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Abstract-The code ionospheric bias, also known as the Differ­
ential Code Bias (DCB), is an important correction term for 
single-frequency receiver. This paper proposes a new method 
to estimate the biases as well as the vertical ionospheric delays 
using Kriging estimator with a network of receivers. Kriging 
estimates an unknown variable based on a set of known pa­
rameters and a variogram describing the spatial correlation. It 
is the best estimator in the sense of minimizing the estimation 
variance. Kriging method is proposed, as it could reconstruct 
the vertical delays based on a subset to overcome the rank 
deficiency. A Kalman filter is introduced, and a sUb-optimum 
solution has been obtained based on an iterative Greedy Al­
gorithm. Simulation results have shown cm-Ievel accuracy on 
the ionospheric bias estimates. The algorithm has also been 
applied with real GPS data for multiple days, which showed 
high bias repeatability. The bias estimates have been verified 
by comparison with published values. 
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1. INTRODUCTION 

The GPS code and phase measurements include not only the 
geometric distance, the clock offsets, the atmospheric delays, 
etc., but also link-biases which are observed stable over long 
time [1, 2]. It is thus beneficial to determine the biases 
and provide them to the user. These link-biases are further 
assumed to split into receiver- and satellite-dependent parts, 
e.g. as in [3], which enables the estimation of the biases using 
a network of receivers [4, 5]. 

The code biases can be separated into geometric and iono­
spheric components, where the geometry part goes together 
with the clock offsets and the ionospheric bias combines 
with the slant ionospheric delay. The ionospheric bias is 
seen as the differential group delay between two frequencies, 
also known as the differential time group delay (TGD) from 
navigation message [6] or the Differential Code Bias (DCB) 
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from the International GNSS Service (IGS) [7]. A single­
frequency receiver must correct this bias, since the satellite 
clock offset is provided under the ionosphere-free condition. 

In order to estimate the ionospheric biases using slant iono­
spheric delays, the Total Electron Content (TEC) of the 
ionosphere has to be proper modelled to overcome the rank­
deficiency. The ionosphere is typically simplified as a thin 
shell. Various models have been studied, such as a linear 
combination of basis functions like bi-cubic splines from Jet 
Propulsion Laboratory (JPL) [8], or planar fit from Wide Area 
Augmentation System (WAAS) [9], etc. 

Kriging was initially applied in mining and helped estimate 
the metal concentrations precisely based on sample data. 
Blanch et al. have first introduced Kriging's method into 
ionospheric estimation in [10-12]. It takes into account the 
spatial correlation of the field and provides an optimal solu­
tion minimizing the estimation variance. Blanch used Kriging 
to estimate the ionospheric delay at any ionosphere pierce 
point after subtracting the satellite and receiver differential 
biases from the slant delay measurements. He also developed 
the confidence bound for any given user location. 

The method and the challenge in this paper is to estimate the 
vertical ionospheric delay as well as the differential biases 
using Kriging. The paper is organized as follows: Section 
2 starts from a general model for the GPS measurements, 
and explains the mapping of the biases. The relationship 
between the ionospheric biases and the TGDs, DeBs is also 
presented. The code-aligned phase ionospheric measurement 
model is explained in Section 3. Section 4 models the 
variogram, which is important background knowledge for 
Kriging. The Kriging estimator is introduced in Section 5, 
while the algorithm combining Kriging with the ionospheric 
bias estimation is explained in Section 6. Section 7 and 8 
show the simulation and real data results, while Section 9 
concludes the paper. 

2. PARAMETER MAPPING AND SEPARATION 
OF BIASES 

A general model for the code and carrier phase measure­
ments, p and AC{J, for receiver i, satellite k on frequency f m 
with index m = 1, 2 is expressed by 

P':r"i = llii - pkll + c(5i - 5k) + m�,iTz,i + qrm1f,i+ 
+ bm,i + b':r, + TJ':r"i, 

AmC{J':r"i = llii - pkll + c(5i - 5k) + m�,iTz,i - qim1f,i+ 
A Nk 13 13k k + m m,i + m,i + m +cm,i' (1) 

where ii and pk denote the position vectors of the receiver 
and the satellite, c5i and c5k denote the receiver and satellite 



clock offsets, Tz,i represents the zenith tropospheric delay 
with Tn�.i the mapping function transforming it into slant 
delay, If.i is the slant ionospheric delay on the first frequency 
with the multiplier for different frequency qrm = if / f'/'n, 
Am is the wavelength, N';;".i denotes the integer ambiguity, 
f3m,i and f3� represent the receiver and satellite phase biases, 
bm,i and b';, are the corresponding code biases, S';"i and T)�,i 
represent phase and code noise including multipath. The 
well-modelled effects including the phase wind-up, the solid 
earth tides, as well as the prior information on the satellite and 
receiver phase center offsets and variations, are considered 
corrected, and thus not appearing in the above model. 

The code biases are further separated into geometric and 
ionospheric components, denoted with indices g and I, i.e. 

2 bm,i = bg,i + qlmbr,i, 
bk bk 2 bk m = g + qlm r, (2) 

where the code geometric biases are mapped to the clock 
offsets and the ionospheric biases to the slant delays as 

cbi = cr5i + bg,i, 
"k -k bk cO = cO - g' 

-k k k I l,i = I l,i + br,i + br . (3) 

The mapping of the code geometric and ionospheric biases 
has simplified the code measurement in Eq. (I), and the phase 
measurement equation should be adapted. Consequently, the 
code biases are absorbed by the phase biases, i.e. 

P . - (� - b + q2 br. fJm,1, - fJm,1, g,1, 1m ,1" -k k k 2 k f3m = f3m - bg + qlmbr· (4) 
After the parameter mapping the measurement model turns 
into 

\ k II � �kll (S Sk) k T 2 I
-k /lmCPm,i = Ti - T + C u i - U + TnT,i z,i - qlm l,i+ 

(5) 

The to-be-determined satellite code ionospheric bias bf is 
essentially the same with the differential time group delay 
defined in the GPS Interface Control Document (ICD) [6]. As 
described in the lCD, a single-frequency user should correct 
the satellite clock offset by an additional term, the satellite 
differential group delay T�D' The reason for this is the 
clock correction coefficient a fO in the navigation message 
was estimated based on ionosphere-free combination. Thus, 
the user needs to add the correction term qimT�D onto the 
code phase measurement P';, i ' This shows the consistency 
in the ionospheric equation 

'
in Eq. (3), since the satellite 

code bias bf has also the same frequency coefficient with the 
ionospheric delay. 

The IGS also publishes the receiver and satellite differential 
code bias estimates to benefit the single-frequency users. The 
DCB biases are provided in the form of bp1P2 = bpI - bp2, 
valid for both receiver and satellite. There exists a linear 
relationship between the code ionospheric biases br,i , bf and 
the defined receiver and satellite DCB PI P2 biases. Taking 

2 

the difference between the code biases in Eq. (2) on two 
frequencies, one obtains 

2 bl,i - b2,i = (1 - q12) br,i = bp1P2,i, 
b1 - b� = (1 - qr2) bf = b�lP2' (6) 

A comparison is made between the two bias products from 
January 2011, i.e. the satellite differential time group delay 
from navigation message and the differential code bias from 
IGS. The DCB biases are divided by the coefficient given 
by Eq. (6) to compare with the time group delays. The 
difference T�D - 1/(1 - if / {D . b�lP2 is shown in Fig. 1. 
A common shift is applied to all satellites in order to align 
the two products, where the shift is seen as the difference 
between the references and can be absorbed in the receiver 
code bias. Therefore, the code ionospheric biases br,i , bf 
which this paper focuses to estimate, have in fact the same 
meaning of the time group delays and a linear relationship 
with the differential code biases. 

0.5 ,---���������������----; 

;., '" 
OA 

� 0.3 
Q. 
e E 0.2 
Ol� � � 0.1 
:;::; ro 
a5 � 0 

�u mD -0.1 
.0'0 
� § -0.2 c @ & -0.3 

o 
-OA 

o 

-0.5 L-'---"---'---'----'----'---'---'---'--'----'-----'----'----'---'----' 
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

PRN Number 

Figure 1. The difference between satellite differential time 
group delay and the differential code biases in January 2011. 
PRN I was not healthy at that time and has been replaced in 
GPS week 1645. 

3. IONOSPHERIC MEASUREMENT MODEL 

To estimate the ionospheric biases, slant ionospheric delays 
are used as measurements from a network of receivers. There 
are many possible ways to obtain the slant ionospheric de­
lays. They can come directly from geometry-free ionosphere­
preserving code combination, which simultaneously ampli­
fies the noise by over 2 times. Carrier smoothing could be 
applied afterwards to reduce the noise, however it introduces 
temporal correlation. Another way could be to augment 
the code combination with the carrier phase ionosphere­
preserving combination, while increasing the unknown pa­
rameters by a large number of ambiguities. This could lead 
to a slow convergence using a network of receivers. In order 
to avoid adding the ambiguities but to still have low noise, 
the code-aligned carrier phase combination is employed as 
suggested by Sardon et al. in [13]. The alignment is done for 
each receiver-satellite link by determining the constant offset 
between the code combination and the phase one. In the end, 
the slant ionospheric delay is obtained as 

(7) 



where the vectors i� i' I� stack a continuous time series of 
slant delays on the sa�e measurement link, and the indices cp 
and p denote phase and code combination, respectively. 

The ionosphere can be simplified as a single thin layer, which 
enables us to express the slant delay by the vertical delay 
If,v,i multiplied with a mapping functionrn�,i' Combining 
with Eq. (3), the ionospheric measurement equation reads 

jk k Ik b bk 1,i = rnI,i ' 1,v,i + I,i + I +c1'P' (8) 
with the measurement noise being the one of the ionosphere­
preserving phase combination. From now on the tilde on 
the slant delay measurement is dropped for simplicity. The 
mapping function presents a simple geometry projection, i.e. 

1 
rn�,i = ---;======= cos2 Ef 1 - -,------:---;-::'� (1 + hi Re)2 

(9) 

with E being the elevation angle, h being the height of the 
layer, and Re being the radius of the earth. 

It is noticed that, in Eq. (8) the receiver and satellite biases 
alone form a full-rank system, therefore the biases can only 
be determined in a relative sense. There are many ways to set 
the reference. The DCB biases IGS determined are subject to 
the condition that the sum of the biases is zero [14]. In this 
paper, we map one reference satellite bias bf into the other 
satellite biases as b� - b�', and compensate it in all receiver 
. k' bIases as bI,i + bI . 

The fact that the number of slant delays is the same with the 
number of vertical delays, leaves the system of Eq. (8) still 
rank-deficient. A proper ionospheric model is expected to 
further reduce the number of unknown states. 

4. VARIOGRAM MODELLING 

In geostatistics, a function Z (x) at a given location x depends 
on some incomplete or unpredictable knowledge, and is thus 
usually treated as random variable resulting from a random 
process [15]. Assume a field is intrinsic stationary, for any 
two nearby locations Xi and x j, we have 

E[Z(Xi) - Z(Xj)] = 0, 
Var[Z(xi) - Z(Xj)] = 21(llxi - Xjll). (10) 

The first property states the random variable Z (x) has same 
mean over a small area, while the second one interprets the 
difference in variances as a function describing the spatial 
relation of the field. The function I( d) depends solely on 
the relative distance d rather than the absolute locations, and 
is known as the semi-variogram. The term "semi" is used 
because I is one half of the variance in Eq. (10). To clarify, 
this term is omitted for simplicity and I is called variogram 
in this paper. 

Given a set of sample data measured at known locations, an 
empirical variogram can be calculated as 

(11) 
3 

where m(d) denotes the number of pairs whose distances fall 
into the range of [d - ��d, d + ��d]. 

A set of vertical ionospheric delays are collected from the 
IGS final TEC grid product during the night on Jan. 1, 2011. 
Moreover, the vertical delays have subtracted a mean vertical 
TEC map obtained by averaging the TEC maps over sun­
synchronous same geomagnetic locations over 8 years, so that 
the residual field can be assumed to meet the requirement of 
intrinsic stationary. The random variable Z (x) is thus defined 
as suggested in [3] as 

( 12) 
Fig. 2 shows an example of empirical variogram in blue dots. 
The region of interest lies in latitude between 30° and 87.5°, 
and longitude between -30° and 75°. The distance interval 
�d is set to 50 km. The variogram increases as the distance 
between pairs of points grows, and becomes saturated when 
the distance is larger than a certain threshold, e.g. 4000 km 
in the plot. 
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Figure 2. The calculated experimental and fitted exponential 
variograms in the night for the region of latitude from 30° 
to 87.5° and longitude from -30° to 75°. As the distance 
increases, the variogram first increases almost linearly and 
then tends to converge at large distances. 

As the empirical variogram is a discrete function, we would 
need to fit it to a continuous one to represent the spatial 
relation of any distance. In this paper we have applied a much 
used negative exponential function, suggested in [15, 16], i.e. 

(13) 
The function has the value Cn when the distance is zero, and 
approaches a sill Co + Cn when the distance goes to infinity. 
The variable ao defines the spatial extent of the model. The 
fitted theoretical model is shown in orange in Fig. 2, with the 
parameters chosen as Co = 0.001 m2, Cn = 0.02 m2, and 
ao = 5176.5 km. 

5. FUNDAMENTALS OF ORDINARY KRIGING 

Kriging is a widely used method in geostatistics, to estimate 
the value at a given point based on some existing samples at 
known points and a certain prior knowledge on the spatial 
variation. The most robust and most used method among 



many is ordinary Kriging [15]. Consider a random variable 
Z(xo) at location Xo, its estimate is expressed by a linear 
combination of the existing data with different weights, i.e. 

n n 
i=l i=l 

The estimate is unbiased due to the condition that the sum 
of the weight is one. This can be straightforward verified 
through the mean equality property in Eq. (10). The variance 
of the estimation error is given in [15] as 

Var[Z(xo) -Z(xo)] 
n 

i=l 
= 2ATr - ATGA, 

with the matrices denoting 

n n 
i=l j=l 

[ a1 1 [ o(llxo 
:
-x, II) 1 

A= r= , 
an ,(llxo -xnll) 

1,(llx1 � xIi!) ,(llx1 -xnll) 
G = 

l,(llxn
:
-xIi!) ,(llxn -xnll) 

(15) 

l (16) 
J 

Kriging provides the best solution for A in the sense that 
the variance of the estimation error in Eq. (15) is minimized 
under the constraint in Eq. (14). A Lagrange multiplier fL is 
introduced to solve the minimization, which yields 

L'. --1-= G r. (17) 

The estimation variance on the Z (xo) estimate is further 
obtained as � -T--1-Var[Z(xo) -Z(xo)] = r G r. (18) 
Eq. (17) and (18) are the solutions from the Kriging estimator, 
which is a best linear unbiased estimator. The weighting 
coefficients depend on the spatial relation between the studied 
point and the sample points, where the variogram describes 
the spatial information and is needed a priori. As a result 
of Eq. (17) and the variogram function, the points which are 
nearer the studied point would have a larger weight and thus 
contribute more in the interpolation, while the points farther 
away have less impact. 

6. METHODOLOGY 

Kriging provides an optimal way of representing a subset 
of sample points by another subset, which enables us to 
overcome the rank-deficiency in Eq. (8). Let us consider 
a network of R receivers with totally K satellites in view, 
while receiver 'i sees Ki satellites. The number of receiver 
and satellite biases is R + K -1 in total. As pointed out in 
Section 3, there are at least R + K -1 ionospheric vertical 
delays that have to be mapped. These mapped vertical delay 
parameters do not appear in the state vector, instead they are 
interpolated with Kriging using the subset to be estimated. 

4 

A Kalman filter is introduced to estimate the subset of vertical 
delays and the ionospheric biases. We denote the estimated 
subset by an upper index s, and the other subset of vertical 
delays to be interpolated by s. The measurement model in 
Eq. (8) can be rewritten in matrix-vector form as 

I = [H1v, Hb[""" Hbrt ] . bI.rec 
[ I� 

b�at 

where the vectors are given as 

I= [Ii1, . . .  ,Ift, ... ,IiR, . . .  ,ItRR]T , , , , 

Iv = [Ii vI"" ,It� 1,···,Ii v R,'" ,ItvRR]T, , , , , , , , , 

br,rec = [br,l, br,2,"" br,R]T , 
sat _ [ 1 k'-l k'+l K]T br - br,···, br , br , ... , , br , 

(19) 

(20) 

with k' being the reference satellite. The design matrix for 
vertical delays contains two parts, the mapping functions 
alone and and the functions multiplied with the Kriging 
coefficients, i.e. 

H1v = 

m�.l a1,1 
mI.1 o 

m I .i 

(21 ) 
with ns and ns being the number of pierce points in the 
estimated subset S and the mapped (complement) subset 
S respectively. For each pierce point j belonging to the 
mapped subset, the vertical delay is interpreted with a linear 
combination of the estimated subset of vertical delays. The 
weighting coefficients are determined by Kriging method and 
are combined in the vector CXj as 

If we rearrange the measurements in two categories, the 
Kriging solution in Eq. (17) can be built in Eq. (21), and 
a permutation matrix P can be introduced to restore the 
measurement ordering, i.e. 

diag(mI) 

[ :Jfc 1 diag( mD . LA" ,  

diag(mI) 

= p . (23) 

with C/ and f j (j E {I, . . .  , ns } ) following the definition in 



Eq. (17), and D being the selection matrix as [ ,(llxl- xlii) ,(llxI - x�J) 
-8 G = 

,( II X�, - xIII) ,(llx�, - x�J) 1 1 

rj = [ ,(lIx; - xlII) 1 _: . ,D = [In,xn',On,Xl] 

,(llxj - x�s II) 

The design matrix for the receiver biases is given as 

lK"Xl 1 ' 
and for the satellite biases as 

1 1 1 
0 

(24) 

(25) 

(26) 

where each componentH bK; has the dimension Ki x (K -1). 
I 

For the j-th row in H bKi, only the kWth column has the entry I 1 while the other columns have Os. kij is defined as the index 
of the j-th (j = 1, ... , Ki) visible satellite from receiver i 
in the total visible K - 1 satellites (excluded the reference 
satellite). If the j-th satellite happens to be the reference 
satellite, no index can be found in the K - 1 satellites, thus 
the j-th row in H bK; is an all-zero row. I 
After representing the mapped subset with the estimated one, 
the measurement noise shall be adjusted accordingly. The 
new measurement noise for the mapped subset should contain 
not only the noise from the slant delay measurements, but also 
the Kriging estimation error. 

Until this stage, a full-rank ionospheric measurement model 
has been established by mapping a subset of vertical delays 
with Kriging. However, how to construct the mapped subset 
still remains an open question. The question includes how 
many vertical delays and which ones should be mapped 
away. Intuitively the more pierce points stay in the estimated 
subset, the better the interpolation would be. However, 
the improvement of the interpolation would be little when 
sufficient vertical delays have already been included in the 
state vector. The convergence of the estimation would also be 
slower in general if there are more unknowns. Least-squares 
method could be applied to Eq. (19) for a global optimal 
solution, whereas the coefficient matrices H Iv as well as 
H bI,rec and H brt need to be fixed. However, they depend 
on a specific choice of estimated vertical delay subset. A 
brute-force search would find the minimum by examining all 
possible subsets. This would however be inefficient and even 
infeasible for a typical scenario of hundreds to thousands of 
ionospheric pierce points. 

We propose an efficient Greedy algorithm to obtain a sub­
optimum solution for Eq. (19), which constructs the esti­
mated subset of vertical delays in an iterative manner. The 

5 

initialization of the subset starts with the first point selected 
geographically about in the middle of the map, 

so that the distances and the spatial relations to other points 
are averaged. The variables ¢ and A denote the latitude 
and longitude of a pierce point respectively, while ¢ and 
>. are the average latitude and longitude for the region of 
interest. Then all other points are represented by the first one 
using Kriging interpolation, consequently they will all have 
a weighting coefficient I but different variances. The second 
point included should have the least accurately determined 
vertical delay. Thus it is chosen as the farthest point to 
the first one, because the variogram is the largest. At the 
next step, each remaining point is calculated based on the 
interpolation between the two points in the estimated subset. 
Thus the subsequent point is always chosen as the one having 
the largest Kriging variance based on the already selected 
points, i.e. 

with the estimate 
i-I 

Z(Xi) = L AjZ(Xj), i> 1. 
j=1 

(28) 

The selection procedure stops until the Kriging variances on 
the remaining points are below a certain threshold, which 
means the selected points can well generate the others. 

Furthermore, the pierce points would change their positions 
as the satellite geometry changes, and they would even be 
removed when the satellite is no longer visible. Therefore 
the subset points need to be updated and reselected during 
the estimation, since better subset choice would come up 
as relative positions of pierce points change over time. If a 
new point is included in the subset, its vertical delay estimate 
needs to be introduced to the state vector of the Kalman filter, 
so do the variance and covariance with other vertical delays. 
The vertical delay at the new subset point is initialized as 
the interpolated value based on the previous subset used for 
Kriging 

(29) 
where the new point 5j belonged to the mapped subset at 
epoch t - 1. Assume the previous estimated subset contains 
pierce points S = {81, ... , 8ns}' then the new estimated 
subset is S = {SI, ... ,Sng,5j}. At epoch t, the a priori 
covariance matrix P is calculated as 

(30) 

where the upper left element comes from the prediction step 
of Kalman filtering, and the other three terms need to be 
initialized. The variance of the new vertical delay estimate 
is obtained from Kriging estimation variance as 

P;js/t) = E [(j�:ij(t) - I�',ij(t))2] 
T'+ = exj P ss(t - l)exj. (31 ) 
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Figure 3. The 15 lOS Stations (as orange diamonds) and the 
trajectories of the ionospheric pierce points. The estimated 
vertical delays are shown in green, whereas the mapped 
pierce points are in blue. Most of the points at the edges of 
the map are selected into the estimated subset, except those 
which are near the subset points. 

The off-diagonal terms in Eq. (30) are calculated as 

7. SIMULATION RESULTS 

The suggested algorithm has been tested first with a simula­
tion to estimate the vertical ionospheric delays and the biases. 
The simulation takes 15 lOS stations in the region of Europe, 
shown as orange diamond symbols in Fig. 3. The time period 
is chosen from 20:00 to 21 :00 on Jan. 1, 2011. We use the 
negative exponential function calculated in Section 4 for the 
theoretical variogram. 

In order to keep the simulation simple, no rising or setting 
satellite is considered, i.e. only the satellites which are always 
visible are counted. Moreover, the satellites which are visible 
to less than 4 stations are also ruled out, so that the satellite 
biases could converge well. There are in total 112 pierce 
points, of which 70 points are selected into the subset and 
their vertical delays are directly estimated. The other 42 
points are interpolated as linear combinations of the subset 
points, with coefficients determined optimally with Kriging. 

The measurement noise is set to 2 cm for the slant ionospheric 
delays, while the process noise in the Kalman filter is con­
figured as 0.5 cm for the vertical delays, and 1 mm for the 
satellite and receiver ionospheric biases. 

A subset reselection is performed at the 30th minute, while 
the trajectories of the changed points are shown with half 
green and half blue in Fig. 3. The impacts on the estimation 
of the vertical delays, as well as of the receiver and satellite 
biases, are shown in Fig. 4 and Fig. 5. 

In Fig. 4, the errors on the vertical delays are converged 
under 10 cm after 18 minutes and drop further to under 2 cm. 
After replacing with a new optimal subset at epoch 1800, 
the accuracy of the vertical delays remain under 2 cm. In 
Fig. 5, the benefit of changing the subset is seen after 30 
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Figure 4. Error on the ionospheric subset vertical delay 
estimates. Each line represents one vertical delay at a pierce 
point. The errors have converged to under 2 cm. 
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Figure 5. Error on the satellite and receiver ionospheric bias 
estimates. A change of the subset at 30 minute fastens the 
convergence of the bias estimates. In addition, a slightly 
better accuracy can be observed at the satellite bias estimates 
than the receiver ones, because of more measurements for 
each satellite. 

minutes, which results in an accuracy of below 2 cm. Also, 
one observes in Fig. 5 that the satellite biases are estimated 
more accurately than the receiver ones, as each satellite is 
seen by about 15 receivers and each receiver only sees about 
7 satellites in the simulation. 

8. REAL DATA ANALYSIS 

We have also applied the estimation algorithm with real OPS 
data from a larger network including 24 lOS stations. The 
OPS code and phase measurements on two frequencies were 
collected from Jan. 1 to Jan. 14, 20ll, with 6 hours during 
the night each day for the consecutive two weeks. The data 
period is from 20:00 to 02:00 UTe. The slant delays come 
from the code-aligned phase ionosphere-free combination. 
We've subtracted a mean vertical delay map averaged at sun­
synchronous same geomagnetic locations from 2003 to 2010. 



Figure 6. Network of the 24 IGS stations, shown in red pins. 

The residuals from all stations are plotted in Fig. 7. The 
blue histogram indicates the estimation using Kriging and 
the iterative Greedy algorithm, while the black one shows 
the residuals when subtracting the IGS ionospheric grid map 
and the differential code biases from the measurements. The 
residuals from the Kriging method approach zero-mean and 
a standard deviation of 0.2m, which is much smaller than the 
sigma in the case of subtracting IGS products. It should be 
fairly pointed out that the IGS products are estimated with 
several hundred stations among different analysis centers 
[17], and thus the residuals are averaged in a global sense, 
whereas in our case a regional network is being studied. 

5�--�--�----.---�========� 

4 

Measurement residuals [m] 

Figure 7. Comparison of the estimation residuals for all 
stations on Jan. I 2011. The residuals from the Kriging 
method are unbiased and concentrate highly around zero 
while the one from subtracting IGS products results in a bias 
of -0.2 m and a larger variance. 

Fig. 8 depicts the estimated satellite biases over 2 weeks. A 
high repeatability is observed on each bias estimate, with the 
most stable one varying about 6 cm over 14 days. 

We would also like to compare the bias estimates with the IGS 
differential code biases, in order to validate the correctness of 
the biases. Since the IGS satellite DCBs are subject to the 
zero-sum condition and our estimates have been absorbed the 
bias from one reference satellite, the two bias products are 
first aligned. Therefore, for all the satellites between the two 
products we determine a common offset, which is assigned as 
the bias value for the reference satellite to meet the zero-sum 
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Figure 8. The satellite code bias estimates projected into the 
ionosphere show a very high repeatability over 2 weeks. The 
smallest variation is seen on the bias estimate from PRN 9 
with about 6 em over 14 days. 
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Figure 9. Difference between the satellite ionospheric biases 
and the IGS differential code biases over 2 weeks. 

condition. Fig. 9 shows the difference over the consecutive 14 
days. Most of the differences on the bias estimates are under 
20em. 

9. CONCLUSIONS 

In this paper we have proposed a new ionospheric estimation 
method, which represents a subset of vertical delays with the 
remaining ones. The key to a successful representation is a 
minimum loss of information, which is made possible by the 
best linear unbiased Kriging estimator. It exploits the spatial 
correlation of the ionosphere through the variogram. The 
simulation and real data results have shown accurate vertical 
delay and bias estimates, while the comparison to the IGS 
differential code biases confirms the correctness of our bias 
estimates. 

It should be mentioned that the experiment data was selected 
in the night when the ionosphere is quiet. However the algo­
rithm always estimates a subset of vertical delays which relate 
directly to the instant measurements. Thus it is reasonable 
to expect a similar accuracy during the daytime, as long as 
the variogram could well describe the field. Moreover, the 
more precise corrections of the vertical delays and the biases 
obtained from the Kriging algorithm could enable a single­
frequency receiver to position itself with better accuracy. 
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