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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademisches Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Gudrun J. Klinker, Ph.D.
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Abstract

Disentangling the relationship between genotype and phenotype is a major open ques-
tion in biology. Since natural selection acts on phenotypes, the need to maintain organ-
ismal fitness leaves a trace of functional constraints in the underlying genotypes. We
analyze abundantly available genotype data of homologous proteins from genomic se-
quencing for patterns of amino acid conservation and covariation. Based on statistical
maximum entropy models of sequence coevolution to identify such evolutionary cou-
plings, we developed computational methods to predict phenotypes that are difficult
to obtain by experiment, on three different scales: (i) the three-dimensional structures
of membrane proteins through coevolving sites in spatial contact; (ii) the interactions
between pairs of proteins in protein complexes through coevolution of contacting sites
in different molecules; and (iii) the quantitative, context-dependent impact of geno-
type changes on molecular and organismal function. For each of these approaches,
we validated our phenotype predictions against available experimental data and show
that, given sufficient genotype information, (i) accurate residue-residue contacts and
three-dimensional structure predictions can be obtained for a wide range of proteins,
allowing the de novo prediction of experimentally unsolved structures; (ii) coevolving
positions between interacting proteins can be identified with high accuracy, enabling
the detection of protein-protein interactions and the reconstruction of complex struc-
tures through molecular docking; and that (iii) the computed probabilistic, context-
dependent effects of amino acid substitutions quantitatively agree with experimental
measurements of biochemical function and organismal growth. In summary, our re-
sults show that statistical sequence modeling gives both a quantitative mapping from
genotype to high-level phenotypes as well as biologically relevant intermediate molec-
ular phenotypes such as protein structures or interactions. We anticipate that our
approaches will allow to extract useful phenotypic information from the exponen-
tially increasing amounts of sequence data and contribute to a deeper understanding
of protein evolution and design as well as clinical applications.
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Zusammenfassung

Die Entschlüsselung des Zusammenhangs zwischen Genotyp und Phänotyp ist ei-
ne ungelöste wichtige Fragestellung in der Biologie. Da die natürliche Selektion auf
der Ebene des Phänotyps einwirkt, hinterlässt die Notwendigkeit, die Fitness des Or-
ganismus zu erhalten, Spuren funktioneller Beschränkungen auf der zugrunde lie-
genden Ebene des Genotyps. Wir analysieren die in großer Fülle verfügbaren Geno-
typdaten homologer Proteine aus Genomsequenzierungen hinsichtlich Mustern von
Aminosäurekonservierung und -kovariation. Basierend auf statistischen Maximum-
Entropie-Modellen der Sequenzkovariation zur Identifizierung dieser evolutionären
Kopplungen entwickelten wir rechnergestützte Methoden zur Vorhersage von Phä-
notypen, die nur aufwändig mittels experimenteller Techniken gewonnen werden
können, auf drei verschiedenen Ebenen: (i) Die dreidimensionale Struktur von Mem-
branproteinen durch Koevolution von Positionen in räumlichem Kontakt; (ii) die In-
teraktion zwischen mehreren Proteinen durch die Koevolution von wechselwirkenden
Positionen in Proteinkomplexen; sowie (iii) die quantitativen, kontextabhängigen Ef-
fekte von Veränderungen des Genotyps auf molekulare und organismische Funkti-
on. Für jede dieser Methoden validierten wir unsere Phänotypvorhersagen gegen die
verfügbaren experimentellen Daten und zeigen, dass, ausreichend Genotypinformati-
on vorausgesetzt, (i) genaue Kontakte zwischen Aminosäureresten sowie dreidimen-
sionale Strukturvorhersagen berechnet werden können, was die de novo-Vorhersage
von experimentell ungelösten Proteinen ermöglicht; (ii) koevolvierende Positionen
zwischen interagierenden Proteinen mit hoher Genauigkeit identifiziert werden können,
was die Erkennung von Protein-Protein-Interaktionen sowie die Rekonstruktion von
Komplexstrukturen mittels molekularem Docking erlaubt; und dass (iii) die probabi-
listische, kontextabhängige Modellierung von Aminosäuresubstitutionen experimen-
tellen Messungen von biochemischer Funktion und organismischem Wachstum quan-
titativ entspricht. Zusammengefasst zeigen unsere Ergebnisse, dass die statistische Se-
quenzmodellierung sowohl eine quantitative Abbildung von Genotyp zu Phänotyp als
auch biologisch relevante, dazwischenliegende molekulare Phänotypen wie Protein-
strukturen oder -interaktionen liefert. Wir erwarten, dass unsere Methoden die Extra-
hierung nützlicher phänotypischer Informationen aus der exponentiell zunehmenden
Zahl an Sequenzen erlauben und zu einem tieferen Verständnis von Proteinevolution
und -design sowie klinischen Anwendungen beitragen werden.
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1. Introduction

Disentangling the relationship between genotype and phenotype is a fundamental chal-
lenge in biology and biomedicine13,14. Together with environmental factors, the genetic
makeup of an organism (genotype) determines its observable characteristics (pheno-
type) on all scales of organization, including the molecular and cellular levels15,16.
Genetic variation is the raw material for evolutionary processes through the fitness
of the corresponding phenotypes; it influences the susceptibility of individuals and
populations to disease and drug treatment and is therefore of key relevance to clinical
applications15,17,18. Uncovering these intricate links between genotype and phenotype
using dedicated experiments is however technically challenging, expensive and time-
consuming. Today, the results of genomic sequencing efforts provide an abundant
source of information on genotype data17. Can we mine this resource to extract the
encoded phenotypes and predict the effects of genetic variation?

In the following, we will introduce the problem of mapping genotypes to pheno-
types, show important underlying factors contributing to this relationship, and sketch
how evolutionary genotype information and computational approaches can help to
uncover phenotypic information.

1.1. The relationship of genotype and phenotype

Several fields of biology, including genetics and evolutionary biology, have long sought
an understanding of how genotype determines phenotype, and of the intermediate
links that connect these two layers of biological abstraction15,16,18,19.

1.1.1. Biological relevance

A comprehensive understanding of genotype-phenotype relationships is particularly
relevant to study the following three broad biological problems:

First, the characterization of evolutionary processes requires to assess the fitness
(reproductive success) of different genotypes. Genetic variation is the raw material for
evolution, natural selection however acts on the level of the corresponding phenotype
and its interaction with the environment16. To connect genotypes and their fitness in
an interpretable genotype-fitness map, we need to be able to determine the phenotypic
consequences of mutational steps in genotype space14,20.

Second, genetic variants have been associated with human disease in thousands of
cases17. The identification of causal, disease-causing genotypes and the corresponding
molecular phenotypes is a key challenge towards developing therapeutic interventions
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1. Introduction

and diagnosing individual disease susceptibility as well as drug efficacy in a clinical
setting16,18,21.

Third, how genotypes encode molecular phenotypes such as functional protein
structures or interactions are central questions of molecular biology and biochem-
istry. Uncovering these links could help to learn about basic biophysical principles,
give access to more phenotypic data through predictions, and aid the design of new
biomolecular entities16,22.

The precise instantiation of what constitutes a genotype and a phenotype is depen-
dent on the particular application. In the most general definition, the genotype refers
to the overall inherited genetic makeup of an individual organism, while the pheno-
type refers to its observable characteristics15 that can be a complex set of attributes
including molecular and morphological readouts23. Due to the vast space of possible
genotypes and phenotypes, relative approaches that compare genotype differences to
the corresponding phenotype differences may be more meaningful and feasible than
an absolute, enumerative view of the genotype-phenotype map15,16. Possible differen-
tial views of the genotype space include e.g. wild-type genome sequences and variants
with deletions of entire genes24, or mutants of a certain protein-coding DNA sequence
that result in single or higher-order amino acid changes to the wild-type protein. For
the purposes of this work, we adapt a network-based view of genotype space, where
nodes stand for individual protein sequences (which are directly determined by their
genomic nucleotide sequence) and the edges between them correspond to single amino
acid mutational steps that transform one sequence into another16.

1.1.2. Experimental studies of the genotype-phenotype map

To uncover genotype-phenotype relationships, they have been characterized system-
atically in a variety of experimental screens that can be classified as either forward
or reverse genetics17 approaches. Forward genetics starts with a phenotype of interest
(e.g. individuals affected by a certain disease) and tries to identify the genetic variants
that cause the phenotypic difference. Modern experimental genotyping techniques,
including high-throughput DNA sequencing, have made it possible to associate phe-
notypic differences with genetic variation on a whole-genome scale, as is evident from
thousands of genome-wide association studies (GWAS) linking complex traits to ge-
nomic loci15,17,18,25,26. The identification of causal rather than associated variants how-
ever remains a challenge18, as does the issue that only a small fraction of the observed
heritability of diseases can be explained by the identified genetic variants25.

Reverse genetics starts with the targeted alteration of a genotype of interest and
attempts to identify differences in phenotype for each variant. Systematic gene dele-
tion and RNA interference screens of entire genomes have been used to determine
essential genes and gene function in different species17,24,27–31. More recently, deep
mutational scanning experiments have allowed to comprehensively map the pheno-
typic consequences of mutational steps in sequence space around the wild-type se-
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1.1. The relationship of genotype and phenotype

quences of DNA regulatory elements32, catalytic RNAs33 and protein molecules34–71.
These experiments typically generate a multiplexed library of thousands of sequence
variants which is then subjected to a functional assay that selects variants for a par-
ticular phenotype such as bacterial growth71, protein stability50 or ligand binding44.
Mutational effects on the target phenotype are quantified by relating the frequency of
each variant in the sequence library before and after functional selection, i.e. a ratio
measuring variant enrichment or depletion60. The interpretation of the results of mu-
tational scanning experiments strongly depends on the features of the used selection
assay, including (i) the relevance of the target phenotype to the overall organism in vivo
and (ii) the type and strength of applied selection pressure49,59,62,71,72. Despite these
limitations, deep mutational scans provide a first systematic, empiric glimpse into the
genotype-phenotype map for mutational variants of specific biomolecules14,58,60.

A class of genotype-phenotype relationships that, like many others, has been his-
torically studied in the framework of biochemistry rather than the abstract view of
reverse genetics, is how genetic information in sequences gives rise to observable
biological structures such as folded proteins, RNAs or protein interactions (in the
following called molecular phenotypes)16,73–75. Since the determination of the first three-
dimensional structures using X-ray crystallography76 and nuclear magnetic resonance
(NMR) experiments77, coordinates for tens of thousands of proteins have been de-
posited in the Protein Data Bank (PDB)78. This enumerative genotype-phenotype map
contains rich information about what structures particular sequences encode, how se-
quence variants causing amino acid substitutions change structure, and how different
sequences encode similar structures. Nevertheless, three-dimensional structure infor-
mation is missing for a large fraction of known protein-coding sequences because of
experimental limitations and the low-throughput nature of structure determination
experiments79,80. Although all information about the structure of a protein is in prin-
ciple encoded in its sequence81 (which is not always the case22), the mechanism how
sequence (genotype) determines structure (phenotype) is still poorly understood and
known as the protein folding problem79. Due to this missing link, experimental structure
determination is still necessary on a per-protein basis for a large number of sequences.

1.1.3. Context-dependence of genetic variants

The analysis of genotype-phenotype relationships is complicated by the observation
that the phenotypic consequences of genetic variants can depend on the genetic con-
text, i.e. effects are modulated by the presence of variants in other loci to be stronger
or weaker than expected17. This phenomenon is called epistasis and can affect variants
in individuals of the same species as well as variation across different species82.

The prevalence of epistasis in shaping phenotypic effects has been demonstrated
in a number of studies using different approaches39,63,83–94, but is still a topic of ac-
tive debate82,90,95–98. Prominent examples for the importance of epistatic interactions
include (i) disease-causing variants in humans that exist as wild-type allele in other
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1. Introduction

species (compensated pathogenic deviations, CPDs), but can be rescued by adjusting the
genetic context of the human variant using a small number of substitutions observed
in the other species86–89; (ii) amino acid co-dependencies determining the molecular
specificity of protein-protein interactions91–93; and (iii) lower rates of evolutionarily ob-
served amino acid substitutions than theoretically expected that suggest many variants
are only acceptable in a certain sequence context90,95.

Epistatic interactions play an important role in compensatory evolution, where the
deleterious effect of one mutant in the wild-type background is set off by one or more
additional substitutions87,99,100. The compensatory mutation may interact specifically
with the deleterious mutation (specific epistasis), e.g. in a structural relationship in a
protein structure88,101, or act as a global enabler (non-specific epistasis) that compensates
for deleterious effects independent of the particular substitution, e.g. by increasing
protein stability to allow destabilizing mutations16,17,102–104. Such permissive mutations
have been shown to be crucial to functional adaption16,17,84,87,99,102,104–109. A canoni-
cal example is the evolution of new substrate specificities in clinical isolates of TEM-1
β-lactamase to hydrolyze second- and third-generation cephalosporin antibiotics. Sub-
stitutions that rearrange active site residues to accommodate these non-natural ligands
lead to a destabilization of the enzyme that is compensated by the globally stabilizing
substitution M182T105.

Although there is abundant evidence for compensatory mutations, the evolutionary
processes by which they mainly occur remain unclear100. Since permissive mutations
are neutral or advantageous, they may spread first and allow the occurrence of the
otherwise deleterious and potentially function-changing mutation in a second step.
Such cases have been described e.g. in the evolution of oseltamivir resistance in H1N1

influenza84. If both substitutions are deleterious on their own in the wild-type context,
the compensatory substitution has to occur before being purged by purifying selection,
as simultaneous occurrence of both variants seems unlikely100.

A deeper theory of compensatory evolution will also require an understanding of
the molecular mechanisms underlying the context-dependence of effects17,82. In pro-
teins, complex interactions between amino acids determine their structures, functions
and interactions with other molecules16. Not surprisingly, there are numerous reports
of intra- and inter-molecular epistatic interactions between different loci in protein-
coding sequences related to these and other features14,16,44,63,91,93,100,103,110. Since the
biochemical phenotypes of protein molecules, including stability, have been shown to
substantially influence the higher-level phenotypic effects and fitness of mutants87,111,
it seems plausible that the systematic consideration of amino acid interactions may be
a key factor in accurately assessing variant effects and could yield detailed insights
into the mechanistic emergence of epistasis.
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1.2. Computational methods for phenotype prediction

1.2. Computational methods for phenotype prediction

The enormous size of genotype space and the combinatorial explosion created by
epistatic interactions between different genetic variants present a major challenge to
experimental studies of genotype-phenotype relationships. The systematic sequenc-
ing of the genomes of thousands of different species, as well as the genomes and
exomes of human individuals, has created a deluge of genotype information without
corresponding phenotypic information. The relevance and phenotypic consequences
of hundreds of thousands of human genetic variants remain unknown18; current mul-
tiplexed techniques to assess the consequences of genetic variation in proteins are lim-
ited to the analysis of selected proteins and small isolated regions of sequence space
(Section 1.1.2). Similarly, despite impressive advances in resolving the molecular de-
tails of protein structures and interactions, the sophisticated nature of these experi-
ments precludes high-throughput applications to close the gap between the available
amount of genotype information and three-dimensional structures79. In this setting,
computational approaches to predict phenotype from genotype could be very use-
ful17,112. Can we turn the problem around and leverage the information from myriads
of mutation-selection experiments encoded in natural sequence variation, while con-
sidering epistatic interactions?

In the following, we will describe – for the case of protein-coding sequences – how
evolutionary genotype information can contribute to the prediction of phenotypes,
outline the challenges to obtain accurate predictions and review existing computa-
tional methods and their limitations.

1.2.1. Phenotype prediction from evolutionary sequence data

A possible predictive approach to the genotype-to-phenotype problem is to make use
of evolutionary information. The observed sequences in genome and protein sequence
databases are current viable endpoints of an ongoing evolutionary process, while
many other genotypes were purged by purifying selection or have never been sampled
by evolution (in combination with other factors such as neutral drift). Evolutionary
sequences are therefore a snapshot of the positive outcomes of myriads of mutation-
selection experiments testing the compatibility of certain genotypes with functional
requirements on the phenotype level16,18.

Assuming that a set of related genotypes, e.g. sequences belonging to the same
protein family, is subject to the same or similar constraints, the selection for functional
variants should leave a footprint of these constraints in the sequences in the form
of patterns of conservation and acceptable variation16. Conservation usually refers
to a lack of variation observed in a single locus (e.g., single-site conservation of a
certain nucleotide or amino acid type). Epistatic interactions between different loci
can however lead to higher-order patterns (co-conservation or covariation, e.g. amino
acids in particular pairs of positions changing together) that are not visible from the
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consideration of single sites alone. The identification of such covariation patterns
could enable the detection of epistatic dependencies and allow their incorporation in
prediction methods16,82.

Conservation patterns in a set of sequences can then be used to predict the conse-
quences of genetic variation by assessing how compatible the substituted variant is
with evolutionarily observed variants (here: amino acid substitutions)18; the identi-
fied epistatic interactions could give information about three-dimensional structures
of proteins and their complexes.

1.2.2. Functional effects of sequence variation

The accurate prediction of the effects of sequence variants is a key challenge in ge-
netics and genomics regarding general studies of evolution and the assessment of
individual disease risk17,112,113 (Section 1.1.1). To characterize the consequences of se-
quence variation in nucleotide and amino acid sequences, a variety of computational
methods has been developed114–131. These approaches are typically based on machine
learning using a combination of input features such as evolutionary conservation and
biochemical and structural information18,132, with most predictive power usually orig-
inating from evolutionary conservation120. Most methods are trained in a supervised
machine learning setting on existing experimental data to predict categorical outcomes
such as deleterious vs. neutral effect; others explicitly incorporate three-dimensional
structure information and force fields to quantify the consequences of mutations on
protein stability133–135.

Taking advantage of the fact that computational predictions can be easily calcu-
lated for a high number of variants, some of these methods have been used for
the large-scale assessment of variant effects and the prediction of mutational land-
scapes126,136–138. It remains however unclear how reliable the performance assessment
is for many of the machine learning approaches, and how well they generalize to new
data. Recent work has demonstrated that the accuracy of some effect predictors criti-
cally depends on the data sets used for training and testing, and that variant data sets
themselves may suffer from biased construction113,132.

Surprisingly, despite ample evidence for the context-dependence of mutation effects
(Section 1.1.3), the incorporation of the sequence context into prediction methods re-
mains an exception118,119,121 although results might benefit from its consideration18,89.
Following the initial description of an explicit context-dependent model on the exam-
ple of a small protein domain139, epistatic models for variant prediction in HIV140–142

and similar approaches using three-dimensional structure information143–145 were de-
scribed in parallel to this work but not systematically related to different functional
features, experimental effects and improvements over non-epistatic models.

The consideration of epistatic interactions is closely related to the problem of choos-
ing the right evolutionary depth for the input alignment, which is an aspect that is
important but often not considered systematically18,146. The increased diversity of

6
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3D residue contact

Simple
observation

Statistical
inference

(evolutionary
couplings) Coevolution in protein family 

sequence alignment

Figure 1.1.: Residue contacts leave a trace of amino acid coevolution. Evolutionary selection for folded
protein structures leaves a trace of amino acid coevolution in protein families by maintaining favorable
interactions between physically interacting residues. The inverse problem of inferring such evolution-
ary couplings, which would allow to predict 3D structure from sequence alignments, is statistically
non-trivial due to transitive correlations and phylogenetic relationships, but can be solved using global
statistical models. Adapted from Hopf et al.2

wide alignments can lead to an overestimation of acceptable substitutions due to the
increased divergence of aligned sequences; reversely, narrow alignments may not cap-
ture all acceptable substitutions18,127. While epistatic models will not necessarily be
able to account for the possible functional divergence of wider alignments, they could
identify compensatory amino acid exchanges (e.g., compensated pathogenic devia-
tions) and assess acceptable substitutions based on context rather than single site in-
formation alone. The use of epistatic models of sequence variation could therefore
provide an opportunity to develop more accurate prediction methods and give in-
sights into the co-dependencies governing the evolution of protein molecules.

1.2.3. Protein structures and interactions

Similar to the large number of uncharacterized functional effects of genetic variants,
the scarcity of experimentally determined protein structures and their interactions
creates a need to predict these molecular phenotypes computationally from sequence
information79. Over the last decades, a large number of different methods addressing
this problem have been developed which can be coarsely classified as either com-
parative modeling, force field-based de novo or machine learning approaches4. Com-
parative modeling exploits the observation that the three-dimensional structures of
proteins remain similar even as their primary sequences diverge by transferring co-
ordinates from a solved protein to a sequence-similar modeling target147,148. If a suf-
ficiently similar template can be identified, comparative modeling tends to give the
most accurate solutions compared to other strategies149 and can also be applied for
protein complexes150.

In the absence of identifiable template structures, de novo methods based on as-
sembling sequence-similar structural fragments or protein subunits using molecular
force fields have emerged as a viable alternative for small protein molecules (<100

residues)151, but are challenged by the vast size of conformational search space and
the quality of current empirical force fields79. A different route is the use of machine
learning-based methods to gain information about structural features from sequence,
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1. Introduction

their limited predictive accuracy however presents an obstacle to the analysis of in-
dividual proteins of interest152,153. To overcome the limitations of these purely com-
putational de novo methods, hybrid data-driven approaches have been developed that
integrate additional data, e.g. from NMR experiments, to bias the space of possible
solutions towards the correct answer154,155.

An orthogonal way of addressing the structure and interaction prediction problem
is by using evolutionary information. Different from mutation effect prediction, early
observations of compensatory evolution in protein sequences156,157 led to the devel-
opment of methods exploiting epistatic dependencies within158–162 and between pro-
teins163–165. These correlated mutation approaches are based on the hypothesis that the
coevolution of amino acid residues in spatial contact is necessary to maintain func-
tional protein structures and complexes (Figure 1.1). Despite their conceptual appeal,
these early works found that residue pairs with a strong coevolution signal correspond
to structural contacts only in relatively few cases; subsequent investigations suggested
that the observed coevolution signal derives from allosteric functional couplings rather
than structural contacts166–168.

However, it was shown that the lack of identified structural contacts was the con-
sequence of phylogeny and transitive effects (where direct coevolution of contact-
ing residues causes strong, indirect correlations) that could be partly remedied by
the use of global probability models instead of analyzing pairs of positions indepen-
dently of each other4,139,169–172. The development and application of such global ap-
proaches based on the maximum entropy principle8,139,173,174, a related partial correla-
tion formalism175,176 or Bayesian network modeling177,178 demonstrated that residue-
residue contacts in protein domains and a selected protein interaction could be ac-
curately identified from sequences alone. Later methodological developments further
improved the accuracy of the high-scoring pairs as predictors of residue contacts179–182.

The identification of epistatic pair couplings corresponding to structural contacts
enabled the de novo prediction of protein three-dimensional structures even for large
molecules far outside the reach of previous methods8,9,183–188, their conformational
changes9,189,190 and of functionally important residues9. Anecdotal evidence also sug-
gested that the structural details of protein-proteins interactions can be elucidated
from sequence covariation9,173,177,191.

Despite strong requirements on the number and diversity of available protein se-
quences, coevolution approaches provide a chance to obtain detailed structural infor-
mation for unsolved proteins of biological interest for the first time4,172. The initial
results on protein complexes9,173,177,191 additionally suggest that residue interactions
between proteins could be characterized at a more general scale by further developing
these preliminary prediction approaches to cover arbitrary protein interactions.
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1.3. Thesis contributions

In this work, we address the problem of predicting phenotypes from protein-coding
sequences to close the gap between abundant genotype information and scarce pheno-
type data. We apply probabilistic maximum entropy modeling of protein families to
identify epistatic interactions between residues from evolutionary covariation patterns
and develop approaches to predict phenotypes on different biological scales: (i) the
three-dimensional structures of unsolved transmembrane proteins of interest, includ-
ing insect olfactory receptors; (ii) protein-protein interactions and their structural de-
tails; and (iii) the quantitative, context-dependent effects of mutations transforming
one sequence into another (Chapter 2). We systematically evaluate our prediction
methods against experimental phenotype data, demonstrate that accurate predictions
can be obtained for all three target phenotypes if there is sufficient evolutionary infor-
mation, and provide de novo phenotype predictions for experimentally uncharacterized
candidate proteins (Chapter 3). We conclude with a discussion of the implications of
our and related work as well as of the complex interplay between predicted and ex-
perimental phenotypes on different scales, and outline areas for future development
(Section 3.4).
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2. Methods

This chapter describes the details of our methods to predict protein phenotypes from
evolutionary sequence variation and how they were evaluated against existing exper-
imental data. The main prediction steps include the generation of a protein family
sequence alignment, the inference of a statistical model of sequences from this evo-
lutionary record, and the subsequent prediction of phenotypes using the statistical
model and its parameters.i

2.1. Alignments of evolutionary sequences

The input for statistical coevolution analysis is a multiple sequence alignment of ho-
mologous protein sequences. The following section outlines how homologs of a pro-
tein of interest were identified and aligned, as well as additional processing steps that
had to be applied for protein-protein interactions.

2.1.1. Sequence searches using HMM-based methods

For all proteins of interest, multiple sequence alignments of the protein family were
generated using iterative hidden Markov model (HMM)-based sequence similarity
search tools192,193. These tools display greater accuracy and sensitivity in identifying
and aligning more distant homologs than earlier methods193–195 by modeling position-
specific amino acid preferences and deletion and insertion probabilities196.

Given the highly divergent nature of many protein families197, a key challenge is to
generate alignments of appropriate evolutionary depth, which are neither too narrow
nor too wide (Section 1.2.2). If an alignment is too narrow, i.e. contains only sequences
similar to the query sequence, it might not contain enough variation to detect pat-
terns of context-dependence or provide enough samples for statistical inference. If an
alignment is too wide and contains sequences that diverged too far from the query
sequence, the assumption of conserved function (isofunctionality or isostructurality)
may be violated198.

To control for the evolutionary depth of alignments, we used a length-dependent bit
score homolog inclusion threshold rather than an E-value threshold. Whereas E-values
as a measure of statistical expectation are dependent both on the length of the query
protein and the size of the sequence database, bit scores directly measure sequence
similarity by scoring the agreement of site amino acid distributions199. Setting the

iThis chapter unifies and extends the methods introduced in references1–4,9
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same expectation for the average sequence similarity per residue (bits/residue) allows
to obtain sequences of comparable evolutionary divergence across different proteins.

For this work, we used the jackhmmer application from the HMMER software suite192

with 5 search iterations, a domain-specific bit score inclusion threshold of x ∗ L (pa-
rameter: --incdomT x ∗ L, where x=expected similarity in bits/residue and L=length
of query sequence region) and otherwise default settings. As a proxy for choosing a
suitable evolutionary depth, we used our previously established strategy that trades
off between finding as many homologs as possible while retaining alignment cov-
erage for most positions of the query sequence9. We found that a threshold of 0.5
bits/residue was a robust starting point for most applications and then systematically
decreased or increased the threshold to generate wider or narrower alignments. The
exact thresholds used for all analyzed proteins are described in detail in the appended
publications.

While not explored further here, we note that alignments of improved quality can
in principle be obtained by separating the steps of homolog detection and alignment.
In this case, after performing HMM-based searches, the identified set of sequences
can be realigned using multiple alignment software that scales to tens or hundreds of
thousands of sequences, such as Clustal Omega200.

2.1.2. Choice of input sequence database

Depending on the particular phenotype to be predicted, different input protein se-
quence databases are better suited to the task. When predicting phenotypes for single
proteins, usually only non-redundant sequence information is relevant, but not the
particular identities of the sequences. In these cases, we gathered homologs from
the pre-clustered UniRef100 database201, which merges identical sequences and sub-
fragments in UniProt202 into maximally informative cluster representatives. Using this
compressed sequence set reduces computational costs during alignments and statis-
tical inference by removing non-informative samples. However, in cases where the
particular identities of the proteins were relevant, such as predicting interactions be-
tween two proteins, we retained all information and used the full UniProt database202.
We also created custom sequence databases for a protein family of interest (insect ol-
factory receptors), as many of these sequences had not yet beet deposited in public
databases.

2.1.3. Sequence matching for protein complexes

The analysis of patterns of sequence covariation between two or more proteins in a
heterocomplex requires to match the interacting partners in each species, as specific
correlated residue exchanges are usually only to be expected between proteins that
actually bind. The generation of complex alignments is therefore a two-step process,
in which homologs for each of the interacting proteins A and B (monomers) are first
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identified independently as detailed in Section 2.1.1 and then matched as interaction
partners.

Generally, no comprehensive information will be available which homologs A’ of
protein A interact with which homologs B’ of protein B, i.e. the conservation and
specificity of the protein interaction across orthologs and paralogs is unknown (in
this work, we only consider protein interactions within one species, but not between
species, e.g. host-virus interactions). We therefore devised two matching strategies
that use proxies which homologs are most likely to interact.

Sequence matching based on genomic distance

The first strategy is based on the assumption that in bacteria and archaea, proteins that
are on the same operon are more likely to interact than proteins more distant on the
genome93,173. To match sequences based on genomic distance, we retrieved genomic
location information for the coding sequences (CDS) of all identified homologs A’ and
B’ from the ENA database203 and paired a particular A’ and B’ if the following three
conditions were met:

1. The CDSs of A’ and B’ are present together on at least one ENA sequence entity
(e.g. whole genome sequence or sequence contig).

2. Of all such possible pairings in a species, A’ and B’ are mutually closest to each
other (i.e., there is no B” which is closer to A’ than B’, and no A” which is closer
to B’ than A’). The distance between A’ and B’ is measured as the number of
nucleotides between the two CDSs.

3. We additionally imposed a maximum distance threshold of 10000 nucleotides on
any matched pair, to remove pairs which are mutually closest but distant on the
genome, and therefore less likely to interact.

While this strategy is not applicable to eukaryotic protein complexes, it allows to
match more than one pair A’-B’ per species, if the complex is present in multiple
copies and these are co-located on the genome (e.g. membrane transporters of different
substrate specificities). The one to one pairing of sequences applied here does not take
into account possible cross-interactions, i.e. that A’ might interact non-exclusively with
multiple B’ and vice versa.

Sequence matching based on closest homolog per species

The second strategy is based on the assumption that the interaction between proteins
A and B is most likely to be conserved between their orthologs in other species. As a
simple proxy for more elaborate ortholog identification approaches, for each species,
we identified the sequences A’ and B’ that have the highest sequence identity to A and
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B and paired these while discarding all other sequences A” and B”. This strategy can
also be applied to eukaryotic proteins, at the expense that only one pair per species
can be matched and less sequence information is available for statistical inference.

Independent of the matching strategy applied, the aligned sequences for all matched
pairs A’-B’ were extracted from the respective monomer sequence alignments and
concatenated into one joint sequence each, yielding a concatenated sequence alignment
for the protein complex. This alignment was used for statistical inference in the same
way as monomer protein alignments.

2.1.4. Alignment post-processing

To ensure only high-confidence information about amino acid constraints was used
during statistical coevolution inference, a post-processing step was applied to all align-
ments. Positions in the analyzed target sequence containing gaps instead of amino acid
symbols in too many of the aligned sequences were excluded from analysis (>50% or
>80% gaps). Similarly, sequence fragments that only aligned to a limited part of the
target sequence were removed from the alignment (<50% of target sequence residues
covered). The exact filters applied for each application are detailed in the appended
publications.

2.2. Statistical modeling of evolutionary sequences

From the evolutionary record contained in the multiple sequence alignment, we iden-
tified evolutionary constraints on the sequences by inferring a global statistical model
that captures patterns of amino acid conservation and covariation. The following sec-
tion is mainly based on the work by Ekeberg et al.180 and related work by Balakrishnan
et al.181.

2.2.1. Pairwise maximum entropy model of sequences

To identify single-site and higher-order amino acid constraints for a protein family, we
inferred the parameters of a maximum entropy model (undirected graphical model,
Potts model) over protein sequence space that explains observed patterns in the data
using hidden, direct constraints8,139,173,174,179–182. The use of such a probabilistic ap-
proach is motivated by the observation that due to the cooperative nature of protein
molecules, simple measures of positional co-dependency like mutual information are
impaired by transitive effects masking direct constraints139,169,170. Of all models over
discrete sequences, the maximum entropy model is the least biased distribution con-
sistent with the single-site and higher-order frequencies of amino acids in the sequence
alignment139. In this work, we used a model consistent with single-site and pair fre-
quencies to limit the number of model parameters to O(N2), but note that models of
higher order are theoretically possible given large enough protein families174.
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Under the pairwise model, the probability of any amino acid sequence σ = (σ1, . . . , σN)

of length N is defined as

P(σ) =
1
Z

exp

(
N

∑
i=1

hi(σi) +
N−1

∑
i=1

N

∑
j=i+1

Jij(σi, σj)

)
. (2.1)

The external fields hi (conservation) and pair couplings Jij (covariation) describe the
family- and site-specific constraints on the likelihood of amino acid assignments σi and
σj at sites i and j. Each variable σi can be one of the 20 naturally occurring amino acids
or the gap character encoding deletions relative to the target sequence. The partition
function Z is defined as

Z = ∑
σ

exp

(
N

∑
i=1

hi(σi) +
N−1

∑
i=1

N

∑
j=i+1

Jij(σi, σj)

)
(2.2)

and sums over all possible 21N system configurations σ = (σ1, . . . , σN) to ensure that
P(σ) is a valid probability distribution (∑σ P(σ) = 1). Due to the exponential num-
ber of summations, calculating Z is infeasible for our applications as most protein
sequences analyzed in this work have N > 50.

Finding the evolutionary constraints now consists of solving the inverse problem of
inferring the model parameters from the sequence data.

2.2.2. Model inference from sequence data

The parameters of the statistical model could in principle be inferred directly from
the sequence data in the alignment using standard maximum likelihood estimation.
This approach is however hindered by three issues: (i) The intractability of Z prohibits
the calculation of the likelihood function; (ii) the phylogenetic relationships between
sequence samples in the alignment violate the assumption of independently drawn
samples; and (iii) the number of parameters in the model exceeds the number of
sequence samples by orders of magnitude, making parameter estimation susceptible
to overfitting. Approximate solutions to address these issues in the statistical inference
process are given in the following sections.

Pseudo-likelihood approximation

A standard way of inferring the parameters of statistical models is maximum likeli-
hood estimation, which chooses the set of parameters that maximizes the probability
of the observed data samples. For the pairwise model introduced in Section 2.2.1 and
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a set Σ of aligned sequences σ, the likelihood function is defined as

L(h, J) = P(Σ | h, J) = ∏
σ∈Σ

P(σ | h, J)

= ∏
σ∈Σ

1
Z(h, J)

exp

(
N

∑
i=1

hi(σi) +
N−1

∑
i=1

N

∑
j=i+1

Jij(σi, σj)

) (2.3)

and is a function of the model parameters h and J. Since the likelihood function
and its partial derivatives depend on the intractable calculation of Z(h, J), maximum
likelihood estimation is not applicable to our problem180. For tractable parameter es-
timation, several previously established approaches have been applied and evaluated
in the context of pairwise graphical models of protein sequences, including gradi-
ent ascent with Monte Carlo sampling139, message passing173, and mean-field8,174 or
pseudo-likelihood approximations179–181,204.

Here, we use the pseudo-likelihood approach, which approximates the full likeli-
hood for each sequence σ = (σ1, . . . , σN) by a product of conditional likelihoods for
each site i, i.e.

P(σ1, . . . , σN |h, J) ≈
N

∏
i=1

P(σi | σ \ σi, h, J). (2.4)

By conditioning the probability of observing a certain amino acid σi in site i on the
rest of the sequence (σ \ σi), the global partition function Z(h, J) cancels out, leaving
a tractable local normalization over all possible 21 amino acids a at site i:

P(σi | σ \ σi, h, J) =
exp

(
hi(σi) + ∑j 6=i Jij(σi, σj)

)
∑a exp

(
hi(a) + ∑j 6=i Jij(a, σj)

) (2.5)

Through the above factorization, the time complexity of calculating the likelihood of
the data therefore gets reduced from O(21N) to O(|Σ| · N2) for the pseudo-likelihood,
and parameters can be inferred from the data using standard iterative optimization
procedures180. The pseudo-likelihood approximation has been shown to yield param-
eter estimates similar to the full likelihood solution in simulations179 and outperforms
all other inference methods tested in protein contact prediction applications180. In the
theoretical limit of infinite data, the pseudo-likelihood estimate will converge to the
true parameters if the inferred model is the true underlying distribution (consistent
estimator)179.

Sample reweighting

A central assumption of maximum likelihood inference is that the data samples are
independent and identically distributed (i.i.d.). Biological sequences violate the inde-
pendence assumption on several levels as (i) they are related by phylogeny, i.e. they
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originate from common ancestors, (ii) the sequences deposited in databases are sub-
ject to which species have been sequenced so far and (iii) evolution usually has not
explored the full space of possible functional sequences197. Functional divergence of
the sequences in a protein family and different selective pressures can also lead to a vi-
olation of the identical distribution assumption, although there is no a priori reason to
believe that protein sequences are distributed exactly according to the inferred model.

To address the dependence of sequences in an alignment, in particular points (i) and
(ii), we followed a previously established strategy to reduce the influence of densely
sampled parts of sequence space by reweighting samples based on their similarity to
each other8,173,174,180. In this strategy, each sequence σ is assigned a weight

w(σ) =
1

m(σ)
(2.6)

where
m(σ) =

∣∣{σ′ | σ′ ∈ Σ ∧ seqid(σ, σ′) ≥ xN
}∣∣ (2.7)

measures the number of sequences σ′ in the alignment Σ that have more than a fraction
of x ∈ (0, 1] identical residues (seqid) to sequence σ with length N. Intuitively, this
approach assigns a joint weight of 1 to a cluster of sequences that are all similar to
each other above a threshold of x, thereby treating those sequences as one effective
sample. For most of our applications, we used a similarity threshold of x = 0.8 to
cluster sequences at 80% sequence identity.

The sequence weights w(σ) were then used to multiplicatively adjust the contribu-
tion of each sequence to the log-transformed pseudo-likelihood function. The redundancy-
reduced effective number of sequences in the alignment is measured by

Meff = ∑
σ∈Σ

w(σ) (2.8)

and sums over the reweighted contribution of sequences σ in the alignment Σ. Here,
Meff is used to assess the amount of available sequence information when choosing
the evolutionary depth of protein family alignments.

We note that besides the simple strategy used here, more elaborate and effective ap-
proaches to address the phylogenetic relationships between samples could in principle
be applied205.

Regularization

The number of parameters of the pairwise maximum entropy model (Equation 2.1,
(N

2 ) · (q− 1)2 + N · (q− 1) free parameters for a protein of length N and q = 21 states)
usually exceeds the available number of samples by several orders of magnitude, mak-
ing parameter inference highly susceptible to overfitting. E.g., a protein of length
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N = 100 has approximately 2 · 106 parameters, while most protein families contain 102

to 105 effective sequences (Meff); this discrepancy grows quadratically as N increases.
To avoid overfitting to the limited training data, we applied the standard approach

of adding a penalty term to the optimization problem that drives parameters to zero
unless they explain a sufficient amount of the data. We follow Ekeberg et al.180 and
Kamisetty et al.182 by employing l2-regularization on the fields h and the pair couplings
J with parameter type-specific regularization strengths λh and λJ , i.e.

R(h, J) = λh

N

∑
i=1
‖hi‖2

2 + λJ

N−1

∑
i=1

N

∑
j=i+1
‖Jij‖2

2. (2.9)

The optimization problem to be solved becomes a trade-off between maximizing the
probability of the data (log of the pseudo-likelihood L(h, J)) and minimizing the com-
plexity of the model (regularization term R(h, J)):

arg max
h,J

(logL(h, J)−R(h, J)) . (2.10)

In a Bayesian framework, this approach can be interpreted as maximum a posteriori
inference under Gaussian priors on the parameters with a mean of zero and variances
proportional to the inverse of λh and λJ

182.
Different values of λh and λJ have been proposed by empiric optimization of contact

prediction accuracy on sets of protein families180,182:

Method λh λJ

Ekeberg et al.180 0.01 ·Meff 0.01 ·Meff

Kamisetty et al.182 0.01 0.2 · (N − 1)

Notably, the regularization approach by Kamisetty et al.182 adjusts for the higher num-
ber of coupling parameters J compared to fields h, and applies weaker regularization
as the number of training samples growths (no dependence on the number of ef-
fective sequences Meff). For structure predictions (membrane proteins and protein
complexes), we used the approach by Ekeberg et al.180, whereas for mutation effect
predictions we applied the method by Kamisetty et al.182. Both approaches perform
similarly regarding contact prediction accuracy, but initial experiments showed that
the method by Kamisetty et al.182 gives superior performance when predicting muta-
tion effects.

We also explored the use of different types of regularization, including (i) group l1-
regularization which enforces sparsity on entire Jij matrices but performs l2-regularization
on the elements within181, as well as (ii) pair-specific weights λJ(i, j) for l2-regularization
to adjust regularization strength based on site entropy. These initial explorations did
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not result in improved prediction accuracy over standard l2-regularization and are not
reported in this thesis.

Parameters of the statistical model were estimated using a customized version of
the code provided by Ekeberg et al.180.

2.3. Phenotype prediction from coevolution model

The inferred probability model quantitatively describes evolutionary constraints on
the composition of observed functional protein sequences. By interpreting the model
and its parameters, we identified patterns on the genotype level and attempted to pre-
dict corresponding phenotypes on the molecular and organismal level. This includes
the (i) calculation of summarized constraints betweens pairs of positions to obtain
three-dimensional structure information and (ii) the calculation of mutation effects by
relating the probabilities of sequences under the model.

2.3.1. Constraints between pairs of positions

For each pair of positions i and j, the coupling matrix Jij describes the family-specific
preferences for all possible amino acid configurations σi and σj. The larger the differ-
ences between entries of such a matrix are, the more one pair configuration is favored
over the other, and the larger the epistatic constraint between the pair is. To quantify
and compare the overall sequence-independent epistatic constraint between pairs of
sites, the 212 numbers per Jij matrix need to be summarized into a single measurement
that is comparable between different protein families.

Calculation of evolutionary couplings

Previous work has addressed the problem of summarizing the coupling matrices us-
ing a mutual information-based measure called direct information, which is defined as
the difference entropy between pair probabilities in a Jij-derived two-site probability
model and the independent expectation from marginal single-site amino acid frequen-
cies8,173,174.

We focused on a matrix norm-based solution173,175,180 that has been shown to give
improved contact prediction accuracy compared to direct information180. In this ap-
proach, each coupling matrix Jij is first centered around row and column means of
zero by transformation into a zero-sum gauge using

J′ij(k, l) = Jij(k, l)− Jij(·, l)− Jij(k, ·) + Jij(·, ·) (2.11)
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where · means average across these entries, and then scored by calculating the Frobe-
nius norm

FN(i, j) = ||Jij||2 =

√
∑

k
∑

l
J′ij(k, l)2. (2.12)

which sums across all 212 amino acid combinations k, l. The transformation in Equa-
tion 2.11 minimizes the Frobenius norm173 and, by shifting each coupling matrix to
a zero mean, allows to interpret FN(i, j) as a quantity proportional to the sample

standard deviation of the matrix entries with a factor of
√

1
212−1 .

We then applied the empirically derived average product correction (APC) to the FN
matrix to remove background coupling between positions that arises due to con-
founding factors such as finite sampling and phylogenetic relationships between sam-
ples171,175,180. Assuming that, on average, each position should only be coupled to a
small subset of all sites, the correction approximates the background coupling of both
sites by the row and column averages of the matrix (·) and removes these from the raw
score FN(i, j), i.e.

EC(i, j) = FN(i, j)− FN(i, ·) FN(·, j)
FN(·, ·) . (2.13)

This correction is identical to setting the largest eigenvalue of the FN matrix to zero
and reconstituting the matrix from its eigenvectors (J. Söding, personal communica-
tion).

The end result of the calculation is a symmetric N× N matrix (N=length of protein)
with entries estimating the strength of evolutionary coupling (EC) between all pairs
of sites, where larger positive values correspond to high evolutionary coupling and
values around zero correspond to no detectable evolutionary coupling.

Selection of significant evolutionary couplings

The evolutionary couplings calculation assigns an EC score to every pair of positions
(i, j) in the protein. Yet, we do not expect all pairs of positions to be coupled, so we are
left with the problem of identifying significant pair couplings in a comparable manner
across different proteins. To select significant pair couplings in a scale-free way, we
developed a strategy based on the following empiric observations:

1. While most pairs have an EC score around zero, there is a one-sided tail of
positive scores containing a much lower fraction of pairs.

2. The higher the EC score of a pair in the tail is, the more likely it is to be proximal
in 3D, while a large fraction of pairs in the background distribution is distant.

3. The background (non-tail) part of the distribution is approximately symmetric
around a zero mean.
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2.3. Phenotype prediction from coevolution model

We therefore assumed that the more an EC score in the tail exceeds the background
score distribution, the more likely it is to reflect “true” coevolution between the pair of
positions. We used the minimal EC score between any pair to approximate the width
of the symmetric background distribution and measured raw EC reliability as the ratio
by which an EC score is above the background, i.e.

Qraw(i, j) =
EC(i, j)

min
i,j

(EC(i, j))
(2.14)

Although Qraw allows to make relative statements about EC scores within a protein,
it is not directly comparable across different proteins as EC accuracy depends on the
available amount of sequence information relative to the number of parameters of
the statistical model. To correct for these factors, we applied an empirically derived
normalization to the raw score, yielding the normalized quality score

Q(i, j) =
Qraw(i, j)

1 +
(

Meff
N

)− 1
2

(2.15)

where Meff is the effective number of sequences after reweighting (Equation 2.8) and
N is the number of sites in the statistical model. The correction strongly reduces the
normalized reliability in the case of limited samples, but returns the raw reliability
score in the limit of large amounts of training data.

For the special case of assessing protein complex interactions, we restricted Equa-
tion 2.14 to inter-monomer EC only and exclude any intra-monomer ECs from the
calculation.

2.3.2. Three-dimensional structures of proteins and complexes

The evolutionary pressure to maintain functional proteins and protein interactions
leads to the coevolution of amino acid residues in structural contact. Assuming that
evolutionary couplings between positions reflect this pressure, structural phenotypes
could be reconstructed from evolutionary sequence variation by constraining structure
in 3D space using pairwise distance restraints (Figure 2.1)4,8,9.

We applied this principle in two different ways: (i) the de novo 3D structure pre-
diction of single protein molecules from extended amino acid polypeptides, based on
further developments of our earlier work4,8,9, and (ii) the prediction of protein complex
interactions through docking assembly of predefined monomer protein structures.

Monomer structure folding

To obtain all-atom 3D models of proteins from evolutionary couplings, we further
developed our previously described methods EVfold and EVfold-transmembrane8,9.
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Figure 2.1.: Three-dimensional structures predicted from evolutionary couplings. (a) Starting from
a sequence alignment of the protein family, evolutionary couplings between sites in the protein are
calculated using the pairwise maximum entropy model. Under the assumption that coupled pairs are
in physical contact, the distances of residues are restrained to reconstruct 3D structure models from an
extended polypeptide. (b) For the prediction of complex structures, the sequences of interacting proteins
need to be matched first for the calculation of inter-protein evolutionary couplings. Assuming proximity
of the coupled residues between the two proteins to define distance restraints, the 3D structure of the
complex can be reconstructed with molecular docking. Adapted from Hopf et al.1,2

Given a selected list of evolutionary couplings, the steps of the folding protocol are as
follows:

1. Filtering of ECs using sequence-based predictions: Pair couplings not consistent with
predicted secondary structure features because of geometric criteria (impossible
contacts between residues in transmembrane segments, helices or beta strands)
were excluded from structure prediction to increase the amount of ECs that most
likely correspond to structural contacts and to exclude false positive couplings.
Transmembrane segments were predicted with PolyPhobius206 and compared to
MEMSAT-SVM207 and TOPCONS208 predictions to assess reliability by consen-
sus. Secondary structure was predicted using PSIPRED209. The precise filtering
rules are described in full detail in our previous work8,9.

2. Generation of 3D models from ECs: Folded all-atom 3D candidate models were
generated by restraining the distances of EC residue pairs in a fully extended
polypeptide. The embedding in 3D was performed using distance geometry
and simulated annealing protocols of the Crystallography and NMR system
(CNS)210. Additional distance and angle restraints were added based on local
secondary structure including transmembrane helix segments, and long loop
regions without EC coverage were removed from folding to avoid interference
with constrained regions. For each set of evolutionary couplings, we sampled 20

candidate structures as the folding protocol can get stuck in local optima.
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2.3. Phenotype prediction from coevolution model

3. Blind ranking of candidate models: Benchmark experiments showed that the gen-
erated candidate models can have strongly varying quality and therefore need
to be blindly assessed to select high-quality predictions8,9. We used the default
EVfold-transmembrane quality assessment protocol that scores each model for
its agreement with predicted secondary structure, predicted lipid exposure as
well as agreement with additional evolutionary couplings9. To assess conver-
gence to a common solution in 3D space and to exclude high-scoring outlier
solutions, additional structure-based clustering was applied to filter the list of
results.

The resulting ranked list of candidate 3D structures can be further validated using
prior biological knowledge (e.g. crosslinking data, mutational studies) to assess the
accuracy of structural models in the absence of experimental structures.

Protein complex docking

The coevolution analysis of protein interactions results in two sets of evolutionary cou-
plings: intra-monomer ECs defining the structure of each of the subunits, and inter-
monomer ECs determining the interaction between the subunits. Structural models of
protein complexes could be derived from this information analogously to monomer
structures by joint prediction of the monomer structures with additional distance re-
straints on the inter-molecular interactions. A simpler approach to the problem, which
was used in this work, is to use pre-defined structures for the monomers (experimen-
tal or predicted) and assemble them into a 3D complex structure using protein-protein
docking with EC-derived distance restraints.

To dock single monomers into complexes, we employed the HADDOCK154 soft-
ware and defined unambiguous distance restraints on the Cα atoms (5± 2 Å) for high-
scoring inter-ECs with a normalized quality score ≥ 0.8 (Equation 2.15). The quality
score threshold was derived based on an empiric trade-off between inter-EC precision
and coverage (see Section 3.2.1 for details).

The HADDOCK docking protocol consists of three stages: (i) rigid-body energy
minimization, (ii) semi-flexible refinement in torsion angle space, and (iii) model
refinement in explicit water solvent. These stages go from a faster, coarse-grained
search of 3D space to slower, fine-grained refinements allowing subtle conformational
changes and amino acid side-chain rearrangements. We used default parameters for
the protocol, but lowered the number of generated models during each stage to (i) 500,
(ii) 100, and (iii) 100. We chose this reduction to demonstrate the targeted information
added by ECs compared to sampling of a much larger search space by using energy
functions alone. To test docking in the absence of EC information (negative control),
we used the ab initio mode of HADDOCK211 to calculate a larger number of models
only with center of mass restraints enforcing contact between the subunits (for each
stage: (i) 10000, (ii) 500, (iii) 500 models). The resulting set of candidate 3D mod-
els was scored and ranked using the default HADDOCK score154, but excluding the

23



2. Methods

distance restraint energy term in the third stage (Edist3 = 0) to assess model quality
independently of the ECs used to generate the models.

An important consideration for evaluating docking performance is the use of un-
bound monomer structures. If bound subunit structures are taken directly from the co-
crystallized complex, the complementarity of conformations and side-chains may lead
to an over-optimistic assessment of performance as the energy function can simply
assemble the subunits in a more targeted search space. For a more realistic evalua-
tion, we therefore took independently solved, unbound structures where available.
In all other cases, we randomized the monomer side chains using SCWRL4

212 or
Schrödinger Protein Preparation Wizard213.

2.3.3. Mutation effects

The inferred probability model (Section 2.2), through site- and pair-specific amino
acid constraints, describes how compatible sequences are with the functional require-
ments of the aligned protein family. The probability distribution could therefore in
principle be used to quantitatively relate changes in genotype (mutations of amino
acid sequence) to changes in phenotype, and ultimately, the fitness of the organism.
Contrary to most previously published approaches for mutation effect prediction, the
coevolution model allows to incorporate the context-dependence of mutations in the
calculation using pairwise interactions between positions in the protein (Figure 2.2).
While the focus of this work is on mutation effects in single proteins, we highlight
that the calculations outlined in this section straightforwardly extend to protein inter-
actions.

Probabilistic calculation of context-dependent mutation effects

To quantify mutation effects, we adopted a formalism used to predict changes in
protein stability139 that is based on the Boltzmann form of the distribution P(σ) =
1
Z exp (E(σ)) relating the energy E of a system configuration σ to its probability. For
our pairwise model (Equation 2.1), the statistical energy of an amino acid sequence
σ = (σ1, . . . , σN) is defined as

E(σ) =
N

∑
i=1

hi(σi) +
N−1

∑
i=1

N

∑
j=i+1

Jij(σi, σj) (2.16)

and describes the favorability of the given system configuration by summing the spe-
cific single-site constraints hi(σi) and pair constraints Jij(σi, σj). We note that through-
out this work we used a sign convention such that higher (rather than lower) statistical
energies E(σ) correspond to higher probabilities.
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Figure 2.2.: Calculation of context-dependent mutation effects. Left: Evolutionary sequences record the
functional constraints on the amino acid configurations in a specific protein family. Middle: By inferring
a pairwise maximum entropy model from these sequences, we extract amino acid constraints on single
sites (hi) and pairs of positions (Jij), which allows to compute the probability of any sequence to be a
functional member of the protein family. Right: The probability distribution over sequences can be used
to quantify the effects of mutations by relating the probabilities of the wild-type and mutant sequences
under the model. Through the difference in pair couplings to all other positions, the method incorporates
the sequence background in the calculation and in this way models epistatic dependencies. Adapted from
Hopf et al.3

We calculated the effects of mutations as the statistical energy difference between
the mutant and the original wild-type sequence,

∆E(σ(mut), σ(wt)) = E(σ(mut))− E(σ(wt)), (2.17)

which is equivalent to the log-odds ratio of the probabilities of the two sequences
(Figure 2.2):

∆E(σ(mut), σ(wt)) = log
P(σ(mut))

P(σ(wt))
. (2.18)

The statistical energy difference quantifies how compatible the mutated amino acids
are with (i) site-specific amino acid requirements through the differences of fields in
the mutated sites, as well as (ii) the rest of the sequence through the differences in
pair couplings to all other positions. The use of pair couplings allows to calculate
context-dependent mutation effects rather than analyzing patterns of conservation in
the mutated sites only.

If ∆E > 0, the mutant is more likely under the model than the wild-type sequence
(beneficial mutation); if ∆E < 0, it is less likely (deleterious mutation). Mutants with
∆E = 0 are equally likely (neutral mutation). Under the log-odds ratio formalism,
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statistical energy differences can be intuitively interpreted as relative changes in prob-
ability. Between different proteins, varying scales of the predicted mutant effects may
reflect different overall mutational susceptibilities/fitness costs for the organism. Here,
to enable comparisons between different proteins, we discard this information and
normalize predictions to a scale from -1 (deleterious mutation) to 0 (neutral mutation)
using the transformation

∆Ec(σ
(mut), σ(wt)) =

∆E(σ(mut), σ(wt))

|D| . (2.19)

|D| is the mean statistical energy difference of the 5% most deleterious single mutants
and is used as an approximation of the maximally deleterious single mutation effects
that is more robust to outliers.

Due to the inclusion of the sequence context in the calculation, mutation effects
computed using Equations 2.16, 2.17 and 2.19 are referred to as from the “epistatic
model”.

Calculation of mutation effects with independent site model

Mutation effects are frequently predicted based on single-site conservation without
considering epistasis. To test if a context-dependent model captures mutation effects
more accurately, for comparison we constructed a maximum entropy model that only
contains first-order terms hi characterizing positional amino acid constraints. Under
this model, the probability of a protein sequence σ is

P(σ) =
1
Z

exp

(
N

∑
i=1

hi(σi)

)
. (2.20)

The parameters of the models were inferred from the sequence data using standard
maximum likelihood estimation, which in this case is tractable due to the indepen-
dence of sites. Analogously to the pair model, we applied l2-regularization with
strength λh = 0.01 during parameter learning to avoid overfitting (Section 2.2.2).

To calculate statistical energy differences between a mutant and wild-type sequence,
the probabilities of both sequences according to Equation 2.20 were plugged into Equa-
tion 2.18 and rescaled with Equation 2.19. Here, the energy difference quantifies how
compatible the mutated amino acids are with site-specific amino acid requirements
without considering the rest of the sequence. Mutation effects computed based on
Equation 2.20 are referred to as from the “independent model”.

Quantification of context-dependence of mutation effects

Depending on the particular protein family, target sequence and position, epistasis
may play a role in shaping the effects of mutations to a greater or lesser extent. We
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used the prediction difference between the epistatic and the independent model to
measure how context-dependent mutation effects are by subtracting the rescaled log-
odds ratios, i.e.

∆∆Eepi
ind(σ

(mut), σ(wt)) = ∆Eepi
c (σ(mut), σ(wt))− ∆Eind

c (σ(mut), σ(wt)). (2.21)

Mutants with ∆∆Eepi
ind < 0 are predicted as less fit by the epistatic model than by the

independent model, and vice versa. The higher the absolute value of ∆∆Eepi
ind is, the

more the effect of a mutation depends on the particular sequence context into which it
is introduced. When comparing the two models against experimental data, assessing
those mutants that are predicted the most differently is of particular interest to gauge if
epistatic models describe mutation effects more accurately than independent models.

2.4. Evaluation of phenotype predictions against experiments

We have described methods to predict protein phenotypes from evolutionary sequence
covariation on the level of protein structures, protein complexes, and amino acid mu-
tation effects. To assess the predictive performance of these methods, we evaluated the
predicted phenotypes against the available experimental phenotype measurements. In
the following section, we describe how representative data sets were chosen and how
predictive accuracy was measured between predictions and experiments.

2.4.1. Dataset selection

For each of our phenotype prediction applications, we searched for available exper-
imental data to obtain comprehensive evaluation sets, subject to the availability of
sufficient amounts of evolutionary sequence information for the respective target pro-
teins.

Membrane protein structures

Performance of the updated version of our method for membrane protein structure
prediction was evaluated on a dataset described previously9. Briefly, we selected 25

target proteins from 23 non-redundant α-helical membrane protein families with five
or more transmembrane segments, sufficient sequence information, and at least one
solved 3D crystal structure in the PDB database78. For a separate set of 17 (out of a
total of 18) proteins without any available experimental structure for the entire protein
family, we provided confident de novo prediction models in 2012

9. Crystal structures
have been published for four of these proteins with confident predictions since214–217,
and we evaluated predictive accuracy for these on the original9 and updated predic-
tions.
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Protein complex structures

To test the accuracy of inter-monomer ECs and docked 3D models, we derived a pro-
tein complex structure data set based on a collection of experimentally verified binary
protein-protein interactions in E. coli218. This collection was assembled from yeast two-
hybrid experiments, literature curation and three-dimensional structures of complexes
in the PDB database78, and subsequently expanded by us to contain additional miss-
ing candidates1. The full list of binary interactions, which still contained complexes
without 3D information, was then filtered by the following criteria:

1. Availability of a high-quality 3D crystal structure containing both monomers in
co-crystallized form, either directly for the interacting proteins or between two
homologous proteins as identified by individual jackhmmer192 searches against
the PDB for each monomer. Structures were required to cover at least 30 residues
per monomer, and to have a resolution smaller than 5Å.

2. Proximity of the interacting pair on the E. coli genome, since genomic distance
was used as a proxy to match up putatively interacting sequence pairs across
species (Section 2.1.3). Proximity was measured by the number of genes in be-
tween the two interacting monomers as defined by an ordered list of genes on
the E. coli genome obtained from UniProt202. Complexes with a gene distance
greater than 20 were excluded from the evaluation set.

3. Interaction of monomers belonging to two distinct protein families. Protein
complexes, where both subunits belonged to the same Pfam219 protein family
(‘pseudo-homomultimers’), were excluded from the evaluation set, since align-
ment construction and disentangling inter- and intra-ECs requires a different
approach due to the common evolutionary origin of both subunits (e.g., false
signal for inter-ECs based on intra-subunit couplings).

This filtering procedure yielded a set of 93 complex structures that could in principle
be applied for evaluation purposes. When constructing alignments, aligned regions
were restricted based on the crystal structure if the statistical inference problem be-
came too large regarding computational resource usage or the amount of available
sequence information. The other remaining 229 interactions without 3D structure of
the complex but satisfying requirements 2 and 3 were used as potential de novo pre-
diction candidates.

Mutation effects

In contrast to the well-defined evaluation targets of three-dimensional structure pre-
diction, data on the phenotypic effects of mutations are often heterogeneous: (i) Mu-
tant effects are assessed based on a variety of assays and interrelated target pheno-
types, including organism growth, protein stability, enzymatic activity and many oth-
ers; and (ii) effects are typically tested only on a small subset of mutated positions
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and amino acid substitutions based on prior information such as patterns of sequence
conservation18,60,167,220.

To circumvent this biased coverage of mutational space, we focused our evaluation
on using quantitative high-throughput mutagenesis scans characterizing mutation ef-
fects on different phenotypic readouts60. We performed a comprehensive search of the
literature for such scans that cover entire proteins or protein domains, and excluded
any experiment for which the target protein did not have sufficient available evolu-
tionary sequence information (redundancy-reduced number of sequences Meff < 10N,
N=length of protein/domain). In total, 13 mutation scan data sets covering 11 unique
proteins were identified and used for evaluation (Table A.1)41,44,51,53,54,59,60,62,64,66,68–71.

As the resolution of high-throughput experiments is limited due to threshold and
saturation effects59, predictions were also tested against selected low-throughput mea-
surements of protein stability and enzyme activity from biochemical studies focused
on protein sequence coevolution107,167,220.

2.4.2. Measures of predictive accuracy

Given experimentally determined phenotypes, the quality of the corresponding pre-
dictions was assessed by scoring the agreement between both using established mea-
sures of predictive accuracy.

3D structures of proteins and complexes

The quality of protein structure phenotype predictions was quantified in two different
spaces: (i) The agreement of predicted residue-residue contacts with the contacts ob-
served in the experimental structure, and (ii) the deviation between EC-predicted and
experimental atomic coordinates in 3D.

The predictivity of evolutionary couplings for residue-residue contacts was assessed
by their precision, i.e. what fraction of evolutionary couplings corresponds to residue
pairs that are close (true positives) rather than distant (false positives) in the 3D struc-
ture of the protein:

Precision =
True positives

True positives + False positives
(2.22)

Precision calculations were restricted to the highest-scoring EC pairs, since only a
small fraction of all possible pairs is assumed to capture significant coevolution (Sec-
tion 2.3.1). Typically, we used all pairs with EC quality score above a certain threshold
or the top L (length of protein/domain) couplings as previously described8,9, and ex-
cluded pairs (i, j) that were close in the primary amino acid sequence (|i− j| ≤ 5). De-
pending on the particular application, two residues were classified as close (in contact)
if the Euclidean distance between any pair of atoms was no more than 5 Å (monomer
protein structures) or 8 Å (inter-monomer contacts in protein complexes). We note that
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due to the particular nature of the structure prediction problem, the identification of
relatively few reliable and informative contacts is more important than to obtain the
full set of close pairs or to predict pairs that are distant8; hence the focus on precision
as the main evaluation metric.

While residue-residue contacts can be evaluated in a binary classification setting, the
assessment of structure predictions against experimental structures requires to com-
pare the coordinates of two three-dimensional objects. A standard way of comparison
is the root mean square deviation (RMSD), which scores the distances between equiv-
alent atoms in an optimal superposition of prediction and model that minimizes the
RMSD221, i.e.

RMSD = min


√√√√ 1

N

N

∑
i=1

d(i)2

 . (2.23)

For two structures with a total of N aligned atom pairs, d(i) measures the Euclidean
distance between the coordinates of the i-th pair. Structure predictions of single pro-
teins were evaluated based on superpositions of all modeled Cα atoms. For protein
complexes, where the focus is on accurate modeling of the interaction interface region,
we used all backbone atoms of interface residues (interface RMSD)222,223. The set of
interface residues was defined to contain all residues with any atom closer than 6 Å to
any atom of the interaction partner.

A second evaluation metric we used for monomer proteins is the Template Modeling
(TM) score, which addresses the tendency of the RMSD to increase with the size of the
aligned molecules224. Similar to the RMSD, it is based on an optimal superposition
that maximizes the score for a target protein of length L and N aligned atom pairs:

TM-score = max

 1
L

N

∑
i=1

1

1 +
(

d(i)
d0(L)

)2

 (2.24)

The function d0(L) = 1.24 3
√

L− 15− 1.8 normalizes the atom pair distances d(i) such
that the composite score is independent of the length of the protein L. On the scale of
the TM score from 0 to 1, values of approx. 0.5 indicate that both proteins are likely
to share the same fold, while larger scores correspond to increasingly good agreement
between the compared structures225.

Structure comparisons were performed using MaxClusterii, PyMOL226, ProFitiii and
TM-align227.

iiwww.sbg.bio.ic.ac.uk/˜maxcluster/
iiiwww.bioinf.org.uk/software/profit/
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Mutation effects

To assess if quantitative mutation effects computed from sequence variation (Sec-
tion 2.3.3) correspond to quantitative experimental measurements, we used correlation
measures to quantify the dependence between the two variables. Since initial visual
inspection of the relationship between predictions and experiments showed the pres-
ence of a variety of linear and non-linear dependencies and marginal distributions of
different shapes, we simultaneously applied several established measures to obtain a
robust characterization of the results:

1. Pearson product-moment correlation coefficient r to measure the linear depen-
dence between prediction and experiment. Pearson’s r is directly related to the
coefficient of determination r2 of the corresponding linear regression problem
with intercept term, which in our setting can be interpreted as the percentage of
variance in the experiments explained by evolutionary sequence variation. The
Pearson correlation may give misleading results if the data have a non-linear
relationship or outliers are present228.

2. Spearman rank correlation coefficient ρ to capture monotonic, non-linear depen-
dencies between prediction and experiment, while being robust to the presence
of outliers. Spearman’s ρ is equivalent to calculating Pearson’s r on the respective
ranks of the data points in the two distributions228.

3. Matthews correlation coefficient (MCC)229 to test prediction performance in a
binary classification setting, i.e. if experimentally deleterious/neutral mutations
are correctly predicted as deleterious/neutral or not. The binary analysis was
motivated by the observation that many of the analyzed experimental datasets
show a bimodal effect distribution and most mutations are either very delete-
rious or neutral. For a 2 × 2 contingency table containing the counts of true
positive (TP), false positive (FP), false negative (FN) and true negative (TN) pre-
diction instances, the MCC is defined as

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (2.25)

To calculate the MCC, experimental mutations were classified as deleterious or
neutral by fitting a two-component Gaussian mixture model to the effect distri-
bution in logarithm space and then assigning each mutation to the class with
the higher posterior probability under the model. As predicted effect distribu-
tions tended to be unimodal, there was no obvious cutoff to separate neutral and
deleterious mutants. The MCC was therefore evaluated at a range of different
thresholds for the predictions.

All three correlation measures range from r = 1 for a perfect correlation to r = 0 in
the absence of correlation to r = −1 for a perfect anti-correlation.
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2.5. Data analysis and visualization

Mutation effect calculations, data analysis, statistical calculations and visualization
of results were performed using the scientific Python stack230–235 and IPython note-
books236. Protein structures were visualized using PyMOL226. Mappings between
UniProt sequences202 and structures in the PDB78 were obtained from the SIFTS project
database237.
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In the following chapter, we will outline the results of predicting transmembrane pro-
tein structures, protein-protein interactions and quantitative context-dependent mu-
tation effects from evolutionary sequence covariation. For each of these target phe-
notypes, we describe the experimental data used for the evaluation of the respective
prediction method and how well benchmarking predictions agree with these experi-
ments. We then apply the methods to obtain de novo predictions of phenotypes for
proteins lacking experimental information.

3.1. Transmembrane protein structures

The structures of α-helical transmembrane proteins are a molecular phenotype of par-
ticular interest since membrane-integral proteins are responsible for intercellular com-
munication and substrate uptake, and therefore major drug targets238. In previous
work, we have shown that transmembrane protein structures can be accurately pre-
dicted from sequences and provided de novo predictions for proteins for which there
was no three-dimensional structure available9.

Here, we evaluate the updated version of our original prediction method (Chap-
ter 2) on the same benchmark dataset and assess if the updates lead to more accurate
predictions. For some of the unsolved proteins predicted in Hopf et al.9, experimental
structures have been published in the meantime, providing an excellent opportunity
for a completely blinded evaluation of the original predictions in the spirit of the CASP
(Critical Assessment of protein Structure Prediction) competition239.

We then proceed to predict the three-dimensional structures of insect olfactory re-
ceptors (ORs), a unique family of proteins responsible for the translation of environ-
mental chemical signals into neuronal activity240. The OR family, which has distant
homologs in non-insect animals and plants, appears to be of ancient evolutionary
origin and does not share any detectable similarity to existing protein families with
solved structure241. We characterize the validity of our models using independent,
orthogonal experimental data and targeted experiments based on our predictions.i

3.1.1. Evaluation of updated prediction method

We first tested the performance of our updated prediction method in comparison to
the original method9. The original approach was modified in several steps, including
the generation of sequence alignments using jackhmmer (Section 2.1.1), calculation

iThis section is based on the publication by Hopf et al.2 and unpublished results.
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Figure 3.1.: Updated membrane protein method gives more accurate predictions. (a) Structure predic-
tions using the updated method are equally or more accurate than those from the original method for
both the best (black) and top-ranked models (blue, best out of 10 top-ranked models) with the exception
of one protein. (b) Close to two thirds of the tested proteins show a substantial improvement over the
old predictions (difference in top-ranked TM score ≥ 0.05).

of evolutionary couplings using the pseudo-likelihood maximization approximation
(Section 2.2.2) and default topology predictions based on PolyPhobius (Section 2.3.2).
The amount of available sequence information has more than doubled since the ini-
tial publication of our original method to over 40 million sequences202, which could
improve predictive accuracy given its strong dependence on the number of sequences
observed previously9,182.

Updated method improves model accuracy on original benchmarking set

We computed updated predictions for the 25 proteins described in the original bench-
mark set9 and identified the models that were the most accurate compared to the
experimental structure (best model) and had the highest blind quality assessment score
(top-ranked model, accuracy reported for best out of 10 top-ranked models; Section 2.4.2)ii.
For all but one protein from the data set (ferrous-iron efflux pump FieF), the updated
method returned equally or more accurate predictions (Figure 3.1). On average, TM
scores improved by 0.07 for the best models and by 0.08 for the top-ranked models,
giving average TM scores of 0.67 (best) and 0.66 (top-ranked), respectively. None of
the updated top-ranked models had a TM score smaller than 0.5, indicating that the
correct fold was blindly identified for all proteins; the most accurate generated model
for any protein had a TM score as high as 0.82 (E. coli NADH-quinone oxidoreductase
subunit N, NuoN). In total, 8 out of the 25 proteins now had top-ranked models with
TM scores of at least 0.7, and 18 out of 25 were above 0.6.

iiThe updated benchmark and de novo predictions described in this section were computed by Li Yang
Smith in Debora Marks’ lab at Harvard Medical School co-advised by Thomas A. Hopf
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3.1. Transmembrane protein structures

Table 3.1.: Evaluation of experimentally solved de novo structure predictions

Top-ranked TM scorea

Predicted protein UniProt ID 3D Structure Original Updated

Adiponectin receptor 1 ADR1 HUMAN 3wxvA214
0.69 0.79

NADH-ubiquinone oxidoreductase chain 1 NU1M HUMAN 4he8C215 (39%)b
0.50 0.73

c

Solute carrier family 22 member 4 S22A4 HUMAN 4pypA216 (23%)b
0.57 0.80

c

Translocator protein TSPOA HUMAN 2mgyA217 (81%)b
0.52 0.61

c

aTM score for best out of 10 top-ranked structures b% sequence identity of target protein to solved homologous structure
cUpdated prediction calculated for solved protein rather than original target

In summary, our results show that the updated method improves the accuracy of
three-dimensional structure predictions of membrane proteins from sequences and
gives reliable results for all tested proteins. These developments are in line with orig-
inal extrapolations that ongoing method development and more available sequences
will lead to more accurate models and more accessible families in the near future4,182.

Predictions for unsolved proteins have correct fold

As part of the original publication in 2012
9 and additional web supplemental data,

we predicted three-dimensional models for 18 proteins where no structural informa-
tion was available for the entire protein family (models available on evfold.org) and
obtained reliable predictions in 17 cases. Since then, experimental structures of the
target protein or one of its homologs have been solved for 4 of the 17 proteins. Similar
to the CASP competition, this allows to assess the performance of the original method
on fully blinded predictions in a retrospective evaluation239.

For all four solved proteins, we compared our original predictions to the solved
crystal structures; if a homolog from the family was solved, we used SwissModel
comparative modeling242 and evaluated our predictions against the homology model.
In all four cases, the best out of the 10 top-ranked models had a TM score of at least 0.5
(Table 3.1), suggesting that our predictions captured the correct overall fold (TM score
≥ 0.5) but with mistakes in the structural details. In particular, we correctly predicted
that the first subunit of the NADH-ubiquinone oxidoreductase is structurally similar
to the other membrane subunits of the same complex despite a lack of detectable se-
quence similarity9. The experimental structure of the full respiratory complex 1 later
confirmed our prediction215. Similarly, our structural model of the human adiponectin
receptor 1 indicated that this protein shares the same fold as G protein-coupled recep-
tors and bacterial rhodopsins but with inverted membrane topology9. Comparison
against the solved experimental structure confirms this observation and shows that
our prediction had substantial accuracy (TM score: 0.69).
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3. Results and Discussion

To test how well our updated method would have predicted the unsolved proteins,
we also computed new predictions for all four proteins (now directly for the solved
structures rather than the original proteins). The TM scores of the updated top-ranked
models increase considerably by up to 0.23 (Table 3.1). In part, these differences may
be attributed not only to improvements in modeling performance, but also to the
comparison against the native structure rather than a homolog.

The successful blind prediction of proteins that had not been solved at the time,
as well as the increase in performance with the updated method suggest that the
approach could be confidently applied to predict the structures of unsolved proteins
of interest.

3.1.2. De novo model of insect olfactory receptors

Insect olfactory receptors are a large family of α-helical membrane proteins involved
in the molecular recognition of odors. Despite great interest in elucidating the precise
signaling mechanism of these ion channels, the molecular details of how olfactory
receptors detect specific ligands and transmit this signal across the membrane remain
elusive243; one reason for this is the absence of three-dimensional structure information
for the protein family. As a contribution towards a more detailed understanding of
olfactory receptor function, we predicted their structure and analyzed the resulting
models in the context of existing biological knowledge and a targeted experimental
validation.

Insect ORs have a unique seven-helix fold

To predict the three-dimensional structure of olfactory receptors, we followed the ap-
proach outlined in Chapter 2 and built a custom sequence databases of 5907 OR se-
quences that were already deposited in public databases, or obtained from newly
sequenced insect genomes to maximize the amount of available sequence informa-
tion. We chose two of the experimentally most well-characterized members of the OR
family, the co-receptor ORCO and the ligand-specific receptor OR85b from Drosophila
melanogaster, as target proteins for our predictions and built multiple sequence align-
ments for both proteins (Section 2.1.1). For each of the alignments, we calculated
evolutionary couplings (Section 2.3.1), generated three-dimensional models from EC-
derived distance restraints, and blindly selected a top-ranked candidate model that
had high quality scores and clustered with other high-ranking solutions (Section 2.3.2).

For both proteins, the high-scoring evolutionary couplings show agreeing parallel
and anti-parallel interaction patterns between membrane-integral helices typical for
α-helical transmembrane proteins when visualized as a contact map (Figure 3.2a)9.
While similar results are expected for both proteins since they belong to the same
family and their sequences can be aligned over most of their length, this convergence
to the same typical patterns nevertheless hints at the robustness of the calculated evo-
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3.1. Transmembrane protein structures

Figure 3.2.: Structural model of insect olfactory receptors from evolutionary couplings. (a) Contact
map of the highest-scoring evolutionary couplings between positions (x- and y-axis) in the olfactory
receptor OR85b. Parallel and anti-parallel stretches of couplings typical for α-helical transmembrane
proteins can be observed between helices spanning the membrane (blue segments, TMH 1-7) and outside
the membrane (grey segments), e.g. between TMH 1 and 2 (orange rectangle). The N-terminal tail region,
extracellular loop 2 and intracellular loop 3 display high local densities of evolutionary couplings (red
circles). (b) Top-ranked 3D model of OR85b viewed from within the membrane (side view, left panel)
and from the extracellular face of the membrane (top view, right panel; blue to red coloring from N- to
C-terminus). (c) The helical packing arrangement of insect ORs (OR85b, top-ranked model) is distinct
from G-protein coupled receptors (β2-adrenergic receptor, PDB structure 2rh1

244) and the adiponectin
receptors (top-ranked model from Hopf et al.9, confirmed by PDB structure 3wxv214), although all three
have seven transmembrane helix segments (top panels: view extra- or intracellular face of membrane;
bottom panels: simplified representation of helical packing; blue to red coloring from N- to C-terminus).
Adapted from Hopf et al.2
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lutionary couplings. The selected top-ranked structures, although differing in their
structural details (Cα-RMSD=5.9 over 303 residues, TM-score=0.54, calculated using
TM-align227), share the same overall three-dimensional packing of the seven trans-
membrane helices of OR proteins (Figure 3.2b), revealing a coarse-grained model of
the olfactory receptor fold for the first time.

Based on the observation that ORs have seven transmembrane helices, an open ques-
tion in the field of olfactory receptor research has been if this class of receptors belongs
to the family of G protein-coupled receptors (GPCRs)245,246. GPCRs are an abundant
class of receptors with seven transmembrane helices in eukaryotes and responsible
for olfactory reception in non-insect species240. A comparison of packing arrangement
shows however that the topologies of ORs and GPCRs differ substantially (Figure 3.2c),
suggesting that these are in fact unrelated protein families and folds; the topology is
also different from that of the adiponectin receptor which has a fold similar to GPCRs
but with inverted orientation inside the membrane9. Additional structure-based simi-
larity searches of the top-ranked models against the PDB78 using DALI247 did not lead
to the identification of any other membrane proteins sharing the same fold, highlight-
ing that ORs have a novel and currently unique three-dimensional structure.

Strongly coupled and known functional residues cluster in 3D model

Given the calculated evolutionary couplings and the resulting candidate models, we
are left with the questions about the validity of the model and what residues contribute
to the signaling function of insect olfactory receptors. We therefore used our previ-
ously described strategy of identifying residues with above-average coupling strength
as a proxy to predict potentially functionally important residues9 and validated the
results against experimental data. Briefly, this strategy is based on the assumption
that residues with strong evolutionary couplings to other positions are under partic-
ular selective constraint, which is possibly not visible from single-site conservation
alone, and thus hypothesized to be functionally important. For each position, we (i)
calculated the weighted degree in the network with positions as nodes and evolution-
ary coupling scores between pairs of positions as edge weights, and (ii) normalized
this score by the average edge weight of any position; (iii) positions with a normal-
ized score > 1 have above-average coupling strength (referred to as strongly coupled
positions). The mapping of strongly coupled positions onto the three-dimensional
structure models (Figure 3.3a) reveals that they cluster in three distinct parts of the
molecules, suggesting functional importance of these regions: (i) the N-terminal tail,
(ii) the second extracellular loop (EL2) connecting the third and fourth transmembrane
helices (TMH3/TMH4); and (iii) the third intracellular loop (IL3) and the subsequent
seventh transmembrane helix (TMH7).

Several independent experimental mutational studies have tested the functional con-
tributions of selected residues to receptor function for different ORs248–256. We com-
piled a list of such functional studies and mapped residues that contribute to OR

38



3.1. Transmembrane protein structures

Figure 3.3.: Strongly coupled positions in olfactory receptors cluster in regions with experimentally
tested contributions to function. (a) Positions in OR85b with above-average evolutionary coupling
strength cluster in the N-terminal region, extracellular loop 2 and intracellular loop 3/transmembrane
helix 7 (top 25% mapped on top-ranked OR85b model as blue spheres; side view from inside the mem-
brane). (b) Experimentally characterized functional positions in members of the OR family on the pre-
dicted structure of OR85b (top-ranked model, mapping based on sequence alignment of characterized
proteins). Residues with defined influence on ion selectivity are all located in transmembrane helices 5,
6 and 7 and proximal in 3D (single and double asterisks). Adapted from Hopf et al.2

function onto OR85b and ORCO using our sequence alignments of the OR family
(Figure 3.3b). Although the exact overlap between these and strongly coupled po-
sitions is limited to only two positions (N143 and F380), the experimentally tested
positions cluster in distinct regions of the model that largely correspond to strongly
coupled regions (Figure 3.3a,b). Interestingly, mutations affecting ligand recognition
(TMHs 2-4, EL2) are spatially close on the extracellular side, suggesting they constitute
part of the ligand-recognition site. Similarly, mutations on TMHs 5, 6 and 7 affecting
ion selectivity are in spatial proximity in the model (Figure 3.3b, single and double
asterisks); mutations affecting general ion channel function are mostly located on one
face of the model in TMHs 5, 6, 7 and IL3, suggesting this part of the molecule forms
the pore of the ion channel.
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Experiments verify predicted functional role of N-terminal region

Since there was only anecdotal experimental evidence for the functional importance
of the N-terminal region248, our collaborators experimentally tested the role of the
strongly coupled positions in this part of the molecule by generating a higher-order
ORCO mutant substituting the strongly coupled residues A23, M24, F30, M31, H32

and N33 to alanine, as well as an ORCO deletion construct lacking residues 23 to 33.
In experimental assays measuring odor-evoked current responses of ORCO to three
different agonists (pentyl acetate, 2-heptanone, VUAA1), the two mutants had dimin-
ished or abolished receptor function compared to wild-type ORCO (for full experi-
mental details, see Hopf et al.2). Although the precise functional role of the N-terminal
region has yet to be uncovered, our computational predictions guided the identifica-
tion of its essential contribution to signaling. Taken together, these results indicate a
model of the spatial organization of functional regions in ORs and support the plausi-
bility of our three-dimensional model.

3.1.3. Discussion

Based on the computation of evolutionary couplings from sequence covariation, we
have predicted the previously uncharacterized three-dimensional structure of insect
olfactory receptors. Besides other early examples257–259 that followed our de novo pre-
dictions for several unsolved protein families9, this work constitutes one of the first
targeted applications of evolutionary couplings to study the biology of a particular
protein of interest and highlights the power of approaches combining computational
predictions and wet-lab experiments.

While our validation suggests that the coarse-grained models are reasonably accu-
rate and can contribute to the further elucidation of structure-function relationships in
this protein family, there are however several issues which need to be considered when
interpreting the predictions. First, the models could be inaccurate due to prediction
errors accumulating throughout the different stages of the method. The identified evo-
lutionary couplings may contain false signals due to insufficient sequence information
or other peculiarities of the protein family, the same applies for the machine-learning
based predictions of secondary structure and membrane topology; wrong or missing
pair restraints may then bias 3D reconstruction towards the wrong answer. Future
work will therefore need to establish additional independent quality assessment cri-
teria to determine how reliable results are. The performance of our updated method
on the benchmark set as well as the successful predictions for proteins that have been
solved in the meantime however give basic confidence in the applicability of the ap-
proach to ORs.

Second, ORs have been shown to form hetero-complexes of the co-receptor ORCO
and a ligand-specific receptor such as OR85b in an unknown stoichiometry260. Al-
though there is no detectable evolutionary relationship on the sequence level, struc-
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tures of other ion channels have shown intertwined arrangements of the subunits in
the complex261 . Since ORCO and the other ORs are part of the same family, evolution-
ary couplings may occur either due to intra-subunit or inter-subunit residue-residue
couplings; disambiguation between the two is a challenging problem for future re-
search. During the folding of monomer structures as performed here, the presence of
inter-molecular couplings can potentially give incorrect results. If ORs perform major
conformational changes, the averaging of couplings caused by multiple conformations
could also lead to an averaging of the different conformations in the predicted model9.

Finally, the current approach averages the covariation signal across most of the OR
sequences known today so there are enough samples for learning the statistical model.
Due to the divergent nature of the OR family241, this may lead to a loss of specificity
in modeling the precise details of subfamilies, e.g. potential structural divergence be-
tween ORCO co-receptors and the ligand-specific receptors.

We anticipate that with the ongoing sequencing efforts, potentially including tens
of thousands of different insect species, the repertoire of known OR sequences will
continue to increase. Together with the continued development of coevolution-based
methods, future prediction attempts could result in higher-resolution models to elu-
cidate the structural and functional details of this and many other unsolved protein
families.
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3.2. Protein-protein interactions

One level up from individual protein structures, protein-protein interactions are molec-
ular phenotypes relevant to most cellular processes. Although high-throughput screens
have identified large sets of binary protein interactions, their molecular details such as
the mode of binding, binding specificity, and conformational changes remain largely
unknown150,218,262. To address this gap from sequence data, we developed a method
to infer coevolving pairs of positions between two different proteins (heterocomplexes).
Using experimentally solved complex structures as a benchmark, we show that evolu-
tionarily coupled residues often correspond to inter-protein structural contacts, which
contain enough information to reconstitute the overall three-dimensional structure of
the complex from its subunits. We then demonstrate that the method can be applied
to predict unsolved protein complexes, yielding biologically plausible results.iii

3.2.1. Benchmark of method on solved complexes

We tested our method for the identification of coevolving residues between interacting
proteins using a dataset of 93 different non-redundant bacterial complexes with known
structures where both subunits are located proximally on the genome (Section 2.4.1).
For all complexes, we generated sequence alignments for both monomer proteins and
matched putatively interacting pairs of homologs in the alignments using the genome
distance-based strategy described in Section 2.1.3. Discarding paired alignments with
insufficient sequence information (Meff/N < 0.3, where Meff the is effective number
of sequences and N is the total number of positions in the matched alignment), we
were left with a set of 76 complexes for which evolutionary coupling scores could be
calculated. The calculation simultaneously returns EC scores for all pairs of positions
between both proteins (inter-protein ECs) as well as for pairs of positions within the
proteins (intra-protein ECs). To test if inter-protein ECs capture the coevolution of
contacting residues, we checked the distances of high-scoring pairs in the available
crystal structures of the complexes.

Coevolving pairs between proteins are close in structure

An initial evaluation of the benchmark set showed that top-ranked inter-protein ECs
correspond to structural contacts in the complex crystal structures for many of the
tested examples, but the fraction of correctly identified contacts strongly varies from
case to case when picking a fixed number of contacts (Supplementary File 1 of ap-
pended publication1). To blindly select reliable EC pairs while discarding non-significant
couplings, we developed a quality score that allows to set an expectation for the de-
sired precision of the chosen contacts based on the overall distribution of EC scores
(described in detail in Section 2.3.1, Figure 3.4a).

iiiThis section is based on the publication by Hopf et al.1
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Figure 3.4.: Coevolving pairs in protein complexes correspond to structural contacts. (a) Residue pairs
within the monomers (intra-ECs, blue spheres) and between the monomers (inter-ECs, black spheres)
with high coupling scores are mostly proximal in the 3D structure of the complex (here: ABC transporter
MetNI, PDB 3tui263). The largest fraction of EC pairs is distant in 3D with coupling scores distributed
approximately symmetrically around 0 (background noise). (b) The more distant an inter-EC score is
from the background noise (Equation 2.14), the more likely the corresponding pair is to be predictive
of structural proximity in 3D. This relationship of normalized EC score to precision is dependent on
the amount of available sequence information (curves in different shades of blue). Estimates are more
accurate for complexes with higher amounts of sequence information, requiring smaller distances from
the background noise to obtain the same level of precision (plot limited to range 0–3 to focus on phase
transitions of curves). (c) Normalization of this score for the amount of available sequence information
(Equation 2.15) allows to estimate the average expected EC precision for a given quality score threshold.
In this work, we selected inter-ECs with score ≥ 0.8 as predicted contacts between proteins (plot limited
to range 0–2). (d) Precision of inter-ECs as predictor of interacting residues for all complexes with at least
one significant inter-EC (quality score ≥ 0.8, true positive contact defined at 8 Å minimum atom distance
cutoff). Adapted from Hopf et al.1

The score measures (i) how much of an outlier an inter-protein EC pair score is
compared to the background distribution of non-significant inter-protein couplings,
(ii) normalized for the overall expected reliability of ECs based on the number of
available non-redundant sequence data per position (Meff/N). Without the normal-
ization (step ii), the precision of selected ECs at any given reliability score threshold
would be strongly dependent on the the amount of sequence data (Figure 3.4b). For
example, a score of 1.0 or larger would correspond on average to approximately 80%
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correctly identified contacts if Meff/N is in the range from 4.0-10.0, but only 20% cor-
rectly identified contacts if Meff/N ranges from 0.5 to 1.0. The empirically derived
normalization step (Equation 2.15) corrects for this discrepancy and gives a quality
score that is independent of the amount of sequence information for the particular
complex (Figure 3.4c). Using the observed shape of the curve relating the quality
score and the corresponding precision of inter-protein ECs for different definitions of
structural contacts (in the range from 5 to 12 Å), we chose a threshold of 0.8 to select
significant inter-protein ECs; we note that a trade-off between the number of identified
contacts and their precision can be obtained by dialing through this curve.

Selecting all inter-protein ECs above the threshold of 0.8, on average 69% of these
pairs are closer than 8 Å in the corresponding three-dimensional complex structures.
There is however substantial spread in the number and accuracy of the selected EC
pairs (Figure 3.4d; Figure 3.5a,b). For 53 of the 76 complexes, we chose at least one
inter-protein EC. The majority of these 53 cases has more than one selected pair, in
24 cases, there are 5 significant inter-protein ECs or more. Generally, the more pairs
pass the quality score threshold, the higher the overall precision of these pairs is (Fig-
ure 3.4d). A particularly striking example is the bacterial two-component signaling
complex with 78 selected pairs of which 72% are correct, highlighting why this com-
plex with abundant copies in bacterial genomes (Meff/N > 95) has served as the pri-
mary application case for computational studies of inter-protein coevolution93,173,177.
Remarkably, in some examples with detailed experimental studies available, the iden-
tified high-scoring inter-protein ECs correspond to known functional residues. For
example, the top-ranked evolutionary couplings in the ATP-binding cassette (ABC)
transporter MetI-MetN are part of a residue network coupling ATP hydrolysis in the
ATP-binding domain to substrate transport in the membrane-integral domain (Fig-
ure 3.5a)263,264. This suggests that evolutionary coupled pairs are indicative not only
of structural contacts, but also of critical functional constraints to maintain the function
of the protein interaction.

However, for 23 of the 76 benchmark complexes no EC pair has a score above the
chosen threshold; possible reasons why no significant coevolution was detected in
these cases are discussed in Section 3.2.3.

Complexes can be accurately reconstructed with contact-based docking

Motivated by the observation that the coevolution analysis of protein complexes gives
accurate inter-protein contacts, we then asked if this information could be used to
reconstruct the three-dimensional structure of the complex from its subunits. We chose
a representative set of 15 complexes with 5 or more inter-protein ECs above the quality
score threshold, and assembled the monomer proteins into a complex by protein-
protein docking with HADDOCK and distance restraints enforcing spatial proximity
of the EC residue pairs (Section 2.3.2). To test how well docking works in the absence
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Figure 3.5.: Complex 3D structures predicted from evolutionary couplings. (a) Left: A contact map
representation of significant inter-ECs (red dots, upper right quadrant) and the corresponding intra-ECs
(green/blue dots, triangles) shows that predicted contacts largely correspond to proximal pairs in the 3D
structure of the MetIN ABC transporter complex (PDB structure 3tui263; dark, medium and light gray
dots for distance cutoffs of 5, 8, and 12 Å, respectively), defining the structural interaction between both
subunits (red lines connecting green and blue cartoons; bottom left). Middle: Docking based on significant
inter-ECs (top-ranked model, green and blue cartoon) accurately reconstitutes the complex as observed
in the experimental structure (grey cartoon, PDB entry 3tui263, 1.5 Å interface-RMSD). Right: Close-up
of the complex interface region with residues coupled by significant inter-ECs (green and blue spheres).
(b) Gallery of complexes with known experimental structures and at least 5 significant inter-ECs that
were tested using docking (score ≥ 0.8; monomers as green and blue cartoons; true positive contacts as
solid, false positives as dashed red lines). Adapted from Hopf et al.1
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of EC information, we additionally generated negative controls without any restraints
other than enforcing the subunits to assemble with center of mass restraints.

The docking process using inter-protein ECs consistently generated accurate models
of the complexes when compared to their experimental structures. For all 15 com-
plexes, the most accurate out of the 100 resulting candidate models has an interface
RMSD within 5.5 Å to the experiment; in 8 of the examples, at least 80 of the 100

candidates are within 4.0 Å. The energy function reliably and blindly selects good
candidate models, which is a strong requirement for useful de novo predictions: no
selected model is worse than 7.2 Å, and in 10 of 15 cases the selected model is within
4.0 Å. In 7 blindly selected cases, we obtained interface RMSDs of 2.0 Å or lower; not
surprisingly, these tend to be complexes with more than 10 identified inter-protein
ECs and relatively high EC precision (≥ 0.5 at 8.0 Å distance cutoff).

The docking results using EC-based distance restraints are in pronounced contrast
to the negative controls with center of mass restraints. Despite exploring the space
of possible solutions more for the control (500 vs. 100 generated models), only a very
small fraction of candidates (for all complexes <1.2%) is within 4.0 Å of the exper-
imental structure. The scoring function is however not able to reliably select these
solutions blindly and the top-ranked model has an interface RMSD of 15.0 Å or more
for 12 of the 15 tested complexes.

The enrichment of good models (≤ 4.0 Å interface RMSD) for the EC-based dock-
ing experiments and the successful blind identification of such structures suggests
that inter-protein ECs add substantial information to the prediction of the three-
dimensional structures of protein complexes.

Evolutionary couplings predict protein interactions

So far, we tested if evolutionary couplings can detect structural contacts in known
protein interactions. Can the approach also be used to predict if two proteins interact,
in addition to how they interact?

We chose E. coli ATP synthase, an essential protein complex responsible for the
generation of ATP molecules, as test case for this question (Figure 3.6a). ATP synthase
consists of 8 different subunits that are located in the cytoplasm (α, β, γ, δ, ε) or in
the membrane (a, b, c). Crystal structures and extensive cross-linking studies have
revealed the details of most interactions between subunits in this complex, with only
the three-dimensional structures of the interactions between the a, b and c subunits
remaining elusive265. To test if there is a coevolutionary signal to discriminate which
of the 8 subunits interact, we computed evolutionary couplings for all possible 28

pairwise interactions and predicted protein pairs to be in contact if there is at least one
significant inter-protein EC at our default quality score threshold of 0.8 (see above and
Section 2.3.1). At this threshold, 24 out of the 28 interactions are correctly predicted
to be interacting or not; only 4 pairs are wrongly classified as non-interacting (β-ε,
β-b, c-γ, c-ε) even though there is some experimental evidence for an interaction. By
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Figure 3.6.: De novo predictions of unsolved protein complexes. (a) Experimentally known (left) and
predicted (right) interactions between subunits of E. coli ATP synthase. Four interactions have experi-
mental evidence, but are not predicted using the default score threshold of 0.8 (false negatives, yellow
dots). (b) De novo prediction of residue interactions between subunits a and b of ATP synthase (all signif-
icant inter-ECs with score ≥0.8). (c) Significant de novo predictions of residue interactions for complexes
of unknown experimental structure (red lines: inter-ECs with quality score ≥0.8). Monomer structures
(green and blue cartoons) were obtained from the PDB where available, or predicted using comparative
modeling or evolutionary couplings otherwise; inter-ECs were distributed arbitrarily on the monomers
for interaction partners that homomultimerize. Adapted from Hopf et al.1

lowering the quality score threshold to 0.75, two of the false negative predictions are
classified correctly (β-b, c-ε) at the expense of introducing two false positives (β-c, δ-a).

The accuracy of the predictions for ATP synthase indicates that this coevolutionary
approach could be used on a bigger scale to detect protein-protein interactions on a
genome-wide scale and to identify how large protein complexes assemble.

3.2.2. De novo prediction of unsolved complexes

The dataset of 3449 protein-protein interactions used to derive the benchmark set of 93

complexes also contained interactions for which no structural information was avail-
able218. To provide de novo predictions for the subset of cases where our method is ap-
plicable, we built sequence alignments for all complexes that are close on the genome
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(229 complexes, monomers no more than 20 genes from each other) and selected the 82

examples with enough sequences (Meff/N ≤ 0.3) and no structure of interacting ho-
mologs (Section 2.4.1). Of these, 32 complexes had at least one significant inter-protein
EC with quality score ≥ 0.8; 10 complexes had 5 or more couplings.

Evolutionary couplings give plausible de novo models

Our predictions could be a valuable resource for further studies of these unsolved
complexes. To verify if the results are biologically plausible, we analyzed some of
the predicted ECs in the context of prior biological knowledge (Figure 3.6b,c). For
the analysis of structural plausibility for complexes with unsolved monomer proteins,
we predicted these structures using SwissModel comparative modeling242 where a
solved homolog was available, and created de novo models using our coevolution-
based structure prediction protocol otherwise8,9.

The interaction with the highest number of significant inter-ECs (24 pairs) is be-
tween the membrane domain of the D-methionine transporter MetI and its periplas-
mic binding protein MetQ that delivers the substrate to the transporter266. Consistent
with the known cellular localization of the complex, all of the top 15 inter-protein
ECs are between residues located on the two-lobe face of MetQ that gives access to
the ligand-binding site, and residues on the exposed periplasmic face of the MetI ho-
modimer. Similar clustering patterns were observed for several of the other predicted
complexes, including IlvB-IlvN, PanC-PanB, UmuC-UmuD and ATP synthase sub-
units a and b (Figure 3.6c). During the publication of these results, the structure of
the bacterial toxin/antitoxin complex DinJ-YafQ (19 significant inter-protein ECs) was
released, providing an excellent opportunity to verify our blind prediction against ex-
perimental data (PDB entry 4q2u267). When comparing the 19 significant couplings
to the crystal structure, we found that 17 of the residue pairs are no more than 8 Å
from each other in the experimentally observed complex tetramer arrangement. These
findings highlight that our method can provide accurate interaction patterns for un-
solved protein complexes of interest if the monomers are close on the genome and
have enough sequences.

Evolutionary couplings provide insight into unsolved ATP synthase interactions

The ATP synthase complex in E. coli has been characterized in detail with several
crystal structures265. However, both the monomer structure of the membrane-integral
a-subunit as well as the complex structure of its interaction with subunits b and c re-
main unknown except for cross-linking studies and coarse-grained structural models
derived from these results265,268,269. Since the ubiquitous conservation of ATP syn-
thase throughout all kingdoms of life leads to the availability of abundant sequence
information265 and solved interacting pairs in our benchmark set could be predicted
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successfully, these missing pieces presents a suitable opportunity to apply our ap-
proach.

We first predicted the monomer structure of the a-subunit using our protocol for
α-helical membrane proteins (Section 2.3.2). The resulting model, a four-helix bundle
of transmembrane helices 2 to 5, is consistent with experimental information about
residue proximities269 and earlier computational models derived from this data (PDB
entry 1c17

268). Interestingly, there is only weak coupling of transmembrane helix 1 to
the rest of the protein, suggesting this helix is not packed against the four-helix bundle;
this is in agreement with experimental studies that failed to detect cross-links between
these two regions270. Structural information for the N-terminal, membrane-integral
part of the b-subunit that presumably interacts with the a-subunit is also limited and
consists of an NMR structure of the single molecule (PDB entry 1b9u271) and cross-
linking-based models of its experimentally verified homo-dimerization.

We then analyzed the 10 significant inter-protein ECs between subunits a and b
identified by coevolution analysis of this protein interaction (Figure 3.6b). All 10 pairs
are between the membrane-integral part of subunit b (residues 1-34) and membrane
helices 1, 2, 3 and 5 of subunit a as well as the cytosolic loop connecting helices 1 and
2. All of these interactions are supported by experimental cross-links of the coupled
residues or their sequence neighborhood, indicating that the coupled residues are in
fact close in 3D (Supplementary File 6 of appended publication1). The construction
of an explicit three-dimensional model of the complex was however hindered by the
overall geometry of the interaction, as we were not able to identify an arrangement
of a single a subunit with a tightly packed b homo-dimer model that simultaneously
satisfies the couplings to helices 2, 3 and 5 (Figure 3.6b). A model based on experi-
mental cross-linking only described interactions between subunit b and helices 2 and
5 of subunit a272. Similarly, the couplings of helix 1 of subunit a to subunit b could
hint at an intertwined arrangement of subunits a and b. Future work will need to
address these questions in more detail to obtain a detailed structural model of this
elusive protein-protein interaction.

3.2.3. Discussion

In this work, we have shown that interacting residue pairs in protein complexes can
be predicted from sequence covariation alone and that this information is sufficient to
reconstruct the three-dimensional structures of the complexes from their monomers
with high accuracy, allowing the de novo prediction of unsolved examples. Together
with independent parallel work by Ovchinnikov et al.273 that reports very similar re-
sults, to our knowledge the work presented here constitutes one of the first systematic
applications of global coevolution models to the prediction of protein interactions.
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Matching of interacting protein pairs is main limitation of method

A major limitation of coevolution based approaches for protein complex prediction, as
is evident from our results, is the requirement to obtain a sufficiently large sequence
alignment of evolutionarily related proteins interacting in the same or a similar way
(here called interaction homologs). Our results show a clear trend that the protein com-
plexes with a larger number of effective sequences per residue tend to give more signif-
icant EC pairs which have higher precisions when evaluated against solved structures
(Section 3.2.1).

The generation of such alignments is non-trivial since we need to detect coordinated
exchanges between pairs of sequences that actually interact. However, we usually do
not know (i) how conserved the protein interaction is across orthologs in different
species and across paralogs of the two monomers within each species, and (ii) how to
identify the interacting pairs if there are multiple possible pair combinations, which
is further complicated by the possibility of non-specific/promiscuous (i.e. there is no
1:1 matching of interacting proteins) or cross-species interactions (e.g. host-virus). We
focused on a heuristic strategy (Section 2.1.3) to partly address these two questions
by assuming that two homologs interact if their genomic distance does not exceed
a certain limit (conservation of the interaction on an operon) and they are mutually
closest to each other on the genome (disambiguation of multiple pairs). If there are no
paralogs of either interaction partner, this approach trivially selects the only possible
combination.

Using this strategy, which is only applicable to bacteria because of the operon orga-
nization of their genome, we did not predict any significant inter-protein ECs for 23

of the 76 benchmark complexes with enough sequences despite the prior knowledge
that these proteins interact. This observation suggests that the above requirements for
sequence selection and matching have been violated, resulting in a loss or decrease
of coevolutionary signals between the proteins while intra-protein ECs were still accu-
rately captured. With several thousands of bacterial genomes sequenced, the current
approach works well for obligate protein complexes that are present throughout all
bacteria, or where multiple copies exist that can be correctly disambiguated by ge-
nomic proximity (in our dataset, less than 10% of approximately 3500 known interac-
tions in E. coli). Complexes that are only found in a limited subset of bacterial species,
in eukaryotes, or are non-obligate, may not be amenable to our approach until many
more genomes are sequenced – thus alleviating the need to match paralogs – and
the method is further refined. More elaborate approaches to sequence pair matching
could include phylogenetic strategies164, improved ortholog and paralog identifica-
tion, or solutions that iteratively include and exclude sequence pairs starting from a
high-confidence seed alignment.
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Prediction of homomultimers remains an open challenge

This work explicitly focused on interactions between two different proteins that also
belong to distinct families (heterocomplexes). Interactions may also occur between
two members of the same family, or by homomultimerization of the same protein.
The identification of homomultimeric structures from sequence coevolution is a fun-
damentally different problem to the one presented here: For heterocomplexes, the
main challenge is to identify and match interacting sequence pairs; the distinction be-
tween inter- and intra-protein ECs is trivial because couplings can be unambiguously
assigned to either class based on which positions they are between. For homocom-
plexes and their self-interaction, there is no need to match partners (one has to find
however the proteins that maintain the same pattern of homooligomerization). The
main challenge for homocomplexes is to disentangle which evolutionary couplings
are due to intra-molecular coevolution of the monomer structure, and which are due
to inter-molecular coevolution between the assembling monomers9.

Initial work has addressed this problem by using experimental monomer protein
structures to filter EC pairs that are in spatial proximity in the monomer or have
low surface accessibility as intra-protein ECs, and keep the other high-scoring ECs as
inter-protein ECs, allowing the accurate 3D reconstruction of the homooligomer struc-
ture274. This approach can provide useful information about homocomplexes, but its
applicability is limited to cases where the monomer structure is known but not the
oligomer. The development of approaches that can blindly distinguish between both
types of ECs in the absence of structural information is a task for future research;
possible solutions could include (i) more elaborate statistical models that may dis-
criminate based on subtle differences in the patterns of the coevolutionary signal or
(ii) specialized 3D reconstruction, e.g. by folding monomers and the complex at the
same time and iterative assignment of ECs to either class based on observed violations
in the 3D model or ambiguous restraint definitions, as applied in the NMR field275,276.

Future research challenges

Our results demonstrate that detailed information about protein-protein interactions
can be inferred from sequence coevolution. Owing to the technological limitations out-
lined above, the method currently is only applicable to a subset of all complexes which
we anticipate could be partially solved in future work. A method that can be used
on a larger scale would enable a genome-wide study of protein-protein interactions
and their structural details, giving orthogonal information to existing experimental
approaches.

Even with the complexes accessible today, coevolutionary analysis opens a window
into the sequence determinants of the emergence and molecular specificity of protein
interactions91,93,277,278. A quantitative understanding of these genotype-phenotype re-

51



3. Results and Discussion

lationships could eventually help to obtain a detailed view of signaling networks , their
malfunction in disease, and allow the targeted design of protein complex formation279.
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3.3. Phenotypic effects of mutations

The prediction of the phenotypic effects of mutations is of key relevance to genetics, ge-
nomics and clinical applications (Section 1.1.1). Current methods are however largely
limited to compute binary effects while ignoring the potential context-dependence of
genetic variants. We developed a probabilistic method to compute quantitative effects
of mutations to proteins from evolutionary sequence covariation, while incorporat-
ing epistatic interactions with other loci within the protein. To gauge if predicted ef-
fects from the model correspond to experimentally measured phenotypes, we evaluate
the agreement between computed effects and deep mutational scanning experiments
which systematically explore the relationship of genotype and phenotype changes. We
demonstrate that the incorporation of epistatic interactions in the probabilistic model
improves the agreement with experimentally tested phenotypes, particularly in func-
tionally important sites defining ligand and interaction specificities.iv

3.3.1. Evaluation of predicted mutation effects against experiments

The developed model for mutation effect predictions relates the probabilities of the
mutant and wild-type sequence under a pairwise maximum entropy model of the
protein family. The calculation of these probabilities incorporates all possible interac-
tions between pairs of sites, and therefore should be able to capture potential depen-
dencies of amino acid substitutions on the overall sequence background up to second
order (Section 2.3.3). To test if computed quantitative phenotype changes (statistical
energy) upon mutation correspond to experimentally determined phenotype changes,
we searched the literature for deep mutational scanning experiments of entire pro-
teins or protein domains and selected those where the target protein was member of
a sufficiently large protein family (Section 2.4.1)41,44,51,53,54,59,60,62,64,66,68–71, as well as
low-throughput measurements of protein stability and enzymatic activity167,220. We
inferred probability models for each target protein, computed quantitative effects for
all experimentally tested mutations and then assessed the agreement between predic-
tion and experiment.

Coevolution model predicts experimental phenotype changes

From our literature search, we obtained a data set of 15 mutagenesis studies for 13

unique proteins from bacteria, eukaryotes and viruses (Table A.1). Using a wide array
of assays, these experiments measured the consequences of protein sequence muta-
tions on different in vitro and in vivo phenotypes including growth under environmen-
tal pressure, peptide binding or protein stability.

ivThe work in this section has been performed in collaboration with Debora Marks, Chris Sander, Michael
Springer, Frank Poelwijk and John Ingraham. A preprint has been published in Hopf et al.3
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Figure 3.7.: Computed mutation effects agree with experimental phenotypic effects. (a) Left: Muta-
tional landscape of single amino acid substitution effects in an RNA recognition motif (RRM) of the
yeast poly(A)-binding protein computed from evolutionary sequence covariation (top panel) and tested
experimentally in vivo51 (bottom panel; x-axis: positions in RRM sequence, y-axis: amino acid substitu-
tions, blue color: deleterious substitution, white color: neutral substitution). Right: Average mutational
effect per position mapped on the 3D structure of human PABP (PDB: 1cvj280; RNA ligand in yellow).
(b) Correlation between computed and experimental mutation effects in the RRM domain51 (top) and
the bacterial methyltransferase M.HaeIII69 (bottom) for individual amino acid substitutions (left) and the
average mutational effect per position (right). Some outliers on experimental axis are not shown in plots.
(c) Correlation between mutation effects computed from sequence variation and experimental measure-
ments (orange bars: individual mutations, blue bars: average effect per site) for all 13 tested proteins.
(*) Hemagglutinin correlation was assessed on amino acids observed in sequence alignment only (3340

of 11280 substitutions). Adapted from Hopf et al.3
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We found that the computed effects from evolutionary sequence variation correlate
with experimental phenotypic effects for all of the 13 analyzed proteins, but with con-
siderable spread in the strength of correlation (Figure 3.7a-c; Table A.2). For example,
the model partially captures the effects on relative growth of 1179 point mutants of the
RNA-recognition motif (RRM) of yeast polyadenylate-binding protein with a Pearson
correlation of r=0.61; the average mutational sensitivity per site, i.e. the mean effect of
all 19 possible substitutions, is predicted even more accurately (r=0.68; Figure 3.7a,b).
Since the epistatic model can predict effects not only for single substitutions but also
for higher-order mutations, we compared predictions and experiments for a set of
34745 RRM double mutants and obtained similar levels of correlation (r=0.62 for indi-
vidual mutants; Figure A.1). Saturation mutagenesis has also been used to test the ef-
fects of single mutants on organismal growth of a bacterial DNA methylase, M.HaeIII
from Haemophilus aegyptius, but using a considerably different experimental setup to
dissect functional and non-functional variants in protecting DNA from restriction en-
zyme cleavage by multiple rounds of mutational drift69. Here, computed effects from
sequence variation for 1685 single mutants correlate even stronger with the experi-
mental fitness (r=0.68 for individual mutants, r=0.79 for site average; Figure 3.7b).

Overall, Pearson correlation coefficients across all analyzed proteins range from
r=0.41 for a competitive growth experiment of 1270 yeast Ubiquitin single mutants53

to r=0.72 for the in vitro protein stability (melting temperatures) of 47 single, double
and triple mutants of the human FYN SH3 domain. Out of 13 analyzed experiments,
10 have correlation coefficients larger than 0.5, and for 6 r is larger than 0.6. For all but
one of the deep mutational scanning experiments, the comparison over site averages
gives correlations that are stronger than over individual mutants (r=0.36 to r=0.79),
suggesting that averaging might reduce the influence of experimental noise and pre-
diction errors (Figure 3.7c).

Since we visually observed non-linear relationships between predictions and exper-
iments and bimodal effect distributions (Figure 3.7b, Figure A.2), which potentially
violate the assumptions of Pearson’s r, we additionally verified these results using: (i)
the Spearman rank correlation coefficient ρ that tests for monotonic relationships be-
tween two variables and (ii) the Matthews correlation coefficient (MCC) to test binary
classification accuracy (Section 2.4.2, Table A.2). For the same datasets, we obtained
rank correlations from ρ=0.50 (Ubiquitin) to ρ=0.78 (rat anionic trypsin-2 stability167),
largely confirming the results of the Pearson-based analysis with the exception of one
outlier (homology-directed DNA repair function of 35 BRCA1 RING domain vari-
ants70, r=0.67 vs. ρ=0.52) that was most likely caused by the bimodality of the ex-
perimental effect distribution. Similarly, the analysis in a binary classification setting
based on the partitioning of experimental effects into deleterious and neutral muta-
tions (Section 2.4.2) indicated that computed mutation effects are predictive of exper-
imental phenotypes with MCCs ranging from 0.30 to 0.56 (when defining statistical
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Figure 3.8.: Correlation between computed and experimental mutation effects depends on selective
pressure. Amino acid substitutions (average mutational effect per site) of the β-lactamase TEM-1 have a
deleterious computed effect (x-axis), but only show a deleterious effect in vivo as the selective pressure is
increased using higher doses of the antibiotic ampicillin (left to right; concentrations of first significant
experimental effect as determined by fitting a two-component Gaussian mixture model are highlighted
by different shades of blue). Adapted from Hopf et al.3

energies <0.5 as deleterious predictions, similar results are obtained for thresholds of
0.4 and 0.6).

The results across the analyzed datasets, which are robust to different correlation
measures, suggest that the computed effects from our epistatic model are reasonably
predictive of experimentally tested phenotype changes upon mutation.

Agreement of predictions and experiments depends on experimental assay

The evolutionary information in sequence alignments of large evolutionary depth will
usually be an aggregate over many selection experiments in different species living
under different environmental conditions. Experiments on the other hand typically
test the effects of mutations on a particular phenotype for one particular protein, and
the assayed property may or may not be under selection. A priori, it is not clear if
and how the signal from evolutionary sequence variation should be related to these
phenotype changes. Experiments testing different phenotypes or environmental con-
ditions for the same mutants however enable an assessment if particular features are
under selection in the family, and could yield an explanation for the difference in the
observed strengths of correlation.

Three of out the four analyzed experiments with the highest correlation for the av-
erage effect per site (r ≥ 0.7) target bacterial proteins with a well-defined molecular
function and corresponding selective pressures: the antibiotic resistance enzymes β-
lactamase71 and bacterial kinase APH(3’)II62, as well as the DNA methylase M.HaeIII
that protects against DNA cleavage by the nuclease HaeIII69. For both antibiotic re-
sistance enzymes, we observe a strong dependence of the correlations on the strength
of purifying antibiotic selection applied during the experiments. Most mutations of
β-lactamase are neutral to bacterial growth in the absence of its natural ligand ampi-
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cillin (concentration 0 µg/ml) but predicted to be deleterious by our model (individ-
ual mutations: r=0.15, average effect per site: r=0.26). Only with increasing ampi-
cillin concentrations and therefore dependence of bacterial growth on a functional en-
zyme, the correlation between experiments and computed effects becomes stronger (at
2500 µg/ml, individual mutations r=0.68 and average effect per site r=0.78; Figure 3.8).
However, when selecting mutational variants using the non-natural, third-generation
antibiotic cefotaxime, evolutionary information is not predictive of mutation effects
anymore (r=-0.05 for individual mutations, r=-0.07 for average effect per site). This
indicates that evolutionary information only captures mutation effects for the selective
pressures the sequences evolved under.

For the bacterial kinase APH(3’)II, which deactivates aminoglycoside antibiotics by
phosphorylation, the highest correlations are observed for the lower tested concentra-
tions of six antibiotics (1:8 or 1:4 dilution of the minimum inhibitory concentration
(MIC) of the wild-type sequence), whereas effects saturate for the higher concentra-
tions (1:2 and 1:1 MIC) and a large number of mutants is non-viable62. For example,
under kanamycin selection correlations decrease from r=0.74 at 1:8 MIC to r=0.52 for
1:1 MIC (average effect per site); suggesting that the experimental pressure is too high
at this point to discriminate between the relative strengths of different mutation effects.

We made observations similar to β-lactamase in a very different system that tested
the effects of mutating a eukaryotic PDZ domain on peptide binding using a bacterial
two-hybrid system44. Here, computed sequence information recapitulated the experi-
mental mutation effects more accurately when measuring binding to the native ligand
CRIPT (r=0.53, r=0.67 for average effect per site, 1600 mutations) than when testing
binding to a non-native peptide (T-2F; r=0.31, r=0.36 for average effect per site). In the
case of the PDZ domain, however, the coupling of mutation to phenotype under se-
lective pressure is more challenging to assess experimentally than for the well-defined
targets above, and the used artificial experimental system most likely can only capture
a limited subset of the functional properties of this domain in vivo.

Some of the experimental studies analyzed in this work report measurements of
multiple different phenotypes for each mutant, thus providing an opportunity to test
which of these features might be under selection in the protein family. For example, a
deep mutational scanning study of the RING domain of BRCA1 tested two aspects of
molecular function of this protein, its E3 ligase activity and binding to the RING do-
main of BARD1

70. On their own, these measurements correlate with predicted effects
(r=0.38 and r=0.28, respectively), but not as strong as mutation effects on the over-
all molecular function of homology-directed DNA repair as inferred from a machine
learning model combining the two orthogonal functional features (r=0.48)70.

Two of the analyzed low-throughput, biochemical experiments individually mea-
sured the stability (melting temperatures) of mutants of rat anionic trypsin-2167 and
the SH3 domain of the human FYN oncogene220, potentially giving more accurate re-
sults than high-throughput scans. The computational predictions correlate with the
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melting temperatures more strongly than with any other of the analyzed datasets
(Trypsin: r=0.71, SH3: r=0.72), suggesting that sufficient protein stability is an impor-
tant factor in the evolution of these molecules102,107. This is in agreement with the
observation that for both proteins, high-ranking evolutionary couplings correspond to
residue contacts in their three-dimensional structures (precision of top N ECs > 0.9 at
8 Å distance threshold; Figure A.3, Table A.3). Correlations are however much lower
for the catalytic activity of Trypsin (log kcat/KM, r=-0.12) and the peptide-binding affin-
ity of the SH3 domain (∆∆Gbinding, r=-0.45). Although there is a possibility that the
weaker correlation could be caused by a lack of selection for the particular phenotype,
it seems more likely that the statistical model is unable to detect a signal here e.g. be-
cause the specificity for a particular ligand is only encoded in a small subfamily of the
aligned sequences (lack of isofunctionality).

These results highlight that the interpretation of both mutation experiments and
predictions, especially in an evolutionary context, critically depends on the particular
phenotype that is assessed and the selective pressure to discriminate between neutral
and deleterious genetic variants.

3.3.2. Contribution of epistatic interactions to predictions

The development of the epistatic model was motivated by the existing evidence for the
context-dependence of genetic variants (Section 1.1.3). So far, we have established that
computed mutation effects agree quantitatively and qualitatively with experimentally
determined phenotypic consequences. To test if the accuracy of predictions benefits
from the explicit incorporation of epistatic interactions, we constructed an equivalent
first-order maximum entropy model that quantifies the probabilities of sequences us-
ing single-site terms hi only (independent model, Section 2.3.3). We then inferred family-
specific sets of parameters from the same sequence alignments as for the epistatic
model, computed statistical energies for all experimentally tested mutations, and com-
pared predictions versus experiments.

Epistatic model is a more accurate predictor of mutation effects

The predictions from the epistatic model on the analyzed set of 13 proteins are more
accurate than those from the independent model as measured by Pearson correlations
between prediction and experiment over individual mutations and average effects per
site (Figure 3.9a, Table A.2). On the level of individual mutations, correlations for the
epistatic model are substantially higher for 8 out of the 13 tested proteins and similar
for the rest. When comparing average effects per site for the mutational scanning ex-
periments, 7 out of 10 proteins have substantially higher correlations for the epistatic
model. With the exception of the PDZ domain, where the epistatic model only outper-
forms the independent model on the average effect per site, epistatic model predictions
are more accurate both on individual mutations and site averages. For none of the pro-
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Figure 3.9.: Epistatic model predictions are more accurate than independent model on the tested set of
13 proteins. (a) Computed effects from the epistatic model correlate equally or more strongly with exper-
imental measurements than effects from the independent model. (b) For the methyltransferase M.HaeIII,
many computed mutation effects from the epistatic model are more deleterious than those from the inde-
pendent model, which incorrectly predicts experimentally deleterious mutations (dark blue) as neutral.
(c) Mutations that are most differentially predicted between the epistatic and independent models (red
spheres, top 1% of single mutants) cluster in the catalytic and DNA recognition domains of M.HaeIII
(PDB structure: 3ubt281). (d) Left: Computed effects for single mutations to specificity-determining
residues in M.HaeIII (open conformation) are significantly more different between the epistatic and in-
dependent model than mutations to all other residues. Right: The effects from the epistatic model (top)
correlate more strongly with experimental effects than the independent model (bottom) for specificity-
determining residues. (e) The epistatic model is a more accurate predictor of melting temperatures in the
human FYN SH3 domain than the independent model, which wrongly predicts multiple destabilizing
mutations as neutral or beneficial. Adapted from Hopf et al.3

teins, the independent model performs substantially better. These results indicate that
the epistatic model more accurately captures the amino acid constraints on the se-
quences in particular protein families. The correspondence of significant evolutionary
couplings to three-dimensional structure contacts (Figure A.3) suggests that many of
these epistatic dependencies are caused by the requirement to maintain a stable pro-
tein structure. It is important to note that the family-specific models are learned in an
unsupervised setting from sequence data alone, without any reference to the experi-
mental mutation effects. The improved predictive accuracy therefore cannot be caused
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by overfitting to the experimental data using a higher number of parameters in the
epistatic model compared to the independent model.

Improvement is pronounced for high effect and specificity-determining sites

A more detailed comparison of the predicted effects for individual mutations between
both models revealed that predictions from the epistatic model tend to be more dele-
terious than those from the independent model, but not the other way round. Many
of the neutral predictions under the independent model were however experimentally
characterized as deleterious (Figure 3.9b, Figure A.4), suggesting that the epistatic
model is a more accurate predictor for these mutants.

To test this hypothesis, we first analyzed the 5 proteins with deep mutational scan-
ning data and the largest observed difference in predictive accuracy on individual mu-
tations (β-lactamase, GAL4, bacterial kinase APH(3’)II, M.HaeIII, PABP RRM domain;
hemagglutinin was not analyzed here because of the large number of amino acids
not evolutionarily observed). For all of these proteins except GAL4, differences in pre-
dicted effects between the epistatic and independent models were higher for mutations
that were tested as experimentally deleterious than for the remaining mutations (Fig-
ure A.5a, Table A.4; statistical significance of difference in distributions assessed with
two-sided sample Kolmogorov-Smirnov tests). Reversely, when evaluating predictive
performance against experimental data on the subset of mutants with above-average
prediction differences between the two models (∆∆Eepi

ind(σ
(mut), σ(wt)), Section 2.3.3 in

Methods, Table A.5), the epistatic model gives substantially more accurate predictions
than the independent model for the same 4 proteins. For the subset of mutants where
both models give more similar predictions, i.e. with below-average prediction differ-
ence between, the correlations against the data agree as expected. Taken together, this
suggests that the epistatic model is able to detect deleterious mutation effects that are
hidden to the independent model; resulting in more accurate predictions overall.

Based on initial observations that mutations predicted the most differently by the
epistatic and independent models tended to cluster around known functional regions
of the proteins (Figure 3.9c), we systematically investigated if the use of epistatic inter-
actions contributes to obtain more accurate predictions in these regions. For all of the
5 proteins above, detailed structural information about the ligand binding and protein
interaction sites is available (β-lactamase, GAL4, bacterial kinase APH(3’)II, M.HaeIII,
PABP RRM domain). Except for β-lactamase with its conserved ligand, mutations to
such specificity-determining sites (any residue within 4 Å of the ligand) are predicted
more differently between the epistatic model and independent model than mutations
to the other residues, and predictions from the epistatic model are more accurate
when comparing against the experimental data (Figure A.5b, Table A.6). On the other
hand, residues binding to conserved co-factors are predicted more similarly between
both models than the remaining residues (GAL4, bacterial kinase APH(3’)II, M.HaeIII).
For example, specificity-determining residues in the open conformation of the DNA
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methyltransferase M.HaeIII (PDB structure: 3ubt281) are predicted considerably more
accurately by the epistatic model (r=0.62) than by the independent model (r=0.29, Fig-
ure 3.9d), whereas mutations to the sites binding the S-adenosylmethionine cofactor
are predicted with comparable accuracy (r=0.74 vs. r=0.64, respectively). Together
with the improved results on high-effect mutations, this indicates that the epistatic
model is able to detect deleterious effects in sites that vary substantially between ho-
mologs, e.g. because of functional adaption, but are hidden to an independent model.

Structural interactions contribute to context-dependence of effects

The near-linear relationship between predicted statistical energies and stability mea-
surements available for the FYN SH3 domain and Trypsin provides an opportunity to
reliably identify which individual mutations are predicted more accurately by either
model, i.e. deviate most strongly from the linear relationship (Figure 3.9e).

In the SH3 domain, mutant effects on thermostability are accurately predicted by
the epistatic model (r=0.72) but less so by the independent model (r=0.57). The in-
dependent model incorrectly predicts several single and higher-order substitutions to
residues F87, F109, A122 and I133 as neutral despite strong reductions in melting tem-
perature of up to approximately 40

◦C (wild-type: 80.1◦C). These four positions are
proximal in structure in the core of the domain, and are connected by a network of
high-scoring evolutionary couplings including the top-ranked pair between positions
122 and 133. Likewise, reductions in melting temperatures for mutants involving sub-
stitutions to residues M109 and C160 are not captured by the independent model;
both residues have multiple strong evolutionary couplings to other structurally proxi-
mal positions.

In both cases, the deleterious substitutions are present frequently in homologs of
the tested proteins, but not acceptable in the background of the wild-type sequence
(cf. compensated pathogenic deviations, Section 1.1.3); here, the context-dependence
appears to emerge from the coevolution of residues in structural contact. Only a
context-dependent model will be able to explicitly identify such interactions and cap-
ture their influence on the phenotypic consequences of mutations.

Epistatic model outperforms existing effect prediction methods

While our assessment of the epistatic and independent models indicates that mod-
eling pairwise interactions can improve the accuracy of mutation effect predictions,
the majority of established computational methods does not consider the global se-
quence context (Section 1.2.2). To test how our sequence-based predictions com-
pare to these approaches, we selected two representative state-of-the-art methods
(SNAP2

114,115 and PolyPhen-2120) and predicted a high-confidence subset of seven of
our analyzed datasets (RRM domain, β-lactamase, PDZ domain, methyltransferase
M.HaeIII, GAL4, bacterial kinase APH(3’)II, SH3 domain). It is important to note that
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Figure 3.10.: Predicted permissive mutations in the RRM domain. (a) The substitutions G177D, G177E
and L202Q are predicted permissive mutations enabling secondary substitutions in other sites (connected
by blue arcs) that would be deleterious in the wild-type background (plot shows 100 most deleterious
compensated mutations with statistical energy of double mutant ≥ 0.9, RNA-binding residues in bold
font). (b) Examples of mutations that are quantified as deleterious on their own (A179M, D136R; statisti-
cal energy < 0.9) but could occur as a secondary substitution after the permissive mutations L202Q and
G177E. Adapted from Hopf et al.3

these methods are tailored towards the categorical classification of mutation effects,
but also output quantitative scores that can be compared to quantitative mutation
experiments. Both tested methods are based on machine learning on existing data
and, besides sequence alignments, draw upon many additional input features such as
structural information or database annotations.

On the tested proteins, the epistatic sequence model reaches similar or higher cor-
relations against the data compared to both other methods (Figure A.6, Table A.7) de-
spite only using sequence information. SNAP2 performs the most competitively to the
epistatic model, while the PolyPhen-2 probabilistic classifier gives substantially less ac-
curate predictions in a few cases. A major input feature to the PolyPhen-2 classifier is
the PSIC conservation score120, which on the level of individual mutations performs
substantially worse than the epistatic model and approximately equally compared to
the independent model. Taken together these observations suggest that (i) the epistatic
model is a more accurate descriptor of mutation effects from sequence variation, and
that (ii) machine learning-based methods, which improve upon the limited accuracy of
single-site conservation using additional input features, could be enhanced by using
an epistatic sequence model.

A refined comparative evaluation on more data and using extended metrics will
however be necessary to validate these findings, which are somewhat dependent on
the used correlation measure (Figure A.6, Table A.7). The tested methods tend to over-
predict many mutations as deleterious, which could be caused by sequence alignments
of limited evolutionary depth, and the interpretation of the continuous scores outside
the anticipated binary classification use case may not be valid114.

Epistatic model enables the prediction of mutational landscapes

A conceptual advance of the epistatic model compared to existing mutation effect
prediction methods is its ability to compute the effects of higher-order mutations.
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The evaluation of double and triple mutants of the RRM domain, Trypsin and the
SH3 domain demonstrated that these experiments could be accurately predicted (Sec-
tion 3.3.1). We therefore decided to apply our models for each of the analyzed proteins
to a computational study of the mutational landscapes up to two substitutions away
from the wild-type sequence of the target protein and the mutational paths connecting
these sequences.

When defining a near wildtype-like statistical energy of at least 0.9 for any mutant to
be considered as neutral or viable, only a very small fraction of double mutations passes
this threshold (Table A.8). On average, only 0.4% of doubles are viable, with none of
the proteins exceeding 1%. This suggests that the overwhelming majority of double
mutants is deleterious, which is similar to figures reported for experimental higher-
order mutations of a protein interaction and strongly limits the space of acceptable
evolutionary trajectories91.

Within this space of acceptable substitutions, on average 43% of doubles (range
across proteins: 39%-81%) can be reached through both single mutants as viable in-
termediates (statistical energy ≥ 0.9), i.e. the order in which both singles occur does
not matter. An average of 57% of double mutants (range: 19%-61%) can however only
be reached through one of the single mutants, while the other intermediate is not
accessible being non-viable (statistical energy < 0.9). In these cases, the first muta-
tion enables the occurrence of the second mutation and therefore acts as a permissive
mutation (Figure 3.10, Section 1.1.3). Several of our predicted permissive mutations
have been described previously based on experimental studies, including G177E for
the RRM domain282 and N52A, R120G, L201P and M182T for β-lactamase105,283,284.

While the exploration of mutational landscapes presented here is only an initial
prototype study, it highlights the possibilities offered by this approach. Future work
will need to systematically explore higher-order mutations, the pathways connecting
them, test different viability thresholds and evaluate predictions against available ex-
perimental data.

3.3.3. Discussion

We have demonstrated that a probabilistic, epistatic model of evolutionary sequences
can quantitatively predict the phenotypic consequences of amino acid substitutions
in protein sequences. The explicit incorporation of all possible pairwise interactions
between positions allows to obtain more accurate phenotype predictions than by as-
sessing substitutions independently of the sequence background.

Coevolutionary models predict mutation effects

This work, which was inspired by the pioneering results of Lapedes et al.139 on using
pairwise maximum entropy models to predict residue contacts and the effects of mu-
tations on stability, to the best of our knowledge represents one of the first two studies
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to link sequence variation with large-scale mutational data while considering epistatic
interactions. During the course of this project, independent work appeared that used
the same or related formalisms to predict the effects of sequence changes on protein
stability143–145, viral fitness140–142 and protein interactions279. These efforts confirm the
promise of the probabilistic coevolutionary approach; however they were limited to
small datasets on HIV variants140–142 and some used three-dimensional structure in-
formation as part of the calculation143–145. An independent, parallel study by Figliuzzi
et al.285 with a main focus on predicting mutational landscapes for β-lactamase arrived
at very similar conclusions to our work in that pairwise maximum entropy models
quantify mutation effects more accurately than independent models and existing pre-
diction methods.

Inference of epistatic models is statistically challenging

Despite the ability of epistatic models to predict mutation effects demonstrated here
and elsewhere, their inference from sequences remains a difficult task. Currently, our
model only considers pairwise interactions despite evidence for the importance of
higher-order epistasis286. Even for pairwise interactions, the number of free param-
eters ((N

2 ) · (q − 1)2 + N · (q − 1) parameters for a protein of length N and q = 21
for 20 amino acids plus gap, e.g. approx. 2 · 106 for N = 100) exceeds the amount
of available sequences (typically < 105) which makes parameter inference prone to
overfitting8,174,180; this issue would aggravate for models that go beyond pairwise in-
teractions, while their inference is in principle possible174.

Although regularization is a basic strategy to reduce overfitting to limited training
data, the inferred pair couplings Jij still contain large amounts of bias that needs to be
removed by the average product correction on the aggregated evolutionary couplings
to obtain accurate contact predictions (Section 2.3.1)171,175,180. The statistical energy
calculations used to predict mutation effects from individual parameters at present do
not contain this correction, suggesting that better effect predictions could be obtained
if the parameters were adjusted accordingly. Initial explorations based on scaling the
regularization weight (variance of Gaussian priors) of individual position pairs, calcu-
lating subsets of the full statistical energy, or iterative learning of models to reduce the
number of free parameters did however not lead to systematically better correlations
against the data (data not shown).

More fundamentally, the observed sequences in protein families are of common evo-
lutionary origin and usually have explored only a small fraction of the enormous space
of all possible sequences (20N for a protein of length N). The lack of training examples
for most of sequence space will most likely lead to poor generalization to sequences
that are too distant from those parts of sequence space that have been observed in evo-
lution. This limitation calls for the development of quality metrics to blindly assess the
reliability of statistical energies based on the shape of the observed parts of sequence
space in the training data, and of models that address the biased nature of the data.
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3.3. Phenotypic effects of mutations

Relationship between different phenotypes and fitness remains elusive

A priori, it is not clear which exact relationship should be expected between our com-
puted statistical energies and experimental measurements of in vitro and in vivo phe-
notypes, including growth as a proxy for fitness. The complex interplay between geno-
type and phenotypes on different levels of organization is still poorly understood, and
to date only few studies have established quantitative links between them on selected
examples16,49,59,71,103,107,287–290. A recurring theme is that changes in molecular phe-
notypes such as protein stability or catalytic activity have a non-linear influence on
the viability of the organism, raising the question what traces selection leaves on the
genotype level16. Not surprisingly, experiments that tested a well-defined selective
pressure that maps directly to bacterial replication were amongst those that correlated
the best with our computational predictions. In more complex cases, it seems unlikely
that one experimental assay alone will capture the entirety of functional requirements
on a protein. An evolutionary approach like the one presented here could help to
assess the relevance of experimental assays; interpretations of such relationships are
however dependent on the isofunctionality of the sequences in the alignment and their
exposure to similar evolutionary forces.

Mutational scanning experiments are limited in resolution and interpretability

The assessment of the relationship between computational predictions and mutational
scanning experiments is further complicated by several existing limitations of the cur-
rent experimental techniques. First, the dynamic range of these assays is typically
limited, leading to a loss of resolution for variants that are either very deleterious or
have small effects59. This is directly evident for the analyzed studies that test the an-
tibiotic resistance of β-lactamase and bacterial kinase mutants at different antibiotic
concentrations, where sharp transitions occur between the effects measured at differ-
ent pressures59,71; similar saturation effects can be observed when correlating the mu-
tation effect measurements of a PDZ domain on binding to a native and a non-native
ligand with lower binding affinity44. The presence of stability thresholds, where the
ensemble for each mutant is either largely folded or unfolded, can further contribute
to the occurrence of bimodal effect distributions and potentially creates additional
dependencies on the exact environmental conditions of the experiment63,87,94,103.

Second, results may be distorted by the use of artificial experimental systems to
measure the functionality of the different variants. Several of the experiments ana-
lyzed here use phage display37, two-hybrid systems44 or special truncated sequence
constructs51 to select between functional and non-functional mutants, which may not
be representative of the functional constraints in vivo59. Construction of such native
assays is challenging in most cases, thus rendering antibiotic selection experiments a
prime experimental system59,62,71.
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Third, high-throughput mutation experiments are subject to considerable noise and
stochasticity59. Where available, biological replicates of the same experiment or in-
dependent studies of the same protein indicate substantial variation between mea-
surements on the level of individual mutants. For example, the Pearson correlations
between two biological replicates of a mutational scan of hemagglutinin are as low
as r=0.54

66, and only r=0.48 when comparing to a different study291. Similarly, repli-
cates for the bacterial kinase APH(3’)II using the same antibiotic and concentration
often do not exceed r=0.7, and correlations between experiments at different concen-
trations are even lower62. Due to the depletion of non-functional variants and low
sequencing counts when testing many different variants at the same time, deleteri-
ous mutations are particularly susceptible to these effects53,59,62,66 while the commonly
used log-enrichment ratios emphasize the magnitude of their values.

These experimental limitations put an upper bound on the accuracy that can be
expected when comparing computational predictions to them, and they will modulate
the form of tested genotype-phenotype relationships in addition to the non-trivial
dependencies between phenotypes on different levels as discussed above. Future work
on experimental mutational scanning techniques and their interpretation is therefore
critical to the assessment and development of methods as the one presented here.

Intra-molecular epistasis is prevalent within protein-coding sequences

The improved accuracy of phenotype predictions from the epistatic model compared
to the independent model supports the context-dependence of the effects of amino
acid substitutions in proteins, which has been a subject of intensive debate90,95–98.
Even when considering the amino acid propensities of individual positions on their
own, the observed amino acids contain implicit information about the functional re-
quirements imposed by the remaining positions in the protein, and therefore about
epistasis. Mutation effects can be highly dependent on their environment, but still
be accurately predicted by an independent model. However, the more the remaining
sequence backgrounds of the aligned sequences differ, the more this signal may get
blurred. This hypothesis is in agreement with the tendency of the independent model
to predict a subset of mutations as less deleterious than the epistatic model, e.g. exper-
imentally deleterious substitutions as neutral (Section 3.3.2). If those predictions with
explicit epistatic interaction are indeed more accurate when compared to experiments,
as demonstrated here, then this can be interpreted as strong evidence for the abundant
context-dependence of amino acid preferences and mutation effects in proteins.

Future research challenges

We have demonstrated that the probabilistic modeling of sequences with explicit con-
sideration of epistatic interactions provides a reasonably accurate description of the
specific sequence constraints in protein families. Subject to sufficient computational
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resources and evolutionary sampling of sequence space, our approach allows to sur-
vey large numbers of sequence variants that are out of reach for experimental tech-
niques. The current approach directly enables the assessment of genetic variation and
exploration of protein evolutionary landscapes; some prototypes for such studies have
been outlined here. Besides single proteins, the approach can be easily extended to
other biomolecules such as RNA, and interactions between them (e.g. protein-protein,
or protein-RNA)279,292. We have preliminary results suggesting that statistical ener-
gies can discriminate between functional and non-functional interactions of a bacterial
two-component signaling complex (data not shown)91.

A major prospect of our method is the application to protein design, e.g. for the
de-immunization of molecules while retaining their function139,293. It will however
be challenging to extrapolate from the observed samples under particular functional
requirements to the design of novel functions.
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3.4. Discussion of coevolution methods for phenotype prediction

So far, we have demonstrated that accurate predictions of protein structures, com-
plexes and mutation effects can be obtained from the analysis of evolutionary se-
quence covariation. In this section, we discuss the general implications of our results
across the different predicted phenotypes as well as the work published by others, and
highlight challenges that will need to be addressed for the development of improved
methods.

3.4.1. Implications of this and related work

After the proposition of coevolution methods in the 1990s, the last years have finally
seen great progress in the accurate inference of coevolving residue pairs from align-
ments of evolutionary sequences (Section 1.2.3). Besides their practical applicability to
relevant prediction problems, the success of these methods has profound implications
on the computational analysis of sequence information.

Coevolution analysis reveals protein features hidden to single-site conservation

A trivial, yet fundamental contribution of coevolution methods is that they consider
explicit interactions between different positions in sequences. The analysis of con-
servation patterns historically has been one of the pillars of computational biology,
but the sequence context has been largely ignored or only considered in an implicit
way11,118,119,121. A major reason for the lack of context-dependent analyses is the diffi-
culty of the problem, which requires the application of sophisticated statistical models
and sufficient data samples to infer pairwise or higher-order models4,139,169,170,178. With
the introduction of global approaches like the pairwise maximum entropy models and
the significant growth of sequence databases, these prerequisites were finally met4,
opening a new window into the interpretation of sequence information. Through the
calculation of evolutionary couplings, a variety of phenotypes defined by interactions
of positions can now be read off sequences alignments that are invisible to single sites.
These include structural contacts in proteins and RNA molecules8,139,173–175,292,294, their
three-dimensional structures8,9,183–188, conformational changes9,189,190, protein interac-
tions and multimerization1,191,273,279; and many others such as pathways of signal
transmission could in principle be deduced4,168. Similar successes were reported for
different problems like the analysis of neuron populations295, chromatin factor inter-
actions296, functional couplings between genes297 or the description of transcription
factor binding sites298; highlighting the power of analyzing interactions in biological
systems.
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Protein biochemistry connects genotype to higher-order phenotypes

Our predictions of protein structures, complexes and mutation effects are based on
the probabilistic modeling of sequence families. By simply interpreting the param-
eters of the models in different ways, such diverse phenotypes as 3D structure or
overall effects of mutations on organismal growth can be predicted from patterns of
amino acid covariation on the genotype level. The existence of this quantitative link
from genotype to high-level phenotypes through structural intermediates suggests a
critical and abundant role of intra- and inter-molecular epistasis in shaping the effects
of mutations, and therefore of residue coevolution to maintain fitness. Ultimately,
the biophysical interactions between different residues determine if proteins and their
complexes are functional, and the selection for these context-dependent features is
mirrored in the sequences16. Given the complexity of currently known mappings be-
tween genotype, biochemical phenotypes and fitness (Section 3.3.3), it seems however
surprising that relatively simple probabilistic formalisms like the one used here are
able to uncover these relationships at least in part.

3.4.2. Research challenges and future developments

Despite the considerable advances in interpreting the evolutionary record through the
lens of coevolution, the outlined work only presents a starting point for future de-
velopments. Major challenges still need to be addressed, including the generation of
sequence alignments with the right evolutionary depth, the interpretation of covari-
ation patterns with regard to different functional features and phenotypes, and the
application of the methods to uncharted examples and problems.

Choosing alignments of appropriate evolutionary scope

The raw material for the inference of conservation and covariation patterns on the
genotype level is a sequence alignment for which one assumes isofunctionality to
a conserved phenotypic property of interest, e.g. three-dimensional structure (Sec-
tion 1.2). Alignments that contain too many sequences violating this assumption may
lead to a loss of specificity; similarly, alignments that do not contain enough diverse ex-
amples may fail to create a signal in the first place or lead to wrong assessments based
on the limited scope of observed acceptable substitutions18,146. A key challenge – that
in principle affects any conservation-based method – is therefore to develop metrics
that allow to blindly gauge the isofunctionality of sequences. This task is relatively
easy and well-studied for individual protein structures and domains198, but less so
for many others such as protein interactions299 or mutation effects (Section 1.2.2)18,146.
Additionally, the optimal evolutionary scope might vary between different related fea-
tures for the same protein. For example, overall structure could be conserved over a
wide range of sequences while specific conformational changes upon ligand-binding
might be limited to small subfamilies. We anticipate that computational approaches
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can be devised to address this issue, e.g. through the iterative calculation of statistical
energies to partition sequences into different functional subgroups and then updating
the model parameters until convergence, or through the inference of mixture models
that accommodate the existence of multiple subfamilies300.

Besides measures ensuring sufficient isofunctionality of evolutionary sequences, the
synthetic generation of sequences that are compatible with well-defined selective pres-
sures under controlled environmental conditions could provide an alternative solution
to obtain sufficient amounts of isofunctional genotype data4,161. It remains however
unclear to what extent such experiments would need to explore sequence space to
identify epistatic constraints in a comparable way to the myriads of mutation-selection
experiments recorded in evolutionary sequence variation.

Disentangling signals for different functional features

The coevolutionary signal extracted from any sequence alignment will usually be a
mixture of the different functional requirements on the aligned proteins. The devel-
opment of methods to systematically disentangle which evolutionary couplings are
caused by which particular feature remains an open challenge, e.g. for distinguish-
ing between intra- and inter-subunit contacts in homomultimers or between different
conformations of flexible proteins. Currently these problems tend to be solved using
heuristic strategies, using additional information from orthogonal methods such as
secondary structure or topology predictions (Section 2.3.2) or experimental structures
for discrimination274. To eliminate the dependence on potentially error-prone predic-
tions or the necessity for experimental information, future work ideally will test if the
selection for particular functional features leaves specific evolutionary signatures that
can be exploited to blindly interpret the pair couplings.

Possible applications and developments

Besides the challenges discussed so far, we anticipate that coevolutionary methods and
evolutionary couplings could contribute particularly to two major fields of application,
the engineering of biomolecules and the development of hybrid methods. Similar
to how pair couplings made the problem of three-dimensional structure prediction
tractable for many proteins that were out of reach of existing methods, the information
about functionally critical interactions could focus the solution space of protein design
efforts. For example, probabilistic approaches for sequence modeling could be used to
find sequences that are compatible with the functional requirements of the wild-type
sequence, but are not immunogenic by avoiding particular peptide sequences293.

A second promising avenue is the development of hybrid methods that integrate
computational predictions and experimental data to uncover phenotypes of interest. In
a first example, we have developed an approach that combines evolutionary couplings
and NMR measurements to obtain three-dimensional structures of proteins; in this
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case NMR experiments provide detailed structural constraints on the local geometry
of the peptide backbone while evolutionary couplings constrain the overall fold of
the protein6. In combination, the orthogonal information from each method mutually
compensates for the limitations of the other approach, giving access to results that
would be much harder to obtain from the individual methods. Similar solutions could
be devised for X-ray structure determination, where computational structure models
could help to solve the molecular replacement problem, or for the detailed structural
analysis of protein-protein interactions and their specificities4. Hybrid approaches are
however not limited to structural phenotypes. For example, the combination of deep
mutational scanning and evolution-based predictions of mutation effects could help
to interpret the selective pressures acting on sequences in vivo, and guide the iterative
design of new sequences that are refined experimentally starting from a computational
exploration of sequence space.

Independent of the particular application, it will be crucial to develop better statis-
tical models of sequence coevolution, more efficient methods for their inference, and
to address the sequence alignment issues discussed above to allow the analysis of
phenotypes on a genome-wide scale.
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In this work, we have explored the use of probabilistic coevolutionary models of se-
quences to predict phenotypes from abundantly available protein-coding genotype
data. The biophysical interactions between different residues lead to the context-
dependence, or epistasis, of the phenotypic effects of amino acid substitutions16. By
inferring patterns of amino acid conservation and covariation in sequence alignments
using pairwise undirected graphical models, we were able to uncover these constraints
on sequences left by evolutionary selection for particular phenotypes. Our analy-
ses demonstrated that evolutionarily coupled positions in sequences frequently corre-
spond to residue pair contacts in both monomer proteins and protein complexes and
that this information can be used to reconstruct their three-dimensional structures.
To confirm the validity of our approaches, we evaluated predictions on proteins and
complexes that had experimental phenotype data, and found that the methods overall
delivered accurate results when enough diverse sequences were available. Motivated
by our earlier successes in the prediction of experimentally unsolved proteins, we
computed structural models for proteins and complexes of interest, including insect
olfactory receptors and the bacterial ATP synthase complex.

Besides these intermediate molecular phenotypes which are predicted based on
epistatic constraints between positions, the family-specific changes in the probabilities
of sequences correspond to experimentally tested phenotypic consequences of muta-
tions, suggesting that the evolutionarily observed sampling of sequence space can be
mapped to the phenotypes and fitness of synthetic sequences that have not been ob-
served yet. The incorporation of epistatic interactions in these calculations improved
the accuracy of the predicted effects compared to a model that treats sites indepen-
dently, highlighting the context-dependence of acceptable amino acid substitutions. It
will be an interesting challenge for future work to illuminate the relationship between
molecular phenotypes, such as structure and complex formation, and the overall fit-
ness of particular genotypes; and to identify the detailed molecular mechanisms by
which epistasis arises.

Although many methodological challenges still need to be solved, the work pre-
sented here and related work by others highlights the promise of coevolutionary ap-
proaches to mine the wealth of available genotype data for phenotypic information.
Going beyond the established concept of positional conservation, the lens of covari-
ation offers another promising opportunity to interpret the beautiful experiment of
evolution.
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Table A.1.: Dataset of experimental mutagenesis studies

Protein UniProt ID Assay Phenotype # Mutations Comments Ref.

TEM-1 β-lactamase BLAT ECOLX Competitive growth under an-
tibiotic selection

Growth 4997 (singles) High correlation between 2 replicates; in-
creasing concentrations of ampicillin and
new ligand (cefotaxime)

71

TEM-1 β-lactamase BLAT ECOLX Growth under antibiotic selec-
tion, band pass filter

Growth 5429 (singles) Highly correlated to Stiffler et al. measure-
ments

59

Polyadenylate-binding protein
(RRM domain 2)

PABP YEAST Competitive growth Growth 1188 (singles),
38352 (doubles)

Sequence tiled into 3 parts, doubles only
within tiles; domain deletion in construct

51

PSD95 (PDZ domain 3) DLG4 RAT Bacterial two-hybrid (GFP ex-
pression), FACS selection

Peptide binding 1660 (singles) Two-hybrid system only measures bind-
ing, no other functional requirements; 2

ligands measured

44

Modification methylase HaeIII MTH3 HAEAE Drift under selection Growth 1957 (singles),
1738 (filtered)

Only mutants reachable by single nu-
cleotide exchange, infrequent in initial li-
brary ( f ≤ 0.01) excluded from analysis

69

Aminoglycoside
3’-phosphotransferase

KKA2 KLEPN Competitive growth under an-
tibiotic selection

Growth 5280 (singles) Excluded datapoints with very high fitness
(> 5) which appear to be due to very low
read counts

62

Regulatory protein GAL4

(DNA-binding domain)
GAL4 YEAST Competitive growth on medium

lacking histidine
Growth 1196 (singles) – 68

Transcriptional coactivator YAP1

(WW domain 1)
YAP1 HUMAN Phage display Peptide binding 363 (singles),

9713 (doubles),
33166 (3-9 mut.)

Only analyzed single mutants 41

Ubiquitin RL401 YEAST Competitive growth Growth 1270 (singles) – 53

Ubiquitin RL401 YEAST Yeast display, fluorescent label-
ing of cells, FACS selection

E1 reactivity 1436 (singles) – 64

Ubiquitination factor E4B
(U-box domain)

UBE4B MOUSE Phage display, selection for UB
ligase activity

Ligase activity 900 (singles),
90231 (2-9 mut.)

Only analyzed single mutants 54

Breast cancer type 1 susceptibility
protein (RING domain)

BRCA1 HUMAN Phage display (E3 reactivity),
Y2H + reporter (BARD1 bind-
ing)

E3 ligase activity, BARD1 in-
teraction, Homology-directed
DNA repair (HDR)

4872 (E3),
1748 (BARD1),
44 (HDR)

Only 44 HDR experimental measurements,
full matrix of HDR values predicted based
on regression model

70

Hemagglutinin (sequence from paper) Passaging in tissue culture Viral growth 11280 (singles) Comparison to predictions only on substi-
tutions that have been sampled by evolu-
tion in some background; transformed io
log enrichment ratios

66

Tyrosine-protein kinase FYN
(SH3 domain)

FYN HUMAN Low-throughput thermal denat-
uration and binding assays

Stability (Tm), peptide binding
(Kd)

48 (WT, singles, dou-
bles, triples)

Analyzed all datapoints with defined bind-
ing affinity; V138S excluded for non-
cooperative unfolding

220

Anionic trypsin-2 TRY2 RAT Low-throughput thermal denat-
uration and activity assays

Stability (Tm), catalytic activity
(kcat/Km)

23 (WT, singles, dou-
bles)

Hswap and C136A (no observable transi-
tion) were excluded from analysis

167

9
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Table A.2.: Correlations between computed and experimental mutation effects

Correlation over mutations Correlation over sites

Pearson r Spearman ρ MCC Pearson r Spearman ρ

Protein UniProt ID Ref. Experiment Ea Ib E I E I E I E I

TEM-1 β-lactamase BLAT ECOLX 71 2500 0.68 0.52 0.71 0.52 0.50 0.28 0.78 0.58 0.78 0.60

BRCA1 (Ring do-
main)

BRCA1 HUMAN 70 hdr 0.67 0.69 0.52 0.50 – – – – – –

PSD95 (PDZ domain) DLG4 RAT 44 CRIPT 0.53 0.50 0.53 0.44 0.42 0.47 0.67 0.55 0.72 0.60

FYN (SH3 domain) FYN HUMAN 220 Tm 0.72 0.57 0.75 0.51 – – – – – –

GAL4 (DNA-binding
domain)

GAL4 YEAST 68 SEL C 40h 0.58 0.41 0.58 0.40 0.36 0.28 0.77 0.52 0.80 0.55

Hemagglutininc – 66 log ratio 0.57 0.35 0.61 0.43 – – 0.62 0.36 0.61 0.42

Bacterial kinase KKA2 KLEPN 62 KKA2 S3 Kan18 L1

(filtered)
0.44 0.28 0.52 0.28 0.48 0.33 0.74 0.42 0.75 0.39

Methyltransferase MTH3 HAEAE 69 17 filtered 0.68 0.47 0.69 0.44 0.55 0.33 0.79 0.54 0.81 0.48

PABP (RRM domain) PABP YEAST 51 linear 0.61 0.50 0.59 0.44 0.45 0.39 0.68 0.50 0.69 0.46

Ubiquitin RL401 YEAST 53 selection coefficient 0.41 0.42 0.50 0.45 0.30 0.29 0.36 0.34 0.43 0.47

Trypsin TRY2 RAT 167 Tm 0.71 -0.01 0.78 0.00 – – – – – –

UBE4B (U-box do-
main)

UBE4B MOUSE 54 log2 ratio 0.47 0.49 0.52 0.49 0.39 0.35 0.64 0.68 0.65 0.66

YAP1 (WW domain) YAP1 HUMAN 41 linear 0.53 0.51 0.60 0.58 0.56 0.42 0.69 0.68 0.75 0.78

aEpistatic model bIndependent model cEvaluated only on amino acids observed in alignment

Table A.3.: Correspondence of evolutionary couplings to 3D residue contacts

Precision top N couplingsa Precision significant couplingsb

UniProt ID # 5 Åc
8 Å # 5 Å 8 Å

BLAT ECOLX 215 0.66 0.88 879 0.36 0.64

BRCA1 HUMAN 76 0.59 0.75 103 0.50 0.67

DLG4 RAT 80 0.66 0.84 146 0.47 0.67

FYN HUMAN 53 0.79 0.91 95 0.57 0.82

GAL4 YEAST 63 0.51 0.76 81 0.46 0.69

KKA2 KLEPN 213 0.52 0.82 918 0.25 0.53

MTH3 HAEAE 319 0.57 0.78 1686 0.21 0.42

PABP YEAST 76 0.82 0.99 221 0.49 0.77

RL401 YEAST 71 0.72 0.86 129 0.54 0.71

TRY2 RAT 217 0.85 0.99 1016 0.40 0.65

UBE4B MOUSE 76 0.54 0.82 116 0.44 0.68

YAP1 HUMAN 31 0.71 0.77 34 0.74 0.79

a N=length of statistical model bCoupling scores above quality score threshold cDistance (min-
imum atom) threshold of experimental residue contact
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Table A.4.: Prediction difference between epistatic and independent models on mutations with high
experimental effect

Number of mutations

UniProt ID Effect thresholda Deleterious Neutral P-valueb

BLAT ECOLX -0.34 2575 1510 5.9 · 10−32

DLG4 RAT -0.28 333 1267 1.1 · 10−4

GAL4 YEAST -7.22 363 760 0.10

KKA2 KLEPN 0.52 1572 2677 1.3 · 10−31

MTH3 HAEAE 0.46 895 790 1.3 · 10−14

PABP YEAST 0.57 404 775 7.1 · 10−13

RL401 YEAST -0.20 406 825 0.40

UBE4B MOUSE -0.57 314 300 0.40

YAP1 HUMAN 0.43 110 209 0.91

aDetermined by fitting a two-component Gaussian mixture model to experimen-
tal effect distribution bTwo-sided sample Kolmogorov-Smirnov test

Table A.5.: Correlations of mutation effects predicted similarly and differently between epistatic and
independent models with experimental data

Number of mutations All mutations Different Similar

UniProt ID Differenta Similara Eb Ic E I E I

BLAT ECOLX 2089 1996 0.68 0.52 0.62 0.46 0.74 0.71

DLG4 RAT 739 861 0.53 0.50 0.49 0.41 0.59 0.61

GAL4 YEAST 535 588 0.57 0.41 0.31 0.30 0.69 0.65

KKA2 KLEPN 2036 2213 0.43 0.28 0.43 0.25 0.42 0.45

MTH3 HAEAE 824 861 0.68 0.47 0.52 0.32 0.75 0.72

PABP YEAST 548 631 0.61 0.50 0.52 0.31 0.65 0.69

RL401 YEAST 627 604 0.41 0.42 0.35 0.32 0.50 0.53

UBE4B MOUSE 286 328 0.47 0.49 0.41 0.31 0.58 0.62

YAP1 HUMAN 146 173 0.53 0.51 0.48 0.48 0.57 0.58

aMutation effects more and less different than average ∆∆Eepi
ind(σ

(mut) , σ(wt)) bEpistatic model
(Pearson r) cIndependent model (Pearson r)
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Table A.6.: Prediction difference between epistatic and independent models on specificity-determining
sites

Number of mutations Correlation with datac

UniProt ID Functional feature Positionsa These positions Others P-valueb Ed Ie

BLAT ECOLX ligand (mostly con-
served)

67, 68, 103, 128, 130, 214, 232,
233, 234, 235, 236, 241

228 3857 1.1 · 10−7
0.62 0.59

GAL4 YEAST ligand specificity 8, 9, 10, 15, 17, 18, 19, 20, 21, 23,
43, 49, 50, 51

266 931 6.2 · 10−12
0.40 0.37

GAL4 YEAST cofactor 11, 14, 21, 28, 31, 38 114 1083 2.9 · 10−59
0.27 0.19

KKA2 KLEPN cofactor 27, 29, 32, 36, 47, 49, 94, 95, 96,
97, 194, 195, 197, 207, 208

285 3762 1.3 · 10−5
0.55 0.50

KKA2 KLEPN ligand specificity 157, 158, 159, 160, 190, 211, 226,
227, 230

171 3876 5.7 · 10−07
0.49 0.19

MTH3 HAEAE ligand specificity f
68, 69, 70, 71, 72, 75, 76, 77, 78,
79, 80, 81, 87, 109, 111, 112, 114,
116, 117, 118, 152, 153, 155, 198,
217, 219, 220, 221, 224, 225, 227,
229, 236, 237, 239, 240, 241, 243,
244, 260, 305, 306

798 5263 3.8 · 10−32
0.65 0.51

MTH3 HAEAE cofactor 7, 8, 9, 10, 12, 13, 28, 29, 30, 31,
50, 51, 68, 70, 90, 286, 306, 307,
308

361 5700 1.1 · 10−23
0.74 0.64

PABP YEAST ligand specificity 127, 129, 131, 132, 154, 156, 166,
167, 168, 170, 172, 197, 200, 201,
202

285 1159 3.5 · 10−11
0.44 0.16

PABP YEAST protein interaction 137, 139, 140, 141, 145, 148, 149,
153, 154, 155, 156, 186, 188, 189,
190, 191, 192, 193

342 1102 2.3 · 10−18
0.52 0.23

PABP YEAST ligand and protein
specificity

127, 129, 131, 132, 137, 139, 140,
141, 145, 148, 149, 153, 154, 154,
155, 156, 156, 166, 167, 168, 170,
172, 186, 188, 189, 190, 191, 192,
193, 197, 200, 201, 202

589 855 1.6 · 10−19
0.50 0.25

aResidues within 4 Å minimum atom distance of ligand/interaction partner bTwo-sided sample Kolmogorov-Smirnov test cPearson r dEpistatic model
eIndependent model f Merged ligand contacts in open and closed conformations, while Figure 3.9d is based on open conformation only.
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Table A.7.: Comparison with machine learning-based prediction methods

Correlation over mutationsa Correlation over sitesa

UniProt ID Experiment method Pearson r Spearman ρ Pearson r Spearman ρ

BLAT ECOLX 2500 Epistatic model 0.68 0.71 0.78 0.78

Independent model 0.52 0.51 0.58 0.60

PolyPhen-2 (PSIC) 0.55 0.56 0.69 0.72

PolyPhen-2 (Probability) 0.57 0.68 0.76 0.78

SNAP2 0.68 0.71 0.74 0.74

PABP YEAST linear Epistatic model 0.61 0.59 0.68 0.69

Independent model 0.50 0.44 0.50 0.46

PolyPhen-2 (PSIC) 0.39 0.43 0.56 0.55

PolyPhen-2 (Probability) 0.41 0.46 0.55 0.59

SNAP2 0.51 0.55 0.53 0.56

DLG4 RAT CRIPT Epistatic model 0.53 0.53 0.67 0.72

Independent model 0.50 0.44 0.55 0.60

PolyPhen-2 (PSIC) 0.25 0.25 0.45 0.53

PolyPhen-2 (Probability) 0.22 0.34 0.39 0.54

SNAP2 0.45 0.56 0.56 0.67

MTH3 HAEAE 17 (filtered) Epistatic model 0.68 0.69 0.79 0.81

Independent model 0.47 0.44 0.54 0.48

PolyPhen-2 (PSIC) 0.59 0.60 0.73 0.74

PolyPhen-2 (Probability) 0.65 0.69 0.81 0.83

SNAP2 0.64 0.64 0.74 0.74

KKA2 KLEPN KKA2 S3 Kan18 L1 Epistatic model 0.43 0.52 0.74 0.75

(filtered) Independent model 0.28 0.28 0.42 0.38

PolyPhen-2 (PSIC) 0.37 0.41 0.65 0.68

PolyPhen-2 (Probability) 0.38 0.51 0.71 0.74

SNAP2 0.48 0.54 0.73 0.73

GAL4 YEAST SEL C 40h Epistatic model 0.57 0.58 0.77 0.80

Independent model 0.41 0.40 0.52 0.55

PolyPhen-2 (PSIC) 0.37 0.36 0.75 0.70

PolyPhen-2 (Probability) 0.50 0.54 0.74 0.66

SNAP2 0.51 0.51 0.63 0.62

FYN HUMAN Tm Epistatic model 0.72 0.73 – –

Independent model 0.61 0.57 – –

PolyPhen-2 (PSIC) 0.60 0.58 – –

PolyPhen-2 (Probability) 0.35 0.50 – –

SNAP2 0.52 0.56 – –

aAbsolute value of correlation coefficient
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Table A.8.: Computed double mutant landscapes

% of viable doubles accessible throughb

UniProt ID # Double mutants # Viable doublesa % Viablea
0 paths 1 path 2 paths

PABP YEAST 1028850 10505 1.02 0 46 54

BLAT ECOLX 8304805 1728 0.02 0 47 53

KKA2 KLEPN 8150658 17821 0.22 0 57 43

MTH3 HAEAE 18310281 19758 0.11 0 50 50

GAL4 YEAST 705033 5429 0.77 0 39 61

DLG4 RAT 1140760 4404 0.39 0 53 47

YAP1 HUMAN 167865 344 0.20 0 44 56

RL401 YEAST 897085 75 0.01 0 81 19

UBE4B MOUSE 1028850 3991 0.39 0 74 26

BRCA1 HUMAN 1028850 4593 0.45 0 78 22

FYN HUMAN 497458 2911 0.59 0 60 40

TRY2 RAT 8460396 26419 0.31 0 61 39

aViable mutants are those with statistical energy ≥ 0.9 bAccessible paths lead through single mutants with statistical energy ≥ 0.9
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Figure A.1.: Double mutations in the PABP RRM domain. Mutation effects computed using the epistatic
model agree more strongly with the experimental effects of 34745 double mutants in the RRM domain
(r=0.62) than effects computed using the epistatic model (r=0.50).
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Figure A.2.: Agreement between computed and experimental mutation effects. Relationship between mutation effects
computed using the epistatic and independent models (left and right plots) for individual mutants and average mutational
sensitivities per site (top and bottom plots; orange corresponds to higher density of points; see Table A.1 for analyzed
subsets of mutants). The plot for PABP YEAST does not include a single outlier of high experimental fitness, which was
still used in the correlation calculations.
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Figure A.3.: Evolutionary couplings correspond to residue contacts. Many evolutionarily coupled pairs
(black dots: all significant pairs with quality score above background noise) are close in the 3D structure
of the protein (dark and light blue: 5 and 8 Å minimum atom distance thresholds).
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Figure A.4.: Mutation effects predicted differently between epistatic and independent models. The
epistatic model tends to predict mutations as more damaging than the independent model, which
wrongly quantifies experimentally deleterious mutations as neutral in many cases (white: no experi-
mental effect, blue: deleterious, gray: no data available). For proteins with low-throughput mutagenesis
data, scatters are colored in shades of orange according to the magnitude of difference between the
models instead.
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Figure A.5.: High-effect and specificity sites predicted more differently between models than others.
Computed single mutation effects for (a) experimentally deleterious mutations (orange curve, determined
by fitting a two-component Gaussian mixture model) and (b) mutations in specificity-determining sites
(orange curve) are predicted more differently between the epistatic and independent models than all
other remaining single mutations to the protein, respectively (black curves).
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Figure A.6.: Comparison with machine learning-based prediction methods. Correlations between pre-
dicted and experimental mutation effects when comparing (a) individual mutations and (b) average
mutational sensitivities per site (top panels: Pearson r, bottom panels: Spearman ρ) for a selection of
state-of-the-art machine learning methods and our sequence-based approaches.
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The following published first-author manuscripts have been appended to this thesis:

Hopf, T. A. et al. Sequence co-evolution gives 3D contacts and structures of protein
complexes. Elife 3 (2014) i

Hopf, T. A. et al. Amino acid coevolution reveals three-dimensional structure and
functional domains of insect odorant receptors. Nat Commun 6, 6077 (2015) ii

Summaries and author contributions for each of the manuscripts are given on the
subsequent pages.

iReproduced from doi:10.7554/eLife.03430 under Creative Commons CC BY 4.0 license
iiOriginally published in the journal Nature Communications and reproduced according to the author

reuse guidelines of Nature Publishing Group
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Sequence co-evolution gives 3D contacts and structures of protein
complexes

Thomas A. Hopf∗, Charlotta P.I. Schärfe∗, João P.G.L.M. Rodrigues∗, Anna G. Green,
Oliver Kohlbacher, Chris Sander, Alexandre M.J.J. Bonvin & Debora S. Marks
∗ Joint first authors

Protein-protein interactions are molecular phenotypes relevant to most cellular pro-
cesses. Yet, structural information is only available for a small subset of all known
interactions, creating a need to close this gap using computational predictions. We
developed a method that infers the molecular details of protein interactions from evo-
lutionary sequence covariation making no use of solved structural templates. The
approach identifies putatively interacting pairs of sequences per species using a strat-
egy that is based on the genomic proximity of the interaction partners and then com-
putes coevolving residue pairs between them (inter-protein evolutionary couplings).
Assuming that the coevolutionary signal occurs due to spatial closeness of residue
pairs, distance restraints between the interacting subunits can be used to assemble
the complex from its constituents. To test the validity of our method, we compiled
a comprehensive set of bacterial protein interactions of known structure where both
subunits are proximal on the genome and predicted inter-protein couplings for all ex-
amples that had sufficient sequence information available. We found that residue pairs
with significant coupling scores, as quantified by a newly developed score for quality
assessment, frequently correspond to contacts in the 3D structures of the complexes
and critical functional interactions. These couplings allowed to accurately reconstruct
the complex 3D structures using standard biomolecular docking algorithms. Besides
the identification of interacting residue pairs and structure prediction, we asked if our
approach can be used to predict if two proteins interact or not. As a case study, we
analyzed the bacterial ATP synthase complex and successfully classified most pairs of
subunits as interacting or non-interacting. Motivated by the performance on solved
examples, we then applied our method to the de novo prediction of protein complexes
without known structure, and obtained biologically plausible evolutionary couplings
and models for many of the candidates. Prominent examples include the elusive in-
teraction between the subunits a and b of ATP synthase, and the stress/SOS response
complex UmuCD. Despite the currently limited applicability of the method to com-
plexes with enough paired sequences, we anticipate that it will provide access to study
many protein interactions currently not solved by experiment.

TAH, CPIS, DSM: Conception and design, Acquisition of data, Analysis and interpre-
tation of data, Drafting or revising the article; JPGLMR: Assisted docking in Haddock;
AGG: Conducted comparison of ATP synthase subunit interactions; OK: Acquisition
of data, Analysis and interpretation of data; CS: Conception and design, Drafting or
revising the article; AMJJB: Provided expertise on Haddock docking protocols, Draft-
ing or revising the article.
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Amino acid coevolution reveals three-dimensional structure and functional
domains of insect odorant receptors

Thomas A. Hopf, Satoshi Morinaga, Sayoko Ihara, Kazushige Touhara, Debora
S. Marks & Richard Benton

Insect olfactory receptors are a large family of α-helical transmembrane proteins re-
sponsible for the molecular recognition of odors and subsequent triggering of a neu-
ronal response. Despite great interest in identifying the exact signaling mechanism
of these ion channel proteins, the molecular details of signal transmission remain un-
known. Three-dimensional structure information would provide an opportunity to
obtain a more detailed understanding of olfactory receptors, but is not available for
any member of the entire protein family. To provide structural information, we ex-
tended our previously developed method for predicting three-dimensional structures
of transmembrane proteins from evolutionary sequence covariation. The approach
identifies coevolving positions (evolutionary couplings) in protein family alignments
using a pairwise undirected graphical model of sequences and assumes that amino
acids covary due to spatial proximity of the residues. By defining distance restraints
on strongly coupled pairs of positions, three-dimensional structure models can be ob-
tained using standard distance geometry and simulated annealing algorithms. We
then calculated evolutionary couplings and three-dimensional models for two mem-
bers of the olfactory receptor family, the co-receptor ORCO and the ligand-specific
receptor OR85b. The predicted structures show a novel three-dimensional fold with
a packing arrangement of the seven transmembrane helices that is distinct from other
known membrane protein folds. Importantly, the olfactory receptors have a differ-
ent fold than G-protein coupled receptors, which the insect odor receptors were pre-
sumed to belong to. To verify the validity of the model and gain insights in the spatial
organization of olfactory receptor function, we calculated positions that are particu-
larly strongly coupled to other positions, and compared them with known functional
residues from mutational studies. We found that strongly coupled and known func-
tional residues cluster in 3D in the same parts of the molecule, suggesting that the
models are plausible and these are distinct functional domains of the receptors. We
additionally tested the role of the strongly coupled N-terminal region experimentally
and found that it plays an essential role for receptor function. Our results provide a
first detailed insight in olfactory receptor structures and a model for further studies of
this important class of proteins.

T.A.H. developed analysis methods, performed multiple sequence alignments, EC
calculations and model building, and contributed to the writing of the manuscript.
D.S.M. developed analysis methods, analyzed data and contributed to the writing of
the manuscript. S.M. designed and performed the OR experimental analysis, and
S.I. and K.T contributed to experimental design and interpretation. R.B. conceived
the project, annotated gene sequences and models, analyzed data and wrote the
manuscript.
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