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Dynamic systems with time-varying parameters arise in numerous industrial applications, e.qg.

iIn structural dynamics or

systems with moving loads. A spatial discretization of such systems often leads to high-dimensional linear parameter-varying
models, which need to be reduced in order to enable a fast simulation. In the following we present time-varying parametric
model order reduction (p(t)MOR) based on matrix interpolation and apply this novel framework to a system with moving load.

Parametric Model Order Reduction
High-dimensional parametric system:

E(p)x(t) = A(p)x(t) + B(p)u(t),
y(t) = C(p)x(t)

peDcCR?
x(t) € RY

Choose appropriate projection matrices V(p), W(p) €

to approximate the state-vector by x(t) ~ V(p)x.(t).
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Reduced Order Model:

E.(p) A.(p)
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W (p)"E(p)V(p) () = W(p)"A(p)V(p) x.() + W(p)"B(p) u(t),

Time-Dependent Parametric Model Order Reduction

High-dimensional linear parameter-varying system (LPV):

E(p(t))x(t) = A(p(t))x(t) + B(p(t))u(t),  p(t) € D CR
y(t) = C(p(¢))x(?) x(t) € RY

Analogously, we aim to approximate the state-vector by
x ~ V(p(t))x,
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Reduced Order Model:

( - W(p() Bp() 5 p) % + B, (p())u
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px,+ V(p(l))x,

Application for Systems with Moving Loads

Systems with Moving Loads:
» position of the acting load varies with time 7

* varying load position can be regarded as a F
time-dependent parameter of the system

-> Linear parameter-varying system %

xr

Considered example:
* Timoshenko beam with moving load

Number FE: 10, Velocity v=5m/s
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* Finite Element Discretization 003 |
« LPV system with parameter-dependent g 0-0;j TN |
input matrix B(p(?)) S 001\ / N
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- Parameter-varying state transformation of &0 N/ [T owna

the original model shows the importance % ransformed. V' |-

of the consideration of V(p(t)) o
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PMOR by Matrix Interpolation

Individual reduction of local systems:

Vla Wl V2; WZ
E,i%(t) = Apixpi(t) + Bu(t),  —————s
j2il p p2
yri(t) = Crixpi(t) G (s) G, o(5)
Transformation to same coordinates:
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P(tYMOR by Matrix Interpolation
Individual reduction of local systems:
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Current Work and Outlook

B (p(1))=Y" w(pt)Er. A (p(t) =

Model Reduction: pop, . erTE 0 Veely =B mE

* p(t)MOR by Matrix Interpolation applied O'O;ﬁ “

* Order of locally reduced systems: n = 20 E oot} | N
Further study: ) 2 222

* Interpretation of the new matrix Ajey,; 5004 _

+ Remedial actions against unstable = |
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interpolated systems

* Application of p(t)MOR to generalized
linear parameter-varying systems
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