
Loop-induced lepton and quark dipole transitions in
Randall-Sundrum models

Dissertation

vorgelegt von

Paul Christof Moch

Betreuer: Prof. Dr. Martin Beneke

Lehrstuhl für Theoretische Elementarteilchenphysik T31

Fakultät für Physik der Technischen Universität München





Technische Universität München

Lehrstuhl für Theoretische Elementarteilchenphysik T31

Loop-induced lepton and quark dipole transitions in
Randall-Sundrum models

Paul Christof Moch

Vollständiger Abdruck der von der Fakultät für Physik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation

Vorsitzender : Univ.− Prof. Dr. Peter Fierlinger
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Abstract

The successful first and second run of the LHC experiment with the discovery of the Higgs
boson elevates the importance of direct and indirect searches for physics beyond the standard
model. One interesting possibility to find new physics is to concentrate on dipole transition
mediated low energy observables. Such processes can not only potentially be detected at
scales lower than the typical energy scale of the LHC, but they also provide the potential to
scan new physics models beyond the reach of the latest LHC run. In this thesis, we perform
a comprehensive study of dipole operator transitions for leptons as well as for quark fields
in the Randall-Sundrum (RS) model. To this end we develop an effective field theory, which
allows us to systematically examine the Randall-Sundrum contributions to the muon g-2
and the typical range for the branching fractions of µ → eγ, µ → 3e, µN → eN as well as
τ → µγ, τ → 3µ. Additionally we use this effective theory to analyse the contributions of
the Kaluza-Klein gluons to the inclusive radiative decay B̄ → Xsγ. The computation of the
Wilson coefficients of the effective field theory is done for the RS model with minimal field
content as well its custodial protected extension. In addition we consider three different
Higgs field localisation schemes. Amongst other this thesis contains the consideration of
bulk Higgs including Higgs Kaluza-Klein excitations as well as their non-decoupling effects.
We conduct the matching computation using a fully 5D formalism.
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Zusammenfassung

Der erste und zweite erfolgreiche Lauf des LHC Experiment zusammen mit der Entdeckung
des Higgs Bosons, gibt der direkten und indirekten Suche für Physik jenseits des Standard
Modells der Teilchenphysik eine höhere Bedeutung. Eine interessante Möglichkeit neue
Physik zu finden ist es sich auf durch Dipol Übergänge vermittelte Niederenergie Observ-
ablen zu konzentrieren. Solche Prozesse können nicht nur potentiell auf einer gegenüber
der typischen Energieskala des LHCs geringeren Skala gefunden werden, sie bieten ferner
noch das Potential neue Physik Modelle auf Skalen weiter über die Reichweite des jetzigen
Lauf des LHCs zu scannen. In dieser Doktorarbeit führen wir eine umfangreiche Analyse
von Dipol-Operator Übergängen für Lepton Felder wie auch für Quark Felder im Randall-
Sundrum (RS) Modell durch. Zu diesem Zweck entwickeln wir eine effektive Feldtheorie,
welche es uns systematisch erlaubt die Beiträge des Randall-Sundrum Models zu dem Muon
g-2 and der typischen Größe der Zerfallsraten von von µ → eγ, µ → 3e, µN → eN so
wie auch τ → µγ, τ → 3µ zu untersuchen. Zusätzlich nutzen wir diese effektive Theorie
um die Beiträge der Kaluza-Klein Gluonen zu dem inklusiven Strahlungszerfall B̄ → Xsγ
zu analysieren. Die Berechnung der Wilson-Koeffizienten der effektiven Theorie wird im RS
Model mit minimalen Feldinhalt so wie der Erweiterung mit dem custodialen Schutz durchge-
fürt. Zusätzlich betrachten wir drei verschiedene Arten das Higgs Feld zu lokalisieren. Unter
anderem enthält diese Doktorarbeit die Betrachtung eines bulk Higgs zusammen mit Higgs
Kaluza-Klein Anregungen sowie deren nicht-entkopplungs Effekte. Wir führen die Anpas-
sungrechnung unter Verwendung eines kompletten 5D Formalismus durch.
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Chapter 1

Introduction

The successful run of the LHC has lead to the outstanding discovery of a new particle [1,2],
that seems to resemble the Standard Model (SM) Higgs boson. This remarkable feat opens
finally the era of direct tests of the electroweak symmetry breaking (EWSB) enabling us to
check the predictions of the SM in the hope of finding possible signs of new physics beyond
the SM.
Although the SM has been very successful in almost all its prediction up to now, there are
still several puzzles it is not able to answer. One of them is the nature and composition
of dark matter, whose existence is by now extremely well experimentally established on a
range of different scales. The SM simply does not contain any kind of particle that could
possible explain the dark matter observation.
Ignoring the dark matter puzzle, the SM as a renormalisable theory could be in principle
considered as a complete theory if gravity would not exist in nature. As the SM does not
describe gravity one has to replace it with a quantum gravity theory somewhere around the
Planck scale demoting the SM to an effective theory with an ultraviolet (UV) cut-off. At
this point a new problem arises automatically as the possible UV cut-off could be assumed
to be around the Planck scale MPl ' 1018 GeV, while the electroweak scale is set around
the Higgs vacuum expectation value (vev) v ' 246 GeV. This huge hierarchy induced by
the large separation of scales introduces a problems at quantum level for a SM Higgs as it
is as a scalar not protected by chiral or gauge symmetries. Thus its potential receives large
radiative corrections, that are quadratical sensitive to the cut-off . Generically this require
the EW scale to be set by the Planck scale unless one assumes a tremendous fine tuning
leading to huge cancellations. This issue is known as the famous gauge-gravity hierarchy
problem [3,4]. The discovery of the SM like Higgs elevates its severeness further.
A different kind of hierarchy problem of the SM can be encountered in the quark sector.
There the masses of the quarks for different generation seem to span a range of about five
orders of magnitude. Further, the very hierarchical Cabibbo-Kobayashi-Maskawa (CKM) [5]
matrix is determined by quark mixing angles that are separated by at least three order of
magnitude. The SM does not provide any kind of mechanism how these two hierarchies can
be generated naturally. In particular the CKM matrix entries and fermion masses are just
parameters of the model to be determined by appropriate experiments.
The standard model in its original version [6] does not include neutrino masses. The ex-
perimentally observed neutrino oscillations are not possible in the SM and demand either a
simple addition of Neutrino mass terms or another more complex theory model. Further-
more, the CP violations of the SM are not sufficient to explain the baryogenesis, that is the
processes that produced an asymmetry between matter and antimatter in the early universe.
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CHAPTER 1. INTRODUCTION

Collecting these puzzles we consider it worthwhile to study a model beyond the SM, which
can at least potentially solve some of the aforementioned problems. There are numerous
attempts to the perform such a feat. The stabilisation of the EW scale against quantum
corrections can be easily achieved in supersymmetric models [7–9]. The flavour hierar-
chy problem can be solved for example by the introduction of flavour symmetries [10–12].
However a simultaneous attempt to solve both problems without running into the strong
experimental bounds like the electroweak precision test, remains still difficult. Here super-
symmetric models have been the most promising candidates, especially since these models
also include possible candidates for dark matter particles [13].
Aside from supersymmetry there is also the intriguing framework created by Lisa Randall
and Raman Sundrum [14, 15] of a quantum field theory in a non factorisable warped five
dimensional spacetime. The original Randall Sundrum (RS) addressed the weakness of grav-
ity [14] and therein the gauge-gravity problem [15]. In the original model only gravity is
allowed to traverse all dimensions (bulk) of the spacetime, while all other fields are confined
on one four dimensional boundary (brane) called IR brane. It was soon realised that the
gauge-gravity solution can be preserved even after the promotion off all fields except the
Higgs to bulk fields [16–20]. The delocalisation of the fermion fields opens interesting possi-
bilities to explain via the geometry of the spacetime the quark flavour mass hierarchies and
the CKM mixing matrices [19–22].
Electroweak precision tests give one of the most stringent constraints on the parameter space
of the RS model [23]. These constraints can be decreased by extending the gauge group to
incorporate explicitly the custodial gauge symmetry [24–27], however even with such an
extended gauge group direct searches at the LHC for RS like signals are not very promising
any more. That is precisely the situation were low-energy observables can be used to obtain
further constraints on the model. In this thesis we therefore focus on the calculation of low
energy observables in the context of the Randall Sundrum model. The main part of the
calculations of this thesis is dedicated the the lepton sector. Here we compute the muon
(g-2) as well as well as the lepton flavour number violating (LFV) processes µ→ eγ, µ→ 3e
and µN → eN .
The anomalous magnetic moment of the muon is one of the most precisely predicted and
measured observables in particle physics. Over the last 65 years tremendous effort has been
invested in determining the deviation of the g-factor from two, see [124] for a review. The
extraordinary precision naturally imposes constraints on extensions of the Standard Model
(SM), whose contribution ∆aµ to the anomalous magnetic moment

aµ =
gµ − 2

2
= aSM

µ + ∆aµ (1.1)

should not increase the observed slight tension between SM and experimental value for
aµ. The anomalous magnetic moment in the minimal RS model has been studied in a 5D
formalism in [28]. In this thesis we will extend the results of [28] to the custodially protected
RS model.
Rare lepton decays are among the most promising probes for physics beyond the SM. This
is even more true for decays that involve lepton flavour number violation (LFV). As the
neutrino mass has to be below 1 eV and the SM model contribution does not exist the
possible experimental signals are clean. Due to the absence of the SM background we will
especially focus in this thesis on the processes µ → eγ and µ → 3e as well as muon-to-
electron conversion in nuclei. Lepton-flavour violating processes have been studied in the
context of the RS model in the past, beginning with [22,29,30]. Particularly relevant is [31],
which gives the first comprehensive analysis of charged LFV, and [32] with the first fully
five-dimensional treatment of loop effects, which dominate the µ → eγ decay. However,
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neither of the two can be said to provide a complete description of the loop-induced dipole
operator coefficient.
Once the loop effects in the lepton sector have been determined in the RS model they can
be transferred easily to electromagnetic radiative penguin decays in the quark sector. Hence
we also calculate the inclusive B̄ → Xsγ decay. Compared to the LFV sector the B̄ → Xsγ
includes a large SM contribution and is therefore a stringent test for the SM as well as any
new physics model. In fact there has been tremendous effort (see e.g. [33–36] and references
therein) to understand the intricacies of the b → sγ transition in the SM. The most recent
result [37] is given by

Br(B → Xsγ)thEγ>1.6GeV = (336± 23)× 10−6 . (1.2)

It is in very good agreement with the experimental HFAG average [38], which is calculated
out of the ever increasing data of numerous experiments [39–46]

Br(B → Xsγ)expEγ>1.6GeV = (342± 21± 7)× 10−6 , (1.3)

where the all contributing experimental results where converted as to correspond to a lower
photon energy cut of 1.6 GeV. The Belle II experiment is expected to be able to measure
the branching fraction with an uncertainty of about 6% [47]. This will lead to further
improvements to the experimental world average.
The decay B̄ → Xsγ has already been studied previously in the context of RS models
in [48]. The work kept its focus on the effect of 5D penguin diagrams and neglects the
so-called wrong-chirality Higgs couplings terms [31, 49]. Quiet recently there was another
study of the transition B̄ → Xsγ [50], which has its focus on a RS model with an exactly
localised Higgs field on the IR brane. It includes all important contributions treats the
Yukawa interactions exactly.
This work is organised as follows. In chapter 2 we introduce the RS setup after a short
overview other the history of the idea of spacetimes with additional spacial dimensions.
Following the introductions of the original RS setup we allow the standard model fields
to propagate freely through the bulk and give a short overview over the formalism that is
necessary to treat bulk fields in RS models. This includes the introduction of the important
5D formalism, which we will use throughout this thesis, as well as the careful treatment of
the Higgs localisation together with its physical implications. After the introduction of the
necessary formalism we study some constraints on the parameter space of the minimal RS
model that is the SM promoted to a RS setup. Due to the strong constraints induced by the
electroweak weak precision sector [23] we then shift our focus to a RS model with custodial
symmetry (RSc) for the remainder of the chapter.
As the typical scale of the RS model lies in the O(TeV) region we integrate the heavy
degrees of freedom out and match the RS model on the SM extended by gauge-invariant
dimension-six operators [51, 52] in chapter 3. The resulting Lagrangian is then first used
to calculate all processes of interest in the lepton sector and also in the quark sector. This
approach has the advantage to organise the computation in a fully transparent and complete
way. We adapt throughout this thesis the notation of [28], which introduced this formalism
for the first time in this complete fashion in the context of the muon g-2 calculation in the
minimal RS model. We restrict ourselves only to the loop–induced dipole operators and
operators that can be generated be generated at tree-level in the RS model. In the quark
sector we match the Wilson coefficients to a effective weak Hamiltonian, whose operators
are then evolved from the RS scale down to the typical scale of the process b→ sγ, µb, via
renormalisation group equations (RGE).
After setting up the strategy of the calculation in chapter 3 using effective field theories,
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CHAPTER 1. INTRODUCTION

we continue by giving explicit expressions for the Wilson coefficients in chapter 4 and 5.
Here we distinguish between the Wilson coefficients that are generated at tree-level and
the loop induced dipole coefficients. For the tree-level Wilson coefficient we give analytic
expression in chapter 4. The chapter 5 is dedicated to the loop induced dipole coefficients.
Here we differentiate between the contributions generated via gauge-boson exchange and
contributions via the exchange of the Higgs boson. The first contributing can only be
evaluated fully numerically while the latter contains partially computations, which can still
be done fully analytically, despite the non factorisable curved spacetime.
The sixth chapter chapter is dedicated to the numerical analysis of the processes of interest.
First we compute semi analytic approximations of the different RS contributions to the
processes of interest in the lepton sector. This is followed with the muon g-2 contributions
of the custodial protected Randall-Sundrum model as a first example for our numerical scan.
Afterwards we perform the complete numerical analysis of all in this thesis considered LFV
processes. The last part of this chapter then contains the phenomenology of the radiate
decay B → Xsγ.
We conclude in chapter last chapter. This thesis is based on the publications [53–56].
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Chapter 2

The Randall–Sundrum Model

The aim of this chapter is to introduce the reader to the setup of RS models. For this purpose
we will first review briefly the history of the idea of spacetimes with additional spacial extra
dimensions as well as the original RS model. Following this we introduce the SM on the
bulk, which is called the minimal RS model. In this context we discuss the Kaluza-Klein
decomposition, the 5D formalism and the treatment of the Higgs. With the basic formalism
at hand we then give a short view other the major constraints on the minimal RS model,
which then leads to the introduction of the custodial protected RS model.

2.1 Extra dimensions before the RS model

The idea that our world might include more than four space time dimensions is over one
hundred years old. The first proposal for a theory with extra dimensions was done by
Nordstroem [57] in 1914, who showed that there is a possible unified description of electro-
dynamics and Newton‘s gravity in a five-dimensional world. After the formulation of general
relativity Kaluza [58] realised, that it was indeed possible to completely integrate classical
electrodynamics into a five-dimensional metric, which also yields via the five-dimensional
Einstein equation the correct Maxwell-equations. This was done by simply identifying the
vector potential with the (5µ)–components of the metric. Kaluza‘s theory contained the so
called "cylinder condition", which stated that none of the components of the five–dimensional
metric does depend on the fifth coordinate. This needed but at this time unexplained fea-
ture was later motivated by Klein [59] in 1929. He proposed the hypothesis that the fifth
dimension is in fact curled up as a circle of the size comparable to the Planck length.
It turned out however that Kaluza‘s and Klein‘s theory could not be quantised without
serious problems. Moreover the discovery of the strong and the weak force and formulation
of the standard model of particle physics let this theory to become obsolete. This lead to
the situation that the notion of extra dimensions was almost forgotten until the upcoming
development of the super string theories in 70‘s and 80‘s [60, 61], which need several extra
dimensions to be consistent. For the theoretical particle physics community these develop-
ments were not of large interest as the proposed extra-dimensions were believed to be still
of the size of the Planck scale and therefore too small to be detected in any future experi-
ment. Only in the beginning of the 90‘s of the last century it was realised that the existence
of extra dimensions with sizes within the sub–millimetre regime could not be excluded by
gravity short distance experiment [62, 63]. This lead to the intriguing idea, that quantum
field theories with large compact extra-dimension could possible solve the hierarchy problem
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CHAPTER 2. THE RANDALL–SUNDRUM MODEL

identify

φ → −φ
φ = 0 φ = π

φ = 0 φ = π

Figure 2.1: Visualisation of the orbifold transformation acting on S1.

of the standard model. The Arkani-Hamed-Dimopoulus-Dvali (ADD) [64] model was one
prominent example of this era. It suggested one or two additional large extra–dimensions,
which could be only traversed by the graviton, while all other standard model fields are
confined to a four dimensional boundary (brane). Therefore a four dimensional observer
on the brane automatically sees a weaker gravitational force compared to the other known
fundamental forces. Thus the fundamental scale of gravity does not have to be of the order
of the Planck scale as perceived through an observer on the 4d brane. To be more precise
the ADD model contains the following relation

M2
Pl ∼M2+nVn, (2.1)

whereMPl is the observed four-dimensional Planck mass, M the fundamental scale of gravity
in all spacetime dimensions (the bulk), n the number of extra dimensions and Vn the volume
of the compact extra dimensions. For the choice n=2 and a compactification size close to
the sub–millimetre regime this relation connects a fundamental gravity scale of the size of
the electroweak scale with the Planck scale.
However this solution of the EW–gravity hierarchy introduces a new hierarchy into the the-
ory: To suppress gravity sufficiently without too many extra dimension, the compactification
scale rc has to be chosen of the order of 1/rc ∼ O

(
10−3µeV

)
. Thus the compactification

scale generates a new hierarchy problem as it is much smaller than the EW scale. Therefore
the ADD model does not give a satisfactory solution to the hierarchy problem, it just moves
this problem to a different energy scale.

2.2 The original Randall–Sundrum model
Inspired by the shortcomings of the ADD model Randall and Sundrum developed their orig-
inal extra dimension model with the following assumptions [14, 15]: Their model contains
only one extra dimension, which has the geometry of a S1/Z1, i.e. a circle with orbifold
symmetry. They assume 4d Lorentz invariance and also demand that all dimensional pa-
rameters are of the order of the Planck mass MPl. Like the ADD model it is assumed that
only gravity is allowed to propagate through all spacetime dimensions, i.e. the bulk. All
other fields are confined to four-dimensional branes.

The choice along the fifth direction, where the non-gravity fields are localised can be
obtained by the orbifold symmetry of the compact fifth dimension. Let z = rcφ an arbitrary
point on the circle of the fifth dimension, where rc is the compactification radius. Then the
orbifold symmetry identifies this point with its mirrored point on the circle z = −rcφ see
figure 2.1. Under this transformation the points φ = 0 and φ = π are fixed points. Thus the
fixed points are the natural choice for the localisation of all gauge and matter fields. The
convention is to call the 4d subspace at φ = 0 as the UV brane and the subspace at φ = π

8



2.2. THE ORIGINAL RANDALL–SUNDRUM MODEL

as the IR brane.
With all of these assumptions the 5D action can be written as

S = SBulk + SIR + SUV, (2.2)

SBulk =

∫
d4x

π∫

−π

dφ
√
−G

(
−Λ + 2M3R

)
, (2.3)

SUV =

∫
d4x
√
−G|φ=0 (−VUV + LUV) , (2.4)

SIR =

∫
d4x
√
−G|φ=π (−VIR + LIR) , (2.5)

whereM is the five dimensional Planck mass andGMN the metric of the spacetime. Our con-
vention is to use Latin (Greek) indices for 5D (4d) Lorentz indices. We use the (+,−,−,−,−)
signature for the five dimensional metric. VUV/IR denotes the vacuum energies on the branes.
LIR describes our visible four dimensional world, i.e. to a good approximation LIR = LSM.
LUV is only written here for completeness. It could describe some hidden world at φ = π,
but at this point we set it for simplicity to zero.
The determination of the form of the five dimensional metric is done by using the assumption
of 4d Poincare invariance. This can be incorporated into the ansatz

ds2 = e−2σ(φ)ηµνdx
νdxµ + r2

cdφ
2. (2.6)

Here the unknown function σ(φ) of the metric (2.6) can then be computed by solving the five
dimensional Einstein equation. We use the standard semi–classical approach of quantum
field theory in curved spacetime, i.e. we neglect the back-reactions of gauge and matter
fields as, they are expected to be small. Thus we set LIR = 0 in the equation of motion.
As the vacuum energies VUV/IR on the branes can be potentially large they are kept here.
Under these assumptions the 5D Einstein equations yield the differential equations [14]

σ′(φ)2 = − Λr2
c

24M3
, (2.7)

σ′′ =
rc

12M3
(δ(φ− π)VIR + δ(φ)VUV) . (2.8)

Equation (2.7) yields the non–trivial solution

σ(φ) =

√
−Λ

24M
rc|φ| ≡ krc|φ|. (2.9)

Here the absolute value of φ is needed to ensure the orbifold symmetry φ → −φ of the
solution and therefore the correct kinks in equation (2.8). Finally after inserting the solution
into equation 2.8 we find the relation

VUV = −VIR = 24M3k. (2.10)

Physically this solution implies a non-zero negative bulk cosmological constant. To generate
the 4d Lorentz invariance this cosmological constant is directly coupled to the 4d brane
vacuum energies. As the vacuum energy VIR can be interpreted as the four dimensional
cosmological constant relation (2.10) just reflects the fine–tuning of the ordinary cosmological
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CHAPTER 2. THE RANDALL–SUNDRUM MODEL

constant problem. The RS setup does not give any solution for this issue.
Inserting the solution (2.9) into the metric we find the form

ds2 = e−2krc|φ|ηµνdx
νdxµ + r2

cdφ
2. (2.11)

This metric actually represents the metric of a slice of a 5D Anti–De-Sitter spacetime, i.e.
the maximally symmetric five dimensional spacetime with negative cosmological constant.
To make this more explicit we transform the metric into the conformal version via the
coordinate transformation

z =
e−krcφ

k
. (2.12)

This yields

ds2 =
1

(kz)
2

(
ηµνdx

νdxµ − dz2
)
. (2.13)

For the rest of the thesis we will exclusively use the conformal metric (2.13). Note that the
UV brane has the coordinate z = 1

k in direction of the fifth dimension in this coordinate
system. The IR brane has the fifth coordinate z = e−krcπ

k ≡ 1
T . Thus the RS metric induces

via the geometry of the spacetime two physical scales k and T . k is of the size of the of
Planck mass. T is a priori not specified by the initial assumptions of the model. But it is
exponentially suppressed by the compactification radius rc of the fifth dimension. To specify
the value of T we investigate the gauge–hierarchy problem for this setup.
As a SM field the Higgs is localised on the IR-Brane in the original RS model formulation.
Because the spacetime on the IR-brane can be obtained by the conformal transformation
ηµν → (T/k)2ηµν we have to rescale the Higgs field by Φ → Φ k/T in order to directly
generate an action with canonical kinetic terms.

SHiggs =

∫
d4x

√
−GIR︸ ︷︷ ︸

(T/k)4


 GµνIR︸︷︷︸

(k/T )2ηµν

(
k

T

)2

∂µΦ† ∂νΦ− λ5

2

(
Φ†Φ− v2

5

2

)2




=

∫
d4x


ηµν∂µΦ† ∂νΦ− λ5

2

(
Φ†Φ−

(
T

k

)2
v2

5

2

)2

 . (2.14)

Comparison with the 4d Minkowski spacetime Higgs sector of the SM yields

λ = λ5, v =
T

k
v5 = e−krcπ v5. (2.15)

Because the spacetime is conformal the rescaling of the mass dimension one parameter v5

by the inverse of the conformal factor (T/k) is natural. The scalar selfcoupling remains
untouched, because it has mass dimension zero. Due to the initial assumptions of the model
the vacuum expectation value (vev) v5 should be of the order of the Planck mass. Therefore,
to ensure a four–dimensional vev to be around O(TeV) one has to impose

T

k
∼ O(TeV)

MPl
∼ 10−16, (2.16)

which is equivalent to krc ∼ 12.

10



2.3. MINIMAL RS MODEL

Figure 2.2: Picture of the slice of AdS5 in the fifth coordinate direction with z being the 5th
coordinate.

Thus, the large hierarchy v �MPl is just created by the geometry of the spacetime. There
is no large hierarchy for the fundamental parameters of the Lagrangian in this model. That
protects the theory also from problematic correction to the Higgs potential. That is due to a
bare Higgs mass, which by assumptions of this model is of the order of the Planck scale. The
quantum corrections are on the same fitting. However the physical Higgs mass as dimension
one parameter will always be scaled down to the EW regime by the exponential e−krcπ with
krc ∼ 12.
It is also interesting to calculate the proper length of the extra dimension

l =

1
T∫

1
k

dz
1

k z
=

1

k
ln

(
k

T

)
= πrc ∼

1

MPl
. (2.17)

Thus, the size of the extra dimension remains to be of the order of one over the Planck mass
for a large variation of the parameter T .
There are still two issues remaining for the original RS setup. The first one is the question
how this spacetime with the two four dimensional branes around a slice of a five dimensional
Anti-De-Sitter spacetime remains stable against perturbations of the compactification ra-
dius. This can be answered by the Goldberg-Wise mechanism [66], which uses an additional
scalar field to stabilize the metric. We will not discuss it detail in this thesis. The second
and more fundamental question is how the original RS setup can be generated by a more
fundamental model of physics, which also includes a quantum description of gravity. While
such a theory is still far away from completion it is interesting to note, that there are cer-
tain string theory setups [67, 68], which include compactification procedures for the extra
dimensions that yield a warp factor.

2.3 Minimal RS model

The original RS setup assumes all of the SM fields to be restricted to the IR brane. However
the solution of the hierarchy problem is not lost after allowing all gauge fields [16–19] and all
fermions [19, 20] to propagate in the bulk. In fact by allowing all fields except the Higgs to
travel through the extra dimension one generates a model with several advantages compared
to the original ansatz. First of all bulk fermions lower the constraints coming from higher
dimensional operators, that generate proton decay and FCNCs like meson mixing [19]. An-
other advantage of bulk fermions is the possibility to generate naturally the flavour mass
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CHAPTER 2. THE RANDALL–SUNDRUM MODEL

hierarchy. This can be achieved by employing anarchical fundamental Yukawas and appro-
priate localisation positions of the bulk fermions in the fifth dimension without building the
flavour hierarchies explicitly into the the fundamental parameters [19–22]. This mechanism
of generating the flavour mass hierarchies also automatically generates the correct entries of
the CKM matrix [69] and also mediates potentially model constraining FCNCs with light
quarks [19], which is also sometimes denoted as the RS–GIM mechanism [69, 70]. Further-
more bulk fermions lower the constraints coming from the corrections to the Peskin-Takeuchi
S parameter, that are caused by bulk weak gauge-bosons [19,71,72].
The setup of the SM in the bulk is called the minimal RS model. For this thesis we will use
this model exclusively together with the custodial protected RS model.

2.3.1 5D Lagrangian
To begin the discussion of the minimal RS model it is useful to consider first the gener-
alisation of the SM to the non–trivial five dimensional RS metric. The initial steps are
straightforward. All four dimensional gauge fields have to be replaced by five dimensional
fields. For example for the SU(2) fields we have to use

Wµ →WN . (2.18)

where WN = (Wµ,W 5).
To incorporate all fermion fields we need to find a five dimensional Clifford algebra

{
ΓN ,ΓM

}
= 2ηNM × 15×5. (2.19)

This implies the determination of a suitable Γ4 matrix. For this thesis we use the represen-
tation

ΓN =
(
γµ,−iγ5

)
. (2.20)

Additionally one has also to incorporate the fermion field spinors into the curved spacetime.
This is done usually by introducing a coordinate transformation into a local Minkowski
coordinate system via the the vielbein formalism, see for example [20]. Note that there is no
equivalent to γ5 for a five-dimensional Clifford algebra as the Dirac-spinor representation is
irreducible in five dimensions. Thus a priori all 5D fermion fields are vector fermions in the
RS model.
Using the conformal metric as defined in (2.13) we can write down the SM Lagrangian for
the minimal RS model in the flavour basis

S(5D) =

∫
d4x

1/T∫

1/k

dz
√
G

{
− 1

4
FMNFMN −

1

4
W a,MNW a

MN −
1

4
Ga,MNGaMN

+
∑

ψ=E,L,Q,d,u

(
eMm

[
i

2
ψ̄i Γm(DM −

←−
DM )ψi

]
−Mψi ψ̄iψi

)}
+ SGF+ghost + SHiggs,

(2.21)

where eMm = (1, 1, 1, 1, 1)kz is the five dimensional inverse vielbein. The five dimensional
metrical tensor G is given in conformal coordinates as G = 1/(kz)10. We use the following
definition for the covariant derivative for quark fields

DN = ∂N − ig′5
Y

2
BN − ig5

τa

2
W a
N − igs 5T

aGaN . (2.22)
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2.3. MINIMAL RS MODEL

Y is the hypercharge, τa the Pauli matrices and TA the generators of SU(3)c. Note that
for an arbitrary curved spacetime the covariant derivative of a fermion field also needs to
contain the spin-connection [ωA]NM = GCDe

C
N

(
∂Ae

B
M + ΓDAEe

E
N

)
. However for the confor-

mal coordinate system of the AdS5 the spin connection drops out, because the metric is
diagonal [20]. The field strength tensors are written in the standard way

FNM =∂MAN − ∂NAM WNM = ∂MW
a
N − ∂NW a

M + g5ε
abcW b

NW
c
M (2.23)

GNM =∂MG
a
N − ∂NGaM + g5 s fabcG

b
NG

c
M . (2.24)

The action of the Higgs strongly depends on the localisation prescription, therefore we only
write the Higgs action down for an exactly IR brane localised Higgs field. The subtleties
concerning the localisation scheme will be discussed in subsection 2.3.4.

SHiggs =

∫
d4x

[
(DµΦ)†DµΦ− V (Φ)

]
+ SY ukawa

SYukawa =

∫
d4x

[
−
(
T

k

)3 [
y

(5D)
ij (L̄iΦ)Ej + y

(5D)
d ij (Q̄iΦ)dj + y

(5D)
u ij (ūiΦ)Qj

]
+ h.c.

]
.

(2.25)

The potential is written as

V (φ) = −µ5D

(
T

k

)2

Φ†Φ +
λ

4

(
Φ†Φ

)4
. (2.26)

All fields in (2.25) are evaluated at the fifth coordinate z = 1
T . Here the indices of the

fermion fields denote the fermion flavour. As already noted in section (2.2) the powers of
(T/k) are generated after applying a normalisation to generate a canonical kinetic term for
the Higgs Lagrangian.
In correspondence to the initial assumptions of the original RS model all dimensionful pa-
rameters of the 5D Lagrangian g5, g

′
5, gs 5,Mψi , y

(5D)
ij , y

(5D)
d ij , y

(5D)
u ij are of the order of MPl.

As 5D fermion fields are automatically vector fermions, there is no argument not to include
the bulk 5D fermion masses Mψi . The standard convention is to consider dimensionless
quantities for these masses ci = Mψi/k. Additionally we define the dimensionless Yukawa
matrices Yij = y

(5D)
ij /k, Yd/u ij = y

(5D)
d/u ij/k. Note that although the action (2.21) is written

in the flavour basis, the Yukawa matrices do not have to be simultaneously be diagonal in
the RS model. This means in particular a violation of the lepton number conservation and
the CP invariance in the lepton sector for the RS model.
The Lagrangian for a brane Higgs minimal RS model contains in total 3 · 9 + 5 · 3 = 42 free
parameters. The question of their determination will be discussed in the next section.

2.3.2 Kaluza-Klein decomposition
Inspired by other 5D field theories with compact extra dimensions like for example the
universal extra dimension models [73] one expects the fifth component of the momentum of
all bulk fields to be quantised in a discrete manner. Such a behaviour of all bulk fields can
then be used for a Kaluza-Klein decomposition of the 5D theory into a four dimensional
field theory. Thus, we expect all bulk fields to gain a huge tower of heavy partner particles,
which are often called Kaluza-Klein particles or excitations. In this section, we will briefly
derive the Kaluza-Klein decomposition for fermions and then for gauge fields in the unbroken
phase. In doing so we will shed some light on how the SM Lagrangian can be obtained as the
low energy limit of the 5D Lagrangian (2.21). Furthermore, the Kaluza-Klein decomposition
is also important for the determination of the free parameters of (2.21).
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CHAPTER 2. THE RANDALL–SUNDRUM MODEL

2.3.2.1 Bulk fermions

We start by evaluating the bilinear terms for a general fermion field of the action (2.21).
After inserting the definition of the vielbein and the covariant derivatives one finds

SF =

∫
d4x

1
T∫

1
k

dz

(
1

kz

)4

ψ̄

(
i/∂ + iΓ4

(
∂z +

2

z

)
− c

z

)
ψ + . . . (2.27)

As defined above c is the dimensionless bulk mass c = M/k. To find the appropriate
factorization ansatz for the fermion field ψ, we insert into equation (2.27) the explicit form
of the fifth gamma matrix Γ4 using the Weyl representation for the Dirac matrices.

Γ4 = −γ5 = iDiag (12×2,−12×2) (2.28)

This enables us to rewrite the action (2.27) in terms of the chiral components of ψ [20]

SF =

∫
d4x

1
T∫

1
k

dz

(
1

kz

)4(
ψ̄L i/∂ ψL + ψ̄R i/∂ ψR (2.29)

+ψ̄L

(
∂z −

2

z
− c

z

)
ψR − ψ̄R

(
∂z −

2

z
+
c

z

)
ψL

)
. (2.30)

We use the standard definition ψL/R = PL/R ψ together with

PL/R =
1 ± γ5

2
. (2.31)

Because the four-vector partial derivatives and the derivative with respect to the fifth coor-
dinate z do not mix in the action 2.30, it is convenient to introduce a factorisation ansatz
for the 5D fields ψL/R of the form

ψL(x, z) =
∑

n

f (n)(z)ψ
(n)
L (x) ψR(x, z) =

∑

n

g(n)(z)ψ
(n)
R (x), (2.32)

where ψ(n)
L/R are the chiral components of a massive four dimensional Dirac field satisfying

the Dirac equation.
(
i/∂ −mn

)
ψ(n) = 0 (2.33)

The usage of this ansatz automatically leads to the mode equations [20]
(

∂z −
2

z
− c

z

)
f (n)(z) = −mn g

(n)(z) (2.34)
(
−∂z +

2

z
− c

z

)
g(n)(z) = −mn f

(n)(z), (2.35)

together with the orthonormality conditions

1
T∫

1
k

dz

(
1

kz

)4

f (n)(z)f (m)(z) =

1
T∫

1
k

dz

(
1

kz

)4

g(n)(z)g(m)(z) = δn,m. (2.36)
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Before discussing the solution of the mode equations let us first insert naively the factor-
ization ansatz into the action (2.27). Doing so we can perform the integration of the fifth
coordinate integral in (2.27) trivially via the orthonormality conditions for the mode func-
tions. The Kaluza-Klein decomposition then leads to a in principle infinite series of 4d
fermion actions

SF =
∑

n

∫
d4x ψ̄(n)

(
i/∂ −mn

)
ψ(n), (2.37)

i.e. each fermion field obtains a large tower of massive fermions, after integrating out the fifth
dimension. It is customary to identify the zero mode term of the Kaluza-Klein decomposition
with the four dimensional SM field. However SM fermions are chiral and massless in the
unbroken phase. Therefore one needs to demand additional conditions on the mode functions
in order to generate the correct low energy limit. For this we note that there is still the
freedom to choose the boundary conditions on the branes of the chiral components of the
fermion field. Note that the boundary conditions of each chiral component are in fact not
independent of each other, but coupled via the mode equations (2.34) and (2.35). For fermion
fields it turns out, that Dirichlet conditions on the mode functions eliminate a massless zero-
mode function of the wrong chirality [20]. Therefore, the requirement to recover the SM in
the low energy limit leads to the boundary conditions

f
(n)
X (z)|z= 1

k
= f

(n)
X (z)|z= 1

T
= 0 (2.38)

g
(n)
Y (z)|z= 1

k
= g

(n)
Y (z)|z= 1

T
= 0, (2.39)

where X = E, d, u and Y = L, Q. This condition automatically eliminates the zero-mode
wrong chirality modes g(0)

X and f (0)
Y .

In the standard literature the notation EL(−,−) is used to denote, that the left handed
component of the lepton singlet field satisfies Dirichlet boundary conditions on the UV
(IR) brane. Here the first (second) entry indicates the boundary conditions on the UV
(IR) brane. The other chiral component is then written with flipped signs ER(+,+) in
this notation, where the + represents Neumann boundary conditions under the operator
d− =

(
−∂z + 2

z − c
z

)
. Note that (+,+) for a left handed fermion field implies Neumann

boundary conditions on both branes under the operator d+ =
(
∂z − 2

z − c
z

)
.

With the correct boundary conditions the left handed zero mode function of a SM doublet
fermion field f (0)

X and the right handed zero mode function for a SM singlet field g(0)
Y can be

obtained as [20]

f
(0)
X (z) =

√
1− 2c

1− ε1−2c

√
T (kz)2 (Tz)−c = g

(0)
Y (z)| c→−c, (2.40)

where ε = T/k. The nth Kaluza-Klein mode function for SM doublet fermion takes the
form [20]

f
(n)
X (z) = Nz

5
2

(
Yc+1/2(mnz)−

Yc+1/2(mn/T ) Jc+1/2(mn/z)

Jc−1/2(mn/T )

)
(2.41)

f
(n)
X (z) = Nz

5
2

(
Yc−1/2(mnz)−

Yc−1/2(mn/T ) Jc−1/2(mn/z)

Jc−1/2(mn/T )

)
, (2.42)

wheremn denotes the Kaluza-Klein mass and N a normalisation to ensure the normalisation
of the modes (2.36). The mass eigenvalues can be computed as the zeros of the equation [20]

Yc−1/2(mn/k)Jc−1/2(mn/T )− Jc−1/2(mn/k)Yc+1/2(mn/T ) = 0. (2.43)
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Figure 2.3: Left panel: Mass of the first Kaluza-Klein for a SM doublet as a function of the
bulk mass parameter c. Right panel: g(0)

Ej

(
1
T

)
as a function of the bulk mass.

The solution for the singlet KK mode functions and their mass eigenvalues have a similar
form and can be also found in [28].
The left panel of Figure 2.3 shows the general dependence of the first KK mass of a SM
doublet field on the bulk mass parameter c. This does not yield an answer how to determine
the bulk mass parameters. However, one can clearly observe that the masses are of the
order of T . Thus the inverse conformal coordinate of the IR brane can be interpreted as the
typical mass scale of the minimal RS model. We will see down below that this holds true
for bulk gauge-bosons.
In order to understand the selection of the parameters c we consider the determination of
the 4d mass eigenvalues of the zero-mode fermions after breaking the electroweak symmetry.
For simplicity we keep here to a brane localised Higgs. The implications done here still hold
for different localisation schemes, see section 2.3.4. After inserting the vacuum expectation
value into the Higgs doublet the zero mode leptonic part of the Yukawa sector ((2.25)) yields

SYukawa ⊇
∫
d4x

v√
2

T 3

k4
Yij f

(0)
Li

(
1

T

)
g

(0)
Ej

(
1

T

)
(l̄i)Ej , (2.44)

where li is the spinor field for the charged left handed leptons. Using expression (2.44) we
can immediately identify the 4d Yukawa matrix before rotation as

yij =
v√
2

T 3

k4
Yij f

(0)
Li

(
1

T

)
g

(0)
Ej

(
1

T

)
.. (2.45)

Equation (2.45) contains together with the 5D Yukawa matrix 15 a priori unknown 5D
parameters of the order O(1). After rotation to the mass basis (2.45) equals to the lepton
mass spectrum. Thus, this allows us to fix three of the 15 5D parameters. Our strategy here
is to use the low-energy mass spectrum to fix the bulk masses of the doublet field. For the
remaining parameters we adopt the so called anarchical scenario:

• We randomly generate the Yukawa matrix Yij with a certain range of possible absolute
values. The complex phases are also randomly generated.

• The remaining three bulk masses of the singlet lepton field are randomly chosen. We
use for the different generations the bulk mass intervals (-0.70, -0.5) for the electron,
(-0.68, -0.48) for the muon and (-0.57, -0.45) for the the tau. Note that we work in
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the unbroken phase. Thus the name electron just denotes the bulk mass of the first
generation in the flavour basis.

• As a last step we solve the equation (2.45) after rotation to the mass basis for the
correct 4d lepton mass spectrum. This solution can only be obtained numerically.
Furthermore there are situations, where the random number parameters are such that
the 4d spectrum solution cannot be found. Hence we repeat the first steps until a valid
set has been found.

The different intervals for the random number generation of the singlet bulk masses is
motivated by the behaviour of g(0)

Ej

(
1
T

)
as function of the bulk masses. g(0)

Ej

(
1
T

)
is growing

monotonic with increasing bulk masses. However this growth is exponential up to the point
c = −0.5, see right panel of Figure 2.3. Afterwards the function g(0)

Ej

(
1
T

)
only grows as

√
c.

Therefore, the point c = −0.5 can be considered as the turning point of the localisation of
the bulk fermion fields from the UV brane to the IR brane. Thus one has to assign for heavy
fermion fields larger bulk masses in order to generate the correct 4d mass hierarchy.
The bulk masses of the quark fields can be determined in a similar fashion. The only
difference is the necessary inclusion of the CKM matrix. However this can be achieved by
an adoption of the Froggatt-Nielsen Mechanism, see [74] for the original idea and [23] for
the adoption in the context of RS model. We will not discuss this in detail in this thesis.

2.3.2.2 Bulk gauge-bosons

5D gauge fields contain an additional fifth component, which is not present in the SM. To
complicate the situation it also mixes with the other components of the gauge fields due
to the structure of the kinetic terms in (2.21). It is therefore customary to introduce a
5D Rξ gauge fixing in order to eliminate this mixing in the bilinear terms of the gauge
Lagrangian. As the procedure can be transferred to any type of bulk gauge field, we will
only consider gluon fields here. The 5D Rξ gauge can be introduced by the following gauge
fixing action [75]

SGf =

∫
d4x

1
T∫

1
k

− 1

2ξ kz

[
∂νG

ν − ξz∂z
(

1

z
G5

)]2

. (2.46)

Note that this 5D covariant gauge introduces ghost fields. However ghost fields are not
needed for this work, because we do not consider one loop corrections to the the gauge
propagator. Using the gauge fixing as defined above in (2.46) the bilinear part of the gluon
action takes the form

SG+Gf =

∫
d4x

1
T∫

1
k

1

2kz

[
Gν

(
∂2ηνµ −

(
1− 1

ξ

)
∂ν∂µ − z∂z

(
1

z
∂z

)
ηνµ
)
Gµ

−G5 ∂
2G5 + ξG5∂z

(
z∂z

(
1

z
G5

))]
+ . . . . (2.47)

Note that for the formulation of (2.47) one needs to perform an integration by parts of (2.21),
in order to ensure that no boundary terms after this integration survive [75]. This can be
done by assigning the fifth component of the gauge field Dirichlet boundary conditions on
the brane [75]. As in the fermion sector one can separate the fifth coordinate in all gauge
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fields using the factorisation ansatz Gν(x, z) =
∑
n f

(n)
G (z)Gν(x). Following the paradigm

of massive 4d Kaluza-Klein fields we can automatically write the equation of motion for the
mode functions as

z∂z

(
1

z
∂z

)
f

(n)
G (z) = −m2

nf
(n)
G (z), (2.48)

together with the orthonormality conditions
1
T∫

1
k

1

2kz
f

(n)
G (z)f

(m)
G (z) = δn,m. (2.49)

To ensure an massless zero mode profile one has to demand Neumann boundary condition
for the mode functions [75]

∂zf
(n)
G (z)| 1

k
= ∂z f

(n)
G (z)| 1

T
= 0. (2.50)

Using this construction the zero mode profile can be determined as [75]

f
(0)
G (z) =

√
k

ln k
T

. (2.51)

It is noteworthy that the zero mode function of the four vector part of the bulk gauge
bosons is a constant function. This represents an important feature for penguin diagrams
that involve the emission of a real SM gauge-boson. For completeness we give the solution
for the nth Kaluza-Klein mode profile [75]

f
(n)
G (z) = Nz

(
J1(mnz)−

J0(mn/k)

Y0(mn/k)
Y1(mn z)

)
, (2.52)

where the mass eigenvalues mn are the zeros of the equation [75]
(
J0(mn/T )− J0(mn/k)

Y0(mn/k)
Y0(mn/T )

)
= 0, (2.53)

which follows directly out of the boundary condition (2.50) on the IR brane. Solving (2.53)
numerically we find for the first three Kaluza-Klein masses of the gauge-bosons m1 ∼ 2.45T ,
m2 ∼ 5.57T and m3 ∼ 8.7T . Thus, the first KK excitations of the four vector gauge-bosons
have mass of the order O(T ), which validates the previous statement of T being the natural
scale of the RS model. Note that the spacing between the KK masses is not equidistant.
That can be compared to other extra dimension models like for example universal extra
dimensions, where at tree-level the KK masses have an equidistant spacing.
To conclude this section we still have to deal with the scalar component of 5D bulk gauge-
bosons. To this end we also apply a KK decomposition to the field G5. Using the bilinear
action (2.47) we can directly write the equation of motion for the mode profiles

ξ ∂z

(
z∂z

(
1

z
f

(n)
G5

(z)

))
= − ξm 2

n f
(n)
G5

(z), (2.54)

where the mass eigenvalues mn of the pseudo Goldstone boson G5 have to be the same
as for the vector part. That is because equation (2.54) is solved directly after the trivial
identification

f
(n)
G5

(z) = ∂z f
(n)
G (z), (2.55)
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which also guaranties the correct Dirichlet boundary conditions

f
(n)
G5

(z)| 1
k

= f
(n)
G5

(z)| 1
T

= 0 (2.56)

Note that (2.55) implies, that there is no massless zero mode for G5.

2.3.3 5D Picture

As shown in the last section the dynamics of the 5D theory without interactions can be fully
absorbed into an extended 4d Lagrangian, where each fermion and gauge field includes a large
tower of heavy Kaluza-Klein partners with masses of the order of O(T ). Unfortunately the
situation does not look so bright after turning on the interaction terms of the 5D Lagrangian.
Consider for example the coupling of the B field to an arbitrary fermion field. After insertion
of the Kaluza-Klein decomposition one remains with coordinate integrals over three mode
functions, which cannot be done easily by orthonormality relations, unless the gauge-boson
profile function is a zero mode. Furthermore, the inevitable presence of 5D propagators in
perturbation theory induces even more problems as each propagator automatically generates
an infinite series in the KK picture. To see this, let us investigate the solution of the vector
part of the 5D propagator. Naturally such propagator will depend on the four momentum
after performing a standard 4d Fourier transformation into 4d momentum space and the
starting and end point 5th coordinate. We can write this propagator as [28]

∆µν
G (p, x, y) = ∆G (p, x, y) ηµν +

pµpν

p2

(
∆G

(
p√
ξ
, x, y

)
−∆G (p, x, y)

)
, (2.57)

using the general Rξ gauge. In such a coordinate representation the partial differential
equation for to the transverse part of the gauge boson propagator can be written as [28]

(
p2 + x∂x

1

x
∂x

)
∆G (p, x, y) = −ikx δ (x− y) , (2.58)

with the additional boundary conditions

∂x∆G (p, x, y)|x= 1
T

= 0 ∂x∆G (p, x, y)|x= 1
k

= 0. (2.59)

Then it is clear that the partial differential equation can be solved directly with the mode
equation for gluons (2.48). We find immediately

∆G(p, x, y) =
∑

n

f
(n)
G (x)

i

p2 −m2
n

f
(n)
G (y). (2.60)

Thus after the application of the Kaluza-Klein decomposition a typical one-loop diagram
in RS will include at least one infinite sum. Additionally for each vertex an integral over
the 5th coordinate has to be taken. Naturally the evaluation of even one infinite sum over
the difficult terms of the mode function cannot be done easily. Therefore we will not use
the Kaluza-Klein decomposition for our following calculations. Still the knowledge of the
existence of such decomposition allows us in some cases to simplify the computation.
One way out of possible issues concerning infinite Kaluza-Klein sums is to use the well
established 5D formalism [32,75]. We make use of this formalism almost entirely throughout
this thesis. The 5D formalism implies the evaluation of the perturbation theory entirely at
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5D level. The price one pays for this is a complicated 5D propagator structure, for example
the 5D gauge boson propagator of the gluon takes the form

∆G (p, x, y) = kxy
θ(x− y)

(
K0

(
p
k

)
I1(py) + I0

(
p
k

)
K1(py)

) (
K0

(
p
T

)
I1(px) + I0

(
p
T

)
K1(px)

)

K0

(
p
k

)
I0
(
p
T

)
− I0

(
p
k

)
K0

(
p
T

)

+ (x ←→ y). (2.61)

It is noteworthy that all propagator in the 5d formalism have a similar form. This com-
plicates the structure of all appearing diagrams on the first sight. However, on the second
sight the disappearance of infinite sums simplifies significantly the computation of all tree-
level diagrams. Loop diagrams do not gain much from this aside from a potentially clearer
structure of the involved scales in the loop integrand.
A complete 5D calculation gives rise to the question, how to relate the 5D coupling con-
stants to the usual 4d couplings constants. As usual for extra dimension theories this can
be done by analysing the zero mode terms of the associated interaction. Let us for example
consider the coupling of SM singlet leptons to a zero mode B boson. Here we have to use
the constancy of the gauge-boson zero mode function in order to evaluate the coordinate
vertex integral.

−iY
2
g′5

1
T∫

1
k

dz

(kz)4
g(0)(z)g(0)(z) f

(0)
B (z) = −iY

2
g′5f

(0)
B (z). (2.62)

Thus, we identify g′5f
(0)
B (z) = g′, because the zero mode interactions should resemble the

SM vertices in the low energy limit. This procedure can be used for all other gauge-fermion
5D vertices.

gX = gX 5f
(0)
X (z), (2.63)

where X is an arbitrary SM gauge-boson. It is important to note that all 5D calculation
done for this thesis are performed in the unbroken phase before EWSB, i.e. we treat the
Yukawa interaction as a small perturbation. The error induced by this is at least of the
order of v2/T 2, where v is the vacuum expectation value. Thus, even for a T = 1 TeV the
possible induced error is small. However we will see in section 2.3.5 and 2.4.5 that the typical
lower limit of the RS scale T lies in the range of 2 − 4 TeV, which drastically diminishes
the error caused by performing all 5D computations in the unbroken phase. To conclude we
summarise how the typical RS calculation has to be done in the 5D formalism.

• Draw all diagrams as in the SM model and include all necessary prefactors and 4d
loop integrals as usual. All couplings are five dimensional coupling constants. Include
also the fifth component of all gauge fields if necessary and also keep track of the fifth
coordinates of the vertices and 5D propagators.

• Include an integration over the associated fifth coordinates of each vertex
∫ 1
T
1
k

dz
(kz)5−i ,

where i counts how many times the metric is involved for the associated vertex, i.e.
how many four vector contractions are involved.

The relation between the 5D gauge couplings and 4d gauge couplings (2.63) together with
the summation of the infinite KK sums for the 5D formalism emphasises a problem, which
we have so far ignored in our discussion. As f (0)

X (z) has mass dimension 1/2 the 5D gauge
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coupling gX 5 has to have mass dimension -1/2. Of course this could be also directly deduced
out of the 5D action, because 5D fermion fields have mass dimension 2 and 5D gauge field
mass dimension 3/2. Therefore, due to the negative mass dimension of the coupling constants
the minimal RS models is not a renormalisable theory. It can be only be considered as an
effective theory valid up to a cut-Off Λ. To complicate the situation the general belief is that
the cut-off in a mixed coordinate–momentum representation generally depends on the fifth
coordinate Λ(z) [28]. Thus even if the cut–off Λ(1/k) has the value of a few times k at the
Planck brane the exponential scaling due to the warp factor will turn Λ(1/T ) to be of the
order of T . This would render the 5D formalism into a completely unreliable computation
method in a naive computation, because the 5D formalism always includes the complete
summation of all KK excitations instead of the summation of only a few KK modes up
to the cut-off Λ(1/T ). Therefore, one should only use the 5D formalism for perturbative
calculation, where all KK sums do converge. This the case for finite quantities like for
example the calculation of the muon g-2 moment [28]. In such a case the error done by the
inclusion of the whole KK tower is expected to be of the order of T 2/Λ(1/T )2, that is the
generic correction one expects for the UV completion of the RS model [28].

2.3.4 Higgs localisation
So far in this thesis we have only approached the Higgs sector with an exactly brane localised
Higgs field on the IR brane. However, it is well known that the physics of the RS model with
an IR-brane localised Higgs depends strongly on the way the localisation is implemented,
see for example [28,53,76–78]. To be more precise we have to explicitly define, whether the
possible 5D wave function of the Higgs can be resolved in loops. One way to discuss this is
to introduce a regularised delta function for the Higgs localisation. The easiest choice for
this is a localisation of the Higgs inside a box with a narrow width

δ(z − 1/T ) = lim
δ→0

T

δ
Θ

(
z − 1− δ

T

)
. (2.64)

The RS model is then completely defined only after one specifies the order of the limit δ → 0
and the limits of possible 4d loop momentum regulators like the dimensional regularisation
parameter ε or a four dimensional momentum cut-off Λ. If one first performs the loop
momentum limits for finite δ and then the limit δ → 0, it is indeed possible to resolve the
5D structure of the Higgs. This is most intuitive for a momentum cut-off loop regularisation
with a fixed δ. For the case where first the finite width δ goes to zero, before any other
limits are taken to their appropriate limits, we return to a true IR brane localised Higgs,
whose 5D width cannot be resolved. We will use both cases of limiting ordering throughout
this thesis. The first limiting procedure is called “narrow bulk Higgs” (in the terminology
of [78]).
Of course a RS model with a “narrow bulk Higgs” gives rise to the question, whether the
inevitable arising KK states give any meaningful contributions in the limit δ → 0. A narrow
bulk KK Higgs is expected to have a mass of the T/δ, therefore the naive expectation is
that the Higgs KK tower decouple for small δ, i.e. becomes negligible. However, a recent
work [79] has shown that the effects of the full Higgs KK sum can produce sizeable effects
in certain one-loop processes even after performing the localisation limit. In order to have
a consistent description of KK Higgs modes, we abandon the ad-hoc regularization (2.64)
and implement the Higgs field as a full 5D scalar doublet. Since we require both a vacuum
expectation value and a zero-mode profile that is strongly localised near the IR brane we
need to introduce additional brane potentials on both the IR and UV brane. We will follow
the construction of [80] (see also [81]) and thus use the same Higgs profile as in [79]. The
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details of this realisation together with useful formulae are collected in Appendix B. The
5D profile of the vacuum expectation value takes the form

v(z) =

√
2(1 + β)

1− ε2+2β
k3/2T β+1vSM zβ+2, (2.65)

where vSM ≡ v ' 246GeV denotes the SM Higgs vacuum expectation value (vev), and
the zero mode profile is, up to small corrections of order v2/T 2, proportional to v(z). The
parameter β is related to the 5D mass of the Higgs field and determines the degree of IR
localisation; the larger β the stronger the localisation. Since we start with a genuine bulk
field it is always implied that β is finite until all other regulators have been removed.

In order to obtain the correct SM parameters in the low-energy limit the Yukawa matrices
and the Higgs self-coupling must themselves depend on β. For the Yukawa matrices we
indicate this dependence by a superscript β, while no superscript refers to the β-independent,
dimensionless matrix. The relation is (see Appendix B.3)

Y β =
Y√
k

2− cLi + cEj + β√
2(1 + β)

(2.66)

with cLi , cEj the 5D mass parameters of the lepton fields in the Higgs-Yukawa interaction.
Ultimately, we are interested in large values of β. Whenever we give a result for the

bulk Higgs case that does not show an explicit dependence on β, we tacitly assume that the
β → ∞ limit has been taken, and the result should be valid up to corrections of O(1/β).
We will consider the three different implementations of the Higgs field:

• an exactly brane localised Higgs, that is we use (2.64) (necessary to avoid ambiguities
in the calculation), but take δ → 0 first.

• a delta-function localised narrow bulk Higgs, that is we use (2.64), but keep δ finite
until all other regulators are removed, then δ → 0. No Higgs KK modes are considered.

• a true bulk Higgs with the β-profile (2.65) and KK modes.

The second scenario is somewhat inconsistent as a Higgs field with a resolvable width should
be accompanied by resolvable KK excitations. We will still consider it, as it turns out that
this precisely captures the effect of the bulk Higgs zero-mode in the IR-localised β → ∞
limit of the third scenario. In this thesis We will discuss explicitly the different localisation
prescriptions only if they lead to different results.
The inclusion of Higgs fields that can propagate throughout the bulk leads to interactions
between the wrong chiralities components of the 5D vector fermion fields. To understand
these so called wrong chirality Higgs couplings let us consider the Lagrangian of the leptonic
Yukawa sector:

LYukawa ⊇
(
T

k

)3

y
(5D)
ij (L̄iΦ)Ej

=

(
T

k

)3

y
(5D)
ij

(
(L̄L i Φ)ER j + (L̄R i Φ)EL j

)
, (2.67)

where LL/R i = PL/RLi and EL/R j = PL/REi. For a brane Higgs the second term would
automatically vanish due to the boundary conditions of the right handed doublet fermion
profiles and the left handed singlet fermion wave function (2.39). However for a bulk and
even a narrow bulk Higgs this term does not vanish. The concept of wrong and rigth chirality
Higgs couplings was first introduced in [31].
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W (n) W (0)W (0)

Figure 2.4: Tree level diagram contributing to gauge-boson vacuum polarisation. The boxes
represent the Higgs vev.

2.3.5 Minimal RS model constraints

In the previous sections we have seen seen that the minimal RS model contains for each
bulk field a possible large tower of heavy KK particles with masses of the order O(T ). The
solution of the gauge-gravity problem only demands [14, 15] the parameter T to be in the
TeV region. However, for studies of the feasibility of possible experimental observations for
instance at the LHC @ 14 TeV center of mass energy it would be important to find a lower
bounds on the RS scale T .
The strongest constraint on the scale of the extra dimension comes from Kaluza-Klein (KK)
gluon mediated ∆F = 2 processes—notably in the kaon system [82], which would suggest
T > 13 TeV, i.e. gauge-boson masses larger than 33 TeV far beyond the reach of the LHC.
However this bound can be avoided by imposing some structure on the quark Yukawa ma-
trices in the five-dimensional (5D) theory [83] or by extending the strong gauge group [84].
Notably the RS contributions to the Higgs production yields 2 TeV @ 95% CL for Y? ≈ 3 in
the minimal RS model [78]. However this bound depends on the size of the 5d Yukawas.
Therefore, one can always avoid this bound by theory points, which include small Yukawas.
Almost 5d parameter independent constraints on T are generated by the contributions of
the RS model to the electroweak precision observables. In particular the minimal RS model
contains tree-level contributions to the Peskin-Takeuchi parameters S and T [85]. In the
flavour basis these can be defined as [24]

S = 16π2
(
Π′33(0)−Π′3Q(0)

)
(2.68)

T = −16π2

e2v2
(Π33(0)−Π11(0)) , (2.69)

where Πii(q
2) is the vacuum polarisation amplitude for the gauge-bosonW i in SU(2) flavour

basis. Π3Q(Q) is the vacuum polarisation between aW 3 gauge-boson and a photon. At three
level there is no contribution to this amplitude [24]. The tree-level contributions to Πii(q

2)
are generated via a coupling of the zero mode gauge-boson field to their KK excitations
through the Higgs vev, see figure 2.4. Using the 5D formalism one can directly express the
tree-level contributions as [24]

Π′11(q) =
(
f (0)
γ

)2
(
v2

4

)2

g4∆ZMS

(
0,

1

T
,

1

T

)
(2.70)

Π′33(q) =
(
f (0)
γ

)2
(
v2

4

)2 (
g4 + g′ 4

)
∆ZMS

(
0,

1

T
,

1

T

)
, (2.71)

where ∆ZMS is the zero mode subtracted gauge-boson propagator.In the 5D formalism it
can be directly obtained by Taylor expanding equation (2.61) with respect to the loop
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momentum.

∆ZMS(q → 0, x, y) = Θ(x− y)
ik

ln k
T

(
1

4

{
1/T 2 − 1/k2

ln k
T

− x2 − y2 + 2x2 ln(xT )

+ 2y2 ln(yT ) + 2y2 ln
k

T

}
+O(q2)

)
+ (x↔ y) (2.72)

After a short calculation one can find for the oblique parameter T in the minimal model [23]

∆T =
πν2

2 cos2 θWT 2

(
ln

(
k

T

)
− 1

2 ln
(
k
T

)
)

(2.73)

∆S =
2πν2

T 2

(
1− 1

ln
(
k
T

)
)
. (2.74)

Note that the contribution to the T parameter is logarithmic enhanced by a factor propor-
tional to the fifth dimension volume 1/k ln

(
k
T

)
. If we insist on the solution of the gauge

gravity problem of the original RS setup, then the logarithmic enhancement yields a factor
of ln

(
k
T

)
∼ 36. There is no such enhancement for the contribution to the S parameter.

Hence the S parameter yields a weaker lower bound on the minimal possible Kaluza-Klein
mass than the T parameter. The oblique parameter ∆T leads to a constraint on the RS
scale T of T > 4 TeV or a first Kaluza-Klein mass of an standard model gauge-boson of
around 10 TeV [23]. Such masses for the lowest KK mass are beyond the reach of the LHC.

The most obvious way to remedy this situation would be to consider RS models with a
smaller fifth dimension volume, i.e. models where the logarithmic enhancement enhancement
factor ln

(
k
T

)
becomes negligible. However, by doing so we would also loose the solution of

the gauge-gravity hierarchy problem. We will therefore not consider such a possibility in this
thesis. There is also the possibility, to introduce brane localised kinetic gauge-bosons terms
[86,87]. Nonetheless, kinetic gauge-bosons terms correspond to unknown UV physics beyond
the UV cut-off. Hence the introduction of such terms would further reduce the predictability
of the RS model. Another more exotic solution would be to deform the geometry of AdS5

close to the IR brane [88–90]. Albeit such models could potentially considered for this
thesis we want to stick to the original RS geometry. The last possibility to circumvent this
constraint, is to extend the bulk group with an explicit custodial symmetry [24–27,91]. That
is the ansatz we will be following in the next section.

2.4 The custodial protected RS model (RSc)
The discussion the last subsection 2.3.5 led to the conclusion that the minimal RS model
exhibits large 5D parameter independent tree-level contributions to the electroweak preci-
sion parameters. This leads to RS scales beyond the reach of the LHC. To mitigate these
constraints one can extend the gauge group of the RS model in the bulk. This brings us to
the custodial protected RS model, which we will introduce in the next subsections.

2.4.1 Gauge group
The construction of the custodial protected RS model starts at the consideration of the
gauge group. We choose the gauge group for this model is in the bulk

SU (3)c × SU (2)L × SU (2)R × U (1)X × PL,R. (2.75)
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The factor SU (2)L × SU (2)R explicitly includes the custodial symmetry into the model.
This protects the Peskin-Takeuchi parameter from large contribution at three level [24], see
also section 2.4.5. The gauge group also includes the discrete Z2 symmetry PL,R , which is
defined by

PL,R : SU(2)L ↔ SU (2)R . (2.76)

To satisfy this symmetry the coupling constants of SU (2)L and SU (2)R gauge field need to
be equal, i.e the following condition must be true the 5D coupling constants

g5L = g5R = g5. (2.77)

Also this symmetry can only be achieved by demanding that all fermion multiplets are
symmetric under the PL,R transformation in this model. The inclusion of PL,R protects the
coupling Zb̄b to all orders [26]. The addition of the abelian U (1)X symmetry is necessary
to fix the hypercharges on the correct values in this model.
In order to achieve the standard model gauge group and particle content the gauge group
has to broken on both branes. On the UV brane one breaks the gauge group by postulating
boundary conditions to the standard model gauge group

SU (3)c × SU (2)L × SU (2)R × U (1)X × PL,R → SU (3)c × SU (2)L × U (1)B . (2.78)

On the IR-Brane the bulk symmetry is broken by a Higs vacuum expectation value

SU (2)L × SU (2)R
〈H〉−−→ SU (2)V

preserving the custodial symmetry on the IR-brane. By breaking the custodial symmetry
only on the UV-brane the effects of the explicit breaking of the custodial symmetry are
minimal for physical observables depending on the physics closely to the IR-brane.

2.4.2 Gauge and Higgs sector

The gauge sector consists out two SU(2) gauge-bosons fields W a
L,R and one U (1)X gauge-

boson X. Here the W a
L gauge field correspond to the known SU (2)L gauge fields.

The symmetry breaking on the UV-brane

SU(2)R × U(1)X → U (1)Y (2.79)

yields directly the necessary boundary conditions for the different gauge-bosons.
To this end one identifies the ZX and B gauge fields by performing the following rotation
of the original fields

W 3
R = cosφZX + sinφB

X = − sinφZX + cosφB. (2.80)

The mixing angles are defined similar to the mixing of the B and W 3
L field

cosφ =
g5√

g2
5 + g2

5X

, sinφ =
g5X√
g2

5 + g2
5X

, (2.81)

where g5 is the 5D coupling of the SU(2)L,R gauge fields and g5X equals to the coupling of
the U (1) X gauge field. Thus, in the custodial protected protected Randall-Sundrum model
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the B gauge-boson field is generated by a mixing of a W 3
R and X field. Using this mixing

one can identify the U (1)Y hypercharge coupling constant by

g′5 =
g5 g5X√
g2

5 + g2
5X

. (2.82)

To ensure the existence of the standard model gauge group on the UV brane and the custodial
symmetry on the IR brane, the boundary conditions of the different gauge fields must be
chosen the following way [26]

W a
Lµ (+,+) , W b

Rµ (−,+) (2.83)
Bµ (+,+) , Zχµ (−,+) . (2.84)

Note that index b goes only from 1 to 2. Further, for gauge fields the + sign indicates
Neumann boundary conditions under the standard partial derivative ∂z.
Due the choice of the boundary conditions the WLµ and the Bµ fields have a massless zero
mode, while the new gauge bosons fields W b

R and Zx only consist of a massive tower of KK
excitations. The 5D propagators for these fields can be found in Appendix A.2.2

The Higgs sector includes only small changes in the custodial protected Randall-Sundrum
model . The Higgs field is now written explicitly in the bi-doublet SU (2)L × SU (2)R form
raising the SU (2)L × SU (2)R invariance of the unbroken SM Higgs-action as a feature of
the model. In order to achieve the correct phenomenology the Higgs field has to be chosen
neutral under the U (1)X field. Hence we can write the Higgs field as

H =

(
π+/
√

2 −
(
h0 − iπ0

)
/
√

2(
h0 + iπ0

)
/
√

2 π−/
√

2

)
, (2.85)

which can be also expressed by the known SU (2) Higgs doublet h as

H =
(
h εh∗

)
. (2.86)

The field h0 gets a vacuum expectation value such that

〈H〉 =

(
0 −ν5/

√
2

ν5/
√

2 0

)
(2.87)

close to IR brane.

2.4.3 Fermion sector
To extended the gauge group of the custodial protected Randall-Sundrum model gives rise
to a more complicated set of fermion multiplets. We begin the discussion of the construction
of the fermion multiplets with the quarks, where the protection of the coupling Zb̄b to all
orders of perturbation theory gives the decisive constraints on the choice of the multiplets.
From now on we assume that all quark fields are triplets under the SU (2)C symmetry. The
choice of the third component of the isospins of SU (2)L and SU (2)R and of the charge
of the X field are restricted by the fundamental electrical charge of each quark field. The
charge can be found by tracking the the mixing of the fields that lead the generation of the
B field

Q = T 3
L + T 3

R +QX , (2.88)
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where T 3
L,R is the third component of the SU (2)L,R hypercharge and QX the charge of the

U (1)X field.
Then the protection of the coupling Zb̄b yields the constraint T 3

R = T 3
L = − 1

2 for the left-
handed bottom quark [26]. This implies that the(tL, bL) quark doublet transforms as a (2, 2)
bi-doublet under the SU (2)L × SU (2)R gauge group. In order to ensure flavour symmetry
one applies this also to the (ul, dl) and (sL, cL) doublets. To generate the correct charge for
the left-handed bottom quark field the (2, 2) bi-doublet has to have the charge QX = 2/3.
This fixes all quantum numbers of the bi-doublet for all flavours leading to new fermion
fields with charge 5/3.
To implement the right handed up and down type quarks one starts first to consider the
constraints coming from the construction of a standard model compatible Yukawa interac-
tion yields. To construct such Yukawa interaction we need terms, which couple left-handed
chirality quark fields with right-handed chirality quark fields. Since the Higgs doublet does
not carry any charge under the U (1)X field this fixes the charge QX of the right-handed
quark fields to be 2/3.
Thus the right-handed up-type quarks needs to satisfy T 3

R = 0 to get the correct electrical
charge in this model. The PL,R symmetry then yields that the right-handed up quarks are
SU (2)L × SU (2)R singlets.
For the right-handed down type quarks we find T 3

R = −1. This means that these quark
fields are at least contained as the components of a SU (2)R triplet, which would mean after
taking the PL,R symmetry into account a (3, 1)⊗ (1, 3) triplet of SU (2)L × SU (2)R. This
is only the most economic choice of parametrisation. In principle, the diR quarks could be
contained as components of a (2j + 1, 1)⊗ (1, 2j + 1) representation of SU (2)L × SU (2)R .
For j > 1 there might be problems to write down the Yukawa interactions of the quark fields,
because in this case the (2j + 1, 1) ⊗ (1, 2j + 1) contains quarks with electric charge larger
than q = 5/3, which is the largest charge one can obtain with bi-doublet for the left-handed
quark fields.
For now on we will restrict us to the case j = 1. We find for the quark fields the represen-
tations per generation i ( i=1,2,3) [26]

ξi1L =

(
χuiL (−,+)5/3 quiL (+,+)2/3

χdiL (−,+)2/3 qdiL (+,+)−1/3

)

ξi2R = uiR (+,+)2/3

ξi3R = T i3R ⊗ T i4R =




Ψ̃i

R (−,+)5/3

Ũ i

R (−,+)2/3

D̃i

R (−,+)−1/3


⊗




Ψi

R (−,+)5/3

U i

R (−,+)2/3

Di

R (+,+)−1/3


 , (2.89)

where the subscript of the different quark fields gives the electrical charge the signs in paren-
theses are the boundary conditions on the UV and IR brane. These boundary conditions
where chosen such way, that each standard model quark field has (+,+) boundary conditions
ensuring the existence of a zero-mode field. For the new field one cannot choose Drichelet
boundary conditions on both frames, since the fields of opposite chirality would then have
(-,-) boundary conditions due to the coupling of the mode equations and therefore a massless
zero-mode field. Hence these quark fields have to have mixed boundary conditions.
The embedding the leptons into SU (2)L × SU (2)R multiplets is achieved by using the same
arguments as in the quark case. To achieve the correct electrical charges for the SM lepton
fields, all leptons have to be neutral under the U (1)X gauge field. Thus there is a global
lepton charge 2/3 difference for all components of the lepton multiplets compared to the
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quark case. We write the lepton multiplets for every generation i as

ξil1L =

(
χνiL (−,+)1 lνiL (+,+)0

χliL (−,+)0 lliL (+,+)−1

)

ξil2R = νR (+,+)0

ξil3R = T i3R ⊗ T i4R =




λ̃iR (−,+)1

Ñ i

R (−,+)0

L̃iR (−,+)−1


⊗




λiR (−,+)1

N i

R (−,+)0

Ei

R (+,+)−1


 . (2.90)

As for the quark case all standard model like leptons satisfy(+,+) boundary conditions. It
is noteworthy that this model includes a right-handed neutrino.
Note that this choice of multiplets is not the minimal possible incorporation of the extended
gauge group in the lepton sector. That because the protection of the Zll̄ is not necessary
for leptons. Instead of the complicated triplet structure we could embed the right handed
neutrino together with the SM singlet fermion and the SM doublet into a SU(2)L× SU(2)R
(1,2) multiplet. However such an extension does not differ much from the minimal setup.
Therefore we use the next to minimal version of the custodial protected RS model (RSc) in
the lepton sector.

2.4.4 Fundamental 5D action

We decompose the action of the custodial protected Randall-Sundrum model in four parts

S =

∫
d4x

1
T∫

1
k

dy (Lgauge + Lfermion + LHiggs + LY uk) . (2.91)

The enhanced gauge group of the custodial protected Randall-Sundrum model leads to
additional term in gauge Lagrangian

Lgauge =
√
g

[
−1

4
GAMNG

AMN − 1

4
LaMNL

aMN − 1

4
RαMNR

αMN − 1

4
XMNX

MN

]
+ LGF .

(2.92)
Here GAMN corresponds to the SU (3)C field strength tensor

GANM = ∂NG
A
M − ∂MGAN − g5sf

ABCGBNG
C
M (2.93)

where g5s is the strong 5D coupling.
The tensor LaMN and RαNM are the field strength tensor of the SU (2)L and SU (2)R gauge
fields

LaNM = ∂NW
a
LM − ∂MW a

LN + g5ε
abcW b

LNW
c
LM (2.94)

RαNM = ∂NW
α
RM − ∂MWα

RN + g5ε
αβγW β

RNW
γ
RM . (2.95)

We only write down the fundamental 5D Lagrangian for the quarks, because due to the
organisation of the leptons in similar multiplets thw lepton sector does not differ much aside
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from missing gluon interaction terms. The Lagrangian for all quark fields is given by [26]

Lfermion =
1

2

√
g

3∑

i=1

eMm

[(
ξ̄i1
)
aα
iΓm

(
D1
M

)
abαβ

(
ξi1
)
bβ

+
(
ξ̄i1
)
aα

(
iΓmωM −M i

1

) (
ξi1
)
aα

+
(
ξ̄i2
)
iΓm

(
D2
M

) (
ξi2
)

+
(
ξ̄i2
) (
iΓmωM −M i

2

) (
ξi2
)

+
(

¯̃T i3

)
a
iΓm

(
D3
M

)
ab

(
T̃ i3

)
b

+
(

¯̃T i3

)
a

(
iΓmωM −M i

3

) (
T̃ i3

)
a

+
(

¯̃T i4

)
α
iΓm

(
D4
M

)
αβ

(
T̃ i4

)
bβ

+
(

¯̃T i4

)
α

(
iΓmωM −M i

3

) (
T̃ i4

)
α

]
+ h.c.,(2.96)

where eMm is the vielbein and ωM the spin-connection for spin 1/2 fields.
With this definition the covariant derivatives for the quark fields can be found to be [26]

(
D1
M

)
abαβ

=
(
∂M − ig5st

AGAM − igXQXXM

)
δabδαβ

−ig5
(τ c)ab

2
W c
LMδαβ − ig5δab

(τ c)αβ
2

W c
RM (2.97)

(
D2
M

)
= ∂M − ig5st

AGAM − igXQXXM (2.98)
(
D3
M

)
ab

=
(
∂M − ig5st

AGAM − igXQXXM

)
δab − g5ε

abcW c
L,M (2.99)

(
D3
M

)
αβ

=
(
∂M − ig5st

AGAM − igXQXXM

)
δαβ − g5ε

αβγW γ
R,M . (2.100)

As usual tA = λA/2 are the fundamental generators of SU (3)C where λA are the known
Gell-Mann matrices. The generators of the SU (2)L (SU (2)R) fundamental representation
are the usual Pauli matrices τa (τα). Note that the generators of SU (2)L,R do have the
same matrices, but due to the different indices they work on different internal spaces.
One should be aware of that inside the Lagrangian the triplets T̃ i3 and T̃ i4 are not written in
the form of (2.89). Instead one writes them here as

(
T̃ i3

)
=




1√
2

(
Ψ̃i + D̃i

)

i√
2

(
Ψ̃i − D̃i

)

Ũ i




(
T̃ i4

)
=




1√
2

(Ψi +Di)
i√
2

(Ψi −Di)

U i


 , (2.101)

to reproduce all gauge-fermion interactions, which appear in the standard model. This no-
tation is used to shorten the form of the Lagrangian.
The application of this Lagrangian to the lepton sector is straightforward since the lepton
multiplets have the same form as the quark fields. To perform the adaptation of the La-
grangian one just has to remove the coupling to the strong gauge field GAM and set the
charges QX to zero, since lepton multiplets are not charged under the U (1)X field. Note
that for the leptons the components of the T̃ i3 and T̃ i4 are given as

(
T̃ i3

)
=




1√
2

(
λ̃i + L̃i

)

i√
2

(
λ̃i − L̃i

)

Ñ i




(
T̃ i4

)
=




1√
2

(λi + Ei)
i√
2

(λi − Ei)

N i


 . (2.102)

In the RSc model the Lagrangian for the Higgs bi-doublet field can be written as

LHiggs = δ

(
y − 1

T

)(
1

2
(DνH)

†
aα (DνH)aα − V (H)

)
, (2.103)
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where we only write down case for an exactly brane localised Higgs. V (H) is the potential
of the Higgs field leading to the correct electro-weak-symmetry breaking. Note that for our
choice for the form of the Higgs vev one has to put an additional factor 1/2 before the
kinetic term to generate the correct gauge-Higgs vertices. The covariant derivative of the
Higgs bi-doublet has the form

(DνH)aα = ∂νHaα + ig
(τ c)ab

2
W c
L νHbα + ig

(τγ)αβ
2

W γ
R νHaβ . (2.104)

Remember that H does not have a charge Qx, which is the reason why there is no coupling
to the X field. Thus the coupling of the Higgs bi-doublet to the B gauge field is only gen-
erated by the W 3

R field. The kinetic term of the Higgs action contains the operators, which
lead to the tree-level contributions to the Peskin-Takeuchi S and T after EWSB.
The Lagrangian of the Yukawa is constrained fundamentally by the Yukawa SM Lagrangian,
which should be obtainable through a Kaluza-Klein decomposition of all fields. This require-
ment yields a term of the form ξ̄i1Hξ

j
2 and a term of the form of ξ̄i1τHT

j
3 . That is because the

first term contains the zero-mode term ūLhuR and the second term contains a zero-mode
term d̄Lh dR. Then due to the PL,R symmetry the Yukawa Lagrangian should also contain
a term of the form ξ̄i1τHT

j
4 .

Hence the most general Yukawa Lagrangian one can write down is as follows in the custodial
protected Randall-Sundrum model [26]

LY uk = −δ
(
y − 1

T

)(
T

k

)3 3∑

i,j=1

[
−λu5D ij

(
ξ̄i1
)
aα
Haαξ

j
2

+
√

2λd5D ij

[(
ξ̄i1
)
aα

(τ c)ab
2

(
T̃ j3

)
c
Hbα +

(
ξ̄i1
)
aα

(τγ)αβ
2

(
T̃ j4

)
γ
Haβ

]
+ h.c. .

(2.105)

The additional
√

2 in the second term appears to cancel the 1
√

2 factor coming from com-
ponents of the SU (2)L,R T j3,4triplets.

2.4.5 RSc constraints

With the formulation of the RS model with custodial protection at hand we can now go
back to the computation of the electroweak precision parameter S and T. The RSc model
contains the minimal RS contributions to the Πii(q

2) amplitudes. However, Π33(q2) obtains
also the contribution of a ZX exchange. That is because the B boson is generated via a
mixing of the X and W 3

R boson on the UV brane in the RSc model. Thus, we can directly
translate any diagram, that includes a B boson exchange, into an RSc diagram with ZX
exchange. The new contribution to Π33(q2) has the form

Π′33(q) =
(
f (0)
γ

)2
(
v2

4

)2

g4
5X∆pm

(
0,

1

T
,

1

T

)
. (2.106)

The propagator ∆pm is calculated in Appendix A.2.2 explicitly. The zero momentum Taylor
expansion can be found as

∆mp(q → 0, x, y) =
i

2k

[
k2 min

{
x2, y2

}
− 1
]
. (2.107)
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Then together with the relation of the new coupling gX with respect to SU(2)L ×U(1)B

coupling constants constants
g2
X = g2 − g′2. (2.108)

we find for the RSc model [23]

∆T = − πν2

4 cos2 θWT 2

1

ln
(
k
T

) (2.109)

∆S =
2πv2

T 2

(
1− 1

ln
(
k
T

)
)
. (2.110)

We observe that the log enhancement drops for the in the RSc model contribution to the
T parameter (2.109). In fact, this lowers significantly the lower on T generated by the T
parameter, such that the main constrain on the RS scale T comes from the S parameter.
For the RSc model the electroweak precision parameters yield a lower bound of T > 2.3
TeV [23]. This corresponds to lowest gauge boson Kaluza Klein mass of about 5.6 TeV.
Thus even with the custodial symmetry the chance of a discovery of the RS model by direct
production at the LHC is not large.
Additionally due to the larger set of heavy fermion field the RSc yields larger contributions
to loop-induced processes, which are sensitive to the amount of heavy particles inside the
loops. One such process is the Higgs production, where the KK scale T can be constrained
up to (4) TeV @ 95% CL for Y? ≈ 3 for a the RSc model with narrow bulk Higgs [78]. That
is almost double the size of the Higgs production bounds to the minimal RS model. For
large Yukawas this bound alone would destroy all gains by the introduction of the extended
gauge group.
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Chapter 3

Effective Field Theory

As seen in the last chapter the typical scale of the RS model is determined by the parameter
T , which is lies in the O(TeV) range. Thus, due to the clear separation of the electroweak
scale and the KK scale it is perfectly valid to organise the calculation of all low energy
observables in an effective theory by integrating the heavy 5D degrees out. In this chapter
we first introduce this effective theory EFT in the lepton as well as in the quark sector
in the first section. We then focus first on the determination of the lepton observables
µ → eγ, µ → 3e, µN → eN in terms of the EFT. That is being achieved by matching to
appropriate low energy Lagrangians, which allow an easy evaluation of all considered lepton
processes. In the end of this chapter we then match the dimension six EFT on an effective
weak Hamiltonian. That is then used for the computation of B̄ → Xs γ.

3.1 Dimension six Lagrangian

In this thesis thesis, we follow the ansatz of [28], i.e. the heavy degrees of freedom get
incorporated into an effective SM Lagrangian, which includes the SM and SU(3)×SU(2)×
U(1) invariant higher-dimension operators

LRS → LSM +
1

T 2

∑

i

Oi = LSM + Ldim6, (3.1)

where we use T as the dimensional expansion parameter for our effective theory. We capture
the dominant effects with the dimension six operators of the Buchmüller-Wyller Lagrangian
[51]. For this thesis we use the minimal basis provided by [52].
As the muon g-2 calculation is just a mere extension of the similar computation [28] for
the minimal RS setup, we follow for the selection of dimension six operators the strategy
of [28]. That means, that we turn special attention to the matrix element fi → fj γ, where
f can be either a lepton field or an parton. Under this process we select operators that
either contribute at tree-level to this matrix element, but are generated at one-loop level in
the RS model, or contribute at one-loop level for the matrix element of the EFT, but are
generated at tree-level in the 5D theory. Furthermore we take all four fermion operators
into account, which contribute at three level via neutral currents like to processes like for
instance µ → 3e. All operators considered for this thesis are of dimension six. The only
dimension five operator in the lepton sector of [52] does not contribute either to flavour
conserving or flavour violating processes.
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In the lepton sector, our complete dimension six Lagrangian before electroweak symmetry
breaking is given by

Ldim6
Lepton = aBij(L̄iσ

µνEj)ΦBµν + aWij (L̄iτ
AσµνEj)ΦW

A
µν + h.c.

+ bLLijkl(L̄iγ
µLj)(L̄kγµLl) + bLEij (L̄iγ

µLi)(ĒjγµEj) + bEEij (Ēiγ
µEi)(ĒjγµEj)

+ c1ijΦ
†i
←→
D µΦ(ĒiγµEj) + c2ijΦ

†i
←→
D µΦ(L̄iγµLj) + c3ijΦ

†i
←−→
τADµΦ(L̄iτ

AγµLj)

+hij(Φ
†Φ)L̄iΦEj + h.c.

+
∑

`=E,L

∑

q=Q,U,D

b`qij (¯̀
iγ
µ`i)(q̄jγµqj) + bLτQij (L̄iτ

AγµLi)(Q̄jτ
AγµQj) , (3.2)

where TA are the SU(2) generators in the appropriate representation (e.g. TA = τA/2 with
τA the Pauli matrices for the doublet), and Y the hypercharge. The hermitian conjugate
in (3.2) only applies to terms in the same line. Of all the operators given in (3.2) only the
dipole operators in the first line cannot be generated at tree-level in the RS model. These
operators are also the only ones, which contribute to the process fi → fj γ at tree-level.
The flavour structure of the four fermion operators in (3.2) is not the most general one as
it is already adapted to the form of the Wilson coefficients, which can be generated in the
RS model. Even though Lagrangian (3.2) aims at the study of low energy processes in the
lepton sector it also includes four fermion operators with an mixing of quark and lepton
fields. These operator are necessary for the muon conversion in nuclei.
In the quark sector we focus on the KK contribution of the gluon exchange to B̄ → Xs γ.
Therefore we consider here only on dimension six operators that can be generated by the
exchange of Kaluza-Klein gluons in the RS model. Furthermore we can forego all operators
that do not contribute at leading logarithmic (ll) accuracy to b → s γ. This yields the
dimension six Lagrangian

L
quark

= agijQ̄iΦσ
µνTADj G

A
µν + aBq ij(Q̄iσ

µνDj)ΦBµν + aWq ij(Q̄iτ
AσµνDj) + h.c.

+ bQQij Q̄iγ
µTAQi Q̄jγµT

AQj + bQUij Q̄iγ
µTAQi ŪjγµT

AUj

+ bQDij Q̄iγ
µTAUi D̄jγµT

ADj + bDDij D̄iγ
µTADi D̄jγµT

ADj

+ bDUij D̄iγ
µTADi ŪjγµT

AUj

+ . . . , (3.3)

where Qi corresponds to a quark doublet of with generation index i; D and U are down- and
up-type singlets. G and F are gluonic and electromagnetic field strength tensor, respectively.
TA is a generator of SU(3) in the fundamental representation. The ellipses indicate a
sizeable set of omitted operators. These are either operator like Φ†i

←→
D µΦ(d̄iγµdj), which

cannot be generated by QCD, or operators like (Φ†Φ)Q̄iΦdj , which do not contribute at ll
accuracy. Obviously, exchange of hypercharge bosons and SU(2) bosons will also generate
four-fermion operators, contribute to both dipoles and give rise to operators of the schematic
form Φ†DµΦ q̄γµq. The latter class of operators will contribute to e.g. flavour-changing Z
couplings.
The U(1) gauge coupling at a scale of 1 TeV is roughly αU(1) ∼ 0.01. The SU(2)L coupling is
significantly larger with αSU(2)(µ = 1 TeV) ∼ 0.032, but still smaller than αs(µ = 1 TeV) =
0.09. The fact that the weak coupling is only about a factor of three smaller than the strong
coupling may warrant including weak effects in the matching calculation. Including the
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effect of the other gauge bosons is not a principle problem; their contribution to the four-
fermion coefficients as well as the dipole coefficients can directly be obtained from results
for leptonic dipoles.
A further effect that would have be taken into account when considering weak corrections
is the modification of of SM parameters and relations that have been utilised in the SM
computation. In particular the relation of GF and the W mass, that is frequently used
when rewriting the SM expressions is affected by higher-dimensional operators (see [92] for
the general case and [93] for the a discussion within the RS model).
Note that the Lagrangians (3.2) and (3.3) are initially written in the unbroken flavour basis.
We introduce the transition to the broken theory with a broke electroweak gauge symmetry
via the standard substitution rules,

Φ→
(

φ+

1√
2
(v + h+ iG)

)
Li → UijPL


νj
`j


 Ei → VijPR`j (3.4)

Qi → PL

(
Uuijuj

Udijdj

)
Ui → V uijPRuj Di → V dijPRdj (3.5)

and

Dµ → ∂µ − ieQAµ −
ig

cW
(T 3 − s2

WQ)Zµ −
ig√

2
(T 1 + iT 2)W+

µ −
ig√

2
(T 1 − iT 2)W−µ , (3.6)

with Zµ = cWW
3
µ − sWBµ, and Aµ = cWBµ + sWW

3
µ . Inserting (3.4) and (3.6) into

(3.2) generates many operators, most of which cannot contribute to the processes we are
interested in, see [28] for details. Collecting all operators that contribute according to the
strategy above the lepton sector Lagrangian sector dimension six Lagrangian becomes

LL
Lepton → Lbroken

Lepton =
αAij + αAji

?

2

v√
2

(¯̀
iσ
µν`j)Fµν +

αAij − αAji
?

2

v√
2

(¯̀
iσ
µνγ5`j)Fµν

+ βEEijkl(
¯̀
iγ
µPR`j)(¯̀

kγµPR`l) + βLEijkl(
¯̀
iγ
µPL`j)(¯̀

kγµPR`l)

+ βLLijkl(
¯̀
iγ
µPL`j)(¯̀

kγµPL`l)

− γ1
ij

gv2

4cW
Zµ(¯̀

iγµPR`j)− [γ2
ij + γ3

ij ]
gv2

4cW
Zµ(¯̀

iγµPL`j)

+ γ3
ij

gv2

2
√

2
W+,µ(ν̄iγµPL`j) + h.c.

+ ηij
3v2

2

h√
2

(¯̀
iPR`j) + ηij

v3

2
√

2
(¯̀
iPR`j) + h.c.

+ βEuijkl(
¯̀
iγ
µPR`j)(ūkγ

µPRul) + βEdijkl(
¯̀
iγ
µPR`j)(d̄kγ

µPRdl)

+ βEQijkl(
¯̀
iγ
µPR`j)(ūkγ

µPLul) + βEQijkl(
¯̀
iγ
µPR`j)(d̄kγ

µPLdl)

+ βLuijkl(
¯̀
iγ
µPL`j)(ūkγ

µPRul) + βLdijkl(
¯̀
iγ
µPL`j)(d̄kγ

µPRdl)

+ (βLQijkl − β
LτQ
ijkl )(¯̀

iγ
µPL`j)(ūkγ

µPLul)

+ (βLQijkl + βLτQijkl )(¯̀
iγ
µPL`j)(d̄kγ

µPLdl) , (3.7)
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with PL/R = 1
2 (1∓ γ5), and

αAij = [U†aAV ]ij , γ1
ij =

∑

m,n

[V †]imVnj c
1
mn ,

ηij =
∑

n,m

[U†]imhmnVnj , γxij =
∑

m,n

[U†]imUnj c
x
mn (x = 2, 3) ,

βLLijkl =
∑

m,n,o,p

[U†]imUnj [U
†]koUpl b

LL
mnop , βFF

′

ijkl =
∑

m,n

[M†]inMnj [M
′†]kmM

′
ml b

FF ′

ml . (3.8)

Here aAij = cWa
B
ij−sWaWij ,M (′) ∈ {U, V, Uu, V u, Ud, V d} are the appropriate flavour rotation

matrices for the fermion F (′), and a similar definition applies to βLτQijkl . In the the quark
sector, we apply the identical definitions. We find for the effective Lagrangian in the quark
sector

Ldim6
Quark → Lbroken

Quark =
αAqij + αAqji

?

2

v√
2

(d̄iσ
µνdj)Fµν +

αAqij − αAqji
?

2

v√
2

(d̄iσ
µνγ5Dj)Fµν

+ αgij
v√
2

(d̄iσ
µνTAdj)G

A
µν + βDDijkl(d̄iγ

µTAPRdj)(d̄kγµT
APRdl)

+ βUUijkl(ūiγ
µTAPRuj)(ūkγµT

APRul)

+
∑

q1=u,d

β
Qq1D

ijkl (q̄1 iγ
µTAPLq1 j)(d̄kγµT

APRdl)

+
∑

q1=u,d

β
Qq1U

ijkl (q̄1 iγ
µTAPLq1 j)(ūkγµT

APRul)

+ β
Qq1Qq2
ijkl

∑

q1,q2=u,d

(q̄1 iγ
µTAPLq1 j)(q̄2 kγµT

APRq2 l), (3.9)

where we use use the abbreviation

βFF
′

ABCD = [RF ]†Ai[R
F ′ ]†Cjb

F ′F
ij RFiBR

F ′

jD (3.10)

with the appropriate flavour rotation matrices RF
(′)

for all quark four fermio operators.

3.2 Lepton low energy observables
The main observables considered for this thesis are the radiative transitions of the type
`1 → `2γ, the lepton conversion close to nuclei, and tri-lepton decays `1 → 3 `2. These
processes are usually studied in high intensity, low energy set-ups. The typical energy release
of the process is the mass of the initial (charged) lepton, a muon or a tau. Our strategy is
to construct an effective low energy langrangian out of the at the electroweak scale defined
dimension six Lagrangian of the last section. The constuction is done by integrating out
the heavy gauge-bosons and quarks and the fluctuations associated with scales above the
charged lepton mass. For µ → eγ, muon conversion and µ → 3e such low-energy theories
have been discussed in great detail in the literature, see e.g. [94, 95], and especially [96].
We follow [96] and consider first the determination of the muon g-2 and the radiative decay
µ→ eγ. We use the Lagrangian

L`i→`jγ =AR ijmi
¯̀
jσ
σρFσρPR`i +AL ijmi

¯̀
jσ
σρFσρPL`i + h.c. , (3.11)
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where our convention for AL,R and gi below differs from [96], Eq. (54) by the factor
−4GF /

√
2 and complex conjugation. In order to incorporate directly at this step lepton

conserving transitions we generalised the Lagrangian [96] to arbitrary initial and final lep-
ton states. The label i and j denote the lepton flavour (i,j = e µ τ), i.e. for the process
µ→ eγ one has to consider calculate the coefficients AL,Rµe. This Lagrangian is supposed
to be valid at scales below the mass of the lepton of the generation j—all quantum fluc-
tuations involving leptons have been integrated out and have been absorbed into the two
coefficients of the dipole operators. In fact instead of this Lagrangian we might just as
well consider the general U(1)em invariant vertex function for on-shell fermions (the photon
momentum q is ingoing)

Γµij(p, p
′) = ieQ`ūi(p

′, s′)

[
γµF1 ij(q

2) +
iσµνqν

2mi
F2 ij(q

2) +
σµνqν
2mi

γ5F3 ij(q
2)

+
(
q2γµ − /qqµ

)
γ5F4 ij(q

2)

]
uj(p, s) . (3.12)

The on-shell dipole form factors of the electromagnetic muon-electron vertex are related to
the coefficients AL and AR by

AR ij =
Q`e(F2 ij(0)− iF3 ij(0))

4m2
i

AL ij =
Q`e(F2 ij(0) + iF3 ij(0))

4m2
i

, (3.13)

where Q` = −1 is the electron charge in units of the positron charge e.
Using these results we can directly express the g-2 and the electric dipole moment of an
arbitrary lepton as

ai = −4
m2
i

e
Re(AR ii) (3.14)

di = mi Im(AR ii) (3.15)

Up to terms suppressed by powers of the `j mass the branching fraction `i → `j γ can be
written as [96]

Br(`i → `j γ) =
m5

i

4πΓi
(|AL ij|2 + |AR ij|2) . (3.16)

Here Γi is the total decay width of `i, where i = µ, τ
The process µ→ 3e is described by the extended Lagrangian [96]

Lµ→e/3e = ARmµ
¯̀
eσ
σρFσρPR`µ +ALmµ

¯̀
eσ
σρFσρPL`µ

+ g1
¯̀
ePR`µ ¯̀

ePR`e + g2
¯̀
ePL`µ ¯̀

ePL`e

+ g3
¯̀
eγ
νPR`µ ¯̀

eγνPR`e + g4
¯̀
eγ
νPL`µ ¯̀

eγνPL`e

+ g5
¯̀
eγ
νPR`µ ¯̀

eγνPL`e + g6
¯̀
eγ
νPL`µ ¯̀

eγνPR`e + h.c. . (3.17)

For convenience we dropped the general flavour notation at this part, i.e. the Wilson co-
efficients ALR satisfy the trivial relation ALR = ALRµe. The generalisation to arbitrary
flavours is straightforward. Note that the coefficients AL,R and gi have mass dimension −2.
The appearance of the same coefficients AL,R as in (3.11) indicates that all quantum fluctu-
ations are again integrated out. In practice, absorbing e.g. electron loop diagrams involving
a four-fermion operator into AL,R and into a loop correction to the gi is convenient as we
do not have to treat the different lepton flavours separately. In particular, in writing (3.17)
the effect of the off-shell (q2 6= 0) form factors in (3.12) is absorbed into the gi coefficients
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(see the [96] for details). In any case, since this represents a loop correction to the Wilson
coefficients, which are already generated at the tree-level, we neglect these effects in our
calculation.

The branching fraction of µ→ 3e can easily be expressed through the coefficients gi and
AL,R [96]:1

Br(µ→ 3e) =
m5
µ

1536π3Γµ

[ |g1|2 + |g2|2
8

+ 2(|g3|2 + |g4|2) + |g5|2 + |g6|2

− 8eRe [AR(2g∗4 + g∗6) +AL(2g∗3 + g∗5)]

+ 64e2(ln
mµ

me
− 11

8
)(|AL|2 + |AR|2)

]
(3.18)

with Γµ the muon decay width. The first line arises from tree-level KK exchange in the RS
model, while the second and third involve the loop-induced dipole operator coefficients. One
reason to keep the contribution of the loop-induced dipole operator here is the significant
enhancement factor (ln

mµ
me
− 11

8 ). This argument might be misleading at first glance as
one-loop corrections to the gi may have a similar logarithmic enhancement. However one-
loop contribution to the gi induce only small shifts to the coefficients without altering the
general expression. The loop suppressed contributions of the dipole operator on the other
hand induce a sensitivity of the processes to other aspects of the underlying theory. In RS
models AL,R have a specific dependence on the Yukawa couplings, which can provide an
important contribution to the branching fraction in sizeable parts of the model parameter
space. In these regions the effect of AL,R should not be neglected, as it will significantly
alter the signatures of the RS model in flavour observables.

Muon conversion in nuclei is mediated by both, operators containing quark fields and
electromagnetic dipole operators. The effective Lagrangian is [96,97]

LµN→eN = ARmµ
¯̀
eσ
σρFσρPR`µ +ALmµ

¯̀
eσ
σρFσρPL`µ

+
∑

q=u,d

cqV R
¯̀
eγ
νPR`µq̄γνq +

∑

q=u,d

cqV L
¯̀
eγ
νPL`µq̄γνq

+
∑

q=u,d,s

mqmµ

M2
H

cqSL
¯̀
ePR`µq̄q +

∑

q=u,d,s

mqmµ

M2
H

cqSR
¯̀
ePL`µq̄q

+
αsmµ

M2
H

cLgg
¯̀
ePR`µG

A,σρGAσρ +
αsmµ

M2
H

cRgg
¯̀
ePL`µG

A,σρGAσρ + h.c. .(3.19)

Here MH denotes the Higgs mass, and GAµν is the gluon field strength tensor. We do not
include operators with pseudo-scalar, axial vector or tensor quark currents. Their contri-
butions are suppressed by the nucleon number conservation of the target nuclei and can be
neglected. We also neglect the strange quark contribution in the vector operators, since the
coefficient is not enhanced by the strange-quark mass. The conversion branching fraction
depends on properties of the nucleus that participates in the reaction. The expression, taken
from [95,97] and adjusted to match our conventions, is

Br(µN → eN) =
m5
µ

4Γcapture

∣∣∣∣ARD + 4

[
mµmp

M2
H

(
C̃pSL−12πC̃pL,gg

)
Sp + C̃pV LVp

+ {p→ n}
]∣∣∣∣

2

+ {L↔ R} , (3.20)

1The sign of the interference term (second line in (3.18)) depends on the convention for the covariant
derivative. In the convention of [96] the sign is ‘+’. This is compensated by the Wilson coefficients AL,R,
the sign of which is also convention dependent.
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p1

p2 p3

p4

γx η

Figure 3.1: Left: Matching of LFV couplings of the Z-boson onto four-fermion operators in
the low-energy theory. Right: Higgs exchange diagram that contributes to g1,2 and cqSR/L.

where Γcapture is the total muon capture rate for nucleus N . The coefficients D,Vp/n,Sp/n
(the superscript refers to the proton and neutron) encode properties of the target nucleus,
see [95]. The tilded coefficients are defined as

C̃pSL =
∑

q=u,d,s

cqSLf
p
q , (3.21)

C̃pL,gg = cLggf
p
Q, (3.22)

C̃pV L =
∑

q=u,d

cqV Lf
p
Vq
, (3.23)

and analogously for the p→ n and L→ R cases. The form factors fp,nq and fp,nVq parametrise
the coupling strengths of the quark scalar and vector currents of flavour q to nucleons, re-
spectively. fp,nQ represent the scalar couplings of heavy quarks (c, b or t).
Following the expression of all in this thesis considered lepton observables in terms of the
effective low energy Lagrangians we now focus on the matching of the dimension six La-
grangian to the Wilson coefficients of the low energy Lagrangians. We start with the
tree-level matching of the four-fermion operators, which is straightforward. However the
four-fermion operators in (3.17), (3.19) also can be generated by lepton flavour Z-Boson
exchange `iγµPL,R`jZµ once the Z boson is integrated out , see Figure 3.1 . For example,
in case of µ→ 3e, the insertion of `eγµPR`µZµ evaluates to

iM = iγ1
12

[
2s2
W − 1

2
ūe(p2)γµPRuµ(p1) ūe(p4)γµPLve(p3)

+ s2
W ūe(p2)γµPRuµ(p1) ūe(p4)γµPRve(p3) + Fierzed diagram

]
, (3.24)

which gives a contribution to g3 and g5.γ2,3 will lead to contributions to g4 and g6. Contri-
butions to cqV R follow analogously. Thus we find the relations:

g1 = g2 = 0 (3.25)

g3 =
1

T 2

(
s2
W γ

1
12 + βEE1211 + βEE1112

)
(3.26)

g4 =
1

T 2

(
2s2
W − 1

2
(γ2

12 + γ3
12) + βLL1211 + βLL1112

)
(3.27)

g5 =
1

T 2

(
2s2
W − 1

2
γ1

12 + βLE1112

)
(3.28)

g6 =
1

T 2

(
s2
W (γ2

12 + γ3
12) + βLE1211

)
, (3.29)
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p′p α

(a)

p′p β

(b)

p′p γx

(c1)

p p′γx

(c2)
p′p γ3

(d1)

p p′γ3

(d2)

p p′γx

(e1)

p p′γ3

(e2)

p′p γ3

(f1)

p p′p′γ3

(f2)

Figure 3.2: All tree and one-loop diagrams contributing to AL/R.

cuV R =
1

2T 2

[
βEu1211 + βEQ1211 +

1

2
γ1

12

(
1− 8

3
s2
W

)]
(3.30)

cuV L =
1

2T 2

[
βLQ1211 − βLτQ1211 + βLu1211 +

1

2

(
γ2

12 + γ3
12

)(
1− 8

3
s2
W

)]
(3.31)

cdV R =
1

2T 2

[
βEd1211 + βEQ1211 +

1

2
γ1

12

(
−1 +

4

3
s2
W

)]
(3.32)

cdV L =
1

2T 2

[
βLQ1211 + βLτQ1211 + βLd1211 +

1

2

(
γ2

12 + γ3
12

)(
−1 +

4

3
s2
W

)]
(3.33)

cqSL = − v√
2mµT 2

η12 (3.34)

cqSR = − v√
2mµT 2

[η†]12 , (3.35)

as well as [98,99]

cLgg = − 1

12π

∑

q=c,b,t

cqSL, cRgg = − 1

12π

∑

q=c,b,t

cqSR . (3.36)

Note that the expressions (3.36) result from the nucleus nucleus matrix element of 〈n| q̄q |n〉,
where q= s,b,t are heavy quarks. These matrix elements can be put in relation to the
gluon condensate matrix element via a triangle anomaly diagram, where the heavy quark
condensate decays to two gluons in the presence of the nucleus. With a heavy quark theory
expansion one can find [98]

mq 〈n| q̄q |n〉 = −2

3

αs
8π
〈n|GµνGµν |n〉+O

(
α2
s

m2
q

)
(3.37)

It should be noted that g1 and g2 receive contributions from the tree-level Higgs exchange
diagram, Figure 3.1 (right diagram), with an insertion of one flavour-changing Higgs operator
h¯̀
iPR`j+ h.c., but these are suppressed by powers of the electron mass (light lepton mass in

the general case) and we neglect them. The same diagram (with the two fermion lines on the
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right being quarks) also generates cqSL. Here we should comment on a (well-known) subtlety.
Naively, the operator L̄iΦEjΦ†Φ in (3.2) modifies the Yukawa interaction according to

yij√
2
h¯̀
iPR`j →

yij√
2
h¯̀
iPR`j − hij

3v2

2
√

2T 2
h¯̀
iPR`j (3.38)

after electroweak symmetry breaking but before flavour rotations. Here yij is not the SM
Yukawa coupling but the coefficient of the operator L̄iΦEj in the dimension-four Lagrangian.
However, the fermion mass matrix is also modified by dimension-six operator,

yijv√
2
→ mij =

yijv√
2
− hij

v3

2
√

2T 2
. (3.39)

Since the flavour rotation matrices U and V by construction diagonalise the modified mass
term mij , we have to rewrite the shift of the Yukawa couplings as (see also [49])

(
1√
2
yij − hij

3v2

2
√

2T 2

)
h¯̀
iPR`j →

(
mij

v
− hij

v2

√
2T 2

)
h¯̀
iPR`j . (3.40)

As a consequence the factor 3/2 in the flavour-violating Higgs interaction h¯̀
iPR`j + h.c. of

(3.7) must be replaced by 1 for the computation of cqSL, c
q
SR above.

The determination of the coefficients AL,R is more complicated. One can identify three
contributions: (1) from tree or one-loop diagrams involving the operators in the dimension-
six Lagrangian [28, 54]. All relevant diagrams are drawn in figure 3.2. Their contribution
has been already calculated in the naive dimensional regularisation scheme in [28], which
involves anti-commuting γ5 matrices. The only contributions missing in [28] are the diagrams
e1 and e2. We will not repeat this part of the calculation of [28] at this point. The diagrams
e1 and e2 are standard electroweak one-loop diagrams. The second contribution to AL,R
is coming from dimension-eight operators, which may become relevant if the dimension-six
contributions are suppressed. We will discuss them later specifically in the context of the
RS model. (This contribution can effectively be included via a modification of the aijB,W
Wilson coefficients.) (3) from enhanced two-loop “Barr-Zee type diagrams” with a flavour-
changing Higgs coupling [100], see [101] for a discussion in the context of µ → eγ. An
example diagram, which avoids the coupling of the Higgs boson to a light lepton through
the coupling to a top or gauge-boson loop, is shown in Figure 3.3. These terms are known to
give sizeable contributions in models where the Higgs interactions are the dominant sources
of new flavour violation. In the RS model this is generally not the case. Nonetheless we
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t̄ t

η

γ

Figure 3.3: Example of a Barr-Zee type diagram. The box denotes the insertion of the
lepton-flavour violating Higgs interaction. The internal gauge-boson can be a Z or a photon.

include these terms as they may become relevant in specific scenarios. We obtain2

miAR ij = αAji
v√
2T 2

−
∑

k=1,2,3

Q`e

16π2T 2
m`kβ

EL
jkki

− Q`e

3(4π)2T 2

(
s2
W

[
mi(γ

2
ji + γ3

ji) +miγ
1
ji

]
+miγ

2
ji −

3

2
miγ

3
ji −

3

2
miγ

1
ji

)

+ABZ

[
ηji

v2

√
2T 2

]
(3.41)

miAL ij = [αA†]ji
v√
2T 2

−
∑

k=1,2,3

Q`e

16π2T 2
m`kβ

EL
kijk

− Q`e

3(4π)2T 2

(
s2
W

[
mj(γ

2
ji + γ3

ji) +miγ
1
ji

]
+mjγ

2
ji −

3

2
mjγ

3
ji −

3

2
miγ

1
ji

)

+ABZ

[
η†ji

v2

√
2T 2

]
, (3.42)

where [101]

ABZ =
Q`eαem

√
2GF v

32π3

[
2NcQ

2
tf(rt)− 3f(rW )− 23

4
g(rW )− 3

4
h(rW )

− f(rW )− g(rW )

2rW
+

1− 4s2
W

4s2
W

{
1− 4Qts

2
W

4c2W
2NcQtf̃(rt, rtZ )

− 1

2
(5− s2

W /c
2
W )f̃(rW , rWZ)− 1

2
(7− 3s2

W /c
2
W )g̃(rW , rWZ)− 3

4
g(rW )

− 3

4
h(rW )− 1− s2

W /c
2
W

4rW

(
f̃(rW , rWZ)− g̃(rW , rWZ)

)}

− 1

4s2
W

(
D(3a)
e (rW ) +D(3b)

e (rW ) +D(3c)
e (rW ) +D(3d)

e (rW ) +D(3e)
e (rW )

+D(4a)
e (rZ) +D(4b)

e (rZ) +D(4c)
e (rZ)

)]
(3.43)

with rt = m2
top/M

2
Higgs, rtZ = m2

top/m
2
Z , rWZ = m2

W /m
2
Z , rW = m2

W /M
2
Higgs, rZ =

m2
Z/M

2
Higgs, and Nc = 3, Qt = 2/3. The functions f, g, h and f̃ , g̃ can be found in [101] and

2In practice, we can drop the terms proportional to the lighter lepton mass, here me.
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the functions DX
a in [102]. Note again that relative signs in (3.41), (3.42) depend on the

convention for the covariant derivative.

All expressions for µ→ 3e and µ→ eγ in this section can be trivially extended to τ → eγ
or τ → 3µ by exchanging the appropriate flavour indices, masses and widths. We note that
we do not take into account the running of the Wilson coefficients between the high and
the low scale in the lepton sector, see e.g. [92,103,104] for the anomalous dimensions of the
dimension-six operator basis.

3.3 Effective weak Hamiltonian

The typical energy release in a decay of the type B̄ → Xsγ is of the order of the b quark
mass and a typical scale choice is thus µb = MB/2 ≈ 2.6 GeV. From the Standard Model
calculation of b → sγ in the framework of the weak effective Hamiltonian, see [105] for an
overview, it is known that the RGE evolution from the weak scale µW ∼ MW down to µb
introduces sizeable operator mixing [106,107].
Our matching of the dimension six Lagrangian was done at the high scale T , which means
that QCD corrections are bound to be important. To evolve all operators to the low scale
we have two choices. The first choice is to pursue a two step matching calculation, where
we first evolve down from the unbroken dimension six Lagrangian at the high scale down to
a unbroken SM at the electroweak scale. At this point we have reached the standard initial
conditions for calculations within the SM, i.e. the next evolution to scale mb can be done
like for similar computations in the SM. The anomalous dimension matrix for the first step
can be found in [92, 103, 104]. Although this matching procedure seem to be more in the
spirit of a dimension six Lagrangian we will not pursue it here for this thesis. Instead we
transition to the “broken" operator basis at the high scale and then perform the evolution
down to the low scale in one step (taking into account the top-mass threshold). This one
step has the advantage of having a simpler “logistics" as we only need consider a single
RGE. Both strategies are valid and ultimately must be equivalent in a situation where no
additional dynamics between µKK and µW need to be taken into account.
However, for the specific process at hand the second option has the additional advantage that
the structure of the required evolution equations has been studied in some detail in [108].
While [108] ultimately focusses on scenarios with e.g. a flavour-changing Z ′, their operator
basis contains the full set of normal and colour-flipped four-quark operators. We therefore
choose to follow this approach.
Let us for clarity introduce the effective Hamiltonian at the high scale µKK , that is used
in [108]

H(b→s) = −4GF√
2
V ?tsVtb

[
∆C7γ(µKK)Q7γ + ∆C8g(µKK)Q8g + ∆C ′7γ(µKK)Q′7γ + ∆C ′8g(µKK)Q′8g

+
∑

A,B=L,R

∑

q=u,c,t,d,s,b

∆Cq1 [A,B](µKK)Qq1[A,B] + ∆Cq2 [A,B](µKK) Qq2[A,B]

+
∑

A,B=L,R

∆Ĉd1 [A,B](µKK) Q̂d1[A,B] + ∆Ĉd2 [A,B](µKK) Q̂d2[A,B]

]

(3.44)
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where the operators are given by

Q7γ =
emb

16π2
s̄ασ

µνPRbαFµν Q8g =
gsmb

16π2
s̄ασ

µνPRT
A
αβbβG

A
µν

Q′7γ =
emb

16π2
s̄ασ

µνPLbαFµν Q′8g =
gsmb

16π2
s̄ασ

µνPLT
A
αβbβG

A
µν

Qq1[A,B] = (s̄αγ
µPAbβ) (q̄βγµPBqα) Qq2[A,B] = (s̄αγ

µPAbα) (q̄αγµPBqα)

Q̂d1[A,B] = (s̄αγ
µPAdβ) (d̄βγµPBbα) Q̂d2[A,B] = (s̄αγ

µPAdα) (d̄αγµPBbα) (3.45)

with PL/R = 1
2 (1 ∓ γ5) as usual and α, β are colour indices. Note that while the usual

current-current and penguin operators

Q1 = (s̄αγ
µPLcβ) (c̄βγµPLbα) Q2 = (s̄αγ

µPLcα) (c̄βγµPLbβ)

Q3 = (s̄αγ
µPLcα)

∑

q=u,c,d,s,b

(q̄βγµPLqβ) Q4 = (s̄αγ
µPLcβ)

∑

q=u,c,d,s,b

(q̄βγµPLqα)

Q5 = (s̄αγ
µPLcα)

∑

q=u,c,d,s,b

(q̄βγµPRqβ) Q6 = (s̄αγ
µPLcβ)

∑

q=u,c,d,s,b

(q̄βγµPRqα) (3.46)

are not included in (3.44), they do enter the renormalisation group equations. This operator
basis is obviously non-minimal as e.g. Q1 and Qc2[L,L] are related via Fierz identities. As
we only consider the LO corrections due to new physics, this does not invalidate the RG
analysis [105]. In total we have to consider 70 operators. Fortunately, there are only a
few independent entries in the leading order (LO) anomalous dimension matrix. Most of
which can be taken from [109,110] once the different operator normalisation has been taken
into account3. The remaining entries (computed in the HV scheme) can be taken directly
from [108]. The anomalous dimensions matrix has the form




X1 X2 X3 0 0 0 0

0 X4 X5 0 0 0 0

0 0 X6 0 0 0 0

0 Y1 Y2 Y3 0 0 0

0 0 0 0 X4 X5 0

0 0 0 0 0 X6 0

0 0 0 0 Y1 Y2 Y3




, (3.47)

for the operator vector

~O = (Qcc, QP , QD Q
nn, Q′P , Q

′
D, Q

′
nn) , (3.48)

whereQcc are the operatorsQ1,2, QP the penguin operatorsQ3,4,5,6, QD the dipole operators
and Qnn all remaining operators of (3.45). Note that we uses the scheme independent
dipole operators Ceff7γ and Ceff8γ in this basis. That is important because our C7 and C8

are calculated in the NDR scheme, while the anomalous dimension is computed in the HV
scheme. Only after introducing the effective dipole operators after the inclusion of one-loop
four fermion corrections the whole computation becomes scheme independent [105]. Non
vanishing entries of the matrices X can be directly taken from [105] as they belong to the

3In [105] the corresponding operatorsQ1−8 are only rescaled by a factor of 1/4 compared to their definition
in (3.45),(3.46). The anomalous dimensions remain therefore the same.
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SM analysis. The matrices Y have been taken from [108]. With the anomalous dimensions
at hand, the renormalisation group evolution equation (RGE)

µ
d

dµ
Ci(µ) =

αs(µ)

4π
[γT ]ijCj(µ) (3.49)

can be solved in the standard way, provided the initial conditions at the high scale µKK
are known. As the anomalous dimension matrix γ is sparse, a basis where the evolution
is diagonal can be determined very efficiently. For the strong coupling constant we use
αs(MZ) = 0.1185 with decoupling of the top quark at mt = 170 GeV.

Once the evolution down to µb has been performed the result for the branching fraction
of B̄ → Xsγ can be obtained using the formula [108,111]

Br (B → Xsγ)|Eγ>1.6 GeV

Br (B → Xsγ)|SMEγ>1.6 GeV

=
1

|C7γ(µb)SM |2 +N

(
|C7γ(µb)|2 +

∣∣C ′7γ(µb)
∣∣2 +N

)
. (3.50)

Here we use a minimum photon energy of Eminγ = 1.6 GeV; the same as was used for the
HFAG world average. Here the constant N is a non-perturbative correction [112–115] and
we use N(Eγ = 1.6 GeV) = 3.6× 10−3.

Since we work in leading order in the new physics contribution, BSM effects only induce
a shift in the Wilson coefficients

C
(′)
7γ (µb)→

[
C

(′)
7γ (µb)

]
SM

+ ∆C
(′)
7γ (µb) . (3.51)

The SM value of the dipole coefficients

C7γ(µb) = −0.368 (3.52)

can be taken from [37]. The primed coefficient C7γ is tiny as it is suppressed by ms/mb and
can be neglected.
The last part for the determination of the B̄ → Xsγ is to find the initial conditions for the
RGE flow. They can be found by matching the dimension six Lagrangian at the high scale
T (3.9) to the weak Hamiltonian at the KK scale. Here we only explicitly give the matching
of the operator d̄iγµTAdiūjγµTAuj . After applying the Fierz algebra for the fundamental
SU(3)C generators

(
TA
)
ij

(
TA
)
kl

=
1

2

(
δil δjk −

1

Nc
δij δkl

)
(3.53)

we find

βDUsbququ s̄γ
µTAPRb q̄uγµT

APRqu = − 1

2Nc
βsbququ s̄γ

µPRb q̄uγµPRqu

+
1

2
βDUsbququ s̄αγ

µPRbβ (q̄u)βγµPR(qu)α

= − 1

2Nc
βDUsbququ O

qu
2 [R,R] +

1

2
βDUsbququ O

qu
1 [R,R] (3.54)

where a simple single sum over qu = u, c, t is implied.
Comparing (3.54) with (3.44), we obtain

4GFV
?
tsVtb√
2

∆Cqu1 [R,R](µKK) =
1

2T 2
βDUsbququ ,

4GFV
?
tsVtb√
2

∆Cqu2 [R,R](µKK) = − 1

2NcT 2
βDUsbququ .

(3.55)
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The remaining four-quark operators can be related to operators in the weak Hamiltonian in
the same fashion. For clarity, we have relayed the expressions for the Wilson coefficient of
(3.44) to the Appendix, see C.3.
To conclude this chapter we need to write down the matching of the dipole terms between
the dimension six Lagrangian (3.9) and (3.44). We find

4GFV
?
tsVtb√
2

Ceff7γ (µKK) = − 16π2

emb T 2
αγsb

v√
2
−
∑

q

Qqmq CF
mb T 2

βQDqbsq

4GFV
?
tsVtb√
2

Ceff, ′7γ (µKK) = − 16π2

emb T 2
[αγ ]†sb

v√
2
−
∑

q

Qqmq CF
mb T 2

βQDsqqb

4GFV
?
tsVtb√
2

Ceff8g (µKK) = − 16π2

gsmb T 2
αgsb

v√
2

+
∑

q

mq

2Ncmb T 2
βQDqbsq

4GFV
?
tsVtb√
2

Ceff, ′8g (µKK) = − 16π2

gsmb T 2
[αg]†sb

v√
2

+
∑

q

mq

2Ncmb T 2
βQDsqqb . (3.56)

Note that equation (3.56) includes a global minus sign. We had to include it to compensate
for the different the different covariant derivative definition of [105, 108]. All quantities on
the right-hand side of (3.56) are implied to be evaluated at the scale µKK .
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Chapter 4

Tree-level dimension-six operators

After setting up the computation off all low energy observables in terms of an effective
theory the next step is to match all Wilson coefficients to the 5d theory. In this chapter
we compute the explicit expressions for all tree-level induced Wilson coefficients of interest.
Here we distinguish between the four-fermion, Higgs-fermion and Yukawa type operators.
Throughout this chapter we use the 5D formalism as defined in section 2.3.3.

4.1 Four-fermion operators

The tree-level diagram contributing to the matching of the Wilson coefficients of four-fermion
operators is shown in generic form in Figure 4.1. The exchanged particle could be an off-shell
KK gauge-boson or a KK Higgs excitation. The latter vanishes for β → ∞ and can safely
be ignored. This can be verified by explicit analytic calculation, see Appendix B.4. The
gauge contributions in the minimal model were discussed at length in [28]. Most of these
results carry over to the custodially protected model. We only need to account for effects
that originate from the additional particles in the spectrum. The additional four fermion
operators like for example bijklLL can then be directly inferred from [28] and the effects from
the additional particles of the RSc spectrum by adjusting hypercharge and weak isospin
factors. Note that for example bijklLL also exhibits two contractions during the computation
of the associated matrix element, which give rise to an additional “t-channel” diagram.
In the custodial protected RS model, there is only one new possible diagram, that can
contribute to the four fermion operators. The reason for this is that an interaction with

Figure 4.1: Generic topology of 5D diagrams that give rise to the four-fermion operators
upon integrating out the exchanged particle. External states can be doublets or singlets.
Consequently the intermediate boson can be a G, B or ZX or the SU(2)W gauge-boson, if all
external states are doublets. Due to the chirality of the external states the fifth component
of the boson cannot propagate.
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CHAPTER 4. TREE-LEVEL DIMENSION-SIX OPERATORS

the new non-abelian gauge-bosons W 1,2
R always changes the SU(2)R quantum number of

leptons and quarks in such a way that at least one of the external fermion fields cannot be
a zero-mode. Only the ZX boson can modify the Wilson coefficients of tree-level operators
relative to their value in the minimal model. That is because the ZX is generated as a linear
combination of the W 3

R and the X like the B boson and shares therefore similar couplings
to the fermions. Note, that the fifth component of the ZX or any 5D gauge-boson cannot
appear as the external modes at each vertex have the same handedness. Since the external
momenta are always much smaller than the KK scale T we only need the expression for the
ZµX propagator in the limit of vanishing 4D momentum q:

∆pm(q → 0, x, y) =
i

2k

[
k2 min

{
x2, y2

}
− 1
]
. (4.1)

This expression can be directly computed via a simple Taylor series of the explicit expression
of the ∆pm propagator (A.48). Using this expansion the ZX contribution to the four-fermion
operator bLEij (L̄iγ

µLi)(ĒjγµEj) can be computed in the 5D formalism as

bLE ZXij = i (i g5X)
2 YL YE

4
T 2

1
T∫

1
k

1
T∫

1
k

dx

(kx)4

dy

(ky)4

(
f

(0)
Li

(x)g
(0)
Ej

(y)
)2

∆pm(q → 0, x, y), (4.2)

which can be integrated analytically. Using this result as well the results for the KK B boson
exchange [28] we find for bLEij (L̄iγ

µLi)(ĒjγµEj) the form

bLEij =
YLYE

4

[
g′

2 (
b0 + b1(cLi) + b1(−cEj ) + b2(cLi , cEj )

)
+ (g2 − g′2) b2(cLi , cEj )

]
(4.3)

with

b0 = −1

4

1

ln(1/ε)
, (4.4)

b1(c) = −1

4

(5− 2c)(1− 2c)

(3− 2c)2

ε2c−1

1− ε2c−1
, (4.5)

b2(cL, cE) = −1

2

(1− 2cL)(1 + 2cE)(3− cL + cE)

(3− 2cL)(3 + 2cE)(2− cL + cE)
ln

1

ε

ε2cL−1

1− ε2cL−1

ε−2cE−1

1− ε−2cE−1
. (4.6)

As in [28] we drop terms suppressed by the tiny ratio ε = T/k. Note that the coupling
constant gX of the ZX can be replaced by solving equation (2.82)

g2
X =

(
g2 − g′ 2

)
. (4.7)

Hence to determine the result for the minimal RS model we just have to set the coupling
gX to zero, i.e. drop the the (g2 − g′2) term in (4.3). Using these expressions the Wilson
coefficient of the operator

(
ĒiγµEi

) (
Ējγ

µEj
)
takes the form

bEEij =
YE
2YL

bLEij (cLi → −cEi) . (4.8)

Here and above YE and YL are the hypercharges of singlet and doublet lepton field, respec-
tively. Note that the additional factor of 1

2 is consequence of all external fermion legs being
the same leptons. This can be seen as follows: After applying the necessary contractions
using the effective field theory the exchange symmetry automatically generates a factor of
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two. However, the KK-Klein gauge-boson exchange between the fermion legs appears in the
second order of the standard time dependent perturbation theory. There the factor two of
the exchange symmetry is directly cancelled by the 1

2! factor coming from the second order
term in perturbation theory. Dividing the factor of two from the effective field theory side
then yields the additional 1

2 factor.
For the operator (L̄iγ

µLj)(L̄kγµLl) there are contributions from abelian ZX or B bosons as
above, and additionally from the exchange of a W boson. The abelian contribution due to
ZX , B exchange is given by

bLLijkl,B+Z =
YL

2YE
δijδkl b

LE
ik (cEk → −cLk) (no sum over i, k) (4.9)

The non-abelian bosons generate the operator
(
L̄iτ

AγµLi
) (
L̄jτ

AγµLj
)
, which is not part

of our basis, and has to be rewritten using the SU(2) Fierz identity
(
L̄iτ

AγµLi
) (
L̄jτ

AγµLj
)

= 2
(
L̄iγ

µLj
) (
L̄jγµLi

)
−
(
L̄iγ

µLi
) (
L̄jγµLj

)
. (4.10)

We then find the Wilson coefficient of (L̄iγ
µLj)(L̄kγµLl) to be

bLLijkl = bLLijkl,B+Z +
g2

4

(
b0 + b1(cLi) + b1(cLj ) + b2(cLi ,−cLj )

)
δilδkj

− g2

8
(b0 + b1(cLi) + b1(cLk) + b2(cLi ,−cLk)) δijδkl . (4.11)

The Wilson coefficients of the seven quark-lepton four-fermion operators are even simpler
to compute as there are never two identical fields and all operators but one,

(
L̄iγ

µτALj
) (
Q̄kτ

AγµQl
)
,

are generated via the exchange of an abelian gauge-boson. The result is

b`qij =
Y`Yq

4
g′

2
[
b0 + b1(s`c`i) + b1(sqcqj ) + b2(s`c`i ,−sqcqj )

]

+
Y`Y

X
q

4
(g2 − g′2)b2(s`c`i ,−sqcqj ) (4.12)

bLτQij =
g2

4
(b0 + b1(cQj ) + b1(cLi) + b2(cLi ,−cQj )) (4.13)

with ` ∈ (L,E) and q ∈ (Q,U,D). sf is −1 for a singlet fermion f and +1 for a doublet,
Yf is the hypercharge of fermion f , and Y Xq = T 3

R − 4 tan2 ΘW /(3(1 − tan2 ΘW )) with
T 3
R = {−1,−2, 0} for q = Q,D,U . The second line in (4.12) is only present in the custodially

protected model. The dependence on the 5D mass parameters of the quarks shows that
muon conversion depends not only on the model parameters of the lepton sector. However,
ultimately we only need operators which are built of light quarks fields after EWSB, and of
these only the quark-flavour diagonal part. Since both the up- and the down-quark sector
masses are hierarchical, the RS Froggatt-Nielsen mechanism generates hierarchical flavour
rotation matrices in the quark sector (see e.g. [23]). Consequently, the b2(cx, cy) terms—
the only terms that are simultaneously sensitive to 5D quark parameters and contribute to
the flavour-non-diagonal lepton couplings—are suppressed for light quarks, and we neglect
them. The only unsuppressed sources of LFV are then the terms b1(cLi) or b1(−cEi). For
the pure quark four fermion operators needed for the matching to the Lagrangian (3.3) we
only need to reuse the results above with adjusted prefactors to incorporate KK gluons
exchange. Because we only consider gluon KK exchange in the quark sector in this thesis
the Wilson coefficients look the same for both minimal as well as custodial RS model. We
find

bQDij = b0 + b1(cQi) + b1(−cDj ) + b2(cQi , cDj ), (4.14)
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Figure 4.2: Generic topologies that contribute to operators of the type Φ†iDµΦ (ψ̄iγµψj).
External fermion states can be either E or L. Intermediate and external gauge-bosons can
be abelian or non-abelian, the external Higgses are indicated by dashed lines.

The Wilson coefficients of all other operators are related to bQDij . They only differ by
symmetry factors that take into account the exchange of identical quarks and the potentially
different external wave functions f (0) and g(0). In particular, one finds

bQUij = bQDij {cDj → cUj} bQQij =
1

2
bQDij {cDj → −cQj} (4.15)

bDDij =
1

2
bQDij {cQi → −cDi} bUDij = bQDij {cQi → −cUi} . (4.16)

4.2 Higgs-Fermion operators

The tree-level matching coefficients of the Higgs-fermion operators Φ†i
←→
D µΦ (ψ̄iγµψj) follow

from the diagrams in Figure 4.2, where the ones with an external gauge field are related to
those without by gauge invariance.

The diagrams in the first row of Figure 4.2 have already been computed in [28] in the
minimal RS model. In the custodial protected model there are additional contributions
to the coefficients ca (a= 1, 2) via an exchange of a ZX boson. An exchange of W a

R (a=
1, 2) gauge-bosons would change one of the fermion final states to a non SM lepton field.
Therefore these gauge-bosons are also irrelevant just like for the four-fermion operators. The
additional contribution to c1 due the ZX exchange can be calculated via the integral

c1ZX = −i(i g5X)2YE
2
T 2

1
T∫

1
k

dy

(ky)4

(
g

(0)
Ej

(y)
)2

∆pm(q → 0, 1/T, y), (4.17)

Together with [28] we then determine the contribution to the ci from the first line of Figure
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4.2 to be caij = cai δij , a = 1, 2, 3 is given by

c1i =
g′2YE

8

(
1− 1

ln 1/ε
−
[

(1 + 2cEi)(5 + 2cEi)

(3 + 2cEi)
2

− 2(1 + 2cEi) ln 1/ε

(3 + 2cEi)

]
ε−2cEi−1

1− ε−2cEi−1

)

+
(g2 − g′2)YE

4

[
(1 + 2cEi) ln 1/ε

(3 + 2cEi)

]
ε−2cEi−1

1− ε−2cEi−1 , (4.18)

c2i =
g′2YL

8

(
1− 1

ln 1/ε
−
[

(1− 2cLi)(5− 2cLi)

(3− 2cLi)
2

− 2(1− 2cLi) ln 1/ε

(3− 2cLi)

]
ε2cLi−1

1− ε2cLi−1

)

+
(g2 − g′2)YL

4

[
(1− 2cLi) ln 1/ε

3− 2cLi

]
ε2cLi−1

1− ε2cLi−1 , (4.19)

c3i =
g2

8

(
1− 1

ln 1/ε
−
[

(1− 2cLi)(5− 2cLi)

(3− 2cLi)
2

− 2(1− 2cLi) ln 1/ε

3− 2cLi

]
ε2cLi−1

1− ε2cLi−1

)
.(4.20)

As in the case of the four-fermion operators the minimal RS model results can be obtained
by removing the terms proportional (g2 − g′2). The Wilson coefficients are independent of
the Higgs localisation provided the limit β →∞ is taken in the bulk Higgs case.

The diagrams in the second row of Figure 4.2 also exist, but it turns out that they are
numerically small compared to the previous contribution. Hence, we only give the explicit
expression for the minimal RS model:

δc1ij = − T 8

k8
gEi(1/T )gEj (1/T )F (cLk)Y †ikYkj (4.21)

δc2ij = δc3ij =
1

2

T 8

k8
fLi(1/T )fLj (1/T )F (−cEk)YikY

†
kj (4.22)

with

F (c) = − k
4

T 5

(1 + 2c) + (3− 2c)ε2−4c − (1 + 2c)(3− 2c)ε1−2c

(1 + 2c)(3− 2c)(1− ε1−2c)2
. (4.23)

A similar expression is found in the custodially protected model. The smallness of this
contribution arises from the zero-mode profiles of the light external leptons. We ignore
the Yukawa contributions δcaij in the subsequent analysis. These contributions might be
important for heavy quarks. However due to our restriction to the Kaluza-Klein gluons in
the quark sector, we dropped the associated Higgs operators directly at the beginning of the
formulation of the EFT.

4.3 Yukawa-type operators

The dominant contribution to the Wilson coefficient of the dimension-six Yukawa-like oper-
ators (Φ†Φ)L̄iΦEj is generated by diagrams of the type shown in Figure 4.3. In the minimal
RS model there is only one diagram as the two intermediate fermions must be a doublet
and a singlet lepton. In the custodially protected model both triplet fermions, T3 and T4,
can substitute the singlet.
The diagram in Figure 4.3 contains three Yukawas. Because such structures also appear for
Higgs exchange dipole transitions we consider this diagram in greater detail for the minimal
RS model.The contribution of the RSc, can be covered identical. The diagram expression is
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not well defined for an exactly brane localised Higgs. Therefore we adapt the box regulari-
sation of the Higgs width (2.64). Then the diagram can 4.3 can be written as

(
−i T

3

k4

)3

YiaY
†
abYbj

1
T∫

1−δ
T

dx

1
T∫

1−δ
T

dy

1
T∫

1−δ
T

dz

(
T

δ

)3

f
(0)
Li

(x)g
(0)
Ej

(z)(L̄i(p)Φ)PR

×∆Ea(q′, x, y)Φ†Φ∆Lb(q, y, z)PRE
j(p′). (4.24)

Next we decompose the 5D propagators into their chiral components using (A.9) for both
fermion propagators. Then the leading contribution to the (Φ†Φ)L̄iΦEj operator is gener-
ated by the term

(
−i T

3

k4

)3

YiaY
†
abYbj

1
T∫

1−δ
T

dx

1
T∫

1−δ
T

dy

1
T∫

1−δ
T

dz

(
T

δ

)3

f
(0)
Li

(x)g
(0)
Ej

(z)(L̄i(p)Φ)

×(Φ†Φ)d+F−Ea(0, x, y)d+F−Lb(0, y, z)PRE
j(p′). (4.25)

We perform here an expansion around zero external momenta. That is because we do not
want to keep terms with momentum scale below the KK scala. In the brane localisation
limit we let δ → 0. Therefore we can expand for small δ,the d−F+functions around the
IR-brane. To be more precise we expand d−F+

E (0, x, y) d−F+
L (p, y, z) around x ≈ 1

T , y ≈ 1
T

and z ≈ 1
T . The expansion around the the IR-Brane yields

d−F+
E (0, x, y) = d−F+

pm (0, x, y) =
ik4

T 4
θ (x− y) +O (δ) (4.26)

d−F+
D (0, y, z) = d−F+

mp (0, y, z) = − ik
4

T 4
θ (y − z) +O (δ) . (4.27)

Then setting the fermion zero mode functions for the limit δ → 0 we can directly perform
the vertex integrals

1
T∫

1−δ
T

dx

1
T∫

1−δ
T

dz

1
T∫

1−δ
T

dw

(
T

δ

)3

θ (z − x) θ (w − x) =
1

3
. (4.28)

Collecting the results we find then for the leading contribution to the Wilson coefficient hij

hij =
Ncs
3
× T 3

k4
f

(0)
Li

(1/T )[Y Y †Y ]ijg
(0)
Ej

(1/T ) (4.29)

where Ncs equals one in the minimal and two in the custodially protected model. Note that
this contribution is valid for bulk Higgs in the limit β → ∞ as well for an exactly brane
localised Higgs.

For completeness we remark that the diagrams in the second line of figure 4.2 also
contribute to the Wilson coefficient of (Φ†Φ)L̄iΦEj through derivative terms that can be
eliminated by the fermion equation of motion, such as /DLi = yijΦEj . In the minimal model
we find

δhij = −1

2

T 8

k8
gEl(1/T )gEj (1/T )F (cLk)yilY

†
lkYkj

−1

2

T 8

k8
fLi(1/T )fLl(1/T )F (−cEk)YikY

†
klylj . (4.30)
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Figure 4.3: Diagram topology that gives the dominant contribution to the operator
(Φ†Φ)L̄iΦEj .

Due to the appearance of the small SM lepton Yukawa matrix y this contribution is tiny. This
also holds true in the custodially protected model, and hence in the numerical analysis we
neglect this term. However, in studies of flavour violation involving third generation quarks
(notably top quarks) the contribution can be sizeable and must be included. However we
did not include the associated quark operator for our analysis in the quark sector, because
of our focus on the exchange of KK gluons in this thesis.
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Chapter 5

Loop-induced dipole operators

The dipole operators are generated by genuine 5D one-loop diagrams. We distinguish be-
tween two classes of diagrams—those with an internal gauge-boson exchange proportional
to one Yukawa coupling Y and those with Higgs exchange, which involve three Yukawa
couplings. Diagrams such as shown in Figure 5.1 below count as gauge-boson exchange,
since it involves only a single Y . Because we only need the electromagnetic dipole operator
for the lepton low energy transitions in this thesis, we reduce the number diagrams needed
for the one-loop coefficient aij by imposing that the external gauge-boson is a photon. In
addition, we set the Higgs doublet in the operators L̄iΦσµνEjBµν , L̄iτAΦσµνEjW

A
µν to its

vacuum expectation value. The complete set of non-vanishing diagrams can be found in [28]
for the minimal RS model. However part of this thesis was to repeat the dipole calculation
for the minimal RS model in order to test the numerical codes used for the more demanding
custodial RS model.

5.1 Internal gauge-boson exchange

We start the discussion with the gauge-boson contribution. In Figure 5.1 we have drawn
all possible diagram topologies contributing to the dipole operators at one-loop level in the
minimal and the custodial RS model. Note that each diagram topology contains at least
one Yukawa interaction in order to ensure the correct chirality of both external fermion
fields. In the lepton sector the possible particle content is displayed in the tables below.
The explicit expressions for all new non-abelian RSc diagrams, can be found in appendix
C.1. All other diagrams are either minimal RS diagrams, see [28] for explicit expressions, or
abelian diagrams with an ZX exchange. In this case they only differ by the different internal
gauge-boson propagator and the coupling constant gX from the minimal RS case

The one-loop dipole diagrams needed for B̄ → Xsγ can be derived directly from the
leptonic case. Because we consider only gluon exchange all topologies, which include a
Higgs-gluon coupling vanish. Because gluon exchange cannot change any SU(2) quantum
number all fields of the remaining diagrams are minimal RS model fields. Hence to adapt the
leptonic diagrams to the associated QCD diagrams we only have to adapt the appropriate
colour factors and for the topology W2 the internal fermion propagators. Since we focus
on gluon exchanges, the electromagnetic dipole operator gets only contributions from the
abelian topologies A1, A2, A3, A4, while the gluonic dipole operator additionally contains
diagrams generated with the topologiesW1, W2. Note that the inclusion of B, ZX , WL, WR

exchange can be done also easily using the leptonic results.

55



CHAPTER 5. LOOP-INDUCED DIPOLE OPERATORS

A1(
T i
4

)
3

x z

y

(
ξj1

)
22

y

A2(
T i
4

)
3

z

x

(
ξj1

)
22

x

y

A3(
T i
4

)
3

x

z

x

x

(
ξj1

)
22

A4(
T i
4

)
3

x

z

x

(
ξj1

)
22

x

A5
(
T i
4

)
3

x x

(
ξj1

)
22

z

A6
(
T i
4

)
3

x

z

x

(
ξj1

)
22

W1
(
T i
4

)
3

y

z

y

z′

x

(
ξj1

)
22

W2
(
T i
4

)
3

x

z

x

z′
(
ξj1

)
22

y

W3
(
T i
4

)
3

x x

(
ξj1

)
22

z

W4
(
T i
4

)
3

x

z

x

(
ξj1

)
22

W5
(
T i
4

)
3

x x

(
ξj1

)
22

z

W6
(
T i
4

)
3

x

z

x

(
ξj1

)
22

W7
(
T i
4

)
3

x x

z y

(
ξj1

)
22

W8
(
T i
4

)
3

x

z

x

y

(
ξj1

)
22

W9
(
T i
4

)
3

x

z z′

y

(
ξj1

)
22

Figure 5.1: All topologies with internal gauge-bosons that contribute to the matching of
the dipole operator Wilson coefficient at one-loop. Abelian topologies are labelled by A1-6,
non-abelian topologies by W1-10. Fermions represented by straight lines and Higgs bosons
by dashed lines. The final and initial fermions are always assumed to be (T4)3 and (ξ1)22—
the fields corresponding to the SM singlet and doublet. x, y, z, z′ label the species of the
internal propagators, see tables 5.1 and 5.2 for the the allowed particles.
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Table 5.1: Possible field configuration inside the loop of the abelian diagram topologies A1-
A6 in the lepton sector. A capital roman index on a gauge field indicates that both the
vector and the scalar fifth component are valid options, a small Greek index shows that only
the vector components may propagate.
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Table 5.2: Possible field configuration inside the loop of the non-abelian diagram topologies
W1-W8 in the lepton sector. A capital roman index on a gauge field indicates that both the
vector and the scalar component are valid options, a small Greek index shows that only the
vector components may propagate.
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liEj x z
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p′

Figure 5.2: Example diagram W1c. The label on each vertex denote the fifth coordinates,
which have to be integrated.

Compared to the tree-level Wilson coefficient matching the dipole coefficients contain pos-
sible SM contributions, which have to be removed as we are only interested in the effects
generated by heavy degrees of freedom of the 5D theory and we want to avoid double count-
ing. The double counting issue also appears in the low 4D momentum region, where the
propagators of KK modes can be shrunk to an effective vertices resulting a one-loop insertion
of an dimension six operator [28]. However, such contributions have already been added in
the effective theory, thus we have to select for the momentum integration only the region
around l ∼ T in order to avoid further double counting. We therefore follow closely the
strategy already formulated in [28]:

• Subtract all possible zero-mode gauge boson propagators of the diagram. If a 5D one-
loop diagram with gauge-boson exchange inside the loop contains a zero-mode gauge-
boson propagator, than the gauge-fermion vertices contain two fermion mode functions
and one zero-mode gauge-boson wave function in the Kaluza-Klein picture. Remember
that the zero-mode function of the gauge-boson is constant. Thus there are only two
fermion mode functions remaining, which contain a non-trivial coordinate dependence.
Thus all vertex coordinate integrals can be done directly via the completeness relations
of the fermions. Due to the initial and final states being SM zero mode states this
automatically fixes all fermion fields inside the loop to be also zero-mode fields. Thus
we can subtract any SM contribution to a given one-loop process by only working with
zero-mode subtracted gauge-boson propagators.

• Expand all propagators in the external fermion momenta p, p′. By doing so we only
keep the momentum regions that are of the order l ∼ T . This is important because
some gauge-boson diagrams contain contributions from tree-level operators [28] for low
four dimensional momentum. These contributions however have already been taken
into account by the one-loop diagrams with insertions of an operator that is generated
at tree-level.

5.1.1 Example Diagram

For illustration of the standard approach of the calculation let us compute a sample diagram.
For this purpose we selected the non-abelian RSc diagram W1c, which is generated via the
topology W9. For simplicity we work with an exactly brane-localised Higgs. In section 5.1.3
we will consider the case of a bulk Higgs. The diagram leads to the expression
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where p̂′ = p′ − l and p̂ = p − l. In the second step of (5.1) we have simplified the SU(2)
algebras and decomposed the fermion propagators into their chiral components, see for
example (A.6). Note that the fermion propagators explicitly depend on the SU(2)L × SU(2)R

indices in the custodial RS model. For the next step we explicitly insert the 5D gauge
propagator in its components in the Rξ gauge

∆µν
mp (p, x, y) = ∆mp (p, x, y) ηµν +

pµpν

p2

(
∆mp

(
p√
ξ
, x, y

)
−∆mp (p, x, y)

)
, (5.2)

where the expression for ∆mp can be found in (A.48). We expand all gauge propagators
around the external momenta p = p′ = 0

∆mp (p̂, x, y) = ∆mp (l, x, y)− 2p · l ∂l2∆mp (l, x, y) + . . . (5.3)
∆mp (p̂′, x, y) = ∆mp (l, x, y)− 2p′ · l ∂l2∆mp (l, x, y) + . . . (5.4)
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To match this diagram into the structure of the resulting amplitude for the dipole operator,
we only keep terms, that are proportional to pµ and p′. We find
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The RSc diagram W1c also appears for the gluonic dipole operator with an exchange of KK
gluon instead of the right-handed W bosons. The corresponding diagram expression can be
found by replacing the fermion and gauge-boson propagators.

∆mp → ∆ZMS

F−pmj → F−dj , F
+
mpi → F+

Qi
, (5.6)

where ∆ZMS is the zero-mode subtracted gauge boson propagator.It only remains to ex-
change the coupling constants and the correct colour factors. In this case, the whole ex-
pression has to be multiplied with −3

g3s 5

e g25
, where the factor three is generated by the colour

algebra fabcT aT b = i 3
2 T

c. Following a similar procedure every gluon exchange diagram can
be directly generated out of the expressions of diagrams contributing to the leptonic dipole
operator.
Expression (5.5) is still not in its final version. To continue we recall, that the photon
zero-mode wavefunction is constant. Thus in the Kaluza-Klein picture only the two mode
functions coming from the WR gauge propagators contain a non trivial dependence on the
fifth coordinate y. To see this recall that the gauge propagator can be written as an infinite
sum off massive 4d gauge propagators dressed with two Kaluza-Klein mode functions in the
KK picture. In this picture the dependence on the starting and end points fifth coordinates
of the vertices are contained in the gauge wave functions. Then the integration of the y
coordinate integral can be performed using the orthonormality relations (2.49). This leads
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Although the resulting expression looks more complicated than before, it turns out that for
the numerical integration, that the reduction of one coordinate integral increases the speed
of convergence as well as the the final numerical precision significantly. Therefore we perform
the photon vertex integration using the completeness relations of the mode functions when-
ever possible. As a non-trivial example let us consider the term ∆mp

(
l
ξ , x, y

)
∆mp (l, y, z)

of (5.5) for ξ 6= 1. Using the orthonormality conditions we compute
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Here the way back to the 5D picture is not straightforward, but it can be done by using a
partial fraction decomposition. The final result of this integral is

1
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k
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∆mp
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(5.9)

It is noteworthy that the limit ξ → 1 of this expression converges to result (5.7). However,
this limit cannot be taken continuously in a numerical program. As a consequence any
implementation of diagrams with non-abelian photon vertices that are analytic integrable
needs to separate the case ξ = 1 from general values of ξ.
Similar expressions can be found for all other combinations of propagators at a photon
vertex.
Note that the analytic photon vertex integration is not possible for diagrams with a vertex
that includes a photon, gauge-boson and Higgs boson field; examples for this case are any
diagram of the topologies W3 or W4 . However, these diagrams starts directly with only
one coordinate integral as all other vertices are being evaluated at the IR brane due to the
presence of the Higgs. Therefore it contains a relative simple integrand structure.
After integrating the photon vertex the terms proportional to pµ and p′µ are only equal to
each other for the case ξ = 1, for the general case both terms differ. As the amplitude of the
dipole operator has the form σµ νqν we consider only the symmetric combination (pµ+p′µ)/2.
The term proportional to p′µ−pµ = qν , which corresponds to an anapole moment that cannot
be measured experimentally [28], is discarded. The integrand proportional to (pµ + p′µ)/2
cannot be evaluated analytically. Here we have to perform a numerical integration, see
subsection 5.1.4.
In this thesis we work in the unbroken phase neglecting all 4D masses, that means the
on-shell condition p/X(p) = 0 for all external spinors X = L, E. However diagrams. that
include a mass insertion at an external line, have to considered carefully in this context.

61



CHAPTER 5. LOOP-INDUCED DIPOLE OPERATORS

2 3 4 5 6 7

0.96

0.98

1.00

1.02

1.04

Ξ

2 3 4 5 6 7

0.96

0.98

1.02

1.04

1

Ξ

Figure 5.3: Left panel: Residual dependence of aij on the gauge parameter ξ normalised on
the value of aij for ξ = 2 in the minimal RS model (the error bars indicate the numerical
uncertainties as estimated by our integration routines ). Right panel: Residual dependence
of the RSc contribution to aij on the gauge parameter ξ normalised on the value of aij for
ξ = 2

For such diagrams it is in principle possible for the external propagator to be an off-shell
zero-mode propagator. As an example let us consider the external leg of the a diagram of
the topology A3 for a brane Higgs

. . .∆Li(p, x, 1/T )PRE(p) = . . .− F+
Li

(p, x, 1/T )p/PRE(p) + . . . d−F+
Li

(p, x, 1/T )PRE(p).

(5.10)

If one inserts into the first term the zero mode propagator

F+
Li

(p, x, 1/T ) = f
(0)
Li

(x)
−i
p2
f

(0)
Li

(1/T ) + KKmodes, (5.11)

then we are not allowed to use directly p/PRE(p) = 0 to eliminate this term. That is because
an expansion of the propagators inside the loop with respect to the external momenta could
yield a factor of p/, which could cancel the p/

p2 term. That means for an external fermion
insertion that we always get additional terms. We denote these terms as off-shell terms,
while the term generated by the second term in expression (5.10) are called on-shell terms.
The external mass insertions are usually suppressed by a fermion mass and we therefore do
not need them consider for the matching of the dipole coefficient as they are numerically
small compared to the on-shell terms. However they are indeed import for the consideration
of the gauge invariance of the next sections

5.1.2 Rξ Gauge invariance and scheme independence

The dipole matching computation is done by using the naive dimensional regularisation
scheme and a Rξ gauge for the gauge-exchange contributions. Obviously at this point we
have to answer the questions, whether the whole matching computation is scheme indepen-
dent as well as gauge invariant. Let us first start the scheme independence. There we can use
directly the scheme independence results proven in [28], as our set of gauge diagrams is only
extended by the new particles introduced via the RSc model. To be more precise we note
that the scheme dependence in the minimal RS gauge exchange dipole operator is introduced
by the diagram W8 (W7) [28], where the name in the brackets is the name of the associated
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Figure 5.4: Residual dependence of aij on the gauge parameter ξ normalised on the value of
aij for ξ = 2 in the minimal RS model (the error bars indicate the numerical uncertainties as
estimated by our integration routines ). The red points only contain the on shell contribution,
while the blue points also the off shell contributions

topology of Figure 5.1. This diagram contains an 1/ε IR-pole [28] inside an ε evanescent
Dirac algebra in naive dimensional regularisation. In total the pole is of the form 1/ε × ε
and yields a finite scheme dependent term to aij . Note that the diagrams B1a (A1) and
B1b (A1) also contain IR poles [28]. However the resulting finite scheme dependent terms
vanish in the sum of both diagrams. This statement can be transferred directly to the RSc
equivalent of those two diagrams, as these only have a ZX propagator instead of a B boson
propagator with the same fermion propagators. The RSc equivalent to the minimal diagram
W8 is the diagram W8c see appendix C.1. Compared to the minimal diagram W8c only
includes fermion and gauge-boson fields without zero-mode fields. Therefore this diagram
cannot have 1/ε poles, which would generate a scheme dependence. In total the new RSc
diagrams contributing to the dipole operators do not introduce any new scheme dependence
into the Wilson coefficient. Note that the scheme dependence of the Wilson coefficient of
dipole operator in the minimal model is being cancelled by the one-loop four-fermion inser-
tions in the NDR scheme, we refer the reader to [28] for the complete calculation.
All gauge-boson diagrams included for the matching inherently depend on the Rξ gauge pa-
rameter, which was introduced to disentangle the mixing between the vector and scalar part
of the gauge-boson fields in the bilinear terms of the 5D Lagrangian. Because this parameter
is non-physical the complete sum of all diagrams with the same gauge-boson fields should
be gauge independent. [28] gives a complete analytic proof of the gauge invariance for the
abelian sector as well as for the sum of all minimal non-abelian diagrams. As the proofs for
both sectors do not need the explicit form of the 5D propagators they can be both directly
applied for the new abelian and non-abelian diagrams in the RSc sector. Especially the
proof for the gauge invariance of the abelian sector can be transferred immediately, because
the new abelian diagrams of the RSc model only differ by the gauge propagator, which does
not play any role in the proof. In our topology notation all abelian gauge dependent terms
cancel due to the relation of the hypercharges in the sum off all diagrams [28]

YL[A1]− YE [A3]− Yφ[A5] = −1 + 2− 1 = 0 . (5.12)
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Figure 5.5: Residual dependence of agij on the gauge parameter ξ normalised on the value of
aij for ξ = 2 in the minimal RS model (the error bars indicate the numerical uncertainties
as estimated by our integration routines ).

Thus in the abelian diagrams for the decay B̄ → Xsγ remain also gauge invariant. This con-
clusion can be seen via the gluon quark ”hypercharges”, which can be written as Y GL [A1] =
Y GE [A3] = 2 and Y Gφ [A5] = 0 for a Kaluza-Klein gluon gauge boson exchange.
In order to test the correctness of the numerical implementation we show the gauge invari-
ance of all sets of diagrams in the minimal as well as custodial RS model. This involves the
numerical calculation of the sum for different bulk mass parameters and for different values
of ξ. Note that after the expansion in the external momenta the sum off the integrals is only
gauge invariant after taking the sum of the on-shell and off-shell terms. However, in general
for a suitable choice of external bulk mass parameters the off-shell terms are smaller, than
the numerical precision and can therefore be neglected. Therefore, we mostly used only the
bulk mass parameters cL = −cE = 0.5478, for which the off-shell terms are negligible. In
spite of this, to provide a benchmark for the precision of our numerical implementation we
computed the abelian minimal and custodial RS diagrams with the non-physical bulk mass
parameters cL = −0.1 and cR = 1.1, where the off-shell terms become sizeable.
The residual dependence on the bulk mass parameters is shown in Figure 5.8 for the pa-
rameters cL = −cE = 0.5478. Here the minimal RS contributions are calculated in the
first implementation of the numerical code for this thesis, where the photon vertex is not
analytically integrated. For the RSc result on the other hand we already integrated the
photon vertex for arbitrary values of ξ. The comparison of the estimated errorbars shows
the significant improvement due to the photon vertex integration.
In Figure 5.4 we illustrate the residual gauge dependence of the sum off all abelian diagrams
for bulk mass parameters cL = −0.1 and cR = 1.1. In this region, the off-shell terms are not
small and have to be included in order to achieve a gauge invariant result.
We observe that the complete set of non-abelian RSc diagrams contains actually two subsets
of diagrams, whose sum is independent of the gauge parameter ξ. Using the names for all
non-abelian diagrams as defined in the appendix C.1, the sum of the diagrams W1c-W3bc,
W4c-W6bc times 1

2 and W11c-W13bc is gauge invariant as well as the sum of W4c-W6bc
times 1

2 and W7c-W10c. Physically the occurrence of two gauge invariant sets is not sur-
prising, because the first set of diagrams resembles the complete set of non-abelian diagrams
contributing to the gluonic dipole operator. With the numerical indication that our set of
diagrams is gauge invariant dipole matching calculation is done from this point on with
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Figure 5.6: Example diagram with internal KK Higgs modes.

Feynmann gauge ξ=1. For this choice of gauge parameter all
(

∆X

(
l
ξ , x, y

)
−∆X (l, x, y)

)

terms vanish for any kind of gauge-boson propagator X = ZMS, mp, simplifying the result-
ing integrands.

5.1.3 KK Higgs contributions
In the calculation of the gauge exchange contribution to the dipole operator we only consid-
ered a brane Higgs. However there still remains the question whether there are additional
contributions for a bulk Higgs scenario with a β localisation scheme. The presence of a bulk
Higgs introduces in principle the new scales T/δ and βT for gauge boson diagrams, which
contain at least one Higgs propagator. In [53] it was shown that the effect of this additional
momentum scale does not contribute to the gauge-boson exchange diagrams for δ → 0 (or,
equivalently, β →∞) when only the Higgs zero-mode is considered. For the bulk Higgs case
it still needs to be shown that the contribution of the infinite tower of Higgs KK modes
also vanishes for β → ∞. To this end let us examine the minimal RS diagram shown in
Figure 5.6. Up to a constant prefactor it is given by

µ4−d
∫
ddl l2

(2π)d

1
T∫

1
k

dzdxdy

k13z5x5y3
Y βij f

(0)
Li

(z)f
(0)
Ej

(x)Φ(0)(y)∆ZMS
Φ (l, z, y)F+

Li
(l, x, z)

∂

∂l2
∆ZMS
B (l, y, x) ,

(5.13)

For the explicit expressions for the zero-mode subtracted gauge-boson propagator ∆ZMS
B

and the fermion propagator F+
Li

we refer to the appendix of [28]. The Higgs propagator
∆Φ(l, z, y), its zero-mode subtracted version ∆ZMS

Φ (l, z, y), the Higgs zero-mode Φ(0)(y),
and the Yukawa coupling Y β are discussed in Appendix B.

We now show that the KK Higgs contribution is O(1/β) and therefore can be neglected
for large β. The Yukawa matrix Y β and zero-mode profile Φ(0)(y) both scale as

√
β. Since

the zero-mode profile is localised near the IR brane, the associated 5D coordinate integral
over y is effectively restricted to the interval [(1−1/β)1/T, 1/T ] of length 1/(βT ). Hence the
y integration introduces a factor of 1/β. The integration over y then compensates the factor
β from the product Y βΦ(0)(y) independent of the magnitude of the 4D loop momentum l.
For l� T and l ∼ T , the Higgs propagator scales as 1/β and, after a change of integration
variables from {x, y, z} to {y, y − z, z − x}, one finds that the integrand is dominated by
the region where the distance z− y is of the order 1/β (see also Appendix B.4). Putting all
factors together, we conclude that the integrand scales as 1/β2 for small loop momenta, and
hence the integral over these momentum regions also vanishes for β →∞. For loop-momenta
l of order βT , we can expand the fermion and boson propagator for large momenta, in which
case the expressions become simple and their dependence on the loop momentum can readily
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be extracted. For example the chiral component F+
L of the fermion doublet propagator has

the form

F+
Li

(l, x, z) =
1

2
k4w5/2x5/2

√
1

lw

√
1

lx
θ(w − x)

(
e

2l
T + e2lw

)
el(−

2
T −w+x)

+
1

2
k4w5/2x5/2

√
1

lw

√
1

lx
θ(x− w)

(
e

2l
T + e2lx

)
el(−

2
T +w−x) +O(

1

l
3
2

), (5.14)

where l is the absolute value of the Euclidean 4D momentum of the propagator. The Higgs
propagator is more complicated, but it can only depend on the scale βT and therefore scales
as 1/(βT ). We find that the product of all three propagators together with the derivative
∂/∂l2, which counts as 1/(βT )2, compensates the factor l5 ∼ (βT )5 from d4l l2 ∼ dll5.
We are then left with the two integrals over y − z and z − x. For l ∼ βT the integrand is
exponentially suppressed for |z−x| > 1/l and |y−z| > 1/l, and hence each of the coordinate
difference integration regions is effectively restricted to size 1/(βT ). We the find that the
total scaling of the integrand in this momentum region is ∝ 1/β2. The integral over dl can
only compensate one inverse power of β and we conclude that the integral over the region
l ∼ βT vanishes as well for β →∞. For very large loop momentum l� βT we can expand
all propagators. Now all bulk coordinate differences are constrained to be within about 1/l
(l is now the largest scale) and the 5D Higgs propagator scales as 1/l. This ensures the
convergence of the integral as the integrand vanishes as 1/l2 for l → ∞. The parameter
β only enters through the integral over y, which is cancelled by Higgs profile and Yukawa
coupling, hence the integrand is independent of β. This universal behaviour allows for a
straightforward determination of the contribution of the region l� βT :

∞∫

βT

dl

l2
=

1

βT
. (5.15)

Hence the integral over this region vanishes in the large β limit. Since this holds in all
regions, we conclude that KK Higgs contribution vanishes as 1/β.

This can be verified numerically as shown in Figure 5.7. The three curves correspond
to different values of β (10, 20 and 40, respectively). For better visibility all curves are
normalized to the maximum of the β = 10 curve. The maximum of the integrand is close to
l ∼ βT and exemplifies the 1/β2 scaling of the integrand in that region. For large modulus
of the (euclidean) loop momentum the three curves lie on top of each other consistent with
the β independent asymptotic expression. Consequently, the integral over l as well as the
contribution to the dipole operator coefficient vanishes for β →∞.

We can apply a similar analysis to all gauge-boson diagrams with at least one Higgs
propagator deriving the scaling to be 1/β. Hence the KK excitations of the Higgs are not
relevant for the gauge-boson contribution to the dipole operator.

5.1.4 Numerical evaluation
Even after integration of the photon vertex whenever possible, the remaining expression are
too complicated to be treated analytically. The integrand of the diagram W1c for example
consists after the photon integration out of 267 lines of code of complicated rational func-
tions of Bessel functions. Interestingly a recent paper on the matching of the quark dipole
operators [50] achieved to solve at least the momentum integration for some diagrams, by
rewriting the integrand as a derivative of the momentum, which then can be integrated
directly. However, this approach does not eliminate the need of numerical calculations, as
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Figure 5.7: Integrand as a function of the loop-momentum l for β = 10 (black, dotted),
β = 20 (blue, dashed) and β = 40 (green, solid). For clarity all curves have been rescaled
relative to the maximum of the integrand for β = 10. For loop momenta in excess of βT the
integrands show a universal 1/l2 behaviour.

the remaining vertex coordinate integrals still remain and even more as the boundary term
l→∞ cannot be performed analytically.
The numerical implementation of the dipole operator coefficients consists of a two step pro-
cedure. In the first step all diagram integrands are written down in terms of all propagators
in several Mathematica notebooks. Afterwards the explicit form of all propagators in terms
of Bessel functions is being inserted and the resulting Mathematica function converted into
a code with a C++ similar syntax using the method CForm. Note that for the numerical
implementation we perform a Wick rotation in the four dimensional loop momentum.
In the second step this C++ code of the diagram integrand is then being inserted into a
C++ function, which then has the possibility to evaluate the integrand for a sufficient large
parameter space. For the evaluation of the Bessel functions of the propagators in C++ we
employ the long double version of the BOOST C++ library 1. To perform the numerical
integration CUBA [116] is used. CUBA contains four different methods to perform numer-
ical integrations. As the number of integrand dimension is at maximum only three for our
purposes we choose the method Cuhre, which evaluates the integrands using Quadrature
rules. The other integration routines CUBA provides use different Monte Carlo integration
methods, however after several test we found Cuhre to be superior in terms of speed and
accuracy for the integrands appearing in this thesis. To use Cuhre one just needs to provide
the integrand in the correct C++ format, see [116], everything else is being done by the
package itself. CUBA automatically detects the number of CPU cores available and dis-
tributes the needed integral calls to all cores.
The accuracy and duration of the integration can be set for each integration call in CUBA.
The accuracy can be controlled to some degree by an internal calculated error estimate.
CUBA offers the possibility to stop the integration after it finds a certain relative error
estimation. For the purpose of dipole matching we tune CUBA to stop after an relative
error of 10−3 is being found. However the numerical error estimation has to be taken with
a grain of salt. Therefore, we additionally demand a computation of at least a minimum
of one million integrand evaluation to ensure good convergence, before the relative error

1http://www.boost.org/
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integration truncation can be applied. It turned out for some diagrams with less than tree
integration dimensions, that the error estimation of CUBA underestimated the numerical
error leading to a premature termination of the integration.
The actual integration is performed in two different runs in the C++ program. In the first
Cuhre integration run we integrate the momentum integral up to a value of 100T and over
the whole range of all coordinate integrals. The value for the upper momentum cutoff of
100T is chosen as a compromise. At this point the the integrand is already behaving asymp-
totic and the C++ routines are still able to compute the integrand reliably. A cut-off at
higher momentum scales would be of course desirable, but at such higher scales one enters
the domain where even long double precision is not good enough to handle the whole ex-
pression. At 100T all 5D propagators can be expanded into their asymptotic forms for large
loop momentum, which take the form

∆(l, x, y) = f(x, y)
1

l
el(x−y), (5.16)

where f(x, y) is a rational function of the fifth coordinates x and y. For almost all gauge-
boson diagrams the number of propagator are such, that the 1

l are cancelled by the loop
momentum factors in the numerator of the integrand. Then each vertex integral yields after
integration a factor of 1

l . Most minimal and RSc integrals have two vertex integrals, thus
after integration of the fifth coordinates the remaining loop integrand scales as 1

l2 in the high
loop momentum region. For diagrams with only one vertex integration the integral struc-
ture is such, that after bulk integration the integrand also scales as 1

l2 . Hence in the second
Cuhre run we just integrate the bulk integrations at a loop momentum of 100T . Because
the remaining integral scales asymptotic as described above, the value of the momentum in-
tegration from 100T to ∞ can be estimated to have the numerical value 100T × R2, where
R2 is the result of the second Cuhre run.
For the gauge invariance check, see the Figure 5.4, the integration routine as prescribed above
does not yield a sufficient accuracy to observe the cancellation of the gauge dependence of
the on-shell term with the cancellation of the residual gauge dependence of the off-shell
terms. To improve the accuracy we divided the first Cuhre run into a set of 2180 Cuhre
integrations over fixed loop-momentum values. These are used to construct an interpolation
grid for the l-integrand. The first 2000 points capture the structure of this integrand in
the interval l ∈ (0, 10T ). Then the remaining 180 cover the remaining momentum range
to 100T . The grid together with the asymptotic result are then used to construct an in-
terpolating function of the integrand for all values of l. As a final step, this interpolating
function is integrated with Mathematica. Obviously this approach is nothing less then a
simple increase of the minimum number of integrand evaluation. However this done in such
way, that the different Cuhre runs can be parallelised on different computer machines.
The final result of each diagram depends on the scale T and the SU(2)L doublet and singlet
bulk masses of the external fermion lines. For the numerical implementation we differen-
tiate between diagrams, which have the chirality changing Yukawa coupling at an exter-
nal fermion line, and diagrams, where the vev insertion via a Yukawa coupling is inside
the loop and not connected to an external line. The first kind of diagrams only depends
on one bulk mass, because one external wave function is evaluated on the brane and can
therefore be factorised. The latter contains two zero mode fermion functions, over which
the vertex integrals are performed. Thus these diagrams explicitly depend on a 2D grid
of bulk masses. points. We compute the gauge-boson exchange diagrams numerically
for T = 0.5 TeV, 1 TeV, 2TeV, 4TeV, 8TeV for bulk mass ranges of cL ∈ [−1.5, 0.8] and
cR ∈ [−0.8, 1.5] in the quark sector. In the lepton sector, we only need to compute a grid
for bulk mass ranges cL ∈ [0.4, 0.8] and cR ∈ [−0.8, −0.4]. The discrete spacing between
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two bulk mass points has the size 0.004 for diagrams, which effectively depend only on one
bulk mass parameter. For diagrams, which depend on both bulk mass parameters, we se-
lected a distance of 0.016 between two point of the 2D grid. One C++ implementation of an
arbitrary RS gauge exchange dipole diagram only calculates one specific bulk mass and T .
Such a computation takes for a typical diagram with two vertex coordinate integrals usually
about 7 minutes CPU time on a Pentium I7 950 CPU with the standard two step CUBA
implementation. To parallelise the whole computation, the complete grids for all diagrams
are distributed via the qsub system on the TU Munich theory group computer cluster, which
contains 1425 CPU cores in total.
While we cannot give an analytic result for the gauge-boson exchange dipole Wilson coeffi-
cient we can understand the numerical size by factorising all terms that combine to the 4D
Yukawa matrix before rotation to the mass basis:

agij = Yij
T 3

k4
f

(0)
Li

(1/T )g
(0)
Ej

(1/T )Aij = yijAij . (5.17)

Hence the function Aij depends only on the 5D bulk masses of the external fermion fields
with flavours i, j and the RS scales k and T . Aij can be interpreted as a measure of
the misalignment between the mass matrix of the lepton sector and the dipole coefficient
agij before rotation to the mass basis. If Aij were proportional to the unit matrix, no LFV
would be generated by the gauge-boson exchange diagrams. Figure 5.8 shows the result of the
numerical computation ofAij for the custodially protected model at the KK scale T = 1 TeV.
There is a small asymmetry in the dependence of Aij on the bulk mass parameters of the
external lepton fields, which arises from 5D diagrams with non-abelian gauge-bosons as
the W bosons do not couple equally to singlet and doublet fields. To reproduce the 4D
lepton mass matrix the bulk mass parameter cL of the doublet muon (electron) has to be
around 0.57 (0.66) and the masses of the corresponding singlets around −0.57 (−0.66), if
the SM mass hierarchy is carried by both singlet and doublets. As illustrated in the figure
the variation of Aij in this region is around ±(2–3) %. In an extreme case where e.g. all
singlets are “delocalised” with bulk mass parameter cE = −0.5, the bulk mass of the doublet
muon (electron) has to be around 0.64 (0.8), and the variation is less pronounced. For the
minimal RS model the dependence of Aij on the bulk mass parameters is slightly smaller
in the region of mass parameters relevant to muons and electrons than in the custodially
protected model [28, 53]. It follows that the gauge-boson exchange contribution αgij to the
dipole coefficient has smaller off-diagonal elements by a factor 30 to 50 compared to the
flavour-conserving diagonal entries the RS model has a built-in protection from large gauge-
boson induced LFV transitions. It is interesting to note that the variation of Aij increases
for decreasing absolute value of both bulk masses. Since typically the absolute values of the
5D bulk masses decrease with decreasing magnitude of the 5D Yukawa couplings, a smaller
absolute value of the 5D Yukawa couplings leads to more pronounced LFV transitions from
internal gauge-boson exchange in the Lepton sector.
Figure 5.8 also shows the the result of the numerical computation of AGij , that is the sum of
all gluon exchange diagrams contributing to the gluonic dipole operator in the convention
of (5.17). For quarks the potential range of the bulk masses is larger, than for the leptons.
That is because the the quark bulk masses have to generate the large bottom and top quark
masses. This can lead to bulk masses of the size of c3 = 0.1 for a right-handed up quark field
of the third generation. Thus we expect that the contribution of the gauge-boson exchange
in the quark sector can be larger for than in the lepton sector.
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Figure 5.8: Left panel: Contour plot of Aij in the custodially protected RS model in the
lepton sector normalized to its value for cL = |cE | = 0.7 as a function of the 5D mass
parameters cL and cE for T = 1 TeV, k = 2.44 · 1018GeV . Right panel: Same as above but
for the gluonic dipole operator AGij

5.2 Internal Higgs exchange

In contrast to the gauge-boson diagrams contributions contributing to the Wilson coefficients
of the dipole operator the Higgs exchange diagrams depend strongly on the 5D parameters
as well as the localisation scheme of the Higgs. In this section, we compute first the zero-
mode Higgs contribution to the dipole operator, afterwards we turn on the computation of
KK Higgs diagrams. In contrast to the gauge-boson diagrams the zero mode Higgs exchange
diagrams can be computed analytically. We will present this computation in detail in the
first two subsections. As described in section 2.3.4 we regulate the Higgs width using a
narrow box for the IR brane delta function

δ(z − 1/T ) = lim
δ→0

T

δ
Θ

(
z − 1− δ

T

)
. (5.18)

The final result of this computation can be found in the third subsection. In the fourth sub-
section we establish the direct relation between the naive narrow width localisation scheme
and bulk Higgs zero mode exchanges in the limit β → ∞. Finally, the last subsection is
devoted to the KK Higgs exchange calculation

5.2.1 On-shell zero-mode Higgs exchange

The Higgs exchange diagrams can be divided into six different topologies see Figure 5.9 . It is
therefore most effective to work on topology level as long as possible. In this section we will
calculate the on-shell zero mode Higgs exchange contributions to the dipole operator. For
most of the time we use the narrow width Higgs, however the computation of the topology
HT6 deserves a careful treatment of the Higgs localisation scheme, as it is the only topology,
which contains terms with right-chirality Higgs couplings. The on-shell contribution off all
other topologies is generated by wrong-chirality Higgs couplings only. Note that all diagrams
with wrong-chirality Higgs couplings vanish in the case of an exactly brane-localised Higgs.
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Figure 5.9: All Higgs exchange dipole topologies.

5.2.1.1 Topologies HT1 and HT2

We start the computation with the topology HT1 (C.21).
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w x
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d−F+
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(p, x, w)PRE

j (p) (5.19)

where cdiag represents the SU(2)L × SU(2)R factor, which has to be determined for each
diagram generated by this class independently. Since this expression is almost the same for
HT2 (C.22) we concentrate mainly on the topology HT1.
First we extract the coefficients of pµ and p′µ by expanding the F-functions, which depend
on the momentum p̂ = p− l and p̂′ = p′− l around the loop momentum l . Then we perform
the Dirac and Lorentz algebra keeping only pµ and p′µ terms. As an example the momentum
expansion of F−Y (p̂′, z, y) yields

F−Ya (p̂′, z, y) = F−Y (l, z, y)− 2p′ · l ∂p2 F−Ya (p, z, y)|p=l +O
(
p′2
)
, (5.20)
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HT1 X Y HT3 X Y

H1 ξ1 T4 H3 ξ1 T4

H5 ξ1 T3 H7 ξ1 T3

H9 ξ1 ξ2

HT2 X Y HT4 X Y

H2 ξ1 T4 H4 ξ1 T4

H6 ξ1 T3 H8 ξ1 T3

HT5 X Y HT6 X Y

H10 ξ1 T4 H11 ξ1 T4

H12 ξ1 T3 H13 ξ1 T3

H14 ξ1 ξ2

Table 5.3: All possible combination of leptonic Higgs exchange diagrams contributing to the
dipole operators. The names H1-H14 denote the labels of one diagram.

Using this kind of expansion for all F functions in (5.19) one finds the pµ and p′µ terms
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[
d−F+

Ya
(p̂′, z, y)F+

Ya
(p̂, y, x) γµ/̂p+ F−Ya (p̂′, z, y) d−F+

Ya
(p̂, y, x) /̂p

′
γµ
]

d−F+
Xb

(p, x, w)PRE
j (p)

.
= −

[
p′µ

4

d
l2∂p2 d

−F+
Ya

(l, z, y)F+
Y (l, y, x)

+pµ
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(p, x, w) L̄i (p′)PRE

j (p) (5.21)

where ·
= implies that we only keep terms in pµ and p′µ. To perform this step we used

the rotational invariance of the loop momentum in d dimensions under the loop integral
lν lµ = 1

dη
νµ, together with the anticommutator relation for the Dirac matrices {γµ, γν} =

2 ηµν 14×4. Further we used the massless Dirac equations

/pE
j (p) = 0 (5.22)

L̄i (p′) /p′ = 0 (5.23)

to remove some terms.
To compute the integrals analytically it is essential to decompose the F functions in (5.21)
into Kaluza-Klein mode functions using the mode expansions (A.9-A.12). We start the
integration by evaluating the coordinate integral over the photon vertex, which can be done
again by using the orthonormality conditions of the mode functions

1
T∫

1
k

dy

(ky)
4 f

(n)
X (y) f

(m)
X (y) =

1
T∫

1
k

dy

(ky)
4 g

(n)
X (y) g

(m)
X (y) = δnm. (5.24)

Recall that we can use this relation here because the zero-mode function of the photon
does not depend on the spacetime coordinate, which means that the only mode functions
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depending on the y-coordinate are inside the F-functions. Thus we get
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3 . (5.25)

The next step is to evaluate the integral over the loop momentum. Note that the complete
expression of the topology HT1 (5.19) includes a tern i

l2 coming from the Higgs propagator,
which we have to include to get the correct result. We compute then in the Kaluza-Klein
picture
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Note that we used [117] for the actual loop integration. The integral remains finite in the
limit d→ 4.
After performing the y integral and the loop integral the terms in (p′µ + pµ) of the topology
HT1 take the form
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For small δ, i.e. a almost localised Higgs bi-doublet, one can expand the d−F+functions
around the IR-brane. To be more precise we expand d−F+

Y (0, z, x) d−F+
X (p, x, w) around

x ≈ 1
T , w ≈ 1

T , z ≈ 1
T and p� T . Thus we employ the approximation

d−F+
Xb

(p, x, w) ≈ d−F+
Xb

(0, x, w) . (5.28)

The expansion around the the IR-Brane yields

d−F+
E (0, x, y) = d−F+

pm (0, x, y) =
ik4

T 4
θ (x− y) +O (δ) (5.29)

d−F+
D (0, x, y) = d−F+

mp (0, x, y) = − ik
4

T 4
θ (y − x) +O (δ) . (5.30)

We observe here that the leading terms in this expansion only differ in the sign, which
depends only on the IR-brane boundary conditions. All diagrams generated by HT1 contain
always a d−F+ coming from the ξ1 bi-doublet and a d−F+ coming from the T3⊗T4 triplet.
Thus we find

d−F+
Ya

(0, z, x) d−F+
Xb

(0, x, w) =
k8

T 8
θ (z − x) θ (w − x) +O (δ) . (5.31)
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Note that the leading order term of this expansion looses completely the dependence on the
generation indices.
Setting the zero mode functions of f (0)

li
(z) gEj (w) to the brane we can evaluate the remaining

coordinate integrals according to
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3
. (5.32)

Thus we find the final result of the linear terms in (p′µ + pµ) of the topology HT1
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Note that this expression remains finite in the limit δ → 0, which means on the other side
that the neglected O (δ) of the expansion (5.31) vanish for an IR-localised Higgs bi-doublet.
One can apply the same steps on the diagram topology HT2 to extract the analytic form
of the (p′µ + pµ) coefficient. This yields the same result as for the topology HT2 up to the
different cdiag.

5.2.1.2 Topologies HT3 to HT5

Like in the case of HT1 and HT2 the topologies HT3 and HT4 have similar expressions.
Hence we concentrate only on the expression for HT3 here.
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The calculation of the topologies HT3 (5.34) and HT4 (C.24) follows the same strategy as
for the topology HT1. First we expand both Higgs propagators around the loop momentum
l in expression (5.34). This leads to
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.
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)

(5.35)

where we used the rotational invariance of the loop momentum in d dimensions to derive
this result. Note that this expression depends linear in ε, which means that we need to get
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a 1/ε IR-pole coming from the loop integral to obtain a non zero result. Obviously the same
calculation done in d=4 dimensions would not yield the correct terms.
Since no F functions depend on the y coordinate in HT3 (5.34) and HT4 (C.24) the y
integration is trivial and yields δ

T . For the loop integral one has to calculate
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(5.36)

where we used the Kaluza-Klein decomposition (A.11). Introducing a Feynman parameter
the integral becomes

A =
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Observe that the Feynman parameter integral only exist, if d is larger than 4, i.e. ε < 0.
That means that we are extracting here the IR-pole of the loop integral as we wanted in the
beginning of the calculation. Inserting this result into the original integral yields

∫
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Thus we find for the terms linear in (p′µ + pµ) of HT3
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where the ε independent terms have the same form as the topologies HT1 and HT2. Hence
the further integration can be done the same way as for HT1. We derive the final answer
for the topology HT1 in the limit ε→ 0
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As for HT2 and HT1 we can apply the steps for for the calculation of the terms linear in
(p′µ + pµ) of HT3 onto the same terms of HT4. Therefore we derive for HT4 the result.
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75



CHAPTER 5. LOOP-INDUCED DIPOLE OPERATORS

The topology HT5 can be written as
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We note that the integrand structure is almost the same as for the topology HT3. Hence
this diagram topology can be computed in the same way as described above. Therefore, we
find for this diagram topology the result
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5.2.1.3 Topology HT6

Compared to the aforementioned Higgs exchange topologies the topology HT6 exhibits right
chirality Higgs couplings as well as wrong-chirality Hggs couplings. To write the expression
in a particular easy form we use in this part of the Higgs exchange computation a cut-off
regularisation.
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We already integrated the photon vertex in (5.43). In (5.43) the first term in the fermion
contains the right chirality contribution. Due to it being a total derivative we can integrate
the momentum integral directly to find
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where the boundary term for l=0 yields zero. To compute the boundary term l = Λ2 we
expand the remaining fermion propagators for large loop momenta l� T . The leading term
of this expansion does not depend on the IR brane boundary conditions of the propagator,
thus we do not have to specify the excact fermion fields and can still remain in the topology
notation. After inserting the expansion
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we find that the right-chirality term vanishes for the limit Λ → ∞ in the narrow bulk
Higgs localisation scheme, see section 2.3.4 for the exact definitions. This is due to the
introduction of an additional 1

l factor through the exponential functions in (5.45) after the
vertex integration. In the brane Higgs scenario, where we set δ → 0 before any other
regulators, the exponential is cancelled. In this case the high momentum expansion of the
F+/− functions simply yield

F+
Y (l, 1/T, 1/T ) =F−X (l, 1/T, 1/T ) =

i

l

k4

T 4
. (5.46)

Hence we find, that the l4 term is cancelled in the brane Higgs scenario. As the wrong-
chirality term vanishes the topology HT6 yields the value
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for an exactly brane localised Higgs.
For the solution of wrong-chirality term in HT6 we perform twice a partial integration with
respect to dl2 in d dimensions. This yields a ε

∫
dd l d−F+

Xk
(l, x, y)d−F+

Yh
(l, y, z) 1

l4 term,
which can be treated the same way as for the topologies HT3-HT5. We therefore just give
the final result of the topology HT6 without additional computations in the narrow bulk
Higgs scenario
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5.2.2 Off-shell zero-mode Higgs exchange contribution

All Higgs exchange diagrams with a mass insertion on an external line, also contain con-
tributions coming from off-shell zero-mode propagators adjacent to the Yukawa coupling.
Thus the topologies HT1, HT2, HT3 and HT4 contain also off-shell contributions, which
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have to be computed. We consider first the off-shell terms of the diagram topology HT1.
These can written as
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To compute it we follow the same strategy as for the on-shell contributions. The difference
to the on-shell case is the factor /p

p2 , which has to be removed by an additional /p factor. To
find all terms doing this it is necessary to expand the F functions to second order in the
momentum, e.g. for F−Y we would write
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The d−F+
Ya

(p̂′, z, y) d+F−Ya (p̂, y, x) γµ term cannot generate a /p factor, thus it does not con-
tribute to the dipole coefficient. For the F−Ya (p̂′, z, y)F−Ya (p̂, y, x) term we rewrite first the
/̂p
′
γµ/̂p/p factor

/̂p
′
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′γµp
2 − /p′γµ/l/p− /lγµp2 + /lγµ/l/p. (5.51)

Note that the terms /p′γµp2 − /p′γµ/l/p are not relevant in the following calculation, because
the term /p

′γµp2 cannot remove the global /p factor and one cannot remove the /p′ factor in
/p
′γµ/l . The term /lγµp

2 can only generate a term proportional to pµ with a O (p · l) term
coming from the Taylor expansion from the F functions. The term /lγµ/l/p needs terms of

the order O
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)
or O ((p · l) (p′ · l)) to contribute to the coefficients of (p+ p′)µ. This

yields for the (p+ p′)µ coefficient of the off-shell part of HT1
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Because the propagator connecting the external Higgs emission to the loop was replaced
by a zero mode propagator, zero mode fermion propagators inside the loop would make
this diagram topology a standard model contribution. Thus we consider only zero-mode
subtracted F−Y functions. This problem only appears in the diagram of the minimal RS
model, because the fermions propagating in loops of pure RSc diagrams do not have a zero-
mode due to their mixed boundary conditions.
As for on-shell contribution, we integrate first over the photon coordinate integral and then
the loop momentum integral. Using the Kaluza-Klein decomposition (A.10) we find
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The factor l2

(l2−m2
n)2

is the same as for the on-shell case, i.e. we can recycle most of the result
(5.26). We find
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For the the l4
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Adding both integral results we compute

−i
(

2p′µ + 4pµ

9 · 32π2
− pµ

32π2

)
F−ZMSYa (0, z, x)

=

[
+i

1

192π2

(
pµ + p′µ

)
+ i

7

576π2

(
pµ − p′µ

)]
F−ZMSYa (0, z, x) . (5.56)

79



CHAPTER 5. LOOP-INDUCED DIPOLE OPERATORS

Thus after these steps the
(
pµ + p′µ

)
coefficient of the off-shell terms of HT3 (5.49) becomes
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To perform the remaining integrals we expand F−ZMSYa and all mode functions around around
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of HT3 can be written as

− cDiag
(
Y
)
ia

(
Y †
)
ab

(
Y
)
bj
ε∗µf (0)

li

(
1

T

)
f (0)
γ gEj

(
1

T

)
f

(0)
lb

(
1

T

)
f

(0)
lb

(
1

T

)

L̄i (p′)
1

192π2
F−ZMSYa

(
0,

1

T
,

1

T

)(
pµ + p′µ

)
PRE

j (p) . (5.57)

For the off-shell contribution of the topology HT2 we can use the same steps as above by
applying the rules
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This leads to the following expression for the off-shell terms of (pµ + p′µ) for HT2
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We deal with the off-shell terms of HT3 and HT4 using the same strategy as for the diagram
topology HT1. The off-shell contribution of the diagram topology HT3 is again
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To eliminate the /p term we expand both Higgs propagators to second order and then only
collect only terms, which will be proportional to pµ or p′µin the end of the calculation. The
relevant terms are
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As usual we used rotational invariance of the loop momenta in d-dimensions to derive this
result. Inserting d = 4− 2ε we find then for the relevant (p+ p′)µ coefficient
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Note that this O (ε) term has the same for as for the on-shell case of this topology (5.35).
Thus we can reuse the loop integral off the on-shell contribution here. As in the case of the
topology HT1 we have to remove the possible zero modes. The loop integral gives
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Putting everything together the off-shell term of HT3 proportional to (p+ p′)µ yields
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To perform the remaining integrals we expand F−ZMSY and all mode functions around around
w ≈ 1

T , x ≈ 1
T , and z ≈ 1

T . We find as the final result

cDiag
(
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)
ia

(
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)
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(
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)
bj
f

(0)
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(
1

T

)
f (0)
γ gEj

(
1
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)
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(0)
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(
1
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f

(0)
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(
1
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)

×ε∗µ (p+ p′)µ
1

96π2
F−Ya ZMS

(
0,

1

T
,

1

T

)
L̄i (p′)PRE

j (p) . (5.65)

Again this result can at once be adapted to the topology HT4 by applying the rules

p′µ → pµ pµ → p′µ

F−ZMSY → F+
ZMSX f

(0)
li

(x) f
(0)
li

(w)→ g
(0)
Ej

(z) g
(0)
Ei

(w) . (5.66)

We find
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)
f (0)
γ gEj

(
1

T

)
g

(0)
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(
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(0)
Ea

(
1

T

)

×ε∗µ (p+ p′)µ
1

96π2
F−Xb ZMS

(
0,

1

T
,

1

T

)
L̄i (p′)PRE

j (p) . (5.67)
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5.2.3 Zero-mode Higgs exchange matching
With the complete computation of all Higgs exchange diagrams at hand we can now perform
the matching of the Higgs exchange diagrams to the dipole coefficients. To do this one has
simply to compute all SU(2)L × SU(2)R group factors for each diagram and insert the
correct factor cdiag. Note that the propagators of the RSc T 4 triplet fermions have a non-
trivial dependence on the SU(2)R quantum number, which complicates the group factor
computation slightly. All group factors can be found for all leptonic diagrams Appendix
C.2.
Let us now collect the Higgs exchange results for a narrow bulk Higgs in the leptonic sector
of the minimal RS model

aγij
∣∣
Higgs

=
e

192π2

T 3

k4

T 8

2k8
Qe (FL − FE)

+
e

192π2

T 3

k4
Qe f

(0)
Li

(1/T )[Y Y †Y ]ij g
(0)
Ej

(1/T ), (5.68)

where the FX (X= E, L) are abbreviations for

FE = f
(0)
Li

(1/T )[Y ]ikF (−cEk)[Y †]khf
(0)
Lh

(1/T )2[Y ]hjg
(0)
Ej

(1/T )

FL = f
(0)
Li

(1/T )[Y ]ikg
(0)
Ek

(1/T )2[Y †]khF (cLh)[Y ]hjg
(0)
Ej

(1/T ) . (5.69)

The function F (cLk) is up to terms linear in T
k equal to F−ZMSLk

(
0, 1

T ,
1
T

)
. It can be found

in equation (4.23).
In the custodially protected model the Higgs contribution to the leptonic dipole is given by

aγij
∣∣
Higgs

=
e

192π2

T 3

k4

T 8

2k8
Qe (FL + FT3

− Fd + 2Fu)

+
e

192π2

T 3

k4
2Qe f

(0)
Li

(1/T )[Y Y †Y − YνY †ν Y ]ij g
(0)
Ej

(1/T ), (5.70)

where we introduce the additional abbreviations

FT3
= f

(0)
Li

(1/T )[Y ]ikFT3
(cEk)[Y †]khf

(0)
Lh

(1/T )2[Y ]hjg
(0)
Ej

(1/T )

Fu = f
(0)
Li

(1/T )[Yν ]ikF (−cEk)[Y †ν ]khf
(0)
Lh

(1/T )2[Y ]hjg
(0)
Ej

(1/T ). (5.71)

Here [Yν ] is the u type Yukawa matrix, which generates the tiny masses of the zero-mode
neutrino fields. FT3

equals the function F+
pmLk

(
0, 1

T ,
1
T

)
. A simple Taylor expansion yields

FT3(c) =− k4

T 5

1− ε1−2c

1− 2c
, (5.72)

with ε = T/k. The associated dipole elements for the the Higgs exchange for an exactly
brane localised Higgs are generated simply by dropping the wrong-chirality contributions
proportional to [Y Y †Y ] in (5.68) for the minimal RS model. In the custodial RS model this
approach only partially leads to the correct result. In the case of a brane Higgs we also need
to add the right-chirality contribution from the diagrams generated by the topology HT6.
We find for a brane Higgs in the custodial protected RS model

aγij
∣∣
Higgs

=
e

192π2

T 3

k4

T 8

2k8
Qe (FL + FT3

− Fd + 2Fu)

− e

192π2

T 3

k4
3Qe f

(0)
Li

(1/T )[Y Y †Y − YνY †ν Y ]ij g
(0)
Ej

(1/T ). (5.73)
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Note that the brane Higgs result contains a different sign in front of the Y Y †Y compared
to the narrow bulk Higgs case.
The appearance of a term of the Y Y †Y in the brane Higgs case a lowers the phenomenological
difference of both localisation scheme in the custodial protected RS. Therefore we drop
this localisation scheme in the quark sector. Note that the brane Higgs case was already
considered in great details in [50]. Concentrating on the narrow bulk Higgs case we find for
the minimal RS mode for the Higgs exchange contribution to quark dipole operators

aγij
∣∣
Higgs

=− e

192π2

T 3

k4

T 8

2k8
((2Qe −Qd −Qu)FQ −QdFd + (2Qe −Qu)Fu)

− e

192π2

T 3

k4
(2Qd +Qu −Qe) f (0)

Qi
(1/T )[YdY

†
d Yd]ij g

(0)
dj

(1/T ) (5.74)

agij
∣∣
Higgs

=
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192π2

T 3

k4

T 8

2k8
(2FQ + Fd + Fu)

− gs
192π2

T 3

k4
3 f

(0)
Qi

(1/T )[YdY
†
d Yd]ij g

(0)
dj

(1/T ) , (5.75)

where the Fq (q = d, Q, u) are simple adaptations of (5.69) and (5.71) to the quark sector,
for example FQ = (FL)| cL=cQ .
In the custodially protected model the Higgs contribution to the quark dipole is given by

aγij
∣∣
Higgs

=− e

192π2

T 3

k4

T 8

2k8
((2Qe −Qd −Qu)(FQ + FT3

)−QdFd + (2Qe −Qu)Fu)

− e
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(1/T ) (5.76)
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=
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T 3

k4

T 8

2k8
(2FQ + 2FT3 + Fd + Fu)

− gs
192π2

T 3

k4
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(0)
Qi

(1/T )[YdY
†
d Yd]ij g

(0)
dj

(1/T ) . (5.77)

5.2.4 Bulk Higgs with a beta profile

Next we consider the case of a bulk Higgs with the β profile (2.65). The dominant contribu-
tions were studied in some detail in [79] and numerical estimates were obtained by summing
a large number of KK modes. Using 5D propagators the effect of the Higgs zero mode can
be computed analytically for large β. To see this let us focus on a diagram generated by the
topology HT1. The methods used here can be applied to all other Higgs exchange topologies
analogously, but may require appropriate expansions of the fermion propagators for a fully
analytic result. For light external fermions the dominant contribution can be written as

p p′

γ

w x

y

z
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= Qµe Y
β
ih

[
Y β
]†
hk
Y βkj

∫
d4l

(2π)4

1
T∫

1
k

dz dy dx dw

k19x5y4z5w5
f

(0)
Li

(z)g
(0)
Ej

(w)d−F+
Lk

(p, x, w)

×∆Φ(l, x, z)Φ(0)(w)
[
d−F+

Eh
(p′ − l, z, y)F+

Eh
(p− l, y, x)γµ(/p− /l)

+F−Eh(p′ − l, z, y)d−F+
Eh

(p− l, y, x)(/p
′ − /l)γµ

]
(5.78)

where we chose p, p′ for the incoming and outgoing fermion momentum, respectively. The
integral over the w coordinate can be taken right away as we can set p to zero in the external
fermion propagator:

E(x, β, cL, cE) ≡

1
T∫

1
k

dw

k5w5
g

(0)
E (w) d−F+

L (p = 0, x, w) Φ(0)(w) (5.79)

= i

√
1 + 2cE

1− ε1+2cE

√
2(1 + β)

1− ε2+2β

1

2− cL + cE + β

(Tx)2+cLε−5/2

1− ε2cL−1

×
[
(Tx)2−cL+cE+β(1− ε2cL−1) + (Tx)1−2cL(ε2cL−1 − ε1+cL+cE+β)− (1− ε1+cL+cE+β)

]
.

After expanding the remaining integrand for small p, p′ we perform the integral over the
photon vertex bulk position y using the completeness and orthogonality relations. We then
find for the diagram

QµeY
β
ih

[
Y β
]†
hk
Y βkj

∫
d4l

(2π)4

1
T∫

1
k
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k10x5z5
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(0)
Li

(z)E(x, β, cLk , cEj )∆Φ(l, x, z)

×
[
i

2
l2∂2

l2d
−F+

Eh
(l, z, x)

]
(pµ + p′

µ
) . (5.80)

This leaves us with only three integrals over x, z and the loop momentum.
Let us first consider the Higgs zero-mode contribution by substituting ∆Φ(l, x, z)→ i/l2 ×
Φ(0)(x)Φ(0)(z). Since β is large but finite until all integrals have been carried out and all
regulators removed, we can perform the momentum integral directly in d = 4 dimensions.
To this end, we switch temporarily to the mode picture for the fermion propagator, evaluate
the integral

∫
d4l

(2π)4

1

(l2 −m2
n)3

= − i

2(4π)2

1

m2
n

, (5.81)

and resum the mode expansion back into 5D propagators, which results in

−iQµe Y βih
[
Y β
]†
hk
Y βkj

1
T∫

1
k

dz dx

k10x5z5
f

(0)
Li

(z)E(x, β, cLk , cEj )Φ
(0)(x)Φ(0)(z)

× 1

2(4π)2
d−F+

Eh
(0, z, x)(pµ + p′

µ
) . (5.82)

Since the zero-momentum limit of the fermion propagator has a simple form, the two re-
maining integrals are elementary. The final analytic expression is lengthy and valid for any
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positive value of β. We refrain from giving the explicit expression. However, the limit
β → ∞ is straightforward. After using (B.37) to relate the Yukawa matrices for the bulk
Higgs to the couplings for the delta-regularized Higgs we recover the same answer as already
found in the section for the computation of the topology HT1,

− iQµe

96π2T 2

T 3

k4
f

(0)
Li

(1/T )YihY
†
hkYkjg

(0)
Ej

(1/T ) (pµ + p′
µ
) . (5.83)

This observation is general: the Higgs zero-mode contribution of the bulk Higgs in the
β → ∞ limit is always equal to the one of the theta-function regularized brane Higgs. In
other words, the localisation limit of the bulk Higgs is independent of the bulk profile at
finite Higgs localisation width.
We still have to determine the contribution from the tower of KK Higgs excitations in
the loop. To illustrate the computation in the 5D framework, we consider again the dia-
gram H1 in the topology class HT1. The KK contribution is obtained by the replacement
∆Φ(l, x, z)→ ∆ZMS

Φ (l, x, z) in (5.80). An analytical evaluation seems difficult even for β � 1.
Before turning to the numerical calculation we shall first show that the KK contribution
does not go to zero for large β despite the fact that the lowest KK masses are of order βT .
This confirms the non-decoupling effect found in [79], now in the 5D framework. To this end
we look at the different loop-momentum regions separately. There are two relevant scales,
the KK scale T and the Higgs localisation scale βT . This leads to several momentum regions
that allow for various expansions of the propagators. The expanded forms can then either
be integrated directly or at least their β scaling can be determined.

• For small loop momenta l � T we can expand both the fermion and the Higgs prop-
agator around l = 0. We can then analytically integrate the x and z coordinates as
in (5.82). In this region the scaling with β must be the same as the scaling of the Wil-
son coefficient of the four-fermion operator discussed in section 4.1 and in appendix
B.4. That is, for large β the integrand scales as 1/β. Hence, the total contribution
from this region vanishes for β →∞.

• The second region is l ∼ T . For the Higgs propagator we can use the same expansion
for small euclidean momenta as for l� T but the fermion propagator can no longer be
expanded. Nonetheless, d−F+

E (l, x, z) does not introduce an additional β dependence
in this momentum region. We recover the overall scaling ∝ 1/β for fixed values of l
just as for l � T . The only difference to the region with l � T is the scaling of the
integrand with the loop momentum l, which no longer is a simple power law. However,
for l ∼ T , the scaling of the integral with β is the same as the integrand, that is 1/β,
and hence the contribution from this region also vanishes for β →∞.

• For loop momentum l of the order βT we can make use of an expansion of modified
Bessel functions of the form Iβ(βx) and Kβ(βx) for large β, given by

Iβ(βx) ∼
√

1

2πβ

eβf(x)

(1 + x2)1/4
g(x) , Kβ(βx) ∼

√
π

2β

e−βf(x)

(1 + x2)1/4
g̃(x) . (5.84)

The exact expressions for the functions f, g and g̃ can be found in [118, 119]. Here
we only need that f , g and g̃ depend on β only via terms that vanish at least as
fast as 1/β for β → ∞ and that f(x) is a strictly monotonically increasing function
of x. Using these expansions one can show that the Higgs propagator retains the
same 1/β scaling as in first two regions. Taking into account the behaviour of the
fermion propagator for l � T we find that d4l l2 ∂2

l2d
−F+(l, z, x) counts as a factor
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of dl l or equivalently dl · (βT ). This cancels the 1/β from the Higgs propagator and
leaves us with the coordinate integrals. Their counting is easier to determine when
the integral over w has not yet been carried out. The integral over w then cancels the√
β factors from the Higgs zero-mode profile and one Yukawa coupling. Every integral

over a coordinate difference counts as 1/β (compare the discussion of KK effects in
the gauge contribution). Including the two remaining Yukawa couplings, we find that
the integrand scales as 1/β in the region l ∼ βT . Hence the integral over the domain
l ∼ βT takes a constant value for β →∞.

• Finally, for l� βT we expand the Higgs propagator for large momenta, since it is now
dominated by the scale l and no longer by βT . Consequently, the Higgs propagator
scales as 1/l, and the distance |x − z| is limited to be of order 1/l. This effectively
trades two powers of 1/(βT ) for two powers of 1/l compared to result in the l ∼ βT
region, resulting in the scaling ∝ β/l2 of the integrand. The final integral over the
modulus of l is therefore convergent and since

∞∫

βT

dl
β

l2
=

1

T
, (5.85)

the high-momentum region also gives a finite β-independent contribution to the dipole
operator coefficient.

Since in every region the integral over l either vanishes (l� T , l ∼ T ) or converges (l� βT
and l ∼ βT ) to a constant, the contribution to the dipole Wilson coefficient due to the
Feynman diagram H1 tends to a constant for large β as announced. For large values of
β the integral is further dominated by the high-momentum regions and therefore the 5D
masses of the fermions enter predominantly via the external zero-modes.
The left panel of Figure 5.10 shows the numerical result for the integrand as a function of
the loop momentum l and demonstrates the expected inversion of the order of the curves
for different β values from the intermediate to the high-momentum regions.2 The right
panel shows the KK Higgs contribution as a function of β normalized to the zero-mode
contribution in the β →∞ limit. The plot illustrates the approach of the KK contribution
to a constant. The relatively fast convergence with increasing β is a feature of the simple
diagram topology under consideration. The plot shows that the KK Higgs contribution
while somewhat smaller than the corresponding zero-mode contribution is of the same order
of magnitude [79].
A similar scaling analysis can be applied to all other diagrams involving KK Higgs modes.
We will not discuss them in detail, as we anyway have to resort to a numerical evaluation
in the end. In appendix B.5 we give the numerical ratio of the KK tower to the zero-mode
contribution for each diagram topology. The final result for the leptonic dipole operator
contribution due to by the exchange of the KK Higgses is

aH,KK
ij =

Qµe

192π2

T 3

k4
· AKK · f (0)

Li
(1/T )[Y Y †Y ]ijg

(0)
Ej

(1/T ) (5.86)

in the minimal model and

aH,KK
ij =

Qµe

192π2

T 3

k4
· f (0)
Li

(1/T )
[
AcsKKY Y

†Y + BcsKKYuY
†
uY
]
ij
g

(0)
Ej

(1/T ) (5.87)

2Note that the solid curve for β = 160 does not reach the asymptotic region of very large loop momentum
l � βT , while β = 10 is on the small side for the β � 1 scaling to hold. When taking the coordinate
integrals analytically (possible in some of the momentum regions) we encounter ratios of Γ functions such
as Γ(6 + β)/Γ(7 + β), which scale as 1/β for large β, but β ∼ 10 is not quite large enough to make this
manifest.
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Figure 5.10: Left: Absolute value of the integrand for the diagram H1 with zero-mode
subtracted Higgs propagator as a function of the loop momentum l. The curves correspond
to β = 10 black (dotted), 40 blue (dashed) and 160 green (solid). The KK scale was set
to T = 1 TeV. Right: KK Higgs contribution to the dipole operator as a function of β
normalised to the β →∞ limit of the Higgs zero-mode contribution.

in the custodially protected model. Here we again dropped the suppressed off-shell terms
similar. The numerical values of the coefficients are

AKK = 0.46(0.04) AcsKK = 1.4(0.2) BcsKK = 0.1(0.05) , (5.88)

where the number in parenthesis shows the estimated error due to the extrapolation to
β =∞. The sizeable relative uncertainty in BcsKK comes from large cancellations among the
various contributions to the coefficient. In the minimal (custodial) mode the KK contribu-
tion is about 50% (75%) of the zero-mode contribution.
Note that by writing (5.86) and (5.87) we tacitly assumed that Higgs Kaluza-Klein contri-
bution is roughly independent of the 5D mass parameters and therefore allowed for compact
analytic expressions. Nevertheless there is a nontrivial dependence of the KK contribution
on the 5D mass parameters; in particular for diagrams with a Higgs emission from an ex-
ternal line. In the lepton sector this effect is quite small especially when compared to the
sizeable numerical uncertainties; we therefore neglected it in [55]. In the quark sector the
wide range of 5D masses leads to more noticeable effects; since we can only determine these
numerically we do not give an explicit expression. To give an idea of the potential size: the
figure 5.11 shows the additional effect of the mass dependence (without numerical uncer-
tainties) for the diagram. One can see that the effect is indeed of the order a few percent
for leptons, but can potentially be of O(1) for quarks. It is therefore not feasible to use a
simple analytic approximation as was done in the lepton sector.

Furthermore, we need to include KK Higgs corrections to the off-shell contributions to
the Wilson coefficients. Again these terms are not necessarily suppressed in the quark sector,
as the third generation Yukawa couplings are sizeable. However, we can only determine this
contribution analytically for the Higgs zero-mode and not for the Higgs KK modes; it is only
accessible numerically, but is quite small, only about 25% of the corresponding zero-mode
effect.
We therefore treat the whole effect of Higgs KKmodes similarly to how the gauge-contribution
is handled. Here we only remark that the total effect of the KK modes is smaller than the
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Figure 5.11: Illustration the additional dependence of the 5D mass parameter dependence
of the KK Higgs contribution for the diagram on the right. cQint , cQext are the 5D masses of
the internal doublet propagator and the external doublet zero-mode. For leptons generally
only a small region in the upper right corner (cQ ∼ 0.4− 0.7) would be required.
.

effect of the Higgs zero-mode but not parametrically so, see also [55,79].
Note that the relative high uncertainties are generated mainly due to the implementation of
the numerical integrals inside Mathematica, as the C++ code used for the gauge exchange
has severe problems to evaluate even one integrand point. The main problem of the nu-
merical evaluation of the Higgs KK diagrams is caused by the zero mode subtracted Higgs
propagator, which contains Bessel functions of the type Iβ and Kβ . These Bessel functions
can evaluate to extremely large numbers even for moderate values of β. The right chirality
term of the topology class HT6 only could not been computed in Mathematica, because the
integration did not terminate within a reasonable period of time to useful numerical preci-
sion. To tackle this diagram we had to dissect the Higgs propagator into potentially large
terms and then add them up in a controlled way. This allowed us to evaluate the integrand
up to loop momenta of 600 T in C++, which enabled us to perform the integration via
the CUBA package. To this end we employed a integration routine inspired by the gauge
invariance programs, which are able to compute the on-and-off shell terms.
To conclude this chapter we remark that irrespective of the Higgs localisation, the dipole
coefficients aHij generated by Higgs exchange is in general misaligned relative to the mass
matrix in the lepton as well as the quark sector. For the bulk Higgs case the numerically
dominant terms scale as Y Y †Y in both the minimal and custodially protected RS model.
After rotation to the mass basis this potentially generates large flavour violating transitions.
For the same reason, even after the rotation to the mass basis, unlike the gauge-boson
contribution , the Higgs contribution depends strongly on the values of the 5D bulk mass
parameters and the 5D Yukawa matrices. It usually increases with the magnitude of the
Yukawa matrix entries.
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5.3 Dimension-eight operators

The effects of dimension-eight operators are suppressed relative to the dimension-six ones by
a factor of O(v2/T 2) and therefore negligible. However, for LFV observables this counting
can be numerically upset, as noted in [32], since the leading dimension-6 contribution to the
dipole operator from gauge-boson exchange is suppressed by a factor of 30-50 due to the
near-alignment discussed above and in [28, 54] . Relevant dimension-eight effects can arise
directly from dimension-eight operators and indirectly from v2/T 2 corrections to the field
rotation to the mass basis.

The first class corresponds to the descendant (L̄iσ
µνEi)ΦXµνΦ†Φ (X = B,W ) of the

dimension-six dipole operator (L̄iσ
µνEi)ΦXµν , which after EWSB give rise to the same

dipole vertex structure. However, the dimension-eight operator has a coefficient function
proportional to Y Y †Y even for the internal gauge-boson exchange contribution, and does
not suffer from the alignment suppression of terms proportional to Y . Depending on the
value of T , the dimension-eight contribution may then be the dominant source of flavour
violation. This is relevant only for the case of an exactly brane localised Higgs in the minimal
RS model, where the contributions to the dimension-six dipole Wilson coefficient cubic in
the Yukawa coupling due to Higgs exchange are also suppressed (see previous subsection).

The second class of dimension-eight effects arises from the fact that the tree-level relation

v√
2
U†ij

√
1− 2cLj

1− ε1−2cLj
Yjk

√
1 + 2cEk

1− ε1+2cEk
Vkn = diag{me,mµ,mτ} (5.89)

that defines the rotations U , V to the mass basis [20] receives corrections due to multiple
Higgs vev insertions.3 The diagonalisation condition has the form

v√
2
U†ij

√
1− 2cLj

1− ε1−2cLj

[
Y − v2

6T 2
Y Y †Y

]

jk

√
1 + 2cEk

1− ε1+2cEk
Vkn = diag{me,mµ,mτ} , (5.90)

cf. (3.39). The modified U and V field rotation matrices applied to the Lagrangian (3.2)
generate an additional source of LFV which formally enters at the same level in the v/T
counting as dimensions-eight operators, which can be taken into account by the substitution

agij → agij +
v2

6T 2
agij
∣∣
Y→Y Y †Y (5.91)

The direct effect of the dimension-eight operators is more difficult to estimate. We have
to evaluate the contributions to the dipole-like operators that appear at the dimension eight
level, i.e.,

Ldim−8 ⊃ 1

T 4
aB,dim−8
ij (L̄iΦσ

µνEi)BµνΦ†Φ +
1

T 4
aW,dim−8
ij (L̄iτ

AΦσµνEi)W
A
µνΦ†Φ . (5.92)

The computation of the electromagnetic dipole coefficient adim−8
ij = cos ΘW aB,dim−8

ij −
sin ΘW aW,dim−8

ij would require the computation of roughly 150 different diagrams in the
5D theory for the minimal RS model alone.

Fortunately, only some of these diagrams actually contribute. For the following we
consider only the minimal RS model with an exactly brane-localised Higgs. For the other
Higgs localisations the dimension-six dipole is always dominant and dimension-eight terms

3The square root factors arise from the explicit expressions for the lepton zero-mode profiles.
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Figure 5.12: Example of a diagram contributing to the matching onto the dimension-six
dipole operator and several related diagrams that contribute to the dimension-eight operator.

are negligible as discussed above. We then have two fundamentally different contributions:
from the so-called wrong-chirality Higgs couplings (WCHC) and from the ordinary Higgs
couplings to lepton modes with the same chirality as the SM zero modes. It turns out that
for the exactly brane-localised Higgs the WCHC contribution can be computed analytically
and is simply given by

adim−8,WCHC
ij = −1

3
agij
∣∣
Y→Y Y †Y (5.93)

in terms of the dimension-six gauge-boson exchange contribution.
To illustrate how this result arises let us consider the left-most diagram in Figure 5.12

(W8 in the notation of [28]), which contributes to the matching of the aWij coefficient. There
are 10 ways to add two additional external Higgs lines to the fermion line. However, since δ/T
(δ being the Higgs localisation regulator) is much smaller than the dimensional regulator or,
equivalently, than the inverse loop momentum cut-off, we find that only the three diagrams
shown to the right in Figure 5.12 give a non-vanishing WCHC contribution for δ → 0. In each
case the integrals over the Higgs vertices can be taken analytically. In the above example the
WCHC contributions of the two right-most diagrams cancel, and the remaining diagram can
be expressed in terms of the associated dimension-six diagram as shown in (5.93). Similarly
the descendants of all other dimension-six diagrams can be shown to satisfy (5.93).

Hence the effect of the WCHC can be included via the redefinition

agij → agij −
v2

6T 2
agij
∣∣
Y→Y Y †Y (5.94)

where we used that the Higgs fields will assume their vacuum expectation value (Φ†Φ →
v2/2). Combining this with (5.91), we find that the direct and indirect contribution cancel.
That is, at the dimension-eight level the WCHCs do not generate sizeable flavour-changing
transitions by lifting the misalignment suppression and can be ignored.

This leaves us with the dimension-eight contributions that have no WCHCs. In the
minimal model as defined in [28] there are no such contributions from the diagrams with
non-abelian vertices. Then there are only seven non-vanishing diagrams that involve an
internal W boson, but about 50 diagrams with a hypercharge boson. Fortunately, the
limited particle content of the minimal model allows us to recast the expressions of all
diagrams in the form of the original dimension-six diagram with modified fermion lines. For
instance, the second diagram in Figure 5.12 has terms without WCHCs, but differs from
the original diagram only by the two additional (zero-momentum) Higgs insertions that
modify one fermion propagator. This can easily be calculated as the Higgs vertices can be
treated analytically. Since the flavour-dependence of the fermion propagators (excluding
zero-modes) is relatively mild, one can use the single-flavour approximation, where the
Yukawa matrices are the only flavour-dependent quantities. It is then straightforward to
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compute the contribution to the dimension-eight coefficients. We find

adim−8
ij ≈ −0.4 agij

∣∣
Y→Y Y †Y . (5.95)

This size is in agreement with the estimate given on the basis of a subset of diagrams
in [32], were the non-abelian contribution was found to be aW,dim−8

ij ≈ −0.31 aWij
∣∣
Y→Y Y †Y .

The minimal model requires a KK scale T > 4 TeV in order to pass the constraints set
by electroweak precision observables [23]. Hence the dimension eight contribution to αij
is suppressed by an additional factor v2/T 2 of at least 1/500. We therefore neglect the
contribution of the dimension-eight terms to the off-diagonal elements of αij , since it is
smaller than the effect of the Barr-Zee diagrams which also feature three Yukawa couplings
without the need to take the dimension-eight term into account.

For the custodially protected model the dimension-eight coefficient would be much harder
to compute. Not only does the number of non-trivial Feynman diagram topologies increase
significantly, but the larger particle content leads to numerous non-vanishing possibilities
to assign the various fermion species to each topology. However, independent of the Higgs
localisation there always exists an unsuppressed dimension-six contribution proportional to
Y Y †Y , hence the dimension-eight terms are never relevant.
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Chapter 6

Phenomenology

In chapter 3 the main observables of interest aµ, µ→ eγ, µ→ 3e, µN → µN and B̄ → Xsγ,
were all expressed in terms of Wilson coefficients of the dimension six SM effective theory.
That was followed by the matching of the Wilson coefficients in chapter four and five. We
are now equipped to calculate aµ and all branching fractions of the observables for a specific
set of 5d parameters.
In the first section we begin our analysis by computing some rough estimates of different
Wilson coefficient contributions to the considered branching fractions processes. Afterwards
we perform a numerical numerical scan over a set of 5d parameters. To this end we first
concentrate on the RSc contribution to the muon g-2 moment, which was the first for this
thesis computed low energy loop-induced process. Following this we focus next on the scan
over the lepton flavour violation (LFV) sector. Here we concentrate mainly on the decays
µ → eγ, µ → 3e and the muon conversion in the presence of nuclei. Here we ignore at
first the strong bound generated by the measurements of the electron dipole moment [120].
However we consider later on the effects of an applied EDM bound on the LFV observables.
In the last part of the numerical analysis we then focus on the the inclusive quark decay
B̄ → Xsγ, before concluding this chapter with a summary of all findings.

6.1 Estimates

We first consider the effect of the dimension-six dipole operators, where we distinguish two
different contributions: from the Higgs-exchange diagrams, which involve three Yukawa ma-
trices, and from gauge-boson exchange, which involves only one. We concentrate completely
on the leptonic sector as the main conclusions extracted for µ → eγ can be transferred to
the B̄ → Xsγ branching fraction, because both processes are mediated by dimension six
dipole operators.
The gauge contribution leads to naturally suppressed flavour-violating couplings, whereas
the Higgs contribution does not have a built-in flavour protection. For not too small Yukawa
couplings the Higgs contribution is dominant. We mainly focus on µ → e transitions and
the muon g-2, for which the dipole coefficients α12, α21 and α22 are relevant.
To obtain an estimate of the Higgs-exchange contribution let us start with Wilson coefficient
[see (5.70) and (5.87)]

aHij =
Qµe

192π2

T 3

k4
· f (0)
Li

(1/T )[(2 +AcsKK)Y Y †Y + BcsKKYνY
†
ν Y ]ijg

(0)
Ej

(1/T ) (6.1)
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in the custodially protected model with a bulk Higgs. An analogous expression holds in the
minimal model [(5.68) and (5.86)]. For an exactly brane-localised Higgs, aHij is of similar size
as above for the custodially protected model, cf. (5.70), but suppressed in the minimal model
due to the absence of the numerical dominant wrong chirality terms. Now we recall that
the relation of fermion zero-mode profiles, the 5D Yukawa matrix and SM Yukawa matrix
(before rotation into the flavour basis) is given by

yij =
T 3

k4
f

(0)
Li

(1/T )Yijg
(0)
Ej

(1/T ) . (6.2)

If the fermion mass hierarchy of the diagonalised SM Yukawa matrix is carried democratically
by left- and right-handed fermion modes, i.e.

yij ∼
√
mimj

v/
√

2
, (6.3)

we arrive at the estimate

aHij ∼
Qµe

√
2mimj

192π2v

[
(2 +AcsKK)Y 2

? + BcsKKY
2
ν,?

]
, (6.4)

where we assume that

Y 2
? ≡

[Y Y †Y ]ij
Yij

Y 2
ν,? ≡

[YνY
†
ν Y ]ij
Yij

(6.5)

are approximately independent of ij ("anarchy"). For anarchic Yukawa matrices we also
expect that the rotation matrices U and V follow the same hierarchy and hence, barring
accidental cancellations, that α12 ∼ a21. Further using that AcsKK ≈ 1.4� BKK we obtain1

αH12 ∼
5Qµe

√
memµ

192π2v
Y 2
?

αH22 ∼
5Qµemµ

192π2v
Y 2
? (6.6)

which yields

∆aµ |Higgs dipole ∼ 8.33 · 1011 × 1 TeV2

T 2
Y?

2 (6.7)

Br (µ→ eγ)|Higgs dipole ∼ 5 · 10−9 × 1 TeV4

T 4
Y?

4 . (6.8)

If the dipole also dominates µ→ 3e one can combine (3.16) and (3.18) to obtain the relation

Br (µ→ 3e)

Br (µ→ eγ)
=

2αem

3π

[
log

mµ

me
− 11

8

]
≈ 0.006 , (6.9)

which translates into an estimate of

Br (µ→ 3e)|Higgs dipole ∼ 3 · 10−11 × 1 TeV4

T 4
Y?

4 . (6.10)

1Our estimates always yield α21 ∼ α12, hence we only give α12 explicitly.
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For muon conversion one finds

BrAu (µN → eN)|Higgs dipole ∼ 1.5× 10−11 × 1 TeV4

T 4
Y?

4 . (6.11)

We emphasise that these are crude estimates. Even in the anarchic case the random phases
of the different elements can lead to cancellations or add coherently. However, they provide
useful guidance to the results of the numerical scan discussed below.
The Barr-Zee contribution is similar to the Higgs contribution, since the dominant contribu-
tion to the ηij Wilson coefficient is also proportional to a product of three Yukawa factors.
Comparing the prefactors in (3.41) we find that the Barr-Zee contribution to the dipole co-
efficient is smaller by a factor of about 170 than the contribution from the 5D Higgs loops.
Thus we expect a µ→ eγ branching fraction of about

Br (µ→ eγ)|BZ ∼ 2 · 10−13 × 1 TeV4

T 4
Y 4
? , (6.12)

if only the BZ contribution existed. The BZ contribution to the other processes is also
smaller by a factor of about 1702.

Due to the Y 4
? dependence the Higgs-exchange induced dipole operator is less important

for small Yukawa coupling. In this case, and also for the special case of the brane-localised
Higgs in the minimal RS model, the dipole operator generated by gauge-boson exchange
becomes crucial. We do not have an analytical expression for the gauge-boson contribution,
but we know that there would be no flavour violation from it, if the function Aij in (5.17)
was independent of ij. The 5D mass parameters must decrease with the absolute values of
the Yukawa couplings in order to guarantee the correct values for the SM masses fermion
masses. Aij varies more strongly for smaller absolute values of the 5D mass parameters, see
Figure 5.8, and therefore the flavour-changing gauge-boson contribution should increase with
decreasing Yukawa coupling. To verify this we fix the Yukawa matrix structure, that is the
ratios of all matrix elements, and scale the maximal entry Ymax from 2 to 0.3. For simplicity
we assumed symmetric 5D mass parameters cLi = −cEi . The resulting µ → eγ branching
fraction from agij alone in the minimal model is shown in Figure 6.1 (left). The precise
value of Br (µ→ eγ) obviously depends on the arbitrarily chosen Yukawa matrix structure,
but the variation with the size Y? of the Yukawa couplings is not very large compared to
the fourth-power law of the Higgs-exchange contribution. For the Yukawa matrix used in
Figure 6.1 we find a µ→ eγ branching fraction of a few× 10−12.

This agrees with the estimate based on the functional form of the gauge-boson induced
dipole coefficient agij . The numerical value of the Wilson coefficient is [28,54]

agauge
ij ≈ −6 (19) · 10−4 yij . (6.13)

The value without (in) parenthesis is valid for the minimal (custodial) model and is inde-
pendent of the details of the Higgs localisation. yij is the 4D Yukawa matrix in the flavour
eigenbasis. The matrix relation agauge ∝ y is only violated by corrections of about (2-3)%
as discussed in Section 5. This violation is the source of charged LFV as it introduces small
off-diagonal elements in the dipole coefficients αij in the mass eigenbasis after EWSB. Us-
ing (6.3) and applying a factor 2/100 for the 2% of misalignment between yij and agij , we
estimate

αA,12 ∼ 2.6 (8.1) · 10−8 × 2

100
(6.14)
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Figure 6.1: Left: Gauge contribution to Br (µ→ eγ) (T = 1 TeV) for fixed Yukawa structure
as a function of the absolute Yukawa coupling size. Right: The Wilson coefficient γ1

12

following the approximation (6.18) as a function of Yukawa coupling size for T = 1 TeV.
The O(mµ/mτ ) term is not included.

for the coefficient relevant to µ→ e transitions. Again, we regard this as a rough estimate,
since there may be cancellations when the rotation into the mass basis is performed. We
then find:

Br (µ→ ēγ)|gauge dipole ∼ 0.5 (5) · 10−11 × 1TeV4

T 4
(6.15)

Br (µ→ ēee)|gauge dipole ∼ 0.3 (3) · 10−13 × 1TeV4

T 4
(6.16)

BrAu (µN → eN)|gauge dipole ∼ 0.2 (2.2) · 10−13 × 1TeV4

T 4
(6.17)

Note that this contribution is independent of the typical size of anarchic Yukawa coupling up
to the O(1) variation shown in Figure 6.1. It is typically smaller than the Higgs contribution,
but provides the “gauge-boson floor” to the dipole coefficient, since it is less sensitive to
5D model parameters than the Higgs contribution and always present. In the custodially
protected model the rate is a factor of 10 larger than in the minimal model.
The previous estimates were based on the assumption that the dipole operator dominates
the LFV amplitudes. This is not always the case, especially for the µ → 3e and muon
conversion process. Next, we therefore consider the impact of the four-fermion and fermion-
Higgs operators, which are generated at tree-level. In both cases the dimension-six Wilson
coefficients are independent of the 5D Yukawa matrices. However, a dependence on the
Yukawa matrices enters through the rotation to the mass basis after EWSB. For illustration
we consider the operator (Ēiγ

µEj) Φ†i
←→
DµΦ with Wilson coefficient c1ij = c1i δij and restrict

ourselves to the minimal model. For all three muon flavour-violating processes the relevant
matrix elements are V †1jc

1
jkVk2. Flavour violation arises, because c1i depends on the bulk

mass parameter cEi , hence c1ij while diagonal is not proportional to the unit matrix in
flavour space. We can estimate V †1jc

1
jkVk2 by making use of hierarchical fermion zero-mode

functions. Assuming fE1
(1/T ) � fE2

(1/T ) � fE3
(1/T ) and symmetric mass parameters

we can employ the rough estimate |Vij | ∼ min (
√
mi/mj ,

√
mj/mi) with mi being the SM
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lepton masses to obtain

γ12 = V †1jc
1
jkVk2 ∼

√
me

mµ
(c12 − c11 +O(mµ/mτ )) . (6.18)

We can use this formula to study the dependence of γaij on the size of the 5D Yukawa
couplings. Since the product of Yukawa matrix and 5D fermion zero-mode profiles must
reproduce the SM mass matrix to leading order in v/T , the 5D profiles and therefore the 5D
mass parameters are correlated with the Yukawa matrix. The simplest estimate (assuming
symmetric mass parameters) yields the correlation 1/

√
Y? ∼ f (0)

Ei
(1/T ). Since the cai Wilson

coefficients arise from a coordinate integral over a single fermion-gauge-boson vertex they
will roughly scale as [f

(0)
Ei

(1/T )]2, that is 1/Y?. This behaviour was already observed and
explained in [31]. The right panel of Figure 6.1 shows γ1

12 as a function of Y? (keeping the
lepton masses fixed). The curve can be fitted by Y?−0.94 confirming the above scaling. This
scaling is quite general, although if the mass hierarchy is mainly driven by the right-handed
modes, the mass factors in the estimate (6.18) must change to account for the change in the
relation (6.3).
Similar estimates can be obtained for the four-fermion operator coefficients. Here we have
terms with different dependencies on flavour. TheWilson coefficient bLEij of (L̄iγµLi) (Ējγ

µEj)
has three contributions denoted by b0, b1 and b2, see (4.3). b0 does not depend on the 5D
masses and hence does not contribute to flavour-changing processes. b1 depends on a single
bulk mass parameter and has the same scaling ∝ 1/Y? as the ca Wilson coefficients. The
b2 function depends on two bulk mass parameters and scales roughly as 1/Y?

2. However,
as discussed below (4.13), for light leptons this term is suppressed and not relevant. This
would be different for processes involving fermions with zero-modes that are IR brane lo-
calised such as the (right-handed) top quark, in which case the ratio of exponentials in b2
no longer compensates the logarithmic enhancement factor and b2 becomes the dominant
term in (4.3).
From (3.41), (3.25ff) and (3.30ff) we see that the four-fermion coefficients usually appear
in combination with the coefficients of the Higgs-lepton operators. For a typical RS model
parameter point, which reproduces the lepton masses, the Higgs-lepton operator coefficients
are larger by a factor log ε relative to the four-fermion operator coefficients. This allows us to
use (6.18) to estimate the effect of the tree-level operators on the generically tree-dominated
LFV observables. We find

Br (µ→ ēee) ∼ few · 10−12 × 1TeV4

T 4

1

Y?
2 (6.19)

BrAu (µN → eN) ∼ few · 10−9 × 1TeV4

T 4

1

Y?
2 , (6.20)

where we used the parameters given in Table 6.1. We stress again that these numbers are
rough estimates, which depend strongly on the precise structure of the flavour rotation ma-
trices V and U . Thus we have three separate contributions to µ→ ēee and muon conversion
with different dependence on the size of the 5D anarchic Yukawa coupling (Y 4

? , Y 0
? , Y −2

? ).

6.2 Numerical analysis
In the previous section we attempted to give an idea about the size and the relative im-
portance of the various contributions to our three main LFV observables and the Higgs
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mµ 0.105658 GeV [121] me 5.10998 · 10−4 GeV [121]
s2
W 0.231 [121] MH 125.7 GeV [121]
MZ 91.187 GeV [121] MW 80.385 GeV [121]
mt 173 GeV [121] Γµ 2.99598 · 10−19 GeV [121]
D[Au] 0.189 [95] Sp[Au] 0.0614 [95]
Sn[Au] 0.0918 [95] Vp[Au] 0.0974 [95]
Vn[Au] 0.146 [95] ΓAu

capture 8.71 · 10−18 GeV ? [122,123]
D[Al] 0.0362 [95] Sp[Al] 0.0155 [95]
Sn[Al] 0.0167 [95] Vp[Al] 0.0187 [95]
Vn[Al] 0.0173 [95] ΓAl

capture 4.64 · 10−19 GeV [123]
fuVp 2 fdVp 1

fuVn 1 fdVn 2

fup 0.018 fdp 0.034

fun 0.016 fdn 0.038

fsn 0.043 fsn 0.043

Table 6.1: Input parameters for the numerical analysis. For the couplings of scalar quark
currents to the nucleons we use the results of [97] and fix the value of the nucleon-pion σ-term
to 50 MeV. The ? indicates that we use the average of the values given in the references.

contribution to the muon g-2. While such estimates are useful to understand the rough de-
pendence of our results on the input parameters, especially the Yukawa coupling size, they
cannot replace a study of the full parameter dependence. To this end we next perform a
numerical scan over the “generic” parameter space. We analyse four RS models: the minimal
RS model (as defined in [28]) as well as a custodially protected model (as defined in chapter
two), each with either an exactly brane-localised or a bulk Higgs include in chapter two) its
KK excitations in the β →∞ limit. We refer to these models asMI (minimal, bulk),MII
(minimal, exactly brane-localised), CI (custodial, bulk) and CII (custodial, exactly brane-
localised).
The 5D input parameters needed for the numerical evaluation of the dimension-six Wil-
son coefficients are the 5D Yukawa matrices Y, Yd, Yu (and Yν in the custodially protected
model), the 5D bulk mass parameters cψ = Mψ/k of the leptons and quark fields and the
KK scale T . In case of the exactly brane-localised Higgs the wrong-chirality Yukawa cou-
plings can in principle differ from the “standard” correct-chirality Yukawa couplings, but for
simplicity we assume them to be equal. Since we do not want to give up the idea of “natural”
Yukawa matrices, we further assume that the Yukawa entries are O(1) and anarchic. To
illustrate how the size of the 5D Yukawa matrix entries affects the different observables,
we adopt two scan strategies for the flavour violating sector. In both the modulus of the
matrix elements is larger than 0.1, but in the first (second) scan the maximal modulus Ymax

is bounded by 0.5 (3 for the second). Further, we require that the derived fundamental
low-energy parameters, such as the measured values of lepton masses and quark masses, are
reproduced by chosen sets of 5D parameters. In practice, we randomly generate 5D Yukawa
matrices within the above mentioned constraints, and then fix the 5D mass parameters cψi
such that the correct lepton and quark masses are obtained. Note that for the analysis of the
Higgs contribution to the muon g-2 we follwed a different scan strategy. Here we generated

98



6.2. NUMERICAL ANALYSIS

5d parameter sets with Yukawa moduli in the range (0.1, 1/3), (1/3,3) and (3, 10) with T
fixed on the value T= 1 TeV.

Note that we only require that all (Dirac) neutrino masses are below 0.1 eV and that
their mass splitting does not violate the bounds from neutrino oscillation; we do not require
that the PMNS matrix is reproduced. Recall that the dependence on the neutrino Yν ,which
only enters in terms with at least three Yukawa factors, is quite small as the numerical
dominant wrong-chirality Yν terms drop for zero-mode contributions. In the bulk Higgs
model the Yν is mediated purely by the KK excitations of the bulk Higgs field. For fixed
value of the KK scale T and given scan strategy, we generate about 2 ·105 Yukawa matrices.
In the quark sector we additionally generate a set of ∼ 1 · 105 Yukawa matrices, where also
KK scale T is chosen randomly between 1 TeV and 8 TeV. The generation of the Yukawa
matrix data sets is done using Mathematica .m files which are distributed on the T30 theory
computer cluster via the Sun Grid Engine. The packages, which create the Lepton Yukawa
sets, are organised in such way, that they create two hundred sets of Yukawas, which are
saved in a single file. Hence the generation of 2 · 105 for a specific size of T and Ymax needs
exactly 1000 jobs, which can be done in less than 10 minutes due to the Cluster being able to
handle more than 1000 mathematica kernels at once. The generation of the quark Yukawa
matrices on the other hand is at least a factor 100 slower. That is due to algorithm, which
tries not only to generate the correct 4D mass spectrum but also the CKM matrix to a good
approximation. The slowness of the generation of the quark Yukawa matrices is independent
whether the scale T has been set to definite value or is being generated randomly.
For each of the saved Yukawa sets we calculate the Wilson coefficients. This yields then
the custodial protected RS model contribution to the muon g-2 and the branching fractions
of µ → eγ, µ → e conversion, µ → 3e, τ → µγ, and τ → 3µ in the lepton sector. In the
quark sector we evolve the Wilson coefficients by solving the RGE equation exactly and then
extract the branching fraction B̄ → Xsγ. The practical implementation of this process was
also done by Mathematica .m files. Each Mathematica package reads exactly one Yukawa
data set file and then evaluates all observables for each Yukawa and saves the result in a
new file. Using the T30 theory computer cluster this process can be massively parallelised
via the Sun Grid Engine. Here the programs, which compute the quark Wilson coefficients,
are also slower than the leptonic versions, but only due to the loading process of the larger
gauge boson numerical grids.
The required low-energy parameters are shown in Table 6.1. We also added the material
constants of aluminium, which serves as the target for the next generation of muon conversion
experiments.

6.2.1 Muon g-2
The gauge contributions are expected to be virtually independent of our parameter choice,
as Aij , cf. (5.17), is approximately mass-parameter independent. The left panel of figure
6.2 shows the result for ∆ag

µ for a fixed value of T = 1 TeV. The result for T = 4 TeV is
shown in the right panel. The histograms are generated from each 2 · 105 parameter sets.
The distribution is centred around 2.72 · 10−10 for T = 1 TeV while T = 4 TeV lead to a
central value of 1.63 · 10−11. This is in line with the typical scaling ∆agauge

µ ∝ 1
T 2 × ln k/T .

The model-independent gauge contribution to gµ− 2 in the custodially protected RS model
can thus be reliably estimated via

∆ag
µ ≈ 2.72× 10−10

(
1 TeV

T

)2

(6.21)
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Figure 6.2: left panel: Histogram of the contribution of the gauge diagrams ∆ag to the
anomalous magnetic moment aµ for fixed T = 1 TeV. right panel: Same for T = 4 TeV.

for any phenomenologically relevant value of T .
Comparing to the result in the minimal model [28], ∆amin

µ ≈ 0.88 ·10−10(1 TeV)2/T2 we see
the minimal model gives a correction to the anomalous magnetic moment that is roughly a
factor of 3 smaller, while the T dependence is, as expected, the same. Despite the significant
enhancement compared to the minimal model, more realistic choices of T > 2000 GeV (which
corresponds to KK masses larger than 4.7 TeV) only gives an enhancement to aµ of at best
6.8 · 10−11. The difference between the current experimental value and the SM prediction
for the anomalous magnetic moment of the muon is given by [124]

aexp
µ − aSM

µ = 287(63)(49)× 10−11 (6.22)

where theory and experimental uncertainties are given separately. Thus, the gauge contri-
bution ∆ag

µ to aµ alone is too small to be noticed in experiments.
The effect of the modified W/Z coupling ∆aZWµ is not included in the above numbers.

For mass parameters |cL/E | > 0.55 it is given by

∆aZWµ ≈ −0.46 · 10−11

(
1 TeV

T

)2

(6.23)

and is, for general 5D masses of the order of few × 10−12 1 TeV2

T 2 in both the minimal and
custodially protected model. This is negligible for the custodially protected and a ∼ 5%
correction in the minimal model.
The Higgs contributions are strongly dependent on the model parameters, especially the
Yukawa matrices. So general statements as in the case of the gauge contribution are not
feasible. However, it is worthwhile to study the effect of the Higgs exchange in several
illustrative scenarios. Let us first go back to the minimal RS model which was already
discussed in [28]. Obviously, the contribution to gµ − 2 will increase with the magnitude
of the Yukawa matrix (in the minimal case there is only one lepton Yukawa). To quantify
this statement we study the shift of (g − 2)µ due to the dipole Wilson coefficient aH for
three hypothetical cases: the Yukawa entries are each in the range (1/10, 1/3), (1/3, 3)
or (3, 10), T is fixed to 1 TeV and we generate 104 random data sets for each scenario.
Figure 6.3 (left panel) shows the result for the different Yukawa ranges using a logarithmic
scale for the abscissa. One can see that the central values of the histograms scale with the
square of the corresponding average Yukawa size. This was to be expected from (5.68) as
the product of zero-mode profiles compensates for one Yukawa factor provided the Yukawa
matrices themselves do not carry a strong hierarchy. As each of the distributions is spread
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Figure 6.3: left panel: Higgs contribution to gµ − 2 for different average Yukawa sizes in
the minimal model (see text for details). The red (light grey) histogram corresponds to
|Y | ∈ (1/10, 1/3), the green(grey) one to |Y | ∈ (1/3, 3) and blue (dark grey) to |Y | ∈ (3, 10).
We use T = 1 TeV everywhere. right panel: Higgs contribution to gµ− 2 for the custodially
protected model without the histogram for small Yukawa matrices. The x-axis uses a linear
scale in units of 10−9.

out over more than an order of magnitude it is not possible to make quantitative statements
without a detailed knowledge of the Yukawa matrices. We also find that aH favours a
positive contribution to (g − 2)µ if one constrains the Yukawas as described. Here the
logarithmic scale on the x–axis is slightly misleading: it illustrates the scaling with the
Yukawa size but misses a short tail in the negative region. Nonetheless, the contributions
are predominantly positive. This is interesting as the Higgs contribution is then aligned with
the gauge contribution: both reduce the difference between theory and experiment (6.22).
We can use the current limits on gµ − 2 to give a rough bound on the ratio Y 2

?

T 2 . The bound
is, in a sense, maximally weak, as the preference for a positive sign forces us to consider
∆aRSµ < 6 · 10−9 as an upper bound. Thus the constraining power of gµ − 2 for the lepton
Yukawa sector is weaker then Higgs production [78] is for the quark sector. Note that both
are sensitive to the ratio Y 2

?

T 2 however there is no reason why the Y 2
? of the quark sector

should identical to the equivalent product in the lepton sector.
Only average Yukawa entries of at least 3 would allow for a correction that is sizeable

enough to remove the current tension. However, such large values would, assuming Yukawa
anarchy, also effect other observables. We also find that the general T-dependence is in
agreement with the expected 1/T 2 behaviour from power-counting.
Next, we turn to the custodially protected model. We now need to include the term with the
novel Yukawa Y ν in (5.70). The right panel of figure 6.3 shows the Higgs contribution to the
anomalous moment in the RSc model. We only show the two cases of large and intermediate
Yukawa entries; on a linear scale the histogram for small Yukawas entries is too narrowly
centred around zero to be visible.
As in the minimal scenario we find potentially very large corrections to gµ−2 for T = 1 TeV.
The correction scale with an overall 1/T 2 scaling factor. The preference for a positive
contribution that is present in the minimal model is also observed. That is because the
Y ν term appears only due to the KK excitations of the Higgs. Therefore it is numerically
suppressed compared to the standard Yukawa matrix term. It is noteworthy that this term
exist also at zero mode, but it cancels after the summation of all possible Higgs exchange
diagrams. In [54] we did not include the contribution coming from the diagram topology HT5
and HT6. Therefore this cancellation was missed leading to an custodial Higgs exchange
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contribution, which centres almost uniformly around zero [54]. Some data sets with Yukawas
in the interval |Y | ∈ (3, 10) could potentially yield a sizeable g-2 contribution, however the
energy scale of T= 1 TeV is below the bounds from the electroweak precision tests [23].
We conclude that the muon g-2 contribution does not provide any new constraints on the
parameter space of the custodial protected RS model.

6.2.2 LFV

The muon g-2 computation generates almost no constraining power on the potential param-
eter space of the minimal and custodial RS model. Nonetheless this computation led to the
computation of almost all in the LFV needed Wilson coefficients. The resulting numerical
scans are shown in this section. We concentrate here mainly on the minimal model as the
custodial protected RS model with its additional particle content only gives rise of larger
branching fractions and no entirely new effects. In this section we will also investigate the
electron dipole moment, which can be used to eliminate almost all theory points used for
the initial scan.

6.2.2.1 Minimal model

The results of our numerical scan through the constrained parameter space are best illus-
trated in two-dimensional scatter plots, which visualize the typical range of values for the
branching fractions and correlations between the observables. It is important to keep in
mind that the point densities in these scatter plots should not be used as a measure for the
likelihood of the corresponding value in a given model.
Figure 6.4 shows the values and correlation of the µ → eγ and µ → 3e branching fractions
in the minimal RS model for two different values of T , T = 4 TeV (top) and T = 8 TeV
(bottom). T = 4 TeV is also roughly the lower bound on the KK scale from electroweak
precision observables [23]. The left panels correspond to theMI scenario, the right panels
to the MII case. Each plot shows the results for Ymax = 3 in blue (dark grey) and for
Ymax = 1/2 in orange (light grey). The current and expected future experimental upper
bounds are shown by solid and dashed lines, respectively.

All four plots feature a sharp lower bound for µ → 3e given the µ → eγ rate, which
is precisely given by the relation (6.9). µ → 3e branching fraction values in the vicinity
of this bound are dominated by the contributions from the dipole operator. For very large
dipole coefficients or equivalently very large µ→ eγ branching fraction, the tri-lepton decay
is always dominated by the dipole, and the two observables are strongly correlated. This
generates the prominent thin line directed to the upper-right in the MI model with large
Yukawa couplings.
In the bulk Higgs case µ → eγ is, as expected, quite sensitive to the upper bound Ymax.
This is a consequence of the Y Y †Y terms in the dipole coefficient. They are naturally
flavour-violating and scale with Y 2

max. Consequently, the scan with larger Yukawa entries
includes points with substantially larger µ→ eγ branching fraction than the small Yukawa
coupling scan. However, the dipole coefficient has two components. While the Higgs and
the small Barr-Zee contributions scale as Y 2

max and vanish when the 5D Yukawa couplings go
to zero, the gauge-boson exchange contribution is not very sensitive to the Yukawa coupling
size. In fact, for a generic anarchic Yukawa it grows mildly with decreasing Yukawa size,
see Figure 6.1. Thus there has to be a smooth transition from the ”Higgs-dominated” to the
”gauge-dominated” regime when the Yukawa coupling decreases.
To illustrate this point we included three curves in the plots for the bulk Higgs case defined
as follows. We chose three (random) Yukawa matrices with Ymax = 3 and scale the matrices
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Figure 6.4: 2D scatter plots of the branching ratios µ→ eγ and µ→ 3e for fixed T (4 TeV
upper row, 8 TeV lower row) with Ymax = 0.5 in orange (light grey) and Ymax = 3 in blue
(dark grey), respectively. The left panels show the results for the MI models, the right
panels for the MII ones. The current experimental bounds on the branching fractions are
given by solid lines. The region above/to the left is excluded. The sensitivity of future
experiments is shown by the dashed lines.

down to Ymax = 0.25, keeping the relative size of the matrix entries fixed. The curves show
the resulting trajectories. For large Yukawa couplings the curves all run close to the dipole
dominance bound. With decreasing Yukawa couplings Br(µ→ eγ) and Br(µ→ 3e) first also
decrease following the change in the dipole coefficient. Then the growing effects of the tree-
level operators begin to dominate µ→ 3e and the corresponding branching fraction begins
to increase, while Br(µ → eγ) continues to decrease. For even smaller Yukawa coupling
the gauge-boson exchange contribution to Br(µ→ eγ) exceeds the rapidly decreasing Higgs
contribution and Br(µ→ eγ) reaches a hard lower limit.
The exactly brane-localised Higgs case displayed in the right panels of Figure 6.4 behaves
the same in this respect. However, since the leading Higgs contribution is suppressed for
the exactly brane-localised Higgs, the range of values for Br(µ→ eγ) is almost independent
of Ymax. A change in Ymax predominantly affects Br(µ → 3e), which increases for smaller
Ymax due to the larger coefficients of four-fermion and fermion-Higgs operators. This also
explains the drop shape of the scatter plot for Ymax = 1/2. Points with large µ → 3e
branching fraction arise from large tree-level Wilson coefficients either due to the structure
of the Yukawa matrix or due to accidentally small couplings. In both cases the process
µ → eγ also receives sizeable contributions from the tree operators leading to the roughly
linear correlation in the upper-right corner of the scatter points.

Values and correlations of µ→ 3e and µ→ eγ with muon conversion in gold are shown
in Figure 6.5 (colour coding as in the previous figure). The top row shows µ → eγ against
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Figure 6.5: Correlation of the branching ratios for µ → eγ and µ → e (upper row) and for
µ → 3e and µ → e (lower row), both for T = 4 TeV. The left panels show the results for
theMI, the right panels for theMII model.

µ → e (MI left, MII right). The two observables are essentially uncorrelated in the bulk
Higgs scenario. This agrees with our previous observation that muon conversion is mostly
insensitive to the dipole coefficient aAij which governs the µ→ eγ branching fraction. Only in
rare cases is the dipole operator large enough to dominate also muon conversion leading to
the noticeable spike towards the right in the upper-left plot. In the exactly brane-localised
Higgs case (upper-right panel), correlations are absent only for Y? = 3. As mentioned before,
for Y? = 1/2 µ → eγ receives non-negligible contributions from tree-level operators, which
manifests itself in a weak correlation.
For the same reasons µ → 3e and µ → e (bottom row) are strongly correlated for small
Yukawa couplings inMII model, but only feature a lower bound on the branching fraction
of µ→ 3e for a given Br(µ→ e) in the other scenarios. As noted in the previous subsection,
the branching fraction of µ→ e decreases with increasing values for Y?. This effect can best
be seen in the upper left panel of Figure 6.5. The slopes of the three sample trajectories
also verify this effect.

6.2.2.2 Custodially protected model

Figure 6.6 shows the combined results for the custodially protected model. The left panels
correspond to the bulk Higgs model CI and the right panels to the exactly brane-localised
model CII. The colour coding is the same as above. Here the KK scale T was fixed to 8 TeV,
since for T around 4 TeV it is already non-trivial to find points, which are not in conflict
with the muon conversion bound.

The broad picture for model CI is almost the same as for MI. The shape of the distri-
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Figure 6.6: Correlation of the branching ratios for µ → eγ and µ → 3e (top row), µ → eγ
and µ → e (middle row), and µ → 3e and µ → e (bottom row) for T = 8 TeV in the
custodially protected model. Model points with Ymax = 1/2 are indicated by orange (light
grey) points. For Ymax = 3 we use blue (dark grey) points. The left panels show the results
for the CI, the right panels for the CII model.
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butions does not change. Quantitatively, the custodially protected model generates signif-
icantly larger branching fractions. In particular, the µ → eγ branching fraction, which is
most sensitive to the magnitude of the dipole operator coefficient, is typically enhanced by
a factor of about five. This was to be expected as the main difference in the custodially
protected model is a larger gauge- and Higgs-contribution to the dipole coefficient aAij . Again
the dipole operator creates a correlation of µ → eγ and µ → 3e especially for the larger
value of Ymax.
For the CII model the distributions are very different from the result in theMII model. This
is a consequence of the new additional terms (5.47) in aHij . This additional contribution to
the dipole coefficient is only slightly larger than the corresponding contribution for a bulk
Higgs. The phenomenology for bulk and brane Higgs case is therefore quite similar in the
custodial RS model. The bounds imposed by the non-observation of LFV are comparable,
although more restrictive for the exactly brane-localised Higgs.
The fact that the sign of aHij depends on the Higgs localisation does not lead to a notice-
able effect. If the dipole operator is dominated by the Higgs contribution, a sign flip of the
coefficients aij only affects terms in (3.16), (3.18) and (3.20) that come from an interfer-
ence of the dipole with a four-fermion operator. In general, these terms do not provide the
dominant contribution to the branching fractions. The situation would be different if the
RS contribution could interfere with a sizeable SM contribution to LFV observables. An
observed enhanced or reduced rate could then be used to discriminate the brane from the
bulk Higgs model.2

6.2.2.3 EDM constraint

The randomly sampled Yukawa matrices also generate electric dipole moments (EDMs) of
the leptons through the non-hermitian part of αAij , see (3.7). We checked that the present
experimental limit on the electron electric dipole moment [120],

|de| < 8.7 · 10−29 e cm (at 90% CL) , (6.24)

does not affect our conclusions. To this end we first consider the quantify
√
mµ

me

ImαA11

ImαA12

, (6.25)

shown in Figure 6.7 for T= 8 TeV in the custodial protection model including Higgs KK
excitations. The quantity is centred around the value 1 for anarchic Yukawa matrices. There
are large deviations from one in both possible directions depending on the particular Yukawa
structure. This demonstrates that the EDM and the LFV observables are uncorrelated. In
total the EDM bound eliminates 85 % (12 %) for the CI model with Ymax = 3 (Ymax = 0.5)
and 90 % (25 %) for the MI model with Ymax = 3 (Ymax = 0.5). Nevertheless the the
general form of the scatter plots remains untouched by this huge point elimination, due
to the EDM and LFV sector not being correlated. We show this in Figure 6.8 for all six
scenarios for the correlation of of the branching ratios for µ→ eγ and µ→ 3e and Ymax = 3.
The surviving points still cover almost the whole range for the bulk Higgs models and the
custodial protected RS model with a brane localised Higgs. We observe that the EDM
bound only removes the edges with large branching fractions. However these points are
already excluded by the bounds on the searches of µ→ eγ and µ→ 3e. In addition theMI
model is almost not affected by the EDM bound, due to the missing wrong chirality terms

2This is precisely what is observed in Higgs production, see e.g. [78].
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Figure 6.7: Left panel:
√

mµ
me

ImαA11
ImαA12

for the CI model with Ymax = 0.5 . Right panel: Same
as left but with Ymax = 3

in the Higgs exchange. Note that for Ymax = 0.5 the difference between the EDM passed
and the complete set of theory points can almost not be seen in scatter plots of the style of
Figure 6.8. We observe the same behaviour in all other correlation plots in the LFV. For
this reason the main points of our analysis of theory points without the consideration of the
EDM bound still, despite the exclusion of the majority off most of the points.

6.2.2.4 A note on LFV τ decays

Tau decays offer another opportunity to study LFV. However, the short lifetime of the τ
and its high mass make it unsuited for studies in low-energy facilities. The best bounds on
processes like τ → eγ or τ → 3µ come from Babar [125], Belle [126] as well as LHCb [127].

The RS model naturally generates higher rates for τ → µ, e transitions than for µ → e
transitions, since there is a close relation of lepton masses with the corresponding zero-
mode profiles, which also control the size of LFV. However, the fantastic sensitivity of
past and future experiments searching for muon flavour violation still makes searches in the
muon sector the most promising avenue, unless additional flavour structure suppresses muon
flavour violation.

Nevertheless, it is instructive to provide the expectations for tau LFV in the RS model.
In Figure 6.9 we show the values and correlation of the τ → µγ and τ → 3µ branching
fractions. The colour coding is the same as in the previous subsection. The solid lines
correspond to the current best upper bounds on the branching fractions. Compared to the
bounds in the muon sector the current limits from tau decays are not restrictive even for
T = 4 TeV. An improvement of more than five orders of magnitude would be required for
constraints as severe as those from muon decays.

Qualitatively, the τ → µγ vs. τ → 3µ plot is similar to the corresponding “muonic”
plots (first row in Figure 6.4). The main difference is the large effect of the four-fermion
and fermion-Higgs operators. For the exactly brane-localised Higgs this generates the strong
correlation for small Yukawa couplings Ymax = 0.5. In the bulk Higgs case this effect prevents
scatter points close to the dipole-dominance line.

6.2.3 Radiative b decays

To see the potential effect of the additional contribution to C(′)
7γ on the B → Xsγ decay

we need to scan over the parameter space of the RS model. We will, as mentioned before,
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Figure 6.8: Correlation of the branching ratios for µ → eγ and µ → 3e. For the Ymax = 3
set for all six different models the points passing the EDM constraint (yellow) are overlaid
over all points (blue). The left panels show the result for the bulk Higgs models. The right
panels show the result for brane Higgs localisation. From top to down: minimal T = 4 TeV,
minimal T = 8 TeV and custodial protected T = 8 TeV.
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Figure 6.9: Correlation of the branching ratios of τ → µγ and τ → 3µ for T = 4 TeV in the
minimal model. The left panel shows the bulk Higgs, the right the exactly brane-localised
Higgs case.

Figure 6.10: Br(B → Xsγ) as a function of the KK scale T . The blue (dark grey) points
correspond to the data set with large Yukawas, Ymax = 3. The orange (light grey) points
correspond to Ymax = 1/2. The horizontal lines indicate the experimental value of and
uncertainty on the branching fraction. The left panel shows the result for the minimal RS
model, the right panel for the custodially protected model.
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Figure 6.11: left panel: Effect of operator mixing on ∆C7γ . The histogram shows the dis-
tribution of |∆C7γ(µb)| without operator mixing relative to the full |∆C7γ(µb)| with mixing
(see text for details). The blue (dark grey) and orange (light grey) histogram corresponds
to Ymax = 3 and Ymax = 1/2. right panel: Correlation of ∆C8g and ∆C7γ in the custodially
protected RS model for T = 4 TeV. The triangle represents the SM values of C7γ and C8g;
the dashed diagonal line indicates |∆C8g| = |∆C7γ |. Same colour coding as in the left panel.

consider a minimal and a custodially protected RS model with an IR-localised bulk Higgs.
The model parameters include the 5D masses of the fermions as well as the two Yukawa
couplings Yd and Yu.
The main result of our scan through the RS parameter space is shown in figure 6.10. It
shows the branching fraction B̄ → Xsγ as a function of the KK scale3 T for the minimal
RS model (left panel) and the custodially protected model (right panel). The blue (dark
grey) points correspond to Ymax = 3, the orange (light grey) points to Ymax = 1/2. The
current experimental central value, see equation (1.3), is represented by the solid horizontal
line; the dashed lines indicate the uncertainty.
We find that the branching fraction is, especially for small Yukawas, predominantly larger
than in the SM. This is due to a sizeable contribution from C ′7γ , that lacks an unsuppressed
interference term with the SM contribution—its contribution to the branching fraction is
always positive. In addition to that the contribution to C ′7γ is generally larger than the
contribution to the unprimed dipole coefficient. The reason for this, as was observed already
in [48], is that the 5D profile of the doublet Q3 (that very roughly corresponds to the bL after
EWSB) is typically larger than the profiles of the down-type singlets D near the IR brane;
consequently the operator Q′7,γ ∝ (sR)ασ

µν(bL)αFµν receives a larger BSM contribution.
Only for the Ymax = 3 sample one can observe data points with a significantly reduced

branching fraction compared to the SM. This is due to a destructive interference of CSM7γ

and ∆C7γ that can counteract the contribution due to C ′7γ if the Higgs contribution to
C7,γ(µKK) is large. This effect is more pronounced in the custodially protected model
where the additional fermion states enhance the dipole coefficient, cp. (5.74) and (5.70).
For small Yukawas the phenomenology of minimal and custodially protected model is quite
similar. This is to some extent a consequence of working only with QCD- and Higgs-
mediated contributions to the Wilson coefficient; QCD is treated the same in both models
while the electroweak sector is extended and features additional bosonic modes. In the
Ymax = 1/2 scenario the main distinction between the two models—the Higgs contribution—
is suppressed.

3Note that the mass of the first KK excitation of the gluon is roughly given by 2.5 × T [17]
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The smallness of the Higgs contribution for Ymax = 1/2 and the consequently smaller
∆C7γ(µKK) also make the inclusion of operator mixing mandatory. To see this we consider
two quantities: the full ∆C7γ(µb) as obtained from the RGE (3.49) and ∆C7γ(µb)|naive which
is also obtained via (3.49) but we set the Wilson coefficients of all four-fermion operators
at the high scale µKK to zero. We then consider the ratio ∆C7γ(µb)|naive/∆C7γ(µb). The
deviation of the ratio from one indicates the relative importance of the four-fermion operators
for the b → sγ transition. Histograms of ∆C7γ(µb)|naive/∆C7γ(µb) are shown in the left
panel of figure 6.11. For simplicity we only show the plot in the minimal model for T = 4 TeV.
For large Yukawas, Ymax = 3 in blue (dark grey), neglecting the contribution of from four-
fermion operators leads on average to an increase of ∆C7γ(µb) by 5%. For a few Yukawa data
sets the shift can be of the order of ±15%. In the case of small 5D Yukawa coupling (shown
in orange) ignoring the four-fermion operator mixing basically always increases ∆C7. This
can lead to an overestimate of the BSM contribution to the B̄ → Xsγ branching fraction
by up to 40%. Hence including the mixing is relevant and should not be neglected. This
is of course quite general as FCNCs mediated by new, massive gauge bosons usually create
simultaneous contributions to ∆C7γ and to the ∆Cq1,2[A,B] as is indicated by the need to
include the four-fermion operators to obtain a scheme-independent result.
For completeness we also show the correlation of ∆C7γ(µb) and ∆C8γ(µb) in the right
panel of figure 6.11. We see that on average the BSM contribution to C7γ is smaller than
the contribution to C8g as was also noted in [83]. This is more noticeable for the small
Yukawa sample shown in orange (light grey). The two Wilson coefficients are then clearly
correlated and one observes a "lower bound" on ∆C7γ for a given value of ∆C8γ . However,
with Ymax = 3, it is straightforward to find parameter points where ∆C7γ is much larger
than the BSM contribution to C8g. The reason for this is the following: The zero-mode
Higgs contribution to ag and aγ are almost proportional to each other, see equations (5.74)–
(5.70). However, the sizeable KK Higgs contribution has a more complicated structure; it
contributes in a different way to ag and to aγ . This blurs the correlation.

6.3 Discussion

In the following we summarize and emphasize the main conclusions from the phenomeno-
logical study. We studied first the anomalous magnetic moment of the muon. Here the
total correction by the custodial protected model is in line with the minimal RS model re-
sult [28]. The contribution is mainly driven by Higgs exchange penguin dipole diagrams.
These diagrams depend strongly on the structure and the size of the 5D Yukawa. In contrast
to that the other important contribution generated by the gauge boson dipole diagrams is
mostly 5D independent. Therefore, it yields a lower bound on the potential magnitude of
the effects of the RS model on the muon g-2. Compared to the previous calculation for the
minimal RS model [28] this lower bound is about three times as high. It noteworthy that
possible explanation the muon g-2 discrepancy by the RS model favours lower RS scales
T and larger Yukawa sizes. Ideally it would generate an RS scale T , which is larger than
other existing lower bounds on T like for example the bounds created from the electroweak
precision test [23]. In such ideal scenario one would be able to constrain the KK scale from
both sides. However the numerical scan shows, that the upper bounds on T generated by the
muon g-2 computation are too low. That is dominantly because the RS model contribution
is either to small for choices of T , which compatible to the electroweak precision parameter
bounds, or it is generated by large Higgs exchange dipole transitions, which generate an
EDM in conflict with the experimental bounds. This is our main message for the muon g-2
calculation in the custodial protected model.
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Considering the topologies of the decays we would naively expect the muon conversion
and µ → 3e to be dominantly mediated by the current-current operators (¯̀

eΓ`µ) (ψ̄Γψ).
These operators are determined by the Wilson coefficients caij and bij , in the dimension-six
SM effective Lagrangian (3.2). On the contrary, the branching ratio for the decay µ → eγ
should be mainly mediated by the loop-induced dipole operators. This idealised scenario
would then open the possibility to extract different informations of the underlying RS model
through the different parameter structure of the relevant Wilson coefficients..
In spite of this, our numerical scan shows that this is not the case. That is also our main
message #1 for the LFV sector. In particular, the decay µ→ 3e receives sizeable contribu-
tions from dipole operators for a large range of the parameter space. Our initial expectations
can be even reversed for a minimal RS model with an exactly brane-localised Higgs or a
minimal bulk Higgs model with small 5D Yukawas. In such case the dominant contributions
to µ → eγ can be generated by tree-level dimension six operators. Therefore, is becomes
clear that the inclusion off all dimension-six operators for every observable is needed to gen-
erate a reliable picture of the lepton flavour violation in the RS model.
Our numerical analysis shows that the inclusion of the Higgs and gauge boson exchange
contribution to the penguin diagrams that generate the dipole Wilson coefficient αAij is im-
portant, because their parameter dependence is fundamentally different. Here the most
notably difference lies in the dependence of the Yukawa coupling. In fact we cannot give a
accurate description of the µ → eγ decay over a large range of Yukawa sizes. An omission
of the Higgs exchange dipole contributions drops the numerical dominant effects for large
Yukawas. On the other hand the gauge boson exchange stops the dipole from irrelevance for
small Yukawa couplings. This itself creates a lower bound on Br(µ → eγ), which depends
only on the structure of the Yukawa matrix, but not on the the overall magnitude of the
couplings. Thus our main message #2 is that the Higgs and gauge boson induced flavour
violation have the possibility to be both important. Therefore, only a full computation of
the dipole operator coefficient yields a reliable overview of the LFV sector.
The numerical indicate that anarchic RS models with minimal particle content typically
need KK scales T larger than 4 TeV to be compatible with the current data on charged
LFV. Furthermore, the combination of µ→ eγ and muon conversion yields the bound on T
almost insensitive to the size of the Yukawa matrix for models with bulk Higgs. The situa-
tion is not so simple for an exactly brane-localised Higgs, although the bound T & 4 TeV is
still valid for small Yukawa. It is mainly generated by the muon conversion analysis. The
muon conversion is dominated by tree-level operators, which contain decreasing Wilson co-
efficients for increasing Y?. This implies a weaker bound for larger Yukawas complementary
to the behaviour of the Higgs exchange dipole operator Wilson coefficients. For this reason
there still many points for Ymax = 3 that are within the experimental bounds for T as low
as 2 TeV. The larger particle content of the custodially protected model leads directly to
larger Wilson coefficients. For this reason the bound on the KK scale T is higher. It is
noteworthy that the appearance of the Y 2

? term for an exactly brane localised Higgs yields
to a good approximation a Higgs localisation independent bound on T .
We expect significant improvements on the KK scale T in future experiments. Especially
the next generation muon conversion searches will provide strong constraints on RS mod-
els. Our analysis was performed for a gold target nucleus—DeeMe [128], Mu2E [129] and
COMET [130] use silicon and aluminium target nuclei, respectively. Aluminium and sili-
con have an approximately 20 times smaller muon capture rate compared to gold, which
enhances the branching fraction, but the wave-function overlap integrals (D,V,S) relevant
to muon conversion are also smaller, see Table 6.1. Thus an expected lower bound on the
branching fraction of 7 × 10−17 for aluminium is roughly equal to a bound around 10−16
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in gold [95] (indicated by the dashed lines in the plots). This combined with the expected
improvement on Br(µ → eγ) during the next run of the MEG experiment [131] could ex-
clude the parameter space of anarchic RS models (custodially protected or minimal) up to a
lowest KK resonance mass of 20 TeV, which corresponds to T & 8 TeV. The current µ→ 3e
constraint is less constraining than the one from muon conversion. However, the proposed
Mu3e experiment [132] aims for sensitivity to a branching fraction of about 10−16. At this
level µ → 3e alone will be able to exclude anarchic models with T . 5 TeV. Naturally,
should LFV be observed in any of the new experiments, the model-dependent correlations
among different processes can be used to further constrain the RS parameter space. Hence,
our main message #3: LFV violation provides very strong constraints on RS models, and
future experiments will further strengthen them.
It is interesting to compare the charged LFV constraints on the RS model and its KK scale
to those derived from other processes. The non-observation of direct KK gluon produc-
tion forces T to be larger than only about 1 TeV. This cannot compete with the bounds
from electroweak precision observables, notably the S and T parameter, which are essen-
tially model-independent. They only depend on the particle content of the model and to
a lesser degree on the 5D Higgs profile [90]. For the two models discussed in this work
the electroweak precision observable bounds are T > 2.3 TeV (custodially protected) and
T > 4 TeV (minimal) [23].
If one allows for a somewhat stronger dependence of the bounds on the model parameters,
Higgs production (and subsequent decay) is also an interesting observable. It depends more
strongly on the (mainly quark) Yukawa matrices Yu, Yd than the oblique parameters, but
is still far less sensitive to its detailed structure than processes like µ → 3e, because Higgs
production depends to leading order only on the traces of Y †uYu, Y

†
d Yd. The trace of a

product of anarchic matrices follows a narrower distribution than an individual matrix ele-
ment. One finds that T has to be larger than 2 (4) TeV @ 95% CL for Y? ≈ 3 in the minimal
(custodially protected) model with a narrow bulk Higgs [78]. For smaller Yukawa couplings
the bound becomes weaker as the effect on the production cross section decreases with Y?.
For the exactly brane-localised Higgs the constraints are stronger, and one finds the same
bounds on T as above already for Y? ≈ 1. As we have seen the situation is different for LFV
observables. In the minimal model an exactly brane-localised Higgs leads to weaker bounds
than a bulk Higgs, and in the custodially protected model the bound from the bulk Higgs
(with KK modes) is comparable to the one in the exactly brane-localised scenario. Thus
for large quark Yukawa couplings and the exactly brane-localised Higgs, Higgs production
provides at least equally strong bounds on the KK scale than the non-observation of charged
LFV. The LHC will be able to improve on this further in the future. In all other cases the
next generation LFV experiments will be able to set the most stringent limits on the KK
scale. Of course, this comparison assumes that the magnitude of anarchic Yukawa couplings
is roughly the same in the quark and lepton sectors.
Our findings can be compared to the results of [31], which provided the first detailed analysis
of lepton flavour violation in the minimal RS model in the KK mode picture. The branching
ratio of µ→ eγ is determined from the Higgs-exchange contribution to the dipole Wilson co-
efficient alone, which is computed via one-loop diagrams involving the Higgs zero-mode and
first fermion KK excitation. Muon conversion and µ→ 3e are computed from the tree-level
Wilson coefficients, while the dipole contribution is neglected. Both exactly brane-localised
and bulk Higgs scenarios are investigated. We can compare with our full results only for the
bulk Higgs case as their exactly brane-localised Higgs result for the dipole operator is cut-off
dependent. Despite these caveats the overall size of the bound on the KK scale T for a bulk
Higgs is compatible with the one found above. The main difference is the dependence of the
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branching fractions on the model parameters. As [31] only includes the Higgs contribution,4
the dipole coefficient has a straightforward dependence on the Yukawa coupling size Y?. The
identification of the dependence on the Yukawa coupling size as a distinguishing feature of
tree-level and loop-induced observables, i.e. muon conversion and tri-lepton decay as op-
posed to `′ → `γ, is however valid only for medium-size Yukawa couplings, since otherwise
the neglected gauge-boson contribution with its different dependence on Y? becomes relevant
for small Y?, and for large Y? the tri-lepton decay is dominated by the dipole operator and
therefore effectively also loop-induced.
We can also compare our results with [32]. Here the Higgs-exchange contribution to the
dipole operator is not considered. The dipole coefficient is computed in the 5D framework
from a subset of gauge-boson exchange diagrams including a dimension-eight effect with
three Yukawa matrices. Comparing orders of magnitudes their results for µ → eγ and
µ → 3e are similar to our exactly brane-localised Higgs case in the minimal model. In
particular, the lower bound on the µ → eγ branching fraction for small Yukawa couplings
is also present in their estimates.

To conclude this chapter let us turn a final focus on the B̄ → Xsγ decay. Comparing with
the experimental value for B̄ → Xsγ we find that for Ymax = 1/2 the RS model parameter
space is generally compatible with experimental data for T > 2 TeV. Since electroweak
precision observables already put stricter bounds on the KK scale [23, 27], B̄ → Xsγ does
not give any new constraints on the KK scale. Nonetheless, sizeable corrections of about
5−10% are still possible. For large Yukawas the situation is much more intriguing, especially
in the custodially protected model. As the large effects come almost exclusively from the
Higgs exchange contribution to the dipole coefficients ag/γ they are strongly dependent on
the specific form of the anarchic Yukawa matrices. As for the muon g-2 and the LFV it
is difficult to deduce any hard bounds on RS parameter space. However, the total BSM
correction to the branching fraction can be quite substantial. Even for T ∼ 5 TeV it is easy
to find parameter points outside the current experimental limits. Consequently, the new
Belle II searches would have the potential to discover the impact of KK states on B̄ → Xsγ
with masses well above 10 TeV.

4The absence of the KK modes does affect the qualitative characteristics of the Higgs contribution.
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Summary

The first run of the LHC was a huge success with the discovery of the Higgs boson, the
long sought last piece of the standard model. However, this first run can also be considered
a disappointment as any significant indication for new physics has not been found yet. In
this thesis we considered Randall-Sundrum models, which are potential candidates for a
field theory model that describes physics beyond the SM. Based on the old intriguing idea
of a spacetime with additional spacial dimensions, this model addresses the long known
gauge-gravity hierarchy problem, which is even more pressing now with the discovery of the
Higgs. It also contains a mechanism to generate the quark mass flavour hierarchies and
mixing angles naturally and therein providing one of best explanations of the SM flavour
puzzle. However, the potential lowest mass range of the lightest Kaluza-Klein particles are
potentially too heavy for direct production at the maximum design centre of mass energy
of 14 TeV at the LHC. We explained this in chapter 2. In such a situation it is time to look
for possible indirect signatures of interactions of Kaluza-Klein and SM particles. One pos-
sibility to search for such signatures are the experimental measurement of processes, which
are mediated by dipole operators and contain energy scales far below the scale of the LHC.
For this reason we explored the one-loop-induced dipole transitions in the RS model in this
thesis. In particular we concentrated on the muon g-2, the lepton number violating decays,
µ → eγ, µ → 3e, µ → e conversion and the inclusive electromagnetic penguin B decay
B̄ → Xsγ.
To this end we first we introduced the RS model with minimal field content in chapter two.
There we saw that the main prediction of a RS model with bulk fermions and gauge bosons
is the existence of a large tower of heavy particles for each SM fermion and gauge boson,
whose lowest mass is of the order of the KK scale T . We also discussed the careful treatment
of the necessary localisation of the Higgs near the IR brane and introduced three different
localisations schemes, which have phenomenological consequences. In particular we included
the discussion of a bulk Higgs with a β localisation. Such a localisation scheme gives rise to
KK excitations of the Higgs, which are important for dipole transition even in the near local-
isation limit [79]. The mostly 5D parameter independent constraints generated by tree-level
contributions on the electroweak precision parameter S and especially the T parameter [23]
led to the introduction of the RS model with custodial symmetry, whose extended gauge
group gives rise to new gauge boson, lepton and quark fields. It is noteworthy that this
model contains heavy quark fields with a charge of 5/3. These are potential smoking gun
signatures for direct production at a particle accelerators with a sufficient high centre of
mass energy.
We then integrated the fifth dimension of the RS model out in chapter 3. To this end we in-
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troduced an effective theory containing the SM Lagrangian and a dimension six Lagrangian
based on the Buchmüller-Wyler Lagrangian [51] containing a complete set of all operators,
which contribute to the relevant processes. We selected operators that can be generated by
the RS model. Our selection criteria was that this generation by the RS model is either a
tree-level process or in the case of the electromagnetic lepton and quark dipole operators
as well as the gluonic dipole operator a one-loop transition. This effective theory allowed
us to express all leptonic processes of interest in terms of the Wilson coefficients after the a
transition to the broken phase. To compute the branching fraction of B̄ → Xsγ we focussed
on the contributions of KK Klein gluons and the Higgs exchange. Here we matched the
associated dimension six Lagrangian to an effective weak Hamiltonian and then used the
results of [108] to include the effect of operator mixing due to RGE evolution from the KK
scale T to µb to leading log LL accuracy. This is necessary as already in the SM the QCD
corrections are sizeable and the dipole operator coefficient alone is not regularisation scheme
independent.
With the formulation of the basic 5D formalism in chapter two and the computation of
the processes of interest in terms of an effective theory the next step was to match the
5D theory to the dimension six Lagrangian. This was done in chapter four for the case of
tree-level operators and in chapter five for the loop-induced dipole operators. Using the
5D approach the tree-level Wilson coefficient matching can be performed analytically. The
dipole are mostly accessible via numerical calculations, the only exception are the Higgs
exchange dipole diagrams, which were computed analytically for a nearly or exactly brane
localised Higgs. Our calculation is the first complete one of dimension-six effects, which
are not suppressed by powers of small fermion masses in the lepton sector. It considerably
sharpens previous results from [31, 32, 53]. This concerns in particular the electromagnetic
dipole coefficient. This Wilson coefficient depends on the localisation scheme of the Higgs
near the IR brane. It also receives contributions, which dependent parametrically different
on the the magnitude of the anarchical 5D Yukawa matrices. This leads to distinctive fea-
tures in the 5d parameter scan we provided in the next chapter.
Equipped with all Wilson coefficients in terms of 5D parameters we then assumed generic
anarchic Yukawas matrices and studied the branching ratios µ → eγ, µ → 3e, µN → µN
as well asτ → µγ, τ → 3µ and the quark flavour violating process B̄ → Xsγ in both
the minimal and custodial protected RS model in chapter six. Here the combination of
µ → eγ and µN → µN causes the most stringent constraints on the parameter space of
the models. For the minimal RS model this leads to a lower bound on the KK scale T of
about 2 TeV . However, for a bulk Higgs the lower bound can be up to 4 TeV, which is
about the size of the bounds coming from the electroweak precision parameters. For the
custodial protected RS model we deduced bounds up to 4 TeV for T , which corresponds to
first Kaluza-Klein masses of about 10 TeV far beyond the limit for direct production at the
LHC. We note that the upcoming next generation of LFV experiments with their expected
exclusion range could lead to bounds on T of about T ∼ 8TeV , which would mean lightest
Kaluza-Klein masses of about 20 TeV. Compared to the LFV sector the RS contribution to
the branching ratio B̄ → Xsγ yields weaker bounds on the RS scale T . However, for large
Yukawas there can be deviations of Br(B̄ → Xsγ) even for KK scales of around 4 TeV. For
small Yukawas the impact of the RS model is mild: KK scales that are not in conflict with
electroweak precision bounds, the deviations generated by the RS model are generally small.
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Appendix A

5D Feynman rules

In this part of the appendix we will provide modified Feynman rules for the custodially
protected Randall–Sundrum model compared to the minimal RS model. We use the same
notation as in [28].

A.1 Vertices

We supply the for the calculation of g-2 needed vertex factor for the custodially protected
Randall-Sundrum model. The gauge-boson self interactions are not modified for the SU(2)L
and SU(2)R compared to the minimal RS model. Therefore we will not write them down
explicitly here. Note that for the vertex factors we use the T̃4 field basis of the Lagrangian
density (2.96). The complete set of all vertex can be found for instance in [26] with slightly
different conventions.

Fermion-gauge field vertices We distinguish here between the SU (2)L × SU (2)R bi-
doublet ξ1 and the two SU (2) tripletts T̃4 and T̃3. We write an R or L next to the gauge-
boson line to denote SU (2)R or SU (2)L gauge-bosons. As above introduced a Greek indices
labels a SU (2)R indices, while a Latin indices marks a SU (2)L indices. Note that the Greek
indices µ is only used here for the Lorentz index of the gauge-boson line. We work here in
the unbroken theory, which is flavour diagonal, thus we neglect here the flavour indices. For
every vertex one hast perform additionally an integral

∫ 1/T

1/k
(k z)

−4
dz over the remaining

bulk coordinate z
For the SU (2) bi-doublet we read off the following vertex factor of the Lagrangian:
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L

z

b α a α

µ, c

ig5
(τ c)ab

2
γµ

R

z

a β a α

µ, ρ

ig5

(τρ)αβ
2

γµ

L

z

b α a α

c

g5
(τ c)ab

2
γµ

R

z

a β a α

ρ

g5

(τρ)αβ
2

γµ

The vertex factor of the T̃4 and T̃3 gauge-boson interaction can be determined as:

R

z

β α

µ, ρ

g5ε
αβργµ

R

z

β α

ρ

− ig5ε
αβργµ

L

z

b a

µ, c

g5ε
abcγµ

L

z

b a

c

− ig5ε
abcγµ

Higgs Interactions We write down only the Yukawah interaction vertex between the
T̃4 and the ξ1 field, since the Yukawah vertex factor of the T̃4 and the ξ1 can be used by
replacing the Greek indices by Latin ones for the T̃3ξ

1 vertex factor. As usual the Yukawah
interaction vertex is the only one in our unbroken theory, which changes the flavour. The
flavour indices we use here are i and j. Note that the Higgs-field attains an additional
SU (2)R index being a SU (2)L × SU (2)R bi-doublet. Note that due to the the covariant
derivative the kinetic term of the Higgs bi-doublet induces a mixing between the SU (2)L/R
field. This mixing generates the photon-Higgs vertices if there is one W 3

R field and or one
W 3
L gauge-boson included into this vertex.
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ijρ a α

a β

− iT
3

k3
y

(5D)
ij

(τρ)αβ√
2 LR

ρ, µ c, ν

a α

b β

i
g2

5

2
(τ c)ab (τρ)αβ ηµν

L

~p′~pa α b α

c, µ

ig5
(τ c)ab

2
(p+ p′)

µ

LL
c, µ d, ν

a α

b β

ig2
5

δρϑ

2
δabδcd

R

~p′~pa α a β

ρ, µ

ig5

(τρ)αβ
2

(p+ p′)
µ

RR
ρ, µ ϑ, ν

a α

b β

ig2
5

δϑρ

2
δabδαβ

A.2 Propagators
The notations and conventions of [28] cover only the minimal RS model, therefore we need
to adapt them to custodially protected RS model. Because we are working here in the
unbroken theory this gives rise to two different kinds of fermion propagators for the new
fermion fields of the ξ1 and T 4 multipletts and one new type gauge-boson propagator for
the new gauge-boson fields.

A.2.1 Fermion propagators
For the calculation of the new fermion propagators we distinguish between the ξ1 and T̃ 4

fermion multipletts. We define the ξ1 propagator as follows

~p
a α

y x
b β

= δabδαβ∆ξ1

α (p, x, y) (A.1)

where x,y are 5-coordinates and a,b α, β SU (2) indices. Observe that we neglect here the
generation indices. The object ∆ξ1

aα (p, x, y) can be decomposed in the unbroken theory in
the following way:

∆ξ1

α (p, x, y) = ∆ξ1
mp (p, x, y) δα1 + ∆L (p, x, y) δα2 (A.2)

where ∆L (p, x, y) is the already in calculated doublet propagator, while ∆mp (p, x, y) belongs
to the new fermion fields inside the ξ1 bi-doublet, which have (−,+) boundary conditions
for the left-handed mode functions.
For the T̃ 4 SU (2) triplett the fermion propagator can be written as

~p
α
y x

β
= ∆T 4

αβ (p, x, y) . (A.3)
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In the T̃ 4 basis the object ∆T 4

αβ (p, x, y) is not diagonal in the two SU (2)R indices, because the
first two components of T̃ 4are a linear combination (2.102) of the standard model singlet field
L and a new field λ with (−,+) boundary conditions for the right-handed mode functions.
The object ∆T 4

αβ (p, x, y) can be written in the basis (C.17) as

∆T 4

αβ (p, x, y) =



∆E (p, x, y) + ∆pm (p, x, y) i∆E (p, x, y)− i∆pm (p, x, y) 0

−i∆E (p, x, y) + i∆pm (p, x, y) ∆E (p, x, y) + ∆pm (p, x, y) 0

0 0 2∆pm (p, x, y)



αβ

×1

2
.

(A.4)

Here ∆E (p, x, y) is the standard model singlet propagator and ∆mp (p, x, y) the propagator
for the fields of the T 4 triplet, which have (−,+) ((+,−)) boundary conditions for the right
(left)-handed mode functions. Note that one finds for T 3 triplet directly the propagator

∆T 4

ab (p, x, y) = δab∆mp (p, x, y) (A.5)

To compute ∆pm (p, x, y) and ∆mp (p, x, y) we use the general form of a fermion propagator
in a RS model in conformal coordinates [28].

∆X (p, x, y) = −F−X (p, x, y) /pPL − F+
X (p, x, y) /pPR

+d+F−X (p, x, y)PL + d−F+
X (p, x, y)PR, (A.6)

where X can stands for arbitrary boundary conditions. The operators d+ and d− are defined
as

d+ = ∂x −
2

x
− c

x
d− = −∂x +

2

x
− c

x
.

The F functions obey the differential equations [28]
[
−p2 − ∂2

x +
c2 − c− 6

x
+

4

x

]
F−X (p, x, y) = i (kx)

4
δ (x− y) (A.7)

[
−p2 − ∂2

x +
c2 + c− 6

x
+

4

x

]
F+
X (p, x, y) = i (kx)

4
δ (x− y) (A.8)

and can be decomposed as follows in terms of Kaluza-Klein mode sums [28]:

F+
X (p, x, y) =

∑

n

f
(n)
X (x)

−i
p2 −m2

n

f
(n)
X (y) (A.9)

F−X (p, x, y) =
∑

n

g
(n)
X (x)

−i
p2 −m2

n

g
(n)
X (y) (A.10)

d−F+
X (p, x, y) =

∑

n

g
(n)
X (x)

imn

p2 −m2
n

f
(n)
X (y) (A.11)

d+F−X (p, x, y) =
∑

n

f
(n)
X (x)

imn

p2 −m2
n

g
(n)
X (y) (A.12)

where fX (x) (gX (x)) is the left (right)-handed mode function. The Kaluza-Klein decompo-
sition is useful to determine the boundary conditions for the ∆pm (p, x, y) and ∆mp (p, x, y)
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propagators.
The ∆mp (p, x, y) propagator is the propagator of a ξi fermion field with (−,+) ((+,−))boundary
conditions for the left (right)-handed mode functions, i.e.

fmp (x)|x= 1
k

= 0 gmp (x)|x= 1
T
. (A.13)

Using this we can deduct the boundary conditions of the F functions to be

F+
mp (p, x, y)|x= 1

k
= 0 F−mp (p, x, y)|x= 1

T
= 0 (A.14)

d−F+
mp (p, x, y)|x= 1

T
= 0 d+F−mp (p, x, y)|x= 1

k
= 0. (A.15)

For the ∆pm (p, x, y) propagator we note that boundary conditions of the associated mode
functions are flipped compare to the ∆mp (p, x, y) case, i.e.

fpm (x)|x= 1
T

= 0 gpm (x)|x= 1
k
. (A.16)

This yields the following boundary conditions for the F function

F+
pm (p, x, y)|x= 1

T
= 0 F−pm (p, x, y)|x= 1

k
= 0 (A.17)

d−F+
pm (p, x, y)|x= 1

k
= 0 d+F−pm (p, x, y)|x= 1

T
= 0. (A.18)

Note that in the unbroken phase we the propagator The chiral components of the fermion
propagator can be written in a shorter way using the following definitions

S+ (p, x, y, c) = Ic+ 1
2

(px)Kc+ 1
2

(py)−Kc+ 1
2

(px) Ic+ 1
2

(py) (A.19)

S− (p, x, y, c) = Ic− 1
2

(px)Kc− 1
2

(py)−Kc− 1
2

(px) Ic− 1
2

(py) (A.20)

S̃+ (p, x, y, c) = Ic+ 1
2

(px)Kc− 1
2

(py) + Kc+ 1
2

(px) Ic− 1
2

(py) (A.21)

S̃− (p, x, y, c) = Ic− 1
2

(px)Kc+ 1
2

(py) + Kc− 1
2

(px) Ic+ 1
2

(py) (A.22)
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which were first introduced by . With this new notation the chiral components of the ∆ξ1
mp

propagator can be written as

F−mp (p, x, y) = Θ (x− y)
ik4x

5
2 y

5
2 S̃+
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p, x, 1

T , c
)
S−
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1
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ik4x

5
2 y

5
2 S̃+

(
p, y, 1

T , c
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S−
(
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)

S̃+

(
p, 1

T ,
1
k , c
) (A.23)

F+
mp (p, x, y) = −Θ (x− y)

ik4x
5
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) (A.24)

d+F−mp (p, x, y) = pΘ (x− y)
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d−F+
mp (p, x, y) = pΘ (x− y)
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The chiral components of ∆pm propagator can be expressed as

F−pm (p, x, y) = −Θ (x− y)
ik4x

5
2 y
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(
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T , cr
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) (A.30)

Note that these propagators can only be obtained after performing a Wick rotation p→ i pE.
For the off-shell Higgs exchange diagrams we need the zero mode subtracted brane to brane
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−ig
(0)
E

(
1
T

)
g

(0)
E

(
1
T

)

p2
. (A.32)

To perform the limit p→ 0 one has to use the series representation of I Bessel function. To
do this we apply first

Kµ (x) =
π

2

I−µ (x)− Iµ (x)

sin (πµ)
(A.33)

to find

F+
E ZMS

(
p,

1

T
,

1

T

)
= i

k4
(
I−cr− 1

2

(
p
k

)
Icr− 1

2

(
p
T

)
− Icr+ 1

2

(
p
k

)
I 1

2−cr
(
p
T

))

pT 4
(
I−cr− 1

2

(
p
k

)
Icr+ 1

2

(
p
T

)
− Icr+ 1

2

(
p
k

)
I−cr− 1

2

(
p
T

))

−ig
(0)
E

(
1
T

)
g

(0)
E

(
1
T

)

p2
. (A.34)

Then using the series representation of the Bessel functions like for example

Iµ (x) =

∞∑

n=0

1

n!Γ (µ+ n+ 1)

(x
2

)µ+2n

(A.35)

we find

F+
E ZMS

(
0,

1

T
,

1

T

)
=

i
(2cr− 1)k4cr+6 − (2cr + 3)k4T 4cr+2

(4cr(cr + 1)− 3)T 5 (k2cr+1 − T 2cr+1)
2

+i
k2cr+3T 2cr+1

(
(3− 4cr(cr + 1))k2 + (2crT + T )2

)

(4cr(cr + 1)− 3)T 5 (k2cr+1 − T 2cr+1)
2 (A.36)

For the other two needed F functions finds the limit in the same way

F+
DZMS

(
0,

1

T
,

1

T

)
=

i
(2c− 3)T 2k4c+4 − (2c+ 1)k6T 4c

(2c− 3)(2c+ 1)T 5 (Tk2c − kT 2c)
2

+i
k2c+3T 2c+1

(
(3− 4(c− 1)c)k2 + (1− 2c)2T 2

)

(2c− 3)(2c+ 1)T 5 (Tk2c − kT 2c)
2 (A.37)

F−pm

(
0,

1

T
,

1

T

)
=

ik4

T 5 − ik2cr+3T−2cr−4

1− 2cr
(A.38)
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A.2.2 Gauge boson propagator
In this section we will derive the gauge propagator for the ZX and W b=1,2

R fields, which have
(−,+) boundary conditions. The derivation stays close to [28]. We use the Rξ gauge here.
The vector part of a general gauge-boson propagator can be written as [28]

∆µν
mp (p, x, y) = ∆mp (p, x, y) ηµν +

pµpν

p2

(
∆mp

(
p√
ξ
, x, y

)
−∆mp (p, x, y)

)
(A.39)

where the transverse part of the gauge-boson propagator ∆mp (p, x, y) is defined by the
differential equation [28]

(
p2 + x∂x

1

x
∂x

)
∆mp (p, x, y) = −ikx δ (x− y) . (A.40)

A complete solution can be found by demanding the boundary conditions

∂x∆mp (p, x, y)|x= 1
T

= 0 ∆mp (p, x, y)|x= 1
k

= 0. (A.41)

The scalar propagator of the fifth coordinate satisfies the the differential equation [28]
[
p2 + ξ∂xx∂x

1

x

]
∆5mp (p, x, y) = ikxδ (x− y) . (A.42)

The solution can be easily computed by using the fifth coordinate mode functions, which
obey the equation [28]

ξ∂x

(
x∂x

1

x
f

(n)
W5mp

(x)

)
= −ξm2

n f
(n)
W5mp

(x) . (A.43)

Thus the Kaluza-Klein decomposition of ∆5mp (p, x, y) is after using the completeness rela-
tion of the mode functions

∆5mp (p, x, y) =
∑

n

f
(n)
W5mp

(x)
i

p2 − ξm2
n

f
(n)
W5mp

(y) . (A.44)

The fifth coordinate mode function f (n)
W5mp

(x) are not independent of the mode functions of
the vector part of the gauge-boson fields. There exists the following relation between this
two kinds of mode functions [28]

∂xf
(n)
W mp (x) = mnf

(n)
W5mp

(x) . (A.45)

Here the vector part mode function satisfies the equation [28]

x∂x

(
1

x
∂xf

(n)
W mp (x)

)
= −m2

nf
(n)
W mp (x)

with the boundary conditions

∂xf
(n)
W mp (x)|x= 1

T
= 0 f

(n)
W mp (x)|x= 1

k
= 0. (A.46)

Thus we find with the mode expansion of ∆5mp (p, x, y) and ∆mp (p, x, y)

∆mp (p, x, y) =
∑

n

f
(n)
W mp (x)

−i
p2 −m2

n

f
(n)
W mp (y)

124



A.2. PROPAGATORS

the relation

∆5mp (p, x, y) +
∂x∂y
p2

∆mp

(
p√
ξ
, x, y

)
=

1

p2

∑

n

f
(n)
W5mp

(x) f
(n)
W5mp

(y) =
ikx

p2
δ (x− y)

(A.47)
which gives us directly the solution of the scalar fifth propagator in terms of the transverse
part of the vector part of the gauge-boson propagator. Note that the delta function on
the right-handside of equation (A.47) is being cancelled by the derivatives acting on the
heavisidetheta functions of ∆mp (p, x, y) .
Again we only give the full solution of the free gauge propagators after wickrotation

∆mp (p, x, y) = ikxyΘ (x− y)
S̃+

(
p, x, 1

T ,
1
2

)
S+

(
p, y, 1

k ,
1
2

)

S̃+

(
p, 1

k ,
1
T ,

1
2

)

+ikxyΘ (y − x)
S̃+

(
p, y, 1

T ,
1
2

)
S+

(
p, x, 1

k ,
1
2

)

S̃+

(
p, 1

k ,
1
T ,

1
2

) (A.48)

∆5mp (p, x, y) = ikxyΘ (x− y)
S−
(
p√
ξ
, x, 1

T ,
1
2

)
S̃+

(
p√
ξ
, 1
k , y,

1
2

)

S̃+

(
p, 1

k ,
1
T ,

1
2

)

+ikxyΘ (y − x)
S−
(
p√
ξ
, y, 1

T ,
1
2

)
S̃+

(
p√
ξ
, 1
k , x,

1
2

)

S̃+

(
p, 1

k ,
1
T ,

1
2

) (A.49)

125



APPENDIX A. 5D FEYNMAN RULES

126



Appendix B

The bulk Higgs

For the bulk Higgs we follow [80,81]. The 5D Higgs action reads

SΦ =

∫
d4x

1
T∫

1
k

dz
1

(kz)5

[
gMN (DMΦ)

†
(DNΦ)− µ2

z2
Φ†Φ

− δ(√g55(z − 1/T ))V1/T − δ(
√
g55(z − 1/k))V1/k

]
. (B.1)

The brane potentials are

V1/k = m1/k Φ†Φ , V1/T = −m1/T Φ†Φ + λ
(
Φ†Φ

)2
(B.2)

with m1/k = (2 + β)k. We define β =
√

4 + µ2. Note that in [80] the IR brane potential is,
up to normalization, written as

V1/T =
λ̃

2k2

[
Φ†Φ− v2

TeV

2

]2

(B.3)

where the coupling constant λ̃ is dimensionless. For our purposes the form of (B.2) is more
convenient. The choice for the UV potential parameter m1/k leads to a Higgs vacuum
expectation value (vev) that rises towards the IR brane for positive β.

B.1 Zero mode and vacuum expectation value

The zero-mode equations of motion are given by
(
z3∂zz

−3∂z −
µ2

z2

)
Φ(0)(z) = −m2

0Φ(0)(z) (B.4)

∂zΦ
(0)

Φ(0)

∣∣∣∣
z=1/k

= m1/k ,
∂zΦ

(0)

Φ(0)

∣∣∣∣
z=1/T

= m1/T
T

k
(B.5)

The boundary conditions ensure that the boundary terms arising from integration by parts
vanish. m2

0 is the squared mass of the zero mode in the unbroken phase. As we will see
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below it is tachyonic and of the order of the physical Higgs mass, i.e. much smaller than the
KK scale T .

The general solution of the differential equation is

Φ(0)(z) = N0z
2 (Jβ(m0z) + CYβ(m0z)) . (B.6)

The UV-brane boundary condition can be used to determine

C =− Jβ+1(m0/k)

Yβ+1(m0/k)
≈ 2−2(1+β)π

Γ(1 + β)Γ(2 + β)

(m0

k

)2+2β

for m0 � k . (B.7)

Observing that Jβ(x)/Yβ(x) ∝ x2β for small arguments, we find that

Jβ(m0z)� CYβ(m0z) (B.8)

for m0 � T . We can use this approximation for the zero mode to obtain

Φ(0)(z) = N0z
2Jβ(m0z) ≈ N0z

2+β +O(m0z) . (B.9)

The overall normalization is given by
1
T∫

1
k

dz

(kz)3
Φ(0)(z)

2
= 1 ⇒ N0 ≈

√
2(1 + β)

1− ε2+2β
k3/2T 1+β . (B.10)

Up to higher terms in m0/T the zero-mode mass is determined by the equation

∂zΦ

Φ

∣∣∣∣
z=1/T

= T (2 + β)−m0
Jβ+1(m0/T )

Jβ(m0/T )
= m1/T

T

k
. (B.11)

Expanding the Bessel function for small argument, we find

m1/T
T

k
− T (2 + β) = − m2

0

2(1 + β)T
+ higher-order terms , (B.12)

which implies
m2

0 ≈ 2(1 + β)
(

2 + β − m1/T

k

)
T 2 . (B.13)

Note that m0 must be a small compared to T , otherwise the expansions above would not
have been allowed. We return to this point below.

The 5D profile of the vev is not needed in our computation, since it is done in the unbroken
electroweak phase. The Higgs vev only enters at the 4D level in the effective Lagrangian—as
a low-energy parameter determined from experiment. Still it is instructive to see how the
vev profile arises. To this end we substitute Φ→ 1√

2
(v + h) into the Lagrangian (B.1) and

expand all terms (see [78] for a more detailed derivation). We can use that 4D derivatives
on v vanish. This leads to the equations

(−∂z +
T

k
m1/T − 3

T

k
λv2)h|z→1/T = 0 (B.14)

(∂z −m1/k)h|z→1/k = 0 (B.15)

(−∂z +
T

k
m1/T −

T

k
λv2)v|z→1/T = 0 (B.16)

(∂z −m1/k)v|z→1/k = 0 (B.17)
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along with the standard equation for Higgs bulk profiles. This gives the solution

v(z) = Nvz2+β , (B.18)

which is strongly IR localised already for moderately large, positive values of β. The IR
boundary condition determines

N 2
v =

(
m1/T − (2 + β)k

) 1

λ
T 4+2β . (B.19)

Equivalently, by requiring that W boson acquires the correct mass

Nv =

√
2(1 + β)

1− ε2+2β
T β+1k3/2vSM. (B.20)

With this input we can compute the physical Higgs mass

m2
H = m2

0 + 6(1 + β)
T 2

k
λ v(1/T )2

= 2(1 + β)
(
(2 + β)k −m1/T + 3λ v(1/T )2

) T 2

k
. (B.21)

Using

λ
v(1/T )2

k
=
m1/T

k
− (2 + β) (B.22)

this result can be rewritten into

m2
H = 4(1 + β)λ

v(1/T )2

k
T 2 !≈ (125GeV)2 (B.23)

and

m2
0 = −m

2
H

2
< 0 . (B.24)

Thus we find |m2
0| � T 2, which was necessary to justify the expansion in the broken phase.

We note that the requirement that mH ≈ 125GeV implies a fine-tuning between the param-
eters m1/T and (2 + β)k, see (B.13). We further note the relations

λ v(1/T )2 =
m2
H

4(1 + β)T 2
k , (B.25)

m1/T = (2 + β)k +
m2
H

4(1 + β)T 2

︸ ︷︷ ︸
�1

k . (B.26)

B.2 Higgs Propagator
The 5D Higgs propagator is determined by the equations

[
p2 − µ2

z2
+ z3∂zz

−3∂z

]
∆Φ(p, z, z′) = i(kz′)3δ(z − z′) , (B.27)

∂z∆Φ(p, z, z′)|z=1/k = m1/k∆Φ(p, 1/k, z′) , (B.28)

∂z∆Φ(p, z, z′)|z=1/T = m1/T
T

k
∆Φ(p, 1/T, z′) , (B.29)
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which can be solved in the standard way, see e.g. [28]. After Wick rotation to Euclidean
space, the full Higgs propagator is given by

∆φ(p, z, z′) = Θ(z − z′) ik3z2z′2

×
(
Iβ+1

(
p
k

)
Kβ(pz′) +Kβ+1

(
p
k

)
Iβ(pz′)

) (
Iβ+1

(
p
T

)
Kβ(pz) +Kβ+1

(
p
T

)
Iβ(pz)

)

Iβ+1

(
p
k

)
Kβ+1

(
p
T

)
−Kβ+1

(
p
k

)
Iβ+1

(
p
T

)

+ {z ↔ z′} , (B.30)

whereK and I are modified Bessel functions. It is useful to not only have the full propagator,
but also the zero-mode subtracted propagator. We only work to leading accuracy in v/T ,
that is we approximate

m1/T
T

k
= (2 + β)T . (B.31)

The Higgs zero mode is then massless, and its profile is proportional to the vev profile
derived previously. The zero mode can readily be removed from Euclidean propagator via

∆ZMS
φ (p, z, z′) = ∆φ(p, z, z′)− i

(−p2)
Φ(0)(z)Φ(0)(z′) , (B.32)

since removing the zero mode corresponds to removing the pole at p2 = 0 from the full
propagator.

B.3 Yukawa matrix scaling

For the bulk Higgs field the Yukawa coupling develops a dependence on the Higgs 5D mass
µ or, equivalently, β. To see how this dependence arises let us compare the situation with
the delta-regularized narrow bulk Higgs (2.64). In the latter case, we find for the 4D SM
lepton Yukawa matrix the standard expression

yij = f
(0)
Li

(1/T )g
(0)
Ei

(1/T )
T 3

k4
Yij + higher terms

=

√
1− 2cLi

1− ε1−2cLi

√
1 + 2cEj

1− ε1+2cEj
Yij . (B.33)

For the bulk Higgs the bulk action contains the interaction term

S ⊃ −

1
T∫

1
k

dz

(kz)5

∫
d4xY βij L̄i(x, z)Φ(x, z)Ej(x, z) + h.c. , (B.34)

where L,E,Φ are 5D fields, and Y β is the dimensionful bulk Higgs Yukawa coupling. In-
serting zero modes and integrating over z, we obtain (up to terms suppressed by powers of
ε)

yij = Y β
√

1− 2cLi
1− ε1−2cLi

√
1 + 2cEj

1− ε1+2cEj

√
2(1 + β) k1/2

2− cLi + cEj + β
. (B.35)
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C
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Figure B.1: Left panel: Diagram contributing to the matching onto L̄iEj L̄kEl. The inter-
mediate Higgs propagator is zero-mode subtracted to remove long-distance contributions.
Right panel: Wilson coefficient CLELE1111 as a function of β for T = 1 TeV, cL1

= −cE1
= 0.6

and Y = 1.

Since the SM Yukawa coupling should remain finite for large β, the bulk-Higgs Yukawa
coupling scales as

Y β ∝ 2− cLi + cEj + β√
2(1 + β)

β→∞→
√
β√
2
. (B.36)

Comparing the expressions (B.33) and (B.35) we identify

Y β =
Y√
k

2− cLi + cEj + β√
2(1 + β)

. (B.37)

B.4 KK Higgs example: Four-fermion operators

To gain some intuition for the properties of the Higgs KK modes we consider the example of
the Feynman diagram in Figure B.1, which might contribute to the matching of four-fermion
operators of the form L̄iEj L̄kEl. The corresponding Wilson coefficient is given by

CLELEijkl

T 2
= iY βijY

β
kl

1
T∫

1
k

dx

(kx)5

1
T∫

1
k

dy

(ky)5
f

(0)
Li

(x)g
(0)
Lj

(x)∆ZMS
φ (p = 0, x, y)f

(0)
Lk

(y)g
(0)
Ll

(y) . (B.38)

For vanishing four-momentum exchange the zero-mode subtracted Higgs propagator has the
particularly simple form

∆ZMS
φ (0, x, y) = − ik

3x2−βy2−β

2β

[
T 2βx2βy2β

(
β
(
T 2
(
x2 + y2

)
− 2
)
− 2

2 + β

)

+x2βθ(y − x) + y2βθ(x− y)

]
, (B.39)

where we dropped terms suppressed by powers of T/k. With this expression the integrals
over x and y in (B.38) are straightforward, and CLELEijkl can be determined analytically for
all values of β. CLELEijkl vanishes as 1/β in the limit β →∞, as illustrated in the right panel
of Figure B.1.
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This result can be understood by looking at the defining expression. The scaling with β is
determined by three factors: the Yukawa matrix scaling, the scaling of the Higgs propagator,
and the scaling of the integration variables x, y in the relevant integration regions. The two
Yukawa couplings each contribute a factor of

√
β. The Higgs propagator is slightly more

complicated. Let us examine the three terms square brackets in (B.39) separately. The first
term (without step-functions) does not feature an immediate suppression for large β, since
the 1/β in the prefactor of the square bracket is cancelled. The suppression arises only after
integration over the bulk coordinates. To see this, we write x and y in the overall factor
(T 2xy)β as 1/T (1 − x0/β) and 1/T (1 − y0/β), respectively, such that x0 and y0 measure
the distance of x, y from the IR brane in units of 1/(βT ), the typical scale for Higgs KK
excitations. We then find factors of the form (1 − x0/β)β and (1 − y0/β)β , which behave
as e−x0 and e−y0 for large β, respectively. Hence the first term counts as O(1) only for x
and y within 1/(βT ) of the IR brane. The 5D coordinate integrals then count as 1/(βT )
each, and the contribution of the first term in (B.39) to the Wilson coefficient is of order
(
√
β)2 × 1 × 1/β2, which vanishes for large β. The remaining two terms in (B.39) have

different properties. There is a global factor of 1/β, but there is no requirement that x, y
are close to the IR brane. Let us focus on the second term, which is non-zero only for y > x.
It contains the factor (x/y)β , which ensures that the contribution to the Wilson coefficient
is exponentially suppressed if x� y (1− 1/β).Â Changing integration variables from x, y
to y, x− y shows that the integral over x− y counts as 1/(βT ), while the integral over y is
effectively unconstrained. Thus the overall total scaling isÂ (

√
β)2× 1/β× 1/β, which also

vanishes for large β. The same argument with x↔ y ensures that the third term in (B.39)
does not contribute to CLELEijkl for β →∞.

B.5 KK Higgs contributions

The contribution of KK Higgs modes to aHij is proportional to the corresponding contribution
for the Higgs zero-mode for each diagram topology. It is therefore convenient to study the
ratio of the two contributions,

R =
aHKK

aHZM
. (B.40)

Up to small corrections this ratio is also independent of the flavour of the propagating states.
The Higgs KK contribution can then be obtained by multiplying the zero-mode result by the
corresponding R. It should be noted that not all topologies shown below actually contribute
to aHij in a specific RS model, either because the combination of SU(2) and U(1) group factors
vanishes or because the model does not have Feynman rules that allow for the particular
diagram to exist. Note that we do not separate contributions from wrong- and correct-
chirality Higgs couplings. The numbers refer to the sum of both type of contributions, and
are given by:
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Figure B.2: Left panel: dR/dl as a function of the loop momentum for β = 10, 20, 40,
80, 160 (curves from left to right) for the diagrams in the last line of (B.41). Right panel:
Corresponding ratio R as a function of 1/β (no uncertainties shown).

R ≈ 0.27(0.01) R ≈ 0.27(0.01)

R ≈ 0.08(0.01) R ≈ 0.08(0.01)

R ≈ 0.15(0.05)

+

R ≈ 0.77(0.08) (B.41)

Our error estimates are shown in parenthesis. It arises from the numerical integration error
and an estimate for the extrapolation error to β =∞, since a numerically stable evaluation
is possible only up to β ≈ 200 − 300. The numerically most challenging diagrams are the
ones where the photon is emitted from the Higgs, since they contain products of KK Higgs
propagators. We also note that the KK Higgs contribution converges relatively slowly as
β →∞, if the diagrams involve an external Higgs attachment to a fermion line in the loop,
as illustrated in Figure B.2. The typical scaling with powers of β in the different momentum
regions discussed in the main text does not set in until β ∼ 40. This behaviour agrees with
observations made in [79].
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Appendix C

Explicit diagram expressions

This part of the appendix is dedicated to write down the explicit analytic expressions of the
Wilson coefficients for the leptonic dipole operator. We only include the genuine custodial
protected RS model diagrams. [28]. The abelian diagrams with Zx field inside the loop
can be directly build the gauge-boson propagator ∆ZMS → ∆mp , ∆5 → ∆5mp and the
coupling (g′5)

2 → g2
5 − (g′5)

2 in the explicit expressions. Thus in the gauge exchange sector
we will write down only the new non-abelian diagrams appearing in the custodially protected
Randall-Sundrum model.
In all diagrams we assume that an external photon is emitted and that the external Higgs
field denoted by the grey square can be replaced by its vacuum expectation value. To
generate the incoming SM singlet it is insightful first to look at the T̃4 triplet after setting
all other fields except the SM singlet to zero.

T̃α4 |λ=N=0 =
E√

2

(
δα1 − iδα2

)
(C.1)

Thus if we define SU(2)R factor

Cα =
1√
2

(
δα1 − iδα2

)
(C.2)

we are able to take the appearance of the SM singlet as the initial state into account. To
shorten the notation in some diagrams it is useful to write the Higgs vev as follows

H̃ab =

(
0 −1

1 0

)

ab

. (C.3)

We use the notation p̂ = p− l and p̂′ = p′ − l for the momenta appearing in the loops.
Similar to [28] the first expression of the diagrams contains almost any simplification. The
second expression of each diagram contains some simplifications. In particular the fermion
propagators are decomposed into their non-vanishing chiral components an the SU(2) group
factors have been calculated. We only write down the analytic form of the on-shell contribu-
tion. To differentiate better between Lorentz indices and the SU (2)R indices we give up the
Greek notation for the SU (2)R indices and use only Latin digits for those. Our convention
is Our convention is to sum over multiple SU (2) indices of the same kind. There are usually
more than two SU (2) indices of the same kind appearing in each diagram expression. For
the analytic expressions of each diagram we have also included the generation indices of the
charged leptons.
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C.1 Gauge boson exchange diagrams
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Figure C.1: All Higgs exchange dipole topologies.

C.2 Higgs exchange diagrams

At there are only four different diagram topologies with a Higgs exchange inside the loop
possible that give rise to a O (ν) contribution to the dipole operator. All possible diagrams
generated by these diagrams are listed in the tables below. The first column of each table
contains the name of the diagrams we will use from now on. The second and third column
defines the fermion multiplet in the associated part of the diagram. There is no need to
define individual particle, since this information is automatically generated after performing
the calculation of the SU(2) colour factors. We suppress in this table the generation index
for simplicity’s sake. We write down the expressions using the narrow width regularisation
of the delta function

φ (z) = θ

(
z − 1− δ

T

)(
T

δ

)
· φ4dT

3

k3
. (C.20)

As discussed above the limit δ → 0 has to be taken carefully, as the limit is not commutable
with the momentum integration. For all expressions the four dimensional momentum inte-
gration is written down in d dimensions for dimensional regularisation.
We can write the analytic expression off the on-shell terms in the same way as we did for
the gauge-boson propagators. The factor cDiag contains the colour factor, that has to be
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HT1 X Y HT3 X Y

H1 ξ1 T4 H3 ξ1 T4

H5 ξ1 T3 H7 ξ1 T3

H9 ξ1 ξ2

HT2 X Y HT4 X Y

H2 ξ1 T4 H4 ξ1 T4

H6 ξ1 T3 H8 ξ1 T3

HT5 X Y HT6 X Y

H10 ξ1 T4 H11 ξ1 T4

H12 ξ1 T3 H13 ξ1 T3

H14 ξ1 ξ2

Table C.1: All possible combination of leptonic Higgs exchange diagrams contributing to
the dipole operators

calculated for each diagram independently.
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The 5D Yukawah coupling Y ′ equals λu5D for the diagram H9. For all other diagrams we
have Y ′ = λ5D. In order to compute the correct sign for the general diagram topologies HT3
and HT4 the SU(2) flow has to be considered carefully here. Splitting the Higgs bi–doublet
fields for these diagram topologies leads to the obvious conclusion, that the photon–Higgs
vertex is always a φ−∂νAνφ+ for both topologies. Thus the SU(2) and therefore the sign
remains the same for HT3 and HT4. The off-shell expressions for the four topologies is
obtained by the following replacement rules

∆i
D (p, x, y)→ − /p

p2
f

(0)
li

(x) f
(0)
li

(y) ∆j
E (p, x, y)→ − /p

p2 gEj (x) gEj (y) (C.27)
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for the external propagators. Then the off-shell expression for the Higgs exchange topologies
can be written as
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HT4 = cDiag
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Note that one has to include the initial fermion propagator before chiral decomposition for
the determination of the cDiag factors of the diagrams H1-H9, because these propagators
(A.2, A.4) depend on the SU(2)L×SU(2)R indices. To calculate the cDiag factors we write
down the SU(2)L×SU(2)R dependent part of the diagram expression. In the first step the
SU(2)L×SU(2)R dependent expression is written out based on the Feynman rules of the RS
model with custodial protection, In the second step the final results of the evaluation of the
SU(2)L×SU(2)R factors is presented. Then the cDiag equal the part of the final answer,
which comes before the part containing the Dirac spinors. The part with the Dirac spinors
determines, which F functions have to be inserted into the explicit form of the associated
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topology. In the expressions below we suppress the generation indices.
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The computation of the group factor is straightforward for the other diagrams. We only list
the final results in table C.2 for the ccoefficient cdiag
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Table C.2: Table of cDiag for the Higgs-exchange diagrams in the lepton sector.

C.3 Wilson coefficients of the extended electroweak Hamil-
tonian at the scale µKK

In the following we collect the coefficients of the various four-fermion operators in (3.44).
To this end we first map each operator in the dimension-six Lagrangian unto operators in
the broken electroweak theory and extract the Wilson coefficients by comparing with (3.44).
For brevity, let us first introduce the abbreviation V =
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.
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d
1 [R,R]

(C.37)

− 1

Nc
βDDsbbbO

b
2[R,R] + βDDsbbbO

b
1[R,R]− 1

Nc
βDDsbssO

s
2[R,R] + βDDsbssO

s
1[R,R] (C.38)

149



APPENDIX C. EXPLICIT DIAGRAM EXPRESSIONS

gives

V∆Cs1 [R,R](µKK) =
1

T 2
βDDsbss V∆Cs2 [R,R](µKK) = − 1

NcT 2
βDDsbss

V∆Cb1[R,R](µKK) =
1

T 2
βDDsbbb V∆Cb2[R,R](µKK) = − 1

NcT 2
βDDsbbb

V∆Cd1 [R,R](µKK) =
1

T 2
βDDsbdd V∆Cd2 [R,R](µKK) = − 1

NcT 2
βDDsbdd
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C.3. WILSON COEFFICIENTS OF THE EXTENDED ELECTROWEAK
HAMILTONIAN AT THE SCALE µKK

gives
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