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Abstract—In order to perform precise radio-based ranging,
the carrier phase information of the ranging signal needs to
be exploited. State-of-the-art is to measure the phase as an
independent parameter. Since the mapping from the carrier-
phase to the time-delay parameter is ambiguous, measurements
of multiple transmitters over multiple time instances can be
combined in order to resolve the carrier phase ambiguities jointly.
Here we restrict the discussion to the problem of delay estimation
with a single transmitter on a single carrier frequency. Taking
into account the dependency between the delay parameter and
the carrier phase in the receive model, we show that under
an ideal receive situation the delay parameter can be estimated
unambiguously at ultra-high precision. To this end, we present
a two step algorithm which consists of a particle filter (PF),
precisely aligning to the grid of possible solutions and a sub-
sequent histogram-based ambiguity resolution step. Numerical
simulations for a GPS scenario show that the presented approach
significantly outperforms the classical DLL/PLL-based approach.

Index Terms—precise ranging, carrier phase positioning, am-
biguity resolution, satellite-based navigation and positioning

I. INTRODUCTION

R anging at high accuracy is a core problem in various
technical applications. High precision ranging can for

example increase the efficiency and productivity in agriculture
by using robots for pruning, weeding and crop-spraying. In
marine navigation, ranging with high accuracy can help to
enter a small port with big ships. Also the landing phase of
an airplane can be automated by reliable ranging techniques.
Ranging with radio systems is usually performed by measuring
the propagation delay of an electro-magnetic wave with known
structure. If the radio signal is transmitted on a high carrier
frequency, it is well understood that the carrier phase conveys
significant information about the delay parameter. However, as
the mapping between phase and delay parameter is ambiguous,
it is believed, that the carrier phase can only be exploited
by combining measurements attained with different signal
sources. In the application of satellite-based synchronization
and navigation (GPS, GLONASS, Galileo, etc.), high precision
is therefore achieved by performing three independent steps,
depicted in Fig. 1. An acquisition algorithm delivers some
initial knowledge about the range r(l) between transmitter l
and the receiver for all available transmitters l = 1, . . . , L.
Here this initial knowledge is characterized by a Gaussian
random variable with mean µ

(l)
init and variance σ2

init. For each
transmitter an individual tracking module then measures and
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Fig. 1: Positioning

tracks the baseband delay and the carrier phase of the radio
signal as independent parameters. In practice, this is done with
two control loops, the delay-locked loop (DLL) and the phase-
locked loop (PLL) [1]. With the DLL only a coarse ranging
solution can be obtained [2]. The carrier phase ζ(l) can be
measured with much higher precision. However, the carrier
phase is periodic with 2π and the measurement ζ̂(l) is, thus,
only given by some fraction of a cycle, i.e. the integer number
Ψ(l) of whole cycles is not known at the receiver

ζ̂(l) = ωcτ
(l) + 2πΨ(l) + e

(l)
ζ , (1)

where ωc = 2πfc is the carrier frequency, τ (l) = r(l)

c is the
propagation-delay, c velocity of light and e

(l)
ζ the measurement

error. Resolving the integer Ψ(l) precisely with measurements
from one transmitter is not possible. Measurements from
multiple transmitters and multiple time instances must be
combined in order to resolve the ambiguity problem and obtain
a solution x with high accuracy [3]–[8]. In this work, we
propose an approach to exploit the carrier phase information
directly, i.e. we show that the ambiguity problem can be re-
solved directly and independently for each signal source in the
tracking module. To this end, we model the noise-free part of
the receive signal as an exact function of the propagation delay.
In particular, the dependency between the carrier phase and
the delay parameter is taken into account in an explicit way.
Additionally, a statistical model for the temporal evolution of
the delay parameter is used to align a tracking algorithm to the
grid of possible delay solutions. Over subsequent observation
blocks then a long integration ambiguity histogram (LIAH)
is constructed with the likelihood function evaluated on the
ambiguity grid. This allows to resolve the ambiguity issue
and to output an ultra precise unbiased measurement of the
delay parameter. The potential of the presented algorithm
is demonstrated within a Global Navigation Satellite System
(GNSS) scenario where each millisecond it becomes possible
to measure the range between a fast moving satellite and a
GPS receiver with millimeter accuracy.
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II. OBSERVATION MODEL

Consider a scenario with one radio transmitter and a re-
ceiver. The transmitter emits an electro-magnetic wave of
known periodic structure

x′(t) = s′(t) cos(ωct), (2)

where s′(t) ∈ R is a periodic baseband signal and ωc is the
carrier frequency. The power of the transmitted signal x′(t) is
assumed to be normalized∫ ∞

−∞
|X ′(ω)|2dω = 1, (3)

where |X ′(ω)|2 is the Fourier transform of the autocorrelation
function of x′(t). The signal at the receive sensor

y′(t) = γ′(t)x′(t− τ(t)
)
+ n′(t)

= γ′(t)s′
(
t− τ(t)

)
cos
(
ωc
(
t− τ(t)

))
+ n′(t). (4)

is characterized by a time-dependent propagation delay τ(t) ∈
R and an attenuation γ′(t) ∈ R, while the additive random
noise n′(t) is assumed to have flat power spectral density
(PSD) Φ′(ω) = N0. The receive signal y′(t) is demodulated
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Fig. 2: RF Front-End

with two orthogonal functions

d1(t) = cos
(
ωct
)

(5)

d2(t) = − sin
(
ωct
)

(6)

oscillating at carrier frequency (see Fig. 2). The signals in the
two demodulation channels can, hence, be written as

y′1(t) = y′(t)d1(t)

= γ(t)s′
(
t− τ(t)

)(
cos
(
ωcτ(t)

)
+ cos

(
2ωct− ωcτ(t)

))
+ n′

1(t) (7)

and

y′2(t) = y′(t)d2(t)

= γ(t)s′
(
t− τ(t)

)(
− sin

(
ωcτ(t)

)
− sin

(
2ωct− ωcτ(t)

))
+ n′

2(t), (8)

where

n′
i(t) = di(t)n

′(t), i ∈ {1, 2}, (9)

and

γ(t) =
γ′(t)

2
. (10)

Note that n′
1(t) and n′

2(t) are uncorrelated, i.e.
E
[
n′
1(t)n

′
2(t)

]
= 0, ∀ t. Moreover, the PSD of the

additive white Gaussian noise components n′
i(t) is given by

Φi(ω) = N0

2 , i ∈ {1, 2}. The ideal low-pass filters h(t) of
the two channels are assumed to have one-sided bandwidth
B. The filtered analog signals can, thus, be written as

y1(t) = y′1(t) ∗ h(t)
= γ(t)s

(
t− τ(t)

)
cos
(
ωcτ(t)

)
+ n1(t) (11)

y2(t) = y′2(t) ∗ h(t)
= − γ(t)s

(
t− τ(t)

)
sin
(
ωcτ(t)

)
+ n2(t), (12)

where

s(t) = s′(t) ∗ h(t) (13)
ni(t) = n′

i(t) ∗ h(t), i ∈ {1, 2}, (14)

with ∗ being the convolution operator. The signals of the two
channels can be written in compact matrix-vector representa-
tion

y(t) =

[
y1(t)
y2(t)

]
= γ(t)b

(
τ(t)

)
s
(
t; τ(t)

)
+ n(t) (15)

with

s
(
t; τ(t)

)
= s

(
t− τ(t)

)
(16)

n(t) =
[
n1(t) n2(t)

]T
(17)

and

b
(
τ(t)

)
=
[
cos
(
ωcτ(t)

)
− sin

(
ωcτ(t)

)]T
. (18)

After filtering, the analog signals are sampled at a rate of
fS = 1

TS
. In the following one observation block consists

of N samples from each channel, i.e. yk ∈ R2N is the
observation in block k. The time-delay process is assumed
to be approximately linear within one block

τ(t) ≈ τk + νk(t− tk), t ∈ [tk; tk +NTS), (19)

where τk is the time-delay of the first sample in block k
and νk is the relative velocity (normalized by speed of light
c) between receiver and transmitter in block k. The signal
strength γ(t) is assumed to be constant over one block

γ(t) = γk, t ∈ [tk; tk +NTS). (20)

For brevity of notation, the two parameter vectors

θ′
k =

[
τk νk γk

]T
(21)

θk =
[
τk νk

]T
(22)

are introduced. The n-th sample in the k-th block is given by

yk,n =

[
y
(1)
k,n

y
(2)
k,n

]
=

[
x
(1)
k,n(θ

′
k)

x
(2)
k,n(θ

′
k)

]
+

[
n
(1)
k,n

n
(2)
k,n

]
= xk,n(θ

′
k) + nk,n

= γkbn(θk)sk,n(θk) + nk,n (23)
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with

sk,n(θk) = s
(
tk + (n− 1)TS − τk,n(θk)

)
(24)

nk,n =

[
n1

(
tk + (n− 1)TS

)
n2

(
tk + (n− 1)TS

)] (25)

and

bn(θk) =
[
cos
(
ωcτk,n(θk)

)
− sin

(
ωcτk,n(θk)

)]T
, (26)

where τk,n is the delay of the n-th sample in the k-th block

τk,n(θk) = τk + νk(n− 1)TS. (27)

The vector bn(θk) can be decomposed

bn(θk) = T (τk)dn(νk) (28)

into a matrix

T (τk) =

[
cos
(
ωcτk

)
sin
(
ωcτk

)
− sin

(
ωcτk

)
cos
(
ωcτk

)] , (29)

which only depends on the delay parameter τk and a vector

dn(νk) =

[
cos
(
ωcνk(n− 1)TS

)
− sin

(
ωcνk(n− 1)TS

)] , (30)

which only depends on the relative velocity νk. The receive
signal can, thus, be modeled as

xk,n

(
θ′
k

)
= γkT (τk)dn(νk)sk,n(θk). (31)

The vector of one observation block yk is defined as

yk =

yk,1
...

yk,N

 =

xk,1(θ
′
k)

...
xk,N (θ′

k)

+

nk,1

...
nk,N


= xk(θ

′
k) + nk. (32)

The noise nk is assumed to be uncorrelated. Hence, the noise
covariance matrix is given as

R = E
[
nkn

T
k

]
= BN0I2N , (33)

where I2N is the identity matrix of dimension 2N .

III. ML ESTIMATION WITH A SINGLE BLOCK

The receiver is interested in estimating the parameters of
the receive signal in order to gain information about the
propagation channel between transmitter and receiver. Using
only one observation block for estimation, the maximum
likelihood (ML) estimator is the best unbiased estimator [9].
The ML estimator is attained by solving the optimization

θ̂′
k = arg max

θ′∈Θ′
f ′

ML

(
yk;θ

′
k

)
, (34)

where f ′
ML

(
yk;θ

′
k

)
= py(yk|θ′

k) and

py(yk|θ′
k) =

e

(
− 1

2BN0

(
yk−xk(θ

′
k)
)T(

yk−xk(θ
′
k)
))

(2πBN0)N
. (35)

The ML estimate for the signal strength γk can be computed
in closed form as a function of θk and yk and is given by

γ̂k(θk) =

∑N
n=1 y

T
k,nT (τk)dn(νk)sk,n(θk)∑N
n=1

(
sk,n(θk)

)2 . (36)
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Fig. 3: ML Function

Substituting γk in the ML function results in a compact version

fML
(
yk;θk

)
=

(∑N
n=1 y

T
k,nT (τk)dn(νk)sk,n(θk)

)2∑N
n=1

(
sk,n(θk)

)2 (37)

and the problem can be reformulated

θ̂k = argmax
θ∈Θ

fML
(
yk;θk

)
. (38)

Note that only the maximization with respect to τk and νk
is required, while the ML estimate for γk can be com-
puted in closed form with the solution θ̂k. In Fig. 3, the
normalized noise-free ML function fML

(
xk(θ̃

′
k);θk

)
with

θ̃
′
k =

[
0 0 1

]T is plotted. A GPS-signal (C/A L1, Sat. 1)

s′(t) =
∞∑

m=−∞
[b]mod(m,M)g(t−mTC) (39)

with block length N = 2046 and chip duration TC = 977.53
ns is used, where b ∈ {−1,+1} is a sequence of M = 1023
binary symbols, each of duration TC, mod(·) is the modulo
operator and g(t) is a bandlimited transmit pulse. The carrier
frequency is given as fc = 1575.42 MHz. The one-sided
bandwidth of the ideal low-pass filter at the receiver is equal
to B = T−1

C = 1.023 MHz. The sampling frequency is chosen
according to the sampling theorem fS = 2B = 2.046 MHz.
The ML function is plotted in a range from 0 m to 0.4 m
in τk-direction. There is no clear global maximum within this
range, however, there are many local maxima. The distance
between two neighboring maxima is half the wavelength
∆ = c

2fc
= 0.0951 m as the sign of the signal amplitude is

not known at the receiver. As the height of the local maxima
decays slowly in the direction of τk, the multi-modal shape of
the ML function makes estimation with one observation block
impossible. The idea of the following sections is to resolve
this ambiguity issue with the help of an likelihood histogram
which is constructed over a long integration time.

IV. NEARLY CONSTANT VELOCITY MODEL

In order to realize a long integration time within a dynamic
scenario, the temporal evolution of the channel parameters has
to be modeled precisely. Here an autoregressive model of first
order is used

θk+1 =

[
τk+1

νk+1

]
= Fθk +wk, (40)
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where the matrix F ∈ R2×2 is the process matrix and wk is
additive process noise with the covariance matrix

E
[
wkw

T
k

]
= Q ∈ R2×2. (41)

This simple model turns out to be quiet accurate for practical
GNSS scenarios. A meaningful assumption for practical sce-
narios is that the first derivative τ̇(t) of the continuous time-
delay process τ(t) given in (19) is nearly constant over the
duration of one block. Consequently, higher order derivatives
are almost equal to zero and the second order derivative
τ̈(t) can be modeled as a zero mean white noise process
τ̈(t) = w(t) with

E
[
w(t)w(t′)

]
= σ2

wδ(t− t′). (42)

The process matrix F is then given as [10]

F =

[
1 T
0 1

]
, (43)

where T = tk+1 − tk is the duration of one block, i.e. T =
NTS and the covariance matrix Q as

Q = σ2
w

[
T 3

3
T 2

2
T 2

2 T

]
. (44)

V. PRECISE DELAY ESTIMATION
WITH AMBIGUITY RESOLUTION

Apart from the observation model (32) and the process
model (40), the prior knowledge from the acquisition algo-
rithm is assumed to be Gaussian, i.e. τ1 ∼ N

(
µinit,τ , σ

2
init,τ

)
and ν1 ∼ N

(
µinit,ν , σ

2
init,τ

)
. Combining all available infor-

mation, it is possible to estimate and track the time-delay
process τ(t) with very high accuracy. The proposed low-
complexity estimation process consists of two steps for each
block. The first step estimates and tracks one arbitrary time-
delay ambiguity τ̂A,k with a particle filter (PF). Moreover, an
estimate for the relative velocity ν̂k is provided. The second
step exploits the structural information of the likelihood func-
tion by updating a likelihood histogram formed on a subset of
points on the ambiguity gridAk. Based on this long integration
ambiguity histogram (LIAH) the algorithm finally decides for
the most probable time-delay solution τ̂k.

A. Ambiguity Grid Alignment with a Particle Filter
The optimal estimator for the considered estimation problem

is the conditional mean estimator (CME). Since our observa-
tion model shows severe non-linearities, the CME can not be
stated in closed form. Hence, suboptimal approaches need to
be used. An estimation method, which approximates the CME
and is able to handle strong non-linearities, is particle filtering
[10] [11]. Note that the PF is identical to the CME only for
an infinite number of particles. However, a large number of
particles results in high computational complexity. In order
to guarantee a correct and precise delay-estimation with a
small number of particles, step 1 only focuses on finding one
arbitrary ambiguity. Therefore, the particles are initialized as

τ j1 ∼ U
[
µinit,τ − 0.5∆, µinit,τ + 0.5∆

]
(45)

νj1 ∼ N
(
µinit,ν , σ

2
init,ν) (46)

for j = 1, . . . , J , where J is the number of used particles. Note
that the time-delay particles are initialized uniformly in the
range of one ambiguity. With this initialization, it is possible
to estimate and track one ambiguity with high accuracy. The
weight wj

k of particle j is updated

wj
k ∝ wj

k−1py(yk|θ
j
k, γ̂k(θ

j
k)) (47)

exploiting the observation yk of block k. Note that the weights
are initialized uniformly, i.e. wj

0 = 1
J and are normalized in

every step such that
∑J

j=1 w
j
k = 1. The tracking estimates are

τ̂A,k =

J∑
j=1

wj
kτ

j
k (48)

ν̂k =

J∑
j=1

wj
kν

j
k. (49)

In every block the effective sample size

Jeff =
1∑J

j=1 w
j
k

(50)

is computed [12]. If Jeff < 0.5·J , a resampling and roughening
step is needed to guarantee the stability of the PF [14] [15].
Here systematic resampling [13] is used. The process model
is used to update the particles

θj
k+1 = Fθj

k +wj
k, j ∈ {1, . . . , J}. (51)

B. Ambiguity Resolution with LIAH

In the second step the structural information of the like-
lihood function is exploited. As the distance ∆ between
two neighboring ambiguities is known, the positions of all
ambiguities, referred to as the ambiguity grid Ak, can be
estimated from τ̂A,k. In the following the algorithm only
considers the ambiguities within the interval[

τ̂A,k − ϵσinit,τ , τ̂A,k + ϵσinit,τ
]
. (52)

Note that there is a trade-off between complexity and reliabil-
ity which needs to be taken into account when choosing the
design parameter ϵ. The probability that the true ambiguity,
i.e. the time-delay τk, is within the interval[

µinit,τ − ϵσinit,τ , µinit,τ + ϵσinit,τ
]

(53)

can be computed with the initial knowledge of the acquisi-
tion. The core part of the presented delay estimation process
consists of different stages. In every stage the likelihood of a
fixed number A ≥ 5 of ambiguities out of the gridAk is tested.
Without loss of generality, A is assumed to be odd. Within one
stage the algorithm decides for one of the A ambiguities. The
search is refined in the next stage. The A ambiguities for the
first stage are

aik = round

((
− 1 + (i− 1)

2

A− 1

)
amax

)
(54)

with round(·) being the rounding operator, i ∈ {1, . . . , A} and

amax = max

(⌈
ϵσinit,τ

∆

⌉
,
A− 1

2

)
, (55)
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where ⌈ ⌉ is the ceiling operator, i.e. the time-delay values

aik∆+ τ̂A,k, i ∈ {1, . . . , A} (56)

are checked. In order to decide for one of these ambiguities,
a probability measure pik is introduced and assigned to each
of the tested ambiguities. The likelihood histogram pik is
initialized pi0 = 1

A , i ∈ {1, . . . , A} and updated in each block

pik ∝ pik−1py(yk|θ̂
i

k, γ̂k(θ̂
i

k)), (57)

with

θ̂
i

k =
[
aik∆+ τ̂A,k ν̂k

]T
, (58)

where τ̂A,k and ν̂k are the estimates of the aligning filter. The
histogram is then normalized such that

∑A
i=1 p

i
k = 1. The

delay parameter can be determined with the histogram

τ̂k = ai
⋆

k ∆+ τ̂A,k, (59)

where i⋆ = argmaxi∈{1,...,A} p
i
k. Clearly, the true ambiguity

needs not to be among the tested ambiguities in the first stage
if the initial search interval is wider than A ambiguities. In
order to find the true ambiguity, the search needs to be refined.
Thus, a counter cik, i = 1, . . . , A, is introduced and initialized
with zero, ci0 = 0, ∀i. Every time pik > ρ, where 1

A < ρ < 1,
cik is incremented by one. If a block is reached where cik
exceeds the design parameter C ∈ R, the algorithm decides
for ambiguity aik and refines the search on the ambiguity grid.
The particles τ jk of the grid aligning filter are shifted

τ jk ← τ jk + aik∆, (60)

i.e. also the estimate of the ambiguity τA,k is shifted

τ̂A,k ← τ̂A,k + aik∆, (61)

and amax is updated as

amax = max

(
χ,

A− 1

2

)
(62)

with

χ = max
u,v∈{1,...,A}

|au − av| (63)

under the constraint |u−v| = 1. The interval which is consid-
ered in the following blocks is

[
τ̂A,k−amax∆, τ̂A,k+amax∆

]
.

The tested ambiguities are computed as stated in (54). Note
that if amax = A−1

2 no further refinement is necessary since
all ambiguities in the considered interval are tested.

VI. SIMULATIONS

For the simulations a simple two-dimensional GNSS sce-
nario depicted in Fig. 4 is considered. The receiver is posi-
tioned on a circle with radius RE and center M. The receiver
Rx is assumed to be static. The transmitter Tx moves on a
circular orbit around the center M. If the transmitter is in the
zenith, the distance between transmitter and receiver is h. The
range r(t) between transmitter and receiver for this scenario
depends on the angle α(t) = ∡

(
Rx,M,Tx

)
which is given as

α(t) = α0 − 2π
t

T0
, (64)

..
M
.

Rx

.

Tx

.

r(t)

.
RE

.

RE + h︸ ︷︷ ︸
R

.α(t)

Fig. 4: Scenario

where T0 is the circulation time of the transmitter Tx and
α0 = α(0). Applying the law of cosine results in

r(t) =
√
R2

E +R2 − 2RER cos
(
α(t)

)
(65)

for the range between transmitter and receiver, where R =
RE + h. The velocity is given by

ṙ(t) =
RER sin

(
α(t)

)
α̇(t)

r(t)
(66)

with α̇(t) = −2π
T0

. For our simulations, the geometry is chosen
according to a GPS scenario. RE = 6371·103 m is equal to the
radius of the earth. T0 = 11 h 58 min and h = 20200 · 103
m are chosen according to the satellites of GPS, α0 = π

4 .
The parameter σ2

w of the nearly constant velocity model is
determined with a least squares approach. For our scenario
this results in σ2

w = 2.6279 ·10−14. The GPS-signal s′(t) (39),
the bandwidth B, the carrier frequency fc and the sampling
frequency are chosen as described in section III. The signal
strength is assumed to be 55 dB-Hz. The initial uncertainty of
the acquisition is

σinit,τ = 75 m, (67)

σinit,ν = 50
m
s
. (68)

The design parameters for the algorithm are ϵ = 3.5, A =
9, J = 100, ρ = 0.99 and C = 10. In Fig. 5, the absolute
value of the bias

BIASk = E
[
τk − τ̂k

]
, (69)

the mean square error (MSE)

MSEk = E
[
(τk − τ̂k)

2
]

(70)

and the variance

VARk = MSEk − BIAS2
k (71)

are measured for the estimation via LIAH with 250 realiza-
tions. It is observed, that the RMSE decreases to millimeter
level within 1000 observation blocks (

√
MSE1000 ≈ 10−3 m).

Apart from that, the estimation result is unbiased, i.e.

BIAS2
k ≪ MSEk (72)

for k sufficiently large. As a reference, the range estimation
result attained with a standard DLL/PLL approach, which is
described and implemented in [16], is plotted in Fig. 6. The



6

.....
0
.

200
.

400
.

600
.

800
.

1,000
.0 .

0.5

.

1

.

1.5

.

2

.

Block k

.

m

.

. ..√MSE

. ..|BIAS|

. ..√VAR

Fig. 5: Precise Histogram-based Approach

DLL/PLL damping ratio is 0.7 and the DLL bandwidth is
2 Hz, respectively. The PLL bandwidth is 25 Hz and the
DLL correlator spacing is 0.5TC. 2500 realizations are used
to measure the MSE, bias and variance. It can be observed
that it is possible to estimate the range with the accuracy of
a few meters with this standard approach. Interestingly, the
mean square error (MSE)

MSEk = BIAS2
k + VARk (73)

of this state-of-the-art method is dominated by the bias, i.e. a
systematic estimation error. Ignoring this error and considering
the variance, it is possible to estimate the range on meter-level
(
√

VAR1000 ≈ 2.0 m) with this classical approach.
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VII. CONCLUSION

In this work, it was shown that unbiased ranging with
extremely high precision with one single transmitter is possible
in the tracking module of a receiver at moderate complexity.
This result was achieved by modeling the carrier phase as
an exact function of the propagation delay parameter in the
statistical model of the receive signal. The ambiguity issue
was resolved by means of a tracking-based alignment filter
and a long integration histogram which assigns probabili-
ties to each ambiguity. It was observed that in a satellite-
based synchronization and positioning application (GPS) the
presented approach significantly outperforms state-of-the-art
ranging methods (DLL/PLL) with respect to the RMSE.
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