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ABSTRACT

Low-cost single-frequency GNSS receivers with patch
antennas can track carrier phase measurements with
millimeter- to centimeter level and can therefore provide
position information comparable to geodetic grade recei-
vers. However, in order to use carrier phase measurements
for positioning, one has to first resolve the integer ambi-
guities, which is challenging in the case of low-cost recei-
vers because code multipath errors can be tens of meters.
A new Kalman filter is proposed in this paper for determi-
ning jointly the cooperative RTK float solution of multiple
rover receivers with respect to a fix base station. The mea-
surement model as well as the state space model used in
the Kalman filter are carefully designed for simultaneous
tracking of multiple rowing boats. The measurement mo-
del exploits the correlation between measurements and the
state parameters are chosen without redundancy (i.e. com-
mon states are only estimated once). The characteristic pe-
riodic movement of a racing rowing boat is also exploited
in this paper to correct for carrier phase measurement out-
liers, i.e. cycle slip. Extensive tests were conducted with
low-cost single-frequency GPS receivers. Static and kine-
matic test results show that with the new cooperative RTK
Kalman filter, float ambiguities converge much faster and
integer ambiguities can be correctly fixed in less than a mi-
nute. With the movement model, cycle slips are reliably
corrected during the precise tracking of the boats after am-
biguity resolution.



INTRODUCTION

RTK with low-cost single frequency GNSS receivers and
patch antennas is quite attractive for rowing boat competi-
tions. Today, cameras are used in rowing boat competitions
to determine the time of arrival and thereby, the order of
athletes. These cameras have one disadvantage: They are
mounted at fixed points. As a rowing regatta course is typi-
cally 2 km long, the cameras are not capable of providing
any timing information for most of the time. In this paper,
we describe an RTK method for low-cost GNSS receivers
and patch antennas for rowing boat competitions. As shown
in Fig. 1, one antenna is typically installed at a fixed point,
e.g. the finish tower while the other antennas are mounted
on the rowing boats.

Base station

Rowing boat 1

Rowing boat 2

~b1 ~b2

Fig. 1: Regatta course of Linz-Ottensheim, Austria where
2013 World Rowing U23 Championships took place. One
antenna (base station) is mounted on the finish tower and
one antenna (rover) is mounted on each rowing boat. Each
base-rover pair forms a baseline vector.

In order to achieve centimeter-level accuracy with low-
cost GNSS single-frequency receiver, one has to exploit the
carrier phase measurements as code measurements are too
noisy due to multipath delays. To track the rowing boats,
we use double difference measurements to determine the
baseline vectors between the finish tower and the boats. As
the receiver clock offsets of low-cost GNSS receivers are
in the order of milliseconds, the movement of the satellites
within the time difference of the receiver clock offsets is no
longer negligible. We use a synchronization correction [2],
which corrects for this issue to restore the integer property
of double difference measurements for low-cost GNSS re-
ceivers. The carrier phase integer ambiguities are then de-
termined in three steps [1]: first, a float solution is deter-
mined by using code and carrier phase measurements and
by disregarding the integer property of ambiguities. Subse-
quently, the float solution is mapped to an integer one by
a tree search with integer decorrelation. Finally, the fixed
baseline solution is determined.

A standard world championship rowing boat race takes
in average 5 to 8 minutes; a quick ambiguity fixing is hence
essential to ensure that rowing boats are tracked with cen-

timeter accuracy in most part of the race. In this paper, we
perform a cooperative RTK positioning using Kalman filter
for multiple baselines, i.e. we exploit the correlation intro-
duced by using the measurements of the finish tower for the
double differences derived from different base-rover recei-
ver pairs. Furthermore, since all rover receivers move on
the same two-dimensional plane, we assume that all base-
lines share a common height component in the local East-
North-Up coordinate frame and that the velocity in the Up-
direction is negligible. By doing so, the Kalman Filter used
for cooperative RTK has fewer state parameters to estimate
while the number of available measurements remains un-
changed. If the orientation of the racing course is perfectly
known, the RTK positioning can be performed in a local
coordinate frame defined by along-track (A), cross-track
(C) and up (U) directions, which enables us to adapt mo-
re appropriately the process noise of the Kalman filter. The
carefully adapted Kalman Filter allows a fast convergence
of the float ambiguities and therefore ambiguity resolution
with LAMBDA can be performed earlier in the race.

After the carrier phase integer ambiguities are fixed, ro-
ver receivers are tracked with centimeter-level accuracy.
However, due to frequent cycle slips, jumps of a factor of
half a cycle (i.e. 9 cm for GPS L1 band) can occur. In this
paper, we develop a reliable cycle slip correction for cases
where only GNSS measurements are available. We exploit
the characteristic periodic dynamics of rowing boats to de-
rive a priori baseline knowledge. With the latter, a Maxi-
mum A Posteriori probability estimator can be used, follo-
wed by an integer search to determine the number of cycle
slips [4].

A more advanced movement model is also proposed in
this paper which can be directly integrated into the coope-
rative RTK Kalman Filter used for determining float solu-
tion. This approach scales the velocity of the rowing boat
according to a nominal velocity using three parameters in
the rowing boat movement model namely phase of stroke,
period of stroke and multiplier of nominal speed.

MEASUREMENT MODEL

Model of double difference (DD) code and phase mea-
surements

The double difference (DD) carrier phase measurements
for satellite pair{k, l} and base-rover pair{B, r} can be
modeled at timetn as

λϕkl
Br(tn) =(~e kl(tn))

T~bBr(tn) + cklBr(tn)

+ λNkl
Br + λ/2∆Nkl

Br(tn) + εϕkl
Br
(tn), (1)

with the wavelengthλ, the unit vector~e kl pointing from
the reference receiver to the rover receiver, the DD syn-
chronization correctioncklBr, the integer ambiguityλNkl

Br,
the cycle slips∆Nkl

Br and the carrier phase measurement
noiseεϕkl

Br
.



The DD synchronization correction is required for low-
cost GPS receivers as the satellite movement within the pe-
riod of the differential receiver clock offset can be no longer
neglected. In order to restore the integer property of the DD
ambiguities, Henkel et al. developed a synchronization cor-
rection in [2], which solely depends on the receiver clock
offset estimates, the satellite-receiver line of sight vectors,
and the receiver and satellite movement within the period
of the differential receiver clock offset. The DD synchroni-
zation correction is given by

cklBr(tn + δτB, t+ δτr)

= (rkB(tn + δτB)− rlB(tn + δτB))

− (rkB(tn + δτr)− rlB(tn + δτr)), (2)

whererkB is the range between satellitek and the base stati-
on, and can be expressed as follows:

rkB(tn + δτr)

= (~e k
B(tn + δτr))

T·
(
~xB(tn + δτr)− ~x k(tn + δτr −∆τkr )

)
, (3)

with the unit vector~e k
r pointing from satellitek to receiver

r, the base station absolute position~xB and the delay∆τkr
between the transmission time and the received time.

A similar DD measurement model can also be applied to
code measurements, i.e.

ρklBr(tn) =(~e kl(tn))
T~bBr(tn) + cklBr(tn)

+mρkl
Br
(tn) + ερkl

Br
(tn), (4)

with the code multipath delaymρkl
Br
(tn) and the code noise

ερkl
Br

.
Rowing boats in a regatta race have well defined move-

ment and therefore the use of a Kalman filter is obvious-
ly beneficial to obtain an optimized estimate of the system
state. In the case where several rowing boats have to be
tracked simultaneously, a filter which processes jointly DD
measurements of all baselines can exploit the correlation
between DD measurements to improve precision of the ba-
seline estimates. Furthermore, as rowing boats move on the
same two-dimensional plane, all baseline vectors pointing
from the base station to the boats share the same height
component in the local East-North-Up (ENU) coordinate
frame. Acooperative RTK Kalman filteris therefore con-
structed such that it considers

• correlation between DD measurements of different
baselines due to common base station and common
satellite (e.g. reference satellite),

• one common Up-component for all baselines.

After applying the DD synchronization correction, the
matrix-vector representation of DD phase and code mea-
surements attn can be written as

zn =

(
λϕn

ρn

)

=

(
H̃n 0 λ · I 0

H̃n 0 0 1

)

xn + vn, (5)

whereH̃n maps the baselines to the DD measurements,
λϕn and ρn stack respectively DD phase measurements
and DD code measurements of all receiver pairs{B, r} in
a column vector:

λϕn =






λϕBr

...
λϕBR






n

(6)

with

λϕBr,n =






λϕ12
Br − c12Br

...
λϕ1K

Br − c1KBr






n

. (7)

Note that the time-dependency of measurements is omitted
in the matrix-vector representation for better readability.

The state vector in Eq. 5 is parameterized in local coor-
dinate frame. During a rowing boat race, the boats intend
to move in a line parallel to the rowing course as any move-
ment in cross-track direction would result in a loss of time.
It is hence optimal to describe the position and velocity of
the rowing boat in a local coordinate frame defined by the
along-track (A), the cross-track (C) and the up (U) directi-
on, i.e.

xn =
(

~b T
AC, b

T
U,
~̇b T
AC, N

T,mT
ρ

)T

n
, (8)

where~bAC stacks the baselines in along-track and cross-

track direction and~̇bAC stacks the baseline rates, i.e.

~bAC,n =






~bAC,B1

...
~bAC,BR






n

and ~̇bAC,n =







~̇bAC,B1

...
~̇bAC,BR







n

,

(9)
while N andmρ stack the DD phase ambiguities and the
DD code multipath delays respectively, i.e.

N =






NB1

...
NBR




 and mρ =






mρB1

...
mρBR




 . (10)

The baseline in ACU coordinates is related to the baseli-
ne in Earth-Center-Earth-Fixed (ECEF) coordinates by the
following expression:

(
~bAC

bU

)

= Rz(ψ + π/2) · RL ·~bECEF, (11)

where

RL = Rx(π/2− ϕlat) ·Rz(π/2 + λlon), (12)

with ψ being the heading of the regatta course calculated
clock-wise from the North-direction,ϕlat being the latitude
andλlon being the longitude. Note however that if the ori-
entation of the rowing course is unknown, the position and



velocity can also be modeled in the East-North-Up local
coordinate frame. As mentioned earlier, the rowing boats to
be tracked move on the same 2-D plane. It is therefore ju-
stified to estimate only one baseline Up-componentbU for
all receiver pairs. Besides, the velocity in the Up-direction
is disregarded in the Kalman filter.
vn in Eq. 5 is the DD phase and code measurement noi-

se, which is assumed to be zero-mean Gaussian white noise
with covariance matrixRn. The noise statistics can be esti-
mated with an elevation based decreasing exponential mo-
del as proposed in [7]. While constructing the covariance
matrix with the model, the correlation between DD measu-
rements must also be considered:

vn ∼ N(0, Rn), where

(Rn)i,j = cov(ϕBi(tn), ϕBj(tn)),

(Rn)R+i′,R+j′ = cov(ρBi′(tn), ρBj′(tn)),

for 1 ≤ {i, j, i′, j′} ≤ R. (13)

The measurement noise covariance matrix can be partitio-
ned into a diagonal block matrix with each block being a
dense matrix.

STATE SPACE MODEL

Constant linear acceleration assumption

A Gauss-Markov process can be used to model the mo-
vement of a rowing boat, i.e.












~bAC,n

bU,n

~̇bAC,n

~̈bAC,n

Nn

mρ,n












︸ ︷︷ ︸

xn

=











1 ∆t · 1 ∆t2

2 · 1
1

1 ∆t · 1
1

1
1











︸ ︷︷ ︸

Φ












~bAC,n−1

bU,n−1

~̇bAC,n−1

~̈bAC,n−1

Nn−1

mρ,n−1












︸ ︷︷ ︸

xn−1

+












w~bAC,n

wbU,n

w~̇bAC,n

w~̈bAC,n

wNn

wmρ,n












︸ ︷︷ ︸

wn

, (14)

where∆t denotes the time interval between the current and
the previous states. In this state-space model, we model the
change of acceleration as white Gaussian noise.bU,n and
Nn are assumed to remain constant over time, whilemρ,n

follows a random walk process.

Periodic dynamics of a racing rowing boat

Rowing boat is a cyclic sport [6] in which the periodicity
of the strokes results in the periodic pattern of the rowing
boat dynamics. Figure 2 depicts respectively the periodic
pattern of a racing rowing boat along-track velocity and
along-track acceleration. Note however, that the dynamics
are not derived with the center of mass of the boat but with
the center of the patch antenna mounted on the boat.

Rowing boat accelerates when a reaction force is exerted
on the oar and decelerates when the oar is extracted. Fig. 2
illustrates the dynamics of a rowing boat within one stroke.
A stroke cycle can in general be subdivided into two main
phases, namelyrecoveryanddrive phases. The latter beg-
ins when the oar blade is immersed in water and ends when
the blade is removed from water; recovery phase starts on-
ce the blade is removed from the water and subsequently,
the speed of the boat decreases. Detailed analysis of the
anatomy of a stoke cycle can be found in [6].

Precise Modeling of Characteristic Velocity Pattern

In this subsection, we derive a model for the characteri-
stic velocity pattern using the velocity estimates from mul-
tiple strokes. We subdivide the characteristic velocity pat-
tern of a stroke intop sections. The velocity pattern of each
section is described by a polynomial of second order. The
continuity of the velocity pattern and of its derivative at
theboundariesof thep sections is ensured by introducing
constraints on the polynomial coefficients.

We model the velocity measurements ofp phases using
measurements fromnp epochs for thep-th phase as in
Eq. 15, with

v(i) =






vi(ti1)
...

vi(tini
)




 , α(i) =





αi
0

αi
1

αi
2



 , (16)

U (i) =






1 ti1 − t0 (ti1 − t0)
2

...
...

...
1 tini

− t0 (tini
− t0)

2




 , (17)

and the coefficients for the continuity requirements

f (i) =




1,

i∑

j=1

Tj,





i∑

j=1

Tj





2



 ,

g(i) =



0, 1,





i∑

j=1

Tj







 , (18)


























v(1)

v(2)

...
v(p−1)

v(p)

0
...
0
0
...
0
























=

























U (1)

U (2)

. . .
U (p−1)

U (p)

(f (1))T −(f (1))T

. . .
(f (p))T −(f (p))T

(g(1))T −(g(1))T

. . .
(g(p))T −(g(p))T


































α(1)

α(2)

...
α(p−1)

α(p)










+
























ηv(1)

ηv(2)

...
ηv(p−1)

ηv(p)

0
...
0
0
...
0
























, (15)

andTj being the period of thej-th phase. The polynomial
coefficients are determined by least-squares estimation as










α(1)

α(2)

...
α(p−1)

α(p)










=
(
BT

αΣ
−1
α Bα

)−1
BT

αΣ
−1
α














v(1)

v(2)

...
v(p−1)

v(p)

0p×1

0p×1














,

(19)
whereBα is implicity defined by Eq. (15). The measure-
ment covariance matrixΣα enables a weighting of velocity
measurements. However, the main purpose of the weigh-
ting matrix is to ensure the fulfillment of the continuity re-
quirements. Therefore, we set the variances of the “zero”-
measurements to10−6 and of all other measurements to1.
Fig. 3 shows a velocity model derived by dissecting a stro-
ke into sections with each section carefully modeled with a
second order polynomial. The continuity of the polynomial
of one section to the next is ensured by the coefficients in
Eq. 18.

We tested the coherence of the velocity model with re-
al measurement by predicting the positions of a rowing at
the subsequent epochs given a known starting point. Fig. 4
compares the relative positions estimated using the velo-
city model and the relative positions estimated using DD
carrier phase measurements. The relative positions estima-
ted with the velocity model (in red) are comparable to the
relative positions estimated with DD phase measurements
(in blue). One can hence benefit from the model to estimate
position information independent from the measurements,
which can be useful in case of missing measurements due
to data losses in the communication link and in case of er-
roneous measurements due to cycle slips.

Optimized state space model

The state space model described in Eq. 14 does not fully
exploit the characteristic movement of rowing boats. In this

subsection, an optimized state space model which exploits
the cyclic movements of a racing rowing boat is proposed.
The velocity of the rowing boat follows a periodic pattern,
it is hence appropriate to derive the velocity using stroke
parameters, namely phase of strokeα, period of strokeT
and multiplier of nominal speedγ:

~̇bAC,Br(t) = f(α, T, γ) = γ(t) · ~vM(α(t) · T (t)), (20)

where~vM is a continuous model function derived from the
periodic velocity at the past epochs of the rowing boat. The
underlying model assumes that the velocity pattern is well-
defined but allows at the same time a variable stroke period
as well as variable speed. The flexibility in stroke period
and speed is important as these parameters differ from one
rower/ rowing team to another and depending on the stra-
tegy, at different phases of a race, the speed can vary. The
velocity of the boat is therefore no longer directly estima-
ted but derived from the movement model with estimated
stroke parameters from the extended Kalman filter. We use
the following state vector:

xn =
(

~b T
AC, b

T
U, α

′, T, γ,NT,mT
ρ

)T

n
, (21)

whereα(tn) = mod (α′(tn), 1). The Gauss-Markov pro-
cesses of the baseline and the stroke parameters are descri-
bed as follows:

α′(tn) = α′(tn−1) + ∆t/T (tn−1) + wα′(tn), (22)

T (tn) = T (tn−1) + wT (tn), (23)

γ(tn) = γ(tn−1) + wγ(tn). (24)

CYCLE SLIP CORRECTION

Maximum a posteriori probability estimation with a
priori baseline information

Ambiguity resolution can be performed with Teunissen’s
LAMBDA method [1] once the Kalman filter estimated
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Fig. 2: a) Velocity of rowing boat in along-track directi-
on; b) Acceleration of rowing boat in along-track directi-
on. The velocity and acceleration are shown for20 strokes
with the first and last being additionally marked. One can
observe a characteristic pattern and high repeatability. The
period of a stroke varies by only 0.1 s over 20 strokes. The
average period is1.71 s.

float ambiguities have converged. Fixed solution is thereaf-
ter used to track the rowing boats. Low-cost receivers ho-
wever experience frequent half cycle slips which, if left un-
corrected, result in an accumulative estimation error. A re-
liable cycle slip correction method which uses a maximum
a posteriori (MAP) probability estimator and an a priori ba-
seline knowledge is proposed in [4] and [5].

The joint estimation of the baseline and cycle slips with
a MAP probability estimator and known fixed DD phase
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Fig. 4: The red curve shows the positions of the boat with
respect to the initial position estimated using the veloci-
ty model. The blue curve shows the positions of the boat
with respect to the initial position estimated using DD car-
rier phase measurements and RTK. The difference between
both estimations is less than10 cm.

measurements can be written as follows:
(

~̌bAC,Br

∆Ň

)

= arg max
~bAC,Br ∈ R

2×1

∆N ∈ Z
q×1

P (~bAC,Br,∆N |ϕdd −AŇ).

(25)

Similar to LAMBDA method, cycle slip can be first de-



termined in its float form and subsequently fixed to an in-
teger with a discrete search. With the rule of Bayes, the
probability in the above equation can be rewritten as

P (~bAC,Br,∆N |ϕdd −AŇ)

=
P (ϕdd −AŇ |~bAC,Br,∆N)P (~bAC,Br,∆N)

P (ϕdd −AŇ)
. (26)

P (ϕdd − AŇ) is marginal and therefore does not play a
role in the maximization. By assuming Gaussian distribu-
tion for the measurement noise as well as for the distribu-
tion of the a priori baseline information, and by assuming
that measurements and baseline a priori information are not
correlated, the maximization can be rewritten as a minimi-
zation as follows:

(

~̌bAC,Br

∆Ň

)

= arg min
~bAC,Br ∈ R

2×1

∆N ∈ Z
q×1

∥
∥
∥z − H̃~bAC,Br −ACS∆N

∥
∥
∥

2

Σ−1
z

,

(27)

with z being the extended measurement vector which inclu-
des the a priori baseline derived from the movement model
and H̃ being the matrix which maps the estimates to the
extended measurement vector, i.e.

z =

(
ϕdd −AŇ
~bAC,ap

)

, H̃ =

(
H
I2

)

, (28)

andACS being a matrix which maps cycle slips toz.

Henkel and Oku used in [3] baseline a priori knowled-
ge derived from inertial sensors to correct for cycle slips.
In the absence of an external sensor providing independent
measurements,~bAC,ap is normally difficult to determine in
a way that it is not correlated with the DD measurements
of the current epoch. However, in the case of rowing boats,
the movement model can be used to predict an independent
a priori baseline information with a simple equation of mo-
vement:

~bAC,ap(tn) = ~̂bAC,Br(tn−1) +

∫ tn

tn−1

~vM(t+ tcurr)dt

+

∫ ∫ tn

tn−1

~aM(t+ tcurr)dtdt, (29)

where~vM and~aM are the periodic model functions for ro-
wing boat velocity and acceleration.tcurr in Eq. 29 is the
translation which produces the largest convolution between

the model function and the past samples, i.e.

tcurr

=argmax
t′

~vT (t) ∗ ~vL,M(t− t′)

= argmax
t′

8∑

i=1

~vAC,Br(tn−i) · δ(t− tn−i) ∗ ~vM(t− t′)

= argmax
t′

8∑

i=1

~vAC,Br(tn−i) · ~vM(t− t′ − tn−i), (30)

with ~vT a function constructed with the previously estima-
ted velocities:

~vT =

8∑

i=1

~vAC,Br(tn−i) · δ(t− tn−i), (31)

whereδ(t) here is a Dirac function.
Given the integer property of∆N , Eq. 27 is an integer

least-squares problem, which can be solved by first deter-
mining the floating cycle slip∆N̂ , then search within a
volumeχ2. The search is performed sequentially for each
DD phase cycle slip around the considered float ambiguity
estimates, i.e.

∆Ňk ≤ ∆N̂k|1,...,k−1 + σ∆N̂k|1,...,k−1

√
κ, (32)

∆Ňk ≥ ∆N̂k|1,...,k−1 − σ∆N̂k|1,...,k−1

√
κ, (33)

where ∆N̂k|1,...,k−1 is the conditional cycle slip and
σ∆N̂ l|1,...,l−1 is the conditional standard deviation andκ is
the multiplier of the conditional standard deviation as deri-
ved by Teunissen in [8]:

κ =χ2 − ‖b̌AC,Br(∆N)− bAC,Br‖2Σ−1

b̌EN

− ‖P⊥
Ā P

⊥
H̃
z‖2

Σ−1
z

−
k−1∑

l=1

(

(∆N l −∆N̂ l|1,...,l−1)2
)

/
(
σ2
∆N̂ l|1,...,l−1

)
,

(34)

with P⊥
H̃

being the orthogonal projector on the space ofH̃

andĀ = P⊥
H̃
ACS.

TEST AND VALIDATION

In this section, two tests are analyzed to compare the
performance of a conventional Kalman filter for single-
baseline estimation and the Kalman filter for cooperative
RTK which assumes identical height between rovers and
negligible movement in the Up-direction. The first test con-
sist of 3 static patch antennas placed on the same level
while the second test is a kinematic test performed wi-
thin a rowing-boat competition (i.e. 2013 World Rowing
U23 Championships) with one base-station patch antenna
mounted on the top of the tower at the finishing line and two
rover patch antennas, each mounted on a rowing boat. All
tests are conducted using low-cost single-frequency GPS
receivers u-blox LEA 6T with a 5 Hz sampling frequency.



Static rovers

The static test was conducted with 3 patch antennas pla-
ced on the same level on a rooftop with one antenna serving
as the base station and two other antennas serving as rover
antennas. We tested Kalman filter cooperative RTK with
common-height assumption against a conventional Kalman
filter. The main objective of the test is to compare the con-
vergence speed of the float ambiguities for both filters.
Fig. 5 shows the variation of one of the two baselines in
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Fig. 5: a) Variation of a baseline estimated with Kalman
filter for single-baseline estimation in local ENU coordina-
te frame; b) Variation of a baseline estimated with Kalman
filter for cooperative RTK and identical height assumption
in local ENU coordinate frame.

local ENU coordinates estimated with a conventional Kal-
man filter and a Kalman filter for cooperative RTK with
common-height assumption respectively. One can observe
that the convergence of the baseline happens after 5 minu-
tes with a conventional Kalman filter. Furthermore, it con-

verges to a wrong baseline, as the antennas were all pla-
ced on the same height level (i.e.bU = 0). On the con-
trary, the baseline converges much earlier with cooperati-
ve RTK Kalman filter. The performance of the cooperati-
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Fig. 6: a) Variation of float ambiguities estimated with Kal-
man filter for single-baseline estimation in local ENU coor-
dinate frame; b) Variation of float ambiguities estimated
with Kalman filter for cooperative RTK and identical height
assumption in local ENU coordinate frame.

ve RTK Kalman filter can also be proven by comparing
the convergence of the float ambiguities estimated with the
two Kalman filters (see Fig. 6). In this test, we try to fix
the DD phase ambiguities with LAMBDA method [1] at
each epoch and accept the first fixed integer ambiguities by
considering the residual ratio between the best integer can-
didate and the second best integer candidate [1]. The first
correct ambiguity resolution with cooperative RTK Kalman
filter occurs within the first 100 seconds while with a con-
ventional Kalman filter, one has to wait for more than 5
minutes before obtaining the first correct ambiguity fixing.



The benefit of a fast ambiguity fixing is essential for preci-
se rowing boat tracking as a typical rowing boat race takes
not more than 8 minutes.

Racing rowing boats

The cooperative RTK Kalman filter was tested with ra-
cing rowing boats at the 2013 World Rowing U23 Champi-
onship. The float ambiguities converge within the first 30 s
and the boats are subsequently tracked with fixed DD phase
measurements. Fig. 7 shows the course of the rowing boats
which are determined with fixed DD phase measurements.
With the cooperative RTK Kalman filter, ambiguities can
be fixed faster and therefore, precise tracking can be per-
formed for most part of the race.

Base station

Rowing boat 1

Rowing boat 2

Fig. 7: Precise cooperative tracking of racing rowing boats
after integer ambiguities are correctly resolved.

Fig. 8 depicts the fixed DD phase residuals during pre-
cise tracking of the racing rowing boats without and with
cycle slip correction. The sudden jump in residuals is where
cycle slip happens. With the a priori baseline derived from
the periodic dynamics of a rowing boat, cycle slip as well as
the baseline are jointly estimated with a MAP probability
estimator and an integer search.

CONCLUSION

Kalman filter offers an efficient method to provide an op-
timal estimation based on measurements as well as the sy-
stem dynamics model. If the models are carefully designed
to adapt to the use-case, the convergence of the filter can be
very efficient and accurate. In this paper, the carefully de-
signed Kalman filter for rowing boat tracking is proven to
be more efficient: the float solution converges much faster
and therefore, integer ambiguities can be resolved earlier
to provide precise tracking of the rowing boats. Besides,
a cycle slip correction method based on a dynamics mo-
del derived from the characteristic periodic movement of a
racing rowing boat is shown beneficial when GNSS-only
measurements are available.
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Fig. 8: a) Residuals of fixed DD phase measurements du-
ring precise tracking without cycle slip correction; b) Re-
siduals of fixed DD phase measurements during precise
tracking with cycle slip correction using MAP probability
estimator and an a priori baseline knowledge derived from
a movement model.
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