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Abstract—Efficient coordination of a multi-robot team is the key
challenge in robotic application domains such as manufacturing,
construction and service robotics. In cooperative manipulation
tasks, the system dynamics result from the complex interaction
of several manipulators handling a common object. A comprehen-
sive model is indispensable for sophisticated model-based control
design. An open problem is the modeling and the analysis of the
overall system dynamics including the manipulators’ interaction
wrenches. Based on the apparent end-effector dynamics in task
space, in this article we focus on the characterization of the
interaction effects when manipulating a common object. We
point out the central role of the imposed kinematic constraints
for the emerging system dynamics, their significance for the
manipulator coordination in terms of control design and the
analysis of internal wrenches applied to the object. We derive
fundamental properties of the cooperative manipulator system
relevant to the manipulation task such as the apparent impedance
w.r.t. external disturbances. An experimental study is conducted
with two cooperating, anthropomorphic manipulators supporting

the relevance of our findings.

Index Terms—Cooperative Manipulators, Interaction Dynamics,
Internal Stress, Dynamics, Kinematics.

I. INTRODUCTION

C
OOPERATIVE manipulation tasks are characterized by

the joint coordination of several robots handling a com-

mon object. A team of multiple manipulators is needed in

tasks exceeding the capacity of a single manipulator in terms

of payload or dexterity. Application domains include manufac-

turing, construction, agriculture and forestry, service robotics,

search and rescue but also cooperative aerial manipulation.

The benefits of using a team of robots for manipulating a

common object come at the cost of an increased complexity

for coordinating the manipulator ensemble when cooperatively

implementing a force/motion control scheme. The effective

behavior of the cooperative manipulator system is determined

by the interaction of the local, generally nonlinear manipulator

dynamics and the dynamics of the manipulated object. The

interplay between the cooperative coordination strategy, the

manipulator force/motion control schemes and the interaction

forces needs to be thoroughly analyzed for a successful

implementation of cooperative manipulation tasks. A concise

interaction model is furthermore a prerequisite for deriving

model-based control strategies. In this article we focus on the

modeling of the interaction dynamics of cooperative manipu-

lators but not on the control design itself.

Cooperative manipulator systems have been studied in the past.

A pioneering work on the dynamics of a robotic multi-arm sys-

tem under motion constraints is given in [1]. The augmented
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object model describing the apparent dynamics of a cooperat-

ing manipulator system is presented in [2]. The authors of [3]–

[6] present a model of the cooperative manipulator dynamics

illustrating the interaction effects in joint space. More recently,

the modeling of the redundant manipulator dynamics are in-

terpreted in the context of constrained multi-body systems [7],

[8]. These previous works build on the formulation of the

interaction dynamics in joint space without addressing relevant

interaction effects between the manipulators in task space.

In [9] the interaction between cooperative manipulators is

modeled in task space by means of port-Hamiltonian systems

without addressing the underlying Dirac structure. For a more

general treatment of Dirac structures, the interested reader is

referred to [10] or [11] and references therein. The Dirac

structure determines the interaction wrenches and is thus a

central quantity for manipulation tasks. As will be detailed

in the sequel, manipulation of a rigid object gives rise to

kinematic constraints between the manipulators’ end-effectors,

leading to an implicit port-Hamiltonian system endowed with

a Dirac structure and thus to a mixed set of differential and

algebraic equations (DAEs) [12]. The Dirac structure induced

from a constraint distribution may be represented in various

ways [11] among which the Lagrange multiplier formulation

is the most common. The Dirac structure and the underlying

rigidity constraints between the end-effectors have not been

explored for the modeling of cooperating manipulators in the

robotics literature. Moreover, there exists currently no explicit

closed-form solution for computing the manipulators’ end-

effector wrenches in task space when cooperatively manipulat-

ing an object. It is obvious that such an expression is the core

instrument for an accurate and compact numerical simulation

tool of multi-robot manipulation tasks and the analysis and

design of model-based cooperative coordination strategies,

since it allows to quantify the end-effector wrenches applied to

the object and provides insight on how the interaction between

manipulators and object actually takes place.

A very similar situation in view of modeling and control

design is encountered in dexterous manipulation of objects

with multi-fingered hands. Interestingly, common models for

the dynamics in dexterous manipulation do actually incorpo-

rate the coupling between fingertips and object in terms of a

kinematic (velocity) constraint [13]. The interaction wrenches

between fingers and object have a straightforward interpreta-

tion as the Lagrange multiplier associated to the kinematic

constraints [14]. However, inertia terms are neglected and

quasi-static manipulation is assumed when computing explicit

values for the resulting interaction wrenches. Recent works

on cooperative aerial manipulation as e.g. [15] assume quasi-

static manipulation, too. This assumption does not longer
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hold when either manipulating very heavy objects even with

low accelerations (e.g. cooperative pick and place tasks with

industrial manipulators) or in case of lightweight objects

with high accelerations (e.g. obstacle avoidance maneuver in

aerial manipulation). Note that the presented modeling in this

article incorporating equality constraints is valid for inequality

constraints, too, as long as the applied finger forces in grasping

and the wire forces for aerial manipulators remain positive.

The control design for cooperative manipulation tasks is

commonly performed in task space without explicitly ad-

dressing the coupling of the manipulator dynamics. Based

on the concept of impedance control [16], a cooperative

control scheme realizing an apparent object impedance is

proposed by the authors of [17] and [18]. A decentralized

implementation of the object impedance scheme is presented

in [19]. However, no conclusion is drawn on the resulting

object impedance. Recent publications on the control design

for dexterous manipulation are either assuming quasi-static

object manipulation [20] or specify the desired closed-loop

behavior through virtual object dynamics [21] without explicit

model of the interaction wrenches. In general the control

design for implicit port-Hamiltonian systems is found to be

non-trivial [22]. It is obvious that a closed-form representation

of the cooperative dynamics is a necessary prerequisite for

advanced model-based cooperative control design, leading to

a physically consistent formulation of internal/external force

control schemes as recently published in [23].

The contribution of this article is a compact, complete and

physically consistent model of the interaction dynamics of

a cooperative manipulator system in task space. We show

that the kinematic constraints imposed on the manipulators by

rigidly grasping a common object constitute the quintessential

characteristics for the analysis of the interaction dynamics.

Unlike previous works we intentionally reduce the discussion

of the explicit joint space dynamics of the manipulators to

a minimum. Instead, by considering only the manipulators’

apparent end-effector dynamics we provide a new perspective

on the relevant interaction effects in task space. Our results

bridge the gap between previous modeling approaches in

joint space and existing control methodologies in task space.

Although we employ impedance control schemes for the

individual manipulators, we are not addressing the control

design but are focusing on the modeling of the interaction

effects such as the explicit computation of the manipulators’

interaction forces/torques and internal wrenches. To this end,

we apply Gauss’ principle of least constraint [24] to the

apparent end effector dynamics, transforming the model of the

interaction dynamics from the initial implicit (DAE) represen-

tation to a system of explicit ordinary differential equations

(ODEs). As a direct consequence we obtain a compact and

explicit closed-form solution for the manipulators’ interaction

wrenches for arbitrary dynamic manipulation tasks. Based on

this new perspective on the cooperative manipulator system

as a constrained multi-body system, we derive fundamental

system properties relevant for the manipulation task, as e.g.

the apparent object impedance when employing the distributed

impedance control scheme and prove passivity of the cooper-

ative dynamics relevant for the interaction with the environ-

ment. Our results are validated in an experimental study.

The remainder of this article is organized as follows. Section II

presents the dynamics of manipulators and object. Section III

deals with the modeling of the interaction dynamics. In

Section IV we present model properties relevant to the coop-

erative manipulation task. Section V contains the experimental

validation before summarizing the article in Section VI.

II. SYSTEM DYNAMICS

In order to concentrate on the interaction effects of the manip-

ulator team, we consider local impedance control schemes for

each end-effector in task space and review briefly the dynamics

of a rigid object in this section.

A. Manipulator dynamics

The desired impedance behavior for each of the N manipula-

tors in task space can generally be achieved by applying local

feedback linearization for inner-loop control and a suitable

choice of control law for the outer-loop [25]. In order to

shape the apparent inertia of the robotic end-effector in task

space [26], we assume the presence of a force/torque sensor at

the robot wrist. The compliant behavior of the i-th manipulator

in task space is then given by

Mi [ẍi− ẍd
i ]+Di [ẋi− ẋd

i ]+hK
i (xi, x

d
i ) = hi−hd

i + h̃i (1)

wherein xi = (pTi , q
T
i )

T denotes the pose and hi = (fT
i , tTi )

T

the end-effector wrench of the i-th end-effector. The pose is

split into translational and rotational coordinates with pi ∈ R
3

and the unit quaternion qi =
(

ηi, ǫ
T
i

)T
∈ Spin(3) wherein

ηi ∈ R is the real part and ǫi ∈ R
3 is the imaginary part..

Thus each xi can be mapped onto an element of the special

Euclidean group SE(3). The twist ẋi = (ṗTi , ω
T
i )

T ∈ se(3)
is a six-dimensional vector composed of the end-effector’s

translational and rotational velocity denoted by ṗi ∈ R
3 and

ωi ∈ R
3.

Remark (Quaternion rates and angular velocity): Employing

a slight abuse of notation, the twist ẋi is not the pure time

derivative of the pose xi, in particular d
dtqi 6= ωi. The proper

conversion between quaternion rates and angular velocity is

given by the following relation [27]

(

0
ωi

)

= 2QT (qi)q̇i (2)

and its inverse

q̇i =
1

2
Q(qi)

(

0
ωi

)

(3)

with the matrix

Q(qi) =

[

ηi −ǫTi
ǫi ηiI3 + S(ǫi)

]

. (4)

I3 is the 3 × 3 identity matrix. S(·) is the skew-symmetric

matrix performing the cross-product operation, i.e. a × b =
S(a) · b = −S(b)a.
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The wrench hi is split into the force and torque vectors

fi, ti ∈ R
3. Desired quantities are indicated by the super-

script d. The disturbing wrench h̃i accounts for inaccuracies

in the local feedback linearization. The term h̃i is in general

time-varying and non-zero (but bounded) and vanishes in

case of ideal feedback linearization. The impedance param-

eters Mi, Di,Ki ∈ R
6×6 representing the apparent inertia,

damping and stiffness are assumed to exhibit (block-)diagonal

structure, i.e. Mi = diag(miI3, Ji), Di = diag(diI3, δiI3) and

Ki = diag(kiI3, κiI3), decoupling the translational from the

rotational behavior. The matrices are parameterized by the

scalar values mi, di, ki ∈ R
+ yielding isotropic translational

behavior of the individual end-effector. R+ denotes the set

of strictly positive real numbers. The rotational dynamics are

determined by the positive definite inertia matrix Ji ∈ R
3×3

and the scalar parameters δi, κi ∈ R
+. The geometrically

consistent stiffness hK
i [28] is given by

hK
i (xi, x

d
i ) =

(

fK
i

tKi

)

=

(

[kiI3] ∆pi
[κ′

iI3] ∆ǫi

)

(5)

wherein the difference of actual and desired pose is defined as

∆pi = pi − pdi and ∆qi = qi ∗ (q
d
i )

−1 with κ′
i = 2∆ηiκi and

the operator ∗ denoting the quaternion product. For notational

convenience the quaternion expressing the relative orientation

is further split into ∆qi =
(

∆ηi,∆ǫTi
)T

.

All terms in the end-effector dynamics (1) related to the

kinematic motion control are subsequently referred to as

hx
i = Miẍ

d
i −Di[ẋi − ẋd

i ]− hK
i (xi, x

d
i ). (6)

B. Object dynamics

The equations of motion of a rigid object are derived by apply-

ing Lagrangian mechanics. The object’s kinetic and potential

energy are

To =
1

2
ẋT
o Moẋo and Uo = mo gT po (7)

with Mo = diag(moI3, Jo) and mo ∈ R and Jo ∈ R
3×3 are

the object’s mass and inertia respectively and g ∈ R
3 is the

gravity vector. For convenience of notation we omit the explicit

indication of dependencies such as Mo(xo) when unambigu-

ous. Employing (7) for deriving the Lagrange equations yields

the object dynamics w.r.t. to its center of mass

Moẍo + Coẋo + hg = ho + h̃o (8)

wherein ho is the effective wrench acting on the object due

to the interaction with the manipulators, h̃o is a disturbance

from an external force and hg and Co incorporate the gravity

force and the Coriolis term, i.e.

hg =

(

−mo g

03×1

)

, Co =

[

03 03
03 ωo × Jo

]

. (9)

III. INTERACTION DYNAMICS

We are now interested in the dynamic behavior of the co-

operative system when the manipulators are rigidly grasping

the object. The manipulation of a common object gives rise

to kinematic constraints restricting mutually the manipulators’

motion which will be discussed in the following subsection.

The emerging system dynamics subject to the kinematic

constraints gives rise to the interaction wrenches as discussed

in the second subsection. The extension of our modeling ap-

proach to alternative manipulator control schemes is presented

in the last subsection.

A. Kinematic constraints

The manipulated object is assumed to be rigid and the end-

effectors are assumed to be rigidly connected to the object. For

the subsequent mathematical description of the constraints a

coordinate system is attached to each rigid body. This situation

is depicted in Fig. 1.

b
{w}

b

b

ri
po

pi

{o}

{i}

Fig. 1. Illustration of the coordinate systems

The coordinate frames are denoted by curly brackets. Besides

the body-fixed object frame {o} each manipulator has its

individual, local end-effector frame {i}. If not stated otherwise

(through a leading upper index) vectors are expressed in the

(inertial) world frame {w}.

1) Translational constraint: The rigidity condition constrains

the relative displacement of two bodies, i.e. ori = const. This

means that the relative position of the manipulator with respect

to the body-fixed coordinate system {o} remains constant.

Using this fact one may express the position of the i-th end

effector as pi = po +
w Ro(qo)

ori with the 3 × 3 rotation

matrix wRo transforming a vector from frame {o} to frame

{w}. Differentiation of pi and using ori = const. yields

ṗi = ṗo + ωo × ri. (10)

Differentiating (10) again leads to

p̈i = p̈o + ω̇o × ri + ωo × (ωo × ri). (11)

This latter condition constrains mutually the admissible ac-

celerations of the object p̈o, ω̇o, the end-effector p̈i and the

object’s angular velocity ωo.

2) Rotational constraint: Furthermore the relative orientation

between object and manipulators oδqi = q−1
o ∗qi is constrained

to remain constant, i.e. oδqi = const. Differentiation of oδqi
w.r.t. time reveals that the angular velocity of the two bodies

{o} and {i} needs to be equal [23, Lemma 1], such that

ωo = ωi. Thus one has after differentiating again
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ω̇o = ω̇i (12)

imposing a constraint on the admissible angular acceleration

of the object and the end-effector.

3) Constraint matrix: In order to analyze the system dy-

namics under constraints, it is convenient to introduce the

stacked state vector x =
(

xT
o , x

T
1 , . . . , x

T
N

)T
being an ele-

ment of the (N+1)-fold Cartesian product of SE(3) and

containing the stacked pose information of object and end-

effectors. The corresponding acceleration vector reads thus

ẍ =
(

p̈To , ω̇
T
o , p̈

T
1 , ω̇

T
1 , . . . p̈

T
N , ω̇T

N

)T
∈ R

6·(N+1). The acceler-

ation constraints (11) and (12) may be rewritten compactly

as

A · ẍ = b (13)

with A ∈ R
6·N×6·(N+1) and b ∈ R

6·N given by

A =















−I3 S(r1) I3 03 03 03
03 −I3 03 I3 03 03
...

...
. . .

−I3 S(rN ) 03 03 I3 03
03 −I3 03 03 03 I3















(14)

and b = [(S(ωo)
2r1)

T , . . . , (S(ωo)
2rN )T ]T . 03 is the 3 × 3

zero matrix.

B. Constrained dynamics

Recall that the dynamics of the manipulators is imposed

independently from each other through an impedance control

law. By rearranging terms in (1) one has

Miẍi = hΣ
i + hi (15)

wherein hΣ
i := hx

i − hd
i + h̃i is a wrench depending on the

individual end effector motion control scheme as in (6), the

load distribution hd
i and an external disturbance h̃i. The object

dynamics (8) can be cast into similar form yielding

Moẍo = hΣ
o + ho (16)

with hΣ
o := h̃o − Coẋo. Combining the dynamic equations of

the end effectors (15) and the object (16) leads to











Mo

M1

. . .

MN











· ẍ =











hΣ
o

hΣ
1
...

hΣ
N











+











ho

h1

...

hN











. (17)

The dynamics (17) can be interpreted as follows: the

vector hΣ :=
(

hΣ
o , h

Σ
1 , . . . , h

Σ
N

)T
contains the wrenches re-

sulting from the local system dynamics. The vector

h :=
(

ho, h1, . . . , hN

)T
in turn results from the global inter-

action of all manipulators through the object. The vector h

thus adopts suitable values to render the accelerations ẍ on

the left-hand side of (17) compatible to the constraint (13) at

any time instant and for any given hΣ. The computation of

the constraining wrench is a problem arising in the domain

of constrained multi-body systems. In fact an explicit solution

for h is presented in [29] given by

h = P (b−AM−1hΣ) (18)

with P = M
1

2 (AM− 1

2 )† and M = diag(Mo,M1, . . . ,MN ).

Discussion: The cooperative manipulator dynamics (17) in

combination with the Dirac structure represented through an

explicit expression for the interaction wrenches h in (18) con-

stitutes for the first time a complete and physically consistent

interaction model of the rigidly coupled manipulator system.

Note that the vector h in (17) contains the actual end-effector

wrenches h1 to hN as measurable by each manipulator by

means of a wrist mounted force/torque sensor. The contribu-

tion of our modeling approach is that we provide a closed-form

expression for computing the interaction wrenches instead of

merely measuring them via force/torque sensors at the real

end-effector. This is clearly a prerequisite for the consistent

design of model-based force/torque controllers.

Remark: In previous modeling approaches for multi-robot ma-

nipulation [1]–[6], [30] and dexterous manipulation [13], [14]

only implicit expressions for the constraining forces/torques

based on the Lagrange multiplier formulation in terms of

h = λ∂A
∂x are presented. Equation (18) presents an explicit

closed-form solution for computing the interaction wrenches

and is an essential ingredient for the analysis of the dynamics

and the control synthesis in manipulation tasks.

The derivation of this result is based on Gauss’ principle

of least constraint, which states that the acceleration of a

constrained system is altered with respect to the acceleration of

an equivalent unconstrained system such that the acceleration

difference is minimal in the least-squares sense. The equivalent

optimization problem is given by

minẍ (ẍ− ẍΣ)T M (ẍ − ẍΣ) (19)

subject to Aẍ = b

with ẍΣ = M−1hΣ denoting the acceleration of the un-

constrained system. The interpretation of the system dy-

namics (17) as the solution of a constrained optimization

problem (19) admits interesting insights. Arbitrary trajectories

in terms of xd
i may be specified a priori for each manipulator.

The desired trajectories in combination with the desired end-

effector wrenches hd
i determine unambiguously the virtual

wrench vector hΣ as a function of the manipulator control

laws. In case that initially assigned trajectories are incompati-

ble to the kinematically constrained system, the emerging end-

effector wrenches h render the system trajectory compatible

to the imposed constraints by means of (18).

The resulting block scheme of the constrained dynamics

system is illustrated in Fig. 2.

Recall that the stacked wrench vector hΣ is a function of the

object and the individual end effector dynamics, incorporating

the control gains and force/motion setpoints (cf. (15) and (16).

The lower branch in Fig. 2 represents the projection of the

cooperative dynamics on the kinematic constraints as given

by (13). With respect to previous works, the output of the
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b−AẍΣ M
1

2 (AM− 1

2 )†

b
ẍΣ

1
s

ẋ

M−1

h

1
s x

ẍ
bb

b

ẋ

ẍ

h

M−1hΣ

Constrained dynamics

Fig. 2. Block scheme representation of the constrained manipulator and object dynamics

presented model contains the resulting interaction wrenches h,

computed by means of the closed-form expression (18).

C. Application to alternative manipulator control schemes

The impedance control law (1) presents a particular force

control scheme for which a representation in the form of (17)

is readily derived. Finding similar representations for alterna-

tive force control schemes (e.g. PI force controller [31]) is

straightforward whenever the end-effector wrench hi appears

affine in the manipulator control law. But even pure motion

control schemes which do not explicitly incorporate hi can be

interpreted by means of (17) by considering hi as a disturb-

ing end-effector wrench. Exemplarily a resolved acceleration

control law combined with a PD tracking controller and feed

forward acceleration term [25] is written as

hΠ
i = Λi[ẍ

d
i −KD,i(ẋi − ẋd

i )−KP,i ∆xi] (20)

with the apparent inertia of the i-th end-effector Λi, the

difference of actual and desired pose ∆xi = [∆pTi ,∆ǫTi ]
T as

in (5) and the proportional and derivative control gains KP,i

and KD,i. The local dynamics reads thus as

Λiẍi = hΠ
i + hi, (21)

yielding a structurally similar expression as found for the

impedance control law in (15). Note that Λi is the apparent

physical inertia depending on the manipulator’s specific in-

ertial properties, whereas Mi in (1) is a virtual and tunable

parameter by means of the impedance control law.

IV. COOPERATIVE MANIPULATION TASK

Based on the modeling of the cooperating manipulators in the

previous section, we derive in the sequel some fundamental

results relevant to the manipulation task.

A. Manipulator coordination

The manipulator coordination in cooperative manipulation

tasks is commonly composed of a kinematic and a dynamic

coordination strategy [32]. While the dynamic coordination

determines the desired end-effector wrenches (setpoints for

the force controller), the kinematic coordination is concerned

with the computation of desired trajectories (setpoints for the

motion controller) for the individual robotic end-effectors.

Note that the wrench hi in (1) denotes actually a quantity

acting on the i-th end-effector. When interacting with the

object, due to Newton’s third law, there will always be a

wrench with opposite sign acting on the object, which will

be denoted h̄i in the sequel, such that

h̄i = −hi and h̄d
i = −hd

i . (22)

With above definition, the resulting object wrench ho is

computed according to

ho = Gh̄ (23)

with h̄ = [h̄1, . . . , h̄N ]T . The grasp matrix G [33] incor-

porates explicitly the kinematic parameters defined via the

constraints r = [rT1 , . . . , r
T
N ]T as

G =

[

I3 03 · · · I3 03
S(r1) I3 · · · S(rN ) I3

]

. (24)

1) Dynamic coordination: Recently we proposed a more

general approach to the problem of load distribution based

on a novel, physically consistent definition [23].

Definition 1. Internal wrenches are end-effector wrenches for

which the total virtual work is zero for any virtual displace-

ment of the end-effectors satisfying the kinematic constraints.

All non-squeezing load distributions can be computed by

means of a generalized inverse G+
M of the grasp matrix G

in (23) as

G+
M =















m∗
1[m

∗
o]

−1I3 m∗
1[J

∗
o ]

−1S(r1)
T

03 J∗
1 [J

∗
o ]

−1

...
...

m∗
N [m∗

o]
−1I3 m∗

N [J∗
o ]

−1S(rN )T

03 J∗
N [J∗

o ]
−1















(25)

and positive definite weighting coefficients

m∗
i ∈ R and J∗

i ∈ R
3×3 satisfying m∗

o =
∑N

i m∗
i ,

J∗
o =

∑N
i J∗

i +
∑N

i S(ri)m
∗
i S(ri)

T and
∑N

i rim
∗
i = 03×1,

see [23] for more details.

Thus the desired end-effector wrenches implementing a de-

sired object wrench hd
o are given by

h̄d = G+
Mhd

o. (26)
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2) Kinematic coordination: With the desired motion of the

object ẋd
o in hand, the desired motion of the end-effectors ẋd

i

is unambiguously determined by the following relation

ẋd = GT ẋd
o, (27)

with ẋd = [(ẋd
1)

T , . . . , (ẋd
N )T ]T which is essentially a refor-

mulation of the kinematic constraints presented in (11) and

(12) at velocity level.

Remark: Based on ẋd
i , each manipulator is able to com-

pute ẍd
i and xd

i in its local end-effector frame by proper

derivation/integration of the desired velocity. Equivalently, the

desired trajectory xd
i can locally be computed by double

integration of ẍd
i .

Employing above coordination strategies achieves

force/motion tracking as presented in the following theorem.

Theorem 1. Consider the object dynamics (8) and (9) without

disturbance h̃o = 06×1 and ideal feedback linearization

h̃i = 06×1 in (1). Further assume the object’s inertia Mo and

the grasp matrix G to be known. Then the combined dynamic

and kinematic coordination strategies in (26) and (27) achieve

tracking, i.e.

ho(t) ≡ hd
o(t) and ẋo(t) ≡ ẋd

o(t) (28)

for the cooperative manipulation task without applying inter-

nal wrenches according to Definition 1.

Proof. Ideal kinematic coordination of the manipulators ac-

cording to (27) means that ∀i : xi(t) = xd
i (t) which implies

ẋi = ẋd
i and ẍi = ẍd

i in compliance with the kinematic con-

straints by construction. Using this fact in (1) (or in any other

force/motion control scheme) one has immediately hi = hd
i

and h̄i = h̄d
i respectively. Combining (23) and (26) leads to

an explicit expression for the object wrench ho in (8) as

ho = GG+
Mhd

o. (29)

By definition GG+
M is the identity matrix. Substitut-

ing this result in the object dynamics (8) and choosing

hd
o = Moẍ

d
o + Co(x

d
o, ẋ

d
o)ẋ

d
o yields ẍo(t) = ẍd

o(t) and thus

xo(t) = xd
o(t) for xd

o(0) = xo(0) and ẋd
o(0) = ẋo(0). No

internal wrenches are applied to the object since the desired

motion of the manipulators is by construction compatible

to the kinematic constraints. Mathematically, this can be

verified by emplyoing ẍ′x = ẍd in (53) from which follows

h′
int = 06×1.

This result gives insight to the fundamental characteristics of a

cooperative manipulation task. In general it is not sufficient to

choose a suitable load distribution strategy for the manipulator

ensemble but the effective end-effector motions need to be

kinematically compatible to the imposed constraints, too.

The control strategy of Theorem 1 achieves tracking and is

essentially an inverse dynamics controller for the interaction

dynamics model. The dynamic and kinematic coordination

strategies (26) and (27) provide a dynamically consistent

redundancy resolution. To the best of the authors’ knowledge

it is the first result on force/motion tracking for cooperating

manipulators in task space which is based on a complete

physical plant model of the manipulators.

B. Object impedance

In this subsection we present the resulting object dynamics

with respect to a disturbing wrench. It turns out that the

object behavior can again be characterized by an equivalent

impedance in the form of (1) if the manipulators compensate

the object’s inertial effects.

Theorem 2. Consider the impedance controlled end-effector

dynamics (1) with ideal feedback linearization, i.e. h̃i = 06×1,

and assume the manipulator ensemble to compensate the

gravity force of the object, i.e. hd
o = hg in (26). Then the

apparent dynamics of the cooperative manipulator system with

respect to a disturbance h̃o in (8) is given by

Mẍo +Dẋo + hK
o (xo, x

d
o) + Coẋo = h̃o. (30)

The apparent inertia M, damping D and stiffness K are

M =

[

(mo +
∑

i mi)I3
∑

i miS
T (ri)

∑

i S(ri)mi J

]

(31)

with J := Jo +
∑

i Ji +
∑

i S(ri)[miI3]S
T (ri),

D =

[

(
∑

i di)I3
∑

i diS
T (ri)

∑

i S(ri)di
∑

i δi +
∑

i S(ri)[diI3]S
T (ri)

]

(32)

and

hK
o (xo, x

d
o) =

N
∑

i=1

{

[

kiI3 03
Ξi κ′

iI3

](

∆po
∆ǫo

)

} (33)

with the coupling terms Ξi ∈ R
3×3 defined by Ξi := ST (ri)ki.

For an infinitesimal twist displacement of the object δxo

about xd
o in (33) one has hK

o = K δxo with

K =

N
∑

i=1

[

kiI3 0
Ξi ST (ri)[kiI3]S(ri) + κiI3

]

. (34)

One particular factorization of the Coriolis-centrifugal ma-

trix Co for the cooperative dynamics can be computed via

Coẋo = Ṁ −
1

2

∂

∂xo

(

ẋT
o Mẋo

)

. (35)

Proof. The apparent inertia of the object M is computed by

considering the kinetic energy of the overall system being

equivalent to the sum of the kinetic energy of the subsystems

T = To(ẋo) +
N
∑

i=1

Ti(ẋi). (36)

By employing the constraint (10) in (36) one has T = ẋT
o Mẋo

yielding the expression for M in (31). Similar to the kinetic

energy, the potential energy of the augmented system can be

used to conclude on the apparent stiffness of the object K.

The potential energy of the overall system is the sum of the

potential energy of the subsystems, i.e.

U = Uo(xo) +

N
∑

i=1

Ui(xi). (37)
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The potential energy Ui depends implicitly on the desired pose

of the i-th end-effector xd
i since it is equivalent to the elastic

energy stored in a tensioned spring between the points xi

and xd
i with stiffness ki/κi. The desired end-effector pose is

chosen to coincide with the initial end-effector pose resulting

in zero preload of all springs. By considering an arbitrary

object equilibrium pose x̄o = (p̄To , q̄
T
o )

T the desired end-

effector pose can be derived from the kinematic constraints

xd
i =

(

pdi
qdi

)

=

(

p̄o +
w Ro(q̄o)

ori
q̄o ∗ δqi

)

. (38)

It is worth noticing that the relative rotation of the object w.r.t.

its equilibrium ∆qo = qo ∗ (q̄o)
−1 is equivalent to the relative

rotation of the attached end-effectors w.r.t. their equilibrium

pose, i.e. ∆qi = ∆qo. Thus the potential energy of the

individual end-effector Ui in (46) can conveniently be written

as a function of the object coordinates xo according to

Ui(xo) =
1

2
∆pTi [kiI3]∆pi + 2∆ǫTo [κiI3]∆ǫo. (39)

Taking the partial derivative of the potential energy U in (37)

w.r.t. the object coordinates xo yields ∂U
∂xo

= hg + hK
o (xo)

with the gravitational force hg presented in (9) and hK
o (xo) as

given in (31). With the expressions for the kinetic and potential

energy in (36) and (37) one readily derives the system’s

equation of motion by applying Lagrangian mechanics

Mẍo + Coẋo + hK
o (xo) + hg = h∗ (40)

wherein h∗ is a generalized, non-conservative wrench acting

on the object and Co is the Coriolis-centrifugal matrix [34]

associated to M. For isotropic inertial parameters mi and

Ji the corresponding elements of M do not depend on

the generalized coordinate xo and the associated Christoffel

symbols are thus zero. In this particular case one has Co = Co

as in (9). The term h∗ in (40) turns out to be of the form

h∗ = −Dẋo + ho + h̃o (41)

with D given in (32). The expression for h∗ can be derived

by substituting (23) in the object dynamics (8) and replacing

hi by the impedance control law in (1). This yields

Mẍo + Coẋo +Dẋo + hK
o (xo) + hg = hd

o + h̃o. (42)

from which (30) follows immediately by letting hd
o = hg.

This result has a straightforward interpretation in terms of

a mechanical equivalent. The effective object inertia Mo is

augmented by attaching rigidly the individual manipulator

inertias Mi to the respective grasp points xi. Additionally,

for each manipulator a spring-damper element is attached at

each grasp point with the remote suspension point located at

the manipulators’ desired pose xd
i . The apparent damping and

stiffness of the object results from a parallel connection of the

individual spring-damper elements. Furthermore, the analytic

expressions for M,D and K in Theorem 2 constitute the

fundamental equations for the impedance synthesis in multi-

robot cooperative manipulation tasks. Their significance is

illustrated by the following example.

Example: Consider two manipulators with k1 = k2 = 100N
m

,

κ1 = κ2 = 100Nm
rad

and or1/2 = ±(1, 0, 0)Tm. According

to (34), the apparent translational stiffness of the object is

isotropic and simply the parallel connection of k1 and k2 yield-

ing 200N
m

. The rotational stiffness is the parallel connection of

κ1 and κ2 plus the contribution from the translational stiffness

yielding (200, 400, 400)T Nm
rad

for infinitesimal rotations about

the object axes. Even in case of a symmetric manipulator

setup, the apparent stiffness of the object is non-isotropic.

However, due to the symmetry the coupling term
∑

i Ξi

between translational and rotational motion is zero. The pre-

ceding observation for a symmetric setup of the manipulator

system can further be generalized.

Corollary 1. Let the values of mi, di and ki in (31), (32) and

(33) respectively be homogeneous

∀i 6= j : mi = mj , di = dj , ki = kj (43)

and the grasp geometrically symmetric, that is
∑

i ri = 03×1.

Then the translational and rotational object motion of the co-

operative system (30) subject to a disturbance h̃o is decoupled,

i.e. the matrices M, D and K are block-diagonal.

Proof. It is straightforward to verify that the matrices M, D
and K are block-diagonal with zero off-diagonal matrices 03
by considering (31), (32) and (34) while employing (43) and

exploiting the linearity of the skew-symmetric operator S(·)
for

∑

i ri = 03×1.

In the symmetric setup under consideration both the center of

stiffness and the center of compliance [35] coincide with the

origin of the object frame {o}, yielding perfect decoupling

of translational and rotational behavior. Consider yet another

practically motivated example.

Example: Assume that the apparent impedance of the coop-

erative manipulator system is to be tuned to exhibit critical

damping. By considering the entries of M, D and K in

Theorem 2 it is obvious that the rotational impedance pa-

rameters involve the translational impedance parameters and

the grasp kinematics in terms of ri. Thus the impedance

synthesis needs to incorporate the actual grasp geometry. An

independent design of rotational and translational impedance

leads in general not to the desired target impedance.

C. Stability of the interaction dynamics

We analyze subsequently the stability of the cooperative ma-

nipulator system. First we show strict output passivity of the

interaction dynamics. A system is said to be output strictly

passive [36, p. 236] if there exists a positive semidefinite

storage function V and a positive definite function yTρ(y)
such that

uT y ≥ V̇ + yTρ(y) (44)

for y 6= 0. The kinetic and potential energy of the object

defined in (7) and the equivalent energy of the i-th manipulator
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Ti =
1

2
ẋT
i Miẋi (45)

Ui =
1

2
∆pTi [kiI]∆pi + 2∆ǫTi [κiI]∆ǫi (46)

are used in the storage function for the cooperative system

V = To + Uo +
∑

i

{Ti + Ui}. (47)

We are ready to state an intermediate result.

Lemma 1. Assume that the manipulators compensate the

gravity force of the object by choosing hd
o = hg in (26) and

(9) respectively. Then the system of object and manipulators

(30) is strictly output passive with respect to the input u = h̃o

and the output y = ẋo with the storage function V in (47).

Proof. The computation of the time derivative of (47) yields

V̇ = ẋT
o Mẍo +

1

2
ẋT
o Ṁẋo +

N
∑

i=1

{∆ṗTi f
K
i +∆ωT

i t
K
i }. (48)

By substituting (42) in (48), letting hd
o = hg and using the

fact that ẋT
o [Ṁ − 2Co]ẋo = 0 (cf. [37]) leads to

V̇ = ẋT
o h̃o − ẋT

o Dẋo − ẋT
o h

K
o (xo)

+

N
∑

i=1

{(ṗTo + [ωo × ri]
T )fK

i + ωT
o t

K
i }. (49)

Employing (33) for hK
o (xo) and rewriting the sum in terms of

a dot product with ẋo cancels out the last two terms in (49)

and eventually yields

V̇ = ẋT
o h̃o − ẋT

o Dẋo < ẋT
o h̃o (50)

and thus ρ(y) = Dy in (44).

This result is a direct consequence of the passivity property of

the subsystems, i.e. the rigid body dynamics and the closed-

loop manipulator dynamics and is readily expressed in terms

of end-effector wrenches/velocities.

Corollary 2. The coupled system of object and manipula-

tors (30), composed of the manipulator and object dynam-

ics (1) and (8), is strictly output passive with respect to

the input/output combination u = h̃i and y = ẋi for any

i ∈ {1, . . . , N}.

Proof. Choosing u = h̃i and y = ẋi as input/output signals is

equivalent to a change of the coordinate system preserving the

passivity property presented in Lemma 1. By employing (10)

and ωo = ωi for computing ẋi and transforming the wrench

h̃o to an equivalent wrench h̃i one has

ẋi =

[

I3 ST (ri)
03 I3

]

ẋo and h̃i =

[

I3 03
ST (ri) I3

]

h̃o. (51)

It is now straightforward to verify that ẋT
o h̃o = ẋT

i h̃i from

which follows V̇ < ẋT
i h̃i.

Based on this passivity characterization, one readily derives

stability of the cooperative manipulator system.

Theorem 3. The cooperative manipulator system (30) is

asymptotically stable about xo = xd
o = const. for h̃o = 06×1

in (8) and h̃i = 06×1 in (1). Moreover, when interacting

with a passive environment, i.e. the relation between ẋo and

h̃o is described by a strictly passive map [36, Def. 6.3], the

cooperative manipulator system remains stable.

Proof. As stated in Lemma 1, the system of object and

manipulators (30) is strictly output passive. The feedback

interconnection of the cooperative dynamics and the passive

environment is strictly passive with input h̃o and output ẋo.

In order to conclude on stability, we need to show that the

system (30) is zero-state detectable. Here we will show that

the system is zero-state observable which implies that it is also

zero-state detectable. Consider the output y = ẋo = 06×1.

It follows immediately that ẍo = 06×1. Employing this and

h̃o = 06×1 in (30) one has hK
o (xo, x

d
o) = 06×1, which

can only hold true if ∆po ≡ ∆ǫo ≡ 03×1 in (33). Hence

the system (30) is zero-state observable for the error state

∆x = (∆pTo ,∆εTo )
T . Asymptotic stability of the cooperative

manipulator system without disturbances follows immediately

from application of Lemma 6.7. Stability of the manipulators

in contact with a strictly passive environment follows by

Theorem 6.3 in [36].

For the relevant case when the system is subject to non-

ideal feedback linearization and externally applied wrenches

we present the following result.

Theorem 4. Assume that the external disturbance on the

object h̃o in (8) and the disturbance due to non-ideal feedback

linearization of the manipulators h̃i in (1) are uniformly

bounded. Then xo in (30) is uniformly ultimately bounded

about xd
o = const.

Proof. The net wrench about the object’s center of mass h̃Σ
o

due to the disturbances h̃o and h̃ = [h̃T
1 , . . . , h̃

T
N ]T is given

by h̃Σ
o = Gh̃+ h̃o. Since the h̃i’s and h̃o are bounded, h̃Σ

o is

bounded, too. Linearization of the interaction dynamics (30)

about an arbitrary equilibrium pose x̄o yields

Mδẍo +Dδẋo +Kδxo = h̃Σ
o . (52)

It is obvious that M and D are symmetric and positive

definite while K is in general asymmetric. K is positive

definite, too, since all eigenvalues of the summand matrices

in (34) are the eigenvalues of the block matrices (ki and

κi+‖ri‖
2ki respectively) on the diagonal. As discussed in [35,

Theorem 2], the stiffness matrix K can always be brought into

symmetric form by an appropriate change of coordinates. In

fact the linearized system (52) can be diagonalized by means

of a real congruence transformation if and only if M−1D
commutes with M−1K [38]. Explicit computation reveals

DM−1K = KM−1D. Thus there exists a transformation

which decouples the dynamics (52) into six independent

second order ODEs. Since M, D and K are positive definite,

the diagonal elements (corresponding to the eigenvalues of the

matrices) are all positive, yielding (exponential) stability of the
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linearized system. Furthermore, under mild assumptions [39,

(8.70) through (8.74)] it can be shown that the joint space

disturbances arising from non-ideal feedback linearization are

bounded which leads to bounded disturbances h̃i in task space

by employing the generalized inverse of the Jacobian [25] for

the mapping between joint and task space. Boundedness of

h̃o and h̃i and exponential stability of the linearized dynamics

(52) yields (local) stability of the interaction dynamics (30)

by applying Lemma 9.2 in [36].

This result is of prior relevance for the practical implemen-

tation of cooperative manipulation tasks. It proofs robustness

of the interaction dynamics to small (bounded) perturbations

arising e.g. from imperfect feedback linearization or contact

with the environment. Implicitly, the robustness property has

been used for the successful implementation of cooperative

manipulation schemes in the past but no explicit and formal

verification was presented so far incorporating the Dirac

structure in the interaction model.

D. Cooperative manipulator model and control design

In this section we discuss the presented cooperative manipula-

tor model in view of control design methodologies. To this end,

consider the block scheme representation of the cooperating

manipulators illustrated in Fig. 3.

The block scheme is divided into two main parts: One block

corresponding to the plant model (interaction dynamics) and

one block containing the controller (object-level controller)

following standard control loop nomenclature. Note that the

apparent end-effector dynamics result themselves from a local,

individually implemented control loop as in (1) or alternatively

(20). However, for the characterization of the interaction

effects in cooperative manipulation tasks the apparent end-

effector behavior is an essential part of the plant dynamics

and thus incorporated into the interaction dynamics block. The

object-level controller is exclusively in charge of implement-

ing the desired apparent behavior (trajectory tracking, virtual

impedance) of the object. To this end, suitable setpoints for the

manipulators in terms of ẍd
i and hd

i are generated. Speaking

in control terms, these are the manipulated variables. The

command variable is the desired object motion ẍd
o whereas

the control variable is the actual object motion ẍo.

In the block scheme representation in Fig. 3 it becomes

obvious that the depicted object-level controller is in fact a

feed forward controller. More advanced control methodologies

for cooperative manipulators as e.g. [17]–[21] apply directly to

our interaction dynamics model and are closing explicitly the

object-level feedback loop. In particular, feeding back the hi

to the object-level controller is usually done for implementing

internal/external force control schemes. However, in previous

works no explicit plant model in terms of the interaction dy-

namics is used and as a consequence the interaction wrenches

could only be assumed to be measured by force/torque sensors.

By means of (17) and (18) we provide an explicit expression

for computing the interaction wrench resulting in a complete

and physically consistent model for the design and analysis of

cooperative manipulation tasks.

E. Internal/external wrench analysis

In this section we extend and apply our recent results

on the physically consistent decomposition of manipula-

tor wrenches into external (motion-inducing) and internal

(constraint-violating) wrenches. To this end, consider again the

analytic expression for the interaction wrenches h in (18) and

note that h = [hT
o , h

T
1 , . . . , h

T
N ]T is composed of the wrench

acting on the object and the end-effector wrenches. In other

words, the interaction wrenches h are equal to the constraining

wrenches for the constrained dynamical system built by N ma-

nipulators and object. In general, the end-effector interaction

wrenches h′ = [hT
1 , . . . , h

T
N ]T contain internal and external

wrench components. Since we are now interested in analyzing

whether internal wrenches is applied to the manipulated object

or not, we consider the reduced constrained multi-body system

composed exclusively of the N manipulators and the reduced

set of kinematic constraints A′ẍ′ = b′ with A′ ∈ R
6(N−1)×6N

and b′ ∈ R
6N . This reformulation eliminates the additional

degrees of freedom inherent to the object but maintains the

relative kinematic constraints between the manipulators. Based

on this reduced system formulation, the internal wrenches are

computed analog to (18) as the constraining wrench for the

reduced system

h′
int := h′

c = M ′ 1
2 (A′M ′− 1

2 )†(b′ −A′ẍ′x) (53)

with M ′ = diag(M1, . . . ,MN) denoting the mass matrix of

the reduced system and the commanded acceleration vec-

tor ẍ′x obtained by inverting h′x = M ′ẍ′x. Note that

h′x = [(hx
1)

T , . . . , (hx
N )T ] is the virtual wrench resulting ex-

clusively from the manipulators’ motion controllers as de-

fined in (6) and no internal wrench is applied whenever the

commanded manipulator acceleration is compatible to the

kinematic constraints. The external wrench components result

now from

h′
ext = h′ − h′

int. (54)

This formulation reveals the relevance of our previous results

in [23] for the internal wrench analysis in cooperative manipu-

lation tasks and puts them into the context of internal/external

wrench computation. The consideration of the constraining

wrenches h′
c in (53) constitutes a novel paradigm for the

characterization of internal wrenches. Consequently, a con-

sistent analysis of internal wrenches can not be performed

based on the measured end-effector wrenches h′ but needs

to incorporate the kinematics of the end effectors as visible

from (53). Descriptively speaking this means for the applied

internal wrenches that it does not matter how much of the

payload each manipulator carries individually as long as

the commanded motion of the manipulator ensemble ẍ′Σ

describes a rigid body motion compatible to the imposed

constraints.

V. EXPERIMENTAL EVALUATION

The conducted experimental study focuses on the evaluation of

the apparent dynamics of the cooperative manipulator system

presented in Theorem 2. To this end, we measure the wrench
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oẍd

o

hd
1

hd
N

Kinematic coordination

(11) & (12)
ẍd
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Fig. 3. Block scheme representation of the interaction dynamics model and object-level controller

h̃o and the object pose xo in a cooperative manipulator setup

and perform subsequently a system identification to estimate

the parameters M, D and K.

A. Experimental setup

The experimental setup involving two anthropomorphic ma-

nipulators with 7 degrees of freedom and wrist-mounted

force/torque sensors is depicted in Fig. 4.

Fig. 4. Experimental setup with two robotic manipulators and force/torque

sensor for measuring the externally applied wrench h̃o

Both end-effectors are rigidly grasping an aluminum beam

with a quadratic profile and 1.5mm edge length. The overall

length of the beam is 1m. A JR3 67M25 6-dimensional

force/torque sensor is attached to the center of the beam and

an auxiliary handle is mounted on the opposite site of the

sensor, enabling the measurement of the externally applied

wrench h̃o. The force/torque signal is filtered by a low-pass

filter with 500Hz cutoff frequency. Simultaneously, the object

is equipped with optical markers in order to track its pose xo

via a Qualisys Motion Capture System. The object coordinate

frame {o} coincides with the center of mass and is indicated

by means of red arrows in Fig. 4. The overall mass of the

object is mo = 1.75kg and its moment of inertia about the

x-axis is Jo,x ≈ 0.055kgm2.

The manipulators are controlled individually by an impedance

control scheme according to (1) with a sampling time

of Ts = 1ms, wherein the desired wrench is set to zero,

i.e. hd
i = 06×1 and a constant desired end-effector pose,

i.e. xd
i = const., such that r1 = (0.0,−0.40, 0.0)Tm and

r2 = (0.0,+0.40, 0.0)Tm. The impedance control parameters

for both manipulators are mi = 10kg, di = 180Ns
m

, ki = 300N
m

for the translational behavior and Ji = I3 · 0.5kgm2,

δi = 10Nm rad
s

, κi = 50Nm
rad

for the rotational behavior.

B. Translational dynamics

The apparent translational dynamics in x-direction derived

from (30) can be written as

m∗
o p̈x + d∗o ṗx + k∗o px = f̃x (55)

with the object’s position in x-direction px ∈ R, the applied

force in x-direction f̃x ∈ R and the translational impedance

parameters

m∗
o = 21.75kg, d∗o = 360

Ns

m
, k∗o = 600

N

m
(56)

extracted from the matrices M, D and K in Theorem 2. The

applied force f̃x and the position px are plotted in Fig. 5.
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Fig. 5. Externally applied force and resulting position in x-direction

Based on the reduced dynamical model (55) and the in-

put/output data given by f̃x/px, a system identification is per-

formed. Estimates of the scalar parameters m∗
o, d∗o and k∗o are

obtained using the linear grey-box model estimation method

(greyest) of the Matlab System Identifcation Toolbox. The

estimates are

m̂∗
o = 21.5kg, d̂∗o = 384

Ns

m
, k̂∗o = 630

N

m
. (57)

The identified model parameters correspond very well to their

nominal values as indicated in (56). The model output for the
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input depicted on the left-hand side of Fig. 5 and the estimated

parameters (57) is illustrated by the dashed line on the right-

hand side of Fig. 5, yielding a mean squared error ‖p̂x−px‖
2

of 3.86 · 10−6m2 for a recording interval of 45s. Estimated

and measured values coincide well and prove consistency of

the presented approach.

C. Rotational dynamics

The apparent rotational dynamics about the object’s z-axis

derived from (30) can be written as

J∗
o,z ϕ̈z + d∗o ϕ̇z + k∗o ϕz = t̃z (58)

with the object’s orientation about the x-axis ϕx ∈ R , the

applied torque about the x-axis t̃x ∈ R and the rotational

impedance parameters

J∗
o,z = 4.255kgm2, δ∗o,z = 77.6Nm

rad

s
, κ∗

o,z = 196
Nm

rad
.

(59)

The applied torque t̃z and the resulting orientation ϕz are

plotted in Fig. 6.
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Fig. 6. Externally applied torque and resulting orientation about the z-axis

The estimates for the rotational dynamics in (58) are

Ĵ∗
o,z = 4.652kgm2, δ̂∗o,z = 84Nm

rad

s
, κ̂∗

o,z = 170
Nm

rad
.

(60)

The identified rotational impedance parameters approximate

their nominal values well. The most significant divergence is

observed for the rotational stiffness. The identified value κ̂∗
o,z

is slightly smaller than predicted. This result is attributed to

a finite stiffness of the mechanical arrangement whereas an

ideal rigid structure is assumed for computing κ∗
o,z . The model

output for the estimated parameters is illustrated by the dashed

line on the right-hand side of Fig. 6, yielding a mean squared

error ‖ϕ̂x − ϕx‖
2 of 2.46 · 10−5rad2 for a recording interval

of 60s.

D. Dynamics in SE(3)

For the identification of the impedance parameters in SE(3)
the (linearized) dynamics of the cooperating manipulators are

used as presented in (52). For the manipulator setup under

consideration the object impedance parameters are

M∗ = [21.75kg · I3, 03; 03, diag([4.255, 1, 4.255])kgm2]

D∗ = [360
Ns

m
, 03; 03, diag([78, 20, 78])Nm

rad

s
] (61)

K∗ = [600
N

m
, 03; 03, diag([196, 100, 196])

Nm

rad
].

The wrench h̃o applied to the object and the resulting object

pose δxo are plotted in Fig. 7.
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Fig. 7. Applied object wrench h̃o and resulting object pose δxo in SE(3)

The estimates of the object impedance parameters in (52) for

a recording interval of 30s are

M̂∗ = [25.8kg · I3, 03; 03, diag([2.8, 0.45, 2.8])kgm2]

D̂∗ = [485
Ns

m
, 03; 03, diag([73, 19, 73])Nm

rad

s
] (62)

K̂∗ = [820
N

m
, 03; 03, diag([148, 78, 148])

Nm

rad
].

The estimated values provide a satisfactory approximation

of the nominal impedance parameters. The most significant

divergence is observed for the estimates of the rotational

inertia, yielding too small values. This observation is explained

through a comparatively low excitation of the rotational mo-

tion in combination with the finite structural stiffness of the

object. However, the rotational damping is perfectly identified.

The translational parameters match satisfactory. Moreover, the

experimental study shows clearly the relevance of the coupling

between the translational and rotational impedance parameters

for the apparent object impedance.

VI. CONCLUSIONS

In this article we present a novel approach to the modeling

of the interaction dynamics in cooperative manipulation tasks.

Our approach incorporates explicitly the kinematic constraints

imposed by the cooperatively manipulated object in task space

and provides for the first time a closed-form expression for the

emerging interaction wrenches. The proposed model is phys-

ically consistent and suitable for the analysis of dynamic co-

operative manipulation tasks. By deriving fundamental system
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properties such as passivity and stability, we demonstrate that

the cooperative manipulator system exhibits desirable prop-

erties which haven been exploited implicitly for the control

design. The presented model is a mandatory prerequisite for a

systematic model-based control design. Moreover, we present

a new paradigm for the decomposition of the manipulator

wrenches into internal and external components and derive

the apparent object dynamics when interacting with the envi-

ronment. An experimental study by means of two cooperating

anthropomorphic manipulators confirms the significance of the

presented results for cooperative manipulation tasks.
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