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Abstract  
Cost-benefit analysis (CBA) is commonly applied as a tool for deciding on risk protection. 
With CBA, one can identify risk mitigation strategies that lead to an optimal trade-off 
between the costs of the mitigation measures and the achieved risk reduction. In practical 
applications of CBA, the strategies are typically evaluated through efficiency indicators such 
as the benefit-cost ratio (BCR) and the marginal cost (MC) criterion. In many of these 
applications, the BCR is not consistently defined, which, as we demonstrate in this paper, can 
lead to the identification of sub-optimal solutions. This is of particular relevance when the 
overall budget for risk reduction measures is limited and an optimal allocation of resources 
among different subsystems is necessary. We show that this problem can be formulated as a 
hierarchical decision problem, where the general rules and decisions on the available budget 
are made at a central level (e.g. central government agency, top management), whereas the 
decisions on the specific measures are made at the subsystem level (e.g. local communities, 
company division). It is shown that the MC criterion provides optimal solutions in such 
hierarchical optimization. Since most practical applications only include a discrete set of 
possible risk protection measures, the MC criterion is extended to this situation. The findings 
are illustrated through a hypothetical numerical example. This study was prepared as part of 
our work on the optimal management of natural hazard risks, but its conclusions also apply to 
other fields of risk management. 
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1 Introduction 
Cost-benefit analysis (CBA) can be used for the identification of risk mitigation strategies that 
provide an optimal trade-off between the cost of the implemented measures and the achieved 
risk reduction. It is widely applied in various fields of engineering, health management and 
policy making. Exemplarily, CBA is used for economic evaluation of natural hazard 
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mitigation projects in the USA (Rose et al. 2007), Great Britain (Defra, 2009), Switzerland 
(Bründl, 2009; Bründl et al., 2009), Austria (lebensministerium.at, 2009) and in developing 
countries (United Nations, 2011; Hochrainer-Stigler et al., 2011). Other examples of 
engineering applications of CBA include risk-based optimization of climate change 
adaptation of offshore structures (Garré and Friis-Hansen, 2013) or the management of man-
made risks such as the risk of fire related to transport of hazardous material (Paltrinieri et al., 
2012). CBA is also applied to assess the effect of policies and regulations, e.g. on terrorist 
prevention measures in aviation (Willis and LaTourrette, 2008; Stewart and Mueller, 2012), 
on retrofitting of buildings to reduce the impact of earthquakes (Li et al., 2009), on air 
pollution (Nemet et al., 2010; Fann et al., 2011) or on testing and use of pharmaceutics 
(Meckley et al., 2010).  
CBA is limited by its focus on the economic efficiency of risk protection measures. Many 
aspects, such as the value of human life or environmental and social impacts of measures, 
cannot be easily quantified in monetary terms for inclusion in CBA (Ramsberg, 2000). 
Alternatives have therefore been proposed, such as multi-criteria analysis (MCA) that allows 
considering different attributes without monetizing them (Mysiak et al., 2005; ECA, 2009). 
However, in spite of its limitations, CBA supports the fair distribution of resources for risk 
protection in society (Paté-Cornell, 2002; Cox, 2012; Michel-Kerjan et al., 2012). This will 
remain essential for society in the future, as the frequency of natural and man-made hazards, 
as well as their potential consequences, are likely to increase (Johnson et al., 2007; Bonstrom 
et al., 2011) and the resources that can be invested into risk protection remain limited.  
This paper presents an overview on CBA for the economic optimization of risk protection, 
with special focus on engineering applications. The study is motivated by our work on 
development of a methodology for planning and optimization of flood risk measures in the 
Bavarian Alps (Špačková et al., 2014). A majority of the methods and examples presented in 
this paper thus relate to risk posed by floods and related natural hazards. The findings of this 
paper are nevertheless general and are valid for many fields of risk management.  
The paper considers both continuous and discrete optimization. The former is applied when 
cost and risk can be expressed as continuous functions of the optimization parameters. This 
situation is often discussed in the literature and in textbooks, but in engineering practice it is 
typically limited to subsidiary decision problems. In most real-life applications, only a 
countable number of risk mitigation strategies can be analysed. For example, when planning 
flood protection of a town, a first strategy can correspond to building an 800 m long dike and 
a flood storage reservoir with capacity of 2×10! m3 and a second strategy can correspond to 
building no dike but a larger reservoir with capacity of 3×10! m3. Many additional strategies 
with other measures and/or other parameter values are feasible, and the analysis of each 
strategy implies computationally demanding model evaluations.  The space of possible 
solutions is high-dimensional. The engineers will therefore preselect a set of discrete 
strategies based on experience. Each of these strategies is associated with specific values of 
(residual) risk and expected costs. 

In the field of natural hazard protection, CBA is often implemented through the calculation of 
efficiency measures, such as the benefit-cost ratio (BCR) and the marginal cost (MC) criterion, 
which are reviewed in Section 3. These measures allow prioritizing the risk protection 
strategies when the overall available budget is limited. BCR and MC are not commonly 
formulated in a rigorous manner, neither in practical guidelines nor in the scientific literature, 
which gives rise to inconstancies in their application. Particularly the BCR is defined 
differently from one country to another and from one area of application to another. For 
example, the benefits and costs are in some instances compared against the current level of 
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protection, and in other instances against a hypothetical do-nothing option. This impedes the 
use of BCR as a measure for comparing the efficiency of mitigation strategies in different 
areas of risk protection.  
The differences and inconsistencies in the application of CBA stem not least from the fact that 
risk assessment experts have different backgrounds: Experts in structural reliability use 
different methods than those dealing with natural hazard protection and those are again 
different to those used by health risk analysts. In a CBA carried out by engineers or life 
scientists, the economic optimization is typically perceived as a minor part of the analysis. 
The analysts focus on the detailed quantitative analysis of the hazard processes, while only 
limited efforts are devoted to the estimation of the damage, the quantification of the risk and 
the interpretation of the results for the actual decision (Messner and Meyer, 2005; Merz et al., 
2010). As a result, the way CBA is used in engineering assessments is often in contradiction 
to the economic theory.  
In this paper, we first discuss the optimization of risk protection in a single subsystem 
(Section 2.1) and thereafter extend the problem to the selection of a set of strategies in a 
system (Section 2.2). The subsystems can be, for example, individual municipalities or river 
catchments that are administered by the same state agency, or different plants owned by a 
company. The problem is treated as a hierarchical optimization, where the individual 
subsystems compete for the resources distributed from a common budget. The aim of the 
optimization is finding optimal risk levels in the individual subsystems from the point of view 
of the owner/administrator. As demonstrated in Section 3, the commonly applied efficiency 
measures BCR and MC can be utilized as coordination parameters in the hierarchical system 
optimization. However, only the MC leads to a theoretically optimal selection of risk 
mitigation strategies at the system level. The effect of different choices of efficiency measures 
on the resulting overall risk and cost at the system level is illustrated through a numerical 
example in Section 4. Finally, the limitations of the proposed approach and the challenges for 
future research are discussed in Section 5. 

2 Risk optimization with cost-benefit analysis 
The cost-benefit analysis (CBA) concept is commonly used for the purpose of optimizing risk 
protection measures. The optimal strategy is then defined as the one that maximizes the 
difference between expected benefits and expected costs. The risk, which is defined as 
expected damage, can be considered as an additional expected cost, and the objective function 
becomes: 

max
𝐚
   𝐵(𝐚)− 𝐶(𝐚)− 𝑅 𝐚  (1) 

where  𝐚 is a set of optimization parameters, 𝐵(𝐚) and 𝐶(𝐚) are the expected net present 
values of benefits and costs, and 𝑅 𝐚  is the net present value of risk. The net present values 
aggregate the benefits, costs and risks over the planning horizon. The discounting procedure 
and selection of discount rate is not explicitly described in this paper, for a more detailed 
discussion of this topic we refer to (Brent, 1996; Just et al., 2004; Rackwitz, 2004; Groom et 
al., 2005;  Nishijima et al., 2007; Gollier and Weitzman, 2010).  

The risk 𝑅 𝐚  is defined as the expected value of the damages caused by the analysed hazards, 
and costs 𝐶(𝐚) are the expected value of the cost for construction (establishment), operation 
and maintenance of the mitigation measures. These two types of expenses are commonly paid 
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from different sources. In case of natural hazards, the costs of mitigation measures are 
commonly included in government investment expenditures, while the risk is typically 
covered by special governmental funds, insurance companies and the private sector. In such 
cases it is useful to clearly distinguish the risk and costs throughout the analysis.  

The benefit 𝐵 of the activity is often assumed to be independent of the risk protection 
measures described by optimization parameters 𝐚 and is outside of the scope of the analysis. 
𝐵(𝐚) is thus considered as constant with 𝐚 and is neglected. The optimization problem is then 
formulated as 

min
𝐚
   𝐶 𝐚 + 𝑅 𝐚  (2) 

CBA assumes that both the risks and costs are expressed in monetary units. Alternatively, the 
optimization can be formulated within the framework of the expected utility principle 
(Neumann and Morgenstern, 1944; Keeney and Raiffa, 1993). This facilitates accounting for 
the risk attitude of the decision-maker, in particular risk aversion (Paté-Cornell, 2002; 
Jonkman et al., 2003; Ditlevsen, 2003). It also enables the inclusion of alternative criteria, e.g. 
environmental and societal objectives, into a single objective function (Li et al., 2009). The 
approaches and findings presented in this paper are also applicable if risk and costs are 
expressed as expected utility and not in monetary units.  
In many instances, the decisions on risk protection are made in a hierarchical manner, 
whereby the decisions on the available budget are taken at a higher/central level (central 
government agency, top management), whereas the decisions on the specific measures are 
taken at a lower/local level. In this case, the optimal allocation of resources for risk protection 
can be considered as a hierarchical optimization problem, where the objectives are formulated 
at the system level, but the actual decisions are made at the level of sub-systems, possibly at 
different times. Because of this distributed decision process, it is not possible to optimize all 
risk protection measures described by parameters 𝐚 jointly. Instead, the aim is to find a set of 
criteria, defined at the system level and applied in the sub-systems, which ensure optimal risk 
protection in the entire system. 
In the following Section 2.1, the optimization problem is first described at the level of 
subsystems, since this is the formulation that is typically used in the field of risk protection 
optimization. Thereafter, Section 2.2 presents the formulation of the optimization problem at 
the system level.  

2.1 Optimization at the level of a subsystem 

A subsystem is here understood as a part of a system, where the risk mitigation measures can 
be planned separately from other parts of the system. The risk protection measures applied in 
a subsystem do not influence the level of risk in other subsystems. The only connection 
between the subsystems is the financial budget that they share, which introduces dependence 
among them. In the case of flood risk, subsystems are e.g. individual municipalities or river 
catchments that are administered by the same state agency; in the case of risks to an oil and 
gas operator, individual offshore oil fields can represent such subsystems. Since both costs 𝐶 
and risks 𝑅 are expected values, the framework is also valid if there is stochastic dependence 
among the hazards in different subsystems. 
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2.1.1 Continuous formulation 

The optimization of risk protection at the subsystem level is formulated first for the case of a 
continuous optimization parameter representing the protection level 𝑙, which is the case that is 
mostly described in the literature and textbooks. Examples of continuous optimization 
problems include the selection of an optimal height of a coastal dyke (Danzig, 1956), the 
decision on the optimal raise of an offshore platform deck as an adaptation measure to climate 
change (Garré and Friis-Hansen, 2013) or the selection of an optimal bridge maintenance 
frequency (Fischer et al., 2013). These applications all have only one optimization parameter 
defining the protection level.  

In accordance with Eq. (2) the optimal level of risk protection can be identified by minimizing 
the sum of the net present values of risk 𝑅 𝑙  and of expected costs  𝐶(𝑙): 

min
!

𝑅 𝑙 + 𝐶(𝑙)  (3) 

The optimization problem can be constrained by a maximal available budget 𝐶!"#. Then the 
optimization of Eq. (3) is subject to 𝐶 𝑙 ≤ 𝐶!"#. 

Two alternative graphical representations of the continuous optimization are shown in Figure 
1. In Figure 1(a), risk and cost are plotted against the protection level; in Figure 1(b), risk is 
plotted against cost. The black dots in both figures represent the unconstrained optimum, Eq. 
(3), and the constrained optimum, which is subject to the budget constraint 𝐶!"#. 
 

 
Figure 1. Alternative illustrations of the continuous risk optimization problem.  

In Figure 1(a), the dependence of risk and cost on the protection level 𝑙 is explicitly illustrated 
and the solid line represents their sum that is to be minimized. This representation requires an 
unambiguous definition of the protection level and it is thus applicable if only one 
optimization parameter is considered (e.g. dyke height, air-gap in an offshore platform) or if 
the protection level can be related to a single parameter describing the safety of the optimized 
system (e.g. safety factor, design return period, probability of failure). In many cases, 
however, it is not straightforward to define a protection level as a scalar variable, because 
different elements of the subsystem can have different protection levels. Additionally, even if 
the protection level is applicable, it often does not unambiguously determine the risk and cost 
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of the protection measures. For example, the protection against a design flood defined by its 
return period (the so-called N-year flood) can be achieved with different types of measures. 
These will exhibit different costs and typically lead to different residual risks, because their 
failure mechanisms in case of a flood with higher return period will differ. If flood protection 
is ensured by a dam, a failure of the dam associated with erosion will lead to significant 
consequences immediately following the failure. If, on the other hand, the protection is 
ensured by a sufficiently wide river bed, the consequences of exceeding the design flood will 
be increasing only slowly with the flood level. 

If the introduction of the protection level is not possible and helpful, the alternative 
representation of Figure 1(b) is more appropriate. This illustration depicts directly the residual 
risk as a function of cost. The set of Pareto optimal solutions represented by the solid line 
delineates the domain of feasible optimization alternatives. Note that the solid line in Figure 
1(b) represents the same set of solutions as the solid line in Figure 1(a), because in the 
illustration of Figure 1(a) it is implicitly assumed that the costs (and risk) associated with each 
protection level are minimal. 
The set of Pareto optimal solutions is here defined as all mitigation options for which there 
are no other options that have simultaneously lower costs and lower risks. Note that this is the 
definition of Pareto optimality found in engineering applications (Misra, 2008; Reed et al., 
2013), which relaxes the rigorous conditions commonly used in the socio-economic theory. 
Following the socio-economic definition, a Pareto optimal solution corresponds to a state 
where nobody is ultimately made worse off. In engineering applications, one typically does 
not test the change on the level of individuals and it is not assured that all individuals are 
compensated for their potential loses. Strictly, one should thus speak of the Kaldor-Hicks 
efficiency (Corkindale, 2007), but this term is not well known in the engineering field. Hence 
we continue to use the term Pareto optimality. 
In the unconstrained case, the optimal solution corresponds to the point in the domain of the 
feasible solutions that minimizes the sum of risk and costs. Graphically this can be illustrated 
by plotting a line through this optimum with 𝑅 + 𝐶 = 𝑐𝑜𝑛𝑠𝑡 (the dashed line in Figure 1b). 
There is no feasible solution to the left of this line. If the optimization is constrained by the 
available budget, the feasible space in Figure 1(b) is restricted by the vertical line at 𝐶!"# . 
The solutions that are to the right of this line are not feasible because their costs exceed the 
available budget.  

2.1.2 Discrete formulation 

In the scientific literature, it is commonly assumed that explicit functions for cost 𝐶(𝑙) and 
risk 𝑅(𝑙) as a function of the protection level 𝑙 can be established. However, as discussed in 
Section 2.1.1, it is often not possible or reasonable to define such a protection level. 
Furthermore, determining the Pareto optimal set depicted in Figure 1(b) is too demanding in 
most practical applications. This is because a large variety of different protection measures, 
and combinations thereof, can be implemented (e.g. dykes combined with retention areas, 
mobile flood barriers, warning systems) and each measure has one or more parameters to be 
optimized (height of a dyke, volume of the retention, type of the mobile barriers etc.). In such 
cases it is only realistic to evaluate risk and cost for a countable number of protection 
strategies, each one consisting of a set of measures. Therefore, the continuous optimization is 
replaced by a discrete optimization, which is illustrated in Figure 2.  

Let 𝑆!, 𝑆!… 𝑆!  denote the possible strategies. We are searching for a strategy, which 
minimizes the value of future expenses (sum of risk and costs). The optimization problem is 
then formulated as 
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min
!

𝑅 𝑆! + 𝐶 𝑆! ,                𝑗 = 1,2,…𝑚 (4) 

where 𝑅(𝑆!) and 𝐶(𝑆!) are the net present values of the risk and expected costs of the 𝑗th 
strategy. If the optimization is constrained by a maximal available budget 𝐶!"# , the 
optimization of Eq. (4) is subject to 𝐶 𝑆! < 𝐶!"#. 

 

 

Figure 2. Illustration of the discrete risk optimization problem.  

The strategies displayed in Figure 2 with the black crosses are Pareto optimal solutions. The 
gray strategy 𝑆! is not Pareto optimal, because it has both higher risk and higher cost than 
strategy 𝑆!. The unconstrained optimum is strategy 𝑆!, which minimizes the sum of risk and 
costs. The dashed line shown in Figure 2, for which 𝑅 + 𝐶 = 𝑐𝑜𝑛𝑠𝑡 = 𝑅 𝑆! + 𝐶(𝑆!), 
illustrates this fact. It can be observed that all other strategies are to the right of this line, 
indicating that their sum of risk and costs is higher than the one of strategy 𝑆!. If the 
optimization is constrained by the budget 𝐶!"#, strategy 𝑆! lies in the infeasible space and 
strategy 𝑆! becomes the constrained optimum.  

2.2 Hierarchical optimization for the system  

Optimization of risk protection in a system is considered, where the risk mitigation measures 
are planned at the level of the subsystems, which, however, share a common budget. The 
situation is illustrated in Figure 3 for the discrete formulation.  
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Figure 3. Illustration of the risk optimization problem for a portfolio of subsystems. 

 

2.2.1 Continuous formulation 

We first consider the situation where the risk and expected cost in the 𝑖th subsystem can be 
obtained as a function of the protection level 𝑙! . In this case, the optimization problem in a 
system with 𝑁 subsystems can be formulated as: 

min
!!,!!,…,!!

𝐶! 𝑙! + 𝑅! 𝑙!
!
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 (5) 

𝑅! 𝑙!  and 𝐶!(𝑙!) are the net present values of risk and costs in the 𝑖th subsystem.   
If the budget is unlimited, i.e. if the optimization problem of Eq. (5) is unconstrained, then it 
holds: 
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= min

!!
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!

!!!

 (6) 

Therefore, with unlimited budget, the optimal solution at the system level can be found by 
finding the optimum in each of the subsystems individually. 

If the budget is limited to 𝐶!"#, we must solve 

min
!!,!!,…,!!
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!
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!!!   𝐶!"# 

(7) 

In this case, Eq. (6) does not hold and the risk mitigation measures cannot be optimized 
independently in the individual subsystems. Additionally, because the protection strategies in 
the subsystems are often not planned at the same time or by the same engineers, it is generally 
impossible to optimize the risk protection measures in the whole system at once.  
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A solution to this problem is provided by hierarchical optimization (Stoilov and Stoilova, 
2008). In hierarchical optimization, the coordinator sets criteria, so called coordination 
parameters, at the system level for the optimization in the subsystems. The optimization can 
then be performed at the individual subsystems for given values of the coordination 
parameters. At the system level, only these coordination parameters must be optimized. If 
these are chosen correctly, this procedure may lead to the same solution as the direct 
optimization of Eq. (7). The optimization can furthermore be carried out iteratively: The 
coordinator can adjust the coordination parameters depending on the results of optimizations 
in individual subsystems and with changing constraints such as availability of resources. 
In current practice, the efficiency of risk mitigation in subsystems is commonly quantified 
through the benefit-cost ratio (BCR) or the marginal cost (MC) criterion. As we will show in 
Section 3.2, the MC criterion can be applied as a coordination parameter and leads to an 
optimal solution at the system level, ensuring an optimal allocation of resources among the 
subsystems. However, the more commonly used average BCR is not a correct coordination 
parameter and can therefore lead to suboptimal solutions. 

2.2.2 Discrete formulation 

As discussed in Sec. 2.1.2, in practice one typically selects a risk mitigation strategy from a 
countable number of options.  In each of 𝑁 subsystems one can identify a number of risk 
protection strategies denoted as 𝑆!!!, where 𝑖 ∈ {1,… ,𝑁} is the index of the subsystem and 
𝑗! ∈ {1,… ,𝑚!}  is the index of the strategy in subsystem 𝑖 and 𝑚! is the number of strategies 
in subsystem 𝑖. The optimization can now be formulated as  

min
!!,!!,…!!

𝑅! 𝑆!!! + 𝐶!(𝑆!!!)
!

!!!

 (8) 

where 𝑅! 𝑆!!!  and 𝐶! 𝑆!!!  are the net present values of risk and cost of the 𝑗!th strategy in 
the 𝑖th subsystem. In accordance with Eq. (6), for an unconstrained problem it holds  

min
!!,!!,…!!

𝑅! 𝑆!!! + 𝐶!(𝑆!!!)
!

!!!

= min
!!

𝑅! 𝑆!!! + 𝐶!(𝑆!!!)
!

!!!

 (9) 

If the budget is constrained, it is 

min
!!,!!,…!!

𝑅! 𝑆!!! + 𝐶! 𝑆!!!

!

!!!

 

s. t. 𝐶!(𝑆!!!) ≤
!
!!!   𝐶!"#  

(10) 

In this case, the equality (9) cannot be invoked and the hierarchical optimization is applied, as 
described in the next section. 
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3 Measures of efficiency/coordination criteria 
When selecting risk protection strategies, the efficiency of the investment should be assessed. 
For this purpose, measures such as benefit-cost Ratio (BCR) or marginal costs (MC) are 
commonly used in the practice. Their advantages and limitations are discussed in the 
following.  

3.1 Benefit-cost ratio (BCR) 

BCR1 is a commonly used criterion in the field of economic project appraisal; it was 
originally developed for evaluating projects where uncertainties are not explicitly considered. 
BCR is defined as ratio of benefits over costs. The criterion examines if the benefits of a 
project are high enough to justify the costs; the project is only acceptable if 𝐵𝐶𝑅 ≥ 1.  Two 
types of BCR can be distinguished: the average BCR and the incremental BCR (sometimes 
called marginal BCR) (Lee and Jones, 2004; Corkindale, 2007).   

The average BCR is calculated as the total benefits over total cost associated with each project. 
The average BCR criterion can be applied to select from projects that are not mutually 
exclusive, i.e. where several projects can be implemented in parallel. If projects are 
independent, the optimal combination of projects can be found by ranking the projects 
according to their average BCRs and selecting those with the highest BCRs until either the 
budget is exhausted or all projects with 𝐵𝐶𝑅 ≥ 1 are implemented (Vinod, 1988).  

The incremental BCR should be used for selection from mutually exclusive projects, i.e. in 
situations where one selects only one project from available options (Irvin, 1978; 
Hendrickson and Matthews, 2011). To calculate the incremental BCR, the projects are first 
ordered from the cheapest to the most expensive. Project 1 is set as the initial reference 
project; the incremental BCR of project 2 is calculated as the ratio of increment of benefits 
over increment of costs compared to project 1. Project 2 is preferable if its incremental BCR 
is larger than one (or some minimum required value 𝐵𝐶𝑅!"# > 1). If project 2 is preferable, it 
becomes the new reference project, otherwise project 1 is kept as reference. Then the 
incremental BCR of project 3 with respect to the reference is calculated, and if it is larger than 
one (or 𝐵𝐶𝑅!"#), project 3 becomes the reference. This process is repeated until all projects 
are checked. The final reference project is the optimal one.  
In the field of risk protection optimization, the BCR is used in many countries, see e.g. (Defra, 
2009; lebensministerium.at, 2009; Bründl, 2009; United Nations, 2011). The application of 
the average BCR and the incremental BCR to the optimization of risk protection is illustrated 
in Figure 4. In the context of risk protection, the benefit is the risk reduction −∆𝑅 and the cost 
is the increase in expected cost ∆𝐶. The average BCRs for both strategies 𝑆! and 𝑆!, denoted 
as 𝐵𝐶𝑅!,!"#$ and 𝐵𝐶𝑅!,!"#$, are calculated with respect to strategy 𝑆!, which is here used as 
the reference. In contrast, when calculating the incremental BCR, the reference strategy is 
changing. For strategy 𝑆!, the 𝐵𝐶𝑅!,!"#$ is calculated with respect to 𝑆! and it is thus equal to 
𝐵𝐶𝑅!,!"#$.  Because 𝐵𝐶𝑅!,!"#$ is here larger than 1 (the angle  𝛽 is larger than 45°), 𝑆! is 
superior to 𝑆! and is thus selected as the new reference for calculating 𝐵𝐶𝑅!,!"#$ of strategy 
𝑆!.  

                                                
1 The BCR is sometimes referred to as the present value to capital (PV/C) ratio, if it is assumed that all the costs 
(capital investment) are spent at the beginning of the project. 
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Figure 4. Illustration of incremental and average BCR.  

When selecting the optimal risk protection strategy in a subsystem among a set of potential 
strategies, one deals with mutually exclusive options. Therefore, the incremental BCR should 
be applied, as recommended in (Riddell and Green, 1999; Defra, 2010). However, in practice 
it is mostly the average BCR that is used (e.g. Lucarelli et al., 2011; Scottish Executive, 2011; 
United Nations, 2011). In the rest of this chapter we thus limit ourselves to the average BCR. 
We will return to the incremental BCR in Section 3.2, as it is equivalent to the MC criterion 
for the discrete case.  
The optimal strategy is commonly defined as the one maximizing the average BCR: 

max𝐵𝐶𝑅 = max
−∆𝑅
∆𝐶  

s. t.    
−∆𝑅
∆𝐶 ≥ 𝐵𝐶𝑅!"# 

(11) 

The minimal required value 𝐵𝐶𝑅!"#  should be larger or equal to one. 𝐵𝐶𝑅!"#  could be 
perceived as a coordination parameter that is used to efficiently distribute resources at the 
system level. Only subsystems in which the minimum 𝐵𝐶𝑅!"# can be reached will receive 
funding for increased risk protection. However, despite its common use, the BCR utilized in 
this way does not generally lead to optimal solutions at the system level, as we demonstrate 
later in the numerical example.  

The definition of the reference state, which is required in computing the average BCR, differs 
among countries and areas of application. It is often defined as maintaining the current level 
of protection or as a so-called “Do-nothing option”, aka “Null option”, which corresponds to 
no active intervention in the area and no maintenance of existing measures (Defra, 2009). The 
effect of the reference state is illustrated in Figure 5. The two figures (a) and (b) show an 
identical situation evaluated in two ways.  
In Figure 5(a) the reference state corresponds to the current state, the BCR is thus defined as: 
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𝐵𝐶𝑅! =
𝑅! − 𝑅
𝐶 − 𝐶!

 (12) 

where 𝑅!  and 𝐶!  are the risk and costs corresponding to the current state of protection.  
In Figure 5(b) the reference state corresponds to the Null (Do-nothing) option, which is 
associated with the maximal level of risk 𝑅! and zero cost 𝐶! = 0 (United Nations, 2011; 
Keenan and Oldfield, 2012; Woodward et al., 2013). The BCR then equals: 

𝐵𝐶𝑅!! =
𝑅! − 𝑅
𝐶 − 𝐶!

=
𝑅! − 𝑅
𝐶  (13) 

Additionally, in practice one often encounters a mixed approach, where the reference point for 
risk is the current state, while the costs of maintaining the current state of protection are 
disregarded (e.g. Lucarelli et al., 2011; Krummenacher et al., 2011; Zahno et al., 2012). The 
BCR then equals: 

𝐵𝐶𝑅!!! =
𝑅! − 𝑅
𝐶  (14) 

For 𝐵𝐶𝑅!!!, the coordination system shown in Figure 5(a) is shifted to the left.  

 

Figure 5. The effect of reference state on the average benefit-cost ratio: (a) the current protection 
level considered as reference state, (b) the do-nothing option considered as a reference state. The set 
of identified Pareto optimal strategies is the same in (a) and (b). 

It can be observed from Figure 5(a) and (b) that maximizing the BCR according to Eq. (11) 
may not lead to the optimal solution: Assuming that the Pareto optimal border has the shape 
displayed in Figure 5, the solutions with the maximum BCR are the solutions with the 
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smallest cost increase Δ𝐶 - they are marked as crosses in squares in the Figure 5 (a) and (b). 
The unconstrained optimum, depicted as crosses in circles, would not be identified with 
neither 𝐵𝐶𝑅! nor 𝐵𝐶𝑅!!. Additionally, the definition of 𝐵𝐶𝑅! with respect to the current state 
can lead to negative values for some of the possible solutions, as can be observed in Figure 
5(a). These include solutions that are superior to current state, i.e. have lower risk and costs 
than the current state. 𝐵𝐶𝑅!!, defined with respect to the do-nothing option (in Figure 5b) can 
be associated with significant uncertainty, because estimating the risk associated with the null 
option 𝑅! is often difficult. If   𝐵𝐶𝑅!!! would be applied in this example, i.e. the coordinate 
system in Figure 5(a) would be shifted to the left, none of the identified solutions would have 
a BCR higher than one and none of them would thus be acceptable.   
Note: The BCR was defined as the ratio between risk reduction and the increase in expected 
cost. Following (Baecher et al., 1980), instead the expected value of the ratio between damage 
reduction Δ𝐷 and cost Δ𝐶 should be used. If the cost is deterministic, the two definitions are 
identical, since we have 𝐵𝐶𝑅 = E (−Δ𝐷)/Δ𝐶 = E −Δ𝐷 /Δ𝐶 = −Δ𝑅/Δ𝐶 , where E ∙  
denotes the expectation operator and the risk reduction is Δ𝑅 = E −Δ𝐷 . In case the costs 
are uncertain, the two definitions differ; in practice, however, the uncertainty in the cost will 
be significantly lower than in the damages and we thus have 𝐵𝐶𝑅 = E (−Δ𝐷)/Δ𝐶 ≈
−Δ𝑅/Δ𝐶. 

3.2 Marginal costs (MC) 

An alternative approach to risk protection optimization is the marginal cost criterion. It has 
been applied in the field of natural hazard protection in Switzerland (Bohnenblust and Troxler, 
1987; Bohnenblust and Slovic, 1998; Bründl, 2009). In other fields of risk mitigation the 
utilization of MC criterion appears not to be common (Li et al., 2009).  

The marginal costs 𝛿𝐶 are the costs for reducing the risk by an additional unit 𝛿𝑅. This 
definition is only meaningful in the continuous case, e.g. when both 𝐶 and 𝑅 are differentiable 
functions of the protection level 𝑙. The marginal cost criterion for the continuous case is 
illustrated in Figure 6. If the cost of risk reduction is higher than the value of the risk 
reduction, i.e. 𝛿𝐶 > −𝛿𝑅, the strategy is inefficient. If the risk is a differentiable function of 𝐶 
and the budget is unlimited, the optimal solution is one for which it holds:  

𝛿𝑅
𝛿𝐶 = −1 (15) 

If the budget is limited and the unconstrained optimum is not feasible, the optimal strategy 
will have 𝛿𝐶 ≤ −𝛿𝑅. For the optimization at the system level, it is convenient to introduce a 
parameter 𝛼 ≥ 1, which represents the required minimum efficiency of the investment. 
Assuming differentiability, the optimal protection level for given 𝛼 is one for which it holds: 

𝛿𝑅
𝛿𝐶 = −𝛼 (16) 

Eq. (16) reduces to Eq. (15) with 𝛼 = 1. The parameter 𝛼 determines how many units of risk 
must be reduced with an investment of one unit of costs, i.e. the required marginal risk 
reduction. In other words, 1/𝛼 is the maximal acceptable marginal cost of reducing risk by 
one unit. Higher values of 𝛼 will lead to smaller investments in risk protection.  
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The parameter 𝛼 is a coordination criterion, which can be set at the system level to optimize 
the distribution of resources among subsystems. As we will show in Section 3.2.1, it leads to 
optimal solutions at the system level. 

The criteria of Eq. (15) and Eq. (16) uniquely define an optimal solution when 𝑅 is a 
differentiable, convex function of 𝐶 (Figure 6a). When the function is not convex, multiple 
local optima may exist, and the global optimum has to be identified among these local 
maxima. The same applies if the function is not differentiable and in the discrete case. In the 
unconstrained case, i.e. with 𝛼 = 1, the global optimum is the local optimum that minimizes 
𝑅 − 𝐶. This solution can be found graphically. When plotting the line −𝛿𝑅 = 𝛿𝐶 through the 
global maxima, no other feasible solution can be to the left of this line, as illustrated in Figure 
6b. By extending this graphical solution to the case with 𝛼 > 1 (Figure 6a), we obtain a more 
general marginal cost criterion that is applicable in all cases. 

 

 
Figure 6. Illustration of the marginal cost criterion for the continuous case; (a) with 𝑅 being a convex, 
differentiable function of 𝐶 for 𝛼 = 1 and 𝛼 = 3; (b) with 𝑅 being a general function of 𝐶 for 𝛼 = 1. 

In the discrete case (and for non-differentiable continuous functions), the marginal cost is not 
defined. However, we extend the marginal cost criterion to these situations, based on the 
graphical solution discussed above. We identify the optimal strategy for a required efficiency 
𝛼 graphically, by shifting the line with gradient −𝛼 from the origin to the right (see Figure 7). 
The optimal solution is the one that is first reached by this line. For the example of Figure 7, 
the optimal solution for 𝛼 = 2 corresponds to strategy 𝑆! . Computationally this can be 
implemented by finding the strategy whose distance 𝑑!  in the direction perpendicular to this 
line (see Figure 7) is minimal for given 𝛼. The distance 𝑑!! associated with the pair 𝐶 𝑆!  and 
𝑅 𝑆!  is 𝑑!! = 𝐶 𝑆!

𝛼

𝛼2+1
+ 𝑅 𝑆!

1

𝛼2+1
. The optimal strategy is thus the one found by the 

following minimization: 

min
!
𝑑!! =

1

𝛼2 + 1
min
!

𝛼𝐶 𝑆! + 𝑅 𝑆!  (17) 
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Since the constant 1 / 𝛼! + 1  is irrelevant, the optimal solution is the one minimizing 
𝛼𝐶 𝑆! + 𝑅 𝑆! . 

The approach is general, i.e. it can also be applied in the continuous case, when it is necessary 
to select among different local optima or when the relation between risk and cost is described 
by a non-differentiable function. For convex differentiable functions, it will identify the 
solution in accordance with Eq. (16).  

 

 
Figure 7. Illustration of the generalized marginal cost criterion for the discrete case. 𝑆! is the optimal 
strategy for a marginal cost criterion 𝛼 = 2. 

While the marginal cost is not defined for discrete strategies, it is possible to provide an 
interval of the efficiency parameter 𝛼 for which a strategy is optimal, as illustrated in Figure 8. 
From this figure it can also be observed that the MC criterion only identifies those strategies, 
which lie on the convex envelope of the set of all Pareto optimal strategies. The strategy 𝑆! in 
Figure 8 is not optimal for any value of 𝛼, even though it is a Pareto optimal solution. 

 

 
Figure 8. Intervals of the efficiency parameter 𝛼 for which specific solutions are optimal.  
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For the discrete case, the generalized marginal cost criterion following Eq. (17) leads to the 
same solution as the incremental BCR algorithm described in Section 3.1. That algorithm also 
identifies only solutions that lie on the convex envelope of the set of all Pareto optimal 
strategies, and for required values of  𝐵𝐶𝑅!"# equal to 𝛼, the optimal strategy identified with 
the two methods is the same. This can be observed when applying the incremental BCR 
algorithm to the example of Figure 8. For 𝐵𝐶𝑅!"# > 3, 𝑆! will be optimal because none of the 
other solutions has 𝐵𝐶𝑅!"#$ > 3 with respect to 𝑆!. Analogously, for 3 > 𝐵𝐶𝑅!"# > 1.5, 𝑆! 
will be optimal because 𝑆!  and 𝑆!  do not have 𝐵𝐶𝑅!"#$ > 1.5 with respect to 𝑆!  and for 
𝐵𝐶𝑅!"# < 1.5, 𝑆! will be optimal. For 𝐵𝐶𝑅!"# = 1.5 and 𝐵𝐶𝑅!"# = 3, the two strategies 𝑆! 
and 𝑆!, resp. 𝑆! and 𝑆!, are equivalent. The solutions are thus equal to those identified with 
the proposed generalized marginal cost criterion.  

3.2.1 Derivation of the MC criterion for system optimization  

We show that the application of the MC criterion at the subsystem level leads to the optimal 
solution at the system level for the continuous differentiable case. The system optimization 
problem for a continuous case was stated in Eq. (7). By changing the minimization to a 
maximization problem and by reformulating the constraint to an equality constraint by the use 
of a so-called slack variable 𝑏 (Jordaan, 2005; Nocedal and Wright, 2006), the optimization is 
formulated as follows: 

max
!!,!!…!!

− 𝐶! 𝑙! + 𝑅! 𝑙!
!

!!!
 

s. t.     𝐶! 𝑙! + 𝑏! =
!

!!!

  𝐶!"# 

(18) 

where 𝑅! 𝑙!  and 𝐶!(𝑙!) are the net present values of risk and cost in the 𝑖th region.  

We formulate the Lagrangian function:  

𝐿 𝑙!, 𝑙!,… , 𝑙! , 𝜆, 𝑏 = − 𝐶! 𝑙! + 𝑅! 𝑙!
!

!!!
− 𝜆    𝐶! 𝑙!

!

!!!
+ 𝑏! − 𝐶!"#  (19) 

By differentiating the Lagrangian function with respect to each variable, the following 
conditions for optimality are obtained: 

𝜕𝐿
𝜕𝑙!

= −
𝜕𝑅! 𝑙!
𝜕𝑙!

−
𝜕𝐶! 𝑙!
𝜕𝑙!

− 𝜆
𝜕𝐶! 𝑙!
𝜕𝑙!

= 0,          𝑖 = 1,… ,𝑁 (20) 

𝜕𝐿
𝜕𝜆 = − 𝐶! 𝑙!

!

!!!
− 𝑏! + 𝐶!"# = 0 

(21) 

𝜕𝐿
𝜕𝑏 = −2𝜆𝑏 = 0 

(22) 
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Eq. (20) can be rewritten to 

𝜕𝑅! 𝑙!
𝜕𝐶! 𝑙!

= −(1+ 𝜆),          𝑖 = 1,… ,𝑁 (23) 

We note that (1+ 𝜆) is equal to the required efficiency 𝛼 of Eq. (16). 

Eq. (21) corresponds to the initial constraint. Eq. (22) holds if  

𝜆 = 0   ∪   𝑏 = 0 (24) 

We can thus distinguish two cases: (a) When 𝜆 = 0 , sufficient budget is available to 
implement the optimal risk protection in all subsystems. The condition of Eq. (23) is equal to 
Eq. (15), i.e. the optimal protection in all subsystems has marginal cost equal to one. (b) 
When 𝑏 = 0, the full budget is used. In this case it is 𝜆 ≥ 0 and the required efficiency in all 
subsystems is  𝛼 = 1+ 𝜆 ≥ 1. This shows that the optimal solution at the system level is 
found as one where the required efficiency 𝛼 in Eq. (16) is the same in all subsystems.  
Unfortunately, this derivation cannot be extended to the proposed generalized marginal cost 
criterion, which is applicable to discrete sets of risk protection strategies and to non-
differentiable continuous functions. In fact, as we show in the numerical example of Section 4, 
in the discrete case the marginal cost criterion (and thus the incremental BCR) is not able to 
identify the optimal solution at the system level for all budget levels. However, from the 
generalized marginal cost criterion, Eq. (17), it follows that the total cost 𝐶 = 𝐶 𝑆!!  and 
total risk 𝑅 = 𝑅 𝑆!!  of the identified solution minimize 𝛼𝐶 + 𝑅. Therefore, there is no 
other solution with simultaneously lower total cost 𝐶 and lower total risk 𝑅. Any solution 
identified with the marginal cost criterion is thus a Pareto optimal solution at the system level. 
In other words, the generalized MC criterion is not able to identify all Pareto optimal 
solutions on the system level, but the solutions that are identified with this criterion are Pareto 
optimal at the system level. 

4 Numerical investigation 
This numerical study is motivated by our work on defining procedures for optimizing flood 
protection measures in multiple regions that are managed by one government agency 
(Špačková et al., 2014). We consider a set of 6 regions (subsystems), in which optimal risk 
mitigation strategies should be identified. The identification of possible strategies and the 
assessment of the risks and costs associated with these strategies take place at the regional 
level, but the budget is administered by the agency. The utilized input data are hypothetical, 
but they are based on real case studies and they thus reflect an achievable ratio between risk 
reduction and costs.   

In each region, a set of candidate strategies have been identified, including a Null option 𝑛 
(no measures are taken), the option of maintaining the current level of protection 𝑐 and two to 
three alternative protection strategies 𝑥,𝑦, 𝑧. For all strategies, the net present value of risk 
and cost are evaluated. These values are summarized in Table 1. Exemplarily, the risks and 
costs of strategies identified for regions 1 and 3 are shown in Figure 9. The risk protection in 
all regions is financed from a common budget 𝐶!"#. We aim to select one strategy in each 
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region to minimize the sum of the net present value of risk and costs over all regions, so that 
the total costs do not exceed 𝐶!"#, following Eq. (10).  

Table 1. Net present value of risk and cost of alternative strategies in the six analyzed regions [x106 
Euro]. 

Strategy   Region: i=1 i=2 i=3 i=4 i=5 i=6 
Null opt. (n) j=1 Risk, 𝑅! 𝑆!"  34.50  0.90 92.40 8.75 3.50 17.20 
  Cost, 𝐶! 𝑆!"  0 0 0 0 0 0 
Current state (c) j=2 Risk, 𝑅! 𝑆!"  11.50 0.50 44.00 2.50 1.40 8.60 
  Cost, 𝐶! 𝑆!"  10.00 0.01 10.00 3.10 0.90 8.00 
Option x j=3 Risk, 𝑅! 𝑆!"  0.35 0.76 50.00 0.03 0.01 4.30 
  Cost, 𝐶! 𝑆!"  17.00 0.002 8.00 6.00 1.12 10.00 
Option y j=4 Risk, 𝑅! 𝑆!"  0.05 0.03 0.69 0.025 0.01 0.10 
  Cost, 𝐶! 𝑆!"  18.80 0.009 19.00 7.00 1.2 15.00 
Option z j=5 Risk, 𝑅! 𝑆!"  - 0.01 0.45 - - 0.005 
  Cost, 𝐶! 𝑆!"  - 0.02 23.00 - - 30.00 

 

 
Figure 9. Net present value of risk and cost for identified strategies in regions 1 and 3.  

The optimization of the risk protection strategies is carried out with five different evaluation 
methods: 

1) 𝐵𝐶𝑅!, which is defined with respect to the current state according to Eq. (12). The 
Null option is not considered a feasible strategy in this case.   

2) 𝐵𝐶𝑅!!, which is defined with respect to the Null option following Eq. (13). 
3) 𝐵𝐶𝑅!!! , which is defined with respect to the current state, but the cost for 

maintaining the current level of protection is neglected as shown in Eq. (14). 
In methods 1-3, the optimum is found by maximizing the BCR following Eq. (11). 

4) 𝑀𝐶, the marginal cost criterion following Eq. (17). 
5) Complete search, which is obtained by evaluating all possible combinations of 

strategies in all regions.  
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It is noted that the complete search is not applicable in practice, where the strategies in 
different regions are not evaluated jointly. It is included here to provide the reference solution, 
which allows assessing the other methods.  
Section 4.1 presents results of an unconstrained optimization with these five evaluation 
methods. Sections 4.2 and 4.3 compare the results of an optimization constrained with 
maximum budget 𝐶!"#.  

4.1 Results of unconstrained optimization 

The results of the unconstrained optimization are summarized in Table 2. It shows for each 
method the total cost 𝐶 = 𝐶! 𝑆!!  and the total residual risk 𝑅 = 𝑅! 𝑆!!  of the 
identified optimal solution and the sum of total risk and costs 𝑅 + 𝐶. In the unconstrained 
optimization, 𝐵𝐶𝑅!"# and 𝛼 are equal to 1. 

Table 2. Portfolios selected with different methods for unconstrained optimization. [x106 Euro]. 

Method Criterion Strategies 𝐶 𝑅 𝑅 + C 
1. 𝐵𝐶𝑅! – Current state 𝐵𝐶𝑅!"# = 1 x,z,y,c,x,x 50.32 7.86 58.18 
2. 𝐵𝐶𝑅!! – Null option 𝐵𝐶𝑅!"# = 1 c,y,x,c,x,x 32.31 68.34 100.65 
3. 𝐵𝐶𝑅!!! – Current st.excl.cost 𝐵𝐶𝑅!"# = 1 x,y,y,x,x,y 58.21 1.21 59.42 
4. MC 𝛼 = 1 x,z,y,c,x,x 50.32 7.86 58.18 
5. Complete search  x,z,y,c,x,x 50.32 7.86 58.18 

 
As expected, the MC criterion identifies the optimal solution (as found by a complete search). 
The 𝐵𝐶𝑅! also identifies this optimal solution, whereas 𝐵𝐶𝑅!! and 𝐵𝐶𝑅!!! do not. Clearly, the 
definition of the reference option has a significant influence on the solutions identified with 
the BCR criterion. With the Null option as a reference (𝐵𝐶𝑅!!), inexpensive strategies are 
identified, which lead to a strongly sub-optimal solution with high residual risks. In contrast, 
𝐵𝐶𝑅!!! leads to a more expensive and conservative solution, which however is close to the 
optimal solution in terms of 𝐶 + 𝑅.   

4.2 Results of optimization with a limited budget 𝑪𝒎𝒂𝒙 = 𝟑𝟓×𝟏𝟎𝟔 Euro. 
Table 3 summarizes the results of the optimization constrained by a limited budget of 
𝐶!"# = 35×10! Euro. The coordination parameters BCR or 𝛼 are varied to find those whose 
total cost 𝐶 most closely comply with the budget constraint.  
None of the methods 1–3 using the BCR identifies the optimal solution (complete search), 
only the marginal cost criterion does (method 4). This solution is obtained with the MC 
criterion set to 𝛼 = 1.9.  

All three methods based on the BCR identify suboptimal solutions that have similar costs, but 
imply a risk that is more than double that of the optimal solution. The corresponding 
minimum required BCR values differ substantially among the different BCR definitions, from 
1.2 to 4.9.  



 

Cost-benefit analysis for optimization of risk protection (Špačková & Straub) 20/29 

Table 3. Portfolios selected with different methods. Optimization constrained with a budget 𝐶!"# =
35×10! Euro. All values in [x106 Euro]. 

Method Criterion Strategies 𝐶 𝑅 𝑅 + C 
1. 𝐵𝐶𝑅! – Current state 𝐵𝐶𝑅!"# = 4.9 c,z,c,c,c,c 32.02 68.01 100.03  
2. 𝐵𝐶𝑅!! – Null option 𝐵𝐶𝑅!"# = 1.2 c,y,x,c,x,x 32.31 68.34 100.65 
3. 𝐵𝐶𝑅!!! – Current st.excl.cost 𝐵𝐶𝑅!"# = 2.3 c,y,c,c,c,c 32.01 68.03 100.04 
4. MC 𝛼 = 1.9 c,z,y,c,x,n 33.32 31.91 65.23 
5. Complete search  c,z,y,c,x,n 33.32 31.91 65.23 

 
The solutions identified with the BCR perform poorly mainly because of the suboptimal 
strategies identified in region 3 (see Figure 9). By applying the BCR as a coordination 
parameter and requiring the same minimum BCR in all regions, the optimal strategy 𝑦 in 
region 3 is rejected since its BCR is less than the minimum or, in case of 𝐵𝐶𝑅!!, is less than 
that of strategy 𝑥.  

4.3 Results of optimization for different levels of budget 𝑪𝒎𝒂𝒙 
Extending the results of section 4.2, the constrained optimization is carried out for varying 
budget constraints 𝐶!"# = 1,2,… ,51 ×10! Euro. Figure 10 shows the total residual risk for 
all analysed regions that is achieved with different budget constraints, with the strategies 
identified using methods 1–5. In Table 4–Table 8, the selected strategies are listed separately 
for the five different methods, together with the corresponding total cost 𝐶 = 𝐶! 𝑆!!  and 
total residual risk 𝑅 = 𝑅! 𝑆!!  of the identified optimal solution and the sum of risk and 
cost 𝑅 + C.  

For the complete search (Table 4), not all possible solutions are listed, because these were 
evaluated by varying the available budget 𝐶!"# in increments of 10!€. For example, there are 
multiple solutions with total costs 𝐶 in the interval (8,9]. With the selection of smaller 
increments, more solutions could have been found. On the other hand, for some levels of 
budget there is no solution that utilizes the entire available budget. For example, there is no 
combination of strategies that costs exactly 1x106 Euro; the optimal solution for an available 
budget of 𝐶!"# = 106 Euro costs 0.92x106 Euro. 
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Figure 10. Total residual risk R versus cost C in all six regions, obtained by varying the available 
budget 𝐶!"#. Comparison of the four investigated methods and the reference solution provided by the 
complete search.   

When applying any of the four investigated methods with coordination parameters, the total 
number of solutions is reduced significantly relative to the complete search. With 𝐵𝐶𝑅! five 
solutions are identified (Table 5) and with the MC approach nine solutions are found (Table 
8). For most budget levels, the methods do not allow to fully exploit the available budget. For 
example, they are unable to identify a combination of strategies with total cost between 
10x106 Euro and 19x106 Euro, even if these exist as seen from the complete search.  
All solutions identified with the MC criterion are also solutions that can be found with the 
complete search. (Note that this is not evident from comparing Table 8 with Table 4, because 
Table 4 does not contain all solutions of the complete search but only those that are found for 
budget levels that are multiples of 103 Euro.) As discussed in Section 3.2.1, the solutions 
found with the MC criterion are a subset of the Pareto optimal solutions at the system level. 
Comparison of Table 4 with Table 8 shows which of the solutions are omitted with the MC 
criterion: With increasing budget, the protection level of the strategies identified in the 
individual regions with the MC criterion always rises. For example, in region 5, the Null 
option 𝑛 is selected for budgets up to 20x106 Euro (for 𝛼 ≥ 3) and strategy 𝑥 for budgets of 
21x106 Euro and higher (for 𝛼 ≤ 2.9). In contrast, with the complete search, the protection 
level of the selected strategies varies with increasing budget. In region 5, the Null option 𝑛 is 
selected for a budget of 1x106 Euro, the current state 𝑐 for a budget of 2x106 Euro, strategy 𝑥 
for a budget of 3x106 Euro, and the current state is again selected for a budget of 4x106 Euro. 
In this region, strategies with higher protection level are selected to utilize the remaining 
budget. The solutions that are identified with the complete search but not with the MC 
criterion are thus rather unstable. In some regions (here regions 2, 4 and 5), a higher 
protection level is often selected to fully use the given budget, but if a slightly higher budget 
was available, the money should optimally be invested in other regions where measures are 
more expensive. In practice it might thus be beneficial not to implement such solutions found 
with the complete search. Instead, the non-allocated part of the budget may be saved for 
increasing the protection level through more efficient yet more expensive strategies in other 
regions when additional resources becomes available. The MC criterion allows identifying 
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such solutions and the fact that it not always exploits the available budget completely may 
therefore be beneficial in practice.  

In Figure 10 it can further be observed that all three BCR criteria partially identify suboptimal 
solutions, i.e. they find solutions for which there exist alternative solutions with 
simultaneously lower cost and lower risk. This is most evident for a maximum budget close to 
35×10!€, which is the case already presented in Section 4.2. 

Table 4. Results of the parametric study – complete search: strategies selected in individual regions 
for different levels of budget. All values in [x106 Euro]. 

Budget Strategies     𝐶 𝑅 𝑅 + C 
0 n,  n, n, n, n, n 0 157.25 157.25 
1 n, z, n, n, c, n  0.92 154.26 155.18 
2-3 n, z, n, n, x, n 1.22 152.87 154.09 
4 n, n, n, c, c, n 4 148.9 152.90 
5-7 n, z, n, c, x, n 4.32 146.62 150.94 
8 n, n, x, n, n, n 8 114.85 122.85 
9 n, z, x, n, c, n 8.92 111.86 120.78 
10 n, n, c, n, n, n 10 108.85 118.85 
11 n, z, c, n, c, n 10.92 105.86 116.78 
12-13 n, z, c, n, x, n 11.22 104.47 115.69 
14 n, n, c, c, c, n 14 100.5 114.50 
15-17 n, z, c, c, x, n 14.32 98.22 112.54 
18 c, n, x, n, n, n 18 91.85 109.85 
19 n, n, y, n, n, n 19 65.54 84.54 
20 n, z, y, n, c, n 19.92 62.55 82.47 
21-22 n, z, y, n, x, n 20.22 61.16 81.38 
23 n, n, y, c, c, n 23 57.19 80.19 
24-28 n, z, y, c, x, n 23.32 54.91 78.23 
29 c, n, y, n, n, n 29 42.54 71.54 
30 c, z, y, n, c, n 29.92 39.55 69.47 
31-32 c, z, y, n, x, n 30.22 38.16 68.38 
33 c, n, y, c, c, n 33 34.19 67.19 
34-37 c, z, y, c, x, n 33.32 31.91 65.23 
38-39 x, z, y, n, x, n 37.22 27.01 64.23 
40 x, n, y, c, c, n 40 23.04 63.04 
41-48 x, z, y, c, x, n 40.32 20.76 61.08 
49 x, z, y, c, x, c 48.32 12.16 60.48 
50 x, n, y, c, c, x 50 10.14 60.14 
51 x, z, y, c, x, x 50.32 7.861 58.18 

Table 5. Results of the parametric study – 𝐵𝐶𝑅! ≥ 𝐵𝐶𝑅!"# criterion (BCR calculated with respect to 
the current state): strategies selected in individual regions for different values of 𝐵𝐶𝑅!"#. All values 
in [x106 Euro]. 

𝐵𝐶𝑅!"# Budget Strategies  𝐶 𝑅 𝑅 + C 
≥4.9 33-41 c, z, c, c, c, c 32.02 68.01 100.03  
4.7-4.8 - c,  z, y, c, c, c 41.02 24.70 65.72 
2.2-4.6 42-43 c,  z, y, c, x, c 41.32 23.31 64.63 
1.6-2.1 44-50 c,  z, y, c, x, x 43.32 19.01 62.33 
1.0-1.5 ≥51 x,  z, y, c, x, x 50.32 7.86 58.18 
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Table 6. Results of the parametric study – 𝐵𝐶𝑅!! ≥ 𝐵𝐶𝑅!"# criterion (BCR calculated with respect to 
the Null option): strategies selected in individual regions for different values of 𝐵𝐶𝑅!"#, All values in 
[x106 Euro]. 

𝐵𝐶𝑅!"# Budget Strategies  𝐶 𝑅 𝑅 + C 
≥5.3 1-8 n,  y, n, n, n, n 0.01 156.38 156.39 
3.0-5.2 9 n,  y, x, n, n, n 8.01 113.98 121.99 
2.4-2.9 10-19 n,  y, x, n, x, n 9.21 110.49 119.70 
2.1-2.3 20-22 n,  y, x, n, x, n 19.21 87.49 106.70 
1.3-2.0 23-32 c,  y, x, c, x, n 22.31 81.24 103.55 
1.0-1.2 ≥33 c, y, x, c, x, x 32.31 68.34 100.65  

 

Table 7. Results of the parametric study – 𝐵𝐶𝑅!!! ≥ 𝐵𝐶𝑅!"# criterion (BCR calculated with respect to 
the current state excluding the cost of the current state): strategies selected in individual regions for 
different values of 𝐵𝐶𝑅!"#, All values in [x106 Euro]. 

𝐵𝐶𝑅!"# Budget Strategies   𝐶 𝑅 𝑅 + C 
≥2.3 33-41 c, y, c, c, c, c 32.01 68.03 100.04  
1.2-2.2 - c, y, y, c, c, c 41.01 24.72 65.73 
1.0-1.1 ≥42 c, y, y, c, x, c 41.31 23.33 64.64 

Table 8. Results of the parametric study – MC criterion: strategies selected in individual regions for 
different required 𝛼. All values in [x106 Euro]. 

α Budget Strategies  𝐶 𝑅 𝑅 + C 
≥5.3 1-8 n,  y, n, n, n, n 0.01 156.38 156.39 
4.5-5.2 9-19 n,  y, x, n, n, n 8.01 113.98 121.99 
3.0-4.4 20 n,  y, y, n, n, n 19.01 64.67 83.68 
2.3-2.9 21-30 n,  y, y, n, x, n 20.21 61.18 81.39 
2.1-2.2 31-33 c,  y, y, n, x, n 30.21 38.18 68.39 
2.0 - c, y, y, c, x, n 33.31 31.93 65.24 
1.6-1.9 34-40 c, z, y, c, x, n 33.32 31.91 65.23 
1.3-1.5 41-50 x, z, y, c, x, n 40.32 20.76 61.08 
1.0-1.2 ≥51 x, z, y, c, x, x 50.32 7.86 58.18 

5 Discussion 
We have described a quantitative framework for optimal allocation of resources for risk 
protection in a system where the actual measures are planned at the subsystem level, but the 
budget is limited at the system level (Figure 3). Using concepts from hierarchical optimization, 
we showed that Pareto optimal solutions can be obtained by selecting in each subsystem a 
strategy that complies with a required marginal cost (MC) criterion 𝛼 (Section 3.2.1). Its 
value must be prescribed at the system level by a coordinator, prior to selecting the strategies 
in individual subsystems. However, determining the required α is not possible without prior 
knowledge of situation in the subsystems (i.e. the costs of protection measures and residual 
risk) and the available budget. In the classical theory of hierarchical optimization, the 
optimization is carried out iteratively (see Section 2.1.1): the coordinator prescribes an initial 
value of the coordination parameter, the optimizations in individual subsystems are carried 
out and the results are returned to the coordinator who then adjusts the coordination parameter; 
this process is repeated until an optimum at the system level is achieved. However, when 
planning risk protection strategies in practice, such an iterative process is typically infeasible, 
and decision criteria must be prescribed a-priori. Therefore, basic data on the system 
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(approximate risk in individual subsystems, approximate cost of potential protection measures) 
must be gathered and an initial value of α should be selected based on these prior information. 
If results of risk analyses from at least some subsystems are available, they may be 
extrapolated to the whole system. Otherwise, representative subsystems should be selected 
and analysed prior to making any decision on α. Once the method is implemented, the value 
of α should be regularly adjusted based on the available results from risk analyses, accounting 
additionally for political and organizational constraints.  

As discussed in Section 2.1.2, in practice only a limited number of strategies can be evaluated 
for most applications. This is because the identification of options and the assessment of their 
effects on the risk are typically time-consuming. They often require extensive modelling and 
numerical analysis efforts. Moreover, cost estimates for all proposed measures are required. 
One has therefore strong incentives for keeping the number of evaluated strategies low. 
Conversely, if only few strategies are considered, or if they are not selected appropriately, it is 
likely that the optimal one is not included in the set of investigated strategies. To deal with 
these contradicting goals, it is recommendable to use a two-phase process for identifying risk 
protection strategies in subsystems (Špačková et al., 2014). In a first phase, the strategies are 
evaluated in a less detailed, approximate manner and an optimal protection level is selected. 
In the second phase, a detailed assessment of the risk protection strategies around the optimal 
protection level is carried out.   

In this paper the optimization is carried out based on expected values of risk (and cost). The 
attitude of the decision-maker to risk (e.g. risk aversion) should ideally be taken into account 
by means of the expected utility concept (see Section 2). The generalized marginal cost 
criterion should then be extended to a marginal utility criterion. In practice, however, utility 
functions for multiple decision-makers, societies and for varying types of decisions are not 
readily available, and may be difficult to obtain also in the long run. Societies preferences 
towards risk beyond the expected monetary costs may thus be better dealt by risk acceptance 
criteria, which may be added as additional constraints to the optimization. 

In engineering risk assessments, commonly only tangible damages are taken into account and 
other consequences of hazard and failures events are disregarded. The risk reduction achieved 
with the protection strategies is thus likely to be underestimated (Messner and Meyer, 2005). 
Additionally, the dependence of benefits on the protection level is neglected in most analyses 
(see Section 2); a pioneering study taking into account this aspect for flood risk management 
has been published by Mori and Perrings (2012). The assumption of constant benefits can be 
unrealistic; e.g. the protection of a region against natural hazards entails benefits to society or 
the owner, because it enables societal and economic activity that would not be possible 
without the protection. Neglecting the dependence of benefits on the protection level can thus 
lead to an underestimation of the efficiency of the risk protection. The methodology for 
damage assessment and for including benefits of the risk protection beyond the risk reduction 
should be further investigated, especially for the field of public decisions.  

In this paper, we considered the risk optimization problem from a global perspective of an 
overarching authority (state agency, company management). The problem of conflicting 
objectives of different stakeholders has not been discussed. This aspect can be addressed by 
the formulation of the objective function or it can be reflected in the way the damages, costs 
and benefits are estimated. What is considered as damage/cost by one stakeholder may not be 
relevant for other stakeholders. Additionally, the problem of equity, i.e. the fair distribution of 
resources and risks within the system, has not been considered in the presented solution. The 
equity issue is an important and relevant topic for public investments, where the solutions 
based on monetized costs and benefits tend to be advantageous for richer groups of the society. 
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Solutions for including equity considerations into the optimization of risk protection have 
been discussed for example in Shan and Zhuang (2013) and Zhou et al. (2012). 

We considered risk protection measures in general terms, without distinguishing their specific 
types. Engineers typically design structural measures; exemplarily, for flood hazards these 
include flood barriers, reservoirs or enhanced protection of the elements at risk. 
Simultaneously, governments attempt to influence the development in the flood prone areas 
by zoning restrictions and land use planning (Surminski, 2009; Paudel et al., 2013). To 
stimulate an optimal land use, different economic instruments such as insurance schemes, 
taxes and compensations have been developed (Bräuninger et al., 2011). Engineering 
measures and land use policies relate closely to each other and they should be optimized 
jointly, but this is not commonly done in practice and has rarely been considered in research. 

6 Conclusion 
The problem of selection of optimal risk protection strategies under budget constraints was 
formulated as a discrete hierarchical optimization. The aim is to find an optimal combination 
of protection strategies in individual subsystems (e.g. administrative units) minimizing the 
sum of risk and cost at the system level (e.g. state agency). It was considered that the system 
cannot be optimized as a whole, because the planning of the protection measures is carried out 
independently in the individual subsystems (by different analysts and/or at different times). 
The problem is furthermore constrained by the limited budget available for risk protection that 
can be distributed amongst the subsystems.  
It was shown that the optimal allocation of resources can be achieved by using the marginal 
cost (MC) criterion as the coordination criterion in the hierarchical optimization. By selecting 
strategies that have the same marginal cost in all subsystems, the optimum on the system level 
is ensured. We generalized the MC criterion to discrete problems, where it corresponds to the 
incremental benefit-cost ratio (BCR).  

The average BCR criterion, which is broadly used in practice, was shown to be inappropriate 
as an optimization parameter. This was also demonstrated by a numerical example of six 
subsystems, representing individual catchments endangered by floods. The results of the 
optimization obtained using the BCR and MC criteria were compared to a reference solution. 
The results showed that the solutions obtained with the BCR criteria were suboptimal for 
some budget constraints, while all solutions identified with MC criterion corresponded to the 
reference solution. Additionally, the BCR is not defined uniquely in different studies, because 
the selected reference option utilized in BCR is not always the same. As a consequence, 
utilization of BCR for comparing the efficiency of investments against different risks (e.g. 
earthquake vs. flood protection) can be misleading, whereas the generalized MC criterion 
enables a consistent comparison of risk mitigation efficiency among different domains. 
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