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Chapter 1

Introduction

Most of the present control tasks are either set point or trajectory tracking problems.

In the first category, a fixed or changing set point should be tracked, e.g. cruise control

allows to keep a car at a constant speed which can be manually changed. The second,

more challenging, category deals with problems where a system should follow a defined

path through space as a function of time. For instance, mobile robots, robotic ma-

nipulators or flight systems like quadrotors that move along such a path through the

terrain. Due to the rising complexity of mechatronics systems an efficient and perfor-

mant tracking controller design requires often sophisticated methods which aggravates

their practical applicability. In this context, attributes like numerically efficient and

systematic design are of gaining importance. In addition, practical relevant system

constraints, e.g. actuator saturation, presents a major challenge. Disregarding con-

straints might diminish the tracking performance, cause an unstable behavior or even

damage the system.

In this thesis, we will develop methods for designing fast and asymptotically stable

set point as well as trajectory tracking controllers. To put the material in this thesis in

perspective, we start this introduction by reviewing current tracking control strategies

and their drawbacks in Section 1.1. Based on that, we clarify our focus and point out

the main contributions of this thesis in Section 1.2. Finally, we summarize the layout

of the thesis Section 1.2.

1.1 Tracking Control Subject to Constraints

Control engineers are aware of the necessity to account system constraints while tracking

a set point or a trajectory. Input saturation is by far one of the most important

limitations. The magnitude and often also the rate that an actuator can deliver is

practically bounded. For instance, saturation effects have been crucially involved in

1



Chapter 1 Introduction

aircraft crashes and the nuclear disaster happened in 1986 at the Chernobyl nuclear

plant [108]. A second practically relevant category to be aware of for performance and

safety reasons are state constraints of a system. As reported by the NASA [74], an

aircraft needs to be operated within a specified flight envelope which is usually given

by a convex polyhedral set in the state space. The set is bounded by input and state

constraints, e.g. pitch, roll and speed limitations. Departing from the flight envelope

results often in a loss of control which is one of the main reasons for fatal aircraft

crashes. Another example arising from the field of mobile robotics is the problem of

motion planning. Here the allowed motion is often constrained due to obstacles and

the robot’s mobility (differential constraints) [96]. During the last decades five effective

directions for facing constrained tracking control problems have crystallized out:

One route is to synthesize a saturated controller which is aware of the constraints. As

implied by the name, these controllers have been originally established for tackling the

input saturation problem. Concerning linear systems, the synthesis process is generally

accepted to be formulated as a convex numerical optimization problem based on linear

matrix inequalities (LMIs) [18, 118]. The major advance of their convexity property is

that a local minimum is simultaneously a global one in the defined search space and

hence an efficient optimization is expeditious. All requirements and system constraints

that can be represented in terms of LMIs can be considered. Lots of effort has been

made for set point tracking tasks by optimally estimating a domain of attraction (DA)

of the desired equilibrium to be tracked subject to constraints. Thereby, the controller

can be either predefined or simultaneously designed subject to desired performance re-

quirements, e.g. defined pole region of the closed-loop system [57, 114]. The design of

nested DAs by parametrized LMIs allows to derive a large stability region and a desired

rate of convergence by switching between the invariant sets in their nested order [114].

Recently, the LMI-based design has been utilized for synthesizing a saturated controller

for compensating a trajectory tracking error for linear systems subject to input limi-

tations [62]. The problem is that both together, feedforward and feedback part, has

to stay within the system limits. This is bypassed by the authors by subdividing the

overall input signal into two parts: one reserved for the desired trajectory (feedforward)

and one for error compensation (feedback). The static allocation of the input limits

lead to a linear error dynamics with fixed saturation wherefore the LMI-framework is

directly applicable. However, the control performance may be leaking as the input is

only exploited when both, feedforward and feedback part, are saturating. For instance,

if only a fraction of the reserved input signal is needed in some parts of the trajectory

then the allocated saturation limit for error compensation is conservative.

2



1.1 Tracking Control Subject to Constraints

Based on that, the following two questions arise naturally: First, can the input signal

be adjusted for trajectory tracking, meaning to vary the saturation limits of the feed-

back part to the remaining values which are currently not required by the feedforward

controller? Second, can the LMI-framework be general exploited also for nonlinear

systems? Up the authors’ knowledge, the first question remains largely unanswered.

Only the variation of rate saturation has been investigated in [61] for linear systems.

Contrary to that, progress has been made during the last decade concerning the second

question at least for set point tracking. For instance, the method of sum of squares

(SOS) has been introduced for polynomial systems [102] and in [49] exact feedback lin-

earization has been considered to reformulate a nonlinear system to a linear one with

a state-dependent input saturation. Also nested invariant sets has been estimated for

nonlinear systems based on Fourier series [93]. However, the estimation of a DA for

nonlinear systems is generally not an easy task and requires an iterative and numerically

demanding computation.

During the last decade the Takagi-Sugeno (T-S) framework received great attention.

It allows to represent a quite general class of nonlinear systems as a weighted sum of

linear or affine systems which opens the door to apply convex optimization-based con-

troller design [39, 113]. Hence, a common belief is that T-S model-based techniques offer

a simple and effective way for controlling nonlinear systems. The estimation of a DA

of a desired set point as well as a saturated controller design is intuitively possible for

constrained T-S systems by finding a quadratic Lyapunov function [23, 67, 129]. During

the last years piecewise, polynomial or fuzzy Lyapunov function approaches have been

focused to reduce the inherent conservatism of the estimated DA based on a quadratic

Lyapunov function, e.g. see [77, 95, 120]. However, most of this strategies seem to be of

academic nature due to the following facts: First, they are not applicable to T-S system

with affine terms [37]. Second, the applicability is limited to low-order systems due to

the numerical complexity of the growing number of LMIs [104]. Third, the considera-

tion of constraints notably increases the required computational effort or even leads to

numerical problems. Consequently, quadratic Lyapunov function approaches are still of

high practical relevance. A natural way of increasing the size of an ellipsoidal DA is by

estimating several ones which pushes the topic of switched T-S control [121, 122, 91].

However, switched T-S controllers often require a high number of LMIs to be solved or

result in complex switching conditions. For instance, relaxing the complexity by design-

ing nested DAs (similar to linear systems) has not been investigated up the author’s

knowledge. Hence, we can state that although lots of progress has been made concern-

ing the T-S framework, there are still some open research questions to be tackled - even

3
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for quadratic Lyapunov functions: First, an effective and practically applicable relax-

ation of the conservativeness of the estimate. Second, while input amplitude saturation

has been often addressed within the T-S framework [23, 36, 129], input rate and state

limits have not, up the authors’ knowledge, been investigated in-depth. Third, the T-S

framework is not exploited for trajectory tracking tasks. Most of the related literature

assumes a linear reference dynamic [14, 15, 45].

A second route for tackling control issues subject to constraints is to iteratively solve

a constrained open-loop optimal control problem. The optimization task is solved by

a model-based prediction of the system behavior over a defined horizon which yield

the method the name Model Predictive Control (MPC), see [11, 48, 75] for a broad

method overview. Generally, the obtained solution will be executed until the next mea-

surements become available for solving the optimization problem again. Due to its

unified characteristics, the MPC framework is an universal approach for set point and

trajectory tracking. However, practically the method possesses two contrary problems:

computational cost and stability. The input function is usually discretized along the

prediction horizon for enabling a real-time numerical computation of the optimization

problem. Hence, it becomes obvious that a short horizon is desirable from a computa-

tional point of view. However, in [10] it has been shown that a finite prediction horizon

leads to a difference between the predicted system behavior and the actual one. Con-

sequently, a priori stability guarantees are hard to be made. In this contexts, stability

is often augured by statements beginning with "if the prediction horizon is taken large

enough then ..." [16, 48] whereby the question what large enough means remains often

unanswered. Finite horizon MPC schemes with guaranteed stability bypass the compu-

tational cost-stability-dilemma by adding terminal penalty terms to the cost function

(terminal cost) and/or consider terminal constraints. Here the key idea is to define an

asymptotically stable terminal region which has to be reached within a single predic-

tion horizon. Loosely speaking, the terminal region can be understood as an ensured

domain of attraction of the desired set point or trajectory within which the asymptotic

stability can be proven. However, enforcing the system to be inside the terminal region

withing a single horizon length considerably reduces the operating range of MPC. In

addition, the formulation of the terminal region and the terminal cost may be chal-

lenging in general [16] such that one can say, the computational cost-stability-dilemma

is rather transformed into a computational cost-operating range-dilemma than solved.

As in both dilemmas the computational cost is involved, it can be seen as the main

drawback of MPC. Alternatively, one might think of solving the optimization problem

before a real-time control execution starts. This method, called explicit MPC, allows
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to derive the optimal and asymptotically stable control actions as an explicit piecewise

affine function of the state and reference vector [9, 88]. Concerning nonlinear systems

explicit MPC methods provide only an approximation of the optimal solution (sub-

optimality) under various strong and conservative assumptions, e.g. approximation of

the Lipschitz constant [47, 110]. Limits on the available storage space restricts often

the applicability of explicit MPC schemes to linear systems of low order [126].

Another main direction for tracking control of constrained systems is the anti-windup

scheme. The word wind-up describes the phenomenon noticed in the 1950’s for con-

trollers that contain an integrator state (like a PID controller). If the control signal

reaches its limits then the integrator state would "wind up" to large values which in

turn causes extensive overshoot, slow settling times and even unstable behavior. "Anti-

windup" refers to the prevention of the "wind up" phenomenon. It is an augmentation

to a controller which has been well-designed in the absence of constraints. The objec-

tive is to modify the controller’s output in the case of constraint violation such that

acceptable performance is achieved. Maybe due to their historical origin, most of the

current available anti-windup schemes are proposed for linear systems subject to input

saturation [53, 114, 125]. Thereby, similar to saturated controllers, LMI-based synthesis

is of growing interest due to their convex optimization features. As stated in the recent

papers [25, 115], anti-windup compensation for handling state constrained or nonlinear

systems remain largely unsolved. Also the T-S framework seems to be barely exploited

for tackling these open problems [128].

Reference governors (RG) approaches, which are also called command governors,

form the fourth main approach for controlling constrained systems. Similar to an anti-

windup a RG is an add-on to a well-designed closed-loop system which modifies the

control action for preventing a constraint violation. As its name suggests, the reference

command, which is traditionally a set point, is modified based on its current value and

the actual state. Generally, constrained optimization problems have to be solved in

real-time for this modification and thus a direct connection to the MPC framework is

noticeable. The recent publication [69] gives a detailed overview of the state of the art

and provides a comprehensive list of examples which range from automotive over wind

and gas turbine systems to thermonuclear fusion. Most of the RG approaches are based

on prediction by online simulation or Lyapunov level set calculations. A major advance

compared to MPC is that stability guarantees are easier to make. This is due to the

fact that stability is ensured for each set point that the RG commands to the system.

The remaining question is how to vary the set point optimally such that stability is not

lost, all constraints are kept and the desired equilibrium is reached as fast as possible.
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Remember, in MPC the question is more like how to optimally tune the input action

such that stability is achieved. Hence, the computational cost-stability-dilemma known

from MPC reduces to a computational cost problem (solving the constrained optimiza-

tion problem in real-time) which brings us to the current drawbacks of RGs [69]: First,

the consideration of time-varying constraints remains largely to be developed from a

theoretical point of view. This is for instance of highly interest for trajectory tracking

where the available input amplitude for compensating the tracking error changes over

time (depending on the current feedforward input signal). Second, compared to MPC

the required computational effort for solving the optimization problem in real-time is

not discussed in-depth. Third, in the RG theory it is frequently assumed that the set

points and thus the modification range are given. However, adapting or changing the

set point (due to external conditions) might cause an undesired feedback. Forth, a

disturbance is often assumed to be set-bounded which leads to feasibility problems in

case of large (external) disturbances, like large wind gusts in wind energy or aerospace

systems [60]. While the first drawback (time-varying constraints) seem indeed, up to

the author’s knowledge, largely unsolved, the remaining ones has been tackled in a

first approach in [21] at least for single-input linear systems. The authors propose a

Lyapunov-based set point governor which automatically calculates a new asymptoti-

cally stable initial set point in case of disturbance or changed external conditions. The

related optimization problem possesses an analytical solution. Concerning nonlinear

systems only a few tries have been recently made to tackle the mentioned drawbacks:

In [17] the nonlinear system is approximated in a piecewise affine manner whereby the

computation of the reference signal will be less computationally demanding. In [116] an

incremental step reference governor is proposed for load conditioning of hybrid fuel cell

and gas turbine power plants. The generator load is discretized and the RG verifies if

an incremental step change of the load is allowed, e.g. does not cause a plant shutdown.

Contrary to the previously explained four tracking control strategies, the fifth and final

one realizes the tracking of a desired set point which is not a set point of the system at

hand. Lots of technical control systems operate in such a manner by switching between

several subsystems. For instance, a heating system is automatically turned on and

off with the objective to keep a desired temperature which can be manually changed.

Such a control concept is called hybrid automaton [52]. Stability concepts for hybrid

automata deviate from the classical definitions in control theory. Practical or region

stability is considered where the objective is to determine an invariant region in the

state space within which each trajectory remains after a finite time [99, 124].
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1.2 Scope of the Thesis

To sum up the previous section, the research in the field of tracking control for con-

strained dynamical systems is multifarious and important results are available in the

literature. However, there are still open problems to be addressed. For contributing to

some of these problems, we are interested in exploiting the Takagi-Sugeno (T-S) state

space notation which allows to represent a quite general class of (nonlinear and linear)

systems by a combination of linear or affine mathematical models [39].

A T-S formulation allows to exploit convex optimization for estimating the domain

of attraction (DA) and designing a controller for a wide range of systems. However,

some problems have not or only barely been investigated yet: First, the (numerically)

effective relaxation of the conservative estimate of the DA. Second, handling of system

constraints beyond input amplitude saturation, e.g. input rate and state limits.

Third, exploiting the T-S framework for trajectory tracking tasks.

Fig. 1.1 summarizes the scope of this thesis: As shown in the upper part of the figure,

there are two approaches for generally constructing a constrained T-S model: First,

identification of the input-output behavior of a system from experimental data and sec-

ond, derivation from a given mathematical (theoretical) model. We focus on the second

approach which directly leads to a T-S model in state space notation. The contribution

(lower part of Fig. 1.1) of this thesis is subdivided into two areas of tracking control:

The first part is dedicated to the problem of set point tracking. We develop novel

linear matrix inequality (LMI) conditions and algorithms for the numerically efficient

estimation of a large domain of attraction (DA) of the closed-loop system subject to

input amplitude, rate and state constraints. The control law can either be predefined

or optimized simultaneously. Thereafter, the algorithms are further extended such

that multiple DAs are obtained. The DAs vary in their size and in their related

control performance, e.g. nested invariant sets can be designed. We derive switched

and smoothly switched controllers such that the variety of the multiple estimations

can be exploited. In addition, we enlarge the valid operation range of the closed-loop

system by designing a new reference governor, called GINA controller (Governor

Integrated Nominal-Value Adaptation). Reference governors have, up to the author’s

knowledge, not been investigated for T-S systems yet. The GINA controller modifies

the reference signal of the closed-loop T-S system in real-time such that asymptotic

stability and robustness against (external) disturbances is ensured while preventing a

constraint violation.
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nonlinear system

identification from
experimental data

derivation from
mathematical model

constrained T-S state space model

set point tracking: trajectory tracking:

Mathematical models in T-S form

Contribution and examples of the thesis

• DA estimation• DA estimation

• reference governor design• reference governor design
• controller design• controller design

• trajectory generation

examples:

• robot
• aircraft
• vehicle

Figure 1.1: Scope of the thesis.

In the second part, we focus on trajectory tracking. We first show that all of our

results developed so far can be also applied for following a desired trajectory. We

additionally address the trajectory generation problem. Finally, we derive the LISA

condition (Limits of Inputs and States are Allocated). It allows an adjustment of

the saturation limits in real-time (e.g. input amplitude and rate) for compensating

a trajectory tracking error depending on the desired trajectory. In other words,

what is not required by the feedforward controller is allowed to be exploited for

tracking error compensation. Consequently, both together (feedforward and error

control) can better exploit the overall allowed constraints in every time step while

still ensuring asymptotic stability. Based on that, we derive the novel LISA-GINA

control framework which combines the advantages of the LISA condition and the

GINA controller for tracking controller design.

The benefit and the practical applicability of the developed methods are illustrated

by numerical and technical examples in both parts of the thesis. The examples arise

from the area of robotics, aircraft and ground vehicle systems. We provide several

experimental results.
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1.3 Outline and Contributions of the Thesis

According to Fig. 1.1 the first part of this thesis is devoted to set point tracking. It

comprises the Chapters 3 - 7. The second part is dedicated to the trajectory tracking

problem and consists of the Chapters 8 - 12. The following overview reveals the focus

of the individual chapters and puts their contributions in a nutshell:

Chapter 2: Preliminaries This chapter presents the required background. We start

with reviewing dynamical fuzzy models focusing on recurrent fuzzy and T-S systems.

Moreover, we give a short overview on estimating a DA based on linear matrix in-

equalities (LMIs). In this context, we briefly explain the characteristics of LMI-based

optimization problems and show related controller design strategies. We also review the

hybrid automata theory for modeling general switched or hybrid dynamical systems.

Moreover, we recap the two-degree of freedom control structure as it will be considered

for solving trajectory tracking problems. Finally, we summarize the theory of flatness-

based feedforward design. The main contribution of this chapter is:

• presentation of the mathematical building blocks of this thesis.

Chapter 3: Set Invariance Conditions How to exploit the closed-loop structure of

an input and state constrained system that has been formulated in T-S notation for

estimating the domain of attraction (DA) of a desired equilibrium? More precisely, in

this chapter we solve the question of how to determine an as large as possible sublevel set

based on a quadratic Lyapunov function within which the asymptotic stability of the

original nonlinear system is guaranteed. We develop related set invariance conditions

in terms of LMIs and we propose a new numerical algorithm for effectively computing

the bounding level value. The two key steps of the algorithm are: First, we determine

the largest ellipsoidal DA derivable based on the T-S formulation of a system. Second,

we iteratively enlarge the obtained bounding level value as long as the time derivative

of the related Lyapunov function is negative concerning the original nonlinear system.

The algorithm is straightforward to implement, which is advantageous in terms of its

broad practical applicability. Finally, we extend the developed algorithm for estimating

multiple nested invariance sets in order to ensure the asymptotic stability within a large

region of the state space and, at the same time, realizing a fast stabilization of the

desired set point. The asymptotic stabilization is directly guaranteed by nested sets if

a set is activated as soon as the trajectory is within the set. We estimate each of the

sets based on an individually optimized closed-loop T-S model. The main contributions
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of this chapter are:

• set invariance conditions for state, input amplitude and rate constrained systems

in T-S notation.

• a numerical algorithm for the effective computation of a preferably large estimation

of the DA.

• a LMI condition for estimating nested DAs.

• a numerical algorithm for the effective computation of nested DAs.

Parts of this chapter have been published in [29, 33].

Chapter 4: Switched Controller Design In this chapter, we address the problem of

designing switching controllers for constrained T-S systems. We present two switching

strategies for relaxing the trade-off between ensuring the asymptotic stability of a desired

set point within a large region of the state space and, at the same time, realizing its

fast stabilization. Both approaches are based on estimating several DAs according to

Chapter 3. While the first strategy is restricted to nested invariance sets we bypass this

limitation in the second one by invoking arguments of the multiple Lyapunov functions

framework. The main contributions of this chapter are:

• two asymptotically stable switched controller design strategies for relaxing the

trade-off between fast stabilization and a large DA of a set point.

Parts of this chapter are based on [32].

Chapter 5: Smooth Switching As a matter of fact a strict switching of a controller

results in a jump of the input signal which entails a jolt to the system. Due to that,

in this chapter we extend our switching strategies from Chapter 4 to smooth switch-

ing. The key element of the extension is to guarantee a single defined change of the

active Lyapunov function while smoothly blending. In addition, we establish an uni-

fied and linguistically interpretable smoothing of a switched T-S system by formulating

the switching conditions as a recurrent fuzzy system which we call RFS-switching. In

this context we show that a hybrid automaton model (see Chapter 2) can be seen as a

switched T-S system and thus also smoothed by RFS-switching. The main contributions

of this chapter are:

• smoothing of the switching controller design strategies of the previous chapter.

• unified and linguistically interpretable smoothing of switching conditions.

This chapter is partly based on [30, 32, 35].
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Chapter 6: Governor Integrated Nominal-Value Adaptation We show a new refer-

ence governor approach called GINA (Governor Integrated Nominal-Value Adaptation)

controller to ensure the stabilization of a desired equilibrium if the state vector is outside

of a nominal estimated DA, e.g. according to Chapter 3. The GINA controller allows

guarantees on stability to be made in a large region of the state space for all systems

that can be written in T-S form. We establish different ways for implementing the

reference governor in order to deal with available computational power and for ensuring

the practical applicability to a broad range of systems: First, we develop an algorithm

providing an optimal real-time computation of the reference signal. Second, we show

possible options for relaxing its numerical complexity. Third, we introduce an iterative

formulation of the algorithm where most of the calculations to be made are done before

a real-time execution starts. The main contributions of this chapter are:

• unified command governor approach for guarantees on stability to be made in a

large region of the state space.

• five strategies and corresponding algorithms for the implementation of the com-

mand governor approach.

This chapter contains results shown in [31].

Chapter 7: Examples We demonstrate the effectiveness and the broad practical appli-

cability of the methods presented in the Chapters 3 to 5 for set point tracking control in

simulation and experiment. Three different technical applications are considered aris-

ing from the areas robotics and ground vehicle systems. We first consider a commonly

known nonlinear benchmark example; the inverted pendulum on cart system. The sec-

ond example is a Ballbot which is a promising new variant of an unstable mobile robot

that balances upright on a sphere. Concerning the second application area, we inves-

tigate active cruise control (ACC) which is an advanced driver assistance system in

modern cars. The main contribution of this chapter is:

• demonstration of the effectiveness and the practical applicability of the methods

proposed in the Chapters 3 to 5.

The equations of motion of some of the examples in this chapter as well as parts of

the results are based on [32, 92]. The methods devolved within this thesis have been

also successfully applied to non-technical examples arising from the field of production

planning, team processes and product development [71, 83, 84, 97, 107].
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Chapter 8: Flatness-based Trajectory Generation With this chapter we start the

second part of the thesis which is devoted to trajectory tracking based on the two-degree

of freedom (2-DOF) control structure. We propose a novel flatness-based approach for

generating performant trajectories along predefined waypoints which is a practically

relevant navigation task, e.g. in robotics. In this context performant means a minimal

trajectory transition time while precisely hitting the waypoints subject to the relevant

constraints and the possibility of a replanning in real-time. Thus, we are concerned with

performance and real-time execution requirements. The essential part of our approach is

that we formulate the trajectory generation process as an piecewise optimization problem

such that a maximum stationary velocity (stationary movement without acceleration)

is assigned to the system at each waypoint. The main contribution of this chapter is:

• a novel flatness-based approach for generating performant trajectories along pre-

defined waypoints subject to constraints.

This chapter is mainly based on [28].

Chapter 9: Form Set Point to Trajectory Tracking In this chapter, we deal with the

question when it is possible to directly apply the developed set point tracking methods

(Chapters 3 to 5) to trajectory tracking using the well known two-degree of freedom

structure. We establish two approaches to derive the tracking error dynamics in T-S

notation. In the first one, local linear systems, which approximate the error dynamics,

are convexly interpolated. In the second approach, the tracking error dynamics is

embedded in a convex hull of linear systems. Based on that, we show that all of

our results derived for set point tracking are applicable for asymptotically stabilizing the

tracking error dynamics if the system constraints are a priori subdivided into two parts:

one reserved for the desired trajectory (feedforward) and one for error compensation

(feedback). The main contributions of this chapter are:

• two approaches to derive the tracking error dynamics in T-S notation.

• transfer of all of our results from set point to trajectory tracking.

Chapter 10: Limits of Input and State are Allocated We introduce a new condi-

tion, called LISA (Limits of Inputs and States are Allocated), that avoids the a priori

subdivision of the system constraints made in the previous chapter. More precisely, we

are able to adjust the limits for compensating a trajectory tracking error (input am-

plitude and rate) depending on the feedforward controller signals while still ensuring

asymptotic stability. To this aim, we derive an exponential decay rate required for the
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Lyapunov function of the tracking error dynamics by analyzing the desired trajectory.

A Lyapunov function that meets this requirement is efficiently searched. We prove

the asymptotic stabilization of the desired trajectory if the DA of the tracking error

dynamics varies over time due to the adaption of the saturating signals. The main

contribution of this chapter is:

• a condition for exploiting the system constraints (input amplitude, rate and state

saturation) for a fast but asymptotically stable trajectory tracking.

This chapter extents the results from [34] to nonlinear systems subject to input ampli-

tude, rate and state saturation.

Chapter 11: The LISA-GINA Control Framework In this chapter, we present an

unified framework for designing a fast and saturating trajectory tracking controller

which allows guarantees on stability to be made in a large region of the error state

space. The framework is called LISA-GINA (Limits of Inputs and States are Allocated-

Governor Integrated Nominal-Value Adaptation) which expresses that the results of

Chapter 9 and Chapter 10 are brought together. In other words, a trajectory tracking

controller which has been designed according to the LISA-GINA control framework

allows: First, to adjust the input and state constraints according to the LISA condi-

tion (Chapter 10). Second, to guarantee the asymptotic stabilization of the desired

trajectory even if the tracking error is outside of the estimated DA due to the GINA

controller. The main contribution of this chapter is:

• unified framework for designing an asymptotically stable, fast and saturating tra-

jectory tracking controller.

This chapter extents the results from [34] to nonlinear systems subject to input ampli-

tude, rate and state saturation.

Chapter 12: Examples We demonstrate the effectiveness and the broad practical ap-

plicability of the methods presented in the Chapters 8 to 11 for trajectory tracking

control in simulation and experiment. We consider two robotic systems out of Chap-

ter 7: the inverted pendulum on cart and the Ballbot system. In addition, we investigate

a vertical take-off and landing aircraft (VTOL). The main contribution of this chapter

is:

• demonstration of the effectiveness and the practical applicability of the methods

proposed in the Chapters 8 to 11.

Some experimental results of this chapter are based on [34].
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Chapter 2

Preliminaries

In this chapter, we summarize the theoretically required background of the thesis. In

Section 2.1, we review two strategies based on fuzzy theory for modeling and controlling

a nonlinear dynamical system. First, recurrent fuzzy systems are described which allow

an intuitive and linguistical interpretation of the dynamics. The second one, the Takagi-

Sugeno system approach allows an approximation or even an exact representation of

the originally nonlinear dynamics by combining linear or affine models. Especially, the

Takagi-Sugeno system structure can be exploited for estimating the domain of attrac-

tion (DA) of a system’s set point using linear matrix inequalities (LMIs). Such estimates

form the basic for the stability investigations concerning set point and trajectory track-

ing within this thesis and will be thus presented in Section 2.2. A short introduction

to hybrid automaton is given in Section 2.3. Concerning trajectory tracking problems,

the two-degree-of-freedom (2-DOF) control structure (Section 2.4) and the concept of

flatness-based feedforward design (Section 2.5) are very popular method. Both will be

taken up in this thesis for effectively planning and tracking a desired trajectory.

2.1 Dynamic Fuzzy Systems

In this section, we outline two key concepts for handling nonlinear dynamical systems

based on fuzzy logic: In Section 2.1.1 we start with introducing recurrent fuzzy systems

(RFS) that enable a linguistic description of the system dynamics. Although originally

arisen from fuzzy theory Takagi-Sugeno systems, which are presented in Section 2.1.2,

are nowadays an independent and mathematical substantiated research area. For a

general introduction to fuzzy systems the reader is referred to [7, 39, 70].
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2.1.1 Recurrent Fuzzy Systems

Since we consider only discrete-time recurrent fuzzy systems (RFS) in this thesis, we

review only the corresponding RFS formulation. Practical relevant examples for apply-

ing RFS are for instance pattern recognition, traffic simulations [63] and as shown in

our [30] papers traffic control systems. A more detailed description of RFS as well as

its continuous-time application can be found in [6, 43].

Conventionally, a RFS represents the dynamics of a discrete-time nonlinear system

in form of linguistic difference equations

If x(k) is Lx
j and u(k) is Lu

q then x(k + 1) is Lx
w(j,q) (2.1)

where x ∈ R
n denotes the state vector, u ∈ R

m is the input vector and k is the

iteration index. The vectors Lx
j =

[

Lx1
j , . . . , L

xn
j

]T
and Lu

q =
[

Lu1
q , . . . , L

um
q

]T
summarize

linguistic values for each element xi, i ∈ N1:n, and up, p ∈ N1:m, respectively. The

amount of linguistical values have to be defined, meaning Lxi
j and Lup

q with j ∈ N1:w and

q ∈ N1:z, respectively. The index vectors j, q summarize the appropriate linguistical

characteristics of a rule and the linguistic vector of the rules’ conclusions in (2.1) is

Lx
w(j,q). The index vector w is defined analogous to j and denotes the mapping (j,q) →

w(j,q).

Example 2.1.1. Consider two state variables both having the same characteristics

Lxi
1 = small, Lxi

2 = large, i ∈ N1:2 and a single input with two linguistic values Lu
1 = on,

Lu
1 = off. Then a single rule (2.1) might be

If x(k) is [small, large]T and u(k) is [on] then x(k + 1) is [large, small]T . (2.2)

The linguistic difference equations (2.1) can be also interpreted as a deterministic

linguistic automaton. The linguistic state vectors Lx
j represent the automaton states

and the inputs Lu
q are the events which lead to a state transition. Fig. 2.1 shows the

automaton description of the Example 2.1.1. The rule (2.2) is highlighted.

[Lx1

2
, Lx2

1
]T [Lx1

2
, Lx2

2
]T [Lx1

1
, Lx2

2
]T [Lx1

1
, Lx2

1
]T

Lu
1

Lu
1

Lu
1

Lu
1

Lu
2

Lu
2

Lu
2Lu

2

Figure 2.1: Deterministic automaton schematic of a recurrent fuzzy system.
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Figure 2.2: Membership functions.

Finally, the RFS can be also formulated as a nonlinear difference equation. Therefore,

the linguistic values have to be characterized by fuzzy compact sets using membership

functions µxi
Lj

and µ
up

Lq
. These functions assign the membership of crisp valued signals

xi, up to the linguistic values. Conventionally, normalized membership functions are

considered, meaning that the convex sum property

∑

j

µxi
Lj

=
∑

q

µ
up

Lq
= 1, µxi

Lj
≥ 0, µ

up

Lq
≥ 0 (2.3)

is satisfied. Simple but often used are trapezoid-shaped and triangular functions as

well as singletons as shown in Fig. 2.2(a), Fig. 2.2(b) and 2.2(c), respectively. The

"(.)" is in place of the corresponding variable xi or up. The membership functions are

completely defined by core position vectors s(.) = [s1(.), s2(.), . . .] which declare the

crisp values where a membership function reaches its maximum. Singleton membership

functions are often denoted by sL(.) as they are only active at its core position. The

rule base (2.1) is inferred by classic fuzzy logic and the conclusion is defuzzified in order

to obtain a crisp valued x(k + 1). The nonlinear difference equation is given by

x(k + 1) = f(x(k),u(k)) =
∑

j,q

sx
Lw(j,q)

∏

i

µxi
Lj

(xi)
∏

p

µ
up

Lq
(up). (2.4)

2.1.2 Takagi-Sugeno Systems

A Takagi-Sugeno (T-S) system consists of a family of linear or affine dynamic systems

which are smoothly blended by fuzzy membership functions. A T-S model represents

a nonlinear system either exactly or approximatively with definable accuracy. In the

following, we will summarize the relevant modeling procedures for deriving a continuous-

time T-S system as well as related T-S controllers. The closely related discrete-time

case can be reviewed in [39, 113].
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Definition 2.1.1. A sector nonlinearity (SE-NL) T-S system

ẋ =
r∑

i=1

hi(zs) (Aix + Biu) (2.5)

consists of r linear subsystems (Ai,Bi) that are blended together by scalar, nonlinear

functions hi(zs), with zs(x,u). The SE-NL T-S system, meaning the linear subsys-

tems (Ai,Bi) as well as the blending functions hi(zs), is obtained by transforming a

continuous-time nonlinear system model

ẋ = A(x,u)x + B(x,u)u, (2.6)

with the state vector x ∈ R
n and the input vector u ∈ R

m by applying the sector

nonlinearity approach [113]. The model (2.6) equals to (2.5) in a defined range where

the blending functions fulfill the convex sum property

r∑

i=1

hi(zs) = 1, hi(zs) ≥ 0 ∀ hi(zs). (2.7)

More precisely, the elements of the premise vector zs are the state and input variables

that nonlinearly affect (2.6). The sets

Ms,x = {xi, i ∈ N1:n : xi ∈ zs, ∀ i} , (2.8a)

Ms,u = {ui, i ∈ N1:m : ui ∈ zs, ∀ i} , (2.8b)

summarize those variables henceforth. The sector nonlinearity approach is most often

described based on examples [113]. Nevertheless, we will try to state a general procedure

in the following: First, we define a compact set of the premise variables by

x−
i < 0 < x+

i , ∀ xi ∈ Ms,x, (2.9a)

u−
i < 0 < u+

i , ∀ ui ∈ Ms,u (2.9b)

where x−
i and u−

i represent the lower and x+
i as well as u+

i the upper bounds of the

variables (2.8). The set (2.9) bounds the operating region, the universe of discourse

(UoD), of the SE-NL T-S system. This is also the region, where (2.5) and (2.6) behave

equivalent. To obtain that, we calculate the extreme values

θk(zs) = max(θk(zs)), θk(zs) = min(θk(zs)) (2.10)
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within the set (2.9) for all r̂ nonlinear functions θk(zs), k ∈ N1:r̂, in A(x,u) and B(x,u).

Then weighting functions

µk,1 =
θk(zs) − θk(zs)

θk(zs) − θk(zs)
, µk,2 =

θk(zs) − θk(zs)

θk(zs) − θk(zs)
(2.11)

with µk,1 + µk,2 = 1 and µk,i ≥ 0, i ∈ N1:2, are derived which denote the member-

ship of each nonlinearity to its maximum θk(zs) and minimum value θk(zs). In other

words, if µk,1 = 1 then θk(zs) = θk(zs) and if µk,2 = 1 the value of the nonlinearity

is θk(zs) = θk(zs). The blending functions hi(zs) are given by aggregating one mem-

bership function (2.11) of each nonlinearity. Consequently, by permuting all possible

combinations, we obtain r = 2r̂ different blending functions

h1(zs) = µ1,1 · µ2,1 · . . . · µr̂,1, (2.12a)

h2(zs) = µ1,2 · µ2,1 · . . . · µr̂,1, (2.12b)

...

h2r(zs) = µ1,2 · µ2,2 · . . . · µr̂,2 (2.12c)

and thus subsystems within (2.5). For instance, h2(zs) is obtained from h1(zs) by

changing µ1,1 to µ1,2. The subsystems (Ai,Bi), i ∈ N1:r̂, belonging to hi(zs) are given

by inserting the extreme values (2.10) according to (2.12) into (2.6). Hence, as long as

the state and input variables remain in the UoD (2.9) the convex sum property (2.7) is

fulfilled and the SE-NL T-S system (2.5) is identical to (2.6).

The underlying idea of the SE-NL T-S formulation is summarized in Fig. 2.3(a)

considering a single premise variable zs and one nonlinearity θ(zs). The nonlinearity is

at least locally (solid orange line of θ(zs)) within the convex hull spanned by θ(zs) and

θ(zs), meaning θ(zs) ∈ co
{

θ(zs), θ(zs)
}

. Consequently, θ(z) can be exactly represented

by a convex combination of θ(zs) and θ(zs) which form the linear subsystems of the

related T-S model. The size of the convex hull is defined by the compact set (2.9).

Example 2.1.2. Consider the system

ẋ =




θ1(zs) 1

0 6



x +




0

θ2(zs)



u (2.13)

of the form (2.6) with the nonlinearities θ1(zs) = x2
1 +x2 +1 and θ2(zs) = exp(x1). Con-

sequently, the premise vector is zs = [x1, x2]T . The maximum values for the UoD (2.9a)

of the T-S model are set to
∣
∣
∣x−

1

∣
∣
∣ = x+

1 = 1,
∣
∣
∣x−

2

∣
∣
∣ = x+

2 = 6 which results according
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zs

θ(zs)

θ(zs)

θ(zs)

(a) SE-NL T-S principle

zs

θ(zs)

local linearization point

affine subsystem

(b) LO T-S principle

Figure 2.3: Handling of nonlinearities for a T-S model formulation.

to (2.10) in θ1(zs) = 8, θ1(zs) = −4 and θ2(zs) = 2.72, θ2(zs) = 0.37. Based on that

the blending functions hi(zs), i ∈ N1:4, and the corresponding linear subsystems

A1 =




θ1(zs) 1

0 6



 , A2 =




θ1(zs) 1

0 6



 , A3 =




θ1(zs) 1

0 6



 , A4 =




θ1(zs) 1

0 6



 ,

b1 =
[

0 θ2(zs)
]T
, b2 =

[

0 θ2(zs)
]T
, b3 =

[

0 θ2(zs)
]T
, b4 =

[

0 θ2(zs)
]T

(2.14)

can be calculated.

Definition 2.1.2. A T-S model with local defined subsystems (LO T-S system)

ẋ =
r∑

i=1

hi(zs) (Aix + Biu + ai) (2.15)

consists of r affine systems (Ai,Bi, ai) that are blended together by scalar, nonlinear

functions hi(zs). The subsystems are derived by locally linearizing a continuous-time

nonlinear system at a defined number of r operating points [39]. The operating points

define a range where a LO T-S system approximates (2.6) with a definable approxi-

mation error. Within this range the blending functions hi(zs) are given by fuzzy basis

functions [70] and fulfill the convex sum property (2.7). The premise vector zs summa-

rizes the state, input and parameter variables (similar to (2.8)) that are varied for the

local linearization at the operating points. Note that the affine term ai vanishes if an

operating point is an equilibrium of the system.
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Hence, hi(zs) equals to one if (Aix + Biu + ai) should be activated. For instance,

trapezoid-shaped functions (like the membership function in Fig. 2.2(a)) can be consid-

ered. The calculation of the affine subsystems and the design of the blending functions

hi(zs) is detailed in [39, 113] and thus omitted here. The idea of the LO T-S formu-

lation is depicted in Fig. 2.3(b) analogous to the sketch of the SE-NL T-S formulation

in Fig. 2.3(a). The nonlinearity θ(zs) is approximated by affine subsystems. The lin-

earization points and each subsystem are marked by dots and dashed lines, respectively.

Hence, it becomes clear that a LO T-S model (2.15) consisting of r = 11 affine subsys-

tems approximates the nonlinearity θ(zs) well in the same range in which the SE-NL

T-S exactly reflects it.

The question which T-S representation to chose is not easy to be answered in general.

In our opinion, a SE-NL T-S model (2.5) is always preferable as it exactly represents a

nonlinear system. However, the modeling process can become complicated for complex

nonlinear systems. Compared to that, a LO T-S system (2.15) can be automatically

generated. But, the number of required subsystems for approximating a nonlinear sys-

tem sufficiently well becomes often unpractical for system analyzes, controller design

and real time application. In this thesis, we will focus on the widely used T-S formula-

tion without affine terms, meaning SE-NL T-S systems (2.6) or LO T-S models (2.15)

where the linearization is only done at equilibria [78, 128]. However, most of our results

can be directly applied to LO T-S systems with affine terms as well.

Analogous to a T-S system, a T-S controller can be designed. The mainly used scheme

is

u =
r∑

j=1

hj(zc) (Fjx) (2.16)

which schedules linear state feedback matrices Fj (one for each T-S subsystem (2.5)

or (2.15)) based on the blending functions hj(zc). They can be freely chosen as long as

they fulfill the convex sum property

r∑

i=1

hj(zc) = 1, hj(zc) ≥ 0 ∀ hj(zc) (2.17)

(analogous to the blending functions in (2.15)). In general, the blending is designed

such that the premise vector zc is independent of the input signal in order to avoid

algebraic loops. Hence, a UoD is spanned in analogous manner to (2.9a) by

x−
i < 0 < x+

i , ∀ xi ∈ Mc,x. (2.18)
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An affine extension to the T-S controller

u =
r∑

j=1

hj(zc) (Fjx) + fj (2.19)

is often considered for LO T-S systems (2.15). Merging the T-S systems (2.5) and (2.15)

with the controllers (2.16) and (2.19), respectively, we obtain the closed-loop T-S for-

mulations

ẋ =
r∑

i=1

r∑

j=1

hi(zs)hj(zc) (Ai + BiFj) x, (2.20a)

ẋ =
r∑

i=1

r∑

j=1

hi(zs)hj(zc) ((Ai + BiFj) x + ai + Bifj) . (2.20b)

Remark 2.1.1. If zc = zs and hj(zc) = hi(zs) then the so-called parallel distributed

compensation (PDC) control law is obtained.

Remark 2.1.2. A RFS of Section 2.1.1 can be seen as a special type of a Takagi-Sugeno

system with scalar subsystems [43, 44].

2.2 LMI-based Estimation of the Domain of Attraction

The objective of this section is to review some fundamental results from the literature for

effectively estimating a domain of attraction (DA) of a system set point and designing

a controller based on convex optimization and linear matrix inequalities (LMIs). We

briefly explain what a LMI is and how a DA as well as a controller can be designed

based on them subject to constraints. A more in-depth explanation can be found

in [18, 77, 114, 118]. In particular, we first consider the presence of input saturation, to

which every physical system is subjected to. We show how the saturation nonlinearity

can be described by a convex combination of linear feedback controllers (similar to a T-

S formulation according to the Section 2.1.2). This formulation is useful for estimating

a large DA of a system set point allowing the effective occurrence of input saturation.

This will be focused for linear and T-S systems in Section 2.2.2.

2.2.1 Polytope Representation of Input Saturation

If all of the input capacity is exploited, which is called effective input saturation or

over-saturating, the performance of the closed-loop system is improved. To this aim,
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2.2 LMI-based Estimation of the Domain of Attraction

the so-called polytopic modeling of the saturation nonlinearity

σ(u) =







−ui,max if ui ≤ −ui,max,

ui,max if ui ≥ ui,max, ∀ i ∈ N1:m

ui else,

(2.21)

have been proposed for linear systems [57, 58] and extended to nonlinear systems in

SE-NL T-S form in [23]. The underlying idea of the polytopic modeling approach is to

compose the saturation nonlinearity as a convex combination of a desired state feedback

law and an auxiliary one.

In order to catchy summarize the polytopic modeling approach, we will first consider

a linear saturated system

ẋ = Ax + Bσ(u) (2.22)

with x ∈ R
n, a input u ∈ R

m and a desired state feedback controller

u = Fx, F ∈ R
m×n. (2.23)

Fig. 2.4 sketches the following explanation concerning the scalar case u = fx: Suppose

that an auxiliary controller u = Hx, H ∈ R
m×n, exists which is less aggressive than

the desired one. In other words, |Hx| ≤ |Fx| as shown in Fig. 2.4. Hence, as long

as the auxiliary controller does not saturate, the output of the saturation nonlinearity

can be exactly computed by the convex combination of both control laws. In order

to formulate that, we define a set V of all possible m × m boolean diagonal matrices

fx

hx

x

umax

−umax

u

Figure 2.4: Polytopic model of the saturation nonlinearity σ(u).
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Es, s ∈ 2m and E−
s = I − Es with I denoting the identity matrix. Then the convex

combination is

σ(Fx) = co
{(

EsF + E−
s H

)

x : s ∈ N1:2m

}

. (2.24)

The gray area in Fig. 2.4 depicted where the saturated control law can be modeled

by (2.24). As a consequence, the closed-loop dynamics can be computed from the

polytopic model

ẋ =
2m
∑

s=1

µs

(

A + B
(

EsF + E−
s H

))

,
2m
∑

s=1

µs = 1, 0 ≥ µs ≥ 1. (2.25)

That concept is very similar to a SE-NO T-S formulation (2.15): while the SE-NL

T-S model represents a nonlinearity by a convex combination of linear systems, the

saturation function is represented by a convex combination of two linear control laws.

We state the following Lemma:

Lemma 2.2.1 (see [57, 114]). Let a saturated linear controller u = σ(Fx), F ∈ R
m×n

for a system (2.22), and an auxiliary controller with the feedback matrix H, H ∈ R
m×n,

be given. Then (2.24) and (2.25) is fulfilled for all x inside the polytope

L(H) =
{

x ∈ R
n :
∣
∣
∣hT

i x
∣
∣
∣ ≤ umax,i, ∀ i ∈ N1:m

}

. (2.26)

An extension of Lemma 2.2.1 for handling input signals with nested saturation func-

tions (e.g. amplitude and rate limits) is given in [13]. Additionally, Lemma 2.2.1 has

been naturally expanded to SE-NL T-S systems (2.5):

Lemma 2.2.2 (see [23]). Let a T-S controller (2.16) for a SE-NL T-S system (2.5)

with a saturating input and an auxiliary T-S controller with the feedback matrices Hj,

Hj ∈ R
m×n and j ∈ N1:r, be given. Then it follows that

σ





r∑

j=1

hj(zc) (Fjx)



 = co







r∑

j=1

hj(zc)
(

EsFj + E−
s Hj

)

x : s ∈ N1:2m






(2.27)

and as a consequence, the closed-loop dynamics equals to the polytopic T-S model

ẋ =
r∑

i=1

r∑

j=1

2m
∑

s=1

hi(zs)hj(zc)µs

(

Ai + Bi

(

EsFj + E−
s Hj

))

, (2.28)
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with
∑2m

s=1 µs = 1, 0 ≥ µs ≥ 1 for all x inside the polytope

L(H̃) =
r⋂

j=1

(L(Hj)) , (2.29)

where each subpolytope L(Hj) is defined according to (2.26).

In other words, if x ∈ L(H̃) then (2.27) is fulfilled. The corresponding convex hull is

spanned by the linear controllers Fj and Hj which leads to the T-S system (2.28).

2.2.2 Quadratic Estimate and Controller Design

The controller design for a T-S system as well as a related estimation of a domain

of attraction (DA) at the equilibrium x∗ are often formulated as convex optimization

problems based on a quadratic Lyapunov function

Vx∗ = (x − x∗)T
P (x − x∗) (2.30)

with the positive definite matrix P > 0. Such optimization problems are tagged by the

fact that both, the optimization objective function and all constraints are convex [118].

This attribute yields to an unique solution (global optimum) and allows an efficient

solving of those problems. A constraint in form of a linear matrix inequality (LMI) is

always convex. Roughly speaking, a LMI is an inequality where both sides consist of

a sum of matrices. In each summand a maximum of one unknown variable is allowed

(see Example 2.2.1).

Example 2.2.1 (see [18]). A controller u = Fx globally asymptotically stabilizes the

equilibrium x∗ = 0 of a linear system

ẋ = Ax + Bu (2.31)

with x ∈ R
n, an input u ∈ R

m if a function V0 = xT Px exists that fulfills:

P > 0 (2.32a)

(A + BF)T
P + P (A + BF) < 0. (2.32b)

These two conditions are LMIs which prove the global asymptotic stability based on

a quadratic Lyapunov function. It is commonly known that the function has to be

positive definite (see (2.32a)) and its derivative (2.32b) to be negative definite for all

x 6= 0.
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If in addition to the Lyapunov function the linear controller should be searched

then (2.32b) is not a LMI anymore as in some terms of the sum both unknown variables

P and F appear. However, the problem can be reformulated such that it becomes a

LMI again:

Theorem 2.2.1 (see [18]). If there exist matrices Q and F̃ such that

Q > 0 (2.33a)

QAT + F̃T BT + AQ + BF̃ < 0. (2.33b)

is fulfilled then the control law u = Fx globally asymptotically stabilizes the equilibrium

x∗ = 0 of a linear system (2.31) whereby F̃ = FQ.

In other words, (2.32) is multiplied with Q = P−1 from the left and the right-hand

side. Substituting F = F̃P leads to the LMIs (2.33).

Due to the fact that a SE-NL T-S system (2.6) and a LO T-S model (2.15) without

affine terms (operating points are set points) consists of a convexly weighted combina-

tion of several linear system, the LMIs (2.32) can be naturally extended for proving the

asymptotic stability in the large:

Theorem 2.2.2 (see [113]). The origin x∗ = 0 of the closed-loop SE-NL T-S sys-

tem (2.20a) (or a LO T-S model without affine terms) is globally asymptotically stable

if there exists a matrix P > 0 such that

(Ai + BiFj)
T

P + P (Ai + BiFj) < 0, ∀ i, j ∈ N1:r. (2.34)

The proof relies heavily on the fact that each convex combination of linear systems

that share a common quadratic Lyapunov function results in a system for which the

same Lyapunov function is valid [68, 80]. The result in Theorem (2.2.2) can be relaxed,

either by reducing the number of LMI conditions or by diminishing its conservatism [66,

113]. For instance, one typical relaxation which mainly intents to reduce the number

of LMIs is a common input matrix:

Theorem 2.2.3 (see [113]). The origin x∗ = 0 of the closed-loop SE-NL T-S sys-

tem (2.20a) (or a LO T-S model without affine terms) is globally asymptotically stable

if the subsystems have a common input matrix B = Bi, i ∈ N1:r and there exists a

matrix P > 0 such that

(Ai + BFi)
T

P + P (Ai + BFi) < 0, ∀ i ∈ N1:r. (2.35)
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Obviously, (2.34) and (2.35) can be also written according to Theorem 2.2.1 if a T-S

controller is searched.

Example 2.2.2. Rewriting (2.34) according to Theorem 2.2.1 results in

QAT
i + F̃T

j BT
i + AiQ + BiF̃ < 0, ∀ i, j ∈ N1:r. (2.36)

A minimal decay rate

V0 = −αV0, α ≥ 0 (2.37)

of the Lyapunov function can be also postulated in all of the shown LMIs by replacing

the right-hand side of the Lyapunov inequality (e.g. (2.32b) or (2.36) with −αP and

−αQ, respectively [18]. Beside a minimal decay rate, LMI constraints can be formulated

for ensuring that the poles of the linear subsystem remain in a specific region of the

complex left half-plane, e.g. within a circle or a cone [27, 78].

The asymptotic stability of an equilibrium cannot be globally proven anymore if

system constraints become relevant. To this end, we will estimate ellipsoidal (DA)

Xx∗(P, ηu∗) = {x ∈ R
n : Vx∗ ≤ ηu∗} , (2.38)

based on a quadratic Lyapunov function (2.30), with x∗ denoting the considered equi-

librium and u∗ the corresponding steady-state input. The bounding level value of the

DA is ηu∗ > 0 and the related bounding level set is denoted

∂Xx∗(P, ηu∗) (2.39)

henceforth. Based on that a LMI can be formulated which guarantees that the bounding

level set does not violate a state depending constraint:

Lemma 2.2.3 (see [18, 57]). Let a polytope

L(M) =
{

x ∈ R
n :
∣
∣
∣mT

i x
∣
∣
∣ ≤ ζ, ∀ i

}

(2.40)

where mT
i is the i–th row of a matrix M be given. Then X0(P, η0) ⊂ L(M) if and only

if the LMI

mT
i Qmi ≤ ζ2 ⇔




ζ2 mT

i Q

Qmi Q



 ≥ 0, ∀ i (2.41)

with Q =
(

P
η0

)−1
is fulfilled.
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In other words, if a certain Q fulfills the LMI (2.41) then the corresponding X0(P, η0)

is obtained by choosing a value for η0 and calculating P =
(

Q

η0

)−1
. For instance, effective

input saturation by the Lemmas 2.2.1 (for linear systems) and 2.2.2 (for T-S systems)

can be considered by (2.41) when setting ζ = umax,i and mi = hi.

In order to finally obtain a convex optimization problem we still require an opti-

mization objective which should be minimized subject to the relevant LMI constraints.

In this thesis, we are mainly interested in finding the largest DA (2.38) which can be

measured by its volume. The corresponding ellipsoid is obtained by the determinant

maximization (MAXDET) problem [117]

min
Q>0

−log det (Q) , (2.42)

s. t. (a) . . . ,

(b) . . . ,
...







LMI constraints

with Q =
(

P
η0

)−1
. Alternatively, the objective function

min
P>0

trace (P) (2.43)

can be considered if the LMI constraints are depending on P. Note that the LMI has to

be either written depending on P or Q, e.g. by multiplying with P or Q as required for

Example 2.2.2. Beside the size of an ellipsoid, trace can be also considered to synthesis

T-S controllers with a guaranteed-cost, e.g. H∞, H2, LQR and dissipative performance

measure [59, 78].

Different toolboxes and solvers exist for LMI-based convex optimization problems. We

use YALMIP where LMIs can be implemented straightforward without any confusing

special syntax [82]. An overview of available solvers can be found in [4]. We consider

two solvers: first, the MATLAB standard solver form the LMI-LAB which is part of

the Robust Control Toolbox and second, the SDPT3 which is a commonly used solver

with YALMIP.

Example 2.2.3. Consider the unstable nonlinear system

ẋ =




0 1

0 θ1(zs)



x +




0

1



σ(u) (2.44)

with θ1(zs) = x2
1 + 1. Consequently, a T-S model (2.5) of (2.44) is defined by two linear
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subsystems (Ai,B), i ∈ N1:2, with the system matrices

A1 =




0 1

0 θ1(zs)



 , A2 =




0 1

0 θ1(zs)



 , b =
[

0 1
]T
. (2.45)

We set the bound of the universe of discourse (UoD) (2.9a) of x1 (x1 nonlinearly af-

fects (2.45)) to
∣
∣
∣x−

1

∣
∣
∣ = x+

1 = 1.6 and the input amplitude is limited to umax = 7. Two

DAs (2.38) at x∗ = 0, u∗ = 0 are shown in Fig. 2.5(a) by their bounding level sets

avoiding input saturation to occur and setting the bounding level value to η0 = 1.

Concerning the first DA with the bounding level value ∂X0(P1, 1), we searched for a

Lyapunov matrix P > 0 and a PDC (2.16) such that a minimal decay rate of V0 = −αV0

with α = 1.5 is ensured. Consequently, the LMIs required for guaranteeing asymptotic

stability are Q < 0 and (2.36) (subject to a decay rate). LMI (2.41), with m = f , has

been considered for avoiding input saturation. The optimization problem is:

min
Q>0,K̃i

− log det (Q) , (2.46)

s. t. (a) QAT
i + f̃ib

T + AiQ + bf̃T
i ≤ −αQ, i ∈ N1:2,

(b)




u2

max f̃T
i

f̃i Q



 ≥ 0, i ∈ N1:2.

The finally obtained PCD is

fT
1 =

[

−2.46 −4.36
]

, fT
2 =

[

−1.07 −5.06
]

. (2.47)

Now using this controller, we set the decay rate of the Lyapunov function α = 0
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∂X0(P1, 1)

fT
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x
2

(a) Avoiding saturation
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x
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(b) Effective saturation

Figure 2.5: T-S model based optimization of X0(Pi, 1), i ∈ N1:3.
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and solve (2.46) again which leads to the larger DA ∂X0(P2, 1). According to the

LMI (2.46) (b), both ellipsoids are tangent to the input saturation lines fT
1,2x = ±umax

of the T-S system. The larger ellipsoid ∂X0(P2, 1) is also depicted in Fig. 2.5(b) and

compared to ∂X0(P3, 1) where effective saturation (over-saturation) is considered by

the polytopic representation of input saturation (2.28). The optimization problem is:

min
Q>0,H̃i

− log det (Q) , (2.48)

s. t. (a) QAT
i +

(

esf
T
i Q + e−

s h̃T
i

)T
BT + AiQ + Bi

(

esf
T
j Q + e−

s h̃T
i

)

< 0

(b)




u2

max h̃T
i,l

h̃i,l Q



 ≥ 0,

with i, s ∈ N1:2. In order to obtain the largest possible DA, the auxiliary controller

gains Hi are optimized in addition. Hence, a substitution h̃T
i = hT

i Q is required.

Putting the quintessence seen from this simple example in a nutshell: First, increasing

the minimal decay rate of the Lyapunov function leads to a reduction of the DA. This

is plausible as a decay rate restricts the possible solutions. Second, the largest DA can

be found if effective input saturation is considered. Thereby, regions (not only single

points) in the state space are included in the DA whereby the whole input amplitude

is exploited. However, the drawback of this strategy is that the number of LMIs rises.

An equilibrium x∗ 6= 0 may require a steady-state input signal u∗ 6= 0 which in

turn reduces its DA. In case that a linear state feedback law (2.23) is considered, the

bounding level value of the considered closed-loop system is given by [114]

ηu∗ = min
i

(

η0 ·
(umax,i − |u∗

i |)
2

u2
max,i

)

. (2.49)

Consequently, the DA of an arbitrary equilibrium is directly determinable based on

X0(P, η0) for the origin. Unfortunately, such an analytical relation does not exist if a

T-S controller (2.16) is considered. In that case, the DA has to be individually estimated

for each equilibria (x∗,u∗) we are interested in, e.g. by applying the shown estimation

strategy for η0 subject to a coordinate shift.

2.3 Hybrid Automaton

A hybrid automaton is a general formal model of a switched or hybrid dynamical

system [52]. It consists of the following components:
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2.3 Hybrid Automaton

Control graph. A finite directed multigraph (V ;E). The vertices V are called

control modes. The edges E which link the control modes together, are called control

switches.

State variables. A finite set of state variables x = [x1, x2, . . . , xn]T . The number n

defines the dimension of the hybrid automaton.

Switch conditions. Functions assigned to the edges. These functions define under

which conditions a jump from one control mode to another one is allowed.

Flow, initial and invariant conditions. Functions assigned to the control modes.

Differential equations are flow conditions that define the continuous change over time

of the state variables in a certain control mode. Initial conditions show which control

modes are allowed to be activated initially and the corresponding values for x0 for the

initial time t0. If no initial condition is assigned then initializing the hybrid automaton

in an arbitrary control mode with arbitrary values x0 is allowed. Note, usually only one

control mode is allowed to be active at a time. An invariant condition defines the region

of the state vector x that is allowed in the corresponding control mode. Hence, a jump

to a different control mode is forced, and must be allowed by a switching condition, if

an invariant condition is violated.

Events. A finite set of events can (but do not have to) be assigned to an edge. An

event leads to a jump (resetting) of the state variables when switching from one control

mode to another one. Events are required for modeling so-called impulsive systems [50]

which are not further considered in this thesis.

Example 2.3.1 (Temperature controller [99]). Fig. 2.6 shows a hybrid automaton

model of a temperature controller with an internal heater engine. The temperature of

the plant and the temperature of the heater engine xp and xe, respectively, are the state

variables of the automaton. A thermostat continuously senses the temperatures and

turns the heater on and off whereby the two control modes are defined. The fall and

rise of the temperatures is governed by the differential equations located in each control

mode. The acceptable region of the state space of the control mode "on" is given by

the invariant condition xp ≤ 25 ∧ xe ≤ 80. If these limits are reached the heater has

to be turned off. However, the controller can already switch the heater "off" as soon as

off
ẋp = −xp

ẋe = −3xe

(xp ≥ 20 ∨ xe ≥ 50)

on

ẋp = 100 − xp

ẋe = 2(150 − xe)

(xp ≤ 25 ∧ xe ≤ 80)xp ≥ 24 ∨ xe ≥ 75

xp ≤ 21 ∧ xe ≤ 55

Figure 2.6: Temperature controller with an internal heater engine.
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xp ≥ 24 ∨ xe ≥ 75 (switch conditions). The heater can be turned on again as soon as

the switch condition xp ≤ 21 ∧ xe ≤ 55 is fulfilled, but must be turned on before the

temperature of the plant is below 20 or the temperature of the heater is below 50.

As the example shows, a hybrid automaton does not necessarily have an equilibrium

and thus stability deviates from classical definitions in control theory.

Definition 2.3.1 (Region stability [99, 100]). A hybrid automaton is stable with respect

to a region ǫ (called ǫ-region) if for every trajectory there exists a point of time tp such

that for t > tp the trajectory is always in the ǫ-region.

Region stability is essentially what is called practical stability in [124]. For instance,

the ǫ-region of the temperature controller in Example 2.3.1 is xp ∈ [20, 25], xe ∈ [50, 80].

2.4 Two-Degree of Freedom Control Structure

An often considered control scheme for trajectory tracking problems is the two-degree

of freedom (2-DOF) control structure [56]. It allows an independent design of the

command and the disturbance response by combining a feedforward with a subsidiary

feedback controller according to Fig. 2.7. The feedforward part is ideally a perfect

inversion of the system and calculates a nominal input trajectory uT as well as a corre-

sponding trajectory of the state xT such that the tracking output yT exactly follows a

desired reference trajectory yref in the absence of disturbances. All signals are defined

over a time span t ∈ T , T = {t|t0 ≤ t ≤ te} where t0 and te represent the starting time

and the end time, respectively, of the reference trajectory. A tracking error e = xT − x

may occur for two reasons: First, the feedforward controller does not perfectly match

the system’s inverse, e.g. due to assumptions made while modeling the system. Second,

an external disturbance or a measurement noise occurs. In both cases, the desired state

trajectory xT is asymptotically stabilized by superimposing the feedback signal ue 6= 0.

yref

xT x

uuT

e

yT
feedforward system

controller

ue

disturbance or noise

Figure 2.7: Two-Degree-off-Freedom (2-DOF) control structure.
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Consequently, a desired tracking behavior can be a priori designed and thus the control

performance is increased as only the tracking error has to be compensated.

If the system is subject to constraints, the trajectory tracking task becomes more

complicated as both together, feedforward and feedback part, have to meet the system

limits. Intuitively, a constraint can be subdivided into two parts: one for the feedforward

part and the second for error compensation:

Assumption 2.4.1. Each system constraint can be formulated as a restriction ̟max

of the absolute value of single state or input variables.

These absolute values can be simply subdivided into two parts

̟e,max = ̟max −̟T,max (2.50)

with

̟T,max = ρ̟̟max, with 0 ≤ ρ̟ < 1. (2.51)

In other words, ̟T,max and ̟e,max subdivide a constraint ̟max into two: the first

is valid for the feedforward and the second for error compensation. Equation (2.51)

guarantees that ̟e,max > 0. This concept has been for instance considered in [62] for

linear systems subject to input saturation.

2.5 Flatness-based Feedforward Design

The property of differential flatness (shortly flatness) was defined in [41]. Flatness

enables, among others, a convenient way for calculating a feedforward controller, e.g.

for the 2-DOF control structure according to Fig. 2.7. A mathematical definition can

be stated as follows:

Definition 2.5.1. A general nonlinear system

ẋ = f(x,u), (2.52)

with the state vector x ∈ R
n and the input vector u ∈ R

m, rank(∂f(x,u)
∂u

) = m, is said

to be differential flat (or flat) if: First, there exits a virtual output, the so-called flat

output,

yf = φ(x, u1, . . . , u
(ζ1)
1 , . . . , um, . . . , u

(ζm)
m ), dim(yf ) = dim(u) (2.53)
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that can be expressed in terms of the state vector, the input vector and a finite amount

of time derivatives u
(k)
i , k ∈ N1:ζi

. Second, the complete state and input vector can

be expressed in terms of yf and finitely many of its time derivatives y
(k)
f,i , k ∈ N1:ξi+1,

meaning functional relations

x = ψx(yf,1, . . . , y
(ξ1)
f,1 , . . . , yf,m, . . . , y

(ξm)
f,m ),

u = ψu(yf,1, . . . , y
(ξ1+1)
f,1 , . . . , yf,m, . . . , y

(ξm+1)
f,m )

(2.54)

exist.

In other words, if a flat output exists, then the whole dynamical system can be

parametrized depending on this output. Concerning a feedforward design that can be

advantageously exploited as the state and input trajectories

xT = ψx(y∗
f,1, . . . , y

∗(ξ1)
f,1 , . . . , y∗

f,m, . . . , y
∗(ξm)
f,m ), (2.55a)

uT = ψu(y∗
f,1, . . . , y

∗(ξ1+1)
f,1 , . . . , y∗

f,m, . . . , y
∗(ξm+1)
f,m ) (2.55b)

are analytically given depending on a desired trajectory of the flat output yref = y∗
f .

Hence, the differential equations of the system (2.52) have not to be numerically solved

while generating or optimizing a desired trajectory, whereby the required computational

effort is reduced. The flat output is often physically or intuitively accessible and thus

planning a flat output trajectory is convenient. An often used approach is to define a

sufficiently smooth trajectory function for y∗
f ∈ Cξm+1 for a time interval t ∈ [t0, te]. For

instance, based on splines or polynomials

y∗
f,k(pj,k) =

qk∑

j=1

pj,k

(
t

t0 − te

)j−1

, k ∈ N1:m (2.56)

for each component yf,k of the flat output. The order qk of each polynomial depends on

the boundary conditions that should be fulfilled, e.g. qk ≥ 2n+1 if the trajectory should

start and end at a specific point in the state space xT (t0) and xT (te), respectively. The

order is thereby given by the required conditions that specify the location of the flat

output and its derivatives

yf,1(t0) = y∗
f,1,0, . . . , y

(ξ1)
f,1 (t0) = y

∗(ξ1)
f,1,0 , . . . , yf,m(t0) = y∗

f,m,0, . . . , y
(ξm)
f,m (t0) = y

∗(ξm)
f,m,0 ,

yf,1(te) = y∗
f,1,e, . . . , y

(ξ1)
f,1 (te) = y

∗(ξ1)
f,1,e , . . . , yf,m(te) = y∗

f,m,e, . . . , y
(ξm)
f,m (te) = y

∗(ξm)
f,m,e .

(2.57)

The property of flatness is especially beneficial for linear systems as controllability
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means that they are flat as well. Additionally, the flat output can be constructively

determined which is currently not the case for nonlinear systems in general. For a more

detailed introduction of the flatness property, we refer the interested reader to [106, 127].

Example 2.5.1. According to [127],

yf = ψT x (2.58)

defines a flat output of a controllable linear system

ẋ = Ax + bu (2.59)

with x ∈ R
n and a single input u. The vector

ψT = [0, . . . , 0, κ]Q−1
s . (2.60)

denotes the last row of the inverse controllability matrix

Qs = [b,Ab, . . . ,An−1b] (2.61)

with κ 6= 0. The flat output and its time derivatives

zf = [yf , ẏf , . . . , y
(n−1)
f ] (2.62)

form the flat coordinates of the system. The transformation into flat coordinates is

zf = Ψx (2.63)

whereby the transformation matrix is defined as

Ψ =











ψT

ψT A
...

ψT An−1











. (2.64)

The input signal is computed as

u = y
(n)
f −ψT AnΨ−1zf . (2.65)
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Chapter 3

Set Invariance Conditions

In this chapter, we are concerned with set invariance conditions for sector nonlinearity

(SE-NL) T-S or local (LO) T-S models without affine terms for effectively estimating the

domain of attraction (DA) based on quadratic Lyapunov functions. Recalling the scope

of this thesis (Section 1.2) we contribute to the design of saturated controllers. A formal

problem statement together with an intuitively accessible explanation how we will solve

it within this chapter is given in Section 3.1. We establish LMI-based set invariance

conditions to estimate a large DA, which is valid for the original nonlinear system,

subject to state, input amplitude and rate constraints in Section 3.2. The conditions

are embedded in a novel numerical procedure for a numerically efficient computation

of the DA. We handle input rate constraints by augmenting the T-S representation

with an actuator model and we formulate LMI conditions such that an over-saturating

DA (effective saturation) can be estimated. A reduction of the required number of

LMIs, which is beneficially from a numerical point of view, is thereby obtained for

free. In addition, we show that the augmented T-S representation can be exploited for

estimating a DA for LO T-S models with affine terms as well.

3.1 Problem Formulation

Generally, a T-S model is only able to represent the nonlinear system within a limited

region of the state space including the origin. This equivalence region is bounded to

the area where the convex sum property (2.7) is fulfilled. Hence, the state and input

variables that are contained in one of the premise vectors zs, zc and, more precisely,

the universes of discourse (UoD) (2.18), (2.9), define the equivalence region. Recalling

Example 2.2.3 back to mind, we see that all of the estimated DAs in Fig. 2.5 cross the

UoD
∣
∣
∣x−

1

∣
∣
∣ = x+

1 = 1.6 of the SE-NL T-S model. However, concluding that the DA is

not valid for the original nonlinear system is not necessarily correct, but the optimality
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(maximized volume) of the estimated DA is questionable. So how to solve that problem,

which is additionally tightened if further constraints, e.g. input rate limits, have to be

taken into account. Based on that the first investigated problem is:

Problem 3.1.1. Estimate a large DA for a constrained system (state, input amplitude

and rate constraints) by exploiting the T-S formulation such that the DA is valid for

the original system.

In the following section, we derive a new numerical algorithm for solving Prob-

lem 3.1.1. Structurally, the algorithm is subdivided into two parts:

• First, we estimate an as large as possible domain of attraction (DA) based on

LMIs subject to the T-S system’s universe of discourse (UoD). We consider

the UoD as optimization parameter and we formulate LMI conditions such

that over-saturation is achieved for input amplitude and rate constraints.

• Second, we iteratively enlarge the critical level value obtained from the first

part of the algorithm. As we may get beyond the UoD, the T-S formulation

might become incorrect and thus we check the validity of the DA based on

the original (nonlinear) system description.

3.2 Determining the Critical Level Value

In this section, we present a novel numerical algorithm that allows to effectively deter-

mine the critical level value of the DA (2.38). The algorithm is developed and improved

step-by-step: In Section 3.2.1, we focus on estimating a DA subject to the UoD of the

T-S model. To this end, we introduce LMI conditions which handle the universe of

discourse (UoD) as state constraints. Thereafter, in Section 3.2.2, we incorporate the

practical relevant problem if the actuator is not only subject to amplitude but also to

rate saturation. We deliver LMI conditions for estimating an over-saturating DA (ef-

fective saturation). The obtained set invariance conditions are relaxed in Section 3.2.3,

meaning we reduce the number of required LMIs and additionally diminish the con-

servatism of the solution. Without loss of generality, all estimations are done for the

trivial equilibrium, meaning we estimate the critical level value η0.

3.2.1 Universe of Discourse (UoD): State Constraints

A symmetric polytope

Sx = {x ∈ R
n : |xi| ≤ xi,max, ∀ xi ∈ Ms,x,Mc,x} (3.1)
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can be defined that is bounded by the smaller absolute value

xi,max = min(
∣
∣
∣x−

i

∣
∣
∣ , x+

i ) (3.2)

of the UoD (2.9a), (2.18). Analogous to (3.1) a second set

Su = {u ∈ R
m : |ui| ≤ ui,max, ∀ ui ∈ Ms,u} , (3.3)

with ui,max = min(
∣
∣
∣u−

i

∣
∣
∣ , u+

i ), is spanned by the input signals which are relevant for

defining the UoD (2.9b). Considering a feedback law (2.16), the set (3.3) can be written

state-dependent as

Su =
{

x ∈ R
n :
∣
∣
∣fT

i,lx
∣
∣
∣ ≤ ui,max, ∀ l ∈ N1:r ∀ ui ∈ Ms,u

}

(3.4)

with fT
i,l ∈ R

n denoting the i-th row vector of the l-th linear subcontroller. In order

to estimate a DA, which it directly valid for the original nonlinear system, the related

bounding level set (2.39) has to entirely lie within the state depending sets (3.1), (3.4):

Theorem 3.2.1. A T-S controller (2.16) asymptotically stabilizes the origin x∗ = 0,

u∗ = 0 of the original nonlinear system (2.6) for all x ∈ X0(P, η0) if a positive definite

matrix P > 0 and a level value η0 > 0 exist such that the corresponding closed-loop T-S

system (2.20a) is globally asymptotically stable and

gT
i Qgi ≤ x2

i,max, ∀ xi ∈ Ms,x,Mc,x, (3.5a)

fT
i,lQfi,l ≤ u2

i,max, ∀ ui ∈ Ms,u ∀ ∈ N1:r, (3.5b)

with Q =
(

P
η0

)−1
is fulfilled. The vectors gi ∈ R

n are

gi = [0, 0, . . . , 1
︸︷︷︸

i−th element

, 0, . . . , 0]T . (3.6)

Proof: Replacing mi by gi and setting ζ = xi,max in Lemma 2.2.3 results in (3.5a).

Equation (3.5b) is obtained for mi = fi,l and ζ = ui,max. According to Lemma 2.2.3

X0(P, η0) ⊂ Sx ∩ Su (3.7)

is fulfilled. Consequently, if the global asymptotic stability of the origin is proven for

the closed-loop T-S system, it follows directly that the closed-loop nonlinear system is

asymptotically stable within (3.7) which concludes the proof.
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Figure 3.1: Comparison of T-S model based estimations of the DA: Without UoD re-
striction X0(Pi, 1), i ∈ N2:3, and with UoD restriction X0(Pi, 1), i ∈ N4:5.

Remark 3.2.1. Note that LMI (3.5a) can be also used to incorporate state constraints

of the original nonlinear system while estimating a corresponding DA.

Example 3.2.1 (Example 2.2.3 cont’d). As the state variable x1 is the only premise

variable, the UoD restriction is given by the LMI

[1, 0]Q[1, 0]T ≤ (1.6)2. (3.8)

Equivalently to the optimized DAs ∂X0(P2, 1) and ∂X0(P3, 1) of Example 2.2.3 we

solve the optimization problems (2.46) (with a decay rate α = 0) and (2.48), respec-

tively, using the PDC controller (2.47). However, thereby we add (3.8) as an additional

constraint. Fig. 3.1(a) and Fig. 3.1(b) show the resulting estimates ∂X0(P4, 1) and

∂X0(P5, 1) in comparison to ∂X0(P2, 1) and ∂X0(P3, 1), respectively. As can be seen,

the additional LMI constraint leads to solutions that fulfill (3.7) and are thus directly

valid for the original nonlinear closed-loop system. Further examples as well as com-

parisons of further convex optimization objectives are detailed in [34].

3.2.2 Input Amplitude and Rate Constraints

Consider the practical relevant problem that the control input u is subject to amplitude

saturation (2.21) and rate constraints

σ(u̇i) =







−u̇i,max if u̇i ≤ −u̇i,max,

u̇i,max if u̇i ≥ u̇i,max, ∀ i ∈ N1:m

u̇i else.

(3.9)
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replacemen

v
T

u̇ u
1

s

Figure 3.2: Actuator model subject to amplitude and rate saturation.

We consider these constraints by a first-order model (position-feedback-type model with

speed limitation) [24, 89]

u̇ = σ (T (σ(v) − u)) (3.10)

which is depicted in Fig. 3.2. The diagonal matrix T = diag(τ1, . . . , τm) summarizes

the inverse actuator time constants τi and v denotes the input of the actuator with

ui,max = vi,max. Obviously, small time constants lead to a slower time response and if

τi → ∞ for all i ∈ N1:m the actuator model (3.10) becomes an ideal rate limiter [109].

Compared to other existing modeling approaches, saturation is effectively considered

in (3.10) and not avoided or approximated as for instance in [54, 114, 119].

We extend the T-S model (2.5) by (3.10) to

˙̂x =
r∑

i=1

hi(zs)
(

Âix̂ + B̂ σ (Kx̂ + Tσ(v))
)

(3.11)

with the augmented state vector x̂ = [x,u]T ∈ R
n̂, n̂ = n+m, and the matrices

Âi =




Ai Bi

0 0



 , B̂ =




0

I



 , K =
[

0 −T
]

, (3.12)

where Âi ∈ R
n̂×n̂, B̂ ∈ R

n̂×m, K ∈ R
m×n and I ∈ R

m×m denotes the identity matrix.

A T-S controller (similar to (2.16)) for the augmented T-S model (3.11) is given by

v =
r∑

j=1

hj(zc) (Fjx̂) (3.13)

with the feedback matrices Fj ∈ R
m×n̂.

In the following, we formulate a polytopic representation of the nested saturation

in (3.10) (as shown in Section 2.2.1 for amplitude saturation) in order to represent it in

form of LMI constraints. To this end, we introduce two identical sets V1 = V2. Their

elements are the possible m×m boolean diagonal matrices, which lead to the cardinality
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of |V1| = |V2| = 2m. From these sets we define the matrix tuples Φs = (Es,1,Es,2,E
−
s )

with

Es,1 ∈V1, Es,1 6=Es,2 ∈V2, E−
s =I−[Es,1+Es,2] . (3.14)

Hence, there exist s = 3m different matrix tuples Φs, s ∈ N1:3m , which form the elements

of a final set V . Based on the elements in V , we state the following Lemma for computing

the closed-loop dynamics in from of a polytopic model:

Lemma 3.2.1. Let a T-S controller (3.13) for a SE-NL T-S systems (3.11) (or a LO

T-S model without affine terms) with an amplitude and rate saturating input (3.11) and

two auxiliary T-S controllers with the feedback matrices Hj, Jj ∈ R
m×n̂, j ∈ N1:r, be

given. Then it follows that

σ



Kx̂ + Tσ





r∑

j=1

hj (Fjx̂)







 ∈ co







r∑

j=1

hj

(

Es,1 (K+

+TFj) + Es,2 (K + THj) + E−
s Jj

)

x̂ : s∈N1:3m






(3.15)

and as a consequence, the closed-loop dynamics can be computed from the polytopic

model

˙̂x =
r∑

i=1

r∑

j=1

3m
∑

s=1

hi(zs)hj(zc)µs

(

Âi + B̂∆
)

x̂, (3.16)

with

∆ = Es,1 (K + TFj) + Es,2 (K + THj) + E−
s Jj (3.17)

and
∑3m

s=1 µs = 1, 0 ≥ µs ≥ 1 for all x̂ inside the polytope

L(H̃) =
r⋂

j=1

(L(Hj)) ∩
r⋂

j=1

(L(Jj)) , (3.18)

where each subpolytope L(Hj), L(Jj) are defined according to (2.40).

Proof: Applying Lemma 2.2.2 two times subsequently (once for each saturation

function on the left-hand side of (3.15)) leads to the convex hull according to the right-

hand side of the equation. For each application of Lemma 2.2.2 auxiliary feedback

matrices are required which are Jj and Hj. In other words, if x ∈ L(H̃) then (3.15) is

fulfilled and (3.16) follows which concludes the proof.
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3.2 Determining the Critical Level Value

Based on (3.16) the following novel set invariance condition can be stated:

Theorem 3.2.2. The ellipsoid X0(P, η0) around the origin is a contractively invariant

set of a closed-loop T-S system (3.11), (3.13) if there exist matrices Hj, Jj such that

X0(P, η0) ⊂ L(H̃), and

(

Âi + B̂∆
)T

P+P
(

Âi + B̂∆
)

< 0 (3.19)

holds for all i, j ∈ N1:r and s ∈ N1:3m.

Proof: Consider the Lyapunov function V0 = x̂T Px̂ at x̂∗ = 0. Then

V̇0 = x̂T





3m
∑

s=1

r∑

i=1

r∑

j=1

ηshi(zs)hj(zc)
((

Âi + B̂∆
)T

P + P
(

Âi + B̂∆
))


 x̂ (3.20)

for all x̂ ∈ X0(P, η0) ⊂ L(H̃) according to Lemma 3.2.1. As ηs, hi and hj fulfill the

convex sum property, V̇0 < 0 if (3.19) is satisfied which concludes the proof.

Based on that, we are able to state the following LMI conditions for estimating an

over-saturating DA:

Q
(

Âi + B̂∆
)T

+
(

Âi + B̂∆
)

Q < 0, ∀ i, j∈N1:r, s∈N1:3m , (3.21a)



u2

max,l h̃T
j,l

h̃j,l Q



 ≥ 0, ∀ l ∈ N1:m, j ∈ N1:r, (3.21b)




u̇2

max,l j̃T
j,l

j̃j,l Q



 ≥ 0, ∀ l ∈ N1:m, j ∈ N1:r, (3.21c)

with Q =
(

P
η0

)−1
, H̃j = HjQ (h̃T

l,j denote the l-th row of the matrix H̃j) and J̃j = JjQ

(̃jT
l,j denote the l-th row of the matrix J̃j). From Proposition 2.2.3 follows that the

constraints (3.21b) and (3.21c) ensure X0(P, η0) ⊂ L(H̃) which is required in Theo-

rem 3.2.2. Multiplying the Lyapunov inequality (3.19) with Q from the left and the

right-hand side results in condition (3.21a). The LMI conditions can be simply added

to a convex optimization according to Section 2.2.2. Thereby, the matrices H̃j and J̃j

should be considered as optimization variables, e.g. for finding the largest invariant set

similar to (2.48).

Remark 3.2.2. Analogous to (2.36), the control gains Fj can be additionally consid-

ered as optimization parameters by substituting F̃j = FjQ. Also a certain closed-loop

performance can be simultaneously ensured, e.g. by claiming a required exponential
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decay rate α ≥ 0 for the Lyapunov function. Other possibilities are detailed in Sec-

tion 2.2.2.

Remark 3.2.3. The input matrix B̂ of the extended T-S formulation (3.11) is in a form

that is often required for the estimation of a DA for T-S systems with affine terms [67].

The corresponding LMI conditions are based on the fact that the input is constant.

However, often the T-S formulation is already assumed to be in the right from, but how

to achieve that form is not answered. Hence, the extension with an actuator model is

a noticeable way to transform each affine T-S models in their needed form.

Example 3.2.2 (Example 3.2.1 cont’d). System (2.44) is extended by the saturating

actuator dynamics (3.10) which leads to an augmented T-S model (3.11) that consists

of the matrices

Â1 =








0 1 0

0 θ1(zs) 1

0 0 0







, Â2 =








0 1 0

0 θ1(zs) 1

0 0 0







, b̂ =

[

0 1
]T
, K =

[

0 −τ
]T
. (3.22)

The augmented state vector is x̂ = [x, u]T and (Âi, B̂), i ∈ N1:2. The UoD (x1,max =

1.6) and the input saturation (umax = vmax = 7) is set equal to Example 3.2.1. Ad-

ditionally, the input rate is limited with u̇max = 50, τ = 50 and the PDC (2.47) is

extended by a zero element

fT
1 =

[

−2.46 −4.36 0
]

, fT
2 =

[

−1.07 −5.06 0
]

. (3.23)

The extended optimization problem is given by:

min
Q>0,h̃T

j ,̃jT
j

−log det (Q) (3.24)

(a) Q
(

Âi + b̂∆
)T

+
(

Âi + b̂∆
)

Q < 0, ∀ i, j∈N1:r, s∈N1:3,

(b)




u2

max h̃T
i

h̃i Q



 ≥ 0, i ∈ N1:2

(c)




u̇2

max j̃T
l

j̃l Q



 ≥ 0, l ∈ N1:m, j ∈ N1:r,

(d) [1, 0, 0]Q[1, 0, 0]T ≤ (1.6)2 .

Fig. 3.3 depicts the finally estimated three-dimensional DA. It can be seen that asymp-

totically stable regions with effective saturation |u̇| > u̇max can be realized. This is also
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Figure 3.3: Estimation X0(P, 1) subject to the UoD, input amplitude and rate limits.
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Figure 3.4: Topview of Fig. 3.3.

the case concerning input amplitude saturation |u| > umax which is shown in Fig. 3.4.

Here, the UoD is marked by ±x1,max in addition. Consequently, the over-saturating DA

lies within the UoD such that it is directly valid for the original nonlinear system.

3.2.3 Relaxation of the Set Invariance Condition

Based on the LMI conditions (3.21) a DA can be estimated that avoids saturation to

occur, meaning that the linear region of the actuator dynamics (3.10) is not left. We

formulate the following invariance condition which relaxes the required number of LMI

conditions but at the cost of the size of the estimated DA:

Proposition 3.2.1. The ellipsoid X0(P, η0) around the origin is a contractively in-

variant set of a closed-loop T-S system (3.11), (3.13) if X0(P, η0) ⊂
⋂r

j=1 L(Fj), where

each subpolytope L(Fj) is defined according to (2.40), and (3.19) holds for all i, j ∈ N1:r

setting

∆ = K + TFj. (3.25)

47



Chapter 3 Set Invariance Conditions

Proof: Due to X0(P, η0) ⊂
⋂r

j=1 L(Fj) the linear region is not left and thus the

polytopic modeling (3.15) of the nested saturation function (3.10) can be omitted.

Following the proof of Theorem 3.2.2 based on that leads to the LMI (3.21) with (3.25).

The conditions (3.21b) and (3.21c) are thereby depending on Fj (instead of the axillary

matrices Hj and Jj). In other words, H̃j has to be replaced by Fj and J̃j by K + TFj.

Thereby, the proof is concluded.

Proposition 3.2.1 reduces the number of LMIs hugely (3m less LMI conditions) whereby

the computational solvability increases. However, this to the disadvantage of the DA

size. Motivated by that, we bypass this disadvantage in the following. We exploit

the structure of the augmented T-S formulation (3.11) in order to reduce the number

of LMIs without simultaneously increasing the conservatism of the solution. More

precisely, we eliminate all LMIs in Theorem 2.2.3 with j ∈ N1:r:

Theorem 3.2.3. The ellipsoid X0(P, η0) around the origin is a contractively invariant

set of a closed-loop T-S system (3.11), (3.13) if a PDC controller (see Remark 2.1.1)

is considered and if there exist matrices Hj, Jj such that X0(P, η0) ⊂ L(H̃) as well as

(Ai + B∆)T
P+P (Ai + B∆) < 0, (3.26)

with

∆ = Es,1 (K + TFi) + Es,2 (K + THi) + E−
s Ji (3.27)

holds for all i ∈ N1:r and s ∈ N1:3m.

Proof: All linear subsystems (Âi, B̂), i ∈ N1:r of the augmented T-S formula-

tion (3.11) have a common input matrix B̂i = B̂. Following Theorem 2.2.3, equa-

tion (3.16) can be formulated as

˙̂x =
r∑

i=1

3m
∑

s=1

hi(zs)µs

(

Âi + B̂∆
)

x̂, (3.28)

with ∆ according to (3.27). Based on that, we follow the proof of Theorem (3.2.2)

which results in the time derivative of the Lyapunov function

V̇0 = x̂T

[
3m
∑

s=1

r∑

i=1

ηshi(zs)
(

(Ai + B∆)T
P + P (Ai + B∆)

)
]

x̂. (3.29)

As ηs and hi(zs) fulfill the convex sum property, V̇0 < 0 if (3.26) is satisfied which

concludes the proof.
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3.2 Determining the Critical Level Value

Beside the required number of LMIs, the polytopic nature of the T-S formulation of a

nonlinear system itself causes that the estimated DA is rather a conservative approxi-

mation of the original region of attraction. From that point of view it is clearly evident

that the shape of the DA, meaning its form and size, essentially depends on the speci-

fied universe of discourse (UoD) of the T-S model. Moreover, it is probable that a level

value η̃0 > η0 still bounds a contractively invariant set of the nonlinear system with

X0(P, η0) ⊂ X0(P, η̃0), (3.30)

even if the corresponding bounding level set ∂X0(P, η̃0) crosses the UoD of the T-S

model. Motivated by that, we propose a novel procedure for tackling both of the men-

tioned drawbacks which is summarized in Algorithm 3.2.1. The algorithm is subdivided

in two parts: In the first part (line 1 and 6), the DA is estimated whereby the UoD

of the T-S model can be considered as optimization variable. More precisely, the level

value η0 = c and allowed upper values of the UoD (3.1), (3.3)

0 < xi,max ≤ x̃i, x−
i = −xi,max, x

+
i = xi,max,

0 < ui,max ≤ ũi, u−
i = −ui,max, u

+
i = ui,max

(3.31)

are first defined (line 2 and 3). These bounds might be given by physical state limita-

tions of the system at hand, e.g. elevator and aileron deflection in aircraft systems or

the maximum thermal energy in a chemical process. If no such limitations exit they can

be meaningfully chosen. In the subsequent optimization (line 4 to 6) the objective is in

maximizing the volume of X0(P, c) based on convex optimization, e.g. based on (3.24),

Algorithm 3.2.1 Reducing the conservatism of the estimated domain of attraction

1: UoD optimization:

2: define η0 = c > 0
3: define x̃i > 0, ũi > 0, ∀ xi ∈ Ms,x,Mc,x, ∀ ui ∈ Ms,u

4: min(xi,max,ui,max)∈Ms,x,Mc,x,Ms,u −det (Q)
5: s.t. 0 < xi,max ≤ x̃i, 0 < ui,max ≤ ũi

6: DA optimization, e.g. by (3.24) and Remark 3.2.1, 3.2.2,

7: Enlarging beyond UoD:

8: define step size δη << 1, η̃0 = η0

9: while (2xT
j Pẋj < 0 for (2.6) with (3.10) and (3.13) ∀ xj ∈ ∂X0(P, η̃0), j >> 1)

and (LMI (3.5a) is satisfied for all state constraints with Q = (P/η̃0)−1) do

10: η̃0 = η̃0 + δη
11: η̃0 = η̃0 − δη
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Table 3.1: Domain of attraction by applying Algorithm 3.2.1

description UoD x1,max level value det (Q)
example 3.2.2 1.6 1 580.33

line 1 till 6 of Algorithm 3.2.1 1.27 1 836.50
after Algorithm 3.2.1 1.27 1.28 1754.30

considering the UoD of the T-S formulation as additional optimization parameter. For

instance, a genetic algorithm (for the UoD) with an embedded convex optimization (for

the size of the DA) can be considered for implementing that optimization problem.

Starting point of the second part of the algorithm (lines 7 till 11) is the optimized DA

X0(P, c) which is the final outcome of the first part. Now, we attempt to find a larger

DA X0(P, η̃0) according to (3.30) by iteratively enlarging the critical level value as long

as the time derivative of the Lyapunov function is negative for the original closed-loop

system and LMI (3.5a) for the physical (not the UoD) state constraints. Therefore,

starting from η̃0 = η0 = c the value of η̃0 is increased by the step size δη << 1 until

V̇0 ≥ 0 for at least one x ∈ X0(P, η̃0) or a violation of LMI (3.5a) has been detected.

For a numerical realization, the actual bounding level set ∂X0(P, η̃0) is discretized with

xj, j >> 1. As soon as V̇ ≥ 0 has been detected for a xj ∈ ∂X0(P, η̃0), the actual level

set does not bound a DA for the nonlinear system. Hence, the level value η̃0 is finally

set to its value from the prior iteration step (line 11) such that a valid DA is obtained.

Example 3.2.3 (Example 3.2.2 cont’d). The UoD of x1,max = 1.6 results in a DA

with the volume measure of det (Q) = 580.33 . Table 3.1 compares this with the

optimization according to Algorithm 3.2.1. After the UoD optimization (line 1 till 6)

the volume measure has increased by 44 %. The subsequent expansion of the level value

(Algorithm 3.2.1 (lines 7 till 11)) results in det (Q) = 1754.30 which corespondents to

an additional enlargement of the volume measure by 110 %. Consequently, the reduction

of the conservatism of the estimated DA becomes obvious.

3.3 Summary

In this chapter, we were concerned with the question how a closed-loop T-S notation

can be exploited to estimate an as large as possible ellipsoidal domain of attraction

(DA) of a constrained nonlinear system. We have developed set invariance conditions

for determining the critical level value of the DA subject to state, input amplitude and
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rate constraints. The main contribution of this chapter has been a numerical procedure

to effectively compute a preferably large estimation of the DA of a system’s equilibrium.

Thereby, the DA has been first estimated based on convex optimization and thereafter

the bounding level value has been iteratively enlarged.
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Chapter 4

Switched Controller Design

Generally, the size of an estimated domain of attraction (DA) of a closed-loop system is

at the expense of the achievable control performance. For instance, an aggressive control

law reaches input limitations in regions of the state space where a low performing

control law is still far from saturation. That trade-off is relaxed in this chapter by

designing switched controllers. The considered problems are stated in Section 4.1. In

the Sections 4.2 and 4.3 we derive switching control laws based on nested and non-

nested DAs. Thereby, we represent a dynamical system by multiple T-S models, each

having a individual universe of discourse (UoD), controller and estimated DA. We

develop set invariance conditions that allow an estimation of nested DAs based on

convex optimization.

4.1 Problem Formulation

A desired control performance can be claimed while estimating a DA according to the

previous chapter (see Remark 3.2.2). However, this obviously influences the size of

the estimated DA whereby a trade-off occurs that needs to be balanced. Hence, the

question to be answered is whether a highly performant controller or a large invariant set

is more important. However, an alternative question might be: Is there an opportunity

to gather both advantages at the same time? Exactly this is the problem that we

address in this chapter:

Problem 4.1.1. Estimating a large DA for a constrained system (state, input ampli-

tude and rate constraints) while simultaneously guaranteeing a performant behavior of

the closed-loop system by exploiting the T-S framework.
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We tackle Problem 4.1.1 by a novel LMI condition for estimating nested domains

of attraction (DAs) for T-S systems. The condition is integrated in Algorithm 3.2.1

such that a defined amount of nested invariant sets can be estimated in a numerical

efficient way. Each set is based on an individual universe of discourse (UoD). As

the sets become smaller, the performance of the corresponding closed-loop system

can be increased. In order to benefit from the variety of the estimates (large DA

and a fast tracking) we introduce asymptotically stable switching conditions. We

generalize the switching condition such that asymptotically stable tracking of a set

point is guaranteed even if the DAs are not nested.

4.2 Nested Control Architecture

The objective of this section is to extend Algorithm 3.2.1 in order to effectively estimate

nested invariant sets. The extension of the algorithm is introduced in Section 4.2.1.

Based on that, we derive a switched T-S controller based on multiple T-S models in

Section 4.2.2.

4.2.1 Nested Invariant Sets

We extend our Algorithm 3.2.1 such that ζ ∈ N, ζ > 1, nested invariant sets

X0(P1, η0,1) ⊂ X0(P2, η0,2) . . . ⊂ X0(Pζ , η0,ζ) (4.1)

with optimized volumes can be estimated. Each set has an individual bounding level

value η0,q and Lyapunov matrix Pq, q ∈ N1:ζ . To this end, we derive the following LMI

condition:

Lemma 4.2.1. The DAs X0(P1, η0,1) and X0(P2, η0,2) are nested with X0(P1, η0,1) ⊂

X0(P2, η0,2) if

Q1 < Q2 (4.2)

with Qi =
(

Pi

η0,i

)−1
, i ∈ N1:2.

Proof: Two ellipsoids are nested X0(P1, η0,1) ⊂ X0(P2, η0,2) if P1

η0,1
> P2

η0,2
holds true.

Hence,

Q1 =

(

P2

η0,2

+ M

)−1

(4.3)
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where M > 0. According to the Woodbury identity [94], (4.3) is written as

Q1 = Q2 − Q2

(

M−1 + Q2

)−1
Q2

︸ ︷︷ ︸

L>0

. (4.4)

Thus, Q1 = Q2 − L leads to Q2 > Q1 which concludes the proof.

For estimating nested DAs, we introduce ζ SE-NL T-S models (or LO T-S models

without affine terms) of the original nonlinear system with nested universes of discourse

Sx,1 ⊂ Sx,2 ⊂ . . . ⊂ Sx,ζ , (4.5a)

Su,1 ⊂ Su,2 ⊂ . . . ⊂ Su,ζ . (4.5b)

Fig. 4.1 exemplarily sketches that for ζ = 3 concerning a system x ∈ R
2 with one

nonlinearity in the first state variable x1 (like in Example 2.2.3). Depicted are the

bounding level sets ∂X0(Pq, η0,q), q ∈ N1:3, and the nested universes of discourse. The

simple step of introducing nested T-S models delivers two advantages:

1. The state and input variables which are part of the premise variables are nested

by definition. Hence, the numerical optimization of nested DAs is eased.

2. Due to the nesting of the DAs, they become smaller from Sζ towards S1 and

thus the control performance can be increased successively. Consequently, Prob-

lem 4.1.1 is solved.

Sx,3

Sx,2

Sx,1

∂X0(P3, η0,3)

∂X0(P2, η0,2)

∂X0(P1, η0,1)

x1

x2

Figure 4.1: Nested Lyapunov functions for T-S systems.
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Algorithm 4.2.1 Estimating optimized nested DAs

1: define number of desired nested sets ζ > 1, ζ ∈ N

2: define x̃i > 0, ũi > 0, ∀ xi ∈ Ms,x,Mc,x, ∀ ui ∈ Ms,u

3: for q = ζ do

4: apply Algorithm 3.2.1
5: UoD optimization:

6: for q = ζ-1:-1:1 do

7: define η0,q = c > 0
8: min(xi,max,q,ui,max,q)∈Ms,x,Mc,x,Ms,u −det (Qq)
9: s.t. 0<xi,max,q ≤ x̃i, 0<ui,max,q ≤ ũi, xi,max,q ≤xi,max,q+1, ui,max,q ≤ui,max,q+1,

10: Qq+1 < Qq (Lemma 4.2.1)
11: DA optimization, e.g. by (3.24) and Remark 3.2.1, 3.2.2,

12: Enlarging beyond UoD:

13: define step size δη << 1, η̃0,q = η0

14: while (2xT
j Pqẋj < 0 for (2.6) with (3.10) and (3.13) ∀ xj ∈ ∂X0(Pq, η̃0), j >> 1)

and (LMI (3.5a) is satisfied for all state constraints with Qq = (Pq/η̃0)−1) and
Pq+1

η̃0,q+1
< Pq

η0,q
do

15: η̃ = η̃q + δη
16: η̃q = η̃q − δη

A constructive numerical procedure for estimating nested DAs is summarized in Algo-

rithm 4.2.1: The procedure is based on Algorithm 3.2.1. For the largest of the nested

sets q = ζ Algorithm 3.2.1 is directly considered. For the remaining set (starting on

line 6) the optimization is sequentially applied from q = ζ − 1 towards q = 1. Com-

pared to Algorithm 3.2.1 the constraints xi,max,q ≤ xi,max,q+1, ui,max,q ≤ ui,max,q+1 and

Lemma 4.2.1 are added which ensure that the UoD and the invariant sets are nested

according to (4.5) and (4.1), respectively. In the second part of the algorithm (line 12)

new constraints Pq

η̃0,q
> Pq+1

η̃0,q+1
are required in line 14 to ensure that the DAs remain

nested while iteratively increasing their bounding level values.

Example 4.2.1 (Example 3.2.3 cont’d). We are interested in designing ζ = 3 nested

invariant sets for the system (3.22). The largest set X0(P3, η̃0,3) is equivalent to the

one optimized in Example 3.2.3, i.e. the PDC equals to (3.23), a UoD of x1,max = 1.27,

a zero decay rate α3 = 0 and a critical level value of η̃0,3 = 1.28. For the remaining two

sets q ∈ N1:2, we set the desired decay rates of the Lyapunov function (performance

indicator of the closed-loop systems) to α2 = 1.5 and α1 = 3.0. The PDC controller

gains and the UoDs are considered as optimization variables. Table 4.1 summarizes

the obtained results according to Algorithm 4.2.1. The optimized DAs are nested as

min
(

eig
(

Pq

η̃0,q
> Pq+1

η̃0,q+1

))

> 0 for q ∈ N1:2 (see also Lemma 4.2.1).
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Table 4.1: Domain of attraction by applying Algorithm 4.2.1

q decay rate UoD x1,max level value det (Q) min
(

eig
(

Pq

η̃0,q
> Pq+1

η̃0,q+1

))

3 0 1.27 1.28 1754.30 −
2 1.5 1.09 1.23 543.55 9.93 · 10−6

1 3 0.81 1.38 181.26 8.84 · 10−6

4.2.2 Controller Design

In the prior section, we have introduced a method for constructively designing nested

domains of attraction (DAs) for a nonlinear system by optimizing nested closed-loop

T-S models. In this section, we focus on designing an asymptotically stable condition

for switching between the obtained T-S controllers

u = ul =
r∑

i=1

hj(zc) (Fj,lx) , l ∈ N1:y, (4.6)

where l denotes the active DA (4.1). The switching strategy is a natural extension of

the nested controller design for linear systems [5]:

Theorem 4.2.1. Let ζ > 1, ζ ∈ N, closed-loop SE-NL T-S models (or LO T-S models

without affine terms) for a dynamical system be given with nested DAs (4.1) for x∗ = 0.

Then switching between the corresponding T-S controllers (4.6) asymptotically stabilizes

the origin for all x ∈ X0(Pζ , η0,ζ) if the switching signal is

l = arg max
q

(

xT Pqx
)

s.t. xT Pqx ≤ η0,q, q ∈ N1:ζ . (4.7)

Proof: The switching condition (4.7) activates a T-S controller l as soon as the

trajectory runs into the corresponding DA X0(Pl, η0,l), l ∈ N1:ζ . The maximum level

value of an active DA is V0,l,max = η0,l and its derivative is negative V̇0,l < 0. Hence, the

switching is only scheduled in one direction l : ζ → 1 and the maximum possible level

value of each previously activated Lyapunov function decreases after each switching,

e.g. if switching from l + 1 → l → l − 1 means that

V0,l+1,max = η0,l+1 → V0,l+1,max = η̂0,l+1 < η0,l+1 → V0,l+1,max < η̂0,l+1, (4.8a)

V0,l,max = η0,l → V0,l,max < η0,l. (4.8b)

After the final switching l = 1, the active Lyapunov function V0,1 will decrease to
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Chapter 4 Switched Controller Design

zero whereby all previously activated Lyapunov functions will become zero, too (due

to their quadratic nature). Consequently, x∗ = 0 is asymptotically stabilized and the

proof concluded.

The quintessence of the proof is sketched for clarification in Fig. 4.2(a) concerning two

nested DAs X0(P1, η0,1) ⊂ X0(P2, η0,2). The time intervals within which a certain

Lyapunov function is active are drawn by solid lines and deactivated time spans are

depicted by dashed lines. The outer DA and the corresponding T-S controller are active

first assuming an initial state vector at the bounding level set, meaning V0,2 = η0,2. The

value of the corresponding Lyapunov function decreases continuously while the inactive

Lyapunov function V0,1 might increase. As soon as the trajectory runs into the region

X0(P1, η0,1) the Lyapunov function V0,1 becomes active and decreases for sure. Due to

the nesting of the two DAs the value of the inactive Lyapunov function is according

to (4.8) bounded by V0,l,max ≤ η0,l. When V0,1 reaches zero, V0,2 becomes zero too.

Obviously, if the Lyapunov functions are equivalent with V0,1 = V0,2 = . . . = V0,ζ ,

they will continuously decrease independent of the switching. Hence, we formulate the

following proposition for the sake of completeness:

Proposition 4.2.1. Let ζ > 1, ζ ∈ N, closed-loop SE-NL T-S models (or LO T-S

models without affine terms) for a dynamical system be given with nested DAs (4.1) for

x∗ = 0. Then switching between the corresponding T-S controllers (4.6) asymptotically

stabilizes the origin for all x ∈ X0(Pζ , η0,ζ) for arbitrary switching (e.g. according

to (4.7)) if P = Pq for all q ∈ N1:ζ.

Proof: The asymptotic stability follows directly from the fact that switching between

systems that have a common (quadratic) Lyapunov function behave asymptotically

stable independent of the switching signal [65, 80].
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Figure 4.2: Stability condition for multiple Lyapunov functions.
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4.3 Non-Nested Control Architecture

In this section, we generalize the nested T-S control architecture of the previous section

to the non-nested case. More precisely, the universes of discourse (UoDs) of the ζ > 1,

ζ ∈ N, T-S models as well as the estimated domains of attraction (DAs) do not have

to be nested. To this aim, the switching condition (4.7) is generalized:

Theorem 4.3.1. Let ζ > 1, ζ ∈ N, closed-loop SE-NL T-S models (or LO T-S models

without affine terms) for a dynamical system, each with an estimated DAs for x∗ = 0,

be given. Then switching between the corresponding T-S controllers (4.6) asymptotically

stabilizes the origin for all x that fulfill x ∈ X0(Pl, η0) for at least one l ∈ N1:ζ if the

switching between the T-S controllers fulfills the following conditions:

i) if a T-S controller l is active then x ∈ X0(Pl, η0,l) (e.g. switching law (4.7))

ii) if a T-S controller l has been activated for the i-th time within the time interval

t ∈ [ta,i, te,i] then a subsequent reactivation at a time t = ta,i+1 > te,i is only

allowed iff

V0,l(ta,i+1) < V0,l(ta,i). (4.9)

Proof: Condition i) ensures that the state vector x is within the DA of the active con-

troller. Hence, only controllers which ensure asymptotic stability are allowed to become

active. The asymptotic stability is maintained for arbitrary switching by condition ii)

in the sense of multi Lyapunov [19]: A deactivated Lyapunov function might increase

but its reactivation is only allowed if its level value has decreased since its last activa-

tion. Consequently, the level value for activating a certain DA decreases continuously

which concludes the proof.

Fig. 4.2(b) clarifies the conditions i) and ii) considering two Lyapunov functions V0,1 and

V0,2 (analogous to Fig. 4.2(a)). Whenever a Lyapunov function is active its level value

surely decreases (condition i)). Although the value of a deactivated Lyapunov function

may increase, its reactivation value decreases continuously (condition ii)). Finally, if

the active Lyapunov function reaches zero, all deactivated functions are zero as well.

4.4 Summary

Within this chapter, we have addressed the problem of estimating a large domain of at-

traction (DA) for a set point of a constrained system while simultaneously guaranteeing
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Chapter 4 Switched Controller Design

a performant behavior of the closed-loop. These two at first glance contrary goals have

been both successfully solved by exploiting the T-S notation. We have derived a LMI

condition that allows to estimate nested DAs based on convex optimization. This LMI

has been added to our Algorithm 3.2.1. Each of the invariant set is calculated based

on a separate T-S model. The parameters of each model, e.g. the UoD, have been

considered as degrees of freedom for optimally estimating the nested DAs. By succes-

sively increasing the control performance from the outer towards the inner DA, both

a large DA and a performant control behavior have been achieved. In order to ensure

the asymptotic stability of a desired set point, we have established a proper switching

condition. This condition has been finally generalized to non-nested invariant sets.
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Smooth Switching

As a matter of fact in switching-based control, a non-smooth changing of the control

input occurs while switching. Although a switched controller relaxes the trade-off be-

tween different control objectives, e.g. size of the estimated domain of attraction (DA)

and performance as shown in the previous chapter, a discontinuous control input might

not always be desired or allowed. Due to that, smoothly switching controller algorithms

are highly recommended. For instance, a switched controller for an active suspension

system reduces the ride comfort for the carrying persons which is bypassed by smoothly

blending between the regulators [68].

Motivated by that we extend our results for switched controller design of the previous

chapter to smooth switching. After a formal problem statement in Section 5.1 we derive

smoothly switched control laws in Section 5.2. Finally, we introduce an unified approach

for reformulating hard switched systems in T-S notation into smoothly switched ones.

The approach is not restricted to systems that have an equilibrium, hybrid automata

(see Section 2.3) can be handled as well. In addition, an easy linguistical interpretation

and understanding of the switching conditions is achieved.

5.1 Problem Formulation

Due to the fact that a hard switched control law might not always be allowed due to

safety, comfort or material stress, we address the following problem:

Problem 5.1.1. Modify the switched control schemes introduced in Chapter 4 such

that smooth switching is achieved.
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We solve the above problem in Section 5.2 by a novel convex interpolation between

switched controllers. The basic idea is to find an auxiliary T-S controller for each

switching condition. This controller has to ensure the asymptotic stability of the

system for both DAs, the currently active one and the one that should be activated

according to the switching law. Hence, we are able to interpolate from the actual

controller to the desired one by blending to the auxiliary controller first. Thereby,

the active Lyapunov function only changes once whereby asymptotic stability is

ensured. We formulate a LMI condition for computing the required auxiliary con-

trollers with the desired performance.

An additional problem is tha the interpretability of mathematical switching conditions

becomes worse with an increasing number of switching conditions:

Problem 5.1.2. Reformulate a hard switched T-S system into a smoothly switched one

such that an easy linguistical interpretation and understanding of the smooth switching

conditions is achieved.

We contribute in solving this problem in Section 5.3 by introducing a recurrent

fuzzy system (RFS) for switched T-S formulations. Contrary to a conventional RFS

(see 2.1.1) the linguistical state variables are mapped to the switched closed-loop T-

S models (instead to the system state variables). Thereby both, the interpretability

and the smoothness of RFS can be directly exploited for switched system design.

5.2 Nested and Non-nested Smoothing

Consider that an asymptotically stable switching signal l ∈ N1:ζ based on Theorem 4.2.1

or Theorem 4.3.1 is given. Then we smooth the switched input signal to

u =







ul− =
∑r

j=1 hj(zc)
(

µl−Fl±
j x + (1 − µl−) Fj,l−x

)

if l : l− → l+,

ul+ =
∑r

j=1 hj(zc)
(

µl+Fj,l+x + (1 − µl+) Fl±
j x

)

if l = l+ and µl− = 1,
(5.1)

where l− and l+ denote the values of the actual switching signal right before and right

after switching, respectively. The fuzzy interpolation variables µl− and µl+ fulfill the

property 0 ≤ µl− ≤ 1, 0 ≤ µl+ ≤ 1 and Fig. 5.1 depicts the corresponding membership

functions. In other words, before and after the interpolation the T-S controller according

to the pure switching condition l (Theorem 4.2.1 or 4.3.1) is active. If a switching occurs

l : l− → l+ at a time t = tl then µl− increases until it becomes one at a time t = tl + δt,

δt > 0 (see Fig. 5.1(a)). During that time-span, the controller is interpolated according
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Figure 5.1: Convex interpolation variables for smooth switching.

to the upper case in (5.1) from the active one towards an auxiliary controller

u =
r∑

j=1

hj(zc)
(

Fl±
j x

)

(5.2)

which is individually defined for a particular switching l : l− → l+. Consequently, a

T-S controller (5.2) exists for any switching that can occur. As soon as this controller is

fully active, the interpolation according to the lower case in (5.1) smoothly activates the

desired T-S controller
∑r

j=1 hj(zc) (Fj,l+x) until t = tl+2δt (see Fig. 5.1(b)). Concerning

the smoothly switched control law (5.1), asymptotic stability of the closed-loop system

is guaranteed by the following Theorem:

Theorem 5.2.1. Let ζ > 1, ζ ∈ N, closed-loop SE-NL T-S models (or LO T-S models

without affine terms) for a dynamical system and an asymptotically stable switching

signal l ∈ N1:ζ based on Theorem 4.2.1 or 4.3.1 for the corresponding controllers (4.6)

be given. Then the smooth switching signal (5.1) asymptotically stabilizes the origin if

the feedback matrices Fl±
j for a switching l : l− → l+ fulfill

Qw

(

Aiw + BiwFl±
j

)T
+
(

Aiw + BiwFl±
j

)

Qw < 0, ∀ i, j ∈ N1:r, w ∈
{

l−, l+
}

(5.3)

with Qw =
(

Pw

η0,w

)−1
and w ∈ {l−, l+}.

Proof: Equation (5.3) is obtained from (2.36) replacing Q with Qw and F̃j with

Fl±
j Qw, w ∈ {l−, l+}. Hence, the asymptotic stability of the T-S controllers (5.2). In

addition, X0(Pl− , η0,l−) and X0(Pl+ , η0,l+) are valid DAs for the closed-loop T-S models

with w = l− and w =→ l+, respectively. Thereby, the interpolation (5.1) results in

a single change of the active Lyapunov function, equivalent to the original switching

signal l : l− → l+. Consequently, the asymptotic stability is still guaranteed based on

Theorem 4.2.1 or Theorem 4.3.1 which concludes the proof.
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Indeed, (5.3) can be used to check whether a desired smoothing controller (5.2) is valid

or not. But more important, they can be also used for constructively designing and

optimizing a valid controller by considering the feedback matrices Fl±
j as free LMI

variable (e.g. see Example 2.2.3).

Remark 5.2.1. The smoothness of the input signal is proportional to δt. However, a

large δt increases the required time span of the interpolation whereby a further inter-

polation (switching) might have to be delayed until µl+ = 1 is fulfilled.

If some of the ζ > 1 closed-loop SE-NL T-S models (or LO T-S models without affine

terms) have a common quadratic Lyapunov function and hence their DAs only differ in

the bounding level value (see Proposition 4.2.1), a controller (5.2) is not required for a

smooth switching:

Corollary 5.2.1. Let ζ > 1, ζ ∈ N, closed-loop SE-NL T-S models (or LO T-S models

without affine terms) for a dynamical system and an asymptotically stable switching

signal l ∈ N1:ζ based on Theorem 4.2.1 or 4.3.1 for the corresponding controllers (4.6)

be given. Then the smooth switching signal

u =
r∑

j=1

hj(zc) (µl−Fj,l+x + (1 − µl−) Fj,l−x) if l : l− → l+, (5.4)

for a switching l : l− → l+ asymptotically stabilizes the origin if the DAs X0(Pl− , η0,l−)

and X0(Pl+ , η0,l) share a common P = Pl− = Pl+.

Proof: The asymptotic stability follows directly from Theorem 5.2.1 when replacing

Fl±
j with Fj,l+ and Fj,l− . In other words, an arbitrary convex interpolation between

linear systems that have a common (quadratic) Lyapunov function asymptotically sta-

bilizes the origin whereby the proof is concluded.

5.3 Recurrent Fuzzy Switching: A Unified Approach

Generally, the understanding of switching laws becomes harder with a rising amount

of switching rules (conditions). In addition, there exist, up to the author’s knowl-

edge, no framework for transforming an asymptotically stable switched system into an

asymptotically stable and smoothly interpolated one. Both disadvantages, and thus

Problem 5.1.2, are tackled in this section.
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Consider a hard switched closed-loop system which is written in T-S notation

ẋ =
ζ
∑

p=1

hp(zw)
r∑

i=1

r∑

j=1

hp
i (zs)h

p
j(zc) ((Ap

i + B
p
i Fj) x + a

p
i )

︸ ︷︷ ︸

Σp

, (5.5)

where p ∈ N1:ζ denotes the currently active T-S system Σp. The hard switching signal

ζ
∑

p=1

hp(zw) = 1, hp(zw) ∈ N0:1 ∀ hp(zw) (5.6)

depends on premise variables zw which consist of input and state parameters as well

as external signals, such as a clock signal, which might the system cause to switch.

Note that (5.5) represents both, a closed-loop SE-NL T-S and a closed-loop LO T-S

formulation according to the Definitions 2.1.1 and 2.1.2, respectively.

We interpret each closed-loop T-S system Σp as a linguistic partition of a state vari-

able x̄ of a discrete-time recurrent fuzzy system (RFS), which has been introduced in

Section 2.1.1). Therefore, we introduce the fuzzy set Lx̄
j ∈

{

Lx̄
1 , . . . , L

x̄
ζ

}

. The RFS

describes the switching rule base as

If x̄(k) is Lx̄
j and ū(k) is Lū

q then x̄(k + 1) is Lx̄
w(j,q) (5.7)

analogous to the rule (2.1). Hence, we will call it switched RFS henceforth. The vector

Lū
q =

[

Lū1
q , . . . , L

ūm
q

]T
summarizes linguistic values for each element ūp, p ∈ N1:m.

These linguistic values are Lūp
q (q ∈ N1:z). Note, the switching rule base (5.7) has only

one state variable, which denotes the active subsystem Σp, but m input signals that

can cause a switching to occur. Analogous to the mathematical expression (2.4) of a

conventional RFS rule basis

ζ
∑

p=1

hp(zw) = x̄(k + 1) =

∑

j,q sx̄
Lw(j,q)

∏

p µ
x̄
Lj

(x̄)µ
ūp

Lq
(ūp)

∑

j,q

∏

p µ
x̄
Lj

(x̄)µ
ūp

Lq
(ūp)

, (5.8a)

∑

j

µx̄
Lj

(x̄) =
∑

q

µ
ūp

Lq
(ūp) = 1, µx̄

Lj
(x̄) ≥ 0, µ

ūp

Lq
(ūp) ≥ 0 (5.8b)

represents the smooth mathematical form of (5.7). We postulate the following three

definitions for deriving a switched RFS. Thereby, ξ is considered as a general switching

parameter:

Definition 5.3.1 (Fuzzification of non-strict switching conditions). A non-strict switch-

ing rule defines a region of ξ within which switching is allowed. For instance, switch
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to system Σp with p = 1 if ξ ≤ 10. A non-strict rule can thus be seen as a switching

condition of a hybrid automaton (see Section 2.3). Such a switching condition can

be fuzzyfied as input signal of the switched RSF by each commonly used membership

function except singletons (see Fig. 2.2). Singletons are not allowed as they prevent

a smooth interpolation. The core positions of the membership functions can be freely

chosen as long as it is ensured that: First, the interpolation starts not before the non-

strict switching condition is fulfilled. Second, the interpolation is done before a strict

switching condition (see the following definition) is violated. Third, an interpolation

towards a subsystem has to be done before interpolating from that subsystem towards

another one is allowed.

Definition 5.3.2 (Fuzzification of strict switching conditions). A strict switching rule

contains a strict equal sign, e.g. switch to system Σp with p = 1 if ξ = 10. Thus,

it can be seen as invariant condition of a hybrid automaton (see Section 2.3). Such

a condition has to be fuzzyfied by using a rectangular membership function which is

either 0 or 1 [64]. A rectangular membership function can be easily obtained from a

trapezoidal one. For instance, by merging s1(.) and s2(.) as well as s3(.) and s4(.) in

Fig. 2.2(a). Consequently, a strict switching condition forces switching to occur.

Definition 5.3.3 (Fuzzification/Defuzzification of subsystems). The subsystems in (5.5)

represent the linguistic set of the RFS state variable x̄. Here, singletons according to

Fig. 2.2(c) are considered for defuzzification. The fuzzification is bypassed and the

actual values of the singletons are directly used instead.

Fig. 5.2 sketches the final structure of the novel switched RFS: Shown are the T-S

subsystems Σp, p ∈ N1:ζ . The switching rule base (5.7) is depicted by a deterministic

automation (as introduced in Section 2.1.1). The rule base interpolates between the

T-S subsystems based on (5.8) by triggering the blending functions hp, p ∈ N1:ζ . For

instance, if the automaton state is Lx̄
2 then h2 = 1 and the T-S system Σ2 is active. A

change of the automation state and thus a smooth switching between the T-S systems

is here caused by x, ẋ or an external trigger τ .

The switched RFS is an unified smoothing approach for systems in form of (5.5)

allowing a high interpretability of the switching conditions due to the linguistical rule

base (5.7). For instance, all smooth switching approaches of Section 5.2 can be directly

transferred to a switched RFS which is summarized in the following Corollary:

Corollary 5.3.1. The smooth switching approaches according to Theorem 5.2.1 and

Corollary 5.2.1 can be rewritten as switched RFS.

66



5.3 Recurrent Fuzzy Switching: A Unified Approach

Lx̄
1 Lx̄

2 Lx̄
3

Lū
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Figure 5.2: Block schematic of a swiched recurrent fuzzy system.

Proof: A transfer of the results is possible because of the following three facts: First,

in Theorem 5.2.1 and Corollary 5.2.1 switched closed-loop system in T-S notation are

considered which can equivalently be written according to (5.5). Second, the switched

RFS ensures a convex combination (5.8b) of the subsystems which is equivalent to

the smooth switching according to (5.1) and (5.4). That is required for the proofs of

Theorem 5.2.1 and Corollary 5.2.1. Third, the Definitions 5.3.1 till 5.3.3 guarantee that

the interpolation of the switched RFS is in accordance with (5.1) and (5.4).

In addition, a hybrid automaton that does not have a conventional equilibrium but a

stable ǫ-region (region stability according to Definition 2.3.1) can be reformulated and

smoothed by a switched RFS:

Theorem 5.3.1. Let a hybrid automaton that is regionally stable in a known ǫ-region be

given. Then the system is regionally stable within a region ǫ̃ ≤ ǫ if the hybrid automaton

is transformed into a switched RFS and the switching and invariant conditions are

reformulated based on the Definitions 5.3.1 to 5.3.3.

Proof: The stable ǫ-region of a regionally stable hybrid automaton is defined by

certain combinations of subsystems of the overall switched system and switching condi-

tions, i.e. worst case scenarios or switching sequences. Its reformulation to a switched

RFS does interpolate but not change the original switching laws. In other words, due

to the Definitions 5.3.1 to 5.3.3, the extreme values of the switched RFS are equivalent

to the original switching conditions. Hence, the stable region ǫ̃ of the switched RFS

cannot become larger than the ǫ-region of the original hybrid automaton. However,
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the ǫ̃-region can become smaller than the ǫ-region because the interpolation balances

contrary switching rules. Consequently, the ǫ-region is an upper bound of the ǫ̃-region

which concludes the proof.

Remark 5.3.1. An adjustment of the switched RFS might be of interest. For example,

for minimizing the ǫ̃-region (see Theorem 5.3.1). Due to its formulation as fuzzy system,

several fuzzy or neuro-fuzzy based optimization algorithms are directly applicable [46,

111]. In [30] for instance, weighting coefficients

p̄x
Cw

=
[

p̄x̄
C1

p̄x̄
C2

· · · p̄x̄
Cz

]

, p̄x̄
Ci
> 0, ∀ i ∈ N1:z (5.9)

have been considered to extend (5.8a) to

ζ
∑

p=1

hp(zw) = x̄(k + 1) =

∑

j,q sx̄
Lw(j,q)

p̄x̄
Cw(j,q)

∏

p µ
x̄
Lj

(x̄)µ
ūp

Lq
(ūp)

∑

j,q p̄x̄
Cw(j,q)

∏

p µ
x̄
Lj

(x̄)µ
ūp

Lq
(ūp)

. (5.10)

Thereby, a modification of the interpolation law is achieved by strengthening or weak-

ening single switched RFS rules. As the rule base itself is not changed, the stability

results according to Corollary 5.3.1 and Theorem 5.3.1 stay valid. This approach has

been successfully applied for modeling and optimizing a production environment and

for adapting an active cruise control system [32, 107].

5.4 Summary

In this chapter, we have addressed the problems that arise from switching-based control:

First, non-smooth changes of the control input might cause performance and comfort

losses or safety risks. Second, the loss of interpretability and adaptability of switching

conditions. We solve that problems by extending our switched controller strategies

(Chapter 4) to enable an asymptotically stable and smooth switching. Therefore, we

have invoked arguments based on common and multiple Lyapunov functions. The

required stability conditions have been formulated in terms of linear matrix inequalities

(LMIs) such that a numerically efficient convex optimization procedure can be applied.

Concerning the second problem, we have derived a general representation of a switched

T-S model by a switched recurrent fuzzy system (RFS). The switched RFS allows a

linguistic interpretation of the switching rules while simultaneously smoothing them.

Also modifying the switching parameter has thereby been enhanced.
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Chapter 6

Governor Integrated Nominal-Value

Adaptation: GINA Controller

In the Chapters 3 and 4 we have derived several numerical methods for estimating a

large ellipsoidal domain of attraction (DA) of a desired equilibrium point while ensuring

a requested control performance. As a matter of fact, an estimated DA of a constrained

dynamical system (linear and nonlinear) is always bounded by a critical level value.

Hence, the asymptotic stabilization of a desired set point cannot be guaranteed for every

initial state that is outside of the bounding level set. In this chapter, we investigate

how a set point change can be realized, even if the current state vector is not within the

estimated DA of the desired equilibrium. To this end, we develop the GINA controller

(Governor Integrated Nominal-Value Adaptation) which belongs to the class of reference

governors. We revive the Lyapunov function-based set point governor [21] for linear

systems with a single input. We generalize its operation principle to systems in T-

S form with multiple inputs. We propose several strategies to balance the required

computational costs with the optimality of the solution. Consequently, recalling the

scope of this thesis (Section 1.2) we contribute to the design of reference governors.

After a formal problem statement in Section 6.1, we explain the desired operation

principle of the GINA controller in general. Section 6.3 is devoted to the optimal real-

time calculation of the governor’s solution. We derive an algorithm for realizing an

optimal real-time calculation. Strategies for relaxing the required computational effort

are developed in Section 6.4. We also generalize the governor algorithm such that its

applicability is only restricted by a single condition. In Section 6.5 we even relax that

condition by developing an unified iterative implementation of the governor principle.

Thereby, most of the required calculations are done before the real-time execution such

that the real-time computation is reduced to a selection of a valid solution among the

pre-calculated ones.
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6.1 Problem Formulation

Each physical system is subject to constraints, e.g. every actuator has a limited oper-

ating range. Hence, the domain of attraction (DA) of a real world system is most often

restricted. An estimation of such a local DA can for instance be done based on the

Chapters 3 and 4. Consequently, if the state vector is outside of the estimated DA we

can not guarantee the asymptotic stability of the system anymore. Now, the question

arises how this drawback can be solved. We will face the following problem:

Problem 6.1.1. Let a saturated input-affine nonlinear system in the form

ẋ = A(x)σ (x) + B(x)σ (u) , (or σ (u̇)) (6.1)

with the state vector x ∈ R
n and the input vector u ∈ R

m. The system might have state

constraints. The input might be either restricted in its amplitude or rate or even both

and a related T-S formulation (2.5) or (3.11) is given. Suppose that a corresponding

T-S controller and an estimated DA Xx∗

d
(P, ηu∗

d
) of the closed-loop system of the desired

equilibrium (x∗
d,u

∗
d) subject to all relevant system constraints is computed. Then the

problem is to stabilize the desired set point if the actual state vector is not within the

estimated DA, i.e. x /∈ Xx∗

d
(P, ηu∗

d
).

The following assumption is required in order to tackle this problem:

Assumption 6.1.1. A functional relation of allowed system’s equilibria is known. Ei-

ther as smooth piecewise analytical function (at least C0-continuous)

x∗ = f̂(x), s. t. |u∗| < umax ∀ x∗ ∈ f̂(x) (6.2)

with x∗ < σ (x) or in form of a numerically calculated steady-state curve

x∗(k) = f̂(x(k)), s. t. |u∗(k)| < umax ∀ x∗(k) ∈ f̂(x(k)) (6.3)

consisting of discrete equilibria points x∗(k) < σ (x(k)), where k is the discretization

index (of discrete equilibria).

As a matter of fact, this will be inherently satisfied for many physical real-wold

systems. For instance, stirred tank reactor, wind turbine systems, mobile robots, ma-

nipulators or quadrotors as considered in [92, 105, 128].
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Based on that preparation, we solve Problem 6.1.1 by establishing a reference gover-

nor, called GINA controller (Governor Integrated Nominal-Value Adaptation), for

T-S systems, up to the author’s knowledge, for the first time. If the actual state

vector of the closed-loop system is outside of the estimated DA then the GINA

controller computes an auxiliary set point from the allowed system’s equilibria (see

Assumption 6.1.1) that can be stabilized subject to system constraints. While the

system is approaching to this set point, it is shifted as fast as possible towards

the actual desired equilibrium. Thereby, robustness against external disturbances

or measurement noise is achieved simultaneously. Different algorithms for realiz-

ing this working principle are introduced for guaranteeing the applicability of the

GINA controller to a wide range of systems and for handling different levels of

available computational power. For instance, we derive conditions such that the

computation becomes independent of the number of system inputs.

6.2 General Operation Principle

Assume the situation according to Problem 6.1.1 where the current state vector is not

within the DA of the desired equilibrium, meaning Vx∗

d
> ηu∗

d
. Then the general idea of

the GINA controller is to determine an alternative equilibrium (a temporary set point

(x∗
t ,u

∗
t )) which is as close as possible towards the desired one, but can be guaranteed to

be stabilized. To this end, the closed-loop system is expanded by the GINA controller

as depicted in Fig. 6.1 whereby the saturation function denotes input limitations in

general (amplitude and rate).

In order to ensure a stabilization, the temporary equilibrium x∗
t and its corresponding

steady-state input u∗
t should be calculated such that

Vx∗

t
= (x − x∗

t )T P(x − x∗
t ) ≤ ηu∗

t
. (6.4)

According to Assumption 6.1.1, all possible temporary equilibria are either part of a

-

GINA
controller

system

controller

uu∗
t x

x∗
t

x∗

d

Figure 6.1: GINA controller extended closed-loop system.
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piecewise analytical function (6.2) or a numerically calculated steady-state curve (6.3).

The temporary equilibrium x∗
t is derived by interpolating between a reference equilib-

rium (x∗
r ,u

∗
r) and the desired one, i.e.

x∗
t = f̂ (x∗

r + c (x∗
d − x∗

r)) , (6.5a)

x∗
t (k) = f̂ (x∗

r + c(k) (x∗
d − x∗

r)) (6.5b)

with c ∈ [0, 1] being the scaling (interpolation) factor. In other words, if c = 0 then

x∗
t = x∗

r and c = 1 results in x∗
t = x∗

d. The interpolation principle is clarified in Fig. 6.2

for a two-dimensional state space. Fig. 6.2(a) shows a possible analytical function of

allowed system equilibria f̂(x) as well as possible discrete equilibria f̂(x(k)) according

to Assumption 6.1.1. The desired set point x∗
d is marked. Assuming that a stabilizable

reference equilibrium x∗
r is known the resulting range for c is depicted in Fig. 6.2(b).

While a certain temporary equilibrium is stabilized, the scaling factor c should be

increased as soon as possible, meaning that x∗
t is shifted towards x∗

d whenever stability

can be guaranteed for the updated temporary equilibrium. Repeating will finally lead

to c = 1 whereby x∗
t = x∗

d and thus x ∈ Xx∗

d
(P, ηu∗

d
).

However, after this more or less conceptional explanation of the GINA controller two

fundamental questions remain open:

1. How to calculate the reference equilibrium (x∗
r ,u

∗
r)?

2. How to update c?

This questions will by answered in the following sections.

x1

x2

x∗

d

f̂(x)

f̂(x(k))

(a) Assumption 6.1.1

x1

x2

x∗

d

x∗
r

f̂(x)

f̂(x(k))

range of c ∈ [0, 1]

(b) Interpolation (6.5)

Figure 6.2: Sketch of the calculation principle of x∗
t .
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6.3 Optimal Real-Time Computation

In this section we will develop an algorithm for analytically calculating the reference

equilibrium and optimally updating the scaling factor c based on a function (6.5a).

Optimal means that x∗
t is shifted as close as possible towards x∗

d while ensuring stability.

This is fulfilled if (6.4) is reformulated to

Vx∗

t
= (x − x∗

t )T P(x − x∗
t )

!
= ηu∗

t
. (6.6)

To this end, we consider the class of systems (6.1) which have an equilibrium func-

tion (6.2) and fulfill the following additional assumption:

Assumption 6.3.1. The estimated DA Xx∗(P, ηu∗) for each equilibrium of (6.2) share

a common matrix P.

Although this might sound restrictive, indeed it is not. Lots of technical systems fulfill

this assumption inherently, e.g. mobile robots, manipulators or aircraft systems and

quadrotors [92, 103]. Mathematically spoken, if the values of the system’s nonlinearities

are constant in each allowed equilibrium then Assumption (6.3.1) is fulfilled anyway.

For instance, the tilt angles of wheeled inverted pendulums (like the commercial Segway

product [3]) are zero in each equilibrium.

The assigned objective is to continuously update c such that (6.6) holds true until x∗
t =

x∗
d and thus x ∈ Xx∗

d
(P, ηu∗

d
). This is sketched in Fig. 6.3 concerning the function f̂(x)

of Fig. 6.2. The figure illustrates the continuous shifting of the temporary equilibrium

along the allowed equilibrium function. The initial state vector x0 is not within the

DA of the desired set point, but x0 ∈ Xx∗

r
(P, ηu∗

r
). A temporary equilibrium is set as

close as possible towards x∗
d such that x0 ∈ Xx∗

t (t1)(P, ηu∗

t (t1)). In order to keep the state

vector at the bounding level set of the temporary equilibrium, is has to be continuously

moved until x∗
t = x∗

d and thus x ∈ Xx∗

d
(P, ηu∗

d
). Three snap shots at a time t1, t2 and

t3 visualize the moving of the temporary equilibrium.

Replacing x∗
t in (6.6) with (6.5a) results in

Vx∗

t
= (x − f̂(x∗

r ,x
∗
d, c))

T P(x − f̂(x∗
r ,x

∗
d, c))

!
= ηu∗

t
(6.7)

which has to be solved in c.

Remark 6.3.1. Equation (6.7) only depends on the continuous state vector x and the

smooth function (6.5a). In view of that, the solution for c is a smooth function as well

(no jumps occur).
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PSfrag

x∗
r x∗

t (t1)

x∗
t (t2)

x∗
t (t3)

x∗

d

x0

∂Xx∗

r

∂Xx∗

t
(t1)

∂Xx∗

t
(t2)

∂Xx∗

t
(t3)

∂Xx∗

d

f̂(x)

Figure 6.3: Operation principle of the optimal real-time computation.

Algorithm 6.3.1 summarizes the strategy for updating c: We initially calculate x∗
r

while the rest of the algorithm is supposed to be executed in real-time, meaning in every

simulation or real-time execution step. The reference equilibrium is derived based on

the initial state vector x0 by solving the optimization problem

x∗
r = argmin

x∗∈f̂(x)
(x0 − x∗)T P(x0 − x∗) ≥ 0. (6.8)

In other words, x∗
r equals to the energy-optimal equilibrium concerning the ellipsoidal

DA (2.38). The advantage of calculating x∗
r in such a way is that stability is enured as

long as a stabilizable equilibrium which ensures (6.4) exist. The condition in line 4 is

Algorithm 6.3.1 Optimally updating the scaling factor c

1: Initialization:

2: calculate x∗
r by (6.8)

3: Real-Time:

4: if Vx∗

d
≤ ηu∗

d
= true then

5: c = 1
6: else

7: solve (6.7), (6.9) for every i (ignoring the min-operator) and select Cηu∗

t

8: c = maxq (cq,i), q ∈ N1:|Ci|, calculate u∗
t by (6.10)

9: if c /∈ [0, 1] then

10: recalculate x∗
r by (6.8) with the current x

11: return to line 4
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6.3 Optimal Real-Time Computation

continuously checked. If it is fulfilled then the actual state vector is within the DA of

the desired equilibrium x ∈ Xx∗

d
(P, ηu∗

d
), whereby with c = 1 the desired equilibrium is

activated. If line 4 is not fulfilled, the GINA controller becomes active.

Let us first consider a linear feedback law (2.23) (or (2.16) with Fj = F for all j).

Then the right-hand side of (6.7) is given by

ηu∗

t
= min

i











η0 ·

(

umax,i −
∣
∣
∣fT

c,i(x
∗
r ,x

∗
d, ci)

∣
∣
∣

)2

u2
max,i

︸ ︷︷ ︸

ηu∗

t,i











(6.9)

based on (2.49). The index i denotes the i-th input. Consequently, equation (6.7), (6.9)

has to be solved and from the obtained values for c the one that shifts x∗
t as close as

possible towards x∗
d has to be selected. This is executed in line 7 of the algorithm,

where equation (6.7), (6.9) is solved for every input i while ignoring the min-operator.

Thereby, sets Ci = [c1,i, . . . , cj,i] each containing j ∈ N valid solutions for the scaling

parameter c are obtained. From these sets Cηu∗

t
belonging to the smallest level value

ηu∗

t
(6.9) is selected (line 8) whereby the ignored min-operator is finally considered. The

final value of the scaling parameter equals to the largest element in Cηu∗

t
as that shifts

x∗
t as far as possible towards x∗

d. The corresponding steady-state input signal u∗
t which

corresponds to a certain x∗
t is determinable by reformulating the equilibrium condition

for a system (6.1) to

u∗
t = −

(

BT (x∗
t )B(x∗

t )
)−1

BT (x∗
t )A(x∗

t ), (6.10a)

u∗
t = fT

c (x∗
r ,x

∗
d, c). (6.10b)

The function fT
c (x∗

r ,x
∗
d, c) is obtained by inserting (6.5a) in (6.10a). Note that due

to assumption 6.1.1 and (6.5) no input saturation can occur in (6.10). The scaling

factor c and thus the temporary equilibrium is continuously recalculated (updated)

by repeating the real-time execution part of the algorithm (line 3). Line 10 of the

algorithm is only executed in the case that c /∈ [0, 1] (out of its working range), e.g. due

to external disturbances or measurement noise. A new valid reference equilibrium has

to be calculated by solving (6.8) with x0 = x whereby robustness against disturbances

is simultaneously achieved.

Analogous to a conventional control law the GINA controller requires the current state

vector and is thus part of the feedback loop (see Fig. 6.1). The asymptotic stability of

the GINA controller extended closed-loop system is given by the following Theorem:
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Theorem 6.3.1. Let a system (6.1) and an affine controller u = u∗
d + F(x − x∗

d) that

asymptotically stabilizes x∗
d ∀ x ∈ Xx∗

d
(P, ηu∗

d
) be given. Then the GINA controller

extended closed-loop system asymptotically stabilizes x∗
d for all x ∈

⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
)

if a function (6.5a) exists, which fulfills

(x∗
t − x∗

d)T
∂
(

f̂ (x∗
r + c (x∗

d − x∗
r))
)

∂c
> 0 (6.11)

for all c ∈ [0, 1[, and c is updated by Algorithm 6.3.1.

Proof: See the Appendix A.1

Even in the case that (6.5a) does not fulfill the condition (6.11), the attraction of x∗
d is

ensured by Theorem 6.3.1 which is proven by the following Lemma:

Lemma 6.3.1. If a smooth piecewise equilibrium function (6.5a) exists which does not

fulfill condition (6.11) then x∗
d is attractive concerning the GINA controller extended

closed-loop system for all x ∈
⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) when updating c by Algorithm 6.3.1.

Proof: The scaling factor c ∈ [0, 1[ will continuously increase due to ċ > 0 according

to the proof (Case 2) of Theorem 6.3.1. However, the value of the Lyapunov-like

function (A.1) does not necessarily decrease as condition (6.11) is not guaranteed for

all c ∈ [0, 1[. This becomes clear when looking at (A.5). However, c = 1 is guaranteed

for t → ∞ at least. As soon as c = 1 the GINA controller extended closed-loop system

asymptotically stabilizes x∗
d by Case 1 of the proof of Theorem 6.3.1. In other words,

the temporary set point is shifted along (6.5a) until x∗
d can be asymptotically stabilized.

Hence, x∗
d is attractive which completes the proof.

Concerning a T-S controller (2.16) or (3.13), the equation (6.9) is not valid anymore.

However, the asymptotic stability of the GINA controller extended closed-loop system

can be still guaranteed in the following way:

Lemma 6.3.2. Let a system (6.1) be given in T-S form. Let further an affine T-

S controller u = u∗
d +

∑r
j=1 hj(zc) (Fj(x − x∗

d)) that asymptotically stabilizes x∗
d, ∀

x ∈ Xx∗

d
(P, ηu∗

d
) be given. Then the GINA controller extended closed-loop system asymp-

totically stabilizes x∗
d for all x ∈

⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) when updating c by Algorithm 6.3.1

if equation (6.11) is valid and all linear subsystems (Ai,Bi) of the T-S model of (6.1)

fulfill the rank conditions:

rank (Ai) < n, rank (Ai,Bi) = n ∀ i ∈ N1:r. (6.12)
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Proof: The steady state input signal u∗ is zero at each possible equilibrium x∗ of

the system, due to the rank conditions (6.12). Thus, the bounding level value at each

equilibrium is ηu∗ = η0, whereby the right-hand side of (6.7) is fixed at ηu∗

t
= η0.

Considering that instead of (6.9), Algorithm 6.3.1 is applicable for a T-S controller and

the proof of Theorem 6.3.1 can be applied to ensure the asymptotic stability which

concludes the proof.

6.4 Relaxing the Real-Time Computation

Although Algorithm 6.3.1 provides an optimal updating of the temporary equilibrium

x∗
t and its steady-state input signal u∗

t , its practical applicability cannot be guaranteed

in general. The reason for that derives its origin from the difficulty of solving opti-

mization problems in real-time subject to an usually limited available computational

power. For instance, microcontrollers offer a budget-friendly possibility for real-time

tasks but at the price of a rather low complexity of executable real-time operations.

Such problems are often not mentioned in the literature when optimal or nonlinear con-

trol laws are developed. In this section we develop strategies for relaxing the real-time

applicability of the GINA controller. The Section 6.4.1 examines the recalculation of

the reference equilibrium (line 10 of Algorithm 6.3.1) which might be required in case

of an unexpected disturbance. The need of solving equation (6.7), (6.9) (line 7) for

every input is relaxed in Section 6.4.2 such that only a single computation is required.

In Section 6.4.3, we bypass the need of solving (6.7), (6.9) by introducing a fuzzy-based

interpolation for iteratively improving the location of the temporary equilibrium.

6.4.1 Calculating the Reference Equilibrium

The need of solving the optimization problem (6.8) in real-time if a recalculation of the

reference equilibrium is needed can be bypassed by the following Theorem:

Theorem 6.4.1. The reference equilibrium x∗
r is given by

x∗
r = N

(

NT PN
)−1 (

NT Px0

)

, (6.13)

if all subsystems (Ai,Bi), i ∈ N1:r, of the T-S notation of the system (6.1) share the

same subspace of allowed equilibria, which is spanned by a constant matrix N ∈ R
n×l.

Proof: If a matrix N ∈ R
n×l of system’s equilibria exist then this subspace can be

considered instead of the functional relation x∗ = f̂(x) (see (6.2)). In other words,
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each allowed equilibrium is parametrized by x∗ = Nz where z = [z1, z2, ..., zl]
T is the

vector of independent directions within N. Hence, the optimization problem (6.8) can

be equivalently written to

x∗
r = arg min

x∗

(

(x0 − x∗)T
P (x0 − x∗)

)

, x∗ = Nz,

= N

[

arg min
z

(

xT
0 Px0 − 2zT NT Px0 + zT NT PNz

)]

,

= N
(

NT PN
)−1 (

NT Px0

)

where arg minz (...) is computed by solving

δ

δz
= −2NT Px0 + 2NT PNz

!
= 0,

for z which concludes the proof.

Example 6.4.1. A new variant of mobile inverted pendulum robots with a single

contact to the ground are the recently introduced Ballbots [55]. These omnidirectionally

movable unstable robots balance upright on a sphere. The Ballbot system at our

institute is shown in Fig. 6.4. The robot mainly consists of an aluminum cuboid frame

F that carries batteries, electronics and possibly loads. The driving mechanism is based

on three equidistantly positioned (120◦) omniwheels Wi with i ∈ {1, 2, 3} and a rigid

ball B. Each of the omniwheels is driven by a DC-motor Mi. Ball clips Ci prevent

slip between the omniwheels and the ball by three small roles at the end of the clips.

Unstable (or dynamically stable) robots like a Ballbot achieve a higher agility, can

be designed taller and carry more loads compared to statically stable robots having a

similar footprint [79, 112]. That gives Ballbots a great potential for supporting humans

F

Mi

Wi

B
Ci

x y

z

Figure 6.4: Ballbot test rig.
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life which often takes place in a narrowed, cluttered or crowed environment – whether

used as transportation or service robot or as a mobile information guide. A first existing

commercial version of a Ballbot platform is mObi [1]. Some additional future visions

for Ballbot applications are shown in [2]. Even without analyzing the equations of

motion of the Ballbot, it is quiet obvious that the robot can be stabilized at each

location (position in the (x, y)-plane) which span an allowed subspace of set points for

analytically deriving the reference equilibrium x∗
r .

Further possibilities of calculating and properly selecting the reference equilibrium are

summarized in Appendix B.

6.4.2 Single Level Value

Generally, the equation (6.7), (6.9) must be solved for each input i in every execution

step of Algorithm 6.3.1. Hence, it is quite obvious that the required computational

power grows with the number of system inputs. In the following, we state some possi-

bilities such that only a single input has to be considered:

Corollary 6.4.1. Let a system (6.1) with multiple inputs in T-S form and a reference

equilibrium x∗
r be given such that x0 ∈ X (x∗

r). Then equation (6.7) and (6.9) have to

be solved only once if all linear subsystems (Ai,Bi), i ∈ N1:r, fulfill the rank conditions

in (6.12).

Proof: In Lemma 6.3.2 it is shown that a system which fulfills the rank conditions

in (6.12) has a constant level value η0 at each equilibrium point. Consequently, (6.9)

can be replaced wit ηu∗

t
= η0 whereby equation (6.7) and (6.9) have only to be solved

once.

Even for a system which violates at least one of the rank conditions the evaluation

of (6.7) and (6.9) can be reduced to a single input case. To this end, we state the

following theorem and the subsequent corollary:

Theorem 6.4.2. Let a system (6.1) with multiple inputs in T-S notation be given that

violate at least on of the rank conditions (6.12). Consider that x∗
r = 0 is a valid reference

equilibrium. Then the minimal level value ηu∗

t
equals always to the level value ηu∗

t,i
that

belongs to a fixed (non-changing) input i concerning a defined x∗
d if linear equilibrium

functions (6.5a) and (6.10b) exist, meaning

x∗
t = x∗

r + c (x∗
d − x∗

r) , (6.14a)

u∗
t = u∗

r + c (u∗
d − u∗

r) , s. t. |u∗
t | < umax ∀ x∗

t . (6.14b)
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Proof: See Appendix A.2.

In Theorem 6.4.2, x∗
d = 0 is not permissible as this results in x∗

d = x∗
r whereby the

updating of c becomes meaningless (c = 0 is the only valid solution). This drawback is

solved by the following corollary:

Corollary 6.4.2. Let a system (6.1) with multiple inputs in T-S notation be given that

violate at least on of the rank conditions (6.12). Consider x∗
d = 0, u∗

d = 0 as desired

equilibrium. Then the minimal level value ηu∗

t
equals always to the level value ηu∗

t,i
that

belongs to a fixed (non-changing) input i if a stabilizable reference equilibrium exist and

the linear set point functions (6.14) are valid.

Proof: Permuting the reference and the desired equilibria in (6.14) leads to

x∗
t = x∗

d + c (x∗
r − x∗

d) ,u∗
t = u∗

d + c (u∗
r − u∗

d) , s. t. |u∗
t | < umax ∀ x∗

t . (6.15)

Following Theorem 6.4.2 with the new equilibrium function (6.15) concludes the proof.

If Theorem 6.4.2 is not applicable due to the fact that no temporary equilibrium with

c /∈ [0, 1] for x∗
r = 0 can be found, then Corollary 6.4.2 can be considered until The-

orem 6.4.2 is applicable again. Consequently, Theorem 6.4.2 and Corollary 6.4.2 are

always applicable if (6.14) is an equilibrium function.

Example 6.4.2 (Example 6.4.1 cont’d). Let us recall the Ballbot system of Fig. 6.4

with the purpose of controlling a defined position in the (x, y)-plane. Due to the fact

that each positon is a possible set point, the linear equilibrium functions (6.14) are valid

and thus Theorem 6.4.2 as well as Corollary 6.4.2 can be applied.

6.4.3 Generalization: Implicit Recurrent Fuzzy Interpolation

According to Lemma 6.3.2 and Corollary 6.4.1 a T-S controller can only be considered

when the linear subsystems of the T-S model fulfill certain conditions. This might be

the case for lots of interesting physical systems, e.g. see Example 6.4.2, but not for all.

In this section, we will tackle and relax this problem while simultaneously reducing the

required computational power for updating the scaling variable c (see Algorithm 6.3.1).

More precisely, solving equation (6.7), (6.9) is not required any more. The updating

strategy is based on a recurrent fuzzy interpolation with the objective of iteratively

improving the location of the temporary equilibrium while ensuring its asymptotic

stabilization at any time. The method is summarized in Algorithm 6.4.1 and will be

detailed in the following:
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Algorithm 6.4.1 Implicit Recurrent Fuzzy Interpolation of x∗
t

1: Initialization:

2: calculate x∗
r by (6.8) or Section 6.4.1 for x0

3: set x∗
t = x∗

r , u∗
t = u∗

r by (6.10)
4: set k = 0
5: set x∗

t (k) = x∗
t , u∗

t (k) = u∗
t

6: Real-Time:

7: while termination = false do

8: if Vx∗

d
≤ ηu∗

d
= true then

9: x∗
t = x∗

d, u∗
t = u∗

d

10: exit: set termination = true
11: else

12: calculate a candidate x∗
t (k + 1) based on (6.16) and u∗

t (k + 1) by (6.10)
13: if Vx∗

t
(k + 1) ≤ ηu∗

t
(k + 1) and x∗

t (k + 1) closer at x∗
d than x∗

t = true then

14: set x∗
t = x∗

t (k + 1)
15: else

16: reduce ηu∗

t
(k + 1) = ιηu∗

t
(k + 1)

17: if Vx∗

t
> ηu∗

t
= true then

18: recalculate x∗
r by (6.8) or Section 6.4.1 for x

19: set x∗
t = x∗

r , u∗
t = u∗

r by (6.10)
20: set x∗

t (k + 1) = x∗
t , u∗

t (k + 1) = u∗
t

21: set ηu∗

t
(k + 1) = ηu∗

t
(k + 1)

Initially (line 1 until 5), we calculate a reference equilibrium that can be stabilized

x0 ∈ Xx∗

r
(P, ηu∗

r
) and consider it as temporary equilibrium. We introduce an iteration

(discretization) index k and the variable x∗
t (k) (and the corresponding u∗

t (k)) which

denotes a candidate for the temporary equilibrium, meaning an equilibrium that might

act as updated x∗
t if stability is ensured. Both are initially set equal to the values of

the temporary equilibrium (line 5). The remainder of the algorithm (line 6 until 21) is

executed in real-time, whereby the objective is to derive a x∗
t (k), to check its stability,

to update x∗
t and to iteratively optimize the candidate x∗

t (k) → x∗
t (k+1): Due to line 7

the iteration of x∗
t (k) is repeated multiple times consecutively in a single time step until

termination is forced, e.g. due to real-time execution constraints. At the beginning of

each iteration it is checked whether the desired equilibrium can already be activated

(analogues to Algorithm 6.3.1). If not, we calculate a new candidate for the temporary

equilibrium x∗
t (k + 1) (line 12 of Algorithm 6.4.1) by

c(k + 1) = c(k) + ∆(k), (6.16a)

x∗
t (k + 1) = f̂ (x∗

r + c(k + 1) (x∗
d − x∗

r)) (6.16b)
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whereby the parameter ∆(k) is used to adapt the scaling variable c(k) of x∗
t (k) from

one iteration step to the next along the function of allowed set points (6.5a). In other

words, c(k) can be seen as the scaling variable c in (6.7), (6.9). For imitating the

optimal operation principle of Algorithm 6.3.1, we would like to set c(k) such that the

current state variable is at the bounding level set, meaning

ηu∗

t
(k) − Vx∗

t,c
(k) = 0. (6.17)

To that aim, we define the ratios

ν±
t (k) =

ν+
t (k)

ν−
t (k)

, νt(k) =
Vx∗

t
(k)

ηu∗

t
(k)

, (6.18)

with ν−
t (k) =

V
x

∗−

t
(k)

η
u

∗−

t
(k)

and ν+
t (k) =

V
x

∗+
t

(k)

η
u

∗+
t

(k)

. Thereby, x∗−
t (k) and x∗+

t (k) denote tempo-

rary equilibria that are an infinitesimal step (δ << 1) closer at x∗
r and x∗

d, respectively,

than the current candidate x∗
t (k). In other words, these two set points are reached

when moving from x∗
t (k) a little backward and forwards along (6.5a). Hence, the ra-

tio ν±
t (k) states if the Lyapunov function increases or decrease in the direction of x∗

d,

i.e. the gradient of the Lyapunov function at x∗
t (k) (increasing if ν±

t (k) > 1 and de-

creasing if ν±
t (k) < 1). The second ratio νt(k) states if the current candidate for the

temporary equilibrium can be stabilized (νt(k) ≤ 1) or not. Based on these two ratios,

two important information can be gained: First, is the current candidate x∗
t (k) a valid

temporary equilibrium and second, in what direction along (6.5a) do we have to shift

x∗
t (k) in order to fulfill (6.17). As we will shift x∗

t (k) by the parameter c(k), which is

adapted by ∆(k) in (6.16a), we exploit the gathered information for deriving the fuzzy

rule base in Table 6.1. For instance, the first rule is: "If νt(k) is small and ν±
t (k) is

rising then enlarge ∆(k)". Note, although the rule base is not recurrent according to

Section 2.1.1, the updating law (6.16) is. This is due to the fact that the rule base in

Table 6.1 implicitly depends on the prior candidate x∗
t (k). For implementing the fuzzy

rule base, we consider trapezoidal membership functions for fuzzification and singletons

for defuzzification as shown in Fig. 6.5 and explained in Section 2.1.1.

Table 6.1: Basic fuzzy rule base for updating c(k)

[νt(k), ν±
t (k)] [small, rising] [large, rising] [small, falling] [large, falling]

∆(k) enlarge reduce reduce enlarge
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Figure 6.5: Membership functions of the rule base in Table 6.1.

The new candidate is activated as temporary equilibrium x∗
t = x∗

t (k) if it can be

stabilized x ∈ Xx∗

t (k)(P, ηu∗

t
(k)) and it is closer at x∗

d than the currently active temporary

equilibrium (line 13). Otherwise the temporary equilibrium is kept constant at its actual

value and the bounding level value is reduced by the scalar ι < 1, ι ≈ 1, in order to

reduce the iteration step for the subsequent calculation of a new candidate x∗
t (k + 1).

In other words, when moving from x∗
t towards x∗

d along (6.5a) than x∗
t,c(k) should be

past. If the temporary equilibrium is not updated we check if it still can be stabilized.

In that case the iteration is aborted. Otherwise stabilization is not ensured, e.g. due

to external disturbances or measurement noise. For robustness reasons (analogous to

Algorithm 6.3.1), a new valid reference equilibrium has to be calculated (line 18) subject

to the current state vector x, which analogous to the initialization part is considered as

new temporary equilibrium. Note, the lines 17 and 21 are only executed in the unlike

event that no valid candidate x∗
t (k) can be found.

Concerning Algorithm 6.4.1 for a recurrent updating of the temporary equilibrium

we state the following stability results:

Theorem 6.4.3. Let a system (6.1) in T-S form and a corresponding T-S controller

u = u∗
d +

∑r
j=1 hj(zc) (Fj(x − x∗

d)) that asymptotically stabilizes x∗
d ∀ x ∈ Xx∗

d
(P, ηu∗

d
) be

given. Then the GINA controller extended closed-loop system asymptotically stabilizes

x∗
d for all x ∈

⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) when updating x∗

t by Algorithm 6.4.1 if an equilibrium

function (6.5a) exists which fulfills (6.11).

Proof: See Appendix A.3.

In case that (6.5a) does not fulfill the condition (6.11), the desired equilibrium x∗
d is

attractive which is proven by the following Corollary:

Corollary 6.4.3. Let a system (6.1) in T-S form and a corresponding T-S controller

u = u∗
d +

∑r
j=1 hj(zc) (Fj(x − x∗

d)) that asymptotically stabilizes x∗
d ∀ x ∈ Xx∗

d
(P, ηu∗

d
)

83



Chapter 6 Governor Integrated Nominal-Value Adaptation: GINA Controller

be given. Then x∗
d is attractive with the GINA controller extended closed-loop system

for all x ∈
⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) when updating x∗

t by Algorithm 6.4.1 if a function (6.5a)

exists which does not fulfill (6.11).

Proof: Theorem 6.4.3 shows that the value of the Lyapunov-like function (A.1)

does not necessarily decrease and might even increase if condition in (6.11) is not

guaranteed. However, Algorithm 6.4.1 ensues that x∗
t = x∗

d (for t → ∞ at least)

whereby the asymptotic stability of x∗
d follows from Case 1 of the proof of Theorem 6.3.1.

Consequently, x∗
d is attractive which concludes the proof.

6.5 An Unified Iteration Algorithm

In this section, we develop a variation of the GINA controller that is applicable to both

functional relations mentioned in Assumption 6.1.1. Hence, in comparison to the prior

sections of this chapter numerically calculated steady-state curves can be handled in

addition to smooth piecewise analytical functions. In addition, we show how most of

the required calculations can be done prior to the real-time execution such that the

required real-time computation is reduced to a selection of a valid solution.

The key point is a curve of discrete allowed equilibria (and thus a function (6.5b))

and corresponding input signals. Either by discretizing a known analytical function

or having a numerically calculated steady-state curve available (see Assumption 6.1.1).

For each discrete equilibrium point x∗
l , with l ∈ N1:o the steady-state input u∗

l and the

domain of attraction (DA) is calculated, e.g. based on the methods of Section 3. Each

x∗
l can either act as reference, temporary or desired set point. The objective is to shift

the temporary equilibrium in discrete steps along x∗
l towards x∗

d such that stability is

maintained. For the latter, we state the following assumption:

Assumption 6.5.1. An estimated DA Xx∗

l
(P, ηu∗

l
) of a discrete set point x∗

l includes

the neighboring ones along the discrete equilibria curve. These set points are merged

in a set Sx∗

l
.

This assumption is not a restriction as it can always be fulfilled in an iterative two-step

procedure: First, we try to estimate a DA of a set point x∗
l such that the surround-

ing ones are included. This can be done in a constructively manner by the following

proposition:

Proposition 6.5.1. A domain of attraction Xx∗

l
(P, ηu∗

l
) of a discrete set point x∗

l in-

cludes the neighboring ones along the discrete equilibria curve, meaning Sx∗

l
⊂ Xx∗

l
(P, ηu∗

l
)
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if the LMI condition



1

(

x∗
l,i

)T

x∗
l,i Q



 ≥ 0, (6.19)

with Q =
(

P
ηu∗

l

)−1

, is fulfilled for all x∗
l,i ∈ Sx∗

l
.

Proof: The equilibria x∗
l,i ∈ Sx∗

l
are contained in Xx∗

l
(P, ηu∗

l
) if

(

x∗
l,i

)T
P
(

x∗
l,i

)

≤ ηu∗

l
, ∀ x∗

l,i ∈ Sx∗

l
. (6.20)

That can be rewritten based on (2.41) to




ηu∗

l
(x∗

l,i)
T P

Px∗
l,i P



 ≥ 0. (6.21)

Multiplying it form both sides with the regular, symmetric matrix




1 0

0 Q



 , (6.22)

where Q =
(

P
ηu∗

l

)−1

results in

ηu∗

l




1

(

x∗
l,i

)T

x∗
l,i Q



 ≥ 0, (6.23)

which concludes the proof as ηu∗

l
> 0.

The LMIs (6.19) (or their equivalent formulation (6.21)) can be easily added as con-

straints when estimating Xx∗

l
(P, ηu∗

l
) based on convex optimization. In the second step,

the amount of discrete set points has to be enlarged if Proposition 6.5.1 can not be

fulfilled for every equilibria x∗
l . This means if Sx∗

l
6⊂ Xx∗

l
(P, ηu∗

l
) then a set point needs

to be added on each side of x∗
l along the equilibria curve. Repeating these two steps (es-

timating the DA and increasing the number of set points) iteratively leads to a number

of equilibria that finally fulfills Assumption 6.5.1.

A unified procedure for iteratively updating the temporary equilibrium is summa-

rized in Algorithm 6.5.1. From the conceptual point of view it is strongly linked to

Algorithm 6.4.1 and will be explained in the following: In the initialization part a curve

of discrete equilibria according to Assumption 6.5.1 is derived. From that stored curve

a reference equilibrium is selected as initial temporary equilibrium x∗
t (0), that can be
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Algorithm 6.5.1 Unified, iteratively updating of x∗
t

1: Initialization:

2: curve of discrete equilibria x∗
l : discretization according to Assumption 6.5.1

3: select x∗
r s. t. x0 ∈ Xx∗

r
(P, ηu∗

r
)

4: set x∗
t = x∗

r , u∗
t = u∗

r

5: set k = 0, x∗
t (k) = x∗

t , u∗
t (k) = u∗

t

6: Real-Time:

7: while termination = false do

8: if Vx∗

d
≤ ηu∗

d
= true then

9: x∗
t = x∗

d, u∗
t = u∗

d

10: exit: set termination = true
11: else

12: set x∗
t (k + 1) = x+

t (k), calculate u∗
t (k + 1)

13: if Vx∗

t
(k + 1) ≤ ηu∗

t
(k + 1) = true then

14: x∗
t = x∗

t (k + 1)
15: else

16: if Vx∗

t
(k) ≤ ηu∗

t
(k) = false then

17: reselect x∗
r s. t. x ∈ Xx∗

r
(P, ηu∗

r
)

18: set x∗
t (k) = x∗

t = x∗
r , u∗

t (k) = u∗
t = u∗

r

19: else

20: exit: set termination = true

stabilized concerning the initial state vector x0. That operation task (selecting the ref-

erence equilibrium in line 3 and also in line 18) can be solved in several ways. Either by

applying one of the strategies described in the previous sections and selecting the closest

x∗
l to the calculated x∗

r . Or based on the Appendix B. Analogous to Algorithm 6.4.1

a discretization index k and the variables x∗
t (k), u∗

t (k) for a candidate concerning an

update of the temporary equilibrium are introduced. Both are initially set equal to the

values of the stabilizable reference equilibrium. The rest of the algorithm (lines 7 to 20)

is executed in real-time. Note that due to line 7 the real-time part is not only executed

once per sample but rather as often as possible until termination is required, e.g. due

to real-time execution constraints. The objective thereby is to iteratively update the

temporary equilibrium. At the beginning of the iterative real-time part it is checked

whether the desired equilibrium can already be activated or not. If x /∈ Xx∗

d
(P, ηu∗

d
) the

iteration becomes active. We set the candidate equal to the next discrete equilibrium

that is closer to the desired one x∗
t (k + 1) = x+

t (k). If the candidate can be stabilized

(line 13, 14) it is activated by updating the temporary equilibrium x∗
t = x∗

t (k + 1).

Otherwise the prior value is kept and it is checked if it still can still be stabilized. If

this is true the iteration is aborted as no other temporary equilibrium can be stabilized

at this time. If it fails, a new valid reference equilibrium has to be selected (line 17),
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subject to the current state vector x. The reference equilibrium is again (analogous

to the initialization) considered as new temporary set point. If the execution of the

real-time part is terminated the latest valid equilibrium candidate is considered as sub-

optimal solution. Du to the computationally not intensive "IF-THEN"-operation, at

least a single iteration should be always feasible.

Concerning that unified updating procedure we state the following Theorem for en-

suring the asymptotic stability of the desired equilibrium:

Theorem 6.5.1. Let a system (6.1) in T-S form and a corresponding T-S controller

u = u∗
d +

∑r
j=1 hj(zc) (Fj(x − x∗

d)) that asymptotically stabilizes x∗
d ∀ x ∈ Xx∗

d
(P, ηu∗

d
) be

given. Then the GINA controller extended closed-loop system asymptotically stabilizes

x∗
d for all x ∈

⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) when updating x∗

t by Algorithm 6.5.1 if a curve of

discrete allowed equilibria (6.5b) exists that fulfills Assumption 6.5.1 and

|x∗
d − x∗

t (k)| − |x∗
d − x∗

t (k + 1)| > 0 (6.24)

holds for all c(k) ∈ [0, 1[.

Proof: Following the argumentation of A.3 the asymptotic stabilization is guaranteed

if the temporary equilibrium can be iteratively updated. Assumption 6.5.1 ensures the

existence of a set point that enables an updating at least when x = x∗
t (k). Thereby,

the proof is concluded.

Even in case that a discrete allowed equilibrium (6.5b) exists which does not ful-

fill (6.24), the attraction of x∗
d is ensured at least by Theorem 6.5.1:

Corollary 6.5.1. Let a system (6.1) in T-S form and a corresponding T-S controller

u = u∗
d +

∑r
j=1 hj(zc) (Fj(x − x∗

d)) that asymptotically stabilizes x∗
d ∀ x ∈ Xx∗

d
(P, ηu∗

d
) be

given. Then the GINA controller extended closed-loop system stabilizes x∗
d for all x ∈

⋃

(∀ x∗

r) Xx∗

r
(P, ηu∗

r
) for t → ∞ (attraction of x∗

d) when updating x∗
t by Algorithm 6.5.1

if a curve (6.5b) exists that fulfills Assumption 6.5.1.

Proof: The discrete scaling factor c(k) ∈ [0, 1[ in (6.5b) will either increase or stay

constant due to the key take-away ċ(k) ≥ 0 according to Case 2 in the proof of Theo-

rem 6.5.1. However, the value of the Lyapunov-like function (A.1) does not necessarily

decrease as condition (6.24) is not guaranteed for all relevant c ∈ [0, 1[ due to (A.5).

Based on Theorem 6.5.1 it is ensured that ċ(k) > 0 at least every time when updating

the temporary equilibrium whereby c(k) = 1 is guaranteed for t → ∞ at least. As soon

as c(k) = 1, the GINA controller extended closed-loop system asymptotically stabilizes

x∗
d by Case 1. Consequently, x∗

d is attractive which concludes the proof.
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6.6 Summary

The main contribution of this chapter has been the novel GINA controller (Governor

Integrated Nominal-Value Adaptation) which is, up to the author’s knowledge, the first

reference governor for constrained dynamical systems that exploits the T-S framework.

By modifying the set point, the GINA controller enables a stabilization of a desired

equilibrium even if the current state vector is not within its estimated domain of at-

traction (DA). Roughly speaking, its basic principle can be summarized with: Derive

an equilibrium which can guaranteed to be stabilized subject to input amplitude, rate

and state restrictions. Then shift this equilibrium as fast as possible towards the de-

sired one such that stability is maintained. Thereby, arbitrary set point changes can be

realized. We have introduced several algorithms for the practical implementation which

is the key step to enable a general applicability. Thereby, we have addressed and solved

the following problems: computational effort, optimality of the governor solution, dis-

crete and continuous realization as well as robustness against external disturbances and

measurement noise.
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Chapter 7

Application and Experimental Results

In this chapter, we demonstrate the practical relevance of the developed methods by

four technical examples subject to input amplitude, rate and state constraints. We

present both, simulation and experimental results. We start in Section 7.1 with a com-

monly known benchmark system – inverted pendulum on cart. Subsequently, we recall

the Ballbot system of Example 6.4.1. This robot is a complete in-house development

(starting from the idea up to its construction) that we built up together with some

colleagues which is gratefully acknowledged. In the fourth example, we leave the area

of robotics and step over to the field of ground vehicles. We apply our methods to

enhance the ride comfort of a simple active cruise control (ACC) which is already an

available feature in modern cars. Concerning all examples, the nominal level value is

set to η0 = 1 and required LMIs are solved by using the YALMIP Toolbox.

7.1 Inverted Pendulum

We experimentally verify our methods based on the nonlinear inverted pendulum on

cart system. The equations of motion and our test rig are explained in Section 7.1.1.

Thereafter, we investigate three different experimental setups in Section 7.1.2: In

the first experiment, a change of the desired set point is focused and the GINA con-

troller is iteratively updated according to Algorithm 6.4.1. Thereafter, we illustrate

the robustness and the analytically updating procedure of the GINA controller (Al-

gorithm 6.3.1) concerning a large non-equilibrium initial error of the state vector.

Finally, we show a multiple set point change including a continuously moving one

(moving target). To this end, we apply a switched controller architecture based on

non-nested DAs and recurrent fuzzy systems of the Sections 4.3 and 5.3, respectively.

Also here the GINA controller is added to ensure asymptotic stability in the large.
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7.1.1 Modeling and Test Rig

The model of the pendulum on cart system is derived within the Lagrangian mechanics

framework. The considered schematics of the pendulum system and our test rig are

depicted in Fig. 7.1(a) and Fig. 7.1(b), respectively. The cart’s position is given by x

and φ represents the pendulum’s tilt angle. The final nonlinear equations of motion are

ẋ =











0 0 0 1

0 0 1 0

θ1θ2θ33mpg 0 −θ14dx −θ1θ44mpa

θ1θ2
3mgg

a
0 −θ1θ3

3dx

a
−θ1θ3θ43mp











x +











0

0

θ14cm

θ1f3
3
a











σ(u, u̇) (7.1)

whereby the state vector is x = [φ, x, ẋ, φ̇]T . The system’s nonlinearities are

θ1 =
1

4mg − 3mp cos (φ)2 , θ2 = sinc(φ)

(

=
sin (φ)

φ

)

θ3 = cos (φ), θ4 = φ̇ sin (φ)

(7.2)

and the saturated input u equals to (3.9) (input amplitude and rate saturation) having

a dynamic according to (3.10). All relevant system parameters are summarized in

Table C.1 of Appendix C.

Due to the four nonlinearities, a SE-NL T-S model (3.11) consists of r = 16 linear

subsystems with a common input vector b̂ ∈ R
5 and the augmented state vector x̂ =

[x, u]T (see (3.12)). The corresponding matrices are given in (C.1). We set the bounds

of the universe of discourse (UoD) (2.9) to

φmax = 0.44 rad (= 25◦), φ̇max = 2π
rad

s
(7.3)

which allow to experimentally highlight the advantages of the GINA controller on our

x

gmp,Θ
φ

a

mw
DC

(a) Schematic

motor

rod

car rail

(b) Test rig

Figure 7.1: Inverted pendulum on cart system.
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7.1 Inverted Pendulum

test rig while input amplitude and rate saturation occur. Based on the obtained model,

we can state the following facts concerning the design of the GINA controller: The

SE-NL T-S model fulfills the rank conditions (6.12). Hence, according to the proof

of Lemma 6.3.2 the bounding level value of the estimated DA of each equilibrium is

constant and the steady-state input signal vanishes. Additionally, the required reference

set point x̂∗
r is analytically given by (6.13) according to Theorem 6.4.1. The matrix

N, which spans the subspace of allowed equilibria, becomes the constant vector n =

[0, 1, 0, 0, 0]T (only the cart’s position coordinate x is allowed to differ from zero at

an equilibrium) and thus the scaling vector z becomes a scalar z. As each location

of the cart is a set point, a linear relation (6.14) can be considered as equilibrium

functions (6.5a) and (6.10b).

7.1.2 Results

Set point tracking task: First, we consider a set point tracking task from a desired

position x∗
d,1 = −0.2 m towards the second one x∗

d,2 = 0.45 m (all other state variables

are zero in both equilibria). We design a LQR controller [73]

J =
∫ ∞

0
x̂T QLQRx̂ + vRLQRv dt, (7.4)

with QLQR = diag[51467, 71162, 0, 0] and RLQR = 10 for all r = 16 subsystems of the

SE-NL T-S model of the pendulum system. We estimate a DA subject to the UoD by

the first part of Algorithm 3.2.1 while claiming an exponential decay rate of α = 1.4.

The temporary equilibrium of the GINA controller is iteratively updated by the implicit

recurrent fuzzy interpolation according to Algorithm 6.4.1. The core positions of the

membership functions (see Fig. 6.5) and the value for reducing the bounding level set

are chosen equivalent to [31]:

[s1, s2] = [0.8, 1.2], [reduce, enlarge] = [−0.5, 0.5], ι = 0.99. (7.5)

Fig. 7.2 shows the obtained experimental results concerning a fixed maximum input

amplitude of umax = 16 V and a rate saturation of u̇max = 1000 V/s (both values are

within the allowed ranges of Table C.1): The GINA controller works properly and

ensures a fast and asymptotic stabilization of the desired set point. Both, the input

amplitude and rate saturate and the UoD (7.3) are not violated. The shown set point

tracking task destabilizes the pendulum system due to saturation effects if the GINA

controller is deactivated. Hence, the asymptotic stability is guaranteed by iteratively
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Figure 7.2: Experiment I: Set point change of the pendulum with GINA controller.

updating the set point to be tracked. The temporary equilibrium x∗
t (called GINA

set point in Fig 7.2) is successively shifted towards the desired one x∗
d. Both become

equivalent at a time of t ≈ 1.5 s.

Initial error compensation: In the second experimental setup, we consider an initial

disturbance (non-equilibrium state vector) of x0 = [0.26, 0, 0, 1.1, 0]T . The objective

is to stabilize the set point x∗
d = [0, 0.5, 0, 0, 0]T . The T-S controller according to

the prior example is used and the DA is estimated by Algorithm 3.2.1. The initial

error is created by stabilizing the pendulum at x∗ = [0,−0.1, 0, 0, 0]T . Then the T-

S controller based on (7.4) is deactivated while simultaneously moving the cart to

x = 0 m. The controller as well as the desired set point x∗
d,2 are activated when the

pendulum’s tilt angle reaches φ = 0.26 rad. The temporary equilibrium of the GINA

controller is optimally calculated according to Algorithm 6.3.1. Fig. 7.3 shows the

obtained experimental results concerning a maximum input amplitude of umax = 33 V

and a rate limitation of u̇max = 1000 V/s. First, the GINA controller calculates a

reference equilibrium x∗
r that can be stabilized. Due to the pendulums’s tilt angel

the reference equilibrium is placed in the opposite direction of the desired set point.

While stabilizing x∗
r , the temporary equilibrium x∗

t (called GINA set point in Fig 7.3)
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Figure 7.3: Experiment II: Set point tracking of the pendulum system with GINA
controller and an initial error.

is continuously shifted from x∗
r towards x∗

d. The input signals saturate at the beginning

of the experiment which illustrates that the input signal is exploited for the considered

stabilization task. Due to this, it becomes quite obvious that the experiment becomes

unstable if the GINA controller is disabled whereby its effectiveness is confirmed.

Switched controller design: In the third experimental set up, we show a multiple set

point change subject to input amplitude saturation umax = 12 V based on a switched

controller architecture with multiple Lyapunov functions. Three LQR controllers

J =
∫ ∞

0
xT QLQR,ix + uRLQRu dt, (7.6)

with the weighting matrices QLQR,i = QT
LQR,i ≥ 0 and RLQR > 0, i ∈ N1:3, are

considered. The weights are presented in Table 7.1. In addition, a LQR with Q̌LQR,4 is

designed for the augmented system x̌ = [x,
∫

x dt]. As no common Lyapunov function

for all of the closed-loop T-S system could have been found based on Algorithm 3.2.1,

we apply our switching strategy with non-nested DAs (see Section 5.2).

First, we optimize two common Lyapunov functions V1 = xT P1x and V2 = xT P1x

(and related DAs) for the closed-loop systems Σi, i ∈ N1:2 and Σi, i ∈ N2:3, respectively.

Consequently, a smooth blending between the controllers within each DA is allowed by
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Chapter 7 Application and Experimental Results

Table 7.1: Controller weights QLQR,i, RLQR = 10 for all controllers

Qi value description
QLQR,1 diag[51470, 71160, 0, 0] position error oriented
QLQR,2 diag[67680, 24770, 0, 0] angle error oriented
QLQR,3 diag[60125, 6720, 0, 0] balanced controller

Q̌LQR,4 diag[2525, 1400, 0, 0, 80800] integrator enhanced controller

Corollary 5.2.1. A smooth switching between V1 and V2 is realized by (5.1) whereby

Σ1 is equivalent to the blending controller (5.2). In other words, a switching from the

closed-loop system Σ1 towards Σ3 is only allowed by activating Σ2 first according to the

multi Lyapunov Theorem 5.2.1. Second, a common Lyapunov function V3 = x̌T P3x̌ has

been found for Σ̌4 and Σ̌1. The latter matrix is obtained by extending the closed-loop

matrix of Σ1 with the row hT = [0, 1, 0, 0] and a zero column at the end. Hence, Σ1

belongs to the state vector x̌. The dynamics of Σ̌1 and Σ1 are equivalent, whereby a

hard switching between them does not cause discontinuities in the active vector field.

As a consequence from that design, smooth switching from a closed-loop system within

V1 towards Σ̌1 (V3) can be done by the multi Lyapunov Theorem 5.2.1. For formulating

the rule base of the switched RFS according to Section 5.3, we consider the absolute

values of the desired position’s derivative, ũ1 = |ẋ∗
d|, the derivative of the position error,

ũ2 = |ẋ∗
d − ẋ|, and the position error ũ3 = |x∗

d − x| as elements of the input vector ũ.

Their linguistical characteristics are chosen as

Lũ1
j = Lũ2

j = {small, large} , Lũ3
j = {small, medium, large} . (7.7)

The switching rules are non-strict and thus trapezoid-shaped membership functions

according to Definition 5.3.1 are used. Their core positions are set to

sũ1
Lj,i

= [0.25, 0.5][
m

s
], sũ2

Lj,i
= [0.005, 0.01][

m

s
], sũ3

Lj,i
= [0.08, 0.16, 0.25, 0.5][m]. (7.8)

The fuzzification is done as stated in Definition 5.3.3. The final rule base is summa-

rized in Table D.1 of the Appendix. The GINA controller is designed according to

Algorithm 6.5.1 and the experimental results obtained for tracking a sequence of three

set points are shown in Fig. 7.4. Thereby, the second set point is slowly moving along

a ramp of the position coordinate x whereby a moving target is illustrated. Each de-

sired set point is tracked fast and asymptotically stable subject to saturation and the

valid DA is not left. The effect of the integrator enlarged subsystem can be especially
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Figure 7.4: Experiment III: Set point tracking of the pendulum system by GINA con-
troller together with switched RFS.

seen while stabilizing the moving set point (t ∈ [12, 18]s. The input signal saturates

(umax = 12 V) while activating the third set point and stability is ensured by the GINA

controller.

7.2 Ballbot System

The multi-input Ballbot system of Fig. 6.4 is reconsidered with the control objective of

fast and asymptotically stable tracking desired set points. The Ballbot system is a new

mobile robot. It is an unstable, underactuated, nonholonomic system of non-minimum

phase which in total makes it challenging to be controlled adequately. In Section 7.2.1,

we summarize the modeling and the construction of the Ballbot.

Thereafter, we derive a novel motion control architecture based on the developed

methods within this thesis. The key idea is to achieve a fast approaching of a desired

set point by a velocity control unit and a final stabilization by switching to a position

control unit. Both units are expanded with the GINA controller in its optimal form

(Algorithm 6.3.1) to guarantee stability. Thereby, we relax the required calculations

to be made for each input of the Ballbot to the single input case according to Sec-

tion 6.4.2. We introduce two ways of realizing the control concept in Section 7.2.2 and

Section 7.2.3: First based on linear control law and second by using a T-S controller

design. We show the benefit of the T-S controller by experimentally comparing both

concepts in Section 7.2.4 where we track a path of several set points.
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Chapter 7 Application and Experimental Results

7.2.1 Modeling and Test Rig

Fig. 7.5 depicts the Ballbot system which has been built-up from scratch. A motivation

and a first practical application of Ballbots have been detailed in Example 6.4.1. The

robot consists of a 60 cm high aluminum cuboid frame F where the batteries, the Iner-

tial Measurement Unit (IMU) and the microcontroller unit for controlling the driving

mechanism is placed. An ethernet cable L links the microcontroller to the target PC

where the control actions are computed. DC-motors Mi, i ∈ N1:3, with a maximum

input amplitude of umax = 12 V, drive three omniwheels Wi which are equidistantly po-

sitioned (120◦) on a rigid ball B. This driving mechanism is called Inverse Mouse-Ball

Drive [72]. The ball is an aluminum hollow sphere with a plastic coating. Ball clips Ci,

i ∈ N1:3, enlarge the contact pressure between the omniwheels and the ball by three

small roles in order to prevent slip. The total height and weight of the current version

of our Ballbot are approximately 85 cm and 10.5 kg, respectively.

The nonlinear equations of motion of the Ballbot system at hand are derived in [92] .

Due to the complexity of the nonlinear equations of motion, we will focus on the linear

state space representation at the upright (unstable) equilibrium point of the Ballbot

ẋ =




0 I

−M−1
linKlin −M−1

linDlin





︸ ︷︷ ︸

A




q

q̇





︸︷︷︸

xgen

+




0

−M−1
linQlin





︸ ︷︷ ︸

B

u (7.9)

where Mlin, Dlin, Klin and Qlin represents the linearized mass matrix, damping matrix,

stiffness matrix and the linearized excitation matrix, respectively. Their calculations

are detailed in [92]. The three motors of the omniwheels form the input vector and the

F

Mi

Wi

B

L

Ci

x
y

γ

αβ

Figure 7.5: Ballbot system of the Institute of Automatic Control at TU München.
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minimal coordinate vector

q =
[

x y ψ α β γ
]T
, (7.10)

and its derivatives form the general state vector xgen. It consists of the planar position

coordinates x and y of the ball’s center of gravity and its rotational angle ψ. Addition-

ally, the tilt angles α and β around the x and y axis, respectively, and the yaw angle γ

around the z axis of the robot’s body are part of the state vector. The yaw angle is zero

when the robot moves in its x coordinate (one omniwheel is in front). This mentioned

physical quantities and their derivatives define the general state vector. As also detailed

in [92], the rotational angle ψ has to eliminated from the state space model in order to

ensure controllability. Hence, in this thesis the state vector

x =
[

x y α β γ ẋ ẏ ψ̇ α̇ β̇ γ̇
]T
, (7.11)

is considered. Remember that a linear system is a special case of a T-S model (having

only a single subsystem) and thus our developed methods can be directly applied here.

The Ballbot is an updated version (mass, damping, friction, etc.) of the one in [92].

The updated parameters are given in Appendix C.2.

7.2.2 Velocity-Position-Yaw Angle Control: Linear

For our control objective of fast and asymptotically stable moving the Ballbot between

set points we propose a novel multi-layer control architecture based on linear control

theory according to Fig. 7.6 first. Three control units are needed:

First, moving fast towards a desired set point is done by regulating the speed of the

Ballbot within the velocity control unit (VCU). Second, if approaching to a desired

set point then the position control unit (PCU) becomes active which is in charge of

asymptotically stabilizing the equilibrium. In both units, constraints and disturbances

are handled by the GINA controller. Third, the orientation of the Ballbot is controlled

by the yaw angle control unit (YACU). An additional transformation unit (TU) is

required to adjust the input signal of the PCU/VCU according to the actual yaw angle.

Each part of the control architecture is explained in the following. Estimates of the

domain of attraction are done based on the first part of Algorithm 3.2.1 without UoD

optimization (linear system) and avoiding input saturation to occur.
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Figure 7.6: Linear motion control architecture of the Ballbot.

Position Control Unit: The PCU is designed for planar position control, i.e. yawing

of the Ballbot is ignored. To this end, the state vector (7.11) can be reduced to

px =
[

x y α β ẋ ẏ α̇ β̇
]T

(7.12)

where the index p denotes the purpose of position control. The reduced state space

model pA ∈ R
8×8 and pB ∈ R

8×3 are given in (C.4) and (C.5), respectively, of Ap-

pendix C.2. They can be derived by erasing the not required columns and rows from

the original model [92].

A valid equilibrium (reference, temporary or desired) is given by

px∗ =
[

x∗ y∗ 0 0 0 0 0 0
]T
. (7.13)

The GINA controller, which extents the nominal controller pF, is designed according

to Algorithm 6.3.1 and its real-time computation is relaxed by applying the results of

Section 6.4 as follows: First, px∗
r is derived by Theorem 6.4.1 with

pNT =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0



 (7.14)

(the position coordinates x and y span the matrix pN). Second, the updating of the
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scaling variable c can be reduced to a single level value calculation based on Corol-

lary 6.4.1. Third, the equilibrium functions (6.5a) and (6.10b) are linear (6.14). The

final obtained control input is denoted with pu in Fig. 7.6.

Velocity Control Unit: The VCU is designed for planar velocity control, meaning the

robot’s position and its yawing movement are ignored. Erasing the corresponding state

variables from (7.11) we obtain

vx =
[

α β ẋ ẏ α̇ β̇
]T
, (7.15)

where the index v denotes the purpose of velocity control. The corresponding sys-

tem matrices vA ∈ R
6×6, vB ∈ R

6×3 are given in (C.6) and (C.7), respectively, of

Appendix C.2.

A valid equilibrium (reference, temporary or desired) is given by

vx∗ =
[

0 0 ẋ∗ ẏ∗ 0 0
]T
. (7.16)

We decompose a desired velocity into its planar components ẋ∗
d and ẏ∗

d, meaning




ẋ∗

d

ẏ∗
d



 =
v∗

d
∣
∣
∣
∣
∣
∣




x∗

d

y∗
d



−




x

y





∣
∣
∣
∣
∣
∣








x∗

d

y∗
d



−




x

y







 , (7.17)

such that the final movement is towards the actually desired location x∗
d, y∗

d. The

GINA controller, which extents the nominal controller vF, is designed according to

Algorithm 6.3.1 and its real-time computation is relaxed by applying the results of

Section 6.4 as follows: First, the reference equilibrium vx∗
r is derived by Theorem 6.4.1

with

vNT =




0 0 1 0 0 0

0 0 0 1 0 0



 (7.18)

(ẋ and ẏ span vN). Second, the updating of the scaling variable c can be reduced to

a single level value calculation based on Theorem 6.4.2 and Corollary 6.4.2. The final

obtained control input is denoted with vu in Fig. 7.6.

Switching Logic: We will move as long as possible within the VCU mode towards the

desired spot before switching to the PCU for stabilization. To this end, we decelerate

within the VCU when approaching x∗
d according to Corollary 6.4.2. The braking process
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starts at a distance of ̟b to the target. As soon as the value of the Lyapunov function

is below a defined switching value

pVx∗

t
≤ ̟s ≤p η̃0 (7.19)

we will activate the PCU. Hence, the GINA controller within the PCU is able to deliver

a stabilizable reference equilibrium and the asymptotic stabilization of the desired set

point is ensured. The final values ̟s and ̟b will be experimentally defined. The finally

obtained control input is denoted with su in Fig. 7.6 which either equals to pu or vu.

Yaw Angle Control Unit: A desired yaw angle γ∗
d of the robot is separately controlled

within the YACU. Remember that the input amplitude are restricted to ±12 V. Of

course, one might design a GINA controller as for the PCU and the VCU to effectively

handle saturation. However, due to the fact that yawing is a simple and not crucial

task concerning stability, we consider a saturated P-controller for regulating a yaw angle

error γe = γ∗
d − γ. The controller is given by

γui = σ(γe) =







−γumax if |γui| ≤ umax,

+γumax if |γui| ≥ umax,

γk · γe else.

(7.20)

where the index γ denotes the YACU. The limits of the control input and the propor-

tional coefficient are γumax and γk, respectively. Since γu should only lead to a strict

yawing, each of its elements γui, i ∈ N1:3, has to have the same absolute value. Note

that the input amplitude for PCU/VCU has to be reduced by γumax to

pumax = vumax = sumax = umax − γumax. (7.21)

Transformation Unit: A constant yaw angle γ∗
d = 0, as depicted in Fig. 7.7(a), is

always present within both planar motion units (PCU/VCU). However, if γ 6= 0 then

the VCU/PCU will lead to an incorrect movement due to the considered linear system.

For instance, it is easy to see that x∗
d will not be reached when applying the motors’

torques of the robot in Fig. 7.7(a) to the one in Fig. 7.7(b). Consequently, the actual

yaw angle has to be taken into account which we will do within the transformation unit

(TU). Here the objective is to adapt the control input signal su such that the VCU/PCU

deliver a proper input signal subject to yawing.
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Figure 7.7: Control input subject to yawing.

To this end, our goal is to compute a transformation

su(γ) = Ã(γ)su (7.22)

such that su → su(γ) leads to a correct motion subject to yawing. The transformation

matrix Ã(γ) is derived based on the actual yaw angle γ:

Proposition 7.2.1. The transformation matrix Ã(γ) in (7.22) is

Ã(γ) =
(

A
0,γ
IF ÃF W

)−1
ÃF W , (7.23)

where ÃF W summarizes the first columns aF Wi
of the transformation matrices AF Wi

from the coordinate frame of the i–th omniwheel, i ∈ N1:3, to the robot’s aluminum

frame F : ÃF W = [aF W1 , aF W2 , aF W3 ]. The matrix A
0,γ
IF transforms from the aluminum

frame into the inertial one setting α = β = 0 rad and AF Wi
, AIF are given in [92].

Proof: The voltages ui and the torques Mi at the omniwheels are directly cou-

pled when neglecting the motors’ induction terms (see [92]). Both are transformed

by ÃIW (γ), which is derived based on the torques in the following: The torques

[Wi
M̃i(γ), 0, 0]T in the omniwheel’s coordinate frame Wi for a yaw angle γ (Fig.7.7(b))

should lead to the same motion as [Wi
Mi, 0, 0]T calculated for the robot with γ = 0 rad

(Fig.7.7(a)). Referring both to the inertial coordinate frame we obtain

A0
IF

︸ ︷︷ ︸

I

3∑

i=1

AF Wi
·








Wi
Mi

0

0








!
= A

0,γ
IF

3∑

i=1

AF Wi
·








Wi
M̃i

0

0







. (7.24)

The matrix A0
IF = I is obtained from the matrix AIF , which transforms from the

aluminum frame into the inertial coordinates, when setting all angles therein to zero
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(α = β = γ = 0 rad). Analogously, the matrix A
0,γ
IF results from AIF setting α = β =

0 rad and γ equal to its actual value. The tilt angles α and β are both times set to zero

as they are already considered in the planar control strategy within the PCU/VCU.

Equation (7.24) can be compactly written as








aT
F W1

aT
F W2

aT
F W3








T

︸ ︷︷ ︸

ÃF W








W1M1

W2M2

W3M3








︸ ︷︷ ︸

wM

!
= A

0,γ
IF ·








aT
F W1

aT
F W2

aT
F W3








T

︸ ︷︷ ︸

ÃF W








W1M̃1

W2M̃2

W3M̃3








︸ ︷︷ ︸

wM̃

. (7.25)

Rearranging (7.25) leads to

wM̃ =
(

A0,γÃF W

)−1
ÃF W

︸ ︷︷ ︸

ÃIW (γ)

wM, (7.26)

whereby the desired transformation matrix is obtained and the proof concluded.

Remark 7.2.1. Note that su(γ)max ≤ umax − γumax needs to be fulfilled for γ ∈ [0, 2π]

whereby the saturation limit sumax in (7.21) has to be further reduced.

7.2.3 Velocity-Position-Yaw Angle Control: T-S

In this section we formulate the control architecture of the previous section by con-

sidering the T-S framework. The corresponding architecture is depicted in Fig. 7.8.

Compared to Fig. 7.6, no transformation unit is needed. The DAs are estimated anal-

ogous. An elimination of the transformation unit is achieved as follows: The objective

is to consider yawing within the planar control units by several linear systems where

each is a linearization at a specific yaw angle. These models are blended depending on

the actual yaw angle in terms of a LO T-S formulation without affine terms, meaning

pẋ =
r∑

i=0

hi (γ) (pAi px + pBi pu) (7.27)

for the Ballbot dynamics within the PCU and

vẋ =
r∑

i=0

hi (γ) (vAi vx + vBi vu) (7.28)

for the VCU. The corresponding state variables are identical to the linear control case

according to (7.12) and (7.15). The interpolation between two surrounding linear sub-
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Figure 7.8: T-S motion control architecture of the Ballbot.

systems (if γ is in-between two operation points) is done by triangular membership

functions hi (γ). Similar to the models, T-S controllers

pu =
r∑

i=0

hi (γ) pFi px (7.29)

and

vu =
r∑

i=0

hi (γ) vFi vx (7.30)

can be designed based on our results of Section 3. The desired velocity is again cal-

culated according to (7.17). Also the GINA controllers for the PCU and the VCU

are computed analogous to Section 7.2.2. Note that the Ballbot fulfills Theorem 6.4.1

(see Example 6.4.1). Hence, (7.14) and (7.18) are also valid for the T-S models. The

switching logic and the YACU are identical to the linear case.

Remark 7.2.2. Note that in contrast to Section 7.2.2 (Remark 7.2.1), sumax does not

have to be reduced. In other words, as the controllers (7.29) and (7.30) are already

aware of the actual yaw angle the equation (7.21) stays valid.
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7.2.4 Results

In this section, we will provide experimental results concerning the introduced motion

control architectures of Fig. 7.6 and Fig. 7.8. We will validate and compare both

concepts. The proportional control coefficient for controlling the yaw angle (YACU)

in (7.20) is set to γk = −1.0 V/ rad and the corresponding saturation limit is chosen to

be at γumax = 0.7 V. Hence, the maximum input amplitude for the PCU/VCU has to be

reduced to su(γ)max = 11.3 V according to (7.21). This value can be directly considered

if planar motion and yawing is linked via T-S blending according to Section 7.2.3 (see

Remark 7.2.2). We discretize γ ∈ [0, 2π] in r = 359 equidistant values and thus linear

subsystems, for instance γ1 = 0.017 rad (1◦) and γ2 = 0.034 rad (2◦). Concerning

the linear control approach with transformation of Section 7.2.2, the maximum input

amplitude has to be further reduced as stated in Remark 7.2.1. More precisely, we have

to set sumax = 9.75 V for the case at hand.

For both approaches, we choose LQR controllers (for each linear system) with the

weighting matrices

pQLQR = diag (100, 100, 100, 100, 1000, 1000, 0, 0) , pRLQR = diag (4, 4, 4) (7.31)

for the PCV and

vQLQR = diag (5, 5, 0.2, 0.2, 100, 100) , vRLQR = diag (1.2, 1.2, 1.2) (7.32)

concerning the VCU. We set the desired velocity of the VCU to |vv∗
d| = 0.77 m/s which

corresponds to a maximum required input value of vu
∗
d = 8 V. The braking process

starts at ̟b = 0.3 m and the PCU is activated as soon as ̟s = 0.2 (see (7.19)).

Based on that setup, we experimentally validate the control architectures concerning

a desired track of set points according to Fig. 7.9(a). It consists of five equilibria

x∗
d,1 = [0, 0, . . . , 0]T , x∗

d,2 = [−9, 0, 0, . . . , 0]T , x∗
d,3 = [−9, 0, 0,

π

2
, 0, 0, . . . , 0]T ,

x∗
d,4 = [−9, 0, 0,−

π

6
, 0, 0, . . . , 0]T , x∗

d,5 = [0, 2.5, 0,−
π

6
, 0, 0, . . . , 0]T .

(7.33)

The Ballbot starts at x∗
d,1. While moving towards x∗

d,2 the desired yaw angle is changed

to γ∗
d,3 = π/2 rad (90◦) which is realized by activating x∗

d,3. Then the robot yaws at

the spot towards γ∗
d,4 = −π/6 rad (−30◦) and finally it moves without yawing to the

final spot which is given by x∗
d,5. Each set point is activated manually after the Ballbot

reaches the prior one.
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Figure 7.9: Experiment: Set point tracking of the Ballbot.

Fig. 7.9(b) and Fig. 7.9(c) depict the final tracking behavior with the linear and the

T-S-based approach, respectively. As can be seen, the robot reaches each desired set

point and hence the desired track has been realized by both control concepts. Detailed

information can be gathered from Fig. 7.10 and Fig. 7.11 where relevant state variables

as well as the required input signals are shown for both control concepts. As already

known from Fig. 7.9, the Ballbot reaches each desired equilibrium and saturation is

prevented due to the GINA controllers. If they are deactivated then both experiments

become unstable whereby the relevance of the GINA controller becomes obvious.
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Figure 7.10: Experiment I: Set point tracking of the Ballbot with linear controller.
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Figure 7.11: Experiment II: Set point tracking of the Ballbot with T-S controller.

According to the Remarks 7.2.1 and 7.2.2, higher voltage amplitudes are expected by

the T-S controller which is confirmed when comparing Fig. 7.10(d) and Fig. 7.11(d).

This allows a faster acceleration and deceleration of the robot which finally enables a

faster shifting of the temporary set point towards the desired one. Consequently, the

desired set points should be tracked faster especially while moving with a constant yaw

angle. This becomes clear at the last set point change (x∗
d,4 → x∗

d,5) according to (7.33).

The T-S controller is with δt = 65 s − 48.8 s approximately 5 s faster than the linear

controller (δt = 68 s−46.9 s). Note that the current construction leads to a non-smooth

moving of the robot when driving faster which in turn results in an additional yaw angle

deflection. Hence, the robot seems to turn itself into a preferred orientation for motion.

Despite this, asymptotic stability is guaranteed by the GINA controller.
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7.3 Car-Distance-Control by Hybrid Automaton

In this section, we investigate an active cruise control (ACC) system which allows to

drive a car in a motorcade very comfortable. The ACC automatically accelerates and

decelerates trying to keep the distance to the car in front constant.

In the following we enhance the ride comfort of a simple ACC system which is given in

terms of a hybrid automaton. The drawback of the system lies in a large region within

which the distance to the car in front and thus the car’s velocity vary (large ǫ-region,

see Definition 2.3.1). In addition, a change of the velocity is done non-smooth and

thus the ride comfort is reduced. Both disadvantages are bypassed by transforming

the automaton into a switched recurrent fuzzy system (RFS) formulation according

to Section 5.3.

Consider the active cruise control (ACC) illustrated in Fig. 7.12(a). The rear car

should follow the leading one which drives with a constant speed of vl = 50 km/h.

The rear car senses the distance x between the cars and decides whether to increase

or decrease its speed vr. Its maximum speed is assumed to be at vr = 70 km/h and

0 km/h is the lower speed limit. Fig. 7.12(b) shows the hybrid automaton for realizing

the ACC. Its region stability has been proven in [100, 101]. The automaton consists of

four linear subsystems f1(xr, vr) to f4(xr, vr). The first one describes the dynamics when

the rear car drives with its maximal speed and f4(xr, vr) becomes active for minimum

velocity. The second and the third subsystems have to be considered if deceleration

and acceleration phase, respectively, is required. The acceleration phase is activated if

xr ≥ 3750 m and the deceleration phase becomes active if x ≤ 801 m.

In the following we show the transfer of the hybrid automaton into a switched RFS

formulation according to Section 5.3: Following Definition 5.3.2, the membership func-

tions concerning vr, which is the first input ũ1 of the recurrent fuzzy switching, has

1 2

vr vl

xr

(a) Schematic

ẋr =−20
v̇r =0

ẋr =50 − v
v̇r =−1

ẋr =50 − v
v̇r =1

ẋr =50
v̇r =0

f1:

f2: f3:

f4:

xr ≤801

xr ≤801

xr ≥3750vr =0∧x<3750

vr =70∧x>801

xr ≥3750

(b) Hybrid automaton

Figure 7.12: Active cruise control via hybrid automaton.
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Table 7.2: Rule base of the switched RFS distance controller

fi [Z, S]T [Z,L]T [L, S]T [L,L]T [S, S]T [S, L]T

f1 f2 f1 f2 f1 f2 f1

f2 f4 f3 f2 f3 f2 f3

f3 f2 f3 f2 f1 f2 f3

f4 f4 f3 f4 f3 f4 f3

to be a rectangular-shaped membership function. In detail, three linguistic velocity

regions need to be considered: Lũ1
j = {zero, small, large}, which are shortened by "Z",

"S", and "L", henceforth. The core positions are sũ1
Lj,l

= [0, 70]km/h. The membership

functions for the second input ũ2 = xr are chosen in accordance with Definition 5.3.1.

We consider trapezoidal functions as shown in Fig. 2.2(a). Two linguistical characteris-

tics Lũ2
j = {small, large} are required. Analogous to the velocity, they are shortened by

"S" and "L" and their core positions are sũ2
Lj,l

= [801, 3750]m (see [32]). The resulting rule

base of the switched RFS is illustrated in Table 7.2. The currently active subsystem is

written in the first column and the linguistical characteristics of the input ũ is placed

in the first row. Consequently, a linguistic differential equation (5.7) is obtained. For

instance, the first rule is: "If x̄(k) is f1 and ū(k) is [Z, S]T then x̄(k + 1) is f2".

A comparison between the hybrid automaton and the switched RFS is shown in

Fig. 7.13. The ǫ-region (see Definition 2.3.1) of the automation is highlighted. The

corresponding region of the switched RFS is within the ǫ-region whereby Theorem 5.3.1

is confirmed. Also the smoothing of the signals (e.g. the velocity) become clear.
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Figure 7.13: Simulation results of the ACC.
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7.4 Summary

In this chapter, we have confirmed the performance of the methods that have been de-

veloped in the first part of this thesis. First, we have shown experimental results for the

nonlinear inverted pendulum on cart in SE-NL T-S form. Due to the GINA controller

all desired set points have been asymptotically stabilized subject to constraints. Both,

the iterative and the analytical implementation of the GINA controller have been vali-

dated. In the second example, we have developed a novel motion control strategy for a

complex mobile robot with multi-inputs. The strategy allows a fast and asymptotically

stable set point tracking by switching between a velocity and a position control unit.

In both units, the GINA controller has been integrated such that stability is ensured

even for large set point changes. The required computational effort has been reduced to

the single input case. A comparison of a T-S controller with a linear control law illus-

trates the advantages of the T-S based strategy. Consequently, the experimental results

have confirmed the applicability of our methods to complex mechanic systems. Finally,

an active cruise controller (ACC) has been investigated based on a hybrid automaton.

We have reformulated the model into a switched recurrent fuzzy system (RFS) and

have provided simulation results that have shown how the stability region of the hybrid

automaton becomes smaller and the switching can be smoothed by the RFS.

109





Part II

Trajectory Tracking Control
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Chapter 8

Flatness-based Trajectory Generation

With this chapter we start the second part of the thesis which is devoted to trajectory

tracking. We focus on the two-degree of freedom (2-DOF) control structure and develop

new methods for both of its parts: the feedforward and error controller. More precisely,

the present Chapter 8 aims to design a performant trajectory along predefined way-

points such that the transition time becomes minimal subject to system constraints.

That is for instance a major task in motion planing of mobile robotic systems [76].

Subsequently, in the Chapters 9 to 11 the problem of deriving a tracking controller

that exploits the system’s input amplitude and rate while simultaneously ensuring the

asymptotic stabilization of the trajectory is addressed. Thereby, we tackle the problem

that the available input signal changes over time depending on the feedforward signal

(time-varying constraints). The remainder of this chapter is organized as follows: In

Section 8.1 we give a formal statement of the considered trajectory generation prob-

lem. Subsequently, we introduce in Section 8.2 an algorithm for designing performant

trajectories along waypoints based on differential flatness.

8.1 Problem Formulation

In this section, we propose a strategy based on differential flatness (see Section 2.5)

for computing a performant trajectory. In this context performant means that the

final transition time is minimized while predefined waypoints are precisely hit and

system relevant state and input constraints are not violated. The key idea of the

approach is to formulate the trajectory generation task as an optimization problem

based on polynomial trajectory pieces such that a stationary movement (movement

without acceleration) is obtained at each waypoint. Such a movement can be realized by

lots of technical systems, e.g. mobile robots, robotic manipulators, generators or wind

turbines [85, 103, 105]. Consequently, the proposed planing strategy can be understood
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Chapter 8 Flatness-based Trajectory Generation

as a sequence of changes between easily manageable (controllable and stable) state

configurations. To this end, we consider differential flat input affine dynamical systems

ẋ = f(x) + g(x)u, (8.1)

with x ∈ R
n and u ∈ R

m, which fulfills the following assumptions:

Assumption 8.1.1. The state vector of a system (8.1) can be rewritten as

xT =
[

ΓT Γ̇
T

Γ̃
T
]

, (8.2)

where the vector Γ ∈ R
nΓ summarizes the location variables (position state variables

of the system), Γ̇ denotes the corresponding derivatives (velocity state variables) and

Γ̃ the remaining state variables.

Assumption 8.1.2. System (8.1) can be operated with a stationary velocity (sta-

tionary movement without acceleration), meaning Γ̈ = 0. In other words, a velocity

equilibrium

(x∗
red)T =

[
(

Γ̇∗

)T (

Γ̃∗

)T
]

(8.3)

when ignoring Γ (erasing from the equations of motion). Thereby, xred ∈ R
n−nΓ denotes

the obtained reduced state vector.

Obviously, both assumptions are inherently fulfilled by lots of technical systems, e.g.

mobile robots, robotic manipulators, generators or wind turbines. If both assumptions

are fulfilled then the input signal of a stable stationary movement is given by

u∗
red = −

(

gT (x∗
red)g(x∗

red)
)−1

gT (x∗
red)f(x∗

red). (8.4)

Based on that the problem that we address is:

Problem 8.1.1. Given a system (8.1) that fulfills the Assumptions 8.1.1 and 8.1.2.

Find a sufficiently smooth polynomial trajectory of the flat output such that: First, the

transition time T = {t|t0 = 0 ≤ t ≤ te} becomes as small as possible. Second, input and

state depending constraints ĉ(xT (t),uT (t)) ≤ 0 of the system are adhered to. Third,

predefined waypoints Γi, i ∈ N0:w, are precisely hit by the trajectory whereby the first

and the last waypoint define rest-to-rest coordinates, i.e.

xT (ti)
T =

[

ΓT
i

(

Γ̇
∗

i

)T (

Γ̃
∗

i

)T
]

, i ∈ N0:w, (8.5)
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The key idea of the proposed method is based on defining a stationary movement

(movement without acceleration) of the system at each i ∈ N1:w−1 waypoint. We

formulate a two-point boundary value problem (similar to a set point change) bet-

ween each pair of subsequent waypoints. This allows us to formulate the trajectory

generation Problem 8.1.1 as an optimization of trajectory pieces with a stationary

movement at each beginning and end. The stationary velocity at each waypoint

and the overall transition time form the optimization parameters.

8.2 Piecewise Trajectory Generation Along Waypoints

Assuming that a velocity Γ̇
∗

i is defined for all i ∈ N1:w−1 waypoints, we can state the

optimization problem

min
{te,i,Γ̇

∗

i }

(
w∑

i=1

te,i

)

s. t. ĉ(xT (t),uT (t)) ≤ 0, (8.6)

where the optimization parameters are te,i, which denote the final time of the i-th flat

trajectory piece (2.56), and Γ̇
∗

i if the initial time of the first trajectory piece t0,i, for i = 0,

is defined. The proposed strategy for solving (8.6) is summarized in Algorithm 8.2.1.

Fig. 8.1 clarifies the proposed algorithm based on a trajectory along seven (w = 6)

waypoints considering a two dimensional position subspace x and y. The waypoints

Γi = [xi, yi]
T are highlighted by black circles and the corresponding velocities Γ̇

∗

i =

[ẋ∗
i , ẏ

∗
i ]T , i ∈ N0:6, are depicted by orange arrows.

As the first and the last waypoint Γ0 and Γw, respectively, define rest-to-rest coor-

dinates, the corresponding velocities are set to zero (line 1 of Algorithm 8.2.1). Con-

sequently, Γ̇
∗

0 and Γ̇
∗

6 are zero in Fig. 8.1. The velocities at each waypoint in-between

Algorithm 8.2.1 Piecewise Flatness-based Trajectory

1: set Γ̇
∗

0 = Γ̇
∗

w = 0

2: for i = 1 : 1 : w − 1 do

3: for l = 1 : 1 : RnΓ̇ do

4: if (Γ∗
i−1,l<Γ∗

i,l<Γ∗
i+1,l) or (Γ∗

i−1,l>Γ∗
i,l>Γ∗

i+1,l) then

5: compute auxiliary trajectory: Γ∗
i−1,l → Γ∗

i+1,l with te,i based on (8.8)

6: calculate Γ̇∗
i,l based on (8.9)

7: else

8: Γ̇∗
i,l = 0

9: calculate Γ̃∗

i
belonging to Γ̇

∗

i

10: generate the i-th trajectory piece with te,i based on (8.8)
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Figure 8.1: Sketch of the proposed Algorithm 8.2.1 concerning a trajectory along the
waypoints Γi, i ∈ N0:6.

are calculated component-wise for each waypoint i = 1 until i = w − 1. Therefore, a

case differentiation is done for each component l of the considered waypoint Γi and its

surrounding ones Γi−1, Γi+1 (line 2 until 8): If the l-th component of these waypoints

does continuously increase or decrease then the actual waypoint i can be passed with a

certain speed (within the component l). Otherwise, the moving direction has to change

somewhere in-between these waypoints. The second and simpler case is solved by setting

Γ̇∗
i,l = 0 in line 8 (the change of the moving direction is forced to be at Γi). Concerning

the first explained case, we estimate a velocity Γ̇∗
i,l 6= 0 (lines 5 and 6) by generating

an flatness-based auxiliary trajectory between the l-th component of the neighboring

waypoints Γi−1 and Γi+1. To this end, we incorporate the already calculated velocities

Γ̇
∗

i−1 (prior iteration) and set Γ̇
∗

i+1 = 0. Consequently,

xT (ti−1) =
[

ΓT
i−1

(

Γ̇
∗

i−1

)T (

Γ̃
∗

i−1

)T
]T

, xT (ti+1) =
[

ΓT
i+1 0T

(

Γ̃
∗

i+1

)T
]T

(8.7)

define the boundary conditions for the auxiliary trajectory. These conditions can be

transformed into boundary conditions of the flat output (see (2.57)) and a flat auxiliary

trajectory piece (2.56) can be computed. The required transition time of each piece

is optimized subject to input and state constraints ĉ(xT (t),uT (t)) ≤ 0. Similar to a

bisection approach [22], we iterate the end-time

te,i(k + 1) =







te,i(k) + 1/2 |te,i(k) − te,i(k − 1)| if ĉ(xT (t),uT (t)) ≤ 0 is violated,

te,i(k) − 1/2 |te,i(k) − te,i(k − 1)| else,

abort if k = χ, χ ∈ N, or a constraint is within 95 % and 100 %.

(8.8)
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Therein, k is the iteration index and te,i(k) and te,i(k − 1) denote the solutions of the

prior and the second to the last iteration, respectively. Initially, we set te,i(0) = 0 and

te,i(1) > te,i(0). Thereby, it should be paid attention to the fact that the initial value for

te,i(1) has to be chosen such that the second case in (8.8) occurs for the first iteration

for ensuring the convergence of the optimization.

This can be easily guaranteed if, for instance, te,i(1) is set to an arbitrary value and

doubled till all constraints ĉ(xT (t),uT (t)) ≤ 0 are fulfilled. According to the third case

in (8.8), the iteration is aborted if k reaches a predefined upper bound χ or one of the

constraints is within 95 % and 100 % of its maximum (before violation). Such a designed

auxiliary trajectory is exemplarily shown in Fig. 8.1 (dashed green line) between the

waypoints Γ2 and Γ4. The velocity component Γ̇∗
i,l is finally estimated to

Γ̇∗
i,l = Γ̇i,l,aux(Γi,l,aux). (8.9)

In other words, Γ̇∗
i,l is set equal to the velocity at the waypoint component Γi,l,aux

along the auxiliary trajectory. The explained estimation principle is illustrated for Γ3

in Fig. 8.1. Hence, the velocities Γ̇3,1,aux(Γ3,1,aux) and Γ̇3,2,aux(Γ3,2,aux) of the auxiliary

trajectory between the waypoints Γ2 and Γ4 form the velocity vector at the third

waypoint.

If the velocity vector for a waypoint Γi has been estimated, the corresponding values

of the missing state variable Γ̃∗

i
have to be calculated (line 9 of the algorithm) based on

Assumption 8.1.2. Finally, the desired state vectors of two subsequent waypoints (8.7)

are known and thus the i-th trajectory piece can be derived. Analogous to the flatness-

based auxiliary trajectory, the transition time is optimized by the bisection approach

subject to state and input constraints according to (8.8).

8.3 Summary

In this chapter, we have dealt with the problem of generating performant trajecto-

ries along waypoints subject to constraints. We have proposed a piecewise polynomial

trajectory approach based on differential flatness. The key idea of the strategy is to

formulate the trajectory generation task as an optimization problem such that a sta-

tionary movement (movement without acceleration) is obtained at each waypoint and

the overall transition time becomes minimal. We have developed a new numerical algo-

rithm that allows a numerically efficient implementation. In other words, the algorithm

has been designed such that its real-time applicability of the approach is enhanced.
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Chapter 9

From Set Point to Trajectory Tracking

Within this chapter, we transfer our results of Part I of this thesis (set point tracking

control) to trajectory tracking based on a two-degree of freedom (2-DOF) control struc-

ture. The key idea is to formulate the error dynamics of a nonlinear system in terms

of a T-S model whereby the results of Part I are directly applicable. After a formal

problem statement in Section 9.1 we derive the error dynamics of the trajectory track-

ing problem in form of a LO T-S formulation. Based on that, our results concerning

set point tracking (estimating a DA, controller design, GINA controller) are directly

applicable to trajectory tracking if each system constraint is subdivided into two parts

(see Section 2.4).

9.1 Problem Formulation

Suppose that a desired input and state trajectory uT and xT , respectively, is given

for a nonlinear system. For designing an appropriate tracking controller, we have to

investigate the system’s error dynamics. That is most often done by linearizing the

system around a desired trajectory which results in linear time-variant error dynamics

ė = A(xT ,uT )e + B(xT ,uT )ue (9.1)

where the time dependent dynamics is directly related to the desired trajectory (see Chap-

ter 5.1.2 in [38] for a detailed derivation). The error e and the input vector ue are

e = xT − x, ue = uT − u. (9.2)

The time dependence in (9.1) prevents the applicability of the T-S and LMI-based

results from Part I of the thesis. The sole exception are linear systems where the error

dynamics are known to be a time-invariant linear system.
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Chapter 9 From Set Point to Trajectory Tracking

One might think of solving that dilemma based on a SE-NL T-S model (see Defini-

tion 2.1.1). This leads to a desired trajectory in T-S notation as well:

ẋT =
r∑

i=1

hi(zs,T ) (AixT + BiuT ) . (9.3)

Remember that the premise vector zs(x,u) depends on the state and input variables

that nonlinearly affect the system (see Definition 2.1.1). Hence, the index T at the

system’s premise vector zs,T denotes that its values are defined by uT and xT along the

trajectory. The corresponding error dynamics are given by

ė = ẋT − ẋ =
r∑

i=1

hi(zs,T ) (AixT + BiuT ) − hi(zs) (Aix + Biu) . (9.4)

Partly replacing x and u by (9.2), we obtain

ė =
r∑

i=1

(hi(zs,T ) − hi(zs)) (AixT + BiuT ) + hi(zs) (Aie + Biue) (9.5a)

=
r∑

i=1

(hi(zs,T ) − hi(zs)) (AixT + BiuT )

︸ ︷︷ ︸

ė1

+
r∑

i=1

hi(zs) (Aie + Biue)

︸ ︷︷ ︸

ė2

. (9.5b)

The second part ė2 represents a time-invariant error system in T-S notation that could

be handled via LMIs. However, that does not hold true for the fist part ė1 which

amounts to the following question:

Problem 9.1.1. Given a system (2.6) and a desired input and state trajectory uT

and xT , respectively. Then the problem is to transform the linear time-variant error

dynamics (9.1) into a T-S system such that a tracking controller can be designed based

on linear matrix inequalities (LMIs) even if constraints have to be considered.

In the following, two possible ways for solving Problem 9.1.1 are proposed: First,

we formulate a local (LO) T-S system without affine terms by locally linearizing the

linear time-variant error dynamics along the trajectory. Second we transform the

linear time-variant error dynamics into a sector nonlinearity (SE-NL) T-S model.

Both T-S representations are obtained by considering the transition time of the

trajectory as premise variable. Based on the obtained T-S systems, the developed

methods concerning set point tracking (estimating a DA, controller design, GINA

controller) are directly applicable to trajectory tracking if a static allocation of each

constraint is considered (see Assumption 2.4.1).
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9.2 Formulating the Error Dynamics in T-S Notation

9.2 Formulating the Error Dynamics in T-S Notation

One possibility for solving Problem 9.1.1 is to transfer the time-variant linear error

dynamics (9.1) into a LO T-S system without affine terms:

Theorem 9.2.1. Let a desired input and state trajectory uT and xT , respectively, for

a nonlinear system be given. Then there exists a LO T-S formulation without affine

terms of the tracking error dynamics (9.1).

Proof: We define r local linear systems (Ai,Bi), i ∈ N1:r along the desired trajectory

by inserting equidistant time instances ti ∈ [t0, te], i ∈ N1:r, of the transition time

into (9.1). Based on that the LO T-S formulation of the error dynamics is obtained as

ė =
r∑

i=1

hi(zs,T ) (Aie + Biue) (9.6)

where the scalar premise variable is zs,T = t with t ∈ [t0, te]. The nonlinear blending

functions hi(zs,T ) can be chosen according to Definition 2.1.2 whereby the proof is

completed.

In contrast to Theorem 9.2.1, Problem 9.1.1 can also be solved by establishing a SE-NL

T-S model of the error dynamics (instead of a LO T-S system):

Theorem 9.2.2. Let a desired input and state trajectory uT and xT , respectively, be

given. Then there exists a SE-NL T-S formulation of the error dynamics (9.1).

Proof: Following the sector nonlinearity approach (see Section 2.1.2) for a system (9.1)

results in time-invariant error dynamics in form of (9.6), where the scalar premise

variable zs = t equals to time. The extreme values of the time-dependent functions

θk(t), k ∈ N1:r, within the SE-NL T-S formulation (see (2.10)) are given by

θk(t) = max(θk(t)), θk(t) = min(θk(t)). (9.7)

Thereby, the proof is concluded.

Example 9.2.1. In this example, we illustrate Theorem 9.2.2: Assume that a desired

state and input trajectory xT and uT , respectively is given. The corresponding system’s

error dynamics (9.1) is

ė =




0 1

0 θ1(t)





︸ ︷︷ ︸

A(t)

e +




0

θ(t)





︸ ︷︷ ︸

b(t)

ue (9.8)
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Chapter 9 From Set Point to Trajectory Tracking

with the time-varying nonlinearities θ1(t) = x2
1,T (t) + 1 and θ2(t) = x1,T (t) + x2,T (t).

Let the elements of the state trajectory be within the range x1,T ∈ [0, 1], x2,T ∈ [1, 2]

for t ∈ [t0, te]. Then the corresponding SE-NL T-S formulation consists of r = 4 linear

subsystems which are given by the possible compilations of

A1 =




0 1

0 θ1(t)



 , A2 =




0 1

0 θ1(t)



 , b1 =
[

0 θ2(t)
]T
, b2 =

[

0 θ2(t)
]

.T (9.9)

with θ1(t) = 1, θ1(t) = 2 and θ2(t) = 1, θ2(t) = 3. The blending functions are given

accordingly.

The obtained T-S models are in the error domain but structurally identical to a conven-

tional T-S system in the state space domain. Hence, it becomes obvious that our results

concerning set point tracking (estimating a DA, controller design, GINA controller) are

directly applicable to trajectory tracking if each system constraint is subdivided into

two parts (see Section 2.4).

9.3 Summary

In this chapter, we have studied the problem of transferring the methods and algorithms

derived in the Part I of this thesis (set point racking) to trajectory tracking based on a

2-DOF control structure. To this end, we have first formulated the error dynamics of

a nonlinear system in terms of a conventional T-S model considering time as premise

variable. It has been shown that both, a LO T-S as well as a SE-NL T-S model can

be realized. Thereby, the estimation of a DA and a tracking controller design becomes

trivial if a static allocation of the system constraints is considered.
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Chapter 10

Limits of Inputs and States are

Allocated: LISA Condition

Due to the previous chapter, our results from Part I of this thesis can be directly applied

to trajectory tracking problems. However, the required a priori subdivision of system

constraints (see Assumption 2.4.1) might lead to reduced performance. This is especially

the case concerning input saturation. For example, consider that some time instances

exist during tracking where the feedforward part does only require an input amplitude

which is much smaller than the allowed maximum, meaning |uT | << |uT,max|. The

tracking controller however is only allowed to use a defined maximum input amplitude

according to (2.50) whereby the input amplitude is not exploited and thus performance

for error compensation remains unused.

In this chapter we solve the explained draw back. The main result is the novel LISA

(Limits of Inputs and States are Allocated) condition which allows an adaptation of the

allocated input and state limits within Assumption 2.4.1 depending on the currently

required values of the feedforward part. Thereby, we are able to handle time-varying

constraints while ensuring the asymptotic stabilization of the desired trajectory.

After a formal problem statement in Section 10.1 we formulate conditions in terms

of Lyapunov decay rates which allow to handle the time-varying input and state con-

straints in Section 10.2. These conditions are relaxed in Section 10.3 which leads directly

to the formulation of the final LISA condition is Section 10.4.
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Chapter 10 Limits of Inputs and States are Allocated: LISA Condition

10.1 Problem Formulation

Taking the algebraic sign of system constraints according to Assumption 2.4.1 into

account each constraint can be formulated in an asymmetric and time-variant manner:

̟e,max(t) = ̟max −̟T (t), (10.1a)

̟e,min(t) = −̟max −̟T (t) (10.1b)

Therein, ̟max denotes the maximum allowed absolute value of the constraint and ̟T (t)

represents the currently (time-dependent) required amplitudes of the feedforward part.

Consequently, the saturation limits become time-variant:

σ(̟e, t) =







̟e,min(t) if ̟e ≤ ̟e,min(t),

̟e,max(t) if ̟e ≥ ̟e,max(t),

̟e else,

. (10.2)

This leads to a change of the size of an estimated domain of attraction (DA)

E0(P, η0(t)) =
{

e ∈ R
n : V0 = eT Pe ≤ η0(t)

}

(10.3)

for error compensation which clearly can cause stability problems. Hence:

Problem 10.1.1. Let the error dynamics in T-S notation (based on Theorem 9.2.1 or

Theorem 9.2.2) and a desired trajectory be given such that the system constraints fulfill

Assumption 2.4.1 as well as (2.51). Then the problem is to ensure the asymptotic sta-

bilization of the desired trajectory with the time-dependent saturation function (10.2).

The key concept for solving Problem 10.1.1 is sketched in Fig. 10.1 which depicts

two DAs according to (10.3) at a time t1 and t2 > t1 around the desired trajec-

tory (e∗
d = 0) for a two-dimensional tracking error domain: If the time-varying

DA (10.3) shrinks from E0(P, η0(t1)) to E0(P, η0(t2)) due to the signals required

by the feedforward controller, the tracking error has to decrease faster than the

DA does such that e(t2) ∈ E(P, η0(2)). The DAs are depicted by their bounding

level values ∂E(P, η0(t1)) and ∂E(P, η0(t2)). In order to ensure that the tracking

error decreases fast enough, we derive the novel LISA condition (Limits of Inputs

and States are Allocated) which leads to a required decay rate of the Lyapunov

function V0 = eT Pe by analyzing the desired trajectory.
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∂E(P, η0(1))

∂E(P, η0(2))

e(t1)

e(t2)

e∗

d

e1

e2

Figure 10.1: Operation principle of the LISA condition.

10.2 Decay Rate Conditions

In this section, we do a first step towards an adaptation according to (10.2) by consid-

ering the symmetric but time-dependent bounds for the saturation function

̟e,max(t) = ̟max − |̟T (t)| , ̟e,min(t) = −̟e,max(t). (10.4)

Note, equation (2.51) ensures that ̟e,max(t) is always greater than zero. In Sec-

tion 10.2.1 we derive conditions such that an input amplitude allocation according

to (10.4) is possible. In Section 10.2.2, analogous conditions for the input rate adap-

tation are computed. These conditions are reformulated in Section 10.2.3 such that a

state limit allocation is enabled.

10.2.1 Input Amplitude Allocation

Considering an allocation of the input amplitude according to (10.4), the time-variation

of the DA (10.3) depends only on the actual feedforward signal uT (t), i.e.

E0(P, η0(t)) = E0(P, η0(uT (t))) =
{

e ∈ R
n : V0 = eT Pe ≤ η0(uT (t))

}

. (10.5)

Consequently, a tracking error e has to stay within E0(P, η0(uT (t))) for all t ∈ T for

ensuring asymptotic stability. Therefore, the following assumption, which is naturally

fulfilled by a smooth trajectory design, is stated:

Assumption 10.2.1. The feedforward signal uT is a C1-function and thus differen-

tiable at least.
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Based on that assumption, we formulate the following lemma:

Lemma 10.2.1. Let a system subject to input amplitude saturation (2.21) be given

for which a bounding level value ηu∗ at an equilibrium (x∗,u∗) can be calculated based

on (6.9). Let further a desired trajectory xT , uT of the system (in accordance with (2.51)

and Assumption 10.2.1) and a T-S formulation of the tracking error dynamics be given.

Then there exists an exponential decay rate αu > 0 for V0 in (10.5), meaning

V̇0 ≤ −αuV0, αu > 0, (10.6)

of the closed-loop error system such that e∗
d = 0 is asymptotically stable for each track-

ing error e(t1) ∈ E0(P, η0(uT (t1))) occurring at a time t1 ∈ T if the maximal input

amplitude is adapted according to (10.4).

Proof: See the Appendix A.4.

Concerning closed-loop systems where the bounding level value ηu∗ of an equilibrium

cannot be determined based on (6.9) or a trajectory which does not fulfill Assump-

tion 10.2.1, we propose a different strategy. To this end, we approximate the variation

of the bounding level set η0(uT (t)) and its time derivative η̇0(uT (t)) similar to the ap-

proximation of a nonlinear system by a LO T-S system as follows: First, we discretize

the feedforward signal to

uT (k) := {uT (t) : t = kΞ} , t ∈ T , (10.7)

where k ∈ N0:k̂ denotes the discretization variable and Ξ > 0 is the sampling period.

Based on that, we estimate η0(uT (k)) for each discretized uT (k). This can be simply

done based on the LMIs developed in Section 3.2. Note, the maximum input amplitude

has to be reduced to ζ = umax,i − |uT,i(k)|, i ∈ N1:m, in the LMI (2.41) in order to

account for the fact that |uT,i(k)| is currently not available. The time derivative of

η0(uT (k)) can be approximated by using the central differential quotient to

η̇0(uT,i(k)) =
η0(uT,i(k + 1)) − η0(uT,i(k − 1))

2Ξ
, 0 < k < k̂. (10.8)

The two derivatives k = 0 and k = k̂ which can not be calculated this way are either

approximated by the forward and backward differential quotient, respectively, i.e.

η̇0(uT,i(k)) =







η0(uT,i(k+1))−η0(uT,i(k))

Ξ
if k = 0,

η0(uT,i(k))−η0(uT,i(k−1))

Ξ
if k = k̂,

(10.9)
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or defined by the following assumption:

Assumption 10.2.2. The time derivatives of the level values at the beginning and the

end of a trajectory are η̇0(uT (0)) = 0 and η̇0(uT (k̂)) = 0, respectively.

This assumption is equivalent with the statement that uT (t) stays constant at the

beginning and the end of the trajectory which is the case for lots of practically reasonable

trajectories. Most often a trajectory should start and end in a defined equilibrium or

a stable set point configuration at least, e.g. each trajectory designed according to the

introduced method in Section 8. Based on that, we approximate (A.16) and (A.17) by

η0(uT,i(t)) = µη(t)η0(uT,i(k)) + (1 − µη(t))η0(uT,i(k + 1)), (10.10a)

η̇0(uT,i(t)) = µη̇(t)η̇0(uT,i(k)) + (1 − µη̇(t))η̇0(uT,i(k + 1)) (10.10b)

for t ∈ [kΞ, (k+1)Ξ], i ∈ N1:m. Thereby, the interpolation parameters µη(t) ∈ [0, 1] and

µη̇(t) ∈ [0, 1] grow linearly from µη(kΞ) = 0 towards µη((k+ 1)Ξ) = 1, and thus similar

to the interpolation variables shown in Fig. 5.1. That is analogous to the interpolation

between the local linear subsystems of a LO T-S system which enables us to state the

following lemma:

Lemma 10.2.2. Let a system subject to input amplitude saturation (2.21), a desired

trajectory xT , uT (in accordance with (2.51)) and a T-S formulation of the tracking

error dynamics be given. Then there exists an exponential decay rate (10.6) for V0

in (10.5) concerning the closed-loop error system such that e∗
d = 0 is asymptotically

stable for each tracking error e(t1) ∈ E0(P, η0(uT (t1))) occurring at a time t1 ∈ T if

the maximal input amplitude is adapted according to (10.4).

Proof: Reformulating (A.16) and (A.17) based on (10.10) leads to

η0(uT (t)) = η0(uT,p(t)) = min
i

(µη(t)η0(uT,i(k)) + (1 − µη(t))η0(uT,i(k + 1))) , (10.11)

η̇0(uT (t)) = min
p

(µη̇(t)η̇0(uT,p(k)) + (1 − µη̇(t))η̇0(uT,p(k + 1))) , (10.12)

respectively. Following the remaining proof of Lemma 10.2.1 results in αu according

to (A.20) which concludes the proof.

Example 10.2.1 (Example 3.2.1 cont’d). Assume an error dynamics

ė =




0 1

0 θ1(zs)



 e +




0

1



σ(ue) (10.13)
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(b) Allocation ue,max(t) and uT,max(t)

Figure 10.2: Comparison of estimated DAs for trajectory tracking.

with θ1(zs) = e2
1 + 1, a UoD of e1,max = 1.6 and to ue,max = 7. We also consider the T-S

controller (2.47) of the example for compensating a tracking error. Let the required

decay rate in (10.6) be αu = 1.0 and the desired input trajectory fulfills ρ̟ = 0.75,

which means that according to (2.51) ue,max ≥ 0.25 · umax is ensured for the whole

trajectory. Analogous to example 3.2.1, we search for an over-saturating DA which

are depicted in Fig. 10.2. The bounding level set ∂E0(Pfix, 1) in Fig. 10.2(a) has been

obtained by statically subdividing the input amplitude between feedforward and error

tracking part according to (2.50). Here, ue,max = 0.25 · umax has to be considered in

the LMI conditions. Compared to that, the estimation and variation (10.5) of the DA

concerning Lemma 10.2.2 is depicted in Fig. 10.2(b). As this DA varies over time,

we show its largest and its smallest bounding level set ∂E0(Pmax, 1) and ∂E0(Pmin, 1),

respectively. Thereby, ∂E0(Pmax, 1) is obtained setting ue,max = umax and ∂E0(Pmin, 1)

is given by (A.16) with uT (t) = 0.75 · umax (its maximum value). In order to ease a

comparison of the results, we print ∂X0(Pfix, 1) in Fig. 10.2(b) additionally. We can

see that ∂E0(Pmax, 1) is noticeably larger than ∂X0(Pfix, 1). If the signal of the desired

input trajectory comes close its maximum uT (t) = 0.75 · umax the DA shirks towards

∂E0(Pmin, 1). In that case, the DA is in some regions smaller than the one calculated

with a fixed subdivision of the input amplitude. Consequently, this example clarifies

that an allocation of the input amplitude results in a larger DA in general. However,

there might exist single situations where a static subdivision of the input leads to a

larger DA. In such a event, ∂X0(Pfix, 1) can be activated by switching the active DA.

10.2.2 Input Rate Allocation

In the sequel, we extend the results the previous section to input rate limitations by

adjusting the Lemmas 10.2.1 and 10.2.2. Considering an allocation of the input rate
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according to (10.4) the estimated domain of attraction DA (10.3) varies over time

dependent on the feedforward input rate u̇T (t). Hence, we write

E0(P, η0(t)) = E0(P, η0(u̇T (t))) =
{

e ∈ R
n : V0 = eT Pe ≤ η0(u̇T (t))

}

. (10.14)

For guaranteeing asymptotically stable tracking of the desired trajectory, the tracking

error e has to stay within (10.14) for all t ∈ T . To this end, we state the following

assumption which is naturally fulfilled by a smooth trajectory design:

Assumption 10.2.3. The feedforward signal uT is a C2-function and thus differen-

tiable twice at least.

However, before we are able to adjust Lemma 10.2.1, we state the following corollary

for ensuring an adaptation of the DA analogous to (6.9):

Corollary 10.2.1. Let a system in T-S notation (without affine terms) which is subject

to input rate saturation (3.9) be given. Let further a desired trajectory xT , uT of the

system (in accordance with (2.51) and Assumption 10.2.1) be given. Then the variation

of the DA (10.14) depending on u̇T (t)is analogous to (A.16) given by

η0(u̇T (t)) = η0(u̇T,p(t)) = min
i










η0 ·
(

u̇e,max,i(t)
︷ ︸︸ ︷

u̇max,i − |u̇T,i(t)|)
2

u̇2
max,i

︸ ︷︷ ︸

η0(u̇T,i(t))










, (10.15)

for all t∈T if a linear state feedback law is considered. The index i ∈ N1:m denotes the

elements of the input vector and η0 is the bounding level value estimated for u̇T (t) = 0,

meaning u̇e,max,i(t) = u̇max,i. The index vector p summarizes the element u̇T,i(t) of the

input vector that lead to the smallest level value at a certain time, e.g. if η0(u̇T,p(t1)) =

η0(u̇T,2(t1)) = η0(u̇T,4(t1)) then p = [2, 4].

Proof: The considered T-S model is given by

˙̂x =
r∑

i=1

hi(zs)
(

Âix̂ + B̂ σ (Kx̂ + Tv)
)

(10.16)

which is obtained when ignoring the input amplitude saturation in (3.11). Based on

a linear state feedback law v = Fx̂, the optimization problem for estimating a DA

depending on the available input rate is

η0(u̇T,i(t)) = min
x̂

(

x̂T Px̂
)

, subject to hT
i x̂ = ±(u̇max,i − |u̇T,i(t)|) (10.17)
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for every input i ∈ N1:m. Therein, hT
i is the i-th row of the auxiliary controller H =

K + TF. The solutions of (10.17), which among the extreme values of the related

Lagrange function, are

η0(u̇T,i(t)) = η0

(u̇max,i − |u̇T,i(t)|)
2

u2
max

, i ∈ N1:m. (10.18)

Consequently, a valid estimation of the related DA is bounded by the smallest of these

level values whereby (10.15) is obtained and the proof concluded.

Based on that result, we can adjust Lemma 10.2.1:

Lemma 10.2.3. Let a system subject to input rate saturation (3.9) be given for which

Corollary 10.2.1 holds. Let further a desired trajectory xT , uT of the system (in ac-

cordance with (2.51) and Assumption 10.2.3) and a T-S formulation of the tracking

error dynamics be given. Then there exists an exponential decay rate αu̇ > 0 for V0

in (10.14), meaning

V̇0 ≤ −αu̇V0, αu̇ > 0 (10.19)

of the closed-loop error system such that e∗
d = 0 is asymptotically stable for each tracking

error e(t1) ∈ E0(P, η0(u̇T (t1))) occurring at a time t1 ∈ T if the input rate limitation

is adapted according to (10.4).

Proof: The time derivative of all elements in (10.15) is

η̇0(u̇T,i(t))=
2η0üT,i(t)(|u̇T,i(t)| − u̇max,i)

u̇2
max,i

sgn(u̇T,i(t)), (10.20)

whereby the signum function occurs due to the weak differentiability of the absolute

value function. From that point, following the proof of Lemma 10.2.1 from equa-

tion (A.18) results in

αu̇ ≥
−η̇0(u̇T (t))

η0(u̇T (t))
︸ ︷︷ ︸

αu̇(t)

, ∀ t ∈ T , (10.21a)

αu̇ ≥ max
(

β,max
t∈T

(αu̇(t))
)

, (10.21b)

and thus in a required decay rate which concludes the proof.

Concerning the case that Corollary 10.2.1 is not valid (for instance if a T-S controller

is considered), a numerical approximation of the bounding level value can be derived

analogous to the input amplitude case according to Lemma 10.2.2:

130



10.2 Decay Rate Conditions

Lemma 10.2.4. Let a system subject to input amplitude saturation (2.21), a desired

trajectory xT , uT (in accordance with (2.51)) and a T-S formulation of the tracking

error dynamics be given. Then there exists an exponential decay rate (10.19) for V0

in (10.14) concerning the closed-loop error system such that e∗
d = 0 is asymptotically

stable for each tracking error e(t1) ∈ E0(P, η0(u̇T (t1))) occurring at a time t1 ∈ T if

the input rate limitation is adapted according to (10.4).

Proof: First we replace uT,i in (10.10) by u̇T,i. In other words, the approximation of

the bounding level value (from (10.7) to (10.10)) is transferred from discretizing uT to

a discretized u̇T . Following the proof of Lemma 10.2.2 based on that, meaning (10.11)

is reformulated to

η0(u̇T (t)) = η0(u̇T,p(t)) = min
i

(µη(t)η0(u̇T,i(k)) + (1 − µη(t))η0(u̇T,i(k + 1))) ,

(10.22a)

η̇0(u̇T (t)) = min
p

(µη̇(t)η̇0(u̇T,p(k)) + (1 − µη̇(t))η̇0(u̇T,p(k + 1))) , (10.22b)

results in the required αu̇ which concludes the proof.

10.2.3 State Limit Allocation

Considering an allocation of the state limitations according to (10.4) the time-variation

of the DA (10.3) depends on the actual state vector of the desired trajectory xT (t).

Hence, we write

E0(P, η0(t)) = E0(P, η0(xT (t))) =
{

e ∈ R
n : V0 = eT Pe ≤ η0(xT (t))

}

. (10.23)

Consequently, a tracking error e has to stay within E0(P, η0(xT (t))) for all t ∈ T for

ensuring asymptotically stable tracking. To this end, we transfer the results concerning

input rate saturation of Section 10.2.2:

Corollary 10.2.2. Let a system in T-S notation (without affine terms) which is subject

to state limitations be given. Let further a desired trajectory xT , uT of the system (in

accordance with (2.51) and Assumption 10.2.1) be given. Then the variation of the
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DA (10.23) depending on xT (t) is analogous to (A.16) given by

η0(xT (t)) = η0(xT,p(t)) = min
i










η0 ·
(

xe,max,i(t)
︷ ︸︸ ︷

xmax,i − |xT,i(t)|)
2

x2
max,i

︸ ︷︷ ︸

η0(xT,i(t))










, (10.24)

for all t∈T if a linear state feedback law is considered. The index i ∈ N1:n denotes the

elements of the state vector and η0 is the bounding level value estimated for xT (t) = 0,

meaning xe,max,i(t) = xmax,i. The index vector p summarizes the element xT,i(t) of the

state vector which lead to the smallest level value at a certain time, e.g. if η0(xT,p(t1)) =

η0(xT,2(t1)) = η0(xT,4(t1)) then p = [2, 4].

Proof: The optimization problem

η0(xT,i(t)) = min
x

(

xT Px
)

, subject to gT
i x = ±(xmax,i − |xT,i(t)|) (10.25)

for every state i ∈ N1:n defines the bounding level value of the related DA depending

on the variation of the required state amplitude of the state trajectory. Therein, gT
i

equals to (3.6). The solutions of (10.25), which among the extreme values of the related

Lagrange function, are

η0(xT,i(t)) = η0

(xmax,i − |xT,i(t)|)
2

x2
max

, i ∈ N1:n (10.26)

whereby the proof is completed.

This result allows us to adjust Lemma 10.2.1 (analogous to Lemma 10.2.3):

Lemma 10.2.5. Let a system subject to state limitations be given for which Corol-

lary 10.2.2 holds. Let further a desired trajectory xT , uT of the system (in accordance

with (2.51) and Assumption 10.2.1) and a T-S formulation of the tracking error dy-

namics be given. Then there exists an exponential decay rate αx > 0 for V0 in (10.23),

meaning

V̇0 ≤ −αxV0, αx > 0 (10.27)

of the closed-loop error system such that e∗
d = 0 is asymptotically stable for each tracking

error e(t1) ∈ E0(P, η0(xT (t1))) occurring at a time t1 ∈ T if the state constraints are

adapted according to (10.4).
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Proof: The time derivative of all elements in (10.24) is

η̇0(xT,i(t))=
2η0ẋT,i(t)(|xT,i(t)| − xmax,i)

x2
max,i

sgn(xT,i(t)), (10.28)

whereby the signum function occurs due to the weak differentiability of the absolute

value function. Note that due to Assumption 10.2.1 the input signal and thus the state

vector is differentiable. From that point, following the proof of Lemma 10.2.1 from

equation (A.18) results in

αx ≥
−η̇0(xT (t))

η0(xT (t))
︸ ︷︷ ︸

αx(t)

, ∀ t ∈ T , (10.29a)

αx ≥ max
(

β,max
t∈T

(αx(t))
)

, (10.29b)

and thus in a required decay rate which concludes the proof.

Concerning the case that Corollary 10.2.2 is not valid (for instance if a T-S controller

is considered), a numerical approximation of the bounding level value can be derived

analogous to input amplitude case according to Lemma 10.2.2:

Lemma 10.2.6. Let a system subject to state limitations, a desired trajectory xT , uT

(in accordance with (2.51)) and a T-S formulation of the tracking error dynamics be

given. Then there exists an exponential decay rate (10.27) for V0 in (10.23) concerning

the closed-loop error system such that e∗
d = 0 is asymptotically stable for each tracking

error e(t1) ∈ E0(P, η0(u̇T (t1))) occurring at a time t1 ∈ T if the state constraints are

adapted according to (10.4).

Proof: First we replace uT,i in (10.10) by xT,i. In other words, the approximation of

the bounding level value (from (10.7) to (10.10)) is transferred from discretizing uT to

a discretized xT . Following the proof of Lemma 10.2.2 based on that, meaning (10.11)

is reformulated to

η0(xT (t)) = η0(xT,p(t)) = min
i

(µη(t)η0(xT,i(k)) + (1 − µη(t))η0(xT,i(k + 1))) ,

(10.30a)

η̇0(xT (t)) = min
p

(µη̇(t)η̇0(xT,p(k)) + (1 − µη̇(t))η̇0(xT,p(k + 1))) , (10.30b)

results in the required αx which concludes the proof.
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10.3 Relaxing the Allocation Conditions

If the nominal bounding level value η0 of E0(P, η0(t)) of the time-varying DA is esti-

mated such that stable over-saturation is possible then the allocation logic (10.4) can be

adjusted to the theoretically possible maximum (10.1). Indeed, over-saturation makes

no sense at all in case of state constraints and thus we consider only input amplitude

and rate saturation:

Theorem 10.3.1. Let a system subject to input amplitude and rate saturation be given.

Let further an over-saturating DA (10.5) and (10.14) which either fulfills Lemma 10.2.1

and 10.2.3 or Lemma 10.2.2 and 10.2.4, respectively, be given. Then the asymptotic

stability of e∗
d = 0 is still guaranteed if the allocation (10.4) is relaxed to (10.1).

Proof: In case of an over-saturating DA,

|ue| ≥ umax − |uT (t)| , (10.31a)

|u̇e| ≥ u̇max − |u̇T (t)| (10.31b)

is fulfilled if saturation is ignored, at least in some regions within the DA. Obviously,

the asymptotic stabilization of e∗
d = 0 is still guaranteed for every error e within the

DA. More precisely, as long as the relaxed bounds (10.2) are within the DA, meaning

|ue| ≥ σ(ue, t) ≥ umax − |uT (t)| , (10.32a)

|u̇e| ≥ σ(u̇e, t) ≥ u̇max − |u̇T (t)| (10.32b)

e∗
d = 0 is asymptotic stabilized. If the bounds are not within the DA and thus

σ(ue, t) ≥ |ue| ≥ umax − |uT (t)| , (10.33a)

σ(u̇e, t) ≥ |u̇e| ≥ u̇max − |u̇T (t)| (10.33b)

is the case then the asymptotic stabilization of e∗
d = 0 is still guaranteed as for every e

within the DA. In other words, if the bounding level value of the DA does not allow the

maximum allocation the over-saturating will get us as close as possible towards that

allocation which concludes the proof.
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10.4 The LISA Condition

In this section, we merge all of the considered variation possibilities of an estimated

DA E0(P, η0(t)) to a single decay rate condition – the LISA condition (Limits of Inputs

and States are Allocated):

Theorem 10.4.1. Let a system subject to input amplitude and/or input rate and/or

state limitations be given. Let further a desired trajectory xT , uT and a T-S formu-

lation of the tracking error dynamics be given. If the asymptotic stability of e∗
d = 0

is guaranteed for each limitation separability, meaning by one of the Lemmas 10.2.5

and 10.2.6 concerning only state limitation and Theorem 10.3.1 for input amplitude or

rate saturation. Then there exists an exponential decay rate αL > 0 for V0 in (10.3) of

the closed-loop error system such that

V̇0 ≤ −αLV0, αL > 0 (10.34)

and e∗
d = 0 is asymptotically stabilized for the combination of all constraints.

Proof: The required decay rates are: αu for input amplitude saturation (according

to one of the Lemmas 10.2.1 and 10.2.2), αu̇ for input rate saturation (according to one

of the Lemmas 10.2.3 and 10.2.4) and αx for state saturation (according to one of the

Lemmas 10.2.5 and 10.2.6). Hence, the largest of them (highest decay rate)

αL = max (αu, αu̇, αx) (10.35)

fulfills all of the required restrictions whereby the proof is completed.

10.5 Summary

The main contribution of this chapter has been the LISA condition (Limits of Inputs

and States are Allocated) which is, up to the author’s knowledge, the first approach

that allows a dynamical shifting of system constraints between the feedforward and the

feedback part of a 2-DOF controller. More precisely, we have developed a condition in

form of a required exponential decay rate of a Lyapunov function which ensures the

asymptotic stabilization of the desired trajectory when adapting the saturation limits

for error compensation depending on the current feedforward signal. The required

decay rate and a related domain of attraction (DA) has been shown to be numerically

computable by LMI conditions based on our results of Section 3.
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The LISA-GINA Control Framework

In this chapter, we extend the LISA condition of the previous chapter such that asymp-

totic stability of the desired trajectory can be ensured even if the state vector is outside

of the estimated DA. To this end, the GINA controller of Chapter 6 is considered for tra-

jectory tracking. The novel LISA-GINA control framework allows thus an adaptation of

the saturation functions (input amplitude, rate and state limit) for error compensation

depending on the required feedforward signals. In addition, an asymptotic stabilization

of the desired trajectory (LISA condition) is guaranteed for every error that can be

stabilized based on the GINA controller. Moreover, we establish a switching between

different LISA-GINA controllers to relax the required LMI conditions and to increase

the control performance.

After stating the problem in Section 11.1, the framework is derived in Section 11.2.

The switching and smooth switching conditions that we have devolved for the purpose

of set point tracking (see the Chapters 4 and 5) can be also beneficially integrated in

the LISA-GINA control framework, which is shown in Section 11.3.

11.1 Problem Formulation

The DA within which the asymptotic stabilization of a desired trajectory can be en-

sured based on the LISA condition (see Section 10.4) is restricted to a time-varying

ellipsoid (10.3) around the desired equilibrium e∗
d = 0. This fact brings us to the

following main problem to be investigated in this chapter:

Problem 11.1.1. Asymptotic stabilization of a desired trajectory based on the LISA

condition of Section 10.4 if the tracking error is outside of the estimated DA, meaning

e /∈ E0(P, η0(t)).
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The key idea for solving Problem 11.1.1 is in attaching the GINA controller to

the closed-loop trajectory tracking controller analogous to the set point case (see

Section 6). In other words, we extend the domain of attraction (DA) by adding

the GINA controller. Hence, every error that can be stabilized based on the GINA

controller is asymptotically shifted to the desired trajectory. This leads to the

novel LISA-GINA control framework which combines the advantages of the LISA

condition and the GINA controller for trajectory tracking tasks.

Beside the size of the DA, the required number of LMI conditions for designing a

tracking controller based on the LISA condition might lead to problems. This is due

to the fact that the number of LMIs depends on the desired trajectory: First, if the

trajectory transition time is long then the amount of linear subsystems in the T-S er-

ror formulation according to Section 9.2 that are required to approximate the error

dynamics increases. Second, a desired trajectory might lead to subsystems of the T-S

error formulation which differ such that the solvability of the LMI optimization is not

guaranteed. Hence, a second problem to be addressed is:

Problem 11.1.2. Relaxation of the LMI conditions for deriving a tracking controller

based on the LISA condition.

We tackle this problem by transferring our results concerning switched and

smoothly switched controller design from Chapter 4 and 5. Putting the major

benefit in a nutshell: The number of LMIs is subdivided into several convex opti-

mization problems. Each of these problems results in a valid domain of attraction

(DA) for a piece of the desired trajectory. The stabilization of the desired trajectory

is ensured by switching between the DAs in a certain manner.

11.2 The Framework

In this section, we combine the LISA condition with the GINA controller to solve

Problem 11.1.1. The final LISA-GINA control framework is summarized in Frame-

work 11.2.1. Each step of the framework will be explained in the following:

Framework 11.2.1 LISA-GINA Control Framework

1: generate trajectory (feedforward control)
2: compute LISA condition
3: estimate DA and design tracking controller
4: compute GINA controller
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11.2.1 Generate Trajectory and Compute LISA Condition

Initially in step 1 of the LISA-GINA control framework 11.2.1, a desired state and in-

put trajectory (xT (t),uT (t)) hat to be generated. Note that depending on the relevant

system constraints, the feedforward signal uT (t) has to fulfill the corresponding As-

sumptions 2.4.1, 10.2.1 and 10.2.3. In other words, every commonly known feedforward

design method can be used for designing a proper trajectory, e.g. flatness-based design

(see Chapter 8). In step 2 of the framework, the LISA condition (see Theorem 10.4.1)

has to be calculated to obtain the required decay rate αL of the Lyapunov function.

11.2.2 Estimate DA and Design Tracking Controller

Based on step 2, an efficiently estimate of a DA E0(P, η0(t)) that fulfills the LISA condi-

tion is done in step 3 by convex optimization subject to LMI constraints. An appropriate

tracking controller needs either to be a priori designed, e.g. by LMI optimization, pole

placement, or together with the estimate of the DA (see Example 2.2.3).

Remark 11.2.1. Note that a pre-designed tracking controller does not necessarily

means that a Lyapunov function with the required decay rate (10.19) exists. This can

be bypassed by designing a LMI-based LQR controller with a pre-defined decay rate

such that a common Lyapunov function exists [12, 40]. For instance, in paper [34] such

a controller has been derived for linear systems. The developed Riccati equation can

be directly used for T-S systems within a LMI optimization.

Due to the required αL, the estimated DA (10.3) can become smaller at a certain t ∈ T

than a specific E0(P, η0) with a static allocation of the constraints. This disadvantage

can be solved by combining both control concepts and thus combining their resulting

domains of attraction. This has been already investigated in Fig. 10.2 of Example 10.2.1.

For the sake of completeness, we summarize the results in form of a proposition in the

following:

Proposition 11.2.1. Let estimated DAs E0(P, η0) and E0(P, η0(t)) for tracking error

compensation with a static allocation of the constraints according to (2.50) and Theo-

rem 10.4.1, respectively, be given. Then a valid DA is given by the switching condition

E0(P, t) =







E0(P, η0(t)) if e(t) ∈ E0(P, η0(t)),

E0(P, η0) else
(11.1)

if saturation limitations are switched simultaneously to the active controllers.
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Proof: Both DAs in (11.1) ensure the asymptotically stable compensation of a track-

ing error. Switching between them, and thus switching between two different tracking

controllers, will only happen once, namely from E0(P, η0) towards E0(P, η0(t)) as soon

as the tracking error is within the DA obtained by the LISA condition. In fact, the

asymptotic stability of the switched error system is guaranteed because a single switch-

ing between asymptotically stable systems results in an asymptotically stable overall

behavior [80] whereby the proof is completed.

Obviously, the DA (11.1) is at least as large as both individual DAs.

11.2.3 Compute GINA Controller

Concerning a trajectory tracking controller design according to the LISA condition,

stability can not be ensured if e /∈ E0(Pη0(t)). We will tackle that problem by adding

the GINA controller in step 4 of the framework. To this end, we state the following

assumption:

Assumption 11.2.1. If the system is subject to input amplitude and state constraints

with u∗
e,r 6= u∗

e,t 6= u∗
e,d = 0 and e∗

r 6= e∗
t 6= e∗

d = 0, respectively, then the operating

space of the GINA controller is defined by a set M∗
r of reference equilibria that fulfills

Assumption 2.4.1.

The reason therefore is that ue,max,i in equation (A.16) and xe,max,i in (10.24) needs

to be updated according to the following proposition:

Proposition 11.2.2. If the set M∗
r according to Assumption 11.2.1 is not empty then

ue,max,i = umax,i −
(

|uT,i(t)| +
∣
∣
∣u∗

e,r,max,i

∣
∣
∣

)

, (11.2a)

xe,max,i = xmax,i −
(

|xT,i(t)| +
∣
∣
∣x∗

e,r,max,i

∣
∣
∣

)

(11.2b)

has to be considered in (A.16) and (10.24), respectively, for calculating the exponential

decay rates. In (11.2), u∗
e,r,max,i and x∗

e,r,max,i are the i-th components of the steady-state

input and state values of all e∗
r ∈ M∗

r such that ue,max,i and xe,max,i become minimal.

Proof: According to (A.16) the minimal bounding level value has to be considered

for deriving the required exponential decay rate. The required steady-state input signal

for stabilizing a reference equilibrium e∗
r reduces the available input amplitude and

thus the DA. Consequently, this reduction is taken into account by (11.2a). The same

argumentation holds for (10.24) and thus (11.2b) for state restriction which concludes

the proof.
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Note that Assumption 11.2.1 is fulfilled concerning input rate limitation. Based on

Proposition 11.2.2, we can state the following theorem:

Theorem 11.2.1. Let a trajectory tracking controller according to the LISA condition

(Theorem 10.4.1) be given. Then extending the closed-loop error system with a GINA

controller asymptotically stabilizes e∗
d = 0 ∀ e ∈

⋃

e∗ E0(P, η0(t)) if Proposition 11.2.2

is taken into account for deriving the exponential decay rate αL such that

V̇0 < −αLV0, αL > 0. (11.3)

Proof: A temporary equilibrium in the error domain generally requires a state-state

input signal u∗
e,t 6= 0 and also e∗

t 6= 0 differs from zero. Thus, the smallest DA within

a pre-defined operation space of the GINA controller is given for a maximal considered

error according to Proposition 11.2.2. The reason why "≤" in equation (10.34) of The-

orem 10.4.1 has to be replaced by a strict ” < ” (see (11.3)) can be easily understood

based on Fig. 11.1 which shows the most critical case concerning stability: The tracking

error is on the bounding level set ∂E(t1) of a temporary equilibrium e∗
t (t1) calculated by

the GINA controller at a time t1 ∈ T . Suppose the feedforward signal currently changes

in a way such that the DA shrinks, meaning ∂E(t2) < ∂E(t1), with t2 > t1. Fig. 11.1(a)

illustrates the case if V̇0 = −αLV0 which might happen if "≤" is considered. Here, e(t2)

will be again at the bounding level value. Hence, the GINA controller cannot shift the

temporary equilibrium towards the desired one e∗
d = 0 whereby asymptotic stability is

lost. Roughly speaking, the DA shrinks as much as the error gets closer to e∗
t . If how-

ever, (11.3) is considered and thus the decay rate is smaller than αL then as depicted in

Fig. 11.1(b) the error shrink faster as the DA does. Thus, e∗
t can be scheduled towards

the desired equilibrium (e∗
t (t1) → e∗

t (t2)) which completes the proof.

e∗
t (t1)

∂E(t1)

∂E(t2)

e(t1)

e(t2)

e∗

d

e1

e2

(a) V̇0 = −αLV0

e∗
t (t1)

e∗
t (t2)

∂E(t1)

∂E(t2)

e(t1)

e(t2)

e∗

d

e1

e2

(b) V̇0 < −αLV0

Figure 11.1: Most critical stability case for LISA-GINA.
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11.3 Extension to Switched Control

Subsequently, we will tackle Problem 11.1.2 by transferring our results concerning

switched and smoothly switched controller design for set point tracking (see the Chap-

ters 4 and 5). The main idea behind the following approach is to subdivide a single

trajectory tracking problem into several ones and switch between them:

Corollary 11.3.1. Let a system and a desired trajectory be given such that a GINA-

LISA trajectory tracking controller (Theorem 11.2.1) is theoretically possible. Then

e∗
d = 0 is attractive if q ∈ N1:y switched LISA-GINA controllers are designed for the

error dynamics based on our switching and smooth switching conditions from the Chap-

ters 4 and 5, respectively. The switching signal l is:

l = q







Tq ∈ t ∈ [t0,q, t0,q+1[ if q =∈ N2:y,

Tq ∈ t ∈ [t0,q, te] if q = 1,
(11.4)

with t0,y = t0 and Tq denotes the time interval of the desired trajectory within which a

certain LISA-GINA controller and its corresponding DA E0(Pq, η0(t)) is active.

Proof: The switching condition (11.4) implies that the LISA-GINA controllers and

their corresponding DAs are ordered along the trajectory in the reverse direction of q.

Each E0(Pq, η0(t)) is either valid for an amount of subsequent linear subsystems (local

linear T-S formulation, see Theorem 9.2.1) or for subsequent SE-NL T-S models (see

Theorem 9.2.2) along the trajectory. Consequently, analogous to the Chapters 4 and 5,

(smooth) switching switching, respectively, do only take place between two subsequent

DAs E0(Pq, η0(t)) and E0(Pq+1, η0(t)). However, contrary to the theorems, corollaries

and propositions of the Chapters 4 and 5, a manual design of the switching signal is not

allowed here as the activation of the subsystems (and thus the controllers) is scheduled

by the transition time. Hence, the GINA controller might have to calculate a new

reference equilibrium e∗
r,q after each switch whereby the error e can increase. For that

reason, the desired trajectory is still attractive whereby the proof is concluded.

The argumentation of the proof is illustrated in Fig. 11.2 considering a scalar system

and three switched LISA-GINA controllers which are denoted by their corresponding

DAs E0(Pq, η0(t)), q ∈ N1:3. Fig. 11.2(a) sketches a desired state trajectory xT and

Fig. 11.2(b) shows the corresponding tracking error. In both figures the switching in-

tervals (11.4) are depicted. Starting from an initial tracking error, the first active LISA-

GINA controller E0(P3, η0(t)) asymptotically decreases the error from a corresponding

reference equilibrium e∗
r,3 towards zero. This is due to the LISA-GINA controller design
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Figure 11.2: Attraction of e∗
d = 0 by a switched LISA-GINA tracking controller.

based on Theorem 11.2.1. Due to a switching event to the next LISA-GINA controller

with E0(P2, η0(t)) at a time t0,2, a new reference equilibrium might be required due to

the change of the active controller. Hence, a jump in the error signal can occur whereby

e either optimally decreases (see t0,2) or increases as shown for the final switch at t0,3.

After each switch the tracking error decreases again asymptotically (Theorem 11.2.1)

and thus the attraction of e∗
d = 0 is ensured as the amount of switching is bounded.

11.4 Summary

In this chapter, the LISA-GINA controller framework has been developed whereby

a trajectory tracking controller has been derived that allows an adaption of the input

amplitude, rate and state limitations based on the LISA condition (Section 10.4) within

a large domain of attraction (DA) (the GINA controller). The framework consists of

five steps, starting from the generation of the desired trajectory to the design of the

GINA controller for ensuring the asymptotic stabilization of the trajectory based on the

LISA condition in the large. In form of an optional extension, a switched LISA-GINA

trajectory tracking controller has been established. This controller allows to split up the

LMI based optimization for fulfilling the LISA condition along the whole trajectory into

several optimization problems each for a part of the trajectory. Each of them requires

a reduced number of LMI conditions compared to the original problem. Thereby, the

general feasibility of the original optimization problem has been enlarged on the one

hand and the required numerical effort for finally solving it has been reduced on the

other hand.
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Chapter 12

Application and Experimental Results

In this chapter, we apply the methods developed in Part II of this thesis to three

technical systems subject to input amplitude, rate and state constraints. We present

both, simulation as well as experimental results in order to highlight the advantages

and the practical applicability of our methods. In the Sections 12.1 and 12.2 we recall

the inverted pendulum on cart and the Ballbot system, respectively, which have been

already investigated in Chapter 7. In the third example (Section 12.3), we focus on a

so-called VTOL (vertical take-off and landing) aircraft system.

Concerning all examples, the nominal level value is set to η0 = 1 and the LMIs are

solved by using the YALMIP Toolbox. The GINA controller is always implemented in

its optimal form as explained in Section 6.3.

12.1 Inverted Pendulum

In this section, the LISA-GINA control framework is verified (in simulation and

experiment) based on the well-known inverted pendulum on cart system subject to

input amplitude saturation. We highlight the advantage of the LISA condition by

a comparison with a conventional tracking controller. In addition, the robustness

of the GINA controller by shifting a desired trajectory while already tracking it is

demonstrated. Noticeable over-saturation is achieved even in the experiment.

The GINA controller is optimally implemented according to Algorithm 6.3.1. The ap-

plied calculation for estimating an over-saturating DA for tracking error compensation

(according to Section 3.2.2) is detailed in [34]. We consider the linearized pendulum
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system (linearized around the upper equilibrium x∗ = [0, 0, 0, 0]T )

ẋ=











0 0 0 1

0 0 1 0
3gm

m+4M
0 − 4dx

m+4M
0

3gm+3gM
a(m+4M)

0 − 3dx

a(m+4M)
0











x+











0

0
4cm

m+4M
3cm

a(m+4M)











σ(u), (12.1)

subject to input amplitude saturation. For this system, we define the polynomial desired

trajectory

yf (t) =
9∑

i=0

pi · ti (12.2)

based on the flat output yf = x2 − 4
3
ax1.

Simulation – Benefit of the LISA-GINA Control Framework: According to the

LISA-GINA control framework a desired trajectory is generated first. We consider a

movement of the flat output from yf (t = 0) = 0 towards yf (t = 8) = 1 and backwards

again. Setting the input limitation to umax = 12 V, the design trajectory fulfills As-

sumption 2.51 with ρ̟ = 0.7. The second step of the LISA-GINA control framework

leads to a required decay rate rate (10.6) of αL = 1 for fulfilling the LISA condition.

We choose a LQR with the performance measure

J =
∫ ∞

0
eT QLQR,2e + ueRLQRue dt (12.3)

for controlling the error dynamics of the pendulum system (step 3 of the Frame-

work 11.2.1). The matrices QLQR,2 and R are given in Table 7.1. The obtained LISA-

GINA controller is compared to a static input allocation (ue,max = 3.6 V) considering

the same LQR. However, the simulation became unstable due to the high considered

initial position error of 1.2 m, which leads to input amplitudes over 30 V (umax = 12 V).

Hence, we had to integrate the GINA controller also to the LQR with static input

allocation in order to regain stability. Fig. 12.1 shows the final obtained simulation

results:

The LISA-GINA controller is able to compensate the tracking error in almost 50%

of the time required by the controller with static input allocation. The reason for that

becomes clear when analyzing the first 8 s of the simulation. The controller with static

input allocation is only able to compensate the tracking error with its allocated input

amplitude. Compared to that, the LISA-GINA controller adapts the allocated input
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Figure 12.1: Comparison of LISA-GINA controller with a static input allocation.

amplitude depending on the current feedforward signal such that umax is exploited dur-

ing the whole error compensation. The continuous shifting of the temporary equilibrium

e∗
t is visualized by the position and tilt angle coordinates

xt,s = xT − e∗
t,x,s, φt,s = φT − e∗

t,φ,s = φT , (12.4)

with s ∈ {1, 2}, in the state domain. They are marked in Fig. 12.1: xt,1 and φt,1

illustrate the shifting for the LISA-GINA control framework while xt,2 and φt,2 show

the shifting concerning the static input allocation with GINA extension. Note, only

e∗
t,x,s differs from zero (cart position), whereby it becomes clear that the calculated

e∗
t is a stabilizable equilibrium of the system. Consequently, the effectiveness of the

LISA-GINA control framework becomes clear concerning performance.

Experiment – Validation of the LISA-GINA Control Framework: Due to the length

of our test rig’s rail, the cart’s position is restricted to x ∈ [−0.25, 0.45]m. Thus, we

reduce the maximum motor voltage from umax = 12 V to 8 V and choose a different

desired trajectory than for simulation. Both changes are made in order to force input

saturation to occur and to ensure the activation of the GINA controller during the

experiment. In addition, the trajectory is shifted during the experiment whereby the

robustness of the GINA controller can be seen once more.
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Figure 12.2: Variation of the decay rate and the bounding level value of the DA.

Fig. 12.2 shows the variation of the required decay rate of the Lyapunov function and

the variation of the bounding level value η0(uT (t)) which equals to the changing of the

DA according to 10.5 along the trajectory. The required decay rate αL = max (αL(t))

is highlighted. The corresponding desired trajectory is depicted in Fig. 12.3 together

with the obtained experimental results: We force a repeatable tracking error by shifting

the position coordinate of the desired trajectory with ∆xT at t = 2.85s (like switching

between two trajectories). According to Remark 11.2.1, we constructively design a

controller which guarantees the existence of a quadratic Lyapunov function with the

required decay rate. The so-called α-control law

ue = −bT Pαe = fT e, (12.5)

is obtained by solving the algebraic Riccati equation

(

A +
α

2
I

)T

Pα + Pα

(

A +
α

2
I

)

− 2PαbBT Pα = 0, (12.6)

defining a decay rate α > 0. As proven in [20, 34] the controller (12.5) ensures the

existence of a quadratic Lyapounov function with a decay rate of V̇0 ≤ −αV0. We

choose α = 4 > αL (see Fig. 12.2).

As can be seen in Fig. 12.3, the α-controller exploits the possible overall system’s

input amplitude, resulting in a fast tracking behavior. For instance, at the time 5.43 s

the input amplitude would be u(5.43 s) = 11.6 V if saturation is ignored. However, the

system stays asymptotically stable despite this noticeable over-saturation.

To sum up: The LISA-GINA control framework ensures a fast compensation of

the tracking error (LISA condition) while guaranteeing the system’s asymptotic sta-

bility (GINA controller). The overall input amplitude is exploited and noticeable over-

saturation has been handled even in experiment which confirms the performance of the

LISA-GINA controller and its practical applicability.
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Figure 12.3: Experimental results: LISA-GINA Control Framework with α-controller.

12.2 Ballbot

In this section, the flatness-based trajectory design along defined waypoints according

to Chapter 8 will be applied to the Ballbot system (C.4), (C.5). The Ballbot fulfills the

Assumptions 8.1.1 and 8.1.2 whereby the piecewise trajectory generation procedure

of Section 8.2 can be directly applied. Thereby, input and state limitations are

considered. Finally, it is shown that a replanning of trajectories is feasible based on

a comparison with a conventional optimization algorithm.

The state space model of the Ballbot can be decoupled into three single input sys-

tems

ẋk = Akxk + bkũk, k ∈ N1:3 (12.7)

with the state vectors

x1=
[

x β ẋ β̇
]T
, x2=

[

y α ẏ α̇
]T
, x3=

[

γ ψ̇ γ̇
]T
. (12.8)
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The system matrices Ak are obtained by selecting the corresponding lines and rows

from (C.4). The original input matrix of the Ballbot system is linked to the new

(fictive) scalar inputs ũk by

ũ =








0 1 −1

2 −1 −1

1 1 1








︸ ︷︷ ︸

Tũ

u, (12.9)

whereby the decoupled input vectors bk are given accordingly. The constructive com-

putation of a flat output for systems of the form (12.7) is explained in Section 2.5 and

detailed for the Ballbot system at hand in [33]. An easy to interpret flat output is

yf,1 = x+ 0.35β, (12.10a)

yf,2 = y − 0.35α, (12.10b)

yf,3 = γ − 0.05γ̇ − 0.01ψ̇. (12.10c)

Its first two components are structurally identical to the flat output of an inverted

pendulum on cart system [33] and describe thus the planar movement of a point which

is 0.35 m above the ball’s center of gravity within the aluminum frame. The third

component (12.10c) depends only on state variables γ, γ̇ and ψ̇. Hence, it represents

the yawing of the robot.

In the following we will generate a flatness-based trajectory according to Algorithm 8.2.1

along the waypoints (given by the coordinates x, y and γ)

Γ0 =
[

−2 0 0
]T

m, Γ1 =
[

0 4 0
]T

m, Γ2 =
[

5 10 0
]T

m,

Γ3 =
[

10 5 0
]T

m, Γ4 =
[

12 0 0
]T

m.
(12.11)

Due to the advantage that yawing is solely defined by (12.10c), we are able to force

γT
!

= 0 for the whole trajectory by fixing ũ3 = 0. The transition time in the bisection

approach (8.8) is initially set to te,i(0) = 0, te,i(1) = 20 s for all i ∈ N1:4. We consider

the following state and input constraints

ĉ1 := |αT | ≤ 10 ◦, ĉ2 := |βT | ≤ 10 ◦ (12.12a)

ĉ3,k := |uk,T | ≤ 8 V, k ∈ N1:3. (12.12b)

Therein, equation (12.12a) limits the tilt angles of the trajectory and (12.12b) restricts

the allowed input amplitude to 2
3
umax.
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Figure 12.4: Trajectory along five waypoints according to Algorithm 8.2.1.

Fig. 12.4 depicts the trajectory obtained by Algorithm 8.2.1. All waypoints are pre-

cisely hit (Fig. 12.4(a)) and the allowed input amplitude is exploited while the state

limits are adhered to. Table 12.1 summarizes the final obtained overall transition time as

well as the required computation time. The results are compared to an optimization by

using the pattern search algorithm of the MATLAB Global Optimization Toolbox [87].

The pattern search algorithm has been initialized with the trajectory according to our

developed strategy and the variation of the velocity at the waypoints i ∈ N1:3 has been

additionally bounded by

ĉ4 :=
∣
∣
∣Γ̇i

∣
∣
∣ <

∣
∣
∣Γ̇i,ini

∣
∣
∣+ Γ̇i,max,

ĉ5 :=
∣
∣
∣Γ̇i

∣
∣
∣ >

∣
∣
∣Γ̇i,ini

∣
∣
∣− Γ̇i,max

(12.13)

where Γ̇i,max = [0.5, 0.5, 0]T m/s is the allowed variation region of the velocity at the

waypoints and Γ̇i,ini denotes the velocity obtained by Algorithm 8.2.1. Comparing

Table 12.1: Trajectory design using an Intel Core i5 − 3230 M, 8 GBRAM, Win7 x64

trajectory design transition time in s computation time in s
Algorithm 8.2.1 44.93 0.76

Pattern search algorithm 43.25 279.92
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both results, it can be seen that the transition time of the optimized trajectory is 1.68 s

shorter than the result obtained according to our approach. However, the required

computation time is 368.35 times larger. Algorithm 8.2.1 requires only 0.76 s whereby

a real-time computation of a new trajectory is possible. For instance, when the robot

moves in-between two waypoints a new trajectory can be generated for the subsequent

trajectory pieces. Consequently, the benefit of the developed trajectory generation

procedure becomes clear based on Table 12.1 and Fig. 12.4.

12.3 VTOL Aircraft

In this section, we apply the LISA-GINA control framework for tracking a trajectory

with a nonlinear vertical take-off and landing (VTOL) aircraft subject to input am-

plitude and rate saturation. The time-variant error system of the aircraft is written

in T-S notation according to Section 9. Simulation results highlight then advantages

of the control framework: first, a large tracking error is fast and asymptotically com-

pensated (GINA controller) and second, constraints are exploited (LISA condition).

The VTOL model

ẍ = −u1 sin(θ) + εu2 cos(θ) (12.14a)

ÿ = u1 cos(θ) + εu2 sin(θ) − g (12.14b)

θ̈ = u2 (12.14c)

has been derived in [51]. Fig. 12.5 depicts the corresponding schematic of the aircraft.

The VTOL aircraft describes a jet-borne operation (e.g. hovering) in a vertical-lateral

plane. Its state variables are the position coordinates x and y, its roll angle θ and

the corresponding velocities (ẋ, ẏ and θ̇). The parameter g denotes the gravitational

acceleration. The control inputs u1 and u2 are the thrust and the rolling moment,

respectively. The small coefficient ε defines the coupling between the rolling moment

and the lateral acceleration.

The center of thrust with the two components

yf,1 = x− ε sin(θ)

yf,2 = y + ε cos(θ).
(12.15)

is a known flat output yf of the system [8, 86]. Typical for an aircraft, we consider the

inputs to be restricted in their amplitude and rate. To this end, we add the actuator
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Figure 12.5: Vertical take off and landing aircraft.

model (3.10) to the VTOL system. All parameter values of the finally considered VTOL

aircraft are summarized in Table 12.2.

We generate a desired trajectory (2.56) of polynomial degree qk = 12, k ∈ N1:2, for

the flat output using Algorithm 8.2.1. The trajectory should precisely hit the waypoints

Γ0 =
[

100 100
]T
, Γ1 =

[

200 100
]T
, (12.16)

(e.g. a laterally evasive maneuver) with Γi = [x, y]T , i ∈ N0:1, (the remaining state

variables of the VTOL aircraft are zero), subject to the input amplitude constraints

ĉ1 := |v1,T | ≤ 15 N/kg, ĉ2 := |v2,T | ≤ 15 1/s. (12.17)

of the actuator input signal v (see the actuator model (3.10)). The input rate constraints

are set to

ĉ3 := |v̇1,T | ≤ 30 N/kg, ĉ4 := |v̇2,T | ≤ 30 1/s. (12.18)

Table 12.2: Parameters of the VTOL aircraft

description symbol value unit
coupling parameter ε 0.5 m

motors’ inverse time constant τ 10 1/s
thrust: input amplitude range u1,max 25 N/kg

thrust: input rate u̇1,max 45 N/kgs
roll: input amplitude range u2,max 25 1/s

roll: input rate u̇2,max 45 1/s2

gravitation constant g 9.81 N/kg
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Fig. 12.6 depicts the final obtained input and state trajectory. The waypoints are

precisely hit and the input constraints (12.17) are exploited but not violated. The

required rate of the actuator input signal stays within a range of |v̇1,T | ≤ 5 N/kgs,

|v̇2,T | ≤ 5 1/s2 and thus restriction (12.18) is far from being violated. Analyzing the

desired trajectory according to step 2 of the LISA-GINA control framework 11.2.1

results in a required decay rate of αL = 0.33. In order to design a related tracking

controller (step 3 and 4 of the LISA-GINA control framework), we first derive the time-

variant linear error dynamics by linearizing (12.14) along the desired trajectory. In a

second step, we follow Theorem 9.2.1 to formulate a LO T-S formulation of the tracking

error dynamics with r = 11 equidistant subsystems along the trajectory. Finally, we

obtain an augmented error dynamics (according to 3.11)

˙̂e =
r=11∑

i=1

hi(zs)
(

Âiê + B̂ σ (Ke + Tσ(v))
)

(12.19)

with the augmented error vector ê = [e,ue]
T ∈ R

8 whereby

e =
[

xT − x ẋT − ẋ yT − y ẏT − ẏ θT − θ θ̇T − θ̇
]T
. (12.20)

We estimate an over-saturating DA according to (3.24) and Remark 3.2.2 subject to

the input constraints (amplitude and rate) within Table 12.2. In addition, we force a

decay rate of α = 2αL and we search for a linear control law which is finally obtained

150

200

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

−1

0

1

100

100

100.1

100.2

x
T

in
m

y T
in

m
θ T

in
ra

d
v

T

time in s

v1,T in N/kg
v2,T in 1/s

Figure 12.6: Desired state and input trajectory of the VTOL aircraft.
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to

F =




0.74 1.72 10.76 28.27 −26.42 −5.81 16.31 −0.36

−14.66 −48.63 −3.76 −12.19 569.09 237.60 −0.356 42.83



 . (12.21)

Fig. 12.7 depicts the simulation results. Due to a quite large initial tracking error of

ê =
[

−50 0 −20 0 . . . 0
]T

(12.22)

the state trajectory does not match with the desired one. However, the LISA-GINA con-

trol framework prevents destabilization and ensures a fast compensation of the tracking

error which is initially not within the DA of the desired trajectory. Without the refer-

ence governor the simulation became unstable. The necessity of the GINA controller

is clarified by Fig. 12.8 which illustrates the asymptotic stabilization of the desired

trajectory by the continuous shifting of the scaling parameter c ∈ [0, 1] of the GINA

controller. The value c = 1 is reached approximately at t = 9.6 s. Here, the GINA

controller is deactivated as the tracking error is within the DA of the desired trajectory.

At this point the tracking task become trivial. Fig. 12.9 depicts the saturated input

signals. While both actuator input signals v1 and v2 saturates, the rate saturation of the

actuator prevents saturation of u. Table 12.3 summarizes all relevant absolute values

0
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time in s

Figure 12.8: Scaling parameter c of the GINA controller towards the desired trajectory.
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concerning input amplitude and rate saturation of the tracking controller: It can be

seen that the maximum non-saturated input amplitude and rate values are larger than

the corresponding bounds of the VTOL aircraft according to Table 12.2. Thereby, the

over-saturation of the estimated DA and the exploitation of the input signal becomes

obvious. Especially, the input rate is significantly over-saturating.

For the sake of completeness, we show that a smaller, but still worth mentioning,

initial error can be totally compensated within the trajectory transition time. To this

end, we set the initial error to

ê =
[

−5 0 −0.5 0 . . . 0
]T
. (12.23)

The final obtained trajectory is compared to the desired one in Fig. 12.10. The initial

error is asymptotically compensated by exploiting the input range, e.g. v2 saturates at

the beginning of the tracking.

Table 12.3: Control input values for error compensation in the VTOL simulation

description maximum absolute values
Amplitude [30, 93]T

Saturated amplitude [25, 25]T

Rate [152, 250]T

Saturated rate [45, 45]T
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12.4 Summary

The practical applicability and the performance benefit gained by the results of the

Chapters 8 to 11 within this thesis have been demonstrated. Two benchmark system

have been recalled: the inverted pendulum on a cart and the Ballbot system which have

been already investigated in the Sections 7.1 and 7.2, respectively. In addition, we have

investigated a nonlinear vertical take-off and landing (VTOL) aircraft system.

We have applied the LISA-GINA control framework (see Section 11.2) to the inverted

pendulum system subject to saturation in simulation and experiment. A comparison

with a conventional tracking controller has shown that an enlarged domain of attrac-

tion has been realized and the tracking error has been compensated within half of the

time. In addition, noticeable over-saturation has been handled even in the experiment.

The Ballbot system has been considered to illustrate the performance of the trajec-

tory generation procedure of Section 8. Thereby, input and state limitations have been

considered.The required computational cost has been rather low compared to a con-

ventional optimization algorithm (pattern search) such that a real-time replanning of

trajectories is feasible. Concerning the VTOL aircraft system, we have tracked a trajec-

tory subject to input amplitude and rate saturation. The error system has been written

in T-S notation according to Chapter 9. The simulation results have highlighted the ma-

jor advantages of the developed LISA-GINA control framework for T-S systems: large

tracking errors can be fast and asymptotically compensated (GINA controller) while si-

multaneously exploiting the available input amplitude and rate (LISA condition). Each

example has become unstable if the GINA controller has been deactivated.
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Chapter 13

Conclusions

Today’s control engineers are often facing two categories of problems — set point and

trajectory tracking of dynamical systems. Both objectives have to be tackled subject

to constraints, e.g. actuator and state limits, performance and safety requirements or

computational effort. This thesis is primarily devoted to the development of new control

methods for tackling the mentioned problems. To this end, we exploit the Takagi-

Sugeno (T-S) modeling which allows to represent a quite general class of dynamical

systems by a convex combination of a finite amount of linear or affine submodels.

Consequently, observer and controller design as well as related optimization tasks can

be done based on linear control theory.

In the first part of the thesis we have introduced new approaches concerning set point

tracking while the second part is devoted to trajectory tracking. We have demonstrated

the benefit of the methods as well as their practical relevance in a wide range of appli-

cability in simulation and experiment. The examples origin from the field of robotics,

aircraft and ground vehicle control. The following key points have been addressed in

this thesis:

• efficient estimation and enlargement of the domain of attraction (DA),

• fast stabilization of a desired set point, even if the current state vector is not

within the nominal estimated DA,

• computing performant trajectories along predefined waypoints,

• fast stabilization of a desired trajectory, even if the current tracking error is not

within the nominal estimated DA and

• demonstrate the benefit and wide range of practical applicability of the methods.

Concerning the first key point, we have developed set invariance conditions in terms of

linear matrix inequalities (LMIs) which allow the estimation of an ellipsoidal DA subject
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to state, input amplitude and rate constraints. The LMIs are formulated in a way such

that the DA is allowed to include over-saturating regions. This means that an initial

error within the DA might lead to an input signal which is above the saturation limit.

However, the asymptotic stabilization of the considered equilibrium point is guaranteed

despite saturation. By integrating the developed set invariance conditions in a novel

numerical algorithm a constructive computation of a large bounded sublevel set of an

ellipsoidal DA has been established. Thereby, the control law can be either predefined

or considered as an optimization parameter subject to performance constraints.

The second key point has been addressed in two ways: First, we have extended

the algorithm such that nested invariant sets, each having a maximized volume, can

be estimated. Each DA is related to an individual designed controller whereby larger

DAs with lower and smaller DAs with larger control performance have been obtained.

Switching and smooth switching conditions allow to benefit from all individually de-

signed controllers. The conditions have been derived based on multi Lyapunov function

theory such that an asymptotically stable scheduling between the control laws is ob-

tained. Consequently, the trade-off between control performance and the size of the

estimated DA has been relaxed. Finally, the switching conditions have been extended to

the general case of not-nested DAs. In the second route, we have investigated the case

if no DA has been estimated within which the current state vector is located in. To han-

dle such situations, the so-called GINA controller (Governor Integrated Nominal-Value

Adaptation) has been devolved. Its basic operation principle is to compute a set point

that is as close as possible to the actual desired one but can be stabilized subject to

constraints. While this happens, the set point is shifted towards the desired one until

it can be finally stabilized itself. Several ways of implementation have been shown for

balancing the computational costs, performance and its general applicability.

With the third key point, computation of performant trajectories along predefined

waypoints, we have started into the second part of the thesis where the focus is shifted

from set point towards trajectory tracking. Here the focus have been to provide an

optimization-based approach for generating a flatness-based trajectory such that a sta-

tionary movement (movement without acceleration) is obtained at each desired way-

point. To this end, the trajectory is subdivided into polynomial pieces in-between

subsequent waypoints. The final transition time of the trajectory is minimized while

the predefined waypoints are precisely hit and system relevant state and input con-

straints are not violated. Additionally, the approach is based on simple optimization

methods, e.g. the bisection approach, which eases its implementation and its use while

maintaining the real-time applicability for replanning a trajectory.
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The forth key point is devoted to the adaptation and the extension of our results

concerning set point tracking such that they can be beneficially applied for compen-

sating a trajectory tracking error. With this in mind, the tracking error dynamics of a

system in T-S notation have been formulated. Based on that, we have proved that all

of the results obtained for set point tracking are applicable to trajectory tracking if each

system constraint is a priori subdivided into two parts (input amplitude, input rate and

state): one part forms the restriction for the trajectory design and the other part for

compensating a tracking error. In order to improve the control performance, we have

established a condition for dynamically allocating the saturation limits of the feedfor-

ward and the feedback part. More precisely, the LISA condition (Limits of Inputs and

States are Allocated) leads to a required decay rate of the quadratic Lyapunov function

which defines the DA. If this decay rate is ensured then the restrictions concerning error

compensation can be dynamically adapted based on the corresponding current values

of the trajectory. A combination of the LISA condition and the GINA controller has

led to a new trajectory tracking control framework that guarantees a fast stabilization

of a desired trajectory even if the current tracking error is not within the estimated DA

of the trajectory.

The last key point has been addressed by simple numerical examples within several

sections of this thesis in order to clarify the devolved methods. Further, simulation and

experimental results have demonstrated their benefits and their practical applicability

to a wide range of technical systems: the well-known nonlinear benchmark system

inverted pendulum on cart, an omnidirectionally movable unstable robot, a nonlinear

vertical take-off and landing aircraft and an active cruise control system for a car.

Based on the results in this thesis, the following expedient and interesting issues arise

and should be addressed in future research:

Deriving a flat output In Appendix E, first results are derived for constructively

determining a flat output for a nonlinear system with a single input based on its T-S

notation. It would be very useful to extend this procedure to multiple inputs.

Estimating the DA for Nonlinear Controlled Systems Computing a DA for non-

linear controlled systems subject to constraints is not an easy task and numerically

expensive. In [26], a new possibility is discussed for easing the problem in general.

Therein, a closed-loop nonlinear system (consisting of a nonlinear plant and a nonlin-

ear controller) is written in SE-NL T-S notation in order to compute a related DA based

on LMIs. An automation of the approach would be of interest.
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It is also worth to investigate the applicability of the results for estimating a valid

DA (Chapter 3) for designing T-S observers. For instance, in [98] the benefit of a T-S

observer for a nonlinear suspension system is shown. Thereby, the DA of the observer

is estimated subject to the universe of discourse of the system.

Extension to Non-Quadratic Lyapunov Functions The methods in this thesis are

based on quadratic Lyapunov functions. A naturally rising research question is how the

results can be applied to non-quadratic Lyapunov functions. As explained in Section 1.1

non-quadratic approaches (see [77, 95, 120]) reduce the conservatism of the estimate

but their applicability is limited. Problems like computational complexity, integrating

system constraints and handling T-S formulation with affine terms have to be addressed.

Combining the GINA controller with MPC Model Predictive Control (MPC) seems

to be a promising extension of our GINA controller approach for further enlarging its

operation region. To this end, two possible combinations would be of interest: First,

if no stabilizable equilibrium can be found by the GINA controller then MPC can be

used to drive the system towards the nearest set point. As soon as the state vector is

within the DA of this equilibrium, the GINA controller is activated again. Thereby,

the dual problem of computational cost and stability in MPC (see Section 1.1) can be

relaxed as the stable terminal region is placed as close as possible to the current state

vector. Hence, a short horizon length is achievable.

While in the first proposed combination MPC acts more or less as a fail-safe mode,

the GINA controller takes over that role in the second approach: The primary goal is

to compute an equilibrium based on the GINA controller that is as close as possible

towards the desired one but can be stabilized by the MPC controller within a single

horizon. In other words, the GINA controller determines the stable terminal region for

the MPC and shifts that region towards the tracking target.

Fault Tolerant GINA Controller A future-oriented topic is fault detection and fault-

tolerant control [90, 123]. Thereby, a system continues to operate in case of a fault,

e.g. of a sensor or an actuator, by locating the error and adapting the control law

accordingly. The GINA controller can be beneficially integrated in such a control ar-

chitecture. The advantage might be to change parameters within the GINA controller

instead of changing the controller. For instance, by adapting the desired set point or

the saturation limits. Thereby, issues like performance guarantees and stability proofs

can become simpler. This should be deeper investigated in future research.
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Appendix A

Technical Proofs

A.1 Proof of Theorem 6.3.1

The convergence of the temporary equilibrium towards ed = x∗
t − x∗

d as well as the

control error et = x − x∗
t must be considered. To this end, we consider the Lyapunov-

like function

Vet,ed
=

η0

ηu∗

t

Vx∗

t
+ eT

d ed
︸ ︷︷ ︸

Ved

(A.1)

with Vx∗

t
being the Lyapunov function (6.6) at x∗

t and ηu∗

t
> 0 is the related bounding

level value (e.g. (6.9)). The rear term Ved
in (A.1) is zero if x∗

t = x∗
d whereby we have

to differ between two cases:

Case A.1.1 (x∗
t = x∗

d). The GINA controller is inactive and the derivative of (A.1) is

V̇et,ed
=

η0

ηu∗

t

V̇x∗

d
< 0 (A.2)

as V̇x∗

d
< 0 due to the considered asymptotically stabilizing control law for x ∈ Xx∗

d
(P, ηu∗

d
).

Case A.1.2 (x∗
t 6= x∗

d). According to Algorithm 6.3.1, the scaling variable c is updated

such that x is at the border of the DA of the actual x∗
t , meaning x ∈ ∂Xx∗

t
(see also

Fig. 6.3). Thereby, the first term in (A.1) remains constant

η0

ηu∗

t

Vx∗

t
= η0. (A.3)

The derivative of (A.1) becomes

V̇et,ed
= V̇ed

= 2 (x∗
t − x∗

d)T
ẋ∗

t , (A.4)
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which can be reformulated to

V̇et,ed
= V̇ed

= 2ċ
(

f̂(x∗
r ,x

∗
d, c) − x∗

d

)T ∂
(

f̂(x∗
r ,x

∗
d, c)

)

∂c
(A.5)

replacing x∗
t and ẋ∗

t with (6.5a) and its derivative, respectively. Due to (6.11), V̇et,ed
< 0

within the relevant range c ∈ [0, 1[ if ċ > 0 which is proven in the following: Suppose

a solution c(t1) at a time t1 is fixed, meaning that x∗
t is kept constant and thus ċ = 0

whereby V̇et,ed
= 0 according to (A.5). Then the Lyapunov-like function (A.1) will

decrease based on (A.2) (setting x∗
d = x∗

t ). However, equation (A.3) will be violated an

infinitesimal time instance t2 = t1 + δt, with δt << 1, later as

η0

ηu∗

t

Vx∗

t
(t2) <

η0

ηu∗

t

Vx∗

t
(t1) = η0. (A.6)

Consequently, c can be shifted along each direction of f̂ at the time t2 until (A.3) is

fulfilled again. Based on Algorithm 6.3.1 c(t2) > c(t1) is selected, whereby x∗
t gets

closer toward x∗
d. Comparing (A.1) for c(t1) and c(t2) results in

η0

ηu∗

t

Vx∗

t
(t2) =

η0

ηu∗

t

Vx∗

t
(t1) = η0, Ved

(t2) < Ved
(t1) (A.7)

and thus Vet,ed
(t2) < Vet,ed

(t1). In view of that and remembering the continuity (C0) of

c (Remark 6.3.1), the integral

∫ t2

t1

= max
i

(ċ) dt = c(t2) − c(t1) > 0 (A.8)

exists whereby ċ > 0 is ensured and V̇et,ed
< 0 proven for the considered case.

According to the Cases A.1.1 and A.1.2, the asymptotic stability of the GINA con-

troller extended close-loop system is ensured which concludes the proof.

A.2 Proof of Theorem 6.4.2

Based on the functions (6.14) we reformulate (6.7), (6.9) for every input i to

Vx∗

t
= c2

i

[

(x∗
r − x∗

d)T
P (x∗

r − x∗
d)
]

+ ci

[

2 (x∗
r − x∗

d)T
]

· [P (x − x∗
r)] +

+ (x − x∗
r)T

P (x − x∗
r)

(A.9)
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for the left-hand side and

ηu∗

t,i
=

η0

u2
max,i

·







[

umax,i − u∗
r,i + ci · (u∗

r,i − u∗
d,i)
]2

if u∗
t,i ≥ 0

[

umax,i + u∗
r,i + ci · (u∗

d,i − u∗
r,i)
]2

if u∗
t,i < 0

(A.10)

for the right-hand side of the equation. Regarding to the trivial reference equilibrium

x∗
r = 0 the quadratic functions (A.10) can be further written in vertex form of a

parabola

ηu∗

t,i
= a∗

t,i (ci − st,i)
2 , i ∈ {1, 2, ...} (A.11)

with a∗
t,i = η0

u∗

d,i
2

u2
max,i

and

st,i =







umax,i

u∗

d,i
if u∗

t,i ≥ 0,

−umax,i

u∗

d,i
if u∗

t,i < 0,
(A.12)

equals to the c-coordinate of the vertex. That leads to a coupling of two arbitrary

chosen inputs i and l by

a∗
t,i = a∗

t,j

(

st,j

st,i

)2

i, j ∈ {1, 2, . . . ,m} . (A.13)

Based on that the intersection points of the level sets, and thus the change of the

minimal level value, can be determined depending on c as

0 = a∗
t,j

st,j

st,i

(c− st,i)
2 − a∗

t,j (c− st,j)
2 ,

0 = c
[

c ·
(

s2
t,j − s2

t,i

)

− 2
(

st,i · s2
t,j − st,j · s2

t,i

)]

,

⇒ c1 = 0, c2 = 2
st,i · st,j

st,i + st,j

.

(A.14)

The first intersection point c1 = 0 confirms that ∂X0(P, η0) is a common level set.

Assuming, without loss of generality, st,i ≤ st,j leads to

c2 ≥ st,i, as st,j ≥
st,i + st,j

2
(A.15)

for the second intersection point. In other words, c2 is never on the left-hand side of

the smallest vertex s̃t = mini (st,i). Consequently, the input that belongs to s̃t defines

the smallest level set for all c ∈ [0, 1] whereby the proof is concluded.

The quintessence of that is sketched in Fig. A.1 considering a system with three inputs

ui, i ∈ N1:3. Shown is the in c quadratic function (A.9), (A.11) and one of its possible

165



Appendix A Technical Proofs

Vx∗

t
, ηu∗

t,i

Vx∗

t

ηu∗

t

c

I

ηu∗

t,i

η0

s̃t

range for c

Figure A.1: Sketched curves for determining c if u∗
r 6= u∗

t 6= u∗
d.

solutions I: Both functions, Vx∗

t
as well as ηu∗

t ,i are not allowed to become negative.

Thus Vx∗

t
intersects with the level set corresponding to s̃t first (marked with a star).

The operating range of c ∈ [0, 1] has to end before s̃t is reached as here |u∗
t | = umax and

thus the constraint in (6.14b) is violated. Consequently, ηu∗

t
equals to the level value

ηu∗

t,i
that belongs to a fixed and non-changing input i (in fact the one belonging to s̃t)

whereby the proof is concluded.

A.3 Proof of Theorem 6.4.3

Due to the fact that a solution can be obtained which is non-valid or at least not the

optimal one, which is given by Theorem 6.3.1, we have to distinguish between four

possible cases:

Case A.3.1 (x∗
t = x∗

d). The GINA controller is inactive and the asymptotic stability

of x∗
d is ensured by case A.1.1 of Theorem 6.3.1 (see Section A.1).

Case A.3.2 (optimal x∗
t ). If the temporary equilibrium of the iterative implementation

equals to the optimal solution according to Theorem 6.3.1 then the asymptotic stabiliza-

tion of x∗
d is guaranteed by case A.1.2 of Theorem 6.3.1 (see Section A.1).

Case A.3.3 (non-optimal x∗
t ). Fig. A.2(a) illustrates a non-optimal but valid updating

for the temporary equilibrium from a time t1 to t2 = t1 + δt, with δt << 1, meaning

that x(t2) is within the DA of x∗
t (t2) but non on the corresponding bounding level value.

Depicted is the reference equilibrium x∗
r, the desired set point x∗

d, two subsequently calcu-

lated and activated temporary equilibria x∗
t (t1) and x∗

t (t2) as well as the trajectory piece

of the state vector in-between t ∈ [t1, t2]. The value of the Lyapunov-like function (A.1)
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x∗
r

x(t1)
x(t2)

x∗

d

x∗
t (t1)

x∗
t (t2)

(a) Non-optimal x∗
t

x∗
r

x(t1)
x(t2)

x∗

d

x∗
t (t1)

x∗
t (t2)

(b) Non-valid x∗
t

Figure A.2: Visualization of possible non-optimal solutions.

decrease within the considered time-span as Ved
as well as η0

ηu∗

t

Vx∗

t
become smaller. Con-

sequently, as at each time instance an optimal solution which asymptotically stabilize x∗
d

generally exists a non-optimal solution leads to a decrease of the Lyapunov-like function

(compared to the corresponding optimal solution of the prior time step). Non-optimal

solutions asymptotically stabilize x∗
d as well.

Case A.3.4 (non-valid x∗
t ). Fig. A.2(b) illustrates a non-valid updating of x∗

t , meaning

x(t2) is not within the DA of x∗
t (t2). According to Algorithm 6.4.1, x∗

t (t1) is kept active

whereby it becomes a valid non-optimal solution (see Case A.3.3).

Due to the universal approximation theorem, as detailed in [81], each nonlinear func-

tion can be represented with required accuracy. At the case at hand that means: finding

a new valid temporary equilibrium can be ensured by refining (increasing) the basic rule

base of Table 6.1. Therefore, the number of membership functions and linguistic vari-

ables has to be enlarged. Consequently, the asymptotic stability of the GINA controller

extended close-loop system is ensured due to the Cases A.3.1 to A.3.4 whereby the

proof is concluded.

A.4 Proof of Lemma 10.2.1

The bounding level value of the DA (10.5) is given by transferring (6.9) into the error

domain:

η0(uT (t)) = η0(uT,p(t)) = min
i










η0 ·
(

ue,max,i(t)
︷ ︸︸ ︷

umax,i − |uT,i(t)|)
2

u2
max,i

︸ ︷︷ ︸

η0(uT,i(t))










, ∀ t∈T . (A.16)
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The nominal bounding level value η0 is estimated based on LMIs (analogous to the

set point case) setting uT (t) = 0, meaning ue,max(t) = umax based on (10.4). The

index i ∈ {1, 2, . . . ,m} denotes the elements of the input vector and the index vector

p summarizes the index of the elements uT,i that lead to the smallest level value at a

certain time, e.g. if η0(uT,p(t1)) = η0(uT,2(t1)) = η0(uT,4(t1)) then p = [2, 4].

The time derivative of (A.16) is

η̇0(uT,i(t))=
2η0u̇T,i(t)(|uT,i(t)| − umax,i)

u2
max,i

sgn(uT,i(t)) (A.17)

whereby the signum function occurs due to the weak differentiability of the absolute

value function. Due to Assumption 10.2.1, the derivative u̇T,i(t) exists. The smallest

level value η0(uT (t)) that decreases most (or increases least) of all of them is

η̇0(uT (t)) = min
p

(η̇0(uT,p(t))) . (A.18)

Suppose that a tracking error e(t1) ∈ E0(P, η0(uT (t1))) occurs at a time t1 ∈ T . Now,

for guaranteeing that e(t) stays within E0(P, η0(uT (t))) for each t > t1, t ∈ T , the

tracking error hast to decrease fast enough. More precisely, the value of the Lyapunov

function V0 has to decrease faster than the critical level value of the related DA (10.5).

Claiming that based on a decay rate αu > 0 of V0 results in

V̇0 ≤ −αuV0 ≤ η̇0(uT (t)) (A.19a)

≤ −αuη0(uT (t)) ≤ η̇0(uT (t)), ∀ t ∈ T (A.19b)

whereby V0 = η0(uT (t)) denotes the most critical case (the error is on critical level

value). Reformulating (A.19b) leads to

αu ≥
−η̇0(uT (t))

η0(uT (t))
︸ ︷︷ ︸

αu(t)

, ∀ t ∈ T , (A.20a)

αu ≥ max
(

β,max
t∈T

(αu(t))
)

, (A.20b)

where β ≪ 1 denotes a small positive scalar which ensures that V̇0 < 0 at least, e.g. for

the non-critical case that αu(t) < 0. Consequently, the proof is completed.
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Discrete Reference Equilibrium

Beside the analytical calculation of a valid reference equilibrium, it can be also de-

rived in a numerical way. The task of selecting a valid reference equilibrium (line 3

and 18 of Algorithm 6.5.1) depends on the available data storage and the computa-

tional power. In the following, we summarize two approaches based on a discretized

functional relation of allowed system’s equilibria which is either directly given by (6.3)

or by discretizing (6.1.1). In Section B.1, the state space within the DA of each possible

reference equilibrium is discretized and in Section B.2 the DA is approximated with a

polytope whereby the required data storage can be further reduced.

B.1 Tabularization

In the first approach, we discretize the state space within the DA of each possible

reference equilibrium x∗
r(k) along the functional relation of allowed system’s equilibria

f̂(x(k)). This procedure is illustrated in Fig. B.1 concerning two reference equilibria

x∗
r(k) with k ∈ N1:2. The state space within the bounding level value η∗

r(1) is discretized

(black crosses in Fig. B.1) and stored in a look-up table (state belonging to x∗
r(1)). Due

f̂(x(k))

η∗
r (1) η∗

r (2)

x∗
r(1) x∗

r(2)

Figure B.1: Tabularization of the state space within η∗
r(k).
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to the point symmetry of the ellipsoidal DAs it is enough to discretize the upper half

plane of the state space. Concerning the subsequent DA bounded by η∗
r(2), we only

have to store discrete points in the state space which are already within η∗
r(1) (gray

crosses in Fig. B.1).

Now, if the reference equilibrium needs to be recalculated in real-time then the current

state vector is quantized with the discrete state values (stored in the look-up table).

B.2 Polytope within Ellipsoid

In order to reduce the required data storage of the tabularization approach we approxi-

mate the DA of each reference equilibrium by a polytope. This procedure is illustrated

in Fig. B.2 based on two reference equilibria (analogous to Fig. B.1). Each DA is ap-

proximated by an inner polytope. In Fig. B.2, they exemplarily consist of five nodes.

Note that the amount of nodes can be adjusted based on the size of the state space

and the available data storage. Due to the point symmetry of the ellipsoidal DAs it is

enough to consider their upper halves. The polytopes can be shaped in such a way that

they do not intersect. In other words, the polytope concerning a reference equilibrium

is constructed such that no intersection with the polytope of another reference equilib-

rium exist. For instance, the green polytope belongs to x∗
r(1) and the red one to x∗

r(2).

Similar to explicit MPC [9, 126], a decision tree needs to be build up which finally de-

tects within which polytope the actual state vector is. Consequently, the corresponding

reference equilibrium has to be activated.

f̂(x(k))

η∗
r (1) η∗

r (2)

x∗
r(1) x∗

r(2)

Figure B.2: Polytopic bounding of the domain of attraction.
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Parameters of the Test Rigs

In this chapter, we summarize the parameters of the experimental systems. If a param-

eter range is given, e.g. input amplitude saturation, then the actual considered value is

separately defined in each experiment.

C.1 Inverted Pendulum Test Rig

The parameters of the inverted pendulum system (7.1) are summed up in Tables C.1.

The motor can be considered as an ideal rate limiter (τ → ∞) and its rate saturation

is adjusted by a rate limiter in each experiment.

Table C.1: Parameters of the Pendulum Test Rig

description symbol value unit
pendulum (rod) center of gravity a 0.1925 m
rod mass mp 0.146 kg
cart mass mw 5.9 kg
total mass mg = mw +mp 6.046 kg
moment of inertia Θ = 4

3
ma2 1.8 · 10−3 kgm2

friction constant dx 843 Ns/m
motor constant cm 24.95 N/V
motor inverse time constant τ → ∞ 1/s
input amplitude range umax [0, 45] V
input rate u̇max user defined V/s
gravitation constant g 9.81 N/kg
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The matrices (3.12) for deriving the SE-NL T-S model (3.11) are

Â =














0 0 0 1 0

0 0 1 0 0

θ1θ2θ33mpg 0 −θ14dx −θ1θ44mpa θ14cm

θ1θ2
3mgg

a
0 −θ1θ3

3dx

a
−θ1θ3θ43mp θ1f3

3
a

0 0 0 0 0














, B̂ =














0

0

0

0

1














,

K =
[

0 0 0 0 −τ
]

.

(C.1)

C.2 Ballbot Test Rig

The parameters of the Ballbot test rig are summarized in Tables C.2. The parameter

called "ext. frame" is the combination of the original frame F , the motors Mi, the clips

Ci and the omniwheels Wi with i ∈ N1:3.

In [92], where the equations of motion of the Ballbot are detailed, the torque moment

of the DC motors operating on the ball are expressed by

Mi = −
kEkM i

2
GηMηG

RM

· δ̇i +
kM iGηMηG

RM

· ui, i ∈ N1:3, (C.2)

whereby the actual motor parameters are given in Table C.3. However, an experimen-

tal validation of the equation (C.2) has shown that an additional nonlinear damping

function drot(ui) depending on the rotation speed of the omniwheels is required. The

Table C.2: Parameters of the Bodies of the Ballbot Test Rig

description symbol value unit
ext. frame mass mF 7.839 kg
ext. frame moment of inertia: x-direction Θ(F )

x 0.335 kgm2

ext. frame moment of inertia: y-direction Θ(F )
y 0.335 kgm2

ext. frame moment of inertia: z-direction Θ(F )
z 0.085 kgm2

ext. frame center l 0.300 m
ball mass mB 2.319 kg
ball moment of inertia Θ(B)

x,y,z 0.024 kgm2

ball radius rB 0.125 m
ball spin friction d 0.170 Nms
omniwheel work angle η 1

4
π rad
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C.2 Ballbot Test Rig

Table C.3: Parameters of the Motors and the Gears of the Ballbot Test Rig

description symbol value unit
torque constant kM 19.1 mNm

A

voltage constant kE 2.0 mV
rpm

efficiency factor ηM 0.83 −
terminal resistance RM 0.41 Ω
amplitude range umax [0, 12] V
gear ratio iG 43 −
gear efficiency factor ηG 0.70 −
rotational damping in PCU drot,P CU 0.8 Nms
rotational damping in VCU drot,V CU 0.1 Nms

final nonlinear motor equation is

Mi = −
kEkM i

2
GηMηG

RM

· δ̇i +
kM iGηMηG

RM

· ui − drot(ui)δ̇i, i ∈ N1:3. (C.3)

Fig. C.1 shows the identified damping function. It can be seen that the rotational

damping coefficient highly varies with the motors’ voltage. Consequently, we consider

individual rotational damping coefficients for position (PCU) and velocity (VCU) con-

trol. The corresponding values (drot,P CU and drot,V CU) are given in Table C.3.

The modeling of the Ballbot is detailed in [92]. This together with the updated

Ballbot parameters (Table C.2 and Table C.3) and the new motor equation (C.3)) lead
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Figure C.1: Identified rotational damping coefficient drot(u).
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to the final state space model

pA =























0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 −7.5217 −82.0290 0 0 17.8823

0 0 7.5217 0 0 −82.0290 −17.8823 0

0 0 38.4979 0 0 −271.7613 −59.2440 0

0 0 0 38.4979 271.7613 0 0 −59.2440























, (C.4)

pB =























0 0 0

0 0 0

0 0 0

0 0 0

0 −2.7525 2.7525

3.1784 −1.5892 −1.5892

10.5299 −5.2649 −5.2649

0 9.1192 −9.1192























(C.5)

concerning the PCU and for the VCU the matrices are:

vA =

















0 0 0 0 1 0

0 0 0 0 0 1

0 −7.5217 −49.3257 0 0 10.7530

7.5217 0 0 −49.3257 −10.7530 0

38.4979 0 0 −163.4155 −35.6246 0

0 38.4979 163.4155 0 0 −35.6246

















, (C.6)

vB =

















0 0 0

0 0 0

0 −2.7525 2.7525

3.1784 −1.5892 −1.5892

10.5299 −5.2649 −5.2649

0 9.1192 −9.1192

















. (C.7)
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Appendix D

Recurrent Fuzzy switching rule base

for the Inverted Pendulum

Table D.1 summarizes the rule base of the recurrent fuzzy switching controller con-

sidered in the experimental example 7.1.2. The linguistical characteristics (7.7) are

abbreviated by "S", "M" and "L", respectively. The notation of the Table is as follows:

The currently active subsystem Σi(k) is written in the first column and the linguistical

characteristics of the input ũ(k) = [ũ1(k), ũ2(k), ũ3(k)]T is placed in the first row. Thus,

the first row and column represent the rules’ premises. The rest of the Table represents

the rules’ conclusions, meaning which subsystem Σi(k+1) is activated at the next time

step. For instance, the second rule of the first row is given by

If x̃(k) is Σ1 and [ũ1(k), ũ2(k), ũ3(k)]T is [S, S,M ]T then x̃(k+1) is Σ2. (D.1)

It can be seen that some rules’ conclusions have an additional upper index ” ∗ ” which

denotes that the mulit Lyapunov switching (condition ii) in Theorem 4.3.1) needs to

be fulfilled before activating the corresponding closed-loop system. In other words, if

the corresponding system should be activated due to the rule but the multi Lyapunov

switching condition is not fulfilled yet then the actual system is kept active until the

condition is satisfied. If the switching condition is fulfilled then a smooth blending

happens such that only a single change of the active Lyapunov function occurs.
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Appendix E

Flat output based on a T-S

Formulation

Due to the difficulty of systematically finding a flat output of a nonlinear system in

general, one may think about exploiting the T-S framework such that the problem can

be eased to the linear case. For instance, this thought has been recently addressed for

continuous-time recurrent fuzzy systems (see Section 2.1.1) in [42]. However, interpo-

lating the flat outputs of the T-S subsystems does not necessarily yield to a flat output

of the nonlinear system. Hence, the following problem statement rises naturally:

Problem E.0.1. Given a system in SN-NL T-S notation (2.6)(or a LO T-S model (2.15)

without affine terms). Then the problem is to systematically find a flat output of the

original nonlinear system based on the linear subsystems of the T-S model.

In the following we briefly summarize first results concerning a nonlinear system

with a single input which hopefully will help to solve this problem in further research.

We state our results in terms of two theorems which can be automatically checked.

Consequently, in our opinion it is worth to be tried to find a flat output of a nonlinear

system:

Theorem E.0.1. Let a nonlinear system with a single input be given in T-S notation

which consists of r subsystems without affine terms. Then the flat output of the original

system equals to the flat outputs yf = yf,i, i ∈ N1:r of the T-S subsystems if all

subsystems are controllable and a common and constant transformation matrix

Ψ = Ψi, i ∈ N1:r, (E.1)

into the flat coordinates (2.62) exist.
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Proof: If all linear subsystems of the T-S representation are controllable then each

of systems is differentially flat. If in addition, the transformation matrices into the flat

coordinates fulfill (E.1) then the flat output subspace of each subsystem is identical.

Hence, the flat output is not affected by the convex interpolation
∑r

i=1 hi(zs) of the T-S

model which concludes the proof.

If however, the T-S subsystems does not share a common and constant transformation

matrix (E.1) then it depends on system nonlinearities θk(zs), k ∈ N1: r
2
. Hence, the

convex interpolation is affected by

Ψ(θ(zs)) =
r∑

i=1

hi(zs)Ψi. (E.2)

Concerning that case, we state the following Theorem:

Theorem E.0.2. Let a nonlinear system with a single input be given in T-S notation

which consists of r subsystems without affine terms. If no common and constant trans-

formation matrix (E.1) for all subsystems exist then (E.2) is a valid transformation into

flat coordinates if rank (Ψi) = n is fulfilled for each Ψi and if a nonlinearity θk(zs),

k ∈ N1: r
2
, that is located in the j ≤ n is (n− j) + 1 times differentiable before the input

u occurs.

Proof: Due to the nonlinear transformation matrix the controllability of each linear

subsystem of the T-S representation (as in Theorem E.0.1) is not enough to ensure

flatness of the original nonlinear system. The postulated rank condition is required

for the whole operating region (UoD) of the T-S system in order to guarantee the

existence of an unique transformation into flat coordinates in general. For proving that

a valid transformation has been detected, the location of nonlinearities θk(zs), k ∈ N1: r
2

within Ψ(θ(zs)) has to checked: A nonlinearity that is located in the j ≤ n row the

transformation matrix is according to (2.63) either part of the flat output yf or of

its derivatives. Hence, the nonlinearity occurs in the flat coordinates. Consequently,

θk(zs) has to be (n− j) + 1 times differentiable in order to obtain the highest derivative

y
(n)
f which is required for describing the input signal u depending on the flat output

(see (2.65)) and the proof is concluded.

In order to clarify the established Theorems, we recall Example 2.2.3:

Example E.0.1 (Example 2.2.3 cont’d). The systems controllability matrix is given

by

Qs =




0 1

1 f1



 . (E.3)
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From the inverse of (E.3) if follows that a flat output of the system is yf = x1 and thus

a common transformation matrix

Ψ =




1 0

0 1



 (E.4)

is obtained for both subsystems as stated in Theorem E.0.1.

Example E.0.2. If the nonlinearity in Example E.0.1 is shifted such that the new

system is

ẋ =




f1 1

0 1



x +




0

1



σ(u) (E.5)

then a non-constant transformation matrix consisting of the subsystems

Ψ1 =




1 0

f
1

1



 ,Ψ2 =




1 0

f 1 1



 , (E.6)

is obtained. However, both subsystems share the same flat output yf,i = x1, i ∈

N1:2 which is equivalent to the flat output of the original nonlinear system due to

Theorem E.0.2.
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