation 3.7, the
weighted sum of the impurity of each resulting partition Di is calculated
and subtracted from the impurity of the whole dataset to calculate the Gini
gain.

GiniGainX(D) = Gini(D)−
n∑
i=1

|Di|
|D|

Gini(Di) (3.7)

The splitting decision with the highest Gini gain (the highest impurity re-
duction) is finally chosen. The Gini gain can also be applied to continuous
attributes by considering every possible split point that leads to two sub-
sets. Again, the split point with the best Gini gain is chosen. However, also
the Gini gain has its drawbacks. It prefers multivalued attributes and also
attributes that result in equally sized partitions.

C-SEP Fayyad et al. [42] argued that a measure that is based on the im-
purity may not be suitable for classification learning where more than two
classes are present. Thus they proposed a new attribute selection measure.
The basic idea is that small trees should be inferred which cannot be guar-
anteed by impurity measures. This should be achieved by separating classes
as early as possible to keep the final tree small. Therefore, they derive a
family of measures C-SEP (class separating) that should be used instead.
The group of selection measures that are proposed should fulfill the following
constraints concerning the partitions (D1, D2) of a dataset.

3.2. DECISION TREE FUNDAMENTALS 41

1. When the classes in D1 are disjoint with the classes in D2, the measure
is maximal, minimal if the class partition is identical.

2. Instances of the same classes should reside in the same partition.

3. If the class distribution is permuted this results in another measure
value.

4. The measure is differentiable, non negative and symmetric with respect
to the classes.

This should result in a measure that best separates the classes by each split
and moreover, keeps the instances of the same classes together.

An exemplary measure is based on the class vectors v1, v2 of the result-
ing partitions (induced by a variable test r) and their orthogonality and is
therefore called ORT measure

ORT (r, S) = 1− cosθ(v1, v2) (3.8)

where cosθ(v1, v2) is based on the usual definition of angles between two
vectors (their dot product).

MDL principle This measure computes the coding size (number of bits)
for the decision tree encryption and the error description (errors that were
induced by the tree). In the attribute selection process, the attribute result-
ing in the smallest coding size is chosen as the splitting attribute. A split
is omitted if it would increase the coding size and the induction process is
stopped in this leaf node. It is stated that the attribute selection using the
MDL principle has the least bias towards multi-valued attributes [87].

Multivariate splits Another method to select a good splitting decision is
to consider several attributes for a split [102]. That means that not only one
attribute is used in a splitting decision. Several attributes decide together
about the branching of the tree [134]. One possibility for multivariate splits
is to use linear discriminants as a partition function in each internal node.
Therefore, soft entropy can be used to calculate the best parameters for
internal coefficients. Dt-Sepir uses this kind of splitting criterion [76].
Multivariate splits may prevent decision trees from becoming too large and
thus, not understandable. Decision trees are for example hard to read if
continuous attributes are repeatedly tested along one branch of the tree or if
subtrees are copied within the tree. Moreover, multivariate splits can also be
considered as another form of feature construction. For example, the CART
system can use linear combinations of features for splitting. Although the
resulting trees are smaller, they are harder to interpret due to the feature
combination and also take longer to be learned. Thus the user always has
to balance the drawbacks and merits of multivariate splits.

42 CHAPTER 3. DECISION TREES

Regression Splitting Criteria

The main difference in tree learning for the regression task is that the pre-
dicted variable is numeric. Therefore, specific splitting strategies, taking
the numeric variable into account, have to be used. This section gives an
overview of the most famous splitting criteria for the regression task.

Standard Deviation Reduction of the Target Variable This crite-
rion [21] follows the idea of the information gain: an increased purity of
the target variable is wanted. For that, the variance of the target variable
should be maximally reduced by the split. This is done by choosing the
split resulting in the highest standard deviation reduction (SDR) given in
Equation 3.9.

SDR = sd(T)−
∑
i

|Ti|
|T |

sd(Ti) (3.9)

sd(T) =

√√√√ 1

N
(

N∑
i=1

y2
i −

1

N
(

N∑
i=1

yi)2) (3.10)

Here, T is the set of examples reaching this leaf node and T1, ..., Tn are
the sets resulting by the split. An advantage of this approach is its fast
calculation. A disadvantage is that the quality of linear models are quite
independent of the variance of the dataset they are built on [78, 96]. Basing
the splitting decision on the SDR reduction does not necessarily imply an
increased quality of the new linear models or that the best splitting points
are found. Suppose a piecewise linear function a model tree would be able
to fit by finding the correct splitting points separating the pieces. Using the
highest SDR as splitting decision will be fast, but seldom result in finding
the splitting points separating the linear functions. Consequently, the fit of
the linear models in the created subspaces will not be optimal.

Prediction Error Reduction Another approach to choose the best split-
ting point is to directly evaluate the performance of the models in the newly
created leaves after the split and to compare them with the current per-
formance [78]. If an improvement, i.e. a decrease of the combined model
error, is observed, a split should be performed. In comparison to the above
mentioned standard deviation reduction of the target variable, the splitting
decision is here calculated by including the actual reduction of the predic-
tion error. The calculation of the error depends on the actual application
(see Table 2.4 in Section 2.2.1 for possible error estimates) as well as the
error combination approach of the child nodes.
A popular approach is the mean squared error reduction, which is shown in

3.2. DECISION TREE FUNDAMENTALS 43

Equation 3.11.

MSER = MSE(T)−
∑
i

|Ti|
|T |

MSE(Ti) (3.11)

Instead of just focusing on the target variable, the outcome of the prediction
is considered in this measure. The mean squared error (cf. Equation 3.12)
is compared for the examples for and after the split and further weighted by
the example distribution to the subnodes (cf. Equation 3.11).

MSE(T) =
1

|T |

|T |∑
i

(yi − ŷi)2 (3.12)

The splitting decision resulting in the highest error reduction is chosen.
The squared error is also often called the residual sum of squares (RSS).

Residual Distribution Test on Mean and Variance This splitting
criterion [25] is based on the residuals received from applying a linear model,
which is fitted on the examples in the leaf node. Two subsamples of positive
and negative residuals are formed and compared for each regressor. The
subsamples should not be very different if the linear model fits the examples.
Otherwise, a split should be preferable. The difference test is based on the
differences in sample mean and sample variance. For example, with a convex
regression function in the leaf node, a split should be beneficial. This would
be detected by a larger variance in the positive residual group compared to
the negative residual group.
Let Ir be the number of examples with a positive residual (I1) or a negative
residual (I2). Furthermore, let x̄.jr and s2

jr be the mean and the variance of

all examples with residual class r in attribute Xj . s
2
j. is the pooled variance

estimate. The distance of each attribute value from the attribute mean in
class r is defined as dijr = |xijr − x̄.jr|. d̄.jr and v2

jr are the mean and the
variance of the difference values d. Formula 3.13 shows the mean test and
Formula 3.14 the variance test (Levene test) respectively.

MTj =
(x̄.j1 − x̄.j2)

sj.

√
I−1

1 + I−1
2

(3.13)

V Tj =
(d̄.j1 − d̄.j2)

vj.

√
I−1

1 + I−1
2

(3.14)

The variable Xj with the smallest p-value associated with the two statis-
tics (Student‘s t-distribution with (I1 + I2−2) degrees of freedom) is chosen
as the splitting attribute and the splitting value is the average of the two
sample means (x̄.j1, x̄.j2).

44 CHAPTER 3. DECISION TREES

Residual Distribution Test with Pearson Chi-Square Test Two
drawbacks of the residual distribution test on mean and variance is that it
cannot be performed on categorical attributes and pairwise attribute interac-
tions are not considered. Both drawbacks are eliminated with the following
approach [92]:

1. A linear model is fitted on the examples in the leaf node and two
subgroups with positive and negative residuals are formed.

2. Curvature test on each numerical-valued variable: The variable range
is divided in four groups at the sample quartiles (other divisions are
imaginable). A 2 x 4 contingency table is constructed with the residual
groups as rows and the range groups as columns. The entries are the
numbers of occurrences in the example data. The Pearson chi-square
test is performed on the table and the p-value is received.

3. Curvature test on each categorical variable: This time, the contingency
table is formed by using the different categories of the categorical vari-
able as columns. Table columns with a sum of zero are omitted. Then
the Person chi-square test is applied and a p-value is received.

4. Interaction test on each pair of numerical-valued variables: The space
spanned by the two variables is divided into four quadrants by splitting
each variable range into two halves at the sample median. Again, a
2 x 4 contingency is built with the residual groups as rows and each
quadrant as a column. The chi-square test is performed and the p-
value is computed. Zero columns are again omitted.

5. Interaction test on each pair of categorical values: The chi-square test
is based in this setting on the contingency table with columns repre-
senting all attribute category combinations between the two attributes.

6. Interaction test on each pair of categorical and numerical-valued vari-
able: The attribute space of the numerical-valued variable is divided
into two subspaces at the sample median and the categorical variable
in the number of categories. The combination of all subspaces of the
two variables are used again as the columns in the contingency table,
on which the chi-square test is performed and the p-value is calculated.

If the smallest p-value of all tests is from a curvature test, this variable
is finally chosen as the splitting attribute. If it is based on an interaction
test, both variables are potential splitting attributes. If both attributes are
numerical-valued, the attribute resulting in the split with the smallest total
SSE over all models in the subspaces is used. For this evaluation a split at
the sample mean is supposed. If at least one attribute is categorical, the

3.2. DECISION TREE FUNDAMENTALS 45

one with the smaller curvature p-value is chosen as splitting attribute.
Once the splitting attribute is chosen, the splitting value is needed to form
a valid splitting point. The splitting value is either found by choosing the
sample median of the attribute, or by performing a greedy search to find
the value that minimizes the total SSE. Both approaches are possible, while
the greedy approach is much more computationally expensive.

EM Splitting Approach For this splitting criterion [33], the best split
point for the regression task is again found by a transformation in a classi-
fication problem. The EM algorithm is applied to all examples in the leaf
node and two Gaussian clusters are formed. Then each example is labeled
with class 1 or class 2, depending on the assignment probability. The corre-
sponding split point (split attribute and split value) is found by evaluating
each separation with a goodness of split measure used for classification trees.
An exemplary measure is the Gini gain and the splitting decision resulting
in the highest gain is chosen.

3.2.5 Pruning of Decision Trees

Mainly two approaches for pruning exist: pre- and postpruning, which can
also be combined. While prepruning hinders the tree growth in the induction
process, postpruning is applied to the final tree to prune harmful subtrees.
Both approaches are explained in the following. Although pruning improves
the prediction accuracy in many cases it comes along with three drawbacks.
First, most pruning techniques have an impractical time complexity and
second, pruning is usually a greedy strategy and thus cannot guarantee
globally optimal trees. Additionally, some studies show that pruning in
the batch setting only works for data sets with simple concepts. If more
complex concepts have to be induced, it is not necessarily better than the
normal top-down induction approach [39].

Prepruning

Prepruning is applied during the tree induction process and hinders leaf
nodes to be further split if the benefit is not observable. This avoids un-
necessary work in the tree construction phase [20] and is usually done by
testing a stopping criterion based on a significance test. One example is to
compute a statistic indicating if a node will be pruned away in the subse-
quent pruning phase [111]. Expanding this node in the building phase is
thus useless and can be avoided. Another straightforward method is to use
a user-defined threshold like a maximal tree depth or a minimal value for the
splitting criterion (e.g. gain ratio). Finding the proper threshold is a major
challenge in prepruning. In the online setting, the stopping test is further
supported by a statistical test stating if enough examples are included in

46 CHAPTER 3. DECISION TREES

the stopping test for a valid decision.
A drawback of this approach is that it uses only limited information for the
stopping criterion. It is hard to forecast how the subtree will evolve and
if the split would be beneficial if the whole subtree will be created. Thus,
the approach of first creating the whole decision tree and then to prune it
(postpruning) is often preferred over prepruning.

Postpruning

In comparison to prepruning, postpruning is applied to the final decision
tree, which probably over-fits the training data. Subtrees were built too
specific on anomalies of the training set, resulting in a decreased prediction
performance. Consequently, these subtrees, which are not considered as sig-
nificant or reliable, have to be pruned from the tree to keep the performance
as well as the processing speed high. Postpruning can be applied in a top-
down or bottom-up fashion. Top-down pruning starts with the root node
and on the path to the leaf nodes, each subtree is tested for its contribu-
tion to a criterion, which is mostly the prediction accuracy. If the subtree
is considered as harmful for the criterion, it is completely pruned from the
tree although good and contributing subtrees may be included. Bottom-up
pruning, on the other hand, starts at the leaf nodes in the tree and tests level
by level to the root node each subtree, belonging to the current node, for its
contribution to the criterion. Consequently, weak subtrees are pruned right
away and consequent subtree tests on higher levels are already performed on
the improved replacement. Thus, in comparison to the top-down approach,
trees are pruned more specifically, removing only the harmful regions of the
tree. In the following some postpruning approaches are further explained.

• Cost-complexity pruning [21]: From the final decision tree, k − 1
smaller trees are created by repeatedly removing one or more subtrees
with the lowest increase in the apparent error rate per pruned leaf.
From the k trees, the best pruned tree with the lowest generalization
error is then chosen as the final tree. To evaluate the error rate, a
pruning set should be used if the dataset is large enough to be split in
training and pruning examples.

• Reduced error pruning [108] traverses the final tree from the bot-
tom to the root. Each internal node is tested if a replacement (includ-
ing its subtree) with a leaf node does not reduce the trees accuracy. If
so, the subtree is pruned from the tree. This is continued until further
pruning is harmful. Again, a pruning set should be used for accuracy
estimation.

• Minimum error pruning [103] performs a bottom-up traversal of
the decision tree. Each subtree is tested for pruning by using the l-
probability error rate estimation, a correction of the simple probability

3.2. DECISION TREE FUNDAMENTALS 47

estimation using frequencies. Pruning is accepted if the error rate is
not increased.

• Pessimistic pruning [107] avoids the need for a separate pruning set,
as the error estimation is based on the training set. This comes with
the disadvantage of a too optimistic and, therefore, strongly biased
error estimation. To counter the bias, the error estimates are adjusted
by adding a penalty.

• Error-based pruning [110] is an improvement of pessimistic pruning
and uses a far more pessimistic estimate. It is integrated in the C4.5
algorithm. This procedure performs bottom-up traversal and for each
internal node the number of errors in its subleaves are predicted. This
is done by multiplying the number of examples at each leaf with an
upper limit of a probability confidence limit of an error in this leaf
(calculated by using the binomial theorem). Additionally, the number
of errors if the node was a leaf are also calculated. The leaves are
finally pruned if the number of predicted errors after pruning is less
than the sum of predicted errors across the leaves.

• Optimal pruning [16, 6] tries to find the optimal pruning by using
dynamic programming. Algorithms guaranteeing optimality are OPT
and its improvement OPT-2.

• A pruning strategy based on the MDL principle [98] can also be
applied for pruning. Again, this approach calculates the coding size of
the decision tree and its error descriptions. The (pruned) tree having
the optimal MDL is then taken as the final result.

Several studies have been performed to compare the different pruning tech-
niques [108, 99, 41]. Results show that some approaches (e.g. cost-complexity
pruning, reduced error pruning) have a bias towards over-pruning, and oth-
ers (e.g. error-based pruning, pessimistic error pruning and minimum er-
ror pruning) tend to under-pruning. Additionally most studies stated that
there is no single pruning method outperforming all others under all cir-
cumstances. Another study [98] concluded that pruning based on the MDL
principle seems to outperform other pruning strategies, as it comes to more
accurate results and smaller trees.
In the online setting, over-fitting correction is only one application field of
pruning. Another one is the correction of wrong splitting decisions, which
were made based on insufficient data at the time of the split. As data is
constantly arriving, splits could be made too early, whereas later decisions
would have led to another split decision. Another application for postprun-
ing in the online setting is the tree correction due to detected concept drift
[70]. As mentioned in Section 2.3, concept drift outdates specific parts of
the decision tree, leading to a decrease prediction performance. Pruning can

48 CHAPTER 3. DECISION TREES

remove or replace these parts of the decision tree. While the aforementioned
postpruning methods are developed for the batch setting, their application
to the online setting is possible as well, but has to be done with caution.
Postpruning is normally done after the decision tree has been learned on
the complete training set. In the online setting, the training set could be
infinite. Consequently, there will be no final tree to prune. Tree pruning in
this setting has to be done periodically. After a specific number of examples
or after a special event (e.g. detected concept drift), the tree could be tested
for pruning. This could be, e.g., after each example has traversed the tree
[106]. Testing after each example is very time consuming and can result in
decision tree algorithms improper for fast data stream learning (see Chapter
5). Decreasing the testing frequency seems appropriate, but raises the risk
of delayed splitting error corrections.

3.2.6 The Lookahead Strategy

One problem in decision tree induction is the greedy nature of the algo-
rithms. Split decisions are usually based on the current structure of the tree
and can result in locally optimal trees. One step towards globally optimal
trees is to use lookahead strategies. There, splits are not only based on the
current tree but also on forecasts reflecting the splitting outcome of each
possible split decision. Forecasts can be approximations of the outcome of
the split or exact tests of the outcomes (e.g., the expected quality of the
models after the split). The first approach is called approximate lookahead
and the last precise lookahead in this work. Let us reuse the regression task
from the party example (see Figure 3.1). An optimal algorithm to predict
the amount of people liking the party would be to use a model tree. This
tree could use a linear regression model in each leaf. To optimally match the
concept, splits are needed at 100 and 200 party guests. Now let us suppose
we have an approximate lookahead approach in the splitting decision, e.g.
the variance reduction of the target variable. And let us further suppose
it would result in a split at 50 or 250 guests. Consequently, a suboptimal
split is chosen. By using a precise lookahead, e.g. by applying linear re-
gression models in the next level introduced by the split, the correct split
points at 100 and 200 guests would be found. While resulting in good split-
ting decisions, precise lookahead is expensive in the perspective of memory
consumption and update time. Both can raise problems in the online set-
ting. Approximate lookaheads are fast, needing less memory, but resulting
in suboptimal splitting decisions.
The party example is an easy regression task example. The correct split
points can be found by making a forecast over the next split level. Real
world problems are mostly very complex and lookaheads over several split-
ting levels could be useful. The more forecast levels are considered, the
closer the algorithm is to an exhaustive search. Optimally, the level is cho-

3.3. DECISION TREE ALGORITHMS 49

sen depending on the resources available. Consider the case when decision
trees are used in a streaming setting: depending on the frequency of arriv-
ing examples, the learner has more or less time to find an optimal splitting
decision. If more time is available, the lookahead can be expanded over
more levels and if time is limited, less levels are used for the lookahead.
Consequently, the best splitting decision can be found using the currently
available resources [40]. However, no agreement on the usefulness of looka-
heads over several levels can be found. Some surveys claim an improvement,
while others state that this method may even be harmful.

3.3 Decision Tree Algorithms

One of the first publications on decision trees was E. B. Hunt’s work on
concept learning systems [68] in 1966. It served as a basis for some of the
more complex algorithms as, e.g., the ID3 algorithm [107] developed by
Quinlan et al. in 1986, or its famous successor C4.5 [110]. Around the
same time, in 1984, L. Breiman et al. independently published the book
Classification and Regression Trees (CART). It described the generation of
binary decision trees for the classification as well as for the regression task.
The next step in the evolution of decision trees was to not only perform
predictions in the tree leaves based on single values (e.g., the mean value of
the target value), but on more or less complex prediction algorithms. This
subgroup of decision trees is called model trees [96].
This section introduces the most well known decision tree algorithms. In
the following, they are presented by their field of application: Decision trees
learned to predict a numeric variable are explained in the regression task
sections and algorithms to predict a categorical target variable are shown
in the classification task sections. Furthermore, the algorithms are divided
into batch and incremental learners.

3.3.1 Classification Trees

Batch Algorithms

Batch classification tree algorithms can be divided based on their mechanism
in three different groups (based on Suknovic et al. [127]):

• C4.5-like

• Fact-like

• Others

All C4.5 like algorithms follow the basics steps of decision tree induction
that are explained in Section 3.2.2:

50 CHAPTER 3. DECISION TREES

1. Generate split candidates of dataset D.

2. Evaluate splits with a specific measure to identify the best splitting
decision dividing D into subsets D1, ..., Dn.

3. repeat steps 1. and 2. recursively until a stopping criterion is reached
(e.g, maximal tree depth or purity).

Famous algorithms in this algorithm group are, e.g., ID3 [107], C4.5 [110]
and CHAID [79]. ID3 (Dichotomiser) uses the information gain criterion
(cf. Section 3.2.4) to choose the best splitting decision. It deals with noisy
and incomplete data and is consequently a robust algorithm. The first ver-
sion of the algorithm works only on nominal attributes. Many extensions
are know as, e.g., ID3-IV, GID3 and GID3*. A very interesting variant is
LSID3 [40]. This type of anytime decision tree uses an advanced lookahead
strategy to decide for the next split. Depending on the resources available,
the lookahead may span over different depths of the tree. The more time is
available, the more can be used in the lookahead phase.
C4.5 [110] is a successor of ID3 and is currently considered as state of the
art. There is also a commercial version (C5.0) available, which implements
some quality improvements over the freely available version. Additionally,
it is much faster and produces smaller trees of equal quality compared to
C4.5. C4.5 can now also deal with numeric attributes and still handles miss-
ing and noisy data. It uses the gain ratio as splitting criterion and applies
pessimistic pruning (cf. Section 3.2.5). An often used implementation of
the C4.5 algorithm is called J48 and can be found in the Weka software.
CHAID [79] is another C4.5-like algorithm. It uses numeric or nominal vari-
ables as input, but in the case of a numeric split it tries to find splits having
approximately the same amount of variables in each group. Missing data
is handled as a separate value and significant splits are based on chi-square
tests.

Fact-like induction algorithms also apply a divide and conquer manner
for the decision tree learning. However, they work not exactly in the same
way as C4.5-like approaches. The following list briefly gives the main induc-
tion steps:

1. To find the best splitting attribute Xj all remaining attributes are
evaluated regarding the target variable y. A new node in the tree is
formed with this attribute.

2. Then, the branches of the tree are created by identifying the most
appropriate split boundaries of Xj .

3. Like C4.5-like algorithms the two steps are repeated until a stopping
criterion is reached.

3.3. DECISION TREE ALGORITHMS 51

Exemplary algorithms in this group are FACT [94], QUEST [93] and CRUISE
[81].
The basic idea of FACT [94] is to combine the potential of CART with the
power of linear discriminant analysis, i.e. an algorithm that uses the speed of
the linear calculations and outputs an interpretable tree. Therefore, FACT
does not combine splitting variable selection and splitting value selection,
but treats these steps individually. While the F-statistic is used to find the
splitting attribute, the splitting value is found in a next step by applying
a linear discriminant analysis. FACT is also able to induce linear combi-
nation splits. Therefore it actually applies a recursive linear discriminant
analysis on all the variables. It also uses a specific stopping criterion, i.e. a
set of rules, instead of learning the complete tree and then to prune it. The
stopping criterion applies if the error does not decrease anymore or if the
number of examples in a leaf is too small.
QUEST [93] is similar to FACT, but tries to get rid of the variable selection
bias towards nominal attributes. It also applies univariate splits as well as
linear combination splits. The best splitting attribute is found by applying
a statistical test (ANOVA F-test, Levene’s test or Pearson’s chi-square) de-
pending on the attribute type. Additionally, Quadratic Discriminant Analy-
sis (QDA) is used to identify the best splitting value for numeric attributes.
It manages to overcome the variable selection bias problem of FACT and
results in binary splits only. Moreover, it may apply pruning or a direct
stopping criterion.
CRUISE [81] also tries to reduce the variable selection bias and furthermore
tries to create trees which are better to understand. To minimize the selec-
tion bias it again applies statistical measures to identify the most significant
variable and moreover, handles different numbers of missing values by a
bootstrap bias correction. Multiway splits are created by univariate splits
as well as linear combination split. This results in very compact trees that
may be much easier to interpret than binary trees and are learned faster. As
a specialty, it furthermore incorporates local interactions of variables, which
also has an effect on the tree depth. It was shown on an extensive study
that the quality of the resulting trees is comparable to other classification
tree methods, but that Cruise is significantly faster. This was also true in
the presence of missing data.

Other algorithms worth mentioning are O-Btree [42] and Public [112].
O-Btree uses the C-SEP attribute selection measure (cf. Section 3.2.4). It
induces a strictly binary tree (B-Tree) using the ORT distance measure.
On synthetic data sets it succeeds in finding the optimal tree producing no
errors and moreover, finds minimal trees on real world data sets producing
the least errors.
PUBLIC is a classification tree induction method that uses the MDL prin-
ciple for the growing of the tree and the pruning. More specifically it uses
prepruning. A binary tree is created, where each node contains a sorted list

52 CHAPTER 3. DECISION TREES

for each attribute and a class histogram. The splitting criterion is based on
the class distribution of the resulting partitions (S1, S2) and measured by
the Entropy (cf. Section 3.2.4). Discrete and continuous variables can be
used for this induction method.

Recently, a framework that allows to combine specific parts of all al-
gorithms was presented [127]. This also allows creating completely new
induction methods, that may outperform former ones under specific condi-
tions.

Incremental Algorithms

Incremental algorithms emerged when datasets became too large to be stored
in main memory. Consequently, the usually used batch algorithms were not
able to process the whole dataset anymore [29]. The first field of active
research in the area of incremental tree induction was the induction process
of incremental classification trees. First approaches are based on the idea to
only update the existing classification tree with the newly available data, in-
stead of a resource consuming recalculation. Examples of this approach are
the incremental versions of the ID3 algorithm. There are several algorithms
resulting from a continuous improvement process: ID3’ [119], ID4 [119], ID5
[131], ID5R [132], and ITI [133]. Each approach learns an initial tree, which
can be updated with new examples, instead of recalculating the whole tree.
With every new arriving example, the whole tree is tested if its structure
is still valid for the new data basis, i.e. all examples seen so far. This is
done by testing the tree top-down if each splitting decision is still the best
choice. A restructuring process starts, if another splitting decision would be
chosen on the new data basis. Depending on the algorithm, this restructur-
ing ranges from subtree deletions, complete subtree recalculations or more
advanced restructurings. To make the restructuring process possible, most
of the algorithms have to store all so far seen examples. Consequently, this
kind of algorithms is resource consuming and less intended to be applied to
data streams or any application field where fast adaptation is needed.
Another algorithm family, especially useful on data streams, are the Ho-
effding trees [35]. These algorithms are the most successful incremental de-
cision tree algorithms and famous representatives are VFDT [35], CVFDT
[67], VFDTc [47], and iOVFDT [143]. In comparison to the aforementioned
algorithms, they use a statistical measure to find a valid splitting decision
calculated on only a fraction of the available data. To decide how many ex-
amples are needed to make this splitting decision valid, the Hoeffding bound
is used [66]. Consider a random variable r with range R (e.g. a range of
1 for a probability) and n observations rn. The computed mean over these
observation is r̄. The Hoeffding bound now states that with probability 1- δ
the true mean r̄true for the variable r is at least r̄ − ε, where r̄ = 1

n

∑n
i=1 ri

3.3. DECISION TREE ALGORITHMS 53

and ε is the value of the Hoeffding bound:

ε =

√
R2ln(1/δ)

2n
(3.15)

The splitting decision is still based on a splitting criterion C() (e.g. informa-
tion gain or Gini gain). Let SD1 be the splitting decision with the highest
splitting criterion C̄(SD1) after seeing n examples. SD2 is the splitting deci-
sion with the second highest splitting criterion. The Hoeffding bound is now
used to judge if it is valid to choose SD1 as the best splitting decision, i.e.
SD1 is the best choice after seeing n examples and will still be the best choice
after seeing an infinite number of examples. ∆C̄ = C̄(SD1)−C̄(SD2) ≥ 0 is
the difference between the splitting criterion of the current best and second-
best choice. The Hoeffding bound now guarantees for a desired δ, that SD1

is the correct choice with a probability of 1 − δ if ∆C̄ > ε. The incorpo-
ration of Hoeffding bounds guarantees an upper error bound compared to
the result of a conventional batch learner. That means that the results of
the Hoeffding tree and a conventional (batch) learner are asymptotically the
same. An advantage of the Hoeffding bound is that it is independent from
the probability distribution generating the observations. A disadvantage is
that it is more conservative than distribution dependent bounds and con-
sequently, needs more examples to reach the same δ and ε. Recent work
suggests that the usage of the Hoeffding bound may not be appropriate in
every case, but rather McDiarmid’s bound [117].
The VFDT (Very Fast Decision Tree learner) algorithm is a well-known
implementation of a Hoeffding tree. It was further improved in speed and
received an advanced memory management system. Speed was mainly in-
creased by not testing the leaf node after each example for a split, but only
after Nmin examples. Furthermore, the tie-breaking rule is introduced. Two
equally good split points in a Hoeffding bound need too many examples and
time to decide for a splitting decision (if there will ever be a decision). The
tie is solved and the current best splitting decision is chosen if ∆C̄ < ε < τ ,
where τ is a user defined threshold. VFDT stores no examples. To perform
the splits, only abstract statistics are stored and consequently, VFDT is very
memory efficient. Nevertheless, if a memory limit was introduced and when
it is reached by the model, VFDT deactivates the least promising leaves to
give the promising leaves a little more time to develop. Additionally, poor
attributes can be dropped from the splitting decision if their splitting crite-
rion difference to the current best splitting decision is greater than ε. This
also frees additional memory. For splitting decisions, the information gain
or Gini gain can be chosen. The prediction is performed by choosing the
dominant class in the leaf.
VFDT cannot handle concept drift. Consequently, it has been extended to
CVFDT and VFDTc, which can detect concept drift and replace subtrees
with newly, on the new concept learned, subtrees. A very recent extension

54 CHAPTER 3. DECISION TREES

of VFDT is ioVFDT (Incrementally Optimized Very Fast Decision Trees)
[144]. Its main improvements consider its application on high-speed data
streams, an automatic identification of the parameters for the growth of
the tree and the creation of balanced models concerning accuracy, tree size
and induction time. All these requirements are formulated and solved as
an optimization problem. In the leaves, a weighted Naive Bayes approach
is installed to return a prediction value. The resulting new type of nodes
is called functional tree leaf. In a bunch of experiments ioVFDT nearly
reaches the accuracy of C4.5 and also results in smaller models with even
higher accuracy compared to other algorithms [143]. This algorithm is also
available in the MOA framework.

3.3.2 Regression Trees

Decision trees for the regression task are a relatively young field of research.
The prediction of a continuous variable was in focus after developing algo-
rithms for the classification task, which seems to be easier. Consequently,
the classification task is more developed than the regression task. Neverthe-
less, also in this field of research, a large number of algorithms are available.
Main research was done in the lookahead procedure to optimize the inter-
action of the splitting method and the prediction method. This is shown in
the following by first explaining the most important batch algorithms. Af-
ter that, an overview of the incremental regression tree algorithms is given.
Due to the fact that only the regression task and especially the incremental
algorithms are in focus of the next chapters, a more detailed overview is
given for these algorithms.

Batch Algorithms

Due to the huge amount of available batch regression trees, only the most
important ones are presented in the following. These algorithms are often
used as baseline algorithms for improvements and incremental adaptations,
which will be shown in the incremental algorithm section.

CART Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles
J. Stone published in 1984 the book Classification and Regression Trees
(CART [21]). It describes the induction of binary decision trees. Classifi-
cation, as well as regression trees. The decision tree community is strongly
influenced by this work and many regression tree algorithms are based on
the ideas mentioned in the work. Due to the fact that Breiman showed
a common induction process for a classification tree and a regression tree,
the splitting criterion focuses on the same goal: the reduction of impurity.
While the Gini gain is used for the classification tree, the standard devia-
tion reduction of the target variable was used for the regression tree. The

3.3. DECISION TREE ALGORITHMS 55

splitting decision showing the highest standard deviation reduction is used.
Instead of a model, a constant value, the mean of the target value of all
examples in the node, is fitted in each leaf node and used for prediction. To
achieve better results, CART uses the cost complexity pruning approach.

M5 and M5’ The M5 algorithm was developed 1992 by Quinlan [109]. It
was one of the first algorithms creating a model tree to solve the regression
task with piecewise linear functions. So far, regression trees performed the
prediction in each leaf node by returning the mean value of the target vari-
able (e.g. CART). Model trees create more compact and consequently, more
readable trees. M5 creates and improves the tree by using the standard de-
viation reduction (SDR, cf. Section 3.2.4) splitting criterion. The induction
process is stopped, if the variance of the target variable is already small or
too few examples are available in this leaf node for further splitting. Last, a
bottom-up pruning is performed by comparing the estimated error of each
internal node’s model with the errors of the models in its subtree. If the
error of the internal node’s model is lower, the subtree is pruned from the
tree. For the prediction task, multivariate linear models are learned in each
node (internal nodes and leaf nodes). Instead of using all attributes of the
dataset in the regression task, only a selection of attributes is considered as
useful. These attributes are the ones included in splitting decisions or in
models below this node (in its subtree). Additionally, the models are fur-
ther simplified by removing attributes having such a small effect, that they
are increasing the estimated error. To improve the prediction accuracy, an
approach called smoothing is applied. After traversing the tree, the model
in the leaf node is used to give a prediction for the examples. The predicted
value at the leaf node is then further adjusted by the predictions of the in-
ternal node models on the path to the root node on the same example.
The M5’ algorithm was developed 1997 by Wang and Witten [140]. Cor-
responding to the authors, it is a “rational reconstruction”of M5. Conse-
quently, the base algorithm is identical to M5 and some recommendations for
unclear steps in M5 are made. For example, it is proposed that attributes,
that were removed from the model due to their effect on increasing the es-
timated error, should still be included in higher level models. Additionally,
minor changes are made to further improve the algorithm: Two methods
from the CART system have been adopted to handle enumerated variables
and missing values.
As a drawback of M5 and M5’, one can discuss that the lookahead strategy
of the splitting decision is not coordinated with the prediction approach in
the leaves. While using multivariate linear models for prediction, the split-
ting decision is only based on the standard deviation reduction of the target
variable and consequently, is only an approximate lookahead approach.

56 CHAPTER 3. DECISION TREES

HTL Decision trees are very user friendly, as they can be well interpreted
and information can be extracted from their structure. Nevertheless, using
the same model creation process in each subspace could be a limitation to
the prediction accuracy. A higher accuracy could be reached by using the
best fitting approach in each subspace. That is the basic idea behind the
hybrid system HTL [129]. HTL builds a binary model tree with the best
fitting model type in each subspace (leaf node). These model types are from
a collection of available models as, e.g., linear or kernel based functions.
The tree induction process follows the MSE reduction principle (see Section
3.2.4). But instead of using the actual model predictions ŷ, the average of the
target variable (ȳ) is used as prediction in the MSE calculation. Categorical
as well as numerical attributes are included in the induction process. Tree
growth is stopped if either there are not enough examples in the leaf or if the
statistic Coefficient of Variation of the target variable y is below a specific
threshold. Pruning is done by using a pessimistic heuristic estimation of the
true node error on the training set. Subtrees showing no error reduction are
removed. In the leaves, HTL is now able to fit several alternative regression
models to improve the prediction accuracy. While the accuracy is raised
in this approach by using the optimal model in the subspace, the splitting
decision is still not based on the actual model accuracy and, again, only an
approximate lookahead approach is used.

TREED REGRESSION Another early model tree induction algorithm
is TREED REGRESSION [5]. There, a binary decision tree is induced
holding simple linear regression models in the leaves. The focus of this
approach lies in the splitting decision: In order to decide for a splitting
decision, simple linear regressions are calculated for each subspace. Each
independent attribute is used as the regressor in the model and the best
linear model is determined for each subspace independently. The splitting
decision with the best model performances is used as the final splitting
decision and the, already learned, models are used in the leaf nodes. To
find the best splitting decision, many models have to be fit, which leads to
a performance loss.

RETIS RETIS [78] is another model tree induction algorithm with mul-
tivariate linear regression models in the leaf nodes. In comparison to the
afore mentioned algorithms, RETIS bases its split decisions on the actual
error reduction, induced by linear models created by the split. To make
this happen, two models (for a binary split) have to be calculated for each
possible splitting decision and for each leaf node. The MSE reduction is
calculated on the actual predictions of the models and the splitting decision
resulting in the maximal MSE reduction is finally chosen. By using this
kind of precise lookahead, high resources concerning memory and calcula-

3.3. DECISION TREE ALGORITHMS 57

tion time are needed. This is the main point of criticism of this approach.
The system hardly scales up to large datasets, especially in the presence
of many continuous variables. Consequently, efficient methods were created
to build decision trees similar to the ones created by RETIS without the
computational drawbacks [130, 137]. To keep the tree small, reduced error
pruning is used.

MAUVE Due to performance issues, approximate lookaheads as, e.g., the
variance reduction of the target variable, are preferred over a precise looka-
head as used by RETIS. Although choosing an approximate lookahead may
not have huge impact on the prediction accuracy, the tree structure will be
misleading and huge decision trees will be created. From this point of view,
the MAUVE (M5’ Adapted to use Uni-VariatE regression [135]) algorithm
has been developed, which uses a little more complex approximate looka-
head. It is approximately as efficient as the variance based approach and
results in more explainable and compact trees. MAUVE is based on the M5’
approach with changes in the applied splitting heuristic, the stopping crite-
rion and the pruning approach. For each numeric attribute and each possible
splitting decision for this attribute, a simple linear regression to the target
variable is calculated for each resulting subspace. In contrast to TREED
REGRESSION, only the splitting variable is used as regressor in the simple
regression. The split showing the highest standard deviation reduction of
the residuals is then chosen as the best splitting decision. For categorical
variables, the split decision follows the suggestions of M5’. Although simple
linear regressions are used to identify the splitting decisions, multiple linear
regressions are used in the leaf nodes for predictions. In contrast to RETIS,
not all variables are included as regressors. As all splitting variables on the
path to the leaf show a linear correlation to the target attribute, they are
included in the model. A variable selection process further evaluates the
remaining attributes whether to include them in the model of the leaf. If
there are not enough examples in a leaf, i.e. at least two times the number
of attributes, the node is prevented from splitting. A subtree is pruned away
if its error is larger than the error of a model in its root node. Experiments
showed that MAUVE comes to better (smaller but equally accurate) models
compared to M5’, RETIS or TREED REGRESSION.

SUPPORT The afore mentioned algorithms base their split decisions ei-
ther on variance reduction or on forecasts to see how the regression models
may perform in the subspaces. Another group of algorithms also uses multi-
ple linear regression models for predictions in their leaves, but their splitting
decision is based on a classification setting. One of these algorithms is SUP-
PORT (Smoothed and Unsmoothed Piecewise-Polynomial Regression Trees
[25]), a nonparametric algorithm for binary model tree induction. The used

58 CHAPTER 3. DECISION TREES

splitting criterion is the residual distribution test on mean and variance (cf.
Section 3.2.4), which evaluates the distribution of the positive and negative
residuals of the fitted model in the leaf node. Categorical attributes can-
not be taken into account. For prediction, the algorithm uses polynomial
functions as models in the leaves. If a smoothed prediction is wanted, these
polynomial models are combined in a weighted average approach. SUP-
PORT uses a prepruning approach during tree induction: a cross-validation
multi-step lookahead strategy to accurately stop the tree growth.

GUIDE The GUIDE algorithm (Generalized, Unbiased Interaction, De-
tection and Estimation [92]) was designed to reduce the variable selection
bias present in many algorithms, as e.g., in the CART algorithm. To accel-
erate the splitting decision, GUIDE also transforms the problem in a classi-
fication setting. In contrast to SUPPORT, it uses the residual distribution
test with the Pearson chi-square test (cf. Section 3.2.4) to be able to include
categorical attributes in the splitting decision and to consider pairwise at-
tribute interactions. Furthermore, the selection bias is strongly reduced by a
bootstrap approach. The user can choose one of three roles for each ordered
predictor variable: split selection only, regression modeling only, or both.
This choice has further impact on the splitting decision, the tree structure
and the tree performance. Pruning is done by a cost-complexity pruning ap-
proach using an independent test set or, in its absence, by cross-validation.
In more detail, first the complete tree is induced and then pruned back un-
til only the root node is left. This leads to a sequence of nested trees for
which the prediction mean squared error (PMSE) is calculated by a cross-
validation. The tree with the smallest PMSE is finally chosen. Multiple
linear regression models are used in the leaves for prediction.

SECRET One of the main challenges of batch algorithms is to handle
large datasets. SECRET (Scalable EM and Classification based Regression
Trees [33]) is a model tree which is accurate and truly scalable for large
datasets. As GUIDE and SUPPORT, it transforms the splitting task into
a classification problem to boost the induction process. The best splitting
decision is found by applying the EM splitting approach (cf. Section 3.2.4).
The calculation is further boosted by using scalable versions of the EM algo-
rithm for Gaussian mixtures [19] and tree construction [58]. Predictions are
achieved by least square linear regression in the leaves. A pruning approach
is not explicitly mentioned by the authors. Evaluations showed comparable
results to other regression tree algorithms (e.g. GUIDE), but less computa-
tion time for large datasets.

3.3. DECISION TREE ALGORITHMS 59

Incremental Algorithms

The domain of incremental regression tree algorithms is, in comparison to
the classification tree domain, an almost neglected field of research. Only a
small number of algorithms has been developed so far. Nevertheless, due to
the new era of Big Data, this group of algorithms gains importance. All of
the existing algorithms are more or less based on a batch algorithm shown
in the section afore. Adaptions were made to adjust the algorithms to the
new needs in online learning.

IMTI-RD IMTI-RD is an incremental adaptation of RETIS. The prop-
erties of RETIS described in Section 3.3.2 hold unless corrected in the fol-
lowing. Each split candidate is evaluated by the actual error reduction
performed by this split, and the one with the highest reduction is chosen.
To do so, spst holds a linear model mikL for the left subspace created by
the split on attribute i with value k, and mikR for the right subspace model.
Model m as well as all submodels mikL and mikR are updated with each
example arriving in this leaf and the residual sum of squares error (RSS)
is accumulated. As storing these submodels for all values of an attribute
is memory and time consuming, only κ potential splits are stored for each
attribute. An adapted Chow test is used to find the best possible split. This
statistic is distributed according to Fisher‘s F distribution and the candidate
split with the smallest p-value smaller than αsplit is chosen. Wrong splitting
decisions can be corrected after each example by checking each node on the
path from the root to the leaf for pruning. In each node, the RSS made by
m is compared to the RSS made in all leaves of the nodes’ subtree. The
used test statistic is again F distributed, and the entire subtree is pruned
when the calculated p-value is less than αprune.

IMTI-RA IMTI-RA is the incremental extension of SUPPORT (cf. Sec-
tion 3.3.2), and consequently, the splitting decision is based on the distribu-
tion difference of the regressor values from the two sub-samples associated
with the positive and negative residuals. If the approximated function is al-
most linear in this node, the positive and negative residuals are distributed
evenly. This is tested by two statistics evaluating the differences in mean and
variance for each regressor. Both statistics are assumed to be distributed ac-
cording to Student‘s t distribution. If the null hypothesis (function is linear)
can be rejected with a confidence of 1−αsplit, the leaf node is split. Conse-
quently, the split statistic spst has to store the mean and variance values for
the positive and negative residual groups for each attribute. Additionally,
IMTI-RA uses a pruning method to correct erroneous splits. With each ex-
ample, each node on the path from the root to the leaf is checked if the null
hypothesis used for splitting cannot be rejected anymore with confidence
1− αprune. If so, the node with its subtree is pruned from the tree.

60 CHAPTER 3. DECISION TREES

FIMT Another adaptation of a batch algorithm to the online setting is
FIMT (Fast and Incremental Model Tree) [69]. It is based on the principle
of the M5 algorithm and inspired by the VFDT algorithm. It was imple-
mented in the VFML library of Domingos and consequently many features
of the VFDT algorithm were adopted (e.g., statistical bound, tie breaking,
periodical split test, memory management). It is an efficient and fast al-
gorithm which needs no example storing. Each arriving example is stored
only once and then discarded. Memory is only occupied by the splitting
statistics spst and the models. The splitting decision of FIMT is identical
to the one of the M5 algorithm: the maximal standard deviation reduction
(SDR) of the target variable through the possible split (cf. Section 3.2.4).
As the training examples are not available at once in the online setting and
no examples themselves are stored, spst has to save the necessary informa-
tion to enable the SDR calculation. This is done by storing in the splitting
statistic spst for each leaf node an extended binary search tree (E-BST) for
every numerical attribute. Each value of the numerical attribute is a node
in the binary tree. Additionally, six properties are attached to each node
which can be easily incrementally updated. These values are needed to ef-
ficiently calculate the SDR for each value of each attribute (each possible
split point). The values are the number of examples seen (N), the sum of
their target values (

∑
y), as well as the sum of their squared target values

(
∑
y2) for all examples where the value of the corresponding attribute is

equal or smaller than this node’s value and again for all examples greater
than this node’s value. When the leaf is tested for splitting, the attribute
value combination with the highest SDR is retrieved. It is necessary to base
the splitting decision on a sufficient amount of examples, which is especially
important in the incremental setting, where memory consumption should be
as low as possible and where the necessary examples are only accumulated
over time. To find this valid amount of examples, the FIMT algorithms fol-
lows the idea of the VFDT approach and uses a statistical bound. Instead of
the Hoeffding bound, which is only useful for the classification task, FIMT
uses the Chernoff bound. It is independent of the distribution and gives a
relative or absolute approximation of the deviation of a variable X from its
expectation µ. It states that the true mean of a random variable X is at
least µ̄− ε with probability 1− δ, where

ε =

√
3µ̄

n
ln(

2

δ
) (3.16)

and n is the number of examples seen so far. In the setting of FIMT,
the Chernoff bound states if enough examples have been seen to guaran-
tee with a probability of 1 − δ that the splitting decision (SD1) with the
highest SDR is significantly better than the one (SD2) with the second
highest SDR. Consequently, the variable X, which is evaluated by the Cher-
noff bound, is the difference between the highest and second-highest SDR

3.3. DECISION TREE ALGORITHMS 61

(∆SDR = SDR(SD1) − SDR(SD2)). It follows that if ∆SDR > ε, SD1

is with probability 1− δ the correct choice. The observed difference is used
as the expected average µ̄ in Formula 3.16, as it can be seen as an average
over the examples. In the case of very similar values for the best and second
best SDR, the Chernoff bound will need too many examples for a decision
with high confidence. Ties are broken by the parameter τ , which represents
the level of error to be accepted. The current best splitting decision SD1 is
chosen. To further improve the processing speed, each leaf is only tested for
splitting every Nmin examples arriving in this leaf. This is done at the cost
of possibly delayed splits. FIMT has no pruning, so that no wrong decisions
are corrected and the tree constantly increases in size with every example.
Nevertheless, a memory limit parameter can be used to restrict and finally
stop tree growth. This approach is implemented in the VFML library and
deactivates the least promising leaf nodes under memory shortage. Reacti-
vation is still possible if the memory resources increase again. The models
in the leaves are perceptrons with the learning rate η. Concept drift is not
detected by FIMT and consequently this algorithm shows its strengths on
stationary data distributions.

FIRT FIRT (Fast and Incremental Regression Tree) [69] is nearly identical
to the FIMT algorithm. The only difference lies in the used models. FIRT
uses the mean target value of all examples in the leaf node as prediction.
Consequently, FIRT can be considered as the online version of CART.

FIRT-DD FIRT-DD (Fast and Incremental Regression Tree with Drift
Detection) [72] is an advanced version of the FIRT algorithm, which can
adjust to concept drift in the data. To do so, each node of the tree holds a
change detection unit. If a change is detected, it is assumed that a concept
drift happened in the subspace the node belongs to. By that, local concept
drift can be detected, and only this region of the tree can be adjusted without
recalculating the whole tree. Local concept drifts can even be detected in
parallel. The nearer the concept drift is detected to the root, the more global
the effect becomes. The concept drift indicator used in the detection units
is the absolute loss. The absolute loss is the absolute difference between
the prediction (here: ȳ) when the leaf was initialized and the prediction
which is now available in the node. On concept drift, the loss will increase.
Consequently, the evolution of the loss is monitored and continuously tested
by a Page-Hinkley test for an change pointing to a concept drift. If the
difference between the absolute loss and its average is increasing over a
predefined limit, the detection unit at the node raises an alarm and an
adaptation process is started. This process is similar to the idea used in
the CVFDT system. A concept drift in a subspace has the consequence
of an outdated subtree. Consequently, it should be pruned. As pruning

62 CHAPTER 3. DECISION TREES

of a subtree results in an abrupt accuracy decrease, an alternative, more
accuracy friendly approach is chosen. When the concept drift is detected in
a node, a new tree is learned in parallel on the examples reaching this node.
The subtree in the original tree will be replaced by the alternate subtree as
soon as it becomes more accurate. Slow progress or decreasing performance
of the subtree is a sign of a false alarm or that the subtree cannot achieve
better results and the alternate subtree will be deleted. FIRT-DD has no
pruning approach, but an adaptation process for concept drift. That means
that the algorithm will behave exactly the same way as FIRT on stationary
datasets.

FIMT-DD FIMT-DD (Fast and Incremental Model Tree with Drift De-
tection) [70] is a model tree with extensions to detect and react on con-
cept drift. It is based on FIMT and has the same concept drift adaptation
method as FIRT-DD. In comparison to the publication of FIMT, the Hoeffd-
ing bound is used instead of the Chernoff bound to validate the best splitting
decision. This time, the SDR fraction SDR(SD2)/SDR(SD1) with a range
R ∈ [0, 1] is calculated. The true average of the variable r (r̄true) is now
within the ε interval: r̄− ε ≤ r̄true < r̄+ ε, where r̄ = 1

n

∑n
i=1 ri and ε is the

value of the Hoeffding bound ε =

√
R2ln(1/δ)

2n . Again, if after Nmin exam-
ples r̄ + ε < 1 and, consequently r̄true < 1 holds, SD1 is the best splitting
decision.

ORTO ORTO (On-line Regression Trees with Options) [73] is an incre-
mental option tree. Instead of regular split nodes, options are used as split-
ting decisions in the internal nodes. These options are concatenations of
several splitting decisions through OR-functions. ORTO was developed to
eliminate the delayed tree extension process produced in Hoeffding-based
trees through equally good split decisions. The tie-breaking threshold is
not considered as useful as knowledge of the problem domain is needed to
set it properly. ORTO is based on the FIRT algorithm. To find the best
splitting decision, a new approach is used to introduce option nodes as well:
if, after observing Nmin examples, r̄ − ε holds, a normal split is made as
already known from the previous algorithms. Otherwise, an option node
is introduced including all splitting decisions SDi for which the inequality
SDR(SDi)/SDR(SD1) > 1 − ε holds. To restrict excessive tree growth,
the number of options are reduced with the depth of the tree. This is con-
sidered as a valid approach, as options are thought to be most useful near
the root. Predictions are produced by either choosing the tree of the option
node with the highest accuracy so far, or by following all trees and choosing
the average prediction. As ORTO is based on FIRT, no pruning method is
considered.

3.3. DECISION TREE ALGORITHMS 63

FIOT FIOT (Fast and Incremental Option Trees) [71] is very similar to
ORTO. The main focus of this work is to apply this algorithm to learning
problems under gradual concept drift. The current concept is gradually
replaced with a new one and the incremental option tree FIOT is developed
to handle this transition state. FIOT is similar to ORTO and extended
by the concept drift adaptation framework of FIRT-DD. To limit extensive
tree growth, only the k best performing trees in the options are stored. If
new options arise and more than k trees are available, the worst ones are
removed. Predictions are made by either taking the best tree in an option
or by calculating the average prediction over all predictions in the option.
Again, under no concept drift, no pruning will occur.

64 CHAPTER 3. DECISION TREES

Chapter 4

Data Sources

This chapter describes the source of five different data. Three of them have
an artificial and two a real-world source. Each data source is used in the
following chapters to produce datasets or data streams. The creation process
is explained in the chapters itself.

4.1 Artificial Sources

In the following, three artificial data sources are described, which are used
in the next chapters to create data streams or datasets.

4.1.1 2DimTree

Figure 4.1: 2DimTree dataset generation tree

Examples from a piecewise linear function with only two numerical input
variables were generated by the tree introduced by C. Vens et al. [135] (cf.

65

66 CHAPTER 4. DATA SOURCES

Figure 4.1). An example is created by randomly choosing with uniform
probability each input dimension (x1 and x2) in the range of [0,10]. Based
on the input dimensions, the tree is traversed from the root to the leaf and
the model is applied to determine the target variable y.

4.1.2 2DimFunction

Examples from a non-linear function were derived using the same function
as already used by Schaal and Atkeson [118] (cf. Equation 4.1).

y = max(e−10x21 , e−50x22 , 1.25e−5(x21+x22)) + ε (4.1)

The input dimensions (x1 and x2) are in the range [-1, 1] and randomly
chosen with uniform probability. The target variable y is calculated by
inserting the input values in equation 4.1. The produced function is shown
in Figure 4.2.

Figure 4.2: Target distribution of 2DimFuntion (Source: [106])

4.2. REAL-WORLD SOURCES 67

4.1.3 4DimTree

To represent a more complex piecewise linear function, the tree shown in
Figure 4.3 was created. All four numerical input dimensions (x1, x2, x3 and
x4) are in the range [0,10] and randomly chosen with uniform probability.
Again, the target variable is calculated by traversing the tree from root to
the leaf and applying the model to the input values.

Figure 4.3: 4DimTree dataset generation tree

4.2 Real-World Sources

In the following, two real-world data sources are described, which are used
in the next chapters to create data streams or datasets.

4.2.1 Census

The first real-world data source is the US Census Data (1990) dataset from
the UCI Machine Learning Repository1. It contains 2,458,285 examples and
68 categorical attributes. The dHour89 attribute, indicating the discretized
usual hours worked per week in 1989, was chosen as the target variable y.

1http://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29

68 CHAPTER 4. DATA SOURCES

4.2.2 Airline

The second real-world data source is a dataset from the DataExpo092 com-
petition. The original data stores 120 million records describing flight arrival
and departure details for all commercial flights within the USA, from Octo-
ber 1987 to April 2008. The dataset was preprocessed and erroneous entries
were removed. Moreover, entries displaying flights which were canceled or
diverted were removed. 35 input variables (6 numeric, 29 binary) were used
to predict the minutes the flight can compensate from a departure delay (de-
parture delay - arrival delay). As input variables the DepDelay (departure
delay), Distance (distance of the flight), carrier1...10 (if the flight was done
by one of the 10 biggest carriers/ 10 binary variables), hourTravelFreq (the
relative flight frequency/ traffic in the departure hour), originDepFreq (the
relative frequency of flights departing from the departure airport/ the size of
the departure airport), destArrFreq (the relative frequency of flights arriv-
ing at the destination airport/ the size of the destination airport), planeage
(age of the plane), month1...12 (the month of the year the flight is in, 12
binary variables) and day1...7 (the day of the week the flight is in, 7 binary
variables) were used. To facilitate the prediction tasks, only flights with a
departure and arrival delay within plus / minus an hour (between -60 and
60 minutes) were chosen. It is assumed that the delay is still of concern for
these flights. The final datasets contains 40,682,046 examples and the target
variable y ranges from -98 to 91 minutes and is normally distributed.

2http://stat-computing.org/dataexpo/2009/

Chapter 5

ILMTs - An Experimental
Evaluation

5.1 Introduction

Dealing with massive datasets is one of the great challenges faced today, as
data has become ubiquitous in all areas of life. Data is either gained over
time from data streams, or at one point in time from huge data collecting and
generating projects. Examples are, e.g., next generation sequencing (NGS)
projects, which double their sequencing capacity of base pairs (bp) per dollar
every fifth month [125], the NASA Earth Observation System (EOS), which
produces 2.9 TB data per day [24], data concerning the steadily increasing
world population1, or user-generated data from mobile devices, to name just
a few prominent examples.

Working with massive amounts of data is in general both time and mem-
ory consuming. Traditional batch algorithms had to load the whole dataset
into main memory for processing. Alternatively, approaches like sampling
[84, 77] or load shedding [26] have been developed to perform the mining
task on a suitable subsample of the available data. With the development
of incremental or online algorithms to handle the flood of data from a data
stream, another valid alternative has become available. Incremental online
algorithms are fast and need only a fraction of the memory used by batch
algorithms. Therefore, the use of incremental online algorithms for massive
data sources is one option that is currently investigated extensively.

One of the most important and best-studied class of predictive data
mining algorithms is based on trees. For regression, model trees with linear
models in the leafs are often the method of choice as compared to simple
regression trees. In the incremental online setting, only few approaches
of such incremental linear model trees (ILMT) exist, differing extremely
in their degree of complexity. However, surprisingly little is known about

1http://data.worldbank.org/

69

70 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

their relative performance, strengths and weaknesses, first, because they
have not been evaluated under the same conditions and, second, because
only small datasets were considered for their comparison. Thus, it is an
open question how different features of the algorithms (as described below)
affect the performance on massive real-world datasets, and whether more
complex functionality really turns out to be beneficial. The contribution of
this chapter is to address this question and shed light on the behavior of
features of algorithms from this important class (incremental models trees
for massive datasets).

This chapter first gives a compact definition of ILMTs due to their im-
portance. Then, it motivates the usage of online algorithms by a sampling
example. Next, it shows the performance of ILMTs on massive stationary
datasets by analyzing and comparing the three algorithms FIMT, IMTI-RA
and IMTI-RD. One important aspect of this work is that all algorithms are
implemented in the same framework to make the results comparable and
reduce biases arising from implementation choices. The chapter closes with
a discussion.

5.2 Related Work

Currently, only few ILMT algorithms have been developed and the amount
of different approaches further decreases if they were applied on stationary
data. Add-on features to handle concept drift are not needed in this setting
and consequently, these algorithms then have the same functionality as the
algorithms they were extended from (e.g. FIMT-DD and FIMT). A detailed
description of available ILMTs can be found in Section 3.3.2. This chapter
focuses on the comparison of FIMT, IMTI-RA and IMTI-RD as all three
algorithms employ splitting criteria of different complexity. To the best of
our knowledge, the only comparison of all three algorithms was made in the
FIMT-DD publication. Unfortunately, the algorithms were implemented
in different languages, by different persons, in different frameworks. Fur-
thermore, the algorithms were compared using only one parameter setting
on maximally 90,000 examples. For this reason, the relative strengths and
weaknesses of various algorithms from this important class of algorithms
are currently not known and will be investigated in this chapter, on mas-
sive stationary datasets, using different parameter settings, within the same
environment.

5.3 ILMT

Linear model trees (LMTs) are well-studied algorithms, applied even to
complex non-linear regression problems. Their success lies in the idea to
divide the problem into several easier subproblems. We assume a dataset

5.4. EXPERIMENTAL EVALUATION 71

D = {e1, . . . , en}, with examples given as feature vector 〈xi1, . . . , xij , yi〉.
The task is to predict the underlying regression function ~y = f(~x), which
can be approximated by a linear model ŷi =

∑j
k=0 βkxik. Linear model

trees now solve this task by splitting the input space over the input vari-
ables X1, . . . , Xj into several subspaces, learning a linear model in each one
of them. They work on the assumption that arbitrary functions can be
approximated by piecewise linear models. More subspaces allow for more
accurate approximations. An LMT is a tree consisting of internal nodes in
and leaf nodes ln. Each internal node in contains a splitting decision in.sdj
and normally two child nodes in.left and in.right, which are either leaf or
internal nodes. The splitting decision sdj is based on an attribute Xj and
one or several thresholds th of the attribute value on which the input space
is partitioned. The specification of the splitting decision can be different,
depending on the type of the chosen attribute. Splitting decisions on cat-
egorical attributes have thresholds consisting of subsets of the categorical
values. For numerical attributes, the thresholds are either specific numeri-
cal values or ranges. Leaf nodes ln contain no children, but a linear model
(ln.m) used for prediction. Examples receive a prediction by traversing the
tree from the root to a leaf and applying its model on the example. Stan-
dard LMTs are learned on a dataset that is completely available at training
time and small enough to be processed in main memory (batch learning).
In contrast, ILMTs are updated incrementally, processing only one example
ei after another from a possibly infinite data source, which is advantageous
in terms of processing speed as well as memory usage. Each example is
used only once to further adjust the ILMT and discarded afterwards due to
assumed memory limitations. Consequently, as no examples are stored, no
group of examples can be queried to find the best possible splitting deci-
sion sdj for a leaf at the appropriate time of split. That is why aggregated
statistics over the examples observed in the leaf are stored in each leaf node.
This split statistic (ln.spst) stores characteristics of possible splitting pos-
sibilities for the leaf node ln, from which the best splitting decision sdj can
be extracted. Different ILMT algorithms store different characteristics in
spst and use different split evaluation methods. These and other algorithm
characteristics for ILMT algorithms are explained in detail in Section 3.3.2.

5.4 Experimental Evaluation

In this section, the performance of the three ILMTs on massive stationary
datasets is evaluated. First the evaluation setting is explained, followed by a
description of the chosen datasets. Then, a motivating example is presented
and subsequently, the application results of the online algorithms are shown.

72 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

5.4.1 Evaluation Setting

All three ILMT algorithms are reimplemented within the same framework
using Java. As many methods as possible are shared by the algorithms. By
that, the results are comparable and effects based on the language bias as
well as on the programming skills are reduced. FIMT was reimplemented
according to the published information [69]. The IMTI-RD and IMTI-RA
implementations were modeled after the original implementations provided
by the authors. Each evaluation was run as a single thread on a Quad-Core
AMD Opteron Processor 8384 with 2.6 GHz. Each Java process was given
2 GB of RAM. To address the dependency of the online algorithms on the
examples’ ordering, each result value is the average over five runs. To judge
the performance of the given algorithms on massive datasets, the runs were
evaluated whether they run quickly, have a low MAE (mean absolute error)
and a low RAM consumption.

5.4.2 Datasets

The evaluation is done on three different data sources: 2DimTree, Census
and Airline. The 2DimTree data source was used to extract five separate
training sets of 50,000,000 examples and five test sets with a size of 1,000,000
examples. The airline dataset (source) was used to create five training sets
with 39,682,046 examples with five test sets with 1,000,000 examples each.
This was done by rearranging the original dataset to avoid intrinsic con-
cept drift. The census source was used to create five test sets by randomly
choosing 500,000 examples from the whole set without replacement. The
respective remainders of the set were used as the basis for generating each
training set by repeated oversampling. Five such census training sets were
created, each comprising 50,000,000 examples.

5.4.3 Online - Batch Comparison

To process massive stationary datasets under RAM constraints, a standard
method is to select only a subsample of the original dataset to train the
model. To show the limitations of batch algorithms on massive datasets,
we first show how a batch algorithm using a sampling method performs on
the described datasets. This is done by using the Weka-Workbench Version
3.7.5, which is also implemented in Java and thus ensures approximately
comparable runtime measurements. For each process, the Java environment
received 2 GB of RAM. As the M5 algorithm is the batch version of the
FIMT algorithm, the implementation in Weka (M5P [140]) is used with
default parameters. Smoothing and pruning are deactivated, as they are
also not used in FIMT. For the sampling method, the reservoir sampling
algorithm “R” [136] was chosen. For every dataset, M5P & R is trained
with each of the five training sets and tested on the corresponding test set.

5.4. EXPERIMENTAL EVALUATION 73

Table 5.1: Algorithm performance after the maximal amount of processable
examples

Dataset Algo run time (sec) MAE MBytes

2DimTree
M5P & R 463 0.0173 2,048.0
FIMT 233 0.0114 11.5

airline
M5P & R 2,689 10.9 2,048.0
FIMT 2,232 8.2 149.8

census
M5P & R 2,756 0.3721 2,048.0
FIMT 2,824 0.3126 60.7

The results are averaged over the five runs. Using 2 GB of RAM, only a very
small subsample of the whole dataset can be used by the batch learner to
train the model. Depending on the complexity of the dataset, the amount
of examples ranges from 3.3 million (2DimTree), over 0.7 million (airline) to
only 0.5 million examples (census). In contrast to the batch learner (M5P
& R), the online learner (FIMT) is able to process all examples from the
datasets. Table 5.1 shows the performance of M5P & R after the maximal
amount of processable examples for each dataset as well as the performance
of the online learner FIMT (Nmin = 700) after processing all examples from
the datasets. It can be seen that the memory consumption of the online
learning approach is much smaller than for the batch approach. While the
batch algorithm consequently uses 2 GB of RAM, the online learner uses
maximally about 150 MB of RAM. Additionally, as the model of the batch
algorithm is learned with a much smaller dataset, the MAE of the batch
algorithm is consequently worse than the one of the online learner. If we
would further restrict the batch approach to the same amount of RAM as
needed by the online learner (max. 150 MB), the accuracy gap would even
increase. But not only the predictive performance is better, even processing
the whole dataset takes less time. The only exception is the census dataset,
where its complexity results in a longer calculation time of negligible 68
seconds for the online algorithm. Overall, it can be stated that the online
algorithm extracts a better model from the dataset by using only a fraction
of the RAM with faster or nearly equal processing times.

5.4.4 ILMT Performance Evaluation

This section shows the performance of FIMT, IMTI-RA and IMTI-RD on
the three massive stationary datasets using different parameter settings. At
first the chosen parameter setting is explained, followed by a description of
the evaluation method. Finally, the results are presented and interpreted.

74 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

Table 5.2: Run IDs and their parameter setting
FIMT

ID 1 2 3 4
Nmin 100 300 500 700

IMTI-RA IMTI-RD
ID 5 6 7 8 9 10 11 12
π 0 0.025 0 0 0 0.025 0.025 0.025
κ 3 5 10 3 5 10

Parameter Settings

For the FIMT algorithm, all runs were based on the parameter setting
considered as useful in the original publication: δ = 1x10−6, τ = 0.001,
Nmin = 300 and η = 0.001. IMTI-RA and IMTI-RD are based on the de-
fault parameter settings proposed in the original implementation: π = 0.025,
αsplit = 0.0001, αprune = 0.001, δ0 = 0, κ = 5, and NMinModel = 3∗number
of input dimensions. Due to space limitations, we focus the evaluation on
the parameters with the highest influence on the induction complexity and
model performance: Nmin, κ and π. The effect of Nmin (the split test fre-
quency) for FIMT is tested over the values 100, 300, 500, and 700. For
IMTI-RD, the number of candidates (κ) is evaluated over the values 3, 5,
and 10, and smoothing (π) was either disabled (π = 0) or activated with
a value of 0.025. Smoothing was deactivated for all runs on the 2DimTree
dataset, as the decision function is clearly piecewise linear and smoothing is
not needed. Thus, there are no results for the runs with ID 6, 10, 11, and 12
on the 2DimTree dataset. An overview of the different parameter settings is
given in Table 5.2, and the introduced ID is used in all further analyses. For
the parameters not listed, the above mentioned default settings are used.

Evaluation Method

To simulate also smaller training sets and to gain insight into the depen-
dency of the algorithms’ performance on training set sizes, each run was
periodically interrupted and tested on the corresponding test set. The run
time needed to test the model is not included in the final run-time results.

Results

Tables 5.3, 5.4 and 5.5 present the results of the different parameter settings
on each dataset. All results of FIMT and IMTI-RA are calculated for all
datasets on the whole dataset size. The IMTI-RD results are based on 5.0
million training examples for the airline and 2DimTree datasets and on 1.5
million examples for the census dataset. This is due to the low example
processing speed of IMTI-RD, a consequence of its high intra-algorithmic
complexity. That means that in the worst case only 2.1 examples per second

5.4. EXPERIMENTAL EVALUATION 75

Table 5.3: Final mean (stdev) results on the whole 2DimTree dataset (ID
7-9: after 5 mio. examples)

ID time in h MAE MB # Leaves
1 0.08 (0.002) 0.0116 (0.0011) 12 (0.4) 794 (14.2)
2 0.07 (0.002) 0.0116 (0.0011) 12 (0.4) 704 (32.7)
3 0.07 (0.002) 0.0109 (0.0006) 12 (0.5) 674 (32.9)
4 0.06 (0.001) 0.0114 (0.0014) 11 (0.5) 679 (42.0)

5 0.59 (0.049) 0.0006 (0.0003) 7 (1.6) 3499 (803.1)

7 0.06 (0.007) 0.0008 (0.0001) 2 (0.2) 338 (47.6)
8 0.08 (0.006) 0.0007 (0.0001) 2 (1.1) 335 (167.6)
9 0.13 (0.011) 0.0007 (0.0001) 3 (1.2) 283 (106.2)

Table 5.4: Final mean (stdev) results on the whole airline dataset (ID 7-12:
after 5 mio. examples)

ID time in h MAE MB # Leaves
1 0.7 (0.01) 8.2405 (0.0084) 311 (1.1) 25497 (170.1)
2 0.7 (0.01) 8.2427 (0.0091) 211 (3.2) 15364 (132.3)
3 0.6 (0.01) 8.2441 (0.0105) 171 (0.7) 11878 (42.1)
4 0.6 (0.01) 8.2450 (0.0094) 150 (1.1) 10061 (57.7)

5 21.1 (1.0) 8.3448 (0.0094) 12 (1.1) 405 (41.8)
6 20.9 (1.0) 8.3416 (0.0095) 12 (1.1) 405 (41.8)

7 25.2 (1.3) 8.3728 (0.0095) 4 (3.1) 2 (1.3)
8 41.7 (0.7) 8.3747 (0.0082) 5 (1.9) 1 (0.5)
9 77.9 (2.4) 8.3747 (0.0085) 12 (9.3) 2 (1.3)

10 25.2 (1.3) 8.3727 (0.0095) 4 (3.1) 2 (1.3)
11 41.8 (0.3) 8.3747 (0.0083) 5 (1.9) 1 (0.5)
12 77.6 (2.4) 8.3748 (0.0085) 12 (9.3) 2 (1.3)

can be processed by IMTI-RD on average for the census dataset (cf. Table
5.5 ID 12).
First of all, the results for different parameter values of each algorithm are
compared. Focusing on the Nmin parameter of the FIMT algorithm (ID
1-4), it can be observed that lower values result in bigger trees, needing
more RAM and processing time. This is logical, as each leaf is tested more
frequently for splitting for a smaller value of Nmin. Taking the MAE into
account, it can be seen that the investment of time and memory does not
pay back, as the prediction gain is only marginal. High values for Nmin show
comparable MAE results, while at the same time using much less memory
and calculation times for all given datasets. This suggests that for massive
datasets larger values for Nmin should be chosen. The same can be observed
for the number of candidates used by the IMTI-RD algorithm (ID 7-9 and
10-12). For all datasets the resulting MAE is very similar, while the final
runtime is up to three times as high for κ = 10 compared to κ = 3. Another
interesting fact is that IMTI-RD produces very small trees for the amount of
examples observed. Such a feature may be very interesting when a compact
and easy-to-interpret model is desired. Additionally, the smoothing param-
eter was varied to evaluate its usefulness. Tree size and memory usage is

76 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

Table 5.5: Final mean (stdev) results on the whole census dataset (ID 7-12:
after 1.5 mio. examples)

ID time in h MAE MB # Leaves
1 0.9 (0.02) 0.3140 (0.0013) 116 (1.2) 6414 (54.6)
2 0.8 (0.02) 0.3131 (0.0010) 79 (0.6) 3891 (21.3)
3 0.8 (0.01) 0.3128 (0.0011) 67 (1.0) 3139 (63.7)
4 0.8 (0.01) 0.3126 (0.0011) 61 (1.8) 2765 (92.2)

5 161.1 (10.4) 0.3604 (0.0053) 920 (131.4) 10707 (1497)
6 161.1 (9.0) 0.3866 (0.0101) 920 (131.4) 10707 (1497)

7 61.2 (3.8) 0.3421 (0.0102) 66 (23.7) 5 (1.8)
8 103.0 (4.6) 0.3251 (0.0038) 192 (66.5) 10 (3.5)
9 211.2 (8.0) 0.3253 (0.0036) 437 (193.1) 11 (4.9)

10 62.6 (2.1) 0.4061 (0.0636) 66 (23.7) 5 (1.8)
11 104.9 (5.4) 0.6504 (0.1660) 192 (66.5) 10 (3.5)
12 196.1 (28.1) 0.3272 (0.0034) 436 (194.5) 11 (4.9)

not changed by the parameter, as only the prediction method is changed.
For that, only the MAE and the run time is influenced by the parameter.
Comparing the IMTI-RA runs 5 and 6 on the airline dataset shows that
smoothing slightly increases the prediction accuracy. On the other hand, it
seems more harmful on the census dataset. Nevertheless, choosing the right
parameter setting could further improve the model.
After having examined the results for the maximal dataset sizes, it is also
interesting to reason about even larger datasets. Therefore, the development
of the MAE, the runtime and the RAM usage is plotted (cf. Figures 5.1,
5.2, 5.3) for increasing dataset sizes. The development of the corresponding
quality criterion can be investigated and a forecast for even larger datasets
can be done. As the analyses up to now indicate that parameter settings
leading to a simpler induction process do well, the following comparisons are
based on the runs with ID 4, 5, and 7. On the 2DimTree dataset, IMTI-RD
and IMTI-RA show nearly the same behavior. They both come to a very
good MAE after seeing only a few examples, although IMTI-RD outperforms
IMTI-RA. However, including the remaining instances from the dataset im-
proves the final MAE only marginally, while the RAM consumption increases
steadily. In contrast, the FIMT algorithm further makes use of additional
instances as the MAE decreases continuously, which is due to an increasing
model size (the RAM consumption increases). Also, FIMT is much faster
than the other two. For the airline dataset, the FIMT algorithm has a lower
MAE, runs faster and steadily improves its prediction accuracy while it stays
constant for IMTI-RD and IMTI-RA. However, the memory consumption is
again the largest for the FIMT. For the census dataset, FIMT turns out to be
a clear winner, as it is the fastest, most accurate, and the algorithm with the
lowest memory consumption. These numbers indicate that for even larger
datasets it would be wise to use the FIMT algorithm, with a large Nmin,
which steadily and quickly improves the prediction accuracy. To sum up,

5.5. CONCLUSION 77

choosing the best algorithm depends on the dataset: If the dataset is clearly
piecewise linear, IMTI-RA and IMTI-RD come to good results already af-
ter observing only few examples. Moreover, if the dataset is rather small
(only some 10,000 instances) then IMTI-RD can be considered as a good
choice due to its good MAE results. But if larger datasets are considered,
then its run time makes its application infeasible. Surely, for more complex
piecewise linear datasets, the needed number of examples will increase. Nev-
ertheless, real-world datasets are normally very complex and not necessarily
piecewise linear. For this kind of datasets, the FIMT algorithm is by far the
fastest solution, building the best model which also still improves with larger
datasets. However, the RAM consumption may remain one possible draw-
back, when the numerical attributes in the datasets hold too many distinct
values and thus the E-BST in the split statistic becomes prohibitively large
(see the airline dataset). All algorithms in common is that increasing the
algorithm complexity is more harmful than useful. Consequently, choosing
the best algorithm and parameter for real-world datasets should, according
to the previous experiments, follow the rule: Keep it simple, keep it fast
[64]!

5.5 Conclusion

This chapter systematically studied, for the first time, the performance of
an important class of algorithms, incremental linear model trees, on mas-
sive stationary datasets in three different dimensions: prediction error, run-
ning time, and memory consumption. The algorithms were tested within
the same framework on large-scale artificial and real-world datasets, under
various parameter settings. The results indicate that, first, using param-
eter settings that lead to simpler induction processes result in equivalent
MAE in the long run and also come with the advantage of smaller running
times. Additionally, on real-world datasets the algorithm with the simplest
induction process, FIMT, is the fastest and most accurate algorithm. Its
advantage is also still increasing with bigger datasets. Therefore, our exper-
iments suggest that simplicity is a virtue when learning incremental linear
model trees on massive datasets. As a consequence, an extension of the
FIMT algorithm would be interesting with a careful limitation of memory
usage. This could be either done by optimizing the split statistic storage or
by developing a pruning technique that further keeps the tree small and fast.
Finally, a similar study on drifting data streams, using FIMT-DD instead
of FIMT, should reveal further interesting insights.

78 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

Figure 5.1: Development of the MAE, runtime and memory consumption
for the 2DimTree dataset and each algorithm using the parameter setting
leading to the least complex induction process.

5.5. CONCLUSION 79

Figure 5.2: Development of the MAE, runtime and memory consumption for
the airline dataset and each algorithm using the parameter setting leading
to the least complex induction process.

80 CHAPTER 5. ILMTS - AN EXPERIMENTAL EVALUATION

Figure 5.3: Development of the MAE, runtime and memory consumption for
the census dataset and each algorithm using the parameter setting leading
to the least complex induction process.

Chapter 6

Pruning ILMTs with
Approximate Lookahead

Many applications generate abundant data: Biological high-throughput ex-
periments, sensor applications, network monitoring and traffic management,
process and quality control in manufacturing, email, news, and blogging
systems, to mention just a few examples. Analyzing data from such data
sources poses several challenges for data mining, as the produced datasets
can either be too large to be processed in main memory at once or the data
can constantly grow over time (data streams). As a consequence the data
stream model has been developed, where all algorithms must process data
incrementally, given strictly limited resources. Instances are processed one
at a time, using a limited amount of memory and time.

This chapter focuses on pruning incremental linear model tree (ILMT)
algorithms. Linear model tree algorithms split the instance space recursively,
basing their split decisions on estimated prediction gains resulting from lin-
ear models in the subspaces. Instead of expensive precise lookahead, linear
model tree algorithms usually employ some form of approximate lookahead.
Approximate lookahead saves time and space, but may choose sub-optimal
splits, which in turn may lead to overly large trees. Unnecessarily large trees
both waste space and time, as they generally slow down instance process-
ing. Pruning techniques promise to remedy this problem by detecting and
removing subtrees that do not provide significant improvements. This chap-
ter develops and evaluates a pruning technique for incremental linear model
trees with approximate lookahead on stationary data sources. As massive
datasets can be seen as limited stationary data streams in the framework of
incremental learning, both are used equivalently in the following. Tests on
five large stationary datasets shed some light on the trade-off between tree
complexity/processing speed and prediction error. Furthermore, the per-
formance of the incremental online learning approach is compared with an
equivalent batch approach to highlight the applicability to massive datasets.

81

82 CHAPTER 6. PRUNING ILMTS

The chapter is organized as follows: First, the concept of approximate
lookahead is explained in combination with incremental linear model trees.
Then related work is surveyed. In the next Section, the pruning algorithm
GuIP is described, which is evaluated on five large datasets in the following.
After that, its applicability to stationary data streams and massive datasets
is highlighted, and finally a conclusion is given.

6.1 ILMT with Approximate Lookahead

Let a dataset D = {e1, . . . , en} be given, where each example ei is repre-
sented as a vector < xi1, ..., xij , yi >. The task is to predict the underlying
regression function ~y = f(~x), which can be approximated by a linear model
ŷi =

∑j
k=0 βkxik. Linear model trees (LMT) solve this task by splitting

the input space over the input variables X1, ..., Xj into several subspaces,
learning a linear model in each one of them. They work on the assumption
that arbitrary functions can be approximated by piecewise linear models.
More subspaces allow for more accurate approximations. An LMT is a de-
cision tree consisting of two types of nodes n, either internal nodes in or
leaf nodes ln. Each internal node in contains a splitting decision in.sdj
and normally two child nodes in.left and in.right, which are either leaf
or internal nodes. The splitting decision sdj is based on an attribute Xj

and one or several thresholds th of the attribute value on which the input
space is partitioned. The specification of the splitting decision can be dif-
ferent, depending on the type of the chosen attribute. Splitting decisions
on categorical attributes have thresholds consisting of subsets of the cate-
gorical values. For numerical attributes, the thresholds are either specific
numerical values or ranges. Leaf nodes ln contain no children, but a lin-
ear model (ln.m) which is able to be updated incrementally (e.g., by the
perceptron [116] or RLS algorithm) and is used for prediction. Standard
LMTs are learned on a dataset that is completely available at training time
and small enough to be processed in main memory (batch learning). In
contrast, ILMTs are updated incrementally, processing only one example ei
after another from a possibly infinite data source DS (ei ∈ DS), which is
advantageous in processing speed as well as in memory usage. Each example
is used only once to further adjust the ILMT and is discarded afterwards due
to assumed memory limitations. Consequently, as no examples are stored,
no group of examples can be queried to find the best possible splitting deci-
sion sdj for a leaf at the appropriate time of split. That is why aggregated
statistics over the examples observed in the leaf are stored in each leaf node.
This split statistic (ln.spst) stores characteristics over all possible splitting
possibilities for the leaf node ln from which the best splitting decision sdj
can be identified. Different ILMT algorithms store different characteristics
in spst and use different split evaluation methods. Optimally, with each pos-

6.2. RELATED WORK 83

sible split in the statistic, the actual linear models, which would be created
using this split as the best splitting decision sdj , are maintained and eval-
uated. Basing the decision for the best split on these actual linear models
in the respective subspaces is referred to as precise lookahead in this work.
Unfortunately, using the precise lookahead approach over all attributes Xj

for every observed threshold th at each leaf is expensive with regard to both
time and memory. Thus simplifications are needed. One simplification is
to limit the number of possible thresholds th for each attribute Xj in spst,
but to still maintain all the actual linear subspace models. More common
simplifications still consider all possible splits, but do not rely on the actual
linear subspace models. Usually, a more efficient approximation method is
used. The most efficient one bases its splitting decision on the maximal
reduction of the standard deviation of the target variable y. Algorithms
using any efficient approximation method as lookahead are referred to in
this work as ILMTs with approximate lookahead. Depending on the type of
lookahead, the models in the newly created leaves are initialized differently
when a split is made. As mentioned above, in the precise lookahead setting,
the actual submodels for each possible split are stored in ln.spst. When the
leaf ln is now split using the possible split as the splitting decision sdj , the
corresponding actual models can be used as starting models for the newly
created child leaves. In the approximate lookahead setting, no actual models
can be passed as none are learned in ln.spst. Anyhow, to give the new leaves
the best possible start, the former leaf model ln.m itself can be passed to
the new child leaves as a first approximation.

6.2 Related Work

While many incremental tree induction algorithms exist for the classification
task (see Section 3.3.1), only few algorithms are available for the regression
task [4]: FIRT, FIMT, FIRT-DD, IMTI-RD, IMTI-RA, IMTI-RD, ORTO
and FIOT (see Section 3.3.2 for detailed information). To the best of our
knowledge, no pruning technique focusing on the prediction error has been
developed so far for ILMTs with approximate lookahead on stationary data
sources. IMTI-RA uses a pruning technique based on its splitting deci-
sion. Instead of using the actual error reduction in the subtree, pruning is
based on a statistical test over the distributions of the positive and negative
residuals. FIRT and FIMT do not use pruning. Its extensions FIRT-DD
and FIMT-DD replace or remove outdated subtrees when concept drift is
detected. Nevertheless, on stationary data sources, where concept drift is
absent, the pruning method used by FIMT-DD is not triggered, and there-
fore the generated trees are the ones generated by the unmodified FIMT
algorithm. ORTO and FIOT are adaptations of the afore mentioned algo-
rithms to form option trees and also have no pruning component.

84 CHAPTER 6. PRUNING ILMTS

6.3 Guarded Incremental Pruning / GuIP

GuIP [63] is an incremental pruning method specialized on ILMTs with
approximate lookahead on stationary data sources. It prunes the tree after
each training example and therefore keeps the tree in a pruned state at all
times. To explain this pruning approach, the adaptations for ILMTs with
approximate lookahead are shown first. Then the concept of what we call
the prune guard and the pruning decision are explained.

6.3.1 Adaptations

GuIP can be used on any ILMT with approximate lookahead. To do so,
the ILMT specific properties mentioned in Section 6.1 have to be extended.
First of all, linear models are needed in each node (leaf nodes ln.m as well
as internal nodes in.m), as their performance is compared for pruning. To
measure performance, model statistics need to be maintained together with
each linear model.

Table 6.1: Node properties: Bold entries are extensions to each ILMT needed
by GuIP

in internal node

in.sdj splitting decision
in.left left child node
in.right right child node
in.m linear model
in.m.RSS prequential error of in.m in the subspace
in.m.N number of examples observed by in.m in the subspace
in.RspIL resplit ignore list

ln leaf node

ln.spst split statistic
ln.m linear model
ln.m.RSS prequential error of ln.m in the subspace
ln.m.N number of examples observed by ln.m in the subspace
ln.RspIL resplit ignore list

The model statistics consist of two values accumulated over the observed
examples in the subspace: The sequentially accumulated model prediction
error (prequential error [31], explained later in detail / interleaved test-then-
train approach [14], m.RSS) as well as the number of examples observed
by the model (m.N). Once a split decision has been found wrong and con-
sequently been pruned, it is possible that later the very same split decision
will again be considered. As we assume stationary data sources, we avoid

6.3. GUARDED INCREMENTAL PRUNING / GUIP 85

Algorithm 5 CalculateDivergence(Internal node in, leaf node ln)

1: iDivergence := ln.m.N ;
2: incurrent := ln.parent;
3: while incurrent 6= in do
4: iDivergence := iDivergence + incurrent.m.N − incurrent.left.m.N −

incurrent.right.m.N
5: incurrent := incurrent.parent
6: end while
7: return iDivergence

Algorithm 6 ActivePruneGuard(Internal node in, Int ξ)

1: for all lnj ∈ in.subLeaves do
2: if CalculateDivergence(in, lnj) < ξ then
3: return true
4: end if
5: end for
6: return false

“resplits” using the same split decision by storing all splits made at a node
in its resplit ignore list RspIL. Table 6.1 summarizes all node properties.
Bold entries highlight the extensions needed for the pruning approach.

6.3.2 Prune Guard

Pruning ILMTs has to be done with care, as the subleaves’ models have to be
given the opportunity to adapt to the subspace and to further improve their
predictions before being pruned. Using ILMTs with precise lookahead, this
requirement is automatically fulfilled, as all subleaves’ models have already
had enough time to adapt to the subspace when being learned in the split
statistic. When chosen as the models in the newly created leaves, the models
are well adapted and pruning can be performed without any concern. That
is not the case for ILMTs with approximate lookahead. As the models are
inherited from the parent node during the splitting procedure, it is crucial to
allow the new models to adapt to their subspaces over time. The intuitive
approach to wait for all subleaves’ models until they have observed more
than ξ examples in its specific subspace before pruning is not possible in the
incremental setting, because the tree is constantly split. As each split results
in a new adaptation process in the new leaves, one cannot ensure that this
condition is ever met. For that reason, the adaptation progress is calculated
for the subleaves’ models since their separation from the subtree root node
in. This progress is the divergence of the leaf model from node in and
is measured by the number of examples observed by the model ln.m after
separation from node in. This reflects the number of examples observed by

86 CHAPTER 6. PRUNING ILMTS

Figure 6.1: Example tree for the prune guard usage. The first summand
shows m.N at the moment of the split, and the second summand shows the
examples seen in this node after the split. Summing over both equals m.N
at the time of the snapshot. Internal nodes with activated prune guard are
highlighted in gray.

the model and used to further adapt to the new subspaces since separation.

In the pruning step, after every single training example, any internal
node in is prevented by the so-called prune guard from being pruned if a
model in any subleaf ln.m of its subtree has not yet diverged far enough from
that internal node. The pseudocode for the calculation of the divergence of
the model in leaf node ln from the internal node in is shown in Algorithm
5. If this number is less than ξ for any subleaf, the prune guard is activated
and the node must not be pruned (ref. Algorithm 6).
Example: Figure 6.1 shows an example for prune guard usage. At the
time of the snapshot, the tree was learned with 1950 examples (count in the
root node). Now assume each subleaf model must have diverged from the
comparison node by at least 150 examples (ξ = 150). Furthermore, assume
node in4 is being considered for pruning. Calculating the divergence of
leaves ln8 and ln9 from in4 shows that the models have only diverged by
20 and by 30 examples. So the prune guard is activated and prevents node
in4 from being pruned and gives the leaves’ models further opportunity to
improve. The pruning decision of node in3 is a little bit more complicated,
as not all subleaves are direct children. Model in3.m was adapted to the
subspace with 300 examples before the node was split. After that in3.m has
observed 400 examples, of which 50 examples were passed down to leaf ln7

and 300 examples to node in4. As in4 was also split after 300 examples, the
remaining 50 examples were passed to the leaves ln8 (20) and ln9 (30). As

6.3. GUARDED INCREMENTAL PRUNING / GUIP 87

the models are passed to the children after each split, ln8.m has observed 320
examples since the divergence from node in3. 20 examples since the model
has diverged from in4, and 300 more since that model has diverged from
in3. Calculating the divergence for all the other subleaves shows that ln9.m
diverged by 330 examples and ln7.m by only 50 examples. As a divergence
of only one subleaf being smaller than ξ is sufficient, the prune guard also
blocks in3 from being pruned. Examples for nodes that can be tested for
pruning are in2 and in1, because all submodels have diverged far enough
and the prune guard is therefore not activated.

6.3.3 Prune Decision

Once the prune guard allows for an internal node in to be tested for prun-
ing (i.e. the prune guard is not activated), a decision is needed whether
pruning is advantageous for the tree prediction. This is done by comparing
the model performance in node in with the performance of the models in
all its subleaves lnj . Performance is judged by the capability of a model
to adapt to its subspace, which is reflected by the model statistics (m.N
and m.RSS). m.RSS, the prequential model error, is measured by the
sequentially updated residual sum of squares (RSS), which represents the
accumulated squared prediction error:

RSSi = RSSi−1 + (yi − ŷi)2 (6.1)

In the remaining, the following simplifications are used: RSSin = in.m.RSS,
RSSlnj

=
∑q

j=1 lnj .m.RSS, Nin = in.m.N , Nlnj
=

∑q
j=1 lnj .m.N , where

lnj are the q subleaves of node in. Testing node in for pruning, it is evalu-
ated whether the subtree rooted at in harms prediction performance. This
is the case if the q subleaves’ models lnj .m have a higher combined prequen-
tial error than in.m. This means that a negative error reduction (ErrRed,
ref. Equation 6.2) using the subtree rooted with in is present.

ErrRed(in) = RSSin −RSSlnj
(6.2)

In this case, if ErrRed(in) ≤ 0, pruning would be beneficial. As in the
incremental setting the leaves’ models have seen fewer examples in their
subspaces than the models in the internal nodes, RSSlnj

is assumed to
be smaller than RSSin. Consequently, ErrRed(in) will be mostly positive,
which, in the incremental setting, does not necessarily mean that the subtree
is beneficial for the overall tree prediction. For these cases, an additional
evaluation measure is needed which incorporates prediction errors based
on different numbers of examples. The Chow test [27, 44] in its extended
version [106] , which is used to test if the RSS over the q subleaves lnj
is significantly smaller than the RSS in node in, allows for such different
subset sizes:

FPrune =
(RSSin −RSSlnj

)(Nlnj
− qd)

RSSlnj
(Nin −Nlnj

+ (q − 1)d)
(6.3)

88 CHAPTER 6. PRUNING ILMTS

In this equation, d represents the input dimensionality of each linear model.
The null hypothesis states that the underlying regression function is linear
in node in, i.e., no subtree is justified. If the alternative hypothesis is true,
the RSS reduction is significant, and splitting and growing a subtree is
justified. Under the null hypothesis, FPrune is distributed according to the
F -distribution with Nin−Nlnj

+ (q− 1)d and Nlnj
− qd degrees of freedom.

An associated p-value greater than a given threshold αprune stands for a non-
significant RSS reduction, and consequently the node should be pruned. As
it is necessary to observe more than qd examples in the subleaves to be able
to apply the test, nodes are prevented from being pruned using the Chow
test when Nlnj

≤ qd. Internal nodes having a negative error reduction or
failing the test (p-value > αPrune) are pruned from the tree.

6.3.4 Guarded Incremental Pruning Algorithm

In the incremental setting, the models and statistics of the decision tree are
constantly updated by each example traversing the tree. To keep the decision
tree in a constantly pruned state, it is instantly pruned after each example.
The pseudocode showing the incremental induction process extended by this
pruning approach is given in Algorithm 7. All ILMT specific properties (refer
Section 6.1) are kept unchanged. The models are learned and updated the
original ILMT way, and the split statistics are also the original ILMT ones.
Each example ei traverses the tree from the root to a leaf ln. Each internal
node model in.m (ILMT specific) on the path is first tested with the example
ei (line 2 in Algorithm 7). The corresponding prediction error is added to the
prequential error (in.m.RSS, line 3) and the count of observed examples is
increased (in.m.N , line 4). Then the ILMT specific model in.m is updated
with example ei (line 6). Based on the splitting decision sdj in the node,
the example is further passed to the left or right child (lines 7 to 11). Once
reaching the leaf ln, the model statistics (lines 15 and 16), the model (line
18) and the ILMT specific split statistic ln.spst (line 19) are updated using
ei. Subsequently, the leaf is tested for splitting. If to split ln using the most
promising splitting decision sdj (not yet tried for this node, sdj /∈ ln.RspIL)
from ln.spst is beneficial (line 21), ln is transformed into the internal node
in (line 22) and two new leaves are attached. The chosen splitting decision
sdj is added to the resplit ignore list in.RspIL (line 23) and the model is
passed from the new internal node in to the leaves in.left and in.right (line
24). Additionally, m.RSS, m.N , spst and RspIL are reset in the new leaves
(lines 25 to 28) as a new subspace is explored and specific statistics will be
accumulated. Finally, the tree is pruned (lines 29 and 31). As only the
prequential errors on the path have been changed, it is sufficient to test all
nodes on the path for pruning. The concept of reduced error pruning [108] is
adapted to the regression problem and calculated on the stored prequential
error m.RSS to prune the path. Pseudocode for path pruning is shown in

6.3. GUARDED INCREMENTAL PRUNING / GUIP 89

Algorithm 7 IncrementalInduction(Node n, Example ei < xij , ..., xij , yi >)

1: if n type of internal node then
2: predict ŷi using ei with in.m
3: update in.m.RSS with yi, ŷi
4: increment in.m.N
5: // update ILMT specific model (e.g. FIMT variant: perceptron up-

date)
6: update model in.m with ei
7: if in.sdj(xij) then
8: IncrementalInduction(in.left, ei)
9: else

10: IncrementalInduction(in.right, ei)
11: end if
12: else
13: // n is a leaf node
14: predict ŷi using ei with ln.m
15: update ln.m.RSS with yi, ŷi
16: increment ln.m.N
17: // update ILMT specific model (e.g. FIMT variant: perceptron up-

date)
18: update model ln.m with ei
19: update ln.spst with ei
20: // test for split
21: if split ln preferable using a sdj /∈ ln.RspIL then
22: ln→ in
23: add ln.spst.sdj to in.RspIL
24: in.left.m← in.m, in.right.m← in.m
25: in.left.m.RSS := 0, in.left.m.N := 0
26: in.left.spst:={}, in.left.RspIL := {}
27: in.right.m.RSS := 0, in.right.m.N := 0
28: in.right.spst:={}, in.right.RspIL := {}
29: PathPruning(in.right)
30: else
31: PathPruning(ln)
32: end if
33: end if

Algorithm 8. The path is tested from the leaf node ln up to the root to find
the most harmful internal node. This is the one with the highest negative
ErrRed or, if there is no such node, the one with the highest p-value greater
than αprune. Starting with the leaf node ln the example falls into, the
algorithm moves up and at first the direct parent node incurrent is tested for
pruning (line 3 in Algorithm 8). The node incurrent is then tested whether

90 CHAPTER 6. PRUNING ILMTS

Algorithm 8 PathPruning(Leaf node ln)

1: inPrune := NULL
2: harmScore := 0
3: incurrent := ln.parent
4: // test all nodes on the path from leaf to root
5: while incurrent 6= NULL do
6: if not ActivePruneGuard(incurrent, ξ) then
7: if ErrRed(incurrent) ≤ 0 then
8: if 1− ErrRed(incurrent) ≥ harmScore then
9: // new most harmful node

10: inPrune := incurrent
11: harmScore := 1− ErrRed(incurrent)
12: end if
13: else if Nlnj

> qd then
14: p-value := ChowTest(incurrent)
15: if p-value > αPrune then
16: if p-value ≥ harmScore then
17: // new most harmful node
18: inPrune := incurrent
19: harmScore := p-value
20: end if
21: end if
22: end if
23: end if
24: incurrent := incurrent.parent
25: end while
26: if inPrune 6= NULL then
27: // prune most harmful subtree
28: inPrune → ln // m.RSS, m.N and RspIL are maintained
29: initialize ln.spst
30: PathPruning(ln)
31: end if

all q subleaves have diverged far enough (line 6). If so, the prune guard is
deactivated, and the node can be tested for pruning (lines 7 to 22). Pruning
is mandated, if the error reduction value is negative (line 7) or if enough
(≥ qd) examples have been seen in the subleaves (line 13), and the positive
error reduction is not significant (p-value of the Chow test is higher than
αprune, lines 14 and 15). As the most harmful node on the path is searched,
it is tested if the harmfulness of the current node is the highest seen so far
(line 8 and 16) and if so, the node is stored as the one to be pruned (lines 10
to 11 and 18 to 19). Nodes with negative error reductions are preferred over
nodes with insignificant positive error reductions (1− ErrRed(incurrent) in

6.4. EXPERIMENTAL EVALUATION 91

lines 8 and 11). Using this approach, each node on the path to the root
is tested. Once the most harmful node is found after traversing the path
(line 26), the whole subtree is pruned from the tree by transforming the
found node to a leaf node ln (line 28). The model m, including m.RSS,
m.N and the resplit ignore list RspIL, are inherited as the subspace for the
node remains the same and the model continues its adaptation process (line
28). The split statistic spst is initialized (line 29) as it was no part of an
internal node. As the new leaf ln changes the ErrRed and Chow test for all
parent nodes, all of them are again considered for pruning (line 30). This
is repeated as long as there are harmful nodes on the path. Performing the
pruning approach after each example is time consuming, if all the necessary
information has to be collected from all subleaves, each time a node is tested
for pruning. Fortunately, the prune guard as well as the pruning decision
can be calculated without the need to repeatedly receive information from
the subleaves. The statistics over all subleaves, necessary for the pruning
decision, can be updated incrementally (RSSlnj

, Nlnj
and q). It is easy

to optimize the algorithm with respect to processing speed by storing the
accumulated statistics over all subleaves lnj in each node in. Additionally,
the divergence value for each subleaf lnj having a divergence < ξ can be
stored in in. The divergence list indicates which leaves activate the prune
guard and how many more examples must be observed in the specific leaves
until the pruning test can be performed. All numbers in in can be easily
updated after each example, when the path is traversed from the leaf ln to
the root and node in is scanned for pruning. That way, the prune guard as
well as the pruning decision can be calculated efficiently without having to
check all subleaves again and again.

6.4 Experimental Evaluation

To evaluate GuIP, we incorporated it into FIMT (see Section 3.3.2 for a
detailed description) and tested it on five massive stationary datasets. First,
an explanation of the experimental setup is given. Then, the results are
presented and discussed.

6.4.1 Experimental Setup

FIMT was reimplemented in Java according to the published information
[69]. Due to missing detailed information about the normalization step,
all examples were normalized entering the tree with the method used by
FIMT-DD [70].

92 CHAPTER 6. PRUNING ILMTS

Parameter Settings

All runs were performed with the same parameter settings considered as
useful in the original publication: δ = 1x10−6, τ = 0.001, Nmin = 300 and
η = 0.001. For GuIP, αPrune was set by default to 0.05. All tests were
run on a computing cluster consisting of different machines. All runs were
randomly distributed among the machines with equal probability. The Java
environment was given 3 GB of RAM for each process.

Evaluation Method

Two major evaluation methods for incremental algorithms exist: the pre-
quential evaluation and the holdout evaluation [14]. The first one evaluates
the model each time an example is observed from the data source. This
is done by using each example first to test the model and then to train it.
The sequentially accumulated prediction error over the observed examples
is called prequential error [31] and is used as evaluation measure. Unfor-
tunately, the prequential error learning curve is known to be a pessimistic
estimator, as it suffers from potentially large errors committed during the
early phases of training. To reduce or eliminate the influence of such early
prediction errors, fading factors [50] or sliding windows can be used on the
prequential error. The second approach to obtain accurate error estimates
over time is the holdout evaluation method. In this approach, the model
is evaluated periodically using a separate holdout test set. This test set is
created by fetching a batch of test examples from the data source prior to
training. On stationary data sources, the concept will not change and it
is therefore valid to repeatedly test the model with the same holdout test
set, which could even be created independently. In our work, the holdout
method was preferred, as it can indicate model performance for incremental
algorithms on data streams as well as on massive data sets. In the later set-
ting, where the incremental learner is applied to a limited massive dataset,
and the model is tested once the algorithm has seen all training examples,
the holdout method is the natural choice. Each repeated model test can be
seen as testing the model learned on a dataset up to the size of the one so far.
Five massive stationary datasets were created, also representing stationary
data streams. As explained, a separate holdout test set was created upfront
for each training run and repeatedly used for evaluation. The trees were
evaluated after every 100,000 training examples using the holdout test set.
The running time needed to test the model is not included in the final run-
time results. The mean absolute error MAE is used as evaluation measure,
and the results for each dataset were averaged over 10 runs.

6.4. EXPERIMENTAL EVALUATION 93

Datasets

GuIP was evaluated on five different stationary datasets: 2DimTree, 2Dim-
Function, 4DimTree, Census and Airline. The 2DimTree, 2DimFunction
and 4DimTree source were each used to create 10 separate training sets of
50,000,000 examples with 10 holdout test sets with a size of 1,000,000 exam-
ples. No noise was added to the target variable. The airline dataset (source)
was used to create ten training sets with 39,682,046 examples with ten test
sets with 1,000,000 examples each. This was done by rearranging the origi-
nal dataset to avoid intrinsic concept drift. The census source was used to
create ten test sets by randomly choosing 500,000 examples from the whole
set without replacement. The respective remainders of the set were used
as the basis for generating each training set by repeated oversampling. Ten
such census training sets were created, each comprising 50,000,000 examples.

6.4.2 Results

All datasets were used to evaluate the normal FIMT algorithm as well as the
FIMT algorithm extended by GuIP. The effect of the prune guard parameter
ξ is tested over a variety of values (299, 300, 500, 700, 1000, 2000, 3000, 4000,
8000, 16000, 24000, 50000 and 1000001). In the following, the influence of
the prune guard parameter on the results is analyzed first, followed by an
interpretation of the final results on all examples. At last, an outlook on the
behavior of FIMT and GuIP using even more examples is given.

Influence of the ξ Parameter

Over all datasets, a similar effect is observed. It is exemplarily shown for
four parameter settings in Figure 6.2 for the 2DimTree dataset and in Fig-
ure 6.3 the airline dataset. Measuring the tree size, the memory usage, and
the runtime over the learning period, a clear relationship to ξ can be ob-
served. Increasing ξ produces larger trees consuming more memory and,
consequently, the runtime increases as well. While there are exceptions pos-
sible for low-dimensional and simpler datasets concerning the runtime (see
Figure 6.2d), the relationship becomes more and more evident for increasing
dimensionality and function complexity (see Figures 6.3a, 6.3b, and 6.3d).
Focusing on the prediction error (MAE) development, the relationship to
ξ seems to be more complex. For the 2DimTree dataset, the MAE first de-
creases with increasing ξ, but rises again for higher values (cf. Figure 6.2c).
On the other hand, for the airline dataset, it constantly decreases and finally
stabilizes on one value (cf. Figure 6.3c). To obtain deeper insights into the

1As each leaf is tested for splitting every observed 300 examples (Nmin) in the leaf,
ξ=299 assures that the split at the last level can also be tested for pruning, before the
child leaves could be split. For all higher ξ values, this split is prevented from pruning by
the prune guard.

94 CHAPTER 6. PRUNING ILMTS

(a) (b)

(c) (d)

Figure 6.2: Learning curves for 2DimTree over tree size, memory usage,
MAE and runtime

relation between MAE and ξ, the final mean results over all 10 runs for all
ξ settings over all datasets can be found in the Tables 6.5 and 6.6 (on pages
104 and 105). These results show the mean value with standard deviations
for the MAE, the runtime in minutes, the number of leaves in the tree, and
the memory consumption in mega bytes over the 10 runs. The results are
compared to FIMT and improvements are displayed in bold. All differences
were tested for significance using the Wilcoxon Signed-Rank Test for paired
samples [141] and non significant differences (p-value > 0.05) are highlighted
(•). The derived relationship between the final MAE and ξ is schematically
shown in Figure 6.4. For datasets with a high function complexity, represent-
ing a highly non-linear problem (e.g., airline dataset), a constant decrease
of the MAE with increasing ξ can be observed, finally stagnating on the
value also achieved by FIMT. For datasets with a more piecewise linear
function, the MAE is decreasing until a minimum is found and increases
again for higher values of ξ2. Again, the MAE stagnates on the value also

2Even though this phenomenon resembles overfitting, this is not the case, as it is
achieved over different settings of ξ. Overfitting is generally not found on any dataset,

6.4. EXPERIMENTAL EVALUATION 95

(a) (b)

(c) (d)

Figure 6.3: Learning curves for Airline over tree size, memory usage, MAE
and runtime

achieved by FIMT for high values of ξ. For a specific range of ξ, the MAE
is lower than the one achieved by FIMT. With increasing piecewise linearity
in the datasets (census → 2DimFunction → 4DimTree → 2DimTree), this
range expands and the MAE improvement at the minimum becomes more
prominent. The ξ value with the minimum MAE depends on the dataset.
The particular ξ with minimum MAE can be explained by the concept and
functioning of the prune guard. It defends a subtree from being pruned, if
its subleaves have not diverged far enough from its root node. Starting from
a single node, the subtree is expanding by seeing more and more examples.
Now, depending on the value of the ξ parameter, the subtree is sooner or
later tested for a significant prediction gain. For small values of ξ, the sub-
tree is tested earlier, and fast significant reductions in the prediction error
are needed or the subtree will be pruned. In this way, for too small values
of ξ, temporarily non-significant beneficial subtrees are not accepted, which
could be preferable for the prediction accuracy in the long run. By increas-

as the MAE learning curves are not increasing with more examples (cf. Figures 6.2c and
6.3c).

96 CHAPTER 6. PRUNING ILMTS

Figure 6.4: Relationship between MAE and ξ for different function com-
plexities

ing ξ, the guarded subtrees are getting bigger, consisting of an increasing
number of levels. By that, subtrees with a possible non-significant prediction
gain in early stages, are guarded from being pruned and can result in a sig-
nificant, beneficial subtree. This is supported by the results from the Tables
6.5 and 6.6 (on pages 104 and 105), as the MAE improves with increasing ξ.
Datasets with a highly non-linear function even benefit from high values of
the ξ parameter. For these kind of datasets, pruning itself is harmful as the
calculated piecewise linear approximation still improves with every further
split and tree growth. Consequently, the final MAE benefits from strong
prune guards, resulting in larger subtrees. Due to the finer piecewise linear
approximation of these subtrees, the prediction gain will become more pro-
nounced, resulting in less pruning. Ultimately, no pruning will occur, and
the same results as the ones from FIMT are obtained. For datasets with
a more piecewise linear function, setting the prune guard to too high val-
ues would harm the final MAE. Although the guarded subtrees will usually
result in a significant prediction gain, mostly suboptimal subtrees will be
found. In contrast to high non-linear functions, a better prediction can be
reached here by guiding the subtree to a more optimal tree. This can be
achieved by adjusting the ξ parameter in such a way that the subtree still
has the chance to grow and overcome first non-significant prediction gains,
but is still guided by pruning to the optimal subtree.

6.4. EXPERIMENTAL EVALUATION 97

Final Results

As mentioned above, the results in the Tables 6.5 and 6.6 (on pages 104
and 105) display the final mean results after observing all examples from
the stationary data sources. To be able to evaluate the MAE differences
between the FIMT and GuIP approaches properly, a FIMT tree restricted
to only one node (resulting in a perceptron algorithm) was used as baseline
algorithm and also run on all datasets (cf. Tables 6.5 and 6.6 Perceptron).
The results should be interpreted in the order of increasing data dimension-
ality and linear function complexity. It can be observed that the runtime
is increased using the pruning approach on the datasets with a very small
dimensionality (≤ 2). This is due to the small number of dimensions com-
bined with the pruning overhead (pruning after each example, updating the
models and statistics in each node). This overhead is further boosted by the
relatively large absolute tree sizes and the small differences in size between
the pruned trees and the unpruned trees. Nevertheless, the prediction error
is significantly improved for the 2DimTree dataset by 48% with the best ξ
setting (ξ = 24, 000) using a 11% smaller tree. If tree size and memory con-
sumption is in focus, the MAE can still be significantly improved (by 35%)
using a 30% smaller tree needing 30% less memory (ξ = 1, 000). Increasing
the dimensionality, as done on the 4DimTree dataset, delivers more accurate
models, smaller trees and a runtime advantage. An error improvement of
40% with a 55% smaller tree (52% less memory), which was learned in only
61% of the time, can be found with the best setting (ξ = 1, 000). Choosing
a highly non-linear function with very small dimensionality, as done on the
2DimFunction dataset, indicates that pruning is costly for this function. For
the best MAE setting, a significant MAE improvement can be achieved at
the cost of a higher runtime, needing more memory (ξ = 50, 000). Nev-
ertheless, the tree size could be decreased by 31% (ξ = 1, 000) with only a
negligible increase in prediction error. Real-world datasets, including census
and airline, are often very high-dimensional. Applying the different pruning
settings on the census dataset resulted in a slightly better (but not signifi-
cant) improvement of the MAE with a 28% smaller tree. If only a marginal
MAE increase is acceptable, the runtime can, for example, be decreased by
37%, building a 95% smaller tree, needing 90% less memory (ξ = 4, 000).
These percentages can still be improved by lowering the ξ parameter. The
airline dataset is the one with the most complex non-linear function. Ap-
plying pruning on the dataset is not beneficial at all for the MAE reduction.
The best MAE is achieved if pruning is disabled. Nevertheless, when the
prediction accuracy is not in focus, but runtime limitations raise the need for
fast learners, GuIP can speed up the process by only marginally increasing
the MAE. For ξ = 4, 000, a runtime improvement of 38% with a tree size
decrease of 81% consuming 67% less memory can be found. This is done
at the expense of increasing the MAE by only 0.07, representing a deterio-

98 CHAPTER 6. PRUNING ILMTS

ration of the prediction by only 4.2 seconds for a target variable spanning
189 minutes. In application domains where marginally worse predictions are
acceptable, the tree size, memory usage as well as the processing speed can
benefit considerably from GuIP.

Outlook

To enable further insights into the advantage of GuIP over time, learning
curves for all datasets over the difference between the values of FIMT and
FIMT with GuIP (FIMT - GuIP ξ=4000) are analyzed (see Figure 6.5). Fig-
ure 6.5b shows that the MAE difference between the two approaches reaches
a stable state (for the airline dataset beginning at 30 million examples), while
the tree size difference increases steadily (see Figure 6.5a, please notice the
log-scale) and, consequently, the runtime difference increases as well (refer
Figure 6.5c). This effect is strongly boosted with increasing data dimen-
sionality and complexity of the target function. This shows that the more
examples are processed, the more evident the speed advantage enjoyed by
the ILMT using GuIP becomes, while predictive performance remains com-
petitive. The small two-dimensional datasets are an exception concerning
the runtime, because of the above-mentioned pruning overhead.

6.5 GuIP Application Scenarios

GuIP is an extension of ILMTs for stationary data sources. These data
sources could either be stationary data streams or massive datasets. The
usage of GuIP in these application domains is further motivated in this
section.

6.5.1 Stationary Data Streams

The first application scenario of GuIP lies in the area of data streams. If the
data stream speed is slower than the algorithm intrinsic maximal example
processing speed, every example from the data stream can be processed
and predictions can be made. If, however, the processing speed is too slow
relative to the stream speed, most of the approaches have to leave out data
which could be useful or even essential for the learning process (e.g., methods
based on load shedding or sampling [84, 77]). Special frameworks are being
developed to handle every example from even very high speed data streams
overwhelming the learning algorithm [62]. Nevertheless, additional memory
and CPU power is permanently needed. Using GuIP on ILMTs gives the
chance to adopt the algorithm processing speed directly to the data stream
speed by adjusting ξ. Doing so, the maximal prediction accuracy can be
gained by still processing all examples. To find the ξ value best suitable for
the data stream speed, several parameter settings can be used in parallel, and

6.5. GUIP APPLICATION SCENARIOS 99

all but one with the best prediction accuracy still covering the data stream
speed can be removed. For the cases of altering data streams, again several
ILMTs using GuIP with different ξ parameter can be used. Depending
on the actual data stream speed, the optimal model can be picked. After
a certain number of examples, all ILMTs with a ξ value higher than the
current best one (lowest test MAE / minimum) can be removed, as they
have equal or even worse MAE and longer runtime.

6.5.2 Massive Datasets

To learn from massive datasets, batch algorithms are still the state of the art.
These kind of algorithms have to see the whole dataset at once at training
time. This is usually done by loading and processing all examples in main
memory. For the cases where main memory is too small to store all exam-
ples, alternative approaches have been developed. A widely used approach
is, e.g., sampling, where a representative subset from the whole dataset is
chosen, and then fed into a complex learning algorithm. A recent article by
P. Domingos [34], however, has argued that the fastest way to an improved
accuracy is to use more data in a simpler algorithm instead of a limited
amount of data in a complex algorithm. Complex learning algorithms take
much longer to be learned, consume more CPU time and especially require
more cycles of parameter optimization and human involvement. This is due
to their harder usage: Internals are more opaque and more tuning needs
to be done to achieve good results. To evaluate the prediction gain with
more examples, we further compare the performance of the online learning
approaches with the performance of a batch learner using sampling. This
is done by using the Weka-Workbench Version 3.7.5, which is also imple-
mented in JAVA and thus ensures trustworthy runtime comparisons. For
each process, the Java environment received once again 3 GB of RAM. As
the M5 algorithm is the batch version of the FIMT algorithm, the imple-
mentation in Weka (M5P [140]) is used with default parameters. Smoothing
is deactivated, as it is also not used in FIMT and pruning is activated. For
the sampling method, the reservoir sampling algorithm “R” [136] was cho-
sen. As before, M5P & R is used on each of the 10 training sets for each
dataset and tested on the corresponding test set. The results are again av-
eraged. Table 6.2 shows the maximal amount of examples that can be used
to train the model using 3 GB of RAM. Depending on the complexity of
the dataset, the amount of examples is between 5.8 million and 0.8 million
examples. While the batch learner (M5P & R) can only use a very small
subsample of the whole dataset consuming 3 GB of RAM, the online learner
(FIMT & GuIP) is able to process all examples with a much lower memory
consumption (cf. Table 6.3). Comparing the batch algorithm results in
Table 6.4 with the online learning results in the Table 6.5 and 6.6 shows an
advantage of the batch learner for the datasets with a simple piecewise linear

100 CHAPTER 6. PRUNING ILMTS

Table 6.2: Maximal amount of processable training examples for each
dataset.

Dataset Examples in mio.

2DimTree 5.8

2DimFunction 4.9

4DimTree 4.3

airline 1.4

census 0.8

Table 6.3: Maximal model memory usage of the online learner (FIMT with
GuIP).

Dataset MBytes

2DimTree 11.19 (0.34)

2DimFunction 3.96 (0.14)

4DimTree 261.59 (7.97)

airline 302.49 (2.70)

census 118.44 (2.73)

function. The 2DimTree dataset is a dataset with a very simple piecewise
linear function, which favors linear model trees. Consequently, only a small
subsample is enough for the batch learner to build a well-performing model
for the function. The same is true for the 4DimTree dataset. But because
of the increased complexity in the 4DimTree dataset, the performance gap
between the online and the batch approach becomes smaller. In fact, with a
suitable value of ξ (e.g. ξ = 1, 000), the MAE for the online approach is even
lower than for the batch learner. The advantage of the online learning ap-
proach can be seen with even more complex, non-linear datasets. Beginning
with the airline dataset, the online learner could process 48.6 million exam-
ples more in only 60% (ξ = 4, 000) of the time the batch algorithm needed,
showing an improved prediction accuracy. For higher values of ξ, the online
learner even further improves its prediction accuracy, but needs more run-
time than the batch algorithm. For the census dataset, a marginally lower
prediction accuracy is achieved by processing even 49.2 million more exam-
ples in only 56% (ξ = 4, 000) of the time, or a lower MAE can be obtained
in 86% of the time (ξ = 8, 000). The biggest improvement in the prediction
error can be observed on the 2DimFunction dataset, where the online learner
has a 67% lower MAE by processing 45.1 million more examples using only
70% of the time (ξ = 50, 000). As can be seen in Figure 6.2c and 6.3c,
the online learner with the appropriate parameter setting improves its pre-
diction accuracy even further with every new example. Consequently, the

6.6. CONCLUSION 101

Table 6.4: Performance of M5P & R with pruning using the maximal dataset
specific training examples.

Dataset MAE Runtime Leaves
in min.

2DimTree 0.0007 (0.0000) 6.05 (0.42) 21.4 (1.1)

2DimFunction 0.0067 (0.0002) 7.11 (1.02) 322.1 (10.8)

4DimTree 0.1894 (0.0173) 11.78 (1.36) 234.3 (39.73)

airline 8.3306 (0.0101) 49.03 (6.55) 251.7 (34.9)

census 0.3154 (0.0016) 37.48 (4.52) 142.6 (38.7)

online learner can steadily improve its prediction performance with larger
datasets, while the batch learner’s prediction performance is limited by the
examples fitting into main memory.
These results show the advantage of GuIP and FIMT over its batch equiv-
alents, when a suitable ξ value is chosen. Finding this value may appear
as a challenge at first glance. But only two scenarios are possible in prac-
tice when working with datasets. Sufficient time is available or time is a
limiting factor that can be very strong. When sufficient time is available,
several ξ parameters can be tested to approach the MAE minimum for the
best model. The minimum can be identified when the MAE is rising again
with increasing ξ values. But in most applications, time is a strong limiting
factor. Results have to be gained within a very short period of time by pos-
sibly running the algorithm several times to obtain, e.g., the best parameter
settings. While long runtimes would hinder this evaluation process or even
make it impossible [34], GuIP reduces the runtime substantially by choosing
a small ξ value. Once the proper setting for the algorithm is found, and first
useful results are available, ξ can be increased stepwise to obtain further
MAE improvements, if needed.

6.6 Conclusion

The guarded incremental pruning approach GuIP for stationary data sources
was presented. It is an extension of incremental linear model trees with
approximate lookahead in general and was exemplarily integrated into the
FIMT algorithm. Results on five massive datasets showed that the predic-
tion accuracy, tree size, memory consumption and consequently, the example
processing speed are influenced by the prune guard parameter ξ. By adjust-
ing ξ, a prediction accuracy gain can be achieved depending on the degree
of dataset complexity. For less complex datasets, this gain can be achieved
along with producing significantly smaller trees in a fraction of the time.
For more complex datasets, more time is needed to achieve a better or equal

102 CHAPTER 6. PRUNING ILMTS

accuracy. When runtime is a limiting factor, decreasing ξ can immensely
speed up the learning process by a significant reduction of tree size. More-
over, for less complex datasets, a smaller ξ value may still result in a better
prediction accuracy, while for more complex datasets, a marginal decrease
of prediction accuracy can occur. Consequently, depending on the require-
ments, if processing speed or prediction accuracy is more important, the tree
can be tuned accordingly. The tree size and processing speed advantage be-
comes even more pronounced given more and more examples without any
prediction disadvantage. Additionally, the advantage over the equivalent
batch algorithm has been shown on complex massive datasets. Improved
prediction results are obtained in only a fraction of the time needed by the
batch algorithm. Moreover, additional examples still improve the prediction
accuracy of the online algorithm, which leads to a more marked advantage
for even larger datasets.

Developing a more sophisticated adaptive method for choosing the op-
timal value for ξ is a direction for future work. Moreover, it would be
interesting to apply GuIP to the domain of evolving data streams, to eval-
uate its ability to detect concept drift. Additionally, it may be interesting
to investigate periodical pruning (pruning after processing multiple exam-
ples, instead of pruning after every single example), to further increase the
processing speed. Finally, it would interesting to see if any of the presented
techniques could be useful for the development of online quantile regression
trees.

6.6. CONCLUSION 103

(a)

(b)

(c)

Figure 6.5: Learning curves for tree size, MAE and runtime over all 39.68
million examples in the airline dataset and 50 million examples in the re-
maining datasets. The difference between the value of FIMT and ξ=4000
(FIMT - ξ=4000) is plotted for each evaluation measure.

104 CHAPTER 6. PRUNING ILMTS

Table 6.5: Results on the artificial datasets after 50 million examples
presenting mean (stdev). Non-significant differences to FIMT using the
Wilcoxon Signed-Rank Test are marked with • (p-value > 0.05).

2DimTree

MAE
Runtime

Leaves MBytes
in min.

Perceptron 1.1025 (0.0021) 2.31 (0.12) 1 (0) 0.20 (0)
FIMT 0.0113 (0.0011) 5.07 (0.54) 704.4 (24.0) 10.08 (0.32)

ξ =
299 0.0311 (0.0262) 8.28 (1.44) 226.9 (118.7) 3.31 (1.59)
300 0.0227 (0.0251) • 7.61 (1.13) 288.5 (169.3) 4.33 (2.34)
500 0.0148 (0.0064) • 8.40 (1.24) 325.6 (129.9) 4.46 (1.81)
700 0.0081 (0.0041) • 7.51 (0.90) 435.9 (87.2) 6.07 (1.40)
1000 0.0074 (0.0023) 7.38 (0.97) 496.2 (94.4) 7.01 (1.55)
2000 0.0068 (0.0008) 7.72 (1.22) 556.0 (84.1) 7.83 (1.35)
3000 0.0065 (0.0007) 7.83 (0.89) 590.9 (43.3) 8.38 (0.71)
4000 0.0066 (0.0006) 8.07 (0.83) 606.0 (28.1) 8.68 (0.39)
8000 0.0067 (0.0007) 7.24 (0.81) 613.9 (26.85) 8.77 (0.31)
16000 0.0067 (0.0006) 7.66 (0.25) 622.6 (24.36) 9.00 (0.35)
24000 0.0059 (0.0011) 7.26 (0.21)) 624.4 (29.94) 9.05 (0.38)
50000 0.0066 (0.0010) 7.43 (0.24) 642.1 (26.96) 9.35 (0.45)
100000 0.0113 (0.0011) • 7.92 (0.41) 704.2 (23.99) • 11.19 (0.34)

2DimFunction

MAE
Runtime

Leaves MBytes
in min.

Perceptron 0.34603 (0.00179) 1.99 (0.08) 1 (0) 0.04 (0)
FIMT 0.00221 (0.00026) 2.55 (0.29) 1083.9 (47.5) 2.43 (0.07)

ξ =
299 0.03496 (0.01305) 4.84 (0.46) 381.1 (49.3) 1.49 (0.17)
300 0.03145 (0.00879) 4.76 (0.35) 403.7 (42.6) 1.57 (0.14)
500 0.02415 (0.00579) 5.27 (0.49) 489.2 (89.9) 1.80 (0.28)
700 0.02042 (0.00645) 5.52 (0.74) 554.1 (73.8) 2.00 (0.22)
1000 0.00609 (0.00095) 6.18 (0.56) 752.0 (53.4) 2.65 (0.17)
2000 0.00343 (0.00055) 6.07 (0.64) 885.8 (52.9) 3.06 (0.13)
3000 0.00294 (0.00050) 6.07 (0.70) 927.1 (49.8) 3.17 (0.12)
4000 0.00271 (0.00035) 6.28 (0.69) 963.6 (61.9) 3.27 (0.14)
8000 0.00244 (0.00032) 6.24 (0.64) 1005.0 (58.7) 3.38 (0.15)
16000 0.00235 (0.00026) 5.69 (0.23) 1025.5 (56.5) 3.46 (0.13)
24000 0.00223 (0.00027) • 5.34 (0.14) 1060.7 (42.9) 3.59 (0.10)
50000 0.00219 (0.00026) 4.99 (0.24) 1081.9 (48.8) • 3.74 (0.13)
100000 0.00221 (0.00025) • 5.06 (0.12) 1083.8 (47.41) • 3.96 (0.14)

4DimTree

MAE
Runtime

Leaves MBytes
in min.

Perceptron 9.5151 (0.0895) 3.87 (0.13) 1 (0) 0.40 (0)
FIMT 0.2804 (0.0198) 82.05 (9.09) 10590.6 (331.0) 238.61

ξ =
299 9.5151 (0.0895) 27.74 (7.39) 1 (0) 0.51 (0)
300 9.5151 (0.0895) 31.51 (10.22) 1 (0) 0.51 (0)
500 8.4211 (0.8923) 7.32 (0.56) 12.6 (6.6) 0.54 (0.29)
700 0.3823 (0.0488) 28.04 (2.89) 1681.8 (287.4) 45.21 (7.63)
1000 0.1681 (0.0338) 50.03 (8.66) 4784 (1061.4) 115.64 (19.76)
2000 0.1840 (0.0266) 67.97 (6.54) 8079 (386.5) 184.72 (8.33)
3000 0.2007 (0.0168) 72.68 (8.28) 8975.4 (366.9) 203.43 (9.6)
4000 0.2127 (0.0165) 81.71 (9.57) • 9370.2 (305.7) 212.42 (7.90)
8000 0.2447 (0.0201) 85.50 (8.74) • 10342 (346.07) 238.24 (7.67) •
16000 0.2632 (0.0228) 95.00 (3.78) 10548.9 (328.6) 250.6 (8.21)
24000 0.2729 (0.0233) 94.08 (4.87) 10577.2 (329.54) 257.35 (7.92)
50000 0.2804 (0.0198) • 97.36 (5.69) 10590.6 (331.0) • 261.52 (7.98)
100000 0.2804 (0.0198) • 95.29 (8.41) 10590.6 (331.0) • 261.59 (7.97)

6.6. CONCLUSION 105

Table 6.6: Results on the real-world datasets after 50 million and 39.68
million (airline) examples presenting mean (stdev). Non-significant differ-
ences to FIMT using the Wilcoxon Signed-Rank Test are marked with •
(p-value > 0.05).

airline

MAE
Runtime

Leaves MBytes
in min.

Perceptron 8.3883 (0.0101) 9.28 (0.23) 1 (0) 0.25 (0)
FIMT 8.2451 (0.0098) 47.43 (5.47) 15351.2 (103.1) 185.49 (2.03)

ξ =
299 8.3879 (0.0084) 10.43 (1.01) 5.1 (1.3) 0.21 (0.07)
300 8.3872 (0.0103) 10.50 (0.87) 6.0 (3.1) 0.32 (0.11)
500 8.3823 (0.0177) 10.91 (0.91) 19.9 (11.4) 0.74 (0.41)
700 8.3754 (0.0133) 10.64 (0.86) 51.7 (25.5) 1.74 (0.77)
1000 8.3728 (0.0189) 10.57 (0.78) 52.5 (26.8) 1.87 (0.87)
2000 8.3566 (0.0110) 13.66 (1.72) 325.1 (136.0) 8.88 (3.16)
3000 8.3443 (0.0098) 18.08 (1.66) 797.6 (363.8) 19.80 (8.36)
4000 8.3126 (0.0145) 29.51 (4.12) 2888 (1025.0) 61.32 (20.64)
8000 8.2566 (0.0095) 65.62 (7.13) 12803.6 (1710.6) 243.85 (29.74)
16000 8.2451 (0.0097) • 79.13 (2.82) 15338.2 (116.9) • 291.47 (2.95)
24000 8.2451 (0.0098) • 79.99 (2.45) 15351.2 (103.1) • 294.04 (2.67)
50000 8.2451 (0.0098) • 85.37 (1.33) 15351.2 (103.1) • 299.93 (2.63)
100000 8.2451 (0.0098) • 84.40 (2.10) 15351.2 (103.1) • 302.49 (2.70)

census

MAE
Runtime

Leaves MBytes
in min.

Perceptron 0.40431 (0.0029) 18.80 (0.39) 1 (0) 0.05 (0)
FIMT 0.3135 (0.0010) 33.13 (0.91) 3847.9 (89.5) 69.00 (1.53)

ξ =
299 0.3485 (0.0019) 18.10 (1.14) 2.7 (0.7) 0.14 (0.03)
300 0.3485 (0.0018) 17.58 (0.33) 2.5 (0.7) 0.13 (0.03)
500 0.3483 (0.0017) 17.89 (0.82) 4.5 (2.0) 0.20 (0.07)
700 0.3464 (0.0035) 18.65 (1.19) 4.1 (2.6) 0.19 (0.09)
1000 0.3455 (0.0032) 18.18 (0.75) 7.9 (3.0) 0.33 (0.12)
2000 0.3382 (0.0095) 18.79 (1.22) 25.8 (14.2) 0.98 (0.52)
3000 0.3280 (0.0069) 19.39 (1.17) 91.8 (102.2) 3.25 (3.45)
4000 0.3241 (0.0084) 20.88 (1.20) 201.1 (145.9) 6.97 (4.91)
8000 0.3140 (0.0012) 32.37 (5.23) • 1217.9 (377.70) 38.96 (11.48)
16000 0.3133 (0.0009) • 48.50 (6.96) 2787.9 (688.03) 85.57 (19.90)
24000 0.3135 (0.0010) • 53.86 (1.59) 3724.3 (114.0) 112.90 (3.22)
50000 0.3135 (0.0010) • 57.29 (1.68) 3847.9 (89.5) • 117.25 (2.67)
100000 0.3135 (0.0010) • 57.33 (2.12) 3847.9 (89.5) • 118.44 (2.73)

106 CHAPTER 6. PRUNING ILMTS

Chapter 7

Towards Real-Time Machine
Learning

7.1 Introduction

Over the past few years, the amount of collected information has been in-
creasing extremely, and new challenges are posed to classical machine learn-
ing algorithms. Web applications, social services and sensors capturing the
environment with increasing quality produce a steadily growing mass of data.
Next generation sequencing (NGS) technologies double their sequencing ca-
pacity of base pairs (bp) per dollar every fifth month [125], the “LifeShirt”
project [23] monitors the health status of patients with body sensors, gen-
erating 200 MB over 24 h for one person, and the NASA Earth Observation
System (EOS) produces 2.9 TB data per day [24], to name just a few promi-
nent examples. Such high-speed data streams (DS) can be found in many
other areas beyond science as well, like finance, web applications or telecom-
munications.

While the mass of data is steadily increasing and data streams constantly
gain in speed, online learning algorithms used to process the data are natu-
rally limited by their maximal instance processing speed. As the evolution
of these massive data streams is much faster than the improvement of CPU
power after Moore’s law [100], the gap increases between available and pro-
cessable data. As a consequence, not all provided instances in a stream
can be used by the learning algorithm and some have to be skipped. This
could be especially harmful if the skipped instances would reveal important
insights to the user. To avoid skipping instances and to still enable (po-
tential) insights, currently not processable instances could, in principle, be
externally stored for later processing. However, as the data stream speed
is higher than the processing speed, the algorithm is constantly challenged
by the amount of data, and the amount of stored instances is constantly
increasing. Besides memory usage, the time span from the arrival of the

107

108 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

instances to their processing (response time) is steadily increasing as well.
This processing delay can result in outdated information, and important
events might be missed. To address these issues, this chapter introduces
PAFAS (Prediction Assured Framework for Arbitrarily Fast Data Streams)
[62], a framework to handle high-speed data streams that potentially go to
or beyond the limits of the processing speed of the online learning algorithm.
The contributions of PAFAS are:

1. All unlabeled instances in the data stream receive a prediction.

2. The prediction is given promptly after the instances’ arrival time.

3. The prediction model is constantly improved (independent of the DS
speed).

4. No external instance storage is needed.

The framework can be applied whenever events have to be detected as soon
as possible, and no information is allowed to be missed to detect these
events. We believe that concepts for the embedding of machine learning
into real-world systems are required, taking into account the time it takes
to make a prediction as well as the time it takes to train or refine a model.
In this chapter, we discuss one such framework and present evidence from
experiments with varying loads.

This chapter is organized as follows. First, related work is presented.
Then, the problem setting is presented along with the proposed framework.
Subsequently, the evaluation of the framework is presented in Section 7.4.
The chapter closes with a discussion.

7.2 Related Work

Data stream mining has developed considerably in the past decade and at-
tracted many researchers to adopt existing algorithms for the challenging
task to process and reason about instances received at a very high speed
[46]. One part addresses the adaptation of batch algorithms to cope with
the data stream setting [36] by, e.g. incremental batch approaches [138].
To provide a specific environment for efficient data stream processing, data
stream management systems (DSMS) have been developed. Such systems
are adaptations of database management systems (DBMS) to query con-
tinuous, unbounded data streams possibly in combination with pre-stored,
fixed datasets. Two well-known DSMS, AURORA [1] and STREAM [7], use
their own language to query data streams. Both systems also address the
problem of too fast data streams, i.e., when the system is not capable of
processing all of the instances provided by the data stream. They use load
shedding (also implemented in a system environment [26]) to select instances

7.2. PAFAS 109

of the data stream that should be processed. Based on Quality-Of-Service
(QoS) specifications, the system decides which instances are useful for the
system to fetch and which instances can be discarded. The main idea is to
select instances that will most probably lead to a good prediction. Another
possibility to cope with too fast data streams is sampling. Sampling is a
technique to represent a larger dataset by a smaller selected subset. It was
frequently applied to reduce the overall processing time of data mining al-
gorithms and to efficiently scan large datasets [128]. In the simplest case it
selects a random subset from the whole data set as an input for the learner.
Frequently, the purpose of this is to estimate the quality of the result [35].
Another possibility to cope with very fast data streams is to adapt the
mining technique corresponding to the currently available resources. Such
methods are summarized under the heading of granularity-based techniques.
While load shedding and sampling change the input granularity of the data
mining method, the output of the data mining method can also be reduced,
e.g. the number of rules or clusters [45]. Then, the model that is used for
classification is smaller and thus also more time-efficient, i.e., more instances
can be processed in less time. This method termed Algorithm Output Gran-
ularity (AOG) can also be applied to various data mining schemes like clus-
tering, classification or frequent set mining. Last, anytime algorithms are
also often used for altering data stream speeds, as they can be interrupted
anytime to return an intermediate result [123]. The more time available,
the better the result has to be. Most of the presented approaches make use
of a resource monitor (also called controller) that decides how an instance
will be processed, depending on the current data stream speed. We will also
make use of this successful concept in our work. However, none of these
methods addresses the case when there are labeled and unlabeled instances
in the data stream and the user expects a classification for each unlabeled
instance. If one applies load shedding or sampling on such a data stream,
instances may drop out of the process and no prediction would be made for
them. If AOG was used in such a case, then still the data stream may be
too fast for even the smallest model. This would either lead to a memory
exception or long response times for such instances. Anytime algorithms
need an initialization period for each instance and consequently, they can
be overwhelmed by fast data streams as well. Therefore, we propose an
approach that guarantees prompt prediction of each unlabeled instance by
adaptation to data streams of varying speeds.

7.3 Prediction Assured Framework for Arbitrarily
Fast Data Streams (PAFAS)

This section first introduces the problem setting and then specifies PAFAS,
which is proposed to tackle the problem.

110 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

7.3.1 Problem Setting

A data stream DS = {i1, . . . , ij , . . . , i∞} is a possibly unbounded sequence
of instances i ∈ Rk observed in increasing order of index j, where each
instance is observed at a specific time point tj . Each instance ij =<
xj1, . . . , xjk−1, yj > consists of attributes with known values (xjk) and an
attribute of interest (yi, the target variable) with a possibly missing value.
Depending on the attribute of interest, we distinguish between two types
of data streams. In the first data stream type, the value for the attribute
of interest is given (DSL / labeled data stream) and in the second, the at-
tribute value is missing (DSU / unlabeled data stream). As the value of
yj in DSU is important in the application domain, a model M is trained
on DSL, where yj is known for each instance. Model M is then applied
on DSU to make a prediction ŷj for yj . For simplicity, model and learning
algorithm are merged into one entity in our framework, incorporating both
the representation of the model (function) and learning / adaptation func-
tionality. Each data stream has a specific speed ~vDS , defined as the number
of instances observed in the streams in a specific time interval. Furthermore,
each model M has a specific instance processing speed ~vM , defined as the
number of instances processable in a specific time interval. For high speed
data streams, ~vL >> ~vM and ~vU >> ~vM . Consequently, not all instances
ij ∈ DSL and ij ∈ DSU can be processed by M . As the prediction of ŷj for
all ij ∈ DSU is essential in the application domain, the task is to predict
ŷj as soon as possible after receiving instance ij from DSU . This prediction
has to be made as good as possible for all ij ∈ DSU . Instances without a ŷj
prediction are not allowed in our envisaged usage.

7.3.2 Approach Specification

To address the given problem setting, we integrate a so-called controller
into the online process (cf. Figure 7.1, center). The controller fetches the
instances over a specific time interval tf , which we refer to as fetching in-
terval, from the data streams DSL and DSU . These instances are defined
as X ′tr for the instances fetched from the data stream DSL and X ′pr for the
instances fetched from DSU over the time interval tf . After each fetching
interval, the controller uses the instances in X ′tr to further train the model
M and the instances in X ′pr to receive predictions from M . Meanwhile, new
instances are collected in the new fetching interval. That way, the controller
works as a buffer between the data streams, where the instances can arrive
in altering time intervals, and M , where the instances are processed at a
constant speed. Furthermore, the controller assures that M is only used by
the instances in a time interval of tf and that the model is then available
for the next instances in X ′tr and X ′pr from the next fetching interval. As
it is mandatory that all instances ij ∈ X ′pr receive a value ŷ, the controller

7.3. PAFAS 111

Figure 7.1: Illustration of the problem setting. Two data streams DSU and
DSL provide instances with speed vL and vU . The task is to predict ŷi as
soon as possible for each instance from DSU using model M . To handle
very fast data streams, the controller manages the instance processing.

prefers these instances and passes them before the instances in X ′tr to the
model M . In the case where the data stream speed is constantly higher than
the instance processing speed of the model (i.e. ~vU > ~vM), a state is reached
where not all instances from DSU would receive a prediction. Additionally,
the model M would not be further improved by the instances from DSL,
because no time is left to process these instances. That is why the time
interval tf is divided into tpr and ttr (tpr + ttr = tf). tpr is the maximal
time given to the instances in X ′pr to receive a prediction ŷ from the model
M , and ttr is the maximal time given to the instances in X ′tr to improve
the model M . As DSL and DSU can have different speeds, the amount of
instances in X ′tr and X ′pr can be highly unequal. An equal share of the time
would not be suitable. Consequently, tpr is calculated as the proportional
number of instances in X ′pr over all instances in the controller. Therefore,
the time given for the instances in X ′pr is

tpr =
X ′pr

X ′pr +X ′tr
.

112 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

However, as ~vM is normally faster for the prediction task than for the train-
ing task, there may be the case where the time for the prediction is not fully
required, and a prediction for all instances in X ′pr is given in t′pr (t′pr ≤ tpr).
Then, the training of the model starts immediately, which gives the instances
in X ′tr the following maximal time for training:

ttr = tf − t′pr.

Such a flexible approach guarantees that the given time is used for both:
training and prediction. In the case when ~vU (~vL) is higher than ~vM , the
controller is aware that not all instances in X ′pr (X ′tr) can be processed by
M in tpr (ttr). Therefore, only a specific part Xpr ⊆ X ′pr (Xtr ⊆ X ′tr) can be

processed in tpr (ttr), while the rest Xpr ⊆ X ′pr (Xtr ⊆ X ′tr) is not provided
to the model by the controller. While the controller can discard all instances
from Xtr, it is mandatory that also all instances from Xpr receive a value
for the attribute of interest y. As there is no time left in tpr, the model
M cannot be applied. To guarantee a prediction, the controller assigns
the average value of the attribute of interest over all processed instances
ei ∈ DSL (y) to all instances in Xpr.

7.4 Experimental Evaluation

This section evaluates the proposed framework on three different data streams,
using three different learning algorithms. First, the data stream generation
is explained. Second, two alternative frameworks are described, which are
used for comparison in the following evaluation. Third, the experimental
setup as well as the used learning algorithms are explained. At last, the
results are shown and discussed.

7.4.1 Data Streams

Our approach is evaluated on three different data streams. To simulate the
high speed data streams, 1 GB of RAM is filled with instances randomly
chosen from each data source (2DimTree, Airline and Census) prior to the
evaluation process. The data streams DSL and DSU are then created by
randomly choosing instances from the main memory. Prior storage and
fetching of the instances from the main memory is necessary to emulate
data streams of sufficiently high speed.

7.4.2 Alternative Frameworks

There are two straightforward frameworks to handle high speed data streams
with a speed higher than the instance processing speed of the model:

The running-sushi framework (RSF) processes only a random subset of

7.4. EXPERIMENTAL EVALUATION 113

Figure 7.2: Illustration of the running-sushi framework.

the data stream instances (sampling). It is based on the idea to fetch an
instance from the data stream DS as soon as the model M is ready to pro-
cess a new instance. Metaphorically, the data stream can be compared to
a conveyor belt in a running sushi bar. There, you always take the next
available sushi off the conveyor belt and eat it. As soon as you have finished
one piece, you can take the next one. Transferring this idea to the given
problem setting, the sushi belt corresponds to the data stream and each
single sushi is an instance from DSU or DSL. The guest is the model M
that processes the instances. An illustration of the framework is given by
Figure 7.2. The data stream passes the model and each time the model is
not processing or has finished processing an instance, the current instance in
the stream is selected by the model. Labeled instances are used for training
and unlabeled instances receive a prediction from the model. As long as the
model is processing an instance, all arriving labeled and unlabeled instances
from the stream pass.
The queue framework (QF) uses an external storage to process all instances
by the model M . Each unlabeled instance receives a prediction, and each
labeled instance is used to improve the model quality. Instances that can-
not be processed by the model immediately are stored in a queue (FIFO
principle) for later processing when the resources (time) are available. If
the speed of the data stream exceeds the processing speed of the model,

114 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

Figure 7.3: Illustration of the queue framework.

the queue extends, and if the data stream speed decreases again, the queue
shrinks. The process ends when an overflow appears. An illustration of the
framework is given by Figure 7.3.

7.4.3 Experimental Setup

Our framework is compared to the alternative frameworks on all three data
streams. To show the flexibility and usability to integrate all kinds of in-
cremental learning algorithms, all three approaches were used with three
different incremental learning algorithms: FIMT, IMTI-RD, IMTI-RA (see
Section 3.3.2 for a detailed algorithm description). The whole approach as
well as the algorithms is written in JAVA. While the FIMT algorithm is
a reimplementation based on the published information, the IMTI-RD and
IMTI-RA algorithms are original implementations provided by the authors.
All three incremental linear model trees were run with default parameters,
proposed in the original publication or implementation. All runs were per-
formed on an AMD processor with 2.6 GHz and each JAVA process was

7.4. EXPERIMENTAL EVALUATION 115

Table 7.1: Maximal data stream processing speed (middle) and the maximal
number of collected DS instances ij until a memory exception takes place
for QF (right)

Data stream Algorithm Max. ~vL Max. ~vU Max. ij using
QF (mio)

2DimTree

FIMT 434,852 2,781,893 336
IMTI-RA 29,551 2,858,142 386
IMTI-RD 18,612 4,370,217 402

Airline

FIMT 60,909 358,009 253
IMTI-RA 579 1,424,470 351
IMTI-RD 45 2,565,789 353

Census

FIMT 52,241 319,892 186
IMTI-RA 113 801,056 271
IMTI-RD 5 1,678,321 270

given 3800 MB of RAM. The following results are the averaged means of
5 runs using different instance orders in the streams. To motivate our ap-
proach, the maximal instance processing speed of each learning algorithm
is presented first. Then, each framework is tested using each learning algo-
rithm on all three data streams. The data stream speeds are both set to
1,700,000 instances per second (~vL = 1, 700, 000 instances per second (ips)
and ~vU = 1, 700, 000 ips). For PAFAS, tf is set to 50 milliseconds. The
applicability of the three different frameworks on the given high speed data
streams is evaluated based on the number of processed instances, and an
analysis of the response time is given. Finally, the prediction accuracy of
each framework is compared.

7.4.4 Results

To test the maximal genuine instance processing speed of each learning
algorithm, instances are loaded into the main memory and directly fed to the
learning algorithm without any processing system in between. The number
of instances that can be used for training (or processed for the prediction
respectively) in a second is measured. This can be be interpreted as the
maximal data stream speeds (~vL and ~vU) that can be processed by the
algorithm (shown in Table 7.1). It can be observed that the processing
speed of the labeled and unlabeled data streams are very different. Instances
from the unlabeled stream (DSU) can be processed much faster compared
to instances from the labeled stream (DSL). This can be explained by the
fact that the learning algorithm is only used on the unlabeled instances Xpr

for predictions, which is a relatively fast process. In contrast, the labeled

116 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

instances Xtr are used to train, i.e., to improve the model. This process
can be, depending on model complexity and data dimensionality, very time-
consuming. This becomes evident when comparing the processing speed of
the simpler and faster FIMT algorithm to the more complex ones (IMTI-RA
and IMTI-RD) over increasing stream complexity (2DimTree to airline to
census). This culminates in only 5 instances per second for the IMTI-RD
algorithm on the census data stream. However, in real-world applications,
the learning algorithms are further embedded in a framework where the
instances are fetched from the stream and delivered to them. This framework
also consumes CPU time and slows down the algorithm processing speed
further.
Memory problems arise for QF after a specific number of instances were
observed. When using a data stream of 1,700,000 instances per second,
which is clearly above every vL, one can expect that QF will run out of
memory sooner or later. This depends on the gap between ~vM and ~vU + ~vL
and the storage size for the data stream instances. The number of instances
that can be collected from the data stream until a memory exception arises
is shown in Table 7.1 for our setting. These numbers suggest that using
QF for high-speed data streams in real-world applications is not feasible as
only few instances can be processed before a system crash. Contrary to QF,
RSF and PAFAS can process instances until the framework (including the
model) becomes too large for the main memory. As this time span is out
of scope, the runs were stopped after fetching 4,294 billion instances (from
both streams).

Processed Instances

Although an infinite number of instances could be processed by RSF and
PAFAS, it is still important to process as many instances as possible from
the data stream. The more instances are included in the training process,
the more accurate the predictions should be. And of course in the presented
setting every unlabeled instance should also receive a prediction. Thus,
the first evaluation addresses the number of processed instances for each
framework. QF is left out due to its limited usability. Table 7.2 and Table
7.3 show the number of processed instances for each framework after the
forced end of each data stream.

The number of processed instances for training and testing using RSF
is nearly equal. This is a consequence of the equal data stream speeds and
for that of the equal probabilities to fetch a labeled or unlabeled instance.
In contrast, PAFAS processes many more prediction instances than training
instances. This is done by constantly collecting the instances over the time
period tf and by processing the prediction instances first. The prediction
instances are thus preferred over the training instances. More instances are
predicted using M , which is reflected in an improved prediction accuracy.

7.4. EXPERIMENTAL EVALUATION 117

Table 7.2: Performance after 4.294 billion instances from the 2DimTree data
stream

2DimTree

Algorithm Framework #Trained #Pred. by model

FIMT
PAFAS 885,935 110,758,335
RSF 9,368,131 9,377,314

IMTI-RA
PAFAS 622,486 2,195,176
RSF 6,852,348 6,859,463

IMTI-RD
PAFAS 633,274 104,145,808
RSF 6,101,393 6,105,633

Algorithm Framework #Pred. with mean #Missed

FIMT
PAFAS 2,036,241,665 0
RSF 0 2,137,622,686

IMTI-RA
PAFAS 2,144,804,824 0
RSF 0 2,140,140,537

IMTI-RD
PAFAS 2,042,854,192 0
RSF 0 2,140,894,367

Furthermore, the sum of instances that are used for training and prediction
by the model is larger for PAFAS than for RSF. As training time is very
costly, RSF sacrifices many prediction instances in favor of one training
instance. Therefore, the sum of processed instances is much lower than in
the PAFAS setting.

Response Time

The next quality criterion is the response time for each framework, i.e. how
long it takes for a new unlabeled instance to receive a prediction after ap-
pearing in the data stream. The response time of RSF is only dependent on
the prediction/training time of the model, e.g., a constant response time is
observed. In contrast, the QF response time increases with the number of
instances that are stored in the queue until their prediction. In fact, a linear
increase of the response time can be observed, because a linearly increas-
ing number of instances must be processed before each new instance. This
is done in constant time for each instance. Last, PAFAS guarantees a re-
sponse time not larger than 2∗ tf (adjustable parameter) for each unlabeled
instance. First, the instances are loaded into the controller, which lasts tf ,
and then they are processed in the next time frame, which also lasts tf . If
an instance cannot receive a prediction by the model during this time, the
mean target value is assigned to that instance. In both cases, the instance
receives a prediction after at most 2 ∗ tf .

118 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

Table 7.3: Performance after 4.294 billion instances from the airline and
census data streams

Airline

Algorithm Framework #Trained #Pred. by model

FIMT
PAFAS 456,736 57,666,323
RSF 7,404,400 7,417,562

IMTI-RA
PAFAS 382,832 75,899,407
RSF 1,228,088 1,230,360

IMTI-RD
PAFAS 45,780 115,547
RSF 37,837 95,054

Algorithm Framework #Pred. with mean #Missed

FIMT
PAFAS 2,089,333,677 0
RSF 0 2,139,582,438

IMTI-RA
PAFAS 2,071,100,593 0
RSF 0 2,145,769,640

IMTI-RD
PAFAS 2,146,884,452 0
RSF 0 2,146,904,946

Census

Algorithm Framework #Trained #Pred. by model

FIMT
PAFAS 404,284 28,300,148
RSF 7,012,848 7,018,232

IMTI-RA
PAFAS 208,164 3,109,092
RSF 193,335 209,721

IMTI-RD
PAFAS 5,638 164,851
RSF 5,432 6,052

Algorithm Framework #Pred. with mean #Missed

FIMT
PAFAS 2,118,699,852 0
RSF 0 2,139,981,768

IMTI-RA
PAFAS 2,143,890,908 0
RSF 0 2,146,790,279

IMTI-RD
PAFAS 2,146,835,149 0
RSF 0 2,146,993,948

Prediction Accuracy

The last quality criterion adresses the prediction accuracy of the instances
that have been delivered from the data stream for each framework.

However, in QF and RSF not every unlabeled instance has yet received
a prediction, because instances are stuck in the queue (QF) or have been
skipped (RSF). In the application domain, leaving out predictions or receiv-
ing a delayed prediction may be harmful. Therefore, a penalty is imposed
for each instance that is stuck in the queue or was skipped. In both cases,

7.5. CONCLUSION AND FUTURE WORK 119

the penalty is set to the average error when using y as prediction. This is
equal to the non-model prediction made by PAFAS and corresponds to the
minimal error that can be made without using a specific model. Of course,
the penalty can be adapted to the severity of not predicting an instance,
which can then lead to an even worse score. Figures 7.4, 7.5 and 7.6 illus-
trate the MAE for the predictions that have been received from the stream.
PAFAS achieves a better MAE in 6 out of 9 cases, because more predictions
are made with the model, although it was trained with fewer instances. This
may nevertheless be enough for a useful prediction. The cases with an higher
error often occur with IMTI-RD on more complex datasets, which could be
the result of a temporarily overly strong emphasis on the prediction.

7.5 Conclusion and Future Work

This chapter proposes a framework to handle high-speed data streams con-
sisting of labeled and unlabeled instances. It assures that each unlabeled
instance receives a prediction in a bounded time interval, while the model
is still constantly improved by the labeled instances. Its applicability to
three learning algorithms on three data streams has been shown and its
performance has been compared to two other approaches. The proposed
framework focuses on a single-core implementation yet, as it is a good start-
ing point to develop the approach towards more complex settings. Three
interesting adaptations of PAFAS could be addressed in the future. First,
the framework could be extended to multicore and distributed systems learn-
ing several models. Second, using the advantages of anytime learners, the
available training and prediction time could be used more efficiently. For
the training instances, sampling variants could be used to choose the most
useful ones. On the prediction side, a granularity approach that dynamically
decides which depth of the model should be used for the prediction could
be tested. There, using sampling is not appropriate, as each instance has to
receive a prediction. Third, the time frames could be partitioned into train-
ing and prediction times dynamically, as it could be tuned corresponding
to the model quality. To obtain a good-quality model, as many instances
from X ′tr should be provided, which implies that ttr should be as large as
possible: ttr → tf . On the other hand, the user is of course interested in
obtaining predictions by the model M for instances X ′pr, which implies that
tpr should be as large as possible: tpr → tf . Therefore, it would be interest-
ing to think about the integration of a model-quality dependent time-split
decision, possibly using reinforcement learning.

120 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

Figure 7.4: MAE development for all approaches on the 2DimTree data
stream.

7.5. CONCLUSION AND FUTURE WORK 121

Figure 7.5: MAE development for all approaches on the Airline data stream.

122 CHAPTER 7. TOWARDS REAL-TIME MACHINE LEARNING

Figure 7.6: MAE development for all approaches on the Census data stream.

Chapter 8

Summary and Outlook

In the last chapter of this thesis, the main contributions are summarized
and an outlook on possible future research is given.

8.1 Summary

In summary, this thesis focuses on the application of incremental linear
model trees on stationary Big Data: on massive datasets, as well as on high-
speed data streams. As incremental linear model trees are still a young field
of research, the algorithms as well as their applications are not well studied
and tested on Big Data. This thesis sheds some light on this area in a wide
variety throughout the chapters:

• Chapter 1 motivates this thesis by showing the increase of data and
gives a definition of the often used term ‘Big Data’. The Big Data
ecosystem and especially the popular Hadoop system is explained for
applications under plenty resources. The need for efficient algorithms
under limited resources is further highlighted.

• Chapter 2 gives an introduction to online and especially incremental
learning. The online learning process is explained and differences to
the batch learning approach are shown. Next, model evaluation ap-
proaches are introduced for the batch as well as for the online setting.
The chapter closes with the description of the exemplary incremental
online algorithm WINNOW.

• Chapter 3 gives a comprehensive overview of decision trees. The
regression and the classification learning tasks are explained and tree
fundamentals are shown for classification and regression trees in the
domain of batch and incremental learning. Decision trees are de-
fined, their induction process, several splitting criteria, pruning and
the lookahead strategy are explained in detail. Finally, an overview of

123

124 CHAPTER 8. SUMMARY AND OUTLOOK

decision tree algorithms is given for the classification and the regres-
sion task in the domain of batch and incremental learning. Incremental
regression tree algorithms are explained in detail and their evolution
from the corresponding batch algorithm is shown.

• Chapter 4 gives an overview of the data sources used throughout this
thesis.

• Chapter 5 shows a systematic performance evaluation of incremental
linear model trees on massive stationary datasets under equal con-
ditions in three different dimensions: prediction error, running time,
and memory consumption. This is done for the first time, as only
insufficient analysis of ILMTs was available. Until now, related work
evaluated the algorithms with too few examples to reveal their perfor-
mance on massive data sources. The comparison to other ILMTs was
also performed on too few examples and additionally under different
conditions (e.g., algorithms in different programming languages were
used). Our performance evaluation tests the algorithms within the
same framework on large-scale artificial and real-world datasets, un-
der various parameter settings. The results indicate that, first, using
parameter settings that lead to simpler induction processes result in
equivalent MAE in the long run and also come with the advantage of
reduced running times. Additionally, on real-world datasets the algo-
rithm with the simplest induction process, FIMT, is the fastest and
most accurate algorithm. Its advantage is also still increasing with
bigger datasets. Therefore, our experiments suggest that simplicity
is a virtue when learning incremental linear model trees on massive
datasets.

• Chapter 6 focuses on the pruning process of incremental linear model
trees. Although pruning is a standard step in the batch versions, it is
a neglected research area for ILMTs. Most work was done in detecting
concept drift and adapting the tree to the new concept. This includes
pruning and the relearning of subtrees. Nevertheless, on massive sta-
tionary data sources, concept drift will not be available and the trees
will not be pruned. This results in overly large trees where wrong split
decisions are not corrected. Overly large trees are time and memory
consuming and hinder the application of ILMTs on high-speed data
sources. Consequently, we introduce the guarded incremental pruning
approach GuIP for stationary data sources. It is an extension of incre-
mental linear model trees with approximate lookahead in general and
is exemplarily integrated into the FIMT algorithm. Results on five
massive datasets show that the prediction accuracy, tree size, mem-
ory consumption and consequently, the example processing speed are
influenced by the prune guard parameter ξ. By adjusting ξ, a predic-

8.1. SUMMARY 125

tion accuracy gain can be achieved depending on the degree of dataset
complexity. For less complex datasets, this gain can be achieved along
with producing significantly smaller trees in a fraction of the time.
For more complex datasets, more time is needed to achieve a better or
equal accuracy. When runtime is a limiting factor, decreasing ξ can
immensely speed up the learning process by a significant reduction
of tree size. Moreover, for less complex datasets, a smaller ξ value
may still result in a better prediction accuracy, while for more com-
plex datasets, a marginal decrease of prediction accuracy can occur.
Consequently, depending on the requirements, if processing speed or
prediction accuracy is more important, the tree can be tuned accord-
ingly. The tree size and processing speed advantage becomes even
more pronounced given more and more examples without any predic-
tion disadvantage. Additionally, the advantage over the equivalent
batch algorithm has been shown on complex massive datasets. Im-
proved prediction results are obtained in only a fraction of the time
needed by the batch algorithm. Moreover, additional examples still
improve the prediction accuracy of the online algorithm, which leads
to a more marked advantage for even larger datasets.

• Chapter 7 handles the problem of high-speed data streams in com-
bination with processing-speed limited learning algorithms. Learning
algorithms have an intrinsic maximal example processing speed for
the learning and the prediction task. When data streams now de-
liver examples faster than the algorithms can process them, examples
have to be skipped. Consequently, the model cannot be further im-
proved by the skipped labeled examples, and no predictions are given
for the skipped unlabeled examples from the data stream. Missing
predictions are, e.g., a problem in emergency systems where prompt
predictions are needed on each example. Severe consequences could
have been avoided if skipped examples would have raised an alarm
at early notice. For this setting, the data stream processing system
PAFAS is introduced that guarantees a prediction for all unlabeled
examples promptly after arrival time, while the model is still con-
stantly improved. The system is applied to three learning algorithms
on three data streams and its performance is compared to two other ap-
proaches: Temporarily storing the examples on an extra storage space
(queue framework) and only randomly choosing an example when the
algorithm is ready (running-sushi framework). Results show a better
prediction accuracy of the algorithms in the PAFAS framework in 6
out of 9 cases. The proposed framework focuses on a single-core imple-
mentation yet, as it is a good starting point to develop the approach
towards more complex settings.

126 CHAPTER 8. SUMMARY AND OUTLOOK

8.2 Outlook

Future work can be manifold. Although this work evaluates the performance
and usefulness of ILMTs on massive stationary data sources, further eval-
uation of the corresponding algorithms on data sources including concept
drift would be interesting. The evaluation can also be transferred to other
groups of online learning algorithms. As massive open data sources are rare
and evaluations on this amount of data is very time consuming, most of the
algorithms in this domain are not well-studied on massive data sources. Fur-
ther evaluations of this kind could give important insights in the usefulness
of the algorithms in practice. For the GuIP approach, the development of
a more sophisticated adaptive method for choosing the optimal value for ξ
should be a direction for future work. Moreover, it would be interesting to
apply GuIP to the domain of evolving data streams, to evaluate its ability to
handle concept drift. Additionally, one could investigate periodical pruning
(pruning after processing multiple examples, instead of pruning after every
single example), to further increase the processing speed. The PAFAS frame-
work could be improved in several directions. First, the framework could be
extended to multicore and distributed systems learning several models. By
that, the incoming examples can be distributed between the models, raising
the need for a decision which example would be beneficial for which model.
This could be a valid approach if more resources are available. Another im-
provement could be to use the available training and prediction time more
efficiently. For the training instances, sampling variants could be used to
choose the most useful ones. On the prediction side, a granular approach
that dynamically decides which depth of the model should be used for the
prediction could be tested. There, using sampling is not appropriate, as
each instance has to receive a prediction. A third improvement could be
an improvement of the time frame partitioning. For a fine grained tuning
of the model quality, the time frames could be partitioned dynamically into
training and prediction times. It would be worthwhile to think about the
integration of a model-quality dependent time-split decision, possibly using
reinforcement learning.

Chapter 9

Bibliography

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new
model and architecture for data stream management. The Very Large
Data Base Journal, 12(2):120–139, 2003.

[2] C. Aggarwal. A framework for diagnosing changes in evolving data
streams. In ACM SIGMOD Conference, pages 575–586, 2003.

[3] C. Aggarwal, editor. Data Streams - Models and Algorithms, volume 31
of Advances in Database Systems. Springer, 2007.

[4] D. Alberg, M. Last, and A. Kandel. Knowledge discovery in data
streams with regression tree methods. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):69–78, 2012.

[5] W. Alexander and S. Grimshaw. Treed regression. Journal of Com-
putational and Graphical Statistics, 5(2):156–175, 1996.

[6] H. Almuallim. An efficient algorithm for optimal pruning of decision
trees. Artificial Intelligence, 83(2):347–362, 1996.

[7] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom. Stream: The stanford
data stream management system. Technical Report 2004-20, 2004.

[8] K. Ashton. That ’internet of things’ thing. RFID Journal, 2009.

[9] M. Aslett. NoSQL, NewSQL and Beyond: The answer to SPRAINed
relational databases. http://blogs.the451group.com/opensource/
2011/04/15/nosql-newsql-and-beyond-the-answer-to-sprained-
relational-databases/, 4 2011.

127

128 CHAPTER 9. BIBLIOGRAPHY

[10] M. Basseville. Statistical methods for change detection. In H. Un-
behauen, editor, Encyclopedia of Control Systems, Robotics and Au-
tomation. Encyclopedia of Life Support Systems (EOLSS) Publishers,
2002.

[11] M. Basseville, A. Benveniste, G. Mathis, and Q. Zhang. Monitoring
the combustion set of a gas turbine. In Proceedings of Safeprocess’94,
1994.

[12] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes: The-
ory and Application. Prentice-Hall, Inc., 1993.

[13] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive
Online Analysis. The Journal of Machine Learning Research, 11:1601–
1604, Aug. 2010.

[14] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Data Stream
Mining: A Practical Approach, 2011.

[15] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[16] M. Bohanec and I. Bratko. Trading accuracy for simplicity in decision
trees. Machine Learning, 15(3):223–250, 1994.

[17] R. Bohn and J. Short. How much information? Report on Ameri-
can consumers. http://hmi.ucsd.edu/pdf/HMI 2009 ConsumerReport
Dec9 2009.pdf, 2009.

[18] R. R. Bouckaert. Choosing between two learning algorithms based on
calibrated tests. In Proceedings of the Twentieth International Confer-
ence on Machine Learning(ICML), pages 51–58. Morgan Kaufmann,
2003.

[19] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling clustering algo-
rithms to large databases. In Knowledge Discovery and Data Mining,
pages 9–15. AAAI Press, 1998.

[20] M. Bramer. Pre-pruning classification trees to reduce overfitting in
noisy domains. In H. Yin, N. Allinson, R. Freeman, J. Keane, and
S. Hubbard, editors, Intelligent Data Engineering and Automated
Learning (IDEAL) 2002, volume 2412 of Lecture Notes in Computer
Science, pages 7–12. Springer, 2002.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-
cation and Regression Trees. Chapman & Hall, New York, 1984.

[22] M. Broy. Cyber-Physical Systems: Innovation durch softwareintensive
eingebettete Systeme. Springer, 2010.

129

[23] A. Cárdenas, R. Pon, and R. Cameron. Management of Streaming
Body Sensor Data for Medical Information Systems. In Proceedings of
the International Conference on Mathematics and Engineering Tech-
niques in Medicine and Biological Scienes, pages 186–191, 2003.

[24] D. Chan, B. Krupp, and L. Wanchoo. Earth observation system. Tech-
nical report, National Aeronautics and Space Administration (NASA),
2010.

[25] P. Chaudhuri, M. Huang, W. Loh, and R. Yao. Piecewise-polynomial
regression trees. Statistica Sinica, 4:143–167, 1994.

[26] Y. Chi, H. Wang, and P. S. Yu. Loadstar: Load shedding in data
stream mining. In In Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB), pages 1302–1305, 2005.

[27] G. C. Chow. Tests of equality between sets of coefficients in two linear
regressions. Econometrica, 28(3):591–605, 1960.

[28] F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of
data streams. In H. Dai, R. Srikant, and C. Zhang, editors, Advances
in Knowledge Discovery and Data Mining, volume 3056 of Lecture
Notes in Computer Science, pages 282–292. Springer, 2004.

[29] S. L. Crawford. Extensions to the CART algorithm. International
Journal of Man-Machine Studies, 31(2):197–217, 1989.

[30] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi.
An information-theoretic approach to detecting changes in multi-
dimensional data streams. In Proceedings of the Symposium on the
Interface of Statistics, Computing Science, and Applications, 2006.

[31] A. P. Dawid. Statistical theory: the prequential approach. Royal
Statistical Society. Series A, 147:278–292, 1984.

[32] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. In Proceedings of the 6th conference on Symposium
on Operating Systems Design and Implementation (OSDI), OSDI’04,
pages 10–10. Usenix Association, 2004.

[33] A. Dobra and J. Gehrke. Secret: A scalable linear regression tree al-
gorithm. In In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages
481–487. ACM Press, 2002.

[34] P. Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

130 CHAPTER 9. BIBLIOGRAPHY

[35] P. Domingos and G. Hulten. Mining high-speed data streams. In
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’00, pages 71–80. ACM,
2000.

[36] P. Domingos and G. Hulten. A general method for scaling up ma-
chine learning algorithms and its application to clustering. In Proceed-
ings of the Eighteenth International Conference on Machine Learning
(ICML), pages 106–113. Morgan Kaufmann, 2001.

[37] L. Douglas. The importance of big data: A definition.
http://www.gartner.com/resId=2057415, 2012.

[38] B. Efron. Estimating the error rate of a prediction rule: Improvement
on Cross-Validation. Journal of the American Statistical Association,
78(382):316–331, 1983.

[39] T. Elomaa. The biases of decision tree pruning strategies. In Proceed-
ings of the Third International Symposium on Advances in Intelligent
Data Analysis, IDA ’99, pages 63–74. Springer, 1999.

[40] S. Esmeir and S. Markovitch. Lookahead-based algorithms for any-
time induction of decision trees. In Proceedings of the Twenty-first
International Conference on Machine Learning (ICML), pages 257–
264. Morgan Kaufmann, 2004.

[41] F. Esposito, D. Malerba, G. Semeraro, and J. Kay. A comparative
analysis of methods for pruning decision trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(5):476–491, 1997.

[42] U. Fayyad and K. Irani. The attribute selection problem in decision
tree generation. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 104–110. AAAI Press, 1992.

[43] A. Fern and R. Givan. Online ensemble learning: An empirical study.
Machine Learning, 53(1-2):71–109, 2003.

[44] F. M. Fisher. Tests of equality between sets of coefficients in two linear
regressions: An expository note. Econometrica, 38(2):361–366, 1970.

[45] M. Gaber. Data stream mining using granularity-based approach.
In A. Abraham, A.-E. Hassanien, A. de Leon F. de Carvalho, and
V. Snásel, editors, Foundations of Computational Intelligence, volume
206 of Studies in Computational Intelligence, pages 47–66. Springer,
2009.

[46] M. Gaber. Advances in data stream mining. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 2(1):79–85, 2012.

131

[47] J. Gama, R. Fernandes, and R. Rocha. Decision trees for mining data
streams. Intelligent Data Analalysis, 10(1):23–45, 2006.

[48] J. Gama, P. Medas, and R. Rocha. Forest trees for on-line data.
In Proceedings of the 2004 ACM Symposium on Applied Computing
(SAC), SAC ’04, pages 632–636. ACM, 2004.

[49] J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining
high-speed data streams. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), KDD ’03, pages 523–528. ACM, 2003.

[50] J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of
stream learning algorithms. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD), KDD ’09, pages 329–338. ACM, 2009.

[51] J. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel,
W. Schlichting, and A. Toncheva. The diverse and exploding digi-
tal universe. http://www.emc.com/collateral/analyst-reports/diverse-
exploding-digital-universe.pdf, 2008.

[52] J. Gantz and D. Reinsel. As the economy contracts, the digital
universe expands. http://www.emc.com/collateral/leadership/digital-
universe/2009DU final.pdf, 2009.

[53] J. Gantz and D. Reinsel. The digital universe decade are you
ready? http://www.emc.com/collateral/analyst-reports/idc-digital-
universe-are-you-ready.pdf, 2010.

[54] J. Gantz and D. Reinsel. Extracting value from chaos.
http://www.emc.com/collateral/analyst-reports/idc-extracting-
value-from-chaos-ar.pdf, 2011.

[55] J. Gantz and D. Reinsel. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.
http://idcdocserv.com/1414, 2012.

[56] J. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur,
S. Minton, I. Xheneti, A. Toncheva, and A. Manfrediz. The ex-
panding digital universe. http://www.emc.com/collateral/analyst-
reports/expanding-digital-idc-white-paper.pdf, 2007.

[57] J. Gao, W. Fan, J. Han, and P. S. Yu. A general framework for
mining concept-drifting data streams with skewed distributions. In
Proceedings of the 7th SIAM International Conference on Data Mining
(SDM’07), pages 3–14, 2007.

132 CHAPTER 9. BIBLIOGRAPHY

[58] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework
for fast decision tree construction of large datasets. In Proceedings of
the 24rd International Conference on Very Large Data Bases (VLDB),
VLDB ’98, pages 416–427. Morgan Kaufmann, 1998.

[59] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 29–43. ACM, 2003.

[60] S. Gollapudi and D. Sivakumar. Framework and algorithms for trend
analysis in massive temporal data sets. In Proceedings of the Thir-
teenth ACM International Conference on Information and Knowledge
Management (CIKM), CIKM ’04, pages 168–177. ACM, 2004.

[61] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 3rd edition, 2011.

[62] A. Hapfelmeier, C. Mertes, J. Schmidt, and S. Kramer. Towards Real-
Time Machine Learning. ECML-PKDD 2012 Workshop: Instant In-
teractive Data Mining, 2012.

[63] A. Hapfelmeier, B. Pfahringer, and S. Kramer. Pruning incremental
linear model trees with approximate lookahead. IEEE Transactions
on Knowledge and Data Engineering, 26(8):2072–2076, 2014.

[64] A. Hapfelmeier, J. Schmidt, and S. Kramer. Incremental linear model
trees on massive datasets: keep it simple, keep it fast. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing (SAC),
pages 129–135. ACM, 2013.

[65] M. Hilbert and P. López. The worlds technological capacity to store,
communicate, and compute information. Science, 332(6025):60–65,
2011.

[66] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

[67] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data
streams. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), KDD
’01, pages 97–106. ACM, 2001.

[68] E. B. Hunt, J. Marin, and P. J. Stone. Experiments in Induction.
Academic Press, New York, 1966.

[69] E. Ikonomovska and J. Gama. Learning model trees from data streams.
In J.-F. Boulicaut, M. Berthold, and T. Horváth, editors, Proceedings

133

of the 11th International Discovery Science Conference (DS), volume
5255 of Lecture Notes in Computer Science, pages 52–63. Springer,
2008.

[70] E. Ikonomovska, J. Gama, and S. Džeroski. Learning model trees
from evolving data streams. Data Mining and Knowledge Discovery,
23(1):128–168, 2011.

[71] E. Ikonomovska, J. Gama, and S. Džeroski. Incremental option trees
for handling gradual concept drift. First International Workshop on
Handling Concept Drift in Adaptive Information Systems: Impor-
tance, Challenges and Solutions, Barcelona, Spain, September 24th,
2010.

[72] E. Ikonomovska, J. Gama, R. Sebastião, and D. Gjorgjevik. Regression
trees from data streams with drift detection. In J. Gama, V. S. Costa,
A. M. Jorge, and P. B. Brazdil, editors, Discovery Science, volume
5808 of Lecture Notes in Computer Science, pages 121–135. Springer,
2009.

[73] E. Ikonomovska, J. Gama, B. Zenko, and S. Džeroski. Speeding
up hoeffding-based regression trees with options. In Proceedings
of the 28th International Conference on Machine Learning (ICML),
ICML’11, pages 537–544. ACM, 2011.

[74] G. Inc. Google to acquire nest. http://investor.google.com/releases/
2014/0113.html, 1 2014.

[75] R. Jin and G. Agrawal. Efficient decision tree construction on
streaming data. In Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD),
KDD’03, pages 571–576. ACM, 2003.

[76] G. John. Robust linear discriminant trees. Artificial Intelligence &
Statistics, pages 285–291, 1995.

[77] G. John and P. Langley. Static versus dynamic sampling for data
mining. In In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD), pages 367–370. AAAI
Press, 1996.

[78] A. Karalič. Employing linear regression in regression tree leaves. In
Proceedings of the 10th European Conference on Artificial Intelligence
(ECAI), ECAI ’92, pages 440–441. John Wiley, 1992.

[79] G. V. Kass. An exploratory technique for investigating large quantities
of categorical data. Applied Statistics, 29(2):119–127, 1980.

134 CHAPTER 9. BIBLIOGRAPHY

[80] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB), VLDB ’04, pages 180–191. VLDB
Endowment, 2004.

[81] H. Kim and W.-Y. Loh. Classification trees with unbiased multiway
splits. Journal of the American Statistical Association, 96:589–604,
2001.

[82] J. Kirk. Will megaupload’s 28 petabytes of data be deleted?
http://www.computerworld.com/s/article/9225405/Will Megaupload
39 s 28 petabytes of data be deleted ?taxonomyId=17, 2012.

[83] R. Kirkby. Improving Hoeffding Trees. PhD thesis, University of
Waikato, 2007.

[84] J. Kivinen and H. Mannila. The power of sampling in knowledge dis-
covery. In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS),
PODS ’94, pages 77–85. ACM, 1994.

[85] R. Klinkenberg and I. Renz. Adaptive information filtering: Learn-
ing in the presence of concept drifts. In Workshop Notes of the
ICML/AAAI-98 Workshop Learning for Text Categorization, pages
33–40. AAAI Press, 1998.

[86] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In International Joint Conference on
Artificial Intelligence, pages 1137–1143, 1995.

[87] I. Kononenko. On biases in estimating multi-valued attributes. In
Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI), IJCAI’95, pages 1034–1040. Morgan Kaufmann,
1995.

[88] R. Kothari and M. Dong. Decision trees for classification: A review
and some new results. Lecture Notes in Pattern Recognition, 2001.

[89] A. Kouadri, A. Bensmail, A. Kheldoun, and L. Refoufi. An adaptive
threshold estimation scheme for abrupt changes detection algorithm
in a cement rotary kiln. Journal of Computational and Applied Math-
ematics, 259, Part B(0):835 – 842, 2014.

[90] N. Littlestone. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. Machine Learning, 2(4):285–318,
1988.

135

[91] N. Littlestone. Mistake Bounds and Logarithmic Linear-threshold
Learning Algorithms. PhD thesis, Santa Cruz, CA, USA, 1989.

[92] W.-Y. Loh. Regression trees with unbiased variable selection and in-
teractiondetection. Statistica Sinica, 12:361–386, 2002.

[93] W.-Y. Loh and Y.-S. Shih. Split Selection Methods for Classification
Trees. Statistica Sinica, pages 815–840, 1997.

[94] W.-Y. Loh and N. Vanichsetakul. Tree-structured classification via
generalized discriminant analysis. Journal of the American Statistical
Association, 83(403):715–725, 1986.

[95] P. Lyman and H. Varian. How much information?
http://www2.sims.berkeley.edu/research/projects/how-much-info-
2003/printable report.pdf, 2003.

[96] D. Malerba, F. Esposito, M. Ceci, and A. Appice. Top-down induction
of model trees with regression and splitting nodes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(5):612–625, 2004.

[97] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,
and A. Hung Byers. Big data: The next frontier for innovation, com-
petition, and productivity, 2011.

[98] M. Mehta, J. Rissanen, and R. Agrawal. Mdl-based decision tree prun-
ing. In International Conference on Knowledge Discovery in Databases
and Data Mining (KDD), pages 216–221. AAAI Press, 1995.

[99] J. Mingers. An empirical comparison of pruning methods for decision
tree induction. Machine Learning, 4(2):227–243, 1989.

[100] G. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff. IEEE Solid-State Circuits Newsletter, 20(3):33–35, 2006.

[101] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. Test of page-hinkley,
an approach for fault detection in an agro-alimentary production sys-
tem. In Proceedings of the Asian control conference, pages 815–818.
IEEE, 2004.

[102] K. V. S. Murthy. On Growing Better Decision Trees from Data. PhD
thesis, The Johns Hopkins University, 1996.

[103] C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique.
Fuzzy Sets and Systems, 138(2):221–254, Sept. 2003.

136 CHAPTER 9. BIBLIOGRAPHY

[104] N. Oza and S. Russell. Experimental comparisons of online and batch
versions of bagging and boosting. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), KDD’01, pages 359–364. ACM, 2001.

[105] E. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–
115, 1954.

[106] D. Potts and C. Sammut. Incremental learning of linear model trees.
Machine Learning, 61(1-3):5–48, 2005.

[107] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[108] J. R. Quinlan. Simplifying decision trees. International Journal of
Man-Machine Studies, 27:221–234, 1987.

[109] J. R. Quinlan. Learning with continuous classes. In Proceedings of
the 5th Australian Joint Conference on Artificial Intelligence, pages
343–348, 1992.

[110] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[111] R. Rastogi and K. Shim. PUBLIC: A decision tree classifier that inte-
grates building and pruning. In A. Gupta, O. Shmueli, and J. Widom,
editors, Proceedings of the International conference of very large data
bases (VLDB), pages 404–415. Morgan Kaufmann, 1998.

[112] R. Rastogi and K. Shim. PUBLIC: A decision tree classifier that
integrates building and pruning. Data Mining Knowledge Discovery,
4(4):315–344, 2000.

[113] M. Raymond. How ’big’ is the library of congress?
http://blogs.loc.gov/loc/2009/02/how-big-is-the-library-of-congress/,
2009.

[114] S. Roberts. Control chart tests based on geometric moving averages.
Technometrics, 42(1):97–101, 2000.

[115] F. Rosenblatt. The perceptron - a perceiving and recognizing automa-
ton. 1957.

[116] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386–
408, 1958.

137

[117] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Jaworski. Decision
trees for mining data streams based on the McDiarmid’s bound. IEEE
Transactions on Knowledge and Data Engineering, 25(6):1272–1279,
2013.

[118] S. Schaal and C. G. Atkeson. Constructive incremental learning from
only local information. Neural Computation, 10:2047–2084, 1998.

[119] J. C. Schlimmer and D. H. Fisher. A case study of incremental concept
induction. In Proceedings of the Fifth National Conference on Artificial
Intellligence (AAAI), pages 496–501. Morgan Kaufmann, 1986.

[120] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches
for efficient and accurate change detection over network data streams.
In Proceedings of the ACM SIGCOMM Internet Measurement Con-
ference, pages 207–212. ACM, 2004.

[121] M. Severo and J. Gama. Change detection with Kalman filter and
CUSUM. In L. Todorovski, N. Lavrač, and K. Jantke, editors, Dis-
covery Science, volume 4265 of Lecture Notes in Computer Science,
pages 243–254. Springer Berlin Heidelberg, 2006.

[122] C. Shannon. A mathematical theory of communication. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5(1):3–55,
2001.

[123] J. Shieh and E. Keogh. Polishing the right apple: Anytime classifi-
cation also benefits data streams with constant arrival times. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining
(ICDM), ICDM’10, pages 461–470. IEEE Computer Society, 2010.

[124] J. Short, R. Bohn, and C. Baru. How much in-
formation? Report on Enterprise Server Information.
http://hmi.ucsd.edu/pdf/HMI 2010 EnterpriseReport Jan 2011.pdf,
2011.

[125] L. Stein. The case for cloud computing in genome informatics. Genome
Biology, 11(5):207, 2010.

[126] N. Street and Y. Kim. A streaming ensemble algorithm (sea) for
large-scale classification. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’01, pages 377–382. ACM, 2001.

[127] M. Suknovic, B. Delibasic, M. Jovanovic, M. Vukicevic, D. Becejski-
Vujaklija, and Z. Obradovic. Reusable components in decision tree
induction algorithms. Computational Statistics, 27(1):127–148, 2012.

138 CHAPTER 9. BIBLIOGRAPHY

[128] H. Toivonen. Sampling large databases for association rules. In Pro-
ceedings of the 22th International Conference on Very Large Data
Bases (VLDB), pages 134–145. Morgan Kaufmann, 1996.

[129] L. Torgo. Functional models for regression tree leaves, 1997.

[130] L. Torgo. Computationally efficient linear regression trees. In K. Ja-
juga, A. Sokolowski, and H.-H. Bock, editors, Classification, Cluster-
ing, and Data Analysis, Studies in Classification, Data Analysis, and
Knowledge Organization, pages 409–415. Springer, 2002.

[131] P. Utgoff. ID5: An incremental ID3. In J. Laird, editor, Proceedings
of the Fifth International Conference on Machine Learning (ICML),
pages 107–120. Morgan Kaufmann, 1988.

[132] P. Utgoff. Incremental induction of decision trees. Machine Learning,
4(2):161–186, 1989.

[133] P. Utgoff, N. Berkman, and J. Clouse. Decision tree induction based
on efficient tree restructuring. Machine Learning, 29(1):5–44, 1997.

[134] P. Utgoff and C. Brodley. An incremental method for finding mul-
tivariate splits for decision trees. In In Proceedings of the Seventh
International Conference on Machine Learning (ICML), pages 58–65.
Morgan Kaufmann, 1990.

[135] C. Vens and H. Blockeel. A simple regression based heuristic for learn-
ing model trees. Intelligent Data Analysis, 10(3):215–236, 2006.

[136] J. S. Vitter. Random sampling with a reservoir. ACM Transactions
on Mathematical Software, 11:37–57, 1985.

[137] D. Vogel, O. Asparouhov, and T. Scheffer. Scalable look-ahead linear
regression trees. In Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (KDD),
pages 757–764. ACM, 2007.

[138] F. Wang, C. Yuan, X. Xu, and P. van Beek. Supervised and semi-
supervised online boosting tree for industrial machine vision applica-
tion. In Proceedings of the Fifth International Workshop on Knowledge
Discovery from Sensor Data (SensorKDD), SensorKDD’11, pages 43–
51. ACM, 2011.

[139] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), KDD’03, pages 226–235. ACM, 2003.

139

[140] Y. Wang and I. Witten. Inducing model trees for continuous classes.
In Proceedings of the 9th European Conference on Machine Learning
Poster Papers, pages 128–137, 1997.

[141] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[142] I. Witten, E. Frank, and M. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.

[143] H. Yang and S. Fong. Incrementally optimized decision tree for noisy
big data. In Proceedings of the 1st International Workshop on Big
Data, Streams and Heterogeneous Source Mining: Algorithms, Sys-
tems, Programming Models and Applications, BigMine’12, pages 36–
44. ACM, 2012.

[144] H. Yang and S. Fong. Stream mining dynamic data by using iovfdt.
Journal of Emerging Technologies in Web Intelligence, 5(1), 2013.

